AXR

ASSEMBLER EXTENSION ROM

FROM ACORN USER

FOR THE BBC MICROCOMPUTER

CONTENTS

Introduction
Operating requirements
Fitting the chip

Some terminology
Testing the ROM

Memory usage
Assembly language from BASIC
Names of variables & case of letters
Memory sharing

The location counter, P%
Arithmetic expressions
Number bases

Labels

Comments

Pseudo-ops

OPT (bits 0-7)

Other pseudo-ops
Conditional assembly

Macros

Assembly from disc
The source program
The label
The mnemonic
The operand
The comment
EQUate
An example
Further pseudo-ops
Conditional assembly
Macros
Memory location &70
Operating system calls
Error messages

Star commands
BITS

LVAR

DSM

STRIP

Extra instructions
Programs on the AXR

_. .
= OO NUUaWWNNNNN

11-18

22
22

25
25
26
26
26
26
27
27
30
31
32
34
35
38

41
41
45

46
48

Assembler Extension ROM (AXR)
6502 Assembler for the BBC B/B+ microcomputers

By Steve Picton of IFEL (Interface Electronics & Computing),
Plymouth

The Assembler Extension ROM (AXR) is one of a series of
products tested and supported by Acorn User, a monthly magazine
for users of Acorn computers including the BBC micro and
Electron. Look out for details of other products in Acorn User,
or write to the address given below,

Revised edition 1st July 1986

All rights reserved. No part of the AXR code or the
accompanying manual may be copied, reproduced, stored or
transmitted by any means without the prior consent of the
publisher.

While the Assembler ROM has been carefully tested, the
publisher does not accept any liabilities with respect to the
program.

The AXR and manual were written by Steve Picton, and
edited by Steve Mansfield and Bruce Smith. Thanks are due to
Mike Ginns for his assistance and suggestions.

Any correspondence about the AXR should by addressed to: AXR
ROM, Acorn User, 141-143 Drury Lane, LONDON WC2B 5TF.

Page 1

INTRODUCTION

The AXR from Acorn User is a versatile ROM for use with
the BBC microcomputer. It has been written to circumvent the
shortcomings of the built-in assembler (particularly that of
the rather restrictive BASIC 1), and also to cope with the
extra instructions available in the CMOS version of the 6502.
Additionally, assembly may be performed directly from disc or
tape files. All the facilities of the BASIC 2 assembler are
implemented, including 'offset' assembly.

An understanding of assembly language programming on the
6502 1is assumed throughout this manual. The way in which the
AXR is used is very similar to the standard assembler contained
within the BASIC interpreter, and most of your existing
assembly language programs can be run with only slight changes.

OPERATING REQUIREMENTS.

For the assembler to work properly, the BBC micro (B or
B+) must be fitted with operating system version 1.2. Your
machine must also be fitted with BASIC.

FITTING THE CHIP ; -

Disconnect the computer from the mains supply, and remove
the lid of the computer.

In the case of the standard model B, you will need to undo
the bolts that hold the keyboard in position. Insert the AXR
chip into any one of the available ROM sockets. Take care that
none of the pins become bent sideways, and also ensure &«hat it
is inserted with correct polarity. The small notch in the end
of the chip should be facing the back of the computer.

Finally, re-assemble the machine in the reverse order.

SOME TERMINOLOGY

Throughout this manual, the following nomenclature is
used.

& A hexadecimal number follows.
<RETURN> Press the RETURN key.

TESTING THE ROM

When correctly installed, typing *HELP should cause a
listing of the ROM titles. The AXR followed by a version number

Page 2

should appear in the list.

The ROM has two possible states, enabled or disabled.
Being able to disable the ROM helps to reduce the possibility
of 'clashes' with other ROMs. At power-on, or after a
CTRL-BREAK, the ROM defaults to the 'off' state. You can enable
the ROM with

*ONAXR and disable it with
*OFFAXR

It is suggested that the ROM should always be placed in
the disabled state unless it is specifically required.

Another effect of *ONAXR is that it resets the value of
OPT to 3. The reason for this, and the significance of OPT, are
explained later.

Notice that ALL the ‘star' commands on the AXR may
optionally be preceded with the letters 'AU' (Acorn User).
Furthermore, the case of the letters 1is unimportant, and
commands may be abbreviated by means of a period. Hence
"*auoNAxr" and "*AUOFFA." are both valid.

MEMORY USAGE

During the assembly process, extensive use is made of page
12. This page consists of the addresses &C00-&CFF inclusive.
Zero page locations &60-&478 are also needed by the Assembler
ROM.

In practice, this memory usage does not cause any
difficulties, It is only during assembly that they are
required. The final machine code program may use any section of
memory whatsocever, within constraints imposed by the operating
system and current language. If you want to place your machine
code in page &C, then you will need to assemble it somewhere
else first, and then move it down to &C00 onwards when assembly
is finished. The 'offset' assembly facility takes care of the
problem of absolute addresses, and is described later.

Use *OFFAXR (see above) when assembly is complete to guard
against accidental corruption of memory.

ASSEMBLY LANGUAGE FROM WITHIN BASIC

The ability of the BBC micro to assemble code included in
a BASIC program is one of its many strong points. The AXR was
therefore specifically written to allow assembly to be
performed in this way. The underlying principle of the AXR is
that it assembles instructions when BASIC finds they have been
used in an 'illegal' way. You do not have to enter and exit the
assembler using [and }. This means that you can very often use
the AXR to assemble your code just by removing the [and]
symbols from existing ‘programs. The programs below both

Page 3

generate identical code (aE &5000 onwards).

10 REM Standard assembler 10 REM AXR Assembler
20 P%=45000 15 *ONAXR

30 [OPT 3 20 P%=.5000

40 LDA #Asc"A" 30 OPT 3

50 JMP &FFE3 40 LDA #ASC"A"

60] : CALL &5000 50 JMP &FFE3

60 CALL &5000

It is important to realise that you should NOT use the [
and] symbols if assembly is supposed to be performed by the
AXR.

NAMES OF VARIABLES & CASE OF LETTERS

You have complete freedom of choice over the case of
letters for the instruction mnemonics, for the two index
registers and the Accumulator. The following are therefore all
valid.

dEC a:PHx:1Dx &E,y:cmp(450,x):ASL A:ROR a

The various rules governing the names of variables are
covered in the BBC micro User Guide. Most importantly, they
must not start with a BASIC keyword. BASIC keywords are always
in capital letters, so 'next' isja valid variable, but 'NEXT'
is not. 'One of the the problems with the standard assembler,
whereby an instruction such as’' 'ASL Addr' is taken to be
accumulator'.addressing, is not present in the AXR.

Throughout this manual, we will adopt the convention of
using capitals for mnemonics, and lower case letters for labels
and variables.

Page 4

MEMORY SHARING

When assembly language programs are run as part of a BASIC
program, we can consider the available memory to be split up
into three sections.

1) The memory used to hold the source (assembler) code. This
starts from PAGE (often &E00 or &1900) and extends upwards to
TOP. The size of the program is thus given by TOP-PAGE.

2) When the program is run, any variables that are defined
are usually stored immediately above the main program, i.e.
from TOP upwards. The more variables there are (which is
effectively what a label or symbol is), the more memory must be
set aside to contain them.

3) If the machine code is being written into RAM, then we
clearly need to be absolutely certain that it is not going to
corrupt either our source code or the memory used for the
variables. Ideally, we should be able to set up a block of
memory somewhere, and be guite sure that BASIC will not try to
use it for anything. We can then write the machine code into
this block.

This last requirement is achieved by special use of the
DIM statement. The syntax used is

DIM <variable> <number of bytes-1>

Hence the use of 'DIM code 99' allocates a block of 100
memory bytes, starting at the address given by the variable
'code'. It is safe to write anything at all into this block
without affecting the BASIC interpreter at all.

The number of bytes that should be reserved in this way
depends on your application. Any number up to several thousand
might be needed. It is best to err on the large side, but avoid
choosing huge numbers as a matter of routine. If the statement

DIM blocks% 10000

was given, then about 10000 bytes are 'lost', and the BASIC ROM
will think that there 1is correspondingly 1less memory for
variable storage. Errors such as 'Bad MODE' and 'No room' are
now much more likely to occur.

THE LOCATION COUNTER, P%

In the last section we saw how to set up a block of memory
so that we can write the machine code into it without fear of
corrupting memory required by BASIC. We must now look at how to
make the Assembler ROM place the machine code that it produces
into our chosen section of memory.

Page 5

As assembly proceeds, the computer maintains a 'location
counter’' in the integer variable P% (see User Guide page 66).
Used in this way, P% always holds the memory address into which
the next instruction will be assembled. We would normally
expect to initially set P% to the first address of a block of
memory produced by a DIM statement. We have not bothered to do
this in many of the examples that follow, because the amount of
code that will be produced is so small. Instead, P% is just set
to an absolute memory address at the start of an area which is
known to be free -- e.g. P%=85000. Sometimes P% is set to
something 1like &A00 or &900 when short routines are in use.
This is done so that it remains immune from the effect of
LOADing in a new program, changing graphics mode etc.

In order to see the variable P% working, type in the
following sequence of commands:

P%=&6000 : OPT 1 <RETURN>»

(If you get a 'Mistake', then the Assembler ROM is
disabled - type *ONAXR to remedy the situation)

This will cause the 'program counter' P% to be set to hex
6000. This in turn means that our machine code will start being
produced from &6000 onwards. Ignore the effect of OPT 1 for the
moment. Enter the single line

PHA <RETURN?»
]
This should produce on the screen:
6000 48 PHA

The way to interpret this information is as follows. P%
was initially set to &6000, so this is where we expect to have
our machine instructions placed. The opcode of our PHA mnemonic
(&448) has been written into i address &6000. The assembly
language statement that gave rise to the object code (just
'PHA' in this case) is listed out too.

We have said that P% is continuously pointing to the next
address for assembly. If this is so, then P% should now_be
&6001, since PHA is a single byte instruction. Typing PRINT ~P%
will confirm that this is the case. (The '~' symbol makes the
computer print out a value in hexadecimal.)

HINT: Typing '[' followed by <RETURN> is a quick way of seeing
the value of P%.

If assembly language is relatively new to you, it may be
worthwhile typing in a few more instructions. Remember to press
RETURN after each one.

Page 6

ASL &97
LDA # 5
ROL &1234

oscli=&FFF7 : JSR oscli

Let us now put together a simple assembler program to
print a letter 'A' on the screen. We can do this by loading the
accumulator with an ASCII 'A', and then calling the subroutine
at &FFE3, which is the operating system's character output
routine.

10 P%=46000 : REM Do not bother with 'DIM'
20 OPT 1 g REM OPT is explained later

30 osasci=&FFE3 : REM The subroutine address

40 LDA # AsSC("A")

50 JSR osasci

60 RTS : REM This returns control into the BASIC ROM
70 CALL &6000 : REM Execute the code

RUN this program to achieve the desired effect, and notice
the 1listing that is produced. Users who are already familiar
with the assembler in the BASIC ROM will see how similar this
program is to a 'standard' BBC BASIC assembler program. The
main difference is that the assembler entry/exit symbols ([and
}) are not present.

ARITHMETIC EXPRESSIONS

Arithmetic expressions, both string and numeric, are
permitted in the assembly language statements. The usual *, /,
-, and + operators are allowed, as are BASIC keywords (MOD,
DIV, OR etc). Operator precedence is described at some length
on page 144 of the User Guide, and the user 1is encouraged to
refer to this section if necessary.

In practice, complicated expressions are rarely needed,
and simple add, subtract, and occasional multiply operations
will normally suffice. The MOD and DIV operators are useful
though, for setting up indirect pointers. E.g.

LDY #command DIV 256
LDX #command MOD 256 \Point to command
JSR &FFF7 \Call OSCLI

The arithmetic and logical instructions, all of which
allow indirect addressing, carry a slight complication when
brackets are used in the operand field. This is because if a
'(' appears as the first non-space after the mnemonic, an
indirect addressing mode is assumed. The difficulty arises if a
bracket is being used in order to determine the way an
expression is evaluated, rather than to imply a particular

Page 7

addressing mode. The simple solution is to precede the
expression with a dummy operation, such as '0+' or '1*'. E.q.

LDA 0+(&20+2)%*3
CMP 1*(&15+3)%4

An error would occur without these dummy operators.

NUMBER BASES

The BBC computer will assume that all numbers are in base
10, unless prefixed by a '&' sign. This implies that a hex
number follows. No other bases are normally recognised.

The Assembler ROM will allow the use of binary numbers.
These are particularly handy for 'bit-masks' for use with the
logical instructions. There are no restrictions on where they
may occur in an arithmetic expression, as shown by the PRINT
Statement below. Binary numbers are prefixed by a 's',
Examples.

PRINT %1110 + %110 * %101 * SQR(%1001)
AND # %10117T111

ORA # %100

OPT %11

LDY # #1111

LABELS]

When writing long assembly language programs, we will
often need tables of numbers or text/error messages. We may
also want to jump to other parts of the program. But as we make
changes to the source code, so the absolute addresses change
too. Therefore in one version of a program an instruction might
assemble as JMP &5543 and, after a few changes, as JMP &5537.
Clearly, JMP instructions should rarely have an address
specified by an actual number, but instead by a label (i.e. use
JMP label). Then if the program is changed, the value of the
label probably changes, but the assembler always puts the
correct address into the JMP instruction. Similar comments
apply to data tables etc, accessed by e.g. LDA datatable,X.

We have already met the idea of using a variable name
instead of an absolute address, e.qg.

oscli=&FFF7 : JSR oscli

In the assembler, a label is formed by using a period '.‘,
followed by a valid variable name. It is suggested that only
lower case letters are used for labels.

The following program uses a simple loop to print five
asterisks.

Page 8

10 P%=&6000

20 OPT 1

30 times=5

40 osasci=&FFE3
50 LDA # ASC("*") : REM The char. to print
60 LDX # times
70 .loop

80 JSR osasci
90 DEX

100 BNE loop

110 RTS

120 CALL &6000

When line 70 is encountered, the Assembler ROM creates the
variable 'loop', and assigns to it the current value of P%
(&6004 in this case). If we subsequently refer to the variable
'loop', the assembler will now know that it must use the value
&6004.

Notice that when the label is referenced (line 100), the
preceding period is not needed. The assembler calculates the
correct offset to be used in the branch instruction. In this
case the offset was &FA, but if any instructions were added
(say NOP at 1line 95), the assembler will compensate, and
correct it to &F9.

The only item that may follow a label on the same line |is
either another label, a colon, the keyword ELSE, or a comment
(see below). The following examples illustrate this.

.loop .jumptable .list
.error2 \The error message

The first example would create all three variables, and assign
each one the current value of P%.

COMMENTS

Comments are denoted by a '\' symbol, located just below
and to the right of BREAK. A comment may appear on its own,
after a label, or after an instruction mnemonic. E.g.

\ This is just a comment
.fred \'fred' is given the value of P%
TAX \Save the counter in X

A comment should NOT contain a colon however. This is
because a colon is treated as being a continuation 'symbol for
multi-statement 1lines. Thus the text immediately after the ':'
would be assumed to be part of the assembler program (or normal
BASIC). In the following example, all the instructions would be
assembled, at the address given by P% as usual.

Page 9

t=9:LDA#t \time delay:TAX \save it:ASL A \double it

Many assemblers allow a semi-colon to be used for
commenting. This has been deliberately avoided (for assembly
from memory) because it is physically close, and very similar
in appearance, to the ':' used for multi-statements. It would
be easy to accidentally enter a semi-colon, thereby preventing
the next instruction from being assembled.

Page 10

PSEUDO-OPS

Pseudo-ops control the way in which the assembler
operates. Some pseudo-ops do not generate any object code.
Others do, like the data definition directives described later.

OPT

An important pseudo-op that we have mentioned briefly is
OPT. It is an aide memoire for OPTion, and it controls, amongst
other things, whether a listing of the assembled code is given.

The number specified after OPT must be thought of as being
a single byte guantity. All of the eight bits have a certain
meaning, unlike the assembler in the BASIC ROM, which only uses
three bits (two in the case of BASIC 1). Bit 0 is the least
significant bit, and bit 7 the most significant one.

BIT 0 - List control

This bit determines whether or not a listing is provided
of the assembled code. When the bit is set, a listing is given.
This is why we used OPT 1 previously. All the examples so far
would have worked if OPT 0 had been used, but you would not
have been able to see the value of P% changing, or the
assembled machine instructions.

BIT 1 - Error control

We have not yet introduced the idea of a forward
reference. The program below contains a forward reference.

110 BCS forward
200 ...
210 .forward \A label

When the computer first encountered line 110, it would be
impossible for it to assemble the instruction correctly. This
is because it would not know the address of the 1label
'forward', and hence it couldn't calculate the correct offset
for the branch.

As far as the computer is concerned, this situation
constitutes a 'No such variable' error. The usual way round
this problem is to perform what is called two-pass
assembly - the computer literally goes through the .source code
twice. During pass 1, we make sure that the computer doesn't
give 'No such variable' when it meets an unknown quantity. At
the end of the first pass, the computer should have gathered
together the values of all the labels and symbols used. Hence
on the second pass, it will be able to substitute the right
numbers at the right time. We would be wise to enable error

Page 11

messages during pass 2, so that labels which were reférenced,
but had never been defined, were reported.

On the first pass, any unknown variable is assumed to have
the value of P%. Since P% will invariably be greater than &FF,
unknown labels/symbols are given a sixteen bit value. This
means that zero page locations MUST be defined before they are
used, otherwise absolute addresses are thrown into confusion.

Bit 1 of OPT controls the error reporting. When it is set,
errors are given, and when it is clear errors are generally
ignored. We therefore resolve our forward reference difficulty
by the use of a FOR-NEXT loop, and give OPT a suitable value,
depending on whether we are in pass 1 or 2.

During pass 1, there is not much point in having a listing
given, and we don't want 'No such variable' errors reported.
Hence we often use OPT 0.

In pass 2, we may want to have a listing (although it
isn't necessary), and we certainly want errors to be detected.
On pass 2 we will use OPT 3 here. The program below contains
two forward references, but at the end of the second pass, it
will have assembled correctly. Notice how the use of bipary in
line 10 helps to emphasise the bit settings.

10 FOR pass=0 TO %11 STEP %11
20 P%=26000

30 OPT pass

40 SEC ;

50 BCS skip
60 BNE skip
70 PHA

80 .skip

90 RTS

100 NEXT pass
110 CALL &6000

Notice that P%¥ is reset to its starting value at the
beginning of each pass by including it within the FOR-NEXT
loop. This is most important.

It would be possible to add a line 85, say 'JMP start'. On
pass 2 ONLY will you get an error message.

In an assembly language program, it turns out that there
are many different types of error that might occur. For
example, an index register used illegally, or an invalid
addressing mode. When errors are supposed to be suppressed, the
assembler will not ignore every type of error. Thus a statement
like

CMP (pointer),X

will always be rejected with an 'Index' message, irrespective

Page 12

of the OPT setting. The general rule is that if the situation
could possibly be different on a second pass, then the error
will be ignored. But the above example can never assemble
correctly, and hence the error.

BIT 2 - Offset assembly

The concept of offset assembly is simple. We assemble our
machine code in memory somewhere (&3000 say), but all the
absolute addresses are based on the assumption that the code
will be moved somewhere else before it is executed. One use for
this is when we wish to assemble code for a sideways ROM, but
we do not have a sideways RAM pack installed. In this case, we
might assemble the code at &3000, and then ‘blow' it into an
EPROM. It would then be plugged into a sideways ROM socket,
which fits into the memory map at &8000.

During offset assembly, the location counter P% is still
used to keep track of absolute addresses. We need another
counter, however, to maintain the actual memory address in
which to write the machine code. The variable used by the
Assembler ROM for this purpose is Q%. (BASIC 2 |uses 0% for
offset assembly - note this difference.)

We need to be able to tell the Assembler ROM that Q% is
being used for the code destination, not P%. This 1is done by
setting bit 2 of OPT. Every time an instruction is assembled,
the object code is now written into the address given by Q%.
Both Q% and P% are then incremented by the correct amount .

The program below uses offset assembly. P% is primed with
&6000, which is where the code is designed to execute. Q% is
set to &5E00, and it is here that the object code is placed.
Memory from &6000 onwards is not affected in any way when the
program is run.

10 P%=86000

20 Q%=45E00

30 OPT %101 : REM Bits 0 and 2 set
40 .back

50 JMP back

60 LDA back,Y

The listing obtained suggests at first that code is being
written into memory at &6000. A memory editor, if you have one,
or the disassembler described at the end of this manual will
confirm that this is not so. In order to run the machine code,
it would be necessary to shift the code beginning at &5E00 up
to &6000. This is a result of the 'offset' assembly that has
occurred.

BIT 3 - Write to file

In all the examples so far, the object code has been

Page 13

written directly into memory. Bit 3 of OPT provides us with the
means to send the output to a file. This may be useful when
memory is short, since available memory then only has to be
shared between the source code and the 'various labels etc.
Setting bit 3 forces the computer to send its assembled output
to a file.

Before anything can be sent to the data file (which can be
on tape or disc), we first of all have to open that file for
output. In order to simplify this process, another pseudo-op
has been provided. In fact, there are several such pseudo-ops
which relate to an output file used in this way.

1) OFL <filename>

This creates an Output FilLe under the name given by the
parameter. The filename can be any string expression, so that

OFL "A""’“B"

attempts to open an output file called 'AB'. Generally, OFL
would occur near the start of the assembly language program.

2) CFL

CFL will Close the FiLe that was opened by the use of OFL.
No parameters are required, but a comment may appear after CFL.

3) FXA «Xaddress>, FLA <Laddress)

FXA means File eXecution Address, and FLA means File Load
Address. These pseudo-ops will not work with the tape filing
system.

When machine code is written to a file, we may want to be
able to *RUN that file when assembly is finished. *RUN will
only work if the load and execution addresses of the file are
properly set. FXA and FLA make this very easy to do. FXA
evaluates the expression after it, and sets the execution
address of the o/p file to this value. FLA works in a similar
way, but writes the file load address only. Load and execution
addresses are not necessarily the same.

We will give an example of all these pseudo-ops when we
have described the use of bit 4.

BIT 4 - Inhibit write to RAM

If, as mentioned above, memory conservation 1is important
and we want to write the assembled machine code straight to a
file, it may be desirable to prevent the computer from writing
to RAM as well. This is achieved by setting bit 4 of OPT.
Listings can still be obtained, and will appear as normal. The
memory locations shown by P% will not be altered in any way
however.

Page 14

This next example illustrates the use of bits 3 and 4, and
the various pseudo-ops just described. It creates a machine
code program that will simply print the alphabet when it is
*RUN. We have now used the ‘recommended' way of reserving
memory, i.e. the DIM statement.

10 DIM code% 50 : REM Enough

20 OFL "ALPHA" \The name of the o/p file
30 FOR pass=1 TO 2 : REM 2 passes needed
40 IF pass=1 THEN OPT &10 ELSE OPT &1B
50 P%=code%

60 .load_address : PHA

70 .execution : LDX #25

80 .printloop : CLC

90 TXA : ADC #Asc"a"

100 JSR &FFE3

110 DEX : BPL printloop : RTS

120 NEXT pass

130 FXA execution

140 FLA load_address
150 CFL \Close the file

160 *RUN ALPHA

(Use *INFO ALPHA if you have a disc drive to see that the load
and execution addresses are correctly set.)

The file 'ALPHA' is opened for output in line 20. We don't
include it in the FOR=NEXT loop, because there is no need to
open it twice.

In line 40, we select OPT &10 on the first pass. This sets
bit 4 only and clears all the rest. The reasoning is as
follows.

As usual, the listing and error reporting are inhibited on
the first pass, so bits 0 and 1 are clear. We are not wusing
offset assembly, so bit 2 is reset also.

On pass 1, the assembled code will not be correct. We
therefore avoid writing it to file. Hence bit 3 is clear too.

Setting bit 4 prevents the machine code being written into
memory. It wouldn't really matter if it was - we would just get
two identical copies of the object code, one on file, the other
in RAM.

Things are rather different on the second pass. A listing
is given, and errors are reported by the use of bits 0 and 1.
Bit 2 remains clear, since offset assembly is not relevant. Bit
3 however is now set, so that the computer will write the (now
correct) code to the file 'ALPHA'. The bit settings are
00011011, or &1B.

Lines 50-110 form the simple assembly language program to
print the alphabet backwards.

Page 15

e e g R S ot g e R e B

Lines 130 and 140 set the file's execution and load
addresses respectively. Again, there is no point in having
these pseudo-ops within the FOR-NEXT loop. PHA in line 60 was
just a 'dummy' to ensure that the load/execution addresses were
not quite the same.

Four bytes are set aside on the disc for both 1load and
execution addresses. If we want to set the two most significant
bytes of the 1load/execution addresses to &FF, we can use
BASIC's OR operator, e.g.

FXA execution OR &FFFF0000
FLA load_address OR &FFFF0000

BIT 5 - Branch to Jump (B-J)

The 6502's branch instructions all use an addressing mode
known as relative addressing. Such branches are limited in
their range to about 128 bytes either forward or backwards from
the current memory address given by P%¥. You cannot BCS from
&6000 down to &E00!

The simple loops wused in previous examples never came
anywhere near being 'Out of range'. But as we add more
instructions in the loop, so the branching distance increases.
Eventually, the branching distance is too great for the 6502 to
handle. The branch is now 'Out of range'. The assembler ignores
this error if bit 1 of OPT is clear

Consider the following program.

100 .label
500
900 BCS label

If the BCS is out of range, a simple solution would be to
reverse the sense of the test, and use a JMP instruction. i.e.
replace line 900 with

900 BCC hopover : JMP label : .hopover

The effect is the same. But there is a penalty, in that
this sequence uses five bytes of object code, not two.

Frequently though, the size of the object program is not a
prime consideration. We can avoid being plagued by 'Out of
range' errors by setting bit 5 of the OPT pseudo-op. Whenever
the Assembler ROM detects a branch distance above the maximum,
it will now substitute for you the 'reverse branch + JMP'
illustrated above. By 'reverse' branch we mean that BCC becomes
BCS, BEQ becomes BNE etc. The exception is BRA, which has no
inverse, and so it is turned into an ordinary JMP. The two
programs below illustrate the B-J option. The first gives 'Out
of range', the second does not.

Page 16

10 P%=&6000 10 P%=4&6000

20 OPT %11 20 OPT %100011
30 .back 30 .back

40 P%=47000 40 P%=&7000
50 BCS back 50 BCS back

The concept of B-J does have a single complication. This
occurs in the case of a forward reference. It turns out that
all forward references need to be treated as Branch+JMP
sequences if bit 5 is set.

Now this may be rather wasteful on space, particularly if
it is obvious from simple observation that an ordinary branch
would do. Therefore a special symbol '*' may be placed before
the destination label/address. This tells the assembler to
temporarily ignore the B-J option. Examine the way in which
this program assembles.

10 FOR pass=1 TO 2

20 IF pass=1 THEN OPT &20 ELSE OPT &23
30 P%=&6000

40 BCS next

50 PHA : .next

60 NEXT pass

Although the branching distance is small, the assembler
still changes it to a 'reverse branch+JMP' because it is a
forward reference. Change line 40 to 'BCS *next', and then
re-assemble it.

of course, the '*' cannot be used to achieve the
impossible. An 'Out of range' error may now occur.

You can also use '*' for backward references. Generally,
it is not necessary, because the assembler will deal with this

situation 'intelligently'.
BIT 6 - Enhanced error reporting

Newcomers to assembly language are often bewildered by the
number of different instructions, and the addressing modes that
each one does and does not permit. The idea behind the
‘enhanced error reporting' is that the computer prints out the
statement at fault, and indicates what it expected to find, and
where.

For example, try the following.

P%=26000 : OPT &40 \Set bit 6 : LDA (&70),X

Here the X register has been used 'illegally', and so we
get an ‘Index' message. The computer has also printed a little
arrow under the 'X', so you know exactly where the problem is.
The statements below will also give errors of one sort or
another.

Page 17

;
]
o
.

LDA #5000
CPX &50,X
JMP (&100
BIT &30,Y
SMB 8,&70
BBR 5

Bit 7 - Flag duplicate labels

A label to the assembler is any valid variable name.
Labels are wused in preference to absolute addresses, because
the assembler always takes care of changing their wvalues
whenever the program is altered. It can cause all sorts of
problems however, if the same label is accidentally used twice
in the same program.

Setting bit 7 of OPT instructs the assembler to give an
error message ('Duplicate label') if it encounters a label
which has already been defined. It goes without saying that bit
7 should NOT be set on a second pass through the source code,
since the whole idea of the first pass was to create all the
necessary labels. Therefore the labels are bound to exist on
the second pass!

This program gives you an error at line 50, because
'looper' has already been created in line 20.

10 P%=&6000 : OPT %10000011 \Bit 7 set
20 .looper :

30 LDX #0

40 LDY #%1111

50 .looper

60 RTS

If OPT 3 had been used, then this duplication would have
gone undetected. :

You may occasionally wish to redefine a label, even though
'Duplicate label' trapping is active. This 1is possible by
special use of a '#'. In the program above, we could have used

50 .#looper

and the variable 'looper' would then have been assigned a new
value, &6004 in this case, rather than causing an error.

Page 18

OTHER PSEUDO-OPS

ORG Specify ORiGin

Up till now, we have been using statements such as
P%=46000 to set the location at which the code is supposed to
be assembled. An alternative method 1is to use the ORG
directive. The following are equivalent.

P%=&6000 ORG &6000

Both will work, but ORG is a fairly standard pseudo-op in
assemblers, whereas P% is unique to the BBC micro.

DST Specify DeSTination

When offset assembly is being performed (see previous
section), we need to tell the computer where to place the
object code. We have done this in the past by using e.qg.
Q%=&5E00. DST may be used to achieve the same thing.

E.g. Q%=44559 DST &4559

Both will set Q% to &4599.

DF DeFine

The DF directives are invaluable for introducing text,
error messages, data tables etc, into the object code. There
are five variations on DF, four numeric ones and one string
form.

DF operates rather like EQU (EQUate) in BASIC 2. BASIC 1
lacks EQU in any shape or form.

1) DFB <expr> (,expr)

DeFine Byte. The numbers after DFB are evaluated as
integers, and the least significant byte used for the result.
Hence DFB 7 would generate a single byte of code, the number 7
in this case. It is identical to EQUB 7 used in BASIC 2.

An improvement over the standard BASIC assembler (BASIC 2)
is that more than one parameter can be given on the same line.]
A comma must be used to separate them. In BASIC 2 we might use :

EQUB 13 : EQUB 3 : EQUB 9 : EQUB 37 : EQUB 25%2
but the AXR reduces this to the much more convenient form

DFB 13 , 3, 9 , 37 , 25%2

Page 19

2) DFW <expr> (,expr)

DeFine Word. It works in much the same way as DFB, but a
two-byte wvalue is generated. Bytes are produced in the usual
lo-hi format, which is standard 6502 convention. Thus

P%=26000 : OPT 3 : DFW 81234

places &34 in &6000, and &12 in &6001. As with DFB, multiple
expressions can be used, separating with commas as normal. P%
is incremented by two for each parameter.

3) DFD <expr> (,expr)

DeFine Double word. Here, each expression is evaluated,
and the full four bytes of the result are made use of. The
lo-byte is used first, and the hi-byte last. Four is added to
P% for each parameter.

4) DFR <expr> (,expr)

DeFine Real, the last numeric DF. Occasionally, it may be
necessary to include in the object code a series of floating
point numbers. These might be a table of conversion factors for
example. DFR can be used to do this, and it creates five bytes
in the same form that the BASIC interpreter uses for its real
numbers. This format is the exponent, followed by the four-byte
mantissa (which includes the !sign bit). There is usually no-
obvious relationship between the!bytes generated, and original
number, as shown by, for example, DFR 4.567.

NOTES

a) A single DFB, DFW, DFD or DFR cannot produce more than
80 bytes at a time. If it is necessary to generate large tables
of numbers for any reason, then you will have to use several DF
statements in order to keep the 'Too many bytes' error at bay.
b) It is possible to put a comment (using "\") after each
parameter, explaining what each one does. Such comments must
not contain any commas, because the AXR assumes that this marks
the beginning of the next number. E.qg.

.table : DFB 12 \CLS , 7 \beep , 10 \cursor down

DFS <string expr>»

DeFine String. Identical to the EQUS used on BASIC 2, this
provides a straightforward way of introducing text into machine
code programs. The string given in the operand field is written
into memory at the address given by P% (or Q% if applicable),
and finally P% is incremented by the length of the string. DFS

Page 20

does not automatically put a carriage return at the end of the
string. This is easily done if required by putting '+CHR$13' on
the end, or even using DFB 13 as the next statement.

This program demonstrates how we print a simple error (via
BRK) if the number in location &70 is greater than 123.

10 DIM code 30

20 FOR pass=0 TO 3 STEP 3

30 ORG code : OPT pass

40 memloc=&70 : max=123

50 LDA memloc

60 CMP #max+1 : BCC ok

70 BRK : DFB 20 : DFS "Too big": DFB 0
B0 .ok : RTS

90 NEXT pass : CALL code

Another use for DFS is to 'reserve' a section of memory.
If we needed to set up a block in the object code consisting of
200 zeros,, then an easy way to do this would be

DFS STRING$(200,CHR$(0))

SWR SideWays RAM

If you are developing software for sideways ROMs, the use
of a sideways RAM module saves a lot of time. Ideally, we
should be able to write the assembled object code straight to
the sideways RAM, at &48000-&BFFF.

This is wusually possible only if you have an expansion
board fitted which forces any write operation in the region
&8000-&BFFF through to a particular socket. The AXR Assembler
will allow machine code to be written into any chosen socket
number, assuming the socket contains RAM of course. This is the
case even if there is no expansion board.

We tell the assembler which socket is in use by means of
the pseudo-op SWR. This is followed by a number which should be
in the range 0-15. Arithmetic expressions are allowed, but
hardly necessary. There is no need to use SWR if you are always
assembling in the main RAM area (&E00-&7C00). But if P% is set
to 88000 before assembly begins, then SWR will wusually be
needed.

SWR makes use of the least significant byte of the integer
variable R%. Thus SWR 7 will assign R% a value of 7.

Listings produced when code is written to sideways RAM
will be correct. Both BASIC 1 and BASIC 2 produce strange
results, because the data is written to S/W RAM, but is read
back for printing from the BASIC ROM itself. Hence the listed
output bears no relation to the code that was actually
assembled.

Page 21

N.B. The writing of code directly to sideways RAM does not work
with certain systems -- for example, Solidisk's which has its
write access register at &FE60.

CONDITIONAL ASSEMBLY

Conditional assembly can be performed very simply. It is
even easier than with the BASIC 1/2 assemblers, because there
is no assembler entry/exit needed ([and 1]). E.qg.

IF G%=12345 THEN SEC ELSE ASL A : TAX

This will almost certainly assemble the ASL A:TAX
instructions, since G% is unlikely to have the value 12345,

Conditional assembly is not needed very often, but it can
be useful for including extra instructions for debugging
purposes, or configuring special versions of a program.

MACROS

It sometimes happens in assembly language programming that
we find ourselves writing out the same (or similar) sequence of
instructions many times over. In cases like these, it is
possible to save a certain amount of typing by using a macro.
The idea is-that we write our instruction sequence once only,
and then give it a name so that it can be identified. Whenever
we want this special instruction sequence to be assembled, we
just call the macro.

The Assembler ROM uses procedures to implement macros in a
very versatile way.

Suppose that we have a particular task in mind which
involves frequently swapping over the X and Y registers,
leaving A and P unaltered. A suitable set of assembly language
statements could be

PHP:PHA:TYA:PHA: TXA:TAY:PLA: TAX:PLA:PLP

Let us further imagine that after each register swapping
exercise, we have to do tasks 1, 2, 3, 4 and 5. So our program
outline looks like this.

a) Do task 1

b) Swap registers
c) Do task 2

d) Swap registers
€) .u.n

i) Do task 5, and end

Page 22

The program below achieves this. Each 'task' is just a JSR
straight to an RTS instruction. The procedure 'swapreg' is
defined in 1lines 160-180. Whenever we use PROCswapreg in the
main program this procedure is executed, and the full sequence
of instructions making up this procedure is assembled.

10 DIM code 100

20 FOR pass=0 TO 3 STEP 3

30 OPT pass : ORG code

40 JSR taskl

50 PROCswapreg

60 JSR task2

70 PROCswapreg

80 JSR task3

90 PROCswapreg

100 JSR task4
110 PROCswapreg

120 JSR task5 : RTS
130 .taskl : .task2 : .task3 : ,task4 : .task5 : RTS
140 NEXT pass : END

150

160 DEFPROCswapreg

170 PHP :PHA :TYA :PHA :TXA :TAY :PLA :TAX :PLA :PLP
180 ENDPROC

The real power of macros arises from the fact that we can
supply them with parameters. Thus the macro c¢an produce
different object code every time it is called, simply by
supplying it with-different numbers.

To illustrate this, assume that we wish to issue several
OSBYTE calls in order to set the system up in a particular way.
On the BBC micro, OSBYTE calls are performed by loading the
accumulator with the OSBYTE number, loading X and Y with
suitable parameters, and then doing a JSR &FFF4. For example we
might use

LDA#S5 : LDX#2 : LDY#0 : JSR &FFF4

The following program will generate the machine code
which, when executed, is equivalent to

*FX 5,2,0
*FX 12,8,0
*FX 138,0,65
*FX 8,4,0

Page 23

10 DIM code 100

20 ORG code : OPT 3

30 PROCosbyte(5,2,0)

40 PROCosbyte(12,8,0)
50 PROCosbyte(138,0,65)
60 PROCosbyte(8,4,0)

70 END

80

90 DEF PROCosbyte(a%,x%,y%)
100 LDA #a$%
110 LDX #x%
120 LDY #y%
130 JSR &FFF4

140 ENDPROC

Notice how 'readable' and compact our assembler code
becomes, much more like a high level language. It only contains
a single line of assembler mnemonics, but that 1line is
assembled four times, with different parameters each time. The
same principle can be extended to OSWORD, e.g.

PROCreadclock(addressg)

which could be made to read the system clock into the address
given by 'addresss'.

HINTS

The following points are worth noting when assembling code
using the AXR.

1) DO use *ONAXR near the start of the program to enable the
AXR.

2) DO remember to use the OPT dbrectlve *ONAXR gives a default
value of 3 to OPT

3) DO remember to set P% (and Q% if it is in use) to the
appropriate values. Such assignments should be within the
FOR-NEXT loop if two-pass assembly is being performed.

You may also wish to make a point of disabling the AXR with
*OFFAXR when assembly is complete, to prevent accidental
corruption of page &C.

4) DON'T use the [and] symbols to enter/exit the assembler.

Page 24

ASSEMBLY FROM DISC

All the programs in previous sections were held in the
machine's RAM for assembly. There is much to be said for this
approach - speed of assembly and convenience are two factors.

There are disadvantages with this method however. The
overriding one is that for long programs the source code takes
up such a lot of memory, and limits the size of the symbol
table. This problem is solved completely by storing the source
code on disc (or tape) files. A direct benefit is that it is
now possible to insert plenty of blank lines to make the code
easier to read and extensive comments that describe the program
logic, with no worries about running out of space.

The source code may be created with any wordprocessor.
WORDWISE, WORDWISE PLUS and VIEW are all ideal.

THE SOURCE PROGRAM

Each line of the source file(s) consists of a sequence of
ASCII characters. The end of the line is marked by a carriage
return, ASCII 13, or the end of the file itself. A line must
not be longer than 235 characters. We no longer have all the
facilities of a BASIC program immediately available to us, but
this is hardly a problem with assembler source code,

Lines in the source file should not start with a number,
and no multi-statement lines are permitted. The exception to
this 1is when a procedure is being defined for macros. This is
detailed later on.

Each line will have the following general form.

<label* <mnemonic> <operand> <comment>

Users will realise that not all of these fields are
mandatory. After all, some mnemonics, like TYA, would not
expect to have an operand after them. Spaces in the source code
are not normally significant. Many assemblers that read code
from files are fussy about spaces, which means that a word like
"'TAY' can mean two different things, depending on where it
occurs in the line. If it was in the very first position, it
becomes a label. When preceded by just one space however, it
becomes the familiar 6502 mnemonic. The AXR avoids this
confusion by allowing most of the above four fields to appear
anywhere in the line. An 'operand' would need something before
it of course. Also remember that at least one space would be
required to separate a mnemonic from a label on the same line,
otherwise the mnemonic will become part of the label. For
example.

.move TAY
.moveTAY

Page 25

Rl e

The first is the label 'move' and the instruction 'TAY',
The second is just a label 'moveTAY'.

THE LABEL

Labels = are defined just as they are when assembling from
RAM, i.e. by a period followed by a valid variable name.

THE MNEMONIC

The second field can be one of two things. First, and most
obviously, any 6502 mnemonic may appear here. The full extended
6502 instruction set is supported. Second, a pseudo-op is
valid. Examples are ORG, DFB, DFR and so on.

Since the first field (the label) is frequently optional,
and since spaces are not important, it may be that the
'mnemonic' becomes the first field not the second! The examples
below illustrate this.

.mainloop TAX
TAX

Both would allow the TAX instruction to be assembled, but
the first also creates the label 'mainloop'.

THE OPERAND

Operands are used in exactly the same way as they are
during assembly from memory, e.g.

PHA
LDA #39
LDA (&70),¥Y

THE COMMENT

Comments are always preceded by a '\' or a semi-colon for
assembly from files. Semi-colons were specifically excluded for
commenting purposes in BASIC programs, because of the
similarity with the continuation symbol, ':'. Apart from
allowing semi-colons, comments may be used as described
previously, e.gq.

\This is just a comment

\So is this

-loop LDX # 4 \Set counter

PHA \Preserve the digit counter

Page 26

EQU - EQUate

The AXR uses this directive to assign a particular value
to a label. It acts rather like BASIC's LET statement. In
BASIC, we might use

osasci = &FFE3

but when assembling directly from a file, the equivalent syntax
becomes

.0sasci EQU &FFE3

AN EXAMPLE

The *ASSM command is used for assembly of the source code,
but before this can be of any use, we must create the source
file. We already have enough information to put together a
simple program in the correct format, so a worked example will
now be given. The user is now assumed to have either WORDWISE
or VIEW (say), with which to produce the main text. The example
below should now be entered, although the comments can be left
out of course,

\Program to print out A-2

ORG £6000 ' \Effectively P%=86000
.first EQU AscC("a") \LET first=ASC("A")
.last EQU ASC("Z") \LET last=ASC("2")
.0oswrch EQU &FFEE \LET oswrch=&FFEE
LDX # first

. loop

TXA

JSR oswrch

INX

CPX # last+1

BNE loop

JMP &FFE7 \New line

\End of program -

Save this to file under the name 'TEST1' in the
appropriate way (menu option 1 on WORDWISE).

*ASSM will only work from BASIC. Therefore re-enter BASIC
by using *BASIC.

The AXR is normally a two-pass assembler when dealing with
disc or tape files. It is clearly necessary to be able to
control things such as error reporting, listings, offset
assembly etc. Since the OPT pseudo-op encountered previously is
not permitted in the source code on file, the OPT information

Page 27

is provided as part of the *ASSM command itself.
The *ASSM syntax is

*ASSM <src> <OPT 1> (<OPT 2>) (<dest>)

<src> is the name of the source file, just TEST!1 in this
case. This parameter MUST be given.

<OPT 1> also is obligatory because at least one pass of
the source file(s) is performed by the assembler, <OPT 1>
should never exceed &1FF.

The various bits of the OPT parameters have the following
meaning, bit 0 being the least significant one.

Bit no. Meaning

Listing control, O=no listing

Error reporting, O=don't report

Offset assembly, O=not active

Send output to file, O=not to file

Inhibit writing to RAM, 1=inhibit

Convert out of range branch to jump, O=don't
convert

Not used when assembling from file

Flag duplicate labels, O=don't flag

no second pass, 1=No second pass required

W~ VWi = O

Notice that there are now 9 bits in.total, not 8, although
bit 6 is not used here. The extra one, bit 8, is only used on
the rare occasions that you wish to perform a single pass
through the source code.

During the first pass, the assembler will make use of the

.parameter <OPT 1>. So we have to decide which bits should be

set, and which ones reset. Going back to our example, let us
assume that we wish to assemble it straight into memory, rather
than write the object code to another file. An examination of
the above table should indicate that OPT ¢ would be suitable
for the first OPT number.

We must now decide on (<OPT 2>). The extra pair of round
brackets indicate that this parameter may not be needed.
However, the only occasions that we can leave it out are when
we have told the assembler (with bit 8 of <OPT 1>) that a
second pass is not required. Put another way, if <OPT 1> is
less than 4100, then the second OPT number must be given.

The second OPT number is used by the assembler during pass
2. For this example we can build it up as follows. Bits 0 and 1
can now be set, and this will give a listing of the assembled
code, and report any errors such as 'No such variable'. Offset
assembly is not needed, so bit 2 remains clear. We proceed in
this way with the remaining bits, setting or clearing them as
needed. All the remaining bits would be 0 in this case. Notice
that bit 8 of (<OPT 2>) is never required; its sole function is
in the <OPT 1> parameter, to indicate that (<OPT 2>) 1is not

Page 28

needed. =
In binary, our second OPT number is

00000011
i.e. OPT 3.
The full command to assemble the source file TEST1 is now
*ASSM TEST1 0 3
(or *ASSM TEST1 0 %11)
When assembly is finished, it is possible to use
CALL &6000
to execute the machine code.

The final parameter (<dest>) is used when we wish to send
the object code straight to a file. Recall that when bit 3 of
OPT is set, the output from the AXR is written to file.

How would we modify the OPT values to send the output to a
file called 'OBJECT' and not to RAM, and dispense with the
listing? Refer back to the table of bit settings to see that
the following bit patterns would be suitable.

Bit no. 8 76543210

First OPT. 0 00010000 &10
Second OPT. 00011010 &1A

We do NOT usually send the code to the file on the first
pass, since the first pass will not assemble correctly due to
-forward references. That is why bit 3 is zero on pass 1.

The source file TEST1 is now assembled by

*ASSM TEST1 &10 &1A OBJECT

The binary patterns may be used instead of hex if
preferred. Remember to include the '$' prefix.

Page 29

SOME FURTHER PSEUDO-OPS

The following pseudo-ops are only allowed in disc/tape
files, and not in assembler programs resident in memory. The
exceptions are VDU, END, IF, ELSE and PROC which of course are
standard BASIC keywords.

It is often convenient to split up the source code into
several files. During assembly, an instruction is then required
to tell the assembler that the current input file should be
closed, and another one opened.

This is done via the pseudo-op CHN, analogous to CHAIN
used in BASIC. All lines in a file after a CHN statement are
ignored for obvious reasons, so CHN will normally be the very
last line in a file (if it appears at all.)

CHN is followed by the next filename from which the source
code is to be read, e.g.

CHN "PROG2"
Example.

\Save this one as 'TEST1'

ORG &6000

LDA # 2

CHN "B" \Read from the next file
\Save this one as 'B'

LDX # 7

CHN "C" \Read from the last file

\Save this one as 'C'
LDY # %1110101

RTS

\End of program

The code could then be assembled exactly as before, i.e.
with

*ASSM TEST1T 0 3

LST <expr> Control listing

This pseudo-op is ignored during pass 1. On the second
pass however, it can be used to turn the listing either on or
off. LST should be followed by any numeric expression. That
expression is then evaluated on pass 2. If the result is zero,
the listing is turned off, and if it is non-zero, it is forced
on. This completely overrides the listing requirements
specified by the second OPT parameter. It is useful when the
source code 1is lengthy, but you do not want it listed out in
its entirety during assembly. Examples.

Page 30

LST 0 \Turn listing off
LST 1 \Turn listing on

VDU <expr> (,expr) Send number to VDU driver

VDU allows any sequence of bytes to be sent via OSWRCH at
&FFEE. It works in much the Same way as the BASIC VDU
statement, the only difference being that the semi-colon form
is not supported. This is because the AXR thinks that a ';'
denotes a comment.

Use VDU with care. VDU 22,0 would have the effect of
forcing the computer into graphics mode 0, possibly destroying
the symbol table. The main purpose of allowing VDU to be used
is so that the printer can be turned on and off (VDU 2 and
VDU 3) during assembly. Example.

VDU 3 \Printer off

END Terminate current pass

The END directive forces the assembler to abandon the
current pass. If pass 1 was in progress, then the first source
file is opened, and the second pass commences. If pass 2 was
already under way, then the assembler halts. Thus 'END' is
useful for inserting into programs to prevent assembly from
proceeding further. For example:

END \Stop

CONDITIONAL ASSEMBLY

The three pseudo-ops IF, ELSE and FI relate to conditional
assembly. A single level of nesting only is allowed. The
general form is

IF <condition> (comment)
block 1

ELSE {comment)

block 2

FI

When the computer comes to the 'IF' directive, it
evaluates the condition after it. If the result is non-zero
('TRUE'), then everything in block 1 would be assembled as
normal. If the expression is FALSE however (zero), then block 1
would be ignored.

The ELSE directive reverses the current assembly status.
If assembly is in progress as a result of an IF expression
being TRUE, then ELSE causes assembly of statements to cease.

Page 31

If, on the other hand, a previous 'condition' was FALSE, then
assembly will resume.

A 'FI' marks the end of a conditional block.

Two error messages associated with conditional assembly
are 'Too many IF's, and 'No IF'. The first would occur if 'IF'
was found twice, without a 'FI' in between. The latter would
appear if '"ELSE' (say) occurred without an 'IF'. Example.

.test EQU 1
IF test=0
PHA

ELSE

ASL A

TAX

STX test+&70

FI

Here, only the ASL, TAX and STX instructions would be
assembled, because 'test' does not egual zero.

MACROS

Macro calls can be made by the use of a PROC, in exactly
the same way as when assembling from RAM. The question now is
how to define the procedure, so that it is accessible to the
source file.

There are two ways of deing this, One is to ensure that
all the procedures that will be used are loaded into memory
(from BASIC) before issuing the *ASSM command. This works well
enough, but it would be helpful if we could write the macros
(i.e. procedures) at the same time as the main code.

Any line in the source file(s) may start with a line
number in the range 1-32767. 1If it does, then that line is
inserted into main memory, just as if it had been typed in from
BASIC. Procedures are therefore defined with the usual DEFPROC,
but with a line number in front. Instead of being treated as a
line of assembler, it is then entered into memory.

To get the idea behind this line insertion, generate the
following text on the wordprocessor. Notice that
multi-statement 1lines are now allowed, and remember that the
first and last lines are only comments.

\Macro 'osbyte'

10 DEFPROCosbyte(a%,x%,y%)

20 LDA #a% : LDX #x% : LDY #y%
30 JSR &FFF4:ENDPROC

\End macro

Save this under the name TEST2, and re-enter BASIC

Page 32

(*BASIC). Now type
*ASSM TEST2 &100

Type the LIST command when assembly is complete, and you
will see that the three lines representing our procedure
definition are now present. Incidentally, the use of &100 as
the <OPT 1> parameter meant that only one pass was performed by
the assembler since bit 8 is set.

There is one very important point to bear in mind when
lines are inserted into a program. The entire variable
catalogue is cleared, except for the resident integers.

In practice, this means that procedure definitions should
always be defined right at the start of the first program.
Labels and symbols must appear afterwards. Furthermore, on pass
2, the assembler will ignore lines of the source code which
begin with a line number., This avoids the undesirable effect of
wiping out all variables created on pass 1!

This source code uses procedure calls to implement the
OSBYTE macro. Load the TEST2 text into the wordprocessor again,
and add these extra lines underneath the existing ones.

ORG &6000
PROCosbyte(5,2,0)
PROCosbyte(8,4,0)
PROCosbyte(138,0,ASC"A")
RTS

Save the entire code as TEST2, and then re-enter BASIC.
Assemble the TEST2 file with the command

*ASSM TEST2 0 3

(This assembles it into RAM, at &6000. A listing is given on
the second pass.)

MESSAGES AND USER INPUT

The use of procedures extends beyond macro implementation.
We may wish to print a message indicating that another disc
should be inserted in the drive, or perhaps to input the number
of iterations of a loop that are needed. Since a PROC in the
source file hands control over to BASIC temporarily, this is
very easy to do. The program below illustrates this.

\These lines go into memory

10 DEFPROCgetnum : CLS

20 INPUT "Input number (0-255)",num$
30 ENDPROC

\End of BASIC code

Page 33

PROCgetnum
ORG &6000
LDA #num%

Save as TEST3, and assemble with
*ASSM TEST3 &103

{(i.e. no second pass, report errors and give a listing).

The screen now clears (CLS in line 10), and the prompt to
input a number appears. Enter 7 (say) followed by RETURN. When
the 'LDA #num%' statement assembles, you will see that the
number 7 has been used as the operand for the LDA instruction.

The use of a procedure is the only way in which you can
define a string variable, should you want to do so. EQU will
only work with numeric variables.

A USEFUL MEMORY LOCATION -- &70

The AXR assembler uses memory location &70 as a 'pass
counter'. During pass one, it contains zero, and on the second
pass it contains 1. Do NOT attempt to alter this location
directly during assembly. It is permissible however, to test
the value of its contents so that we can act upon a section of
the source code on only one of the two passes, not both. This
prevents you from having to answer exactly the same question
twice. The program below uses two-pass assembly, but only asks
the user to type in a message once.

10 DEFPROCask

20 INPUT "Enter message' , mess$: ENDPROC
\

.passcount EQU &70

.osasci EQU &FFE3

ORG &6000

IF ?passcount=0 \First pass?

PROCask \Yes, ask gquestion

FI \End conditional part
LDX#0

.loop LDA message,X
JSR osasci

INX

CPX HLEN(mess$) \All printed?
BCC loop

JMP &FFE7 \New line, exit
.message DFS mess$ \The user input
\Finish

Save as TEST4, and assemble with

Page 34

*ASSM TEST4 0 3

Use CALL &6000 to see the original message reprinted on
the screen.

OPERATING SYSTEM CALLS

Any line beginning with an asterisk in the source file is
passed over to the operating system for processing. One use for
this would be to enable the source file itself to configure the
printer (baud rate etc). E.g.

*FX 5,2

Do not put a comment on the same line as the star command .

ERROR REPORTING

The AXR has been designed to make tracking down errors in
the program as painless as possible.

Whenever an error is found in the source file, a message
appears indicating which line of the file caused the error, the
name of the file currently being read, the offending statement,
and the relevant message, e.g.

Error at line 37 of file DATA1
LDA (&50),X
Index

Simply go back to the edit mode of your wordprocessor, and
change the offending line.

HINT: WORDWISE PLUS owners can use the CURSOR DOWN command
to advantage. In the example just given, CURSOR DOWN 37-1 would
locate the exact line immediately. This simple trick only works
if there are no lines that are greater than 39 characters,
between the start of the text and the line in question.

MACRO LIBRARY

Macros are essentially procedures, held in the computer's
memory in BBC BASIC form. If there are many macros in use, this
obviously represents a certain amount of wasted space, since
only one macro is called at a time. (Macro 'nesting’ is in fact
possible by having one procedure call another, but this
capability is unlikely to be needed.)

To make the best use of available memory, the *LOAD
command can come to our aid. *LOAD is a standard operating
system command which enables any type of file to be loaded into

Page 35

memory at a specified address. *LOAD, like any other star
command, can be recognised in a source file by the Assembler
ROM. The general idea is that all the procedures are written in
advance (from BASIC), and then each one SAVEd to disc (the tape
filing system is not really suitable for this technique, due to
its speed limitations.) The source file then *LOADs each
procedure (macro) into memory as and when it is needed. This is
really a form of 'disc overlay'.

Herein lies the first complication. Some procedures will
be longer than others, and it is essential that the computer is
made to start storing its variables in memory so that the
longest procedure will not corrupt them. This 1is done by
raising the default value of LOMEM. It is at LOMEM that BASIC
starts storing its variables, and it is usually set to TOP by
default.

Step 1 is to write all the procedures that will be needed.
The example program to illustrate this technique will use
OSBYTE and OSWORD calls, and also a 'home cursor' command.
Enter BASIC, and type in the three procedures below. SAVE each
one to disc under the name given in line 10.

10 REM Macro "M.osb"

20 DEFPROCosbyte(a%,x%,y%)

30 LDA #a% : LDX #x% : LDY #y$%
40 JSR &FFF4:ENDPROC

10 REM Macro "M.rclock"

20 DEFPROCreadclock(addr%)

30 LDA #1 \Read system clock

40 LDX #addr% MOD 256

50 LDY #addrs% DIV 256

60 JSR &FFF1 \Call OSWORD : ENDPROC

10 REM Macro "M.curhome"
20 DEFPROChomecursor
30 LDA #30 : JSR &FFEE : ENDPROC

The longest of these is clearly the second one, and the
*INFO command will confirm this. If PAGE is normally &1900,
then the end of this procedure in memory would be about 140
bytes above this. Allowing a generous safety margin, LOMEM must
be set to &1A00 to ensure that all variables are created and
stored well clear of the end of this procedure. Our source
program can now be entered.

\This 'macro' will set LOMEM when called
10 DEFPROClomem : LOMEM=&1A00 : ENDPROC
\End macro '

ORG &6000
\Now set LOMEM to &1A00 on pass 1 only
\See above for details of location &70
IF ?&70=0

Page 36

PROClomem
\Done
FI

.oswrch EQU &FFEE
LDA#7
JSR oswrch

\Do some OSBYTE calls
*LOAD M.osb 1900
PROCosbyte(12,3,0)
PROCosbyte(11,25,0)

\Home the text cursor
*LOAD M.curhome 1900
PROChomecursor

\Read the system clock into memory
*LOAD M.rclock 1900
PROCreadclock(time)

RTS

.time
DFB 0,0,0,0,0 \Read time into these bytes

Save this text as TESTS5, and then re-enter BASIC. Assemble
it into memory with the command

*ASSM TEST5 0 3

The point to notice is that we never had more than one
procedure held in memory at a time. This means that you can
build up a library of useful macros, and simply *LOAD them in
as necessary. Ideally, try to plan the number of *LOADing
operations to a minimum, since disc accesses carry a time
overhead.

Page 37

ERROR MESSAGES

This section summarises the error messages that may be
issued by the assembler.

Bad delimiter

After a statement has been assembled, only certain
characters may appear on the line. e.g. colon, backslash etc.

Bad line

A pseudo-op has been used illegally, or a line of code in
the source file makes no sense.

Can't evaluate

This message is very unlikely to occur, and is only
possible when wusing the AND or EOR mnemonics. It results from
the way the tokenising routine in the BASIC ROM works. You can
prevent this message occurring by always ensuring that there is
at least one space between the mnemonic and the number. E.g.
use

EOR 12345 rather than EOR12345

Duplicate label

Multiple label definitions can be trapped by setting bit 7
of the OPT pseudo-op.

Not in BASIC

Various commands, e.g. *ONAXR, only work from BASIC.
Out of range

Relevant only to branch instructions (including BBR and
BBS), this indicates that the branching distance is above the
permitted maximum. Bit 5 of OPT can be used to prevent this
error as described previously.

Byte/Word

Some operands cannot be greater than 255, or sometimes
65535. The following would give an error of this type.

LDA #4445 DFW &776612
Index

An index register has been used illegally.

Page 38

Missing ,

An insufficient number of parameters has been supplied,
e.g.

BBR 5
Missing)
Fairly self-explanatory, e.g.
EOR (&43,X
Too many bytes
Relevant only to the DF (DeFine) pseudo-ops. A single
numeric DF statement cannot generate more than 80 bytes. DFS
may create a string of up to 255 characters in length.
Can't open

The computer cannot open the specified file for some
reason.

Type mismatch

Expressions expecting a numeric quantity do not like
strings, and vice versal

Bad binary

Binary numbers are recognised by the Assembler ROM. There
must be at least one '0' or '1' after the '$' sign, with no
spaces in between.

Bad name

Filenames are restricted to 13 characters in the *ASSM
command.

Bad OPTs

The OPTs specified in the *ASSM command are checked for
'suspect' numbers. In particular, the branch to jump bit (5)
and the offset assembly bit (2) must be the same on both
passes. If they are not, this error will occur.
Too big

The first OPT parameter in *ASSM should not exceed &1FF,

and the second &FF. In fact, since it would not normally be
useful to set the 'duplicate label' bit (7) on a second pass,

Page 39

&7F is the sensible maximum of (<OPT 2>). The assembler
actually ANDs the second OPT number with &7F anyway, to ensure
that the most significant bit is clear.

ESCAPE

The ESCAPE key can be used to abandon the assembly of
files on tape or disc.

Line too long
No line in a source file may exceed 235 characters.
Too many IFs

No more than one level of conditional assembly is
permitted.

No IF

ELSE and FI in a source file must both have an 'IF'
statement before they may be used.

Bad bit
Some of the new 65C02 instructions reference a particular
memory bit. This must be specified by a number in the range 0-7

with no arithmetic expressions.

SMB 4,813 is valid, but
BBR n,&13, label is not.

Page 40

OTHER STAR COMMANDS

This section describes the other star commands on the ROM.
Like *ASSM, they may be typed in either upper or lower case
letters, abbreviated with a period if desired, and optionally
prefixed by 'AU' (or ‘'au') to avoid command clashes.

Notice also that the AXR will accept arithmetic
expressions for any of its numeric parameters. Such expressions
must not include any BASIC keywords however, because keywords
are not tokenised in star commands.

*BITS

*BITS (or *AUBITS) prints out a table illustrating the
meaning of the wvarious bits of the OPT directive. It is
intended to be a brief guide as to how to use OPT, rather than
a detailed description. Remember that bit 6 is not used during
assembly from file, and bit 8 is not used when assembling from
memory.

*LVAR

The Assembler ROM contains a variable dumping utility.
This can be very handy for checking that 1labels and symbols
have the values intended. In response to

*LVAR
the computer prints out the values of all currently defined
variables in both decimal and hex. String variables are also
listed, with 'unprintable' characters replaced by a period.
This command may not work correctly if memory is very
‘scarce, as result of say 3

DIM A 100000

*DSM
Syntax: *DSM (<address>) (<ROM>)

The DSM facility has been provided to complement the
assembler section of the ROM. The command may be used to
disassemble any section of the computer's memory, including
sideways ROMs. The disassembler recognises all the extra

instructions available on the enhanced 6502 processors.

There are two optional numeric arguments with DSM. Both

Page 41

may be entered in either decimal or hex (preceded by a '&').
The first is the starting address in memory from where
disassembly is to commence. If no address is specified, then
the default value is =zero (80000). There is no finishing
address required, and the program will proceed until ESCAPE is
pressed. Of course, certain keys will determine the path that
the disassembler will follow, and these are described later.

The second parameter should be a quantity between 0 and 15
decimal. It represents a socket number inside the computer, and
is wused to decide which of the sideways ROMs is to be
disassembled. This parameter is only relevant if the memory
addresses being disassembled are in the range &8000-&BFFF, and
its default value is 15. Disassembly of the Assembler ROM
itself cannot be performed.

Unrecognised opcodes are denoted by '---' . The ASCII
characters corresponding to the various numbers are shown on
the extreme right hand side of the screen, so it is relatively
simple to spot text or messages.

RTS (ReTurn from Subroutine) instructions are highlighted
by the appearance of a '&' symbol in the middle of the screen.
This facility can be helpful when looking for the end of
subroutines, but you should remember that subroutines may
terminate with a JMP instruction, e.g. JMP &FFF4

A number of powerful subroutines exist within the MOS,
available to both BASIC and machine code programmers alike.
Standard operating system calls are identified and labelled by
name. The recognised calls are as follows:

Routine Address Routine Address Routine Address

OSBYTE FFF4 OSNEWL FFE7 OSWORD FFF1
OSCLI FFF7 OSARGS FFDA OSBGET FFD7
- OSBPUT FFD4 OSWRCH FFEE OSASCI FFE3
OSRDRM FFB9 OSGBPB FFD1 OSFIND FFCE
OSINIT FFC2 OSREAD FFC5 OSRDCH FFEO
OSEVEN FFBF OSFILE FFDD

Similarly, the standard vectors in page two are also
labelled. E.g. JMP (&20E) is identified as WRCHV.

Various keys alter the way in which the disassembler
operates. In addition to the 'single-key' types, most of the
‘control' characters perform their usual function, viz:

Ctrl-B: Simultaneously pressing the control key and B will
send all subsequent output to a printer as well as the screen.
Depending on how your printer is configured, it may be
hecessary to issue certain FX calls before this will work
properly (e.g. to select the correct baud rate). The User Guide
provides more information on doing this.

Page 42

Ctrl-C: Turn printer off.

Ctrl-N: Set 'paged' mode on. Under these conditions, output
stops after a certain number of lines have been printed.
Pressing the SHIFT key will allow a further screenful of lines
to be displayed.

Ctrl-0O: Set paged mode off. This reverses the effect of
Ctrl-N.

The other keys related to the disassembler are:

A - Pressing 'A' will prompt for a new disassembly address
and sideways ROM. Since it is most likely that an address will
be entered in hex, the computer provides the necessary '&'
symbol automatically. This can be removed if necessary with the
DELETE key. The ROM number should be in the usual range 0-15.
One or more spaces must of course separate the two gquantities.
Pressing <ESCAPE> at this point will terminate the
disassembler.

B - Back one byte. The instruction at the current address
less one is disassembled.

c - Continuous disassembly. Memory will be disassembled
continuously, much too rapidly to read. This is the obvious
mode to use when dumping any appreciable quantity of code to a
printer. Pressing CTRL and SHIFT together will halt the
scrolling process.

J - Jumps on. Pressing 'J' will cause any subsequent
unconditional branch to be followed. This covers subroutine
calls and jump instructions, both direct and indirect.
Conditional branches have no effect. If an RTS is encountered
in this mode and a subroutine is currently being examined, then
disassembly will return to the instruction after the
appropriate 'JSR'.

0o - Jumps Off. This turns off the jump-following facility.

R - Force Return from subroutine. If disassembly has
proceeded into a subroutine, pressing 'R' will immediately
cause a return to the point after the calling 'JSR'
instruction. If no subroutine is being followed, the next
instruction in sequence will simply be disassembled. The limit
to the number of JSR instructions that can be 'remepbered' (or
nested) is 127.

S - Step-wise disassembly. This reverses the C
(continuous) mode. Under these circumstances one instruction is
disassembled every time a key is pressed. This facilitates
stepping through the path that a program is assumed to follow.

Page 43

<SPACE> The space bar can be used to follow the course defined
by a «conditional branch instruction. If the instruction just
disassembled was any kind of conditional branch, then pressing
<SPACE» will cause that branch to occur. This is true
irrespective of whether the 'jumps' mode is on or off.

If the jumps-mode is off, then pressing the space bar will
also cause subroutines and jump instructions to be followed.
Additionally, if an RTS was the last instruction, it attempts
to return from the subroutine by retrieving the necessary
address. If there is no JSR pending, the next instruction in
sequence is disassembled. g

<SPACE> will temporarily suppress the effect of
‘jumps-on'. If unconditional jumps are being followed {(by the
use of 'J' - see above), and a ‘JSR' or 'JMP' is decoded, then
pressing the space bar will stop the jump from taking place.
This prevents operating system calls such as the ones mentioned
previously from being disassembled. There is nothing wrong with
examining the subroutines in the MOS, but it is very time
consuming since most of them ramble about in a rather opaque
way, and so it is not always very revealing.

2 - This key is only relevant to the new JMP (Abs,X)
instruction. The effective jump address that the processor will
ultimately use depends not only on the absolute address given
in the instruction, but also on the contents of the X register
at the time. Pressing '?' after an indexed indirect jump will
cause the computer to prompt

X=

Type in the value required and press RETURN. Only the
least significant byte of the number entered will be made use
of. The computer will calculate the same address that the
processor would have done, and disassembly recommences from
there. This provides a simple way of checking that jump tables
have been formed correctly.

<ESCAPE> - Exit the disassembler.

COMMAND KEY SUMMARY

>
]

New Address/ROM

- Back one byte

- Continuous

- Jumps on

Jumps off

- Return from subroutine

- Step-wise disassembly

- Input X for indexed indirect jump
SPACE> - Invert jump action

AwnmOLUO W
I

ESCAPE - Finish

Page 44

*STRIP
Syntax: *STRIP <fsp> (<:)>

Many users like to use a wordprocessor for editing BASIC
programs. The way this is done is normally to use *SPOOL (from
BASIC) followed by a filename. This opens a spool file for
output. The program in memory is then listed with the LIST
command. When a spool file is active, all output to the screen
also goes to the named file. When listing is complete, the use
of *SPOOL on its own will close the spool file. The net effect
of all this is that the given file can now be edited with a
wordprocessor. You cannot successfully load BASIC programs
straight into WORDWISE (say), because of the BASIC tokens.

This procedure is satisfactory to some extent, but the
line numbers are often a pest. *STRIP will send your BASIC
program to a file in ASCII format (detokenised), and you can
then 1load it into the wordprocessor. Line numbers will have
been removed however. In addition, the statements

NEW
AU. {short for AUTO)

will be placed right at the start of the file, This means that
you can just EXEC the file back into memory from BASIC if you
want to, and have the line numbers put back again
automatically.

*STRIP itself should be used from BASIC. You may
optionally place a ':' symbol after the filename <fsp>, and
this has the effect of splitting up multi-statement lines.
Remember that multi-statement 1lines are not permitted when
assembling directly from a file, so this facility turns out to
be quite useful.

Examples

*¥*STRIP data?l
*¥*STRIP MYFILE :

The second example takes the program in memory, and spools
it out under the name 'MYFILE', but without any line numbers.
It also splits up multi-statements. If you now type

*EXEC MYFILE <RETURN?>

you will obtain your original program, but with no
multi-statement lines present. '

Page 45

THE EXTRA INSTRUCTIONS

This section describes instructions that are not available
on the standard 6502 fitted to the model B computer. The AXR
will assemble all the instructions listed here, which means
that code can be produced for execution on the second
processor, Master series, or any other 6502 based systems.
There can be a speed bonus and memory saving by the use of
these instructions, but there is a penalty in terms of lack of
transportability of code from one machine to another.

Mnemonic Addressing mode

PHY " Implied Push register Y
PLY Implied Pull register Y
PHX Implied Push register X
PLX Implied Pull register X

It is now no longer necessary for stack operations involving X
and Y to go through the accumulator.

DEC A Accumulator Subtract 1 from the A register
INC A Accumulator Add 1 to the A register

ORA (zp) Indirect OR accumulator

AND (zp) Indirect AND accumulator

EOR (zp) Indirect EOR accumulator

ADC (zp) Indirect Add to accumulator

STA (zp) Indirect Store accumulator

LDA (zp) Indirect Load accumulator

CMP (zp) Indirect Compare accumulator

SBC (zp) Indirect Subtract from accumulator

zp is a zero-page location. These instructions operate like
indirect indexed addressing with the Y register set to zero.

SMB n,zp Zero page Set bit n of location zp
RMB n,zp Zero page Reset bit n of location zp

zp is a zero-page location. n is a 3 bit number (0-7) and
cannot be a variable.
E.g. negflag=483 : SMB 7,negflag

STZ abs Absolute
STZ abs,X Absolute indexed
STZ zp Zero page
STZ zp,X Zero page indexed

Store a zero in the specified memory location.

Page 46

BIT zp,X Zero page indexed

BIT abs,X Absolute indexed

BIT #imm Immediate (V flag not affected)
BRA label Relative

The BIT test with new addressing modes, and also an
unconditional branch.

JMP (abs,X) Indexed indirect jump

TSB abs Absolute
TSB zp Zero page
TRB abs Absolute
TRB zp Zero page

Test and Set/Reset memory bits

BBR n,zp,label Zero page
BBS n,zp,label Zero page

Branch on bits Reset/Set
E.g. BBS 3,&70,label

There is a program on the AXR ROM itself which illustrates
these mnemonics being used. This program and others are
described in the next section.

Page 47

PROGRAMS ON THE AXR

The AXR contains a number of demonstration programs. They
are present in ROM Filing System (RFS) format.

You will need to issue a *ROM command in order to activate
the RFS. Once this has been done, the ROM may be catalogued by
means of *CAT (or *.).

All the programs except "TABLE" are in BBC BASIC form, and
each one may be loaded into memory by means of the familiar
LOAD command.

In order to keep the size of the programs to a minimum,
extensive use 1is made of multi-statement lines. Remember that
*STRIP can be used to convert the programs to a more legible
form. For example, to split up the program "DEM3" on the ROM,
you could use the following steps. It is assumed here that a
disc drive is present, but the principle is applicable to
tapes.

*ROM <RETURN>
LOAD "DEM3" <RETURN>
*DISC <RETURN>
*STRIP ANYFILE : <RETURN>
*EXEC ANYFILE <RETURN>

There will now be a '"split up' version of DEM3 in memory,
which can be resaved to disc if needed.

The following sections give a brief description of the
purpose of each program.

The programs were written by Mike Ginns.
DEM1
Purpose: To illustrate duplicate label trapping
There is not much that needs to be said here. Recall that
setting bit 7 of OPT causes a 'Duplicate label' error if an
attempt is made to define a label that already exists. This
program just goes through the assembly language twice, with bit
7 set on the second pass.
DEM2
This program provides a difficult test for the ROM, by
checking the operation of recursive macro calls. The resulting
code itself is useless!
DEM3
This program contains all the instructions and addressing

modes supported by the 65C02 microprocessor. When the program
is run, the following occurs.

Page 48

a) The code is written directly to RAM, then *SAVEd to disc.
b) The code is re-assembled directly to another file.
c) The files are compared to make sure that they are the same.

This test serves two main purposes. First, it ensures that
all 65C02 instructions do assemble. Second, it confirms that
assembly to RAM and directly to disc produces identical object
code.

DEM4

DEM4 tests the ROM's ability to assemble code with an
address offset. It generates code to run in sideways RAM, but
places it in memory from location &3000 onwards. This block of
memory is *SAVEd to disc, then reloaded into sideways RAM. If
the code has assembled correctly, then a sideways 'ROM' will be
produced which simply reports its existence on BREAK,

N.B. This program obviously needs sideways RAM! Furthermore, it
is necessary to be able to *LOAD data directly into the S/W RAM
at &8000 for this simple routine to work. Alternatively, the
software that accompanied your sideways RAM should explain how
to move a ROM image from disc to the sideways RAM itself.

SIDE

This is a general purpecse sideways ROM generator. The
program is basically a series of conditional assembly clauses
which allow the user to very easily define the type of ROM that
he or she requires. After confiquring a copy of the program for
a particular ROM type, all that is required is to insert the
assembly language routines which make up the ROM at the marked
places. Running the program will then create a disc file
containing an image of the user's ROM ready for 1loading into
sideways RAM or blowing into an EPROM.

The‘bﬁriable '‘save$' should be set to the name of the file
under which the ROM image is to be saved to disc.

Next there are some variables which define the ROM's
header code information.

language - TRUE or FALSE
Has the ROM got a language entry point?

service - TRUE or FALSE
Has the ROM got a service entry point - it normally should.

version - 0-255
The binary version number of the ROM.

Page 49

title$
A string giving the ROM's title.

version$
An optional version string containing the ROM's version
message. :

copyright$
The name of the person who holds copyright on the ROM. Notice
that the '(C)' is included automatically.

The next section (lines 60-70) contains twenty flag
variables which should be set to either TRUE or FALSE. These
indicate whether the corresponding service is to be provided by
the ROM. For instance, you would set ' _command=TRUE ' if you
wanted to write a 'star' command type of ROM.

The last section (line 370) contains a series of labels.
There is one label for every service type that the ROM could
provide, If a ROM provides one of these services then the user
code to implement it should be placed after the appropriate
label. (You will almost certainly need to use *STRIP to split
this program up, as described previously). Each routine should
end with an RTS instruction.

Notice that user routines are responsible for preserving
the necessary registers, and for setting the accumulator to
zero on -exit if applicable.

At the end of the service entry points is the '.language'
label. This marks the entry to the ROM if it is specified as
being a language.

TABLE/TBL_DEM

This is an ASCII file and should be EXEC'ed onto the end
of the user's program.

An extra line containing the label definition '.label'
should first of all be added at the end of your program. Then,
the 'TABLE' file is EXEC'ed into memory, thereby tacking the
procedure onto the end of the current program. 'label' actually
marks where the user's data tables are to be stored.

to create a table in the program simply make a call to the
table procedure. To do this a number of parameters have to be
passed. These are;

1) pass

The first parameter should be the value of the current assembly
pass. The table procedure requires two-pass assembly and
creates the data tables when the value of pass is non-zero.

Page 50

2) size
This parameter defines the size of the table in bytes that is
to be created.

3) pointer

This is the zero-page address which is to be used as a pointer
to the data table. The procedure assembles code to 1load these
two locations with the first address in the data table. The
pointer can then be used to index into the table as required.
If an indirect pointer is not needed then setting this
parameter to -1 suppresses the code output.

4) content$

This is a string parameter., It defines what the contents of the
data table are to be., This is done by giving a numeric
expression in the string which, when evaluated, gives the data
for a particular entry in the table. The wvariable 'location'
may be used in the expression to define data which is dependent
on the data's offset position in the table. This will almost
always be the case. The following examples should make this
clear;

"location*3" - A three times table will be created
i.e. 0,3,6,9...

"3"location” - A sequence of cubic powers will be created
i.e. 1,3,9,27...

The expression need not be based on the entry offset, e.qg.
"RND(255)" - A table of random numbers.

The data specified is written into memory using the pling
operator (!). This means that data larger than 256 1is encoded
in the normal lo-byte, hi-byté format. It should also be
remembered that the expression given is limited to data which
can be written to memory with a 'l'. For example, giving the
'content$' parameter as
"SIN(location)"
would not work as the real value of SINE is never greater than
1, and a table of 0's would result. It is often possible to get
round the problem by e.g.

"1000*SIN(location)"

Page 51

5) increment :

As the expression given in parameter 4 may define data which is
larger than one byte, it is necessary to tell the procedure how
many bytes each table entry is.. For example, a table of 6502
addresses needs two bytes per entry and so 'increment' is set
to 2.

TBL_DEM

The file 'TBL_DEM' is a demonstration of the TABLE
procedure at work. It creates three tables; one contains the
alphabet, and another two contain the (X,Y) co-ordinates of a
sine graph. These illustrate how the procedure may be used in
practice.

Page 52

NOTES

Page 53

NOTES

Page 54

NOTES

Page 55

	frontcover.jpg
	00.jpg
	01.jpg
	02.jpg
	03.jpg
	04.jpg
	05.jpg
	06.jpg
	07.jpg
	08.jpg
	09.jpg
	10.jpg
	11.jpg
	12.jpg
	13.jpg
	14.jpg
	15.jpg
	16.jpg
	17.jpg
	18.jpg
	19.jpg
	20.jpg
	21.jpg
	22.jpg
	23.jpg
	24.jpg
	25.jpg
	26.jpg
	27.jpg
	28.jpg
	29.jpg
	30.jpg
	31.jpg
	32.jpg
	33.jpg
	34.jpg
	35.jpg
	36.jpg
	37.jpg
	38.jpg
	39.jpg
	40.jpg
	41.jpg
	42.jpg
	43.jpg
	44.jpg
	45.jpg
	46.jpg
	47.jpg
	48.jpg
	49.jpg
	50.jpg
	51.jpg
	52.jpg
	53.jpg
	54.jpg
	55.jpg
	56.jpg
	57.jpg
	backcover.jpg

