
BBC MICROBASE SERIES
BBC 6502 Machine Code by Geoff Cox

This series was first published on Micronet
between April and October 1991

The BBC Micro Operating System
Part One: The moving electron writes

In the last series we reviewed the basics of machine code programming
using the 6502. You will have noticed that not too many examples of
programming were given. This is because there are two levels of
programming on any machine, machine level and operating system level.

Operating Systems

An operating system is basically a group of routines that sit between
the user and the electronics of the computer. To illustrate what an
operating system does we have to turn briefly from the path of the
series.

We'll imagine that you want to write the letter A on the screen of
your monitor. First we have to work out the shape of the character and
slice it horizontally into eight sections, one for each of eight
screen scanning lines on the monitor.

Now we need to detect when the frame synchronising pulse for the
monitor is sent by the computer. Next we need to count the line
synchronising pulses to find the one corresponding to the start of the
first line of the character.

Then we must time from this pulse to the start of the first line of
the character, turn on the appropriate electron guns in the monitor
and turn them off at the correct time for the end of the of the
character. Finally we have a few microseconds to do it all again for
the next line. That's more or less what happens fifty times a second
on your monitor screen.

Mapped Screens

This makes even the easiest task very complex. We can make life easier
by storing a picture or map of the screen in memory and writing the
character shape to the appropriate map locations.

The map can then be scanned in synchronisation with the electron beam
on the monitor. This can either be via a clever piece of electronics
or a software routine.

To illustrate the BBC map, type the following program on any 6502-
based BBC without screen RAM shadowing.

10 MODE 0
20 ?&7D00=65

You should see two little white dots towards the bottom right of the
screen. Now two dots are not the letter A so if we want to write A we
have to designthe character and write it to the map. This program does
just that.

10 MODE 0
20 FOR A=&7D00 TO &7D07
30 READ B
40 ?A=B
50 NEXT
60 DATA &3C, &66, &66, &7E
70 DATA &66, &66, &66, &00

The sharp-eyed among you will have spotted something a little odd
here. The screen seems to be arranged in blocks of eight bytes in this
mode. Don't worry about this - it simply makes character table design
simpler.

Character Tables

We can make life even easier by designing a set of characters and
putting them in an area of memory where they can be looked up. In the
BBC B this area is in ROM starting at &C000.

A quick diversion here. If we have to have a series of character
designs in memory it helps to have a standard method of accessing
them.

The standard character ordering is called ASCII. A space has ASCII
number 32 and this is the first "printable" character in the set. The
last is 127 (Delete). There are eight bytes in each character matrix
so the design for any character is at &C000+(8*(ASCII - 32)).

This program examines the ROM character table and shows how characters
are arranged.

10 MODE 0
20 PRINT "CHARACTER ?"
30 A$=GET$
40 PRINT A$
50 START=(8(ASC(A$)-32))+&C000
60 FIN=START+7
70 FOR BYTE=START TO FIN
80 PEEK=?BYTE
90 PROC_BIN
100 PRINT~BYTE;TAB(15);~?BYTE;TAB(20);
110 NEXT
120 END
130 DEFPROC_BIN
140 A$=""
150 FOR BIT=7 TO 0 STEP-1
160 X=(PEEK AND 2^BIT)
170 IF X>1 THEN A$=A$+"" ELSE A$=A$+"."
180 NEXT
190 ENDPROC

As you will often want to write characters on the screen it makes a
lot of sense to have a little routine to take a character from a
register and print it on the screen.

The routine will look up a character in the table and print it to the
appropriate position on the screen. There will also need to be a
record of the cursor position on the screen.

Routines for printing and moving a cursor on the screen will also be
useful. You could, of course, write all of these routines yourself as
part of every program but as the computer manufacturer has to provide
them in order to tell you the machine is working he usually leaves an
access point for you to use the routines yourself.

Incidentally if you rewrite the first program but change line 10 to
read MODE 7 you will see a letter A on the screen.

This is an example of clever electronics. A chip on the BBC board
contains a character generator. Instead of the character design being
stored in the screen map the character's ASCII value is stored. This
is read by the electronics and used to generate characters directly on
the screen. This allows a 40 x 80 text and block graphics screen to be

generated in just 1K of RAM.

Using the Operating System

The screen handling routines and several others make up an operating
system. In the BBC micro the series of routines that write a character
on the screen can be accessed though a point called OSWRCH at &FFFE.

So instead of having to design characters, time lines and do all of
the other things, you can output a letter A to the screen simply
using:

LDA #65
JSR &FFEE ;OSWRCH

and leave the operating system to do the rest.

BBC 6502 Machine Code
Part Two: In the beginning

Last week we looked at the reasons for an operating system and how it
can simplify the programmer's task. Unfortunately you will not always
be able to use the operating system. There may not be a suitable
routine or it may be too slow. In these cases you have to write to the
device itself. So to continue our look at machine code we need to
examine programming with device handling and the operating system.

This series will attempt to kill two birds with one stone by taking
avery close look at Acorn's OS 1.20 used on Model Bs.

This changed little for the B+ and Master so while the routines may be
in a slightly different place the basic system will be the same. The
Master uses 65C02 code which has a few extra instructions so there may
be some differences in the length of the code.

What you will need

A disassembler or machine code monitor that can handle 6502 or 65C02
codes. If If you don't have either you can use:

PRINT ~?address

to get the hexadecimal codes which you can then look up in the back of
the BBC User Guide to get the relevant command.

Suitable Monitors are EXMON, BBC Monitor or the SYSTEM monitor. (I use
"Maxim" - Ed.) If you have a single- stepping monitor like one of
these, you will be able to trace some of the routines for yourself.

For this series we will use standard 6502 mnemonics except that DB and
DW will be used to show byte assignments rather than EQUS, EQUW and
EQUB. This is because the disassembler I am using produces these codes
and it's a lot easier to follow than convoluted BBC-type statements.

First things first

Remember that an operating system is not a program in the usual sense.
Normal programs have a defined entry and exit routines. An operating
system can have a large number of entry and exit points as well as
interlocking routines. So to examine the operating system we need a
starting point.

The 6502 regards memory as a series of 256-byte pages 0 to &FF (255).
Any address can be considered to be a page number plus an offset
within the page. Both figures can be represented by a single byte. So

address &FF01 is on Page &FF offset 01. The concept of offsets is very
useful if you ever get involved in 80n86 programming.

The BBC Manual gives a series of system entry points on page FF. Most
of these are indirected through Page 2 and as we cannot guarantee what
the contents of Page 2 should be (the vectors can be and are changed)
these are useless as starting points. This leaves three sensible entry
points.

6502 Vectors
FFFA
DW &0D00 ;NMI address
FFFC DW &D9CD ;RESET address
FFFE
DW &DC1C ;IRQ address

The NMI address is in RAM so no joy there, but the other two look
fine. The best is RESET as this is where the machine starts when it is
turned on or BREAK is pressed. In the case of Model B and OS 1.20 that
address is &D9CD, so what happens?

In the beginning

Reset can be effected by turning on the computer or pressing BREAK. If
it is a power-up then the system VIA and processor are reset
electronically.

If this is a power on situation then nothing has been set up. The
first thing that happens when power is turned on is that the 6522
VIAs, the processor and the floppy disc controller are reset. This is
done by means of one of three printed circuit tracks. The tracks are
RSTA, RST and NOTRESET.

RSTA is only connected to the system 6522 Versatile Interface adaptor
(VIA). This operates through a little resistor/capacitor circuit that
only works when the power is turned on. The effect of this is that the
6522 System VIA Interrupt Enable Register (IER) bits 0 to 6 will be
clear (0) only if the reset is caused by a power on condition.

If the Reset is caused by BREAK being pressed then the machine must
have been on and therefore one or more of the System VIA IER bits will
be set (to 1). If one or more bits are set then bit 7 of the VIA will
also be set. This is used to determine the type of Reset. So let's
look at the operating system more closely.

D9CD
LDA
#&40 ;set NMI first instruction to RTI
D9CF
STA
&0D00 ;NMI RAM start

RESET is the ultimate Act of God as far as the machine is concerned.
Anything could be happening so the operating system has to clean up
the system as its first act.

These first instructions just make sure that if a disc is running no
more information will be read or written from or to the disc. This
illustrates why you shouldn't press BREAK when a disc is being
accessed!

The next section sets up the stack:

+
D9D2
SEI ;disable interrupts just in case

D9D3
CLD ;clear decimal flag
D9D4
LDX
#&FF ;reset stack to where it should be
D9D6
TXS ;(&1FF)

Next find out if a power-up reset or a BREAK press by examining the
System VIA IER register.

D9D7
LDA
&FE4E ;read interrupt enable register of the system VIA
D9DA
ASL ;shift bit 7 into carry
D9DB
PHA ;save what's left
D9DC
BEQ
&D9E7 ;if Power up A=0 so go to D9E7 to clear memory

That's probably enough for this time. Don't worry! I don't intend to
do a complete disassembly of the operating system in this series but
we will follow through the power-on sequence to the end because a lot
of interesting things happen at this time.

We'll take a look at D9E7 and the next routine in this sequence (D9DE)
in the next part.

BBC 6502 Machine Code
Part Three: Cleaning up the mess

In the last part we looked at what happens when you press BREAK or
switch on the machine. We'll now continue with a look at an
undocumented (at least officially) routine.

The byte at &258 can be used to contain information about what the
machine should do if BREAK is pressed. FX200,n is used to set this
byte. If n=2 or n=3 then the memory must be cleared. This is often
used in program protection.

D9DE
LDA
&0258 ;else if BREAK pressed read BREAK Action flags (set by FX200,n)
D9E1
LSR

 ;divide by 2
D9E2
CMP
#&01 ;if &0258 <> 2 or 3
D9E4
BNE
&DA03 ;then Goto &DA03
D9E6
LSR

 ;divide A by 2 again (A=0 if FX200,2/3 else A=n/4

Pages 4-&7F are cleared by a simple loop if &258=2 or 3 or it is a
power on reset. Look out for the clever way of avoiding problems on
16K machines.

D9E7

LDX
#&04 ;get page to start clearance from (4)
D9E9
STX
&01 ;store it in ZP 01
D9EB
STA &00 ;store A at 00
D9ED
TAY

 ;and in Y to set loop counter

 ;LOOP STARTS
D9EE
STA
(&00),Y ;clear RAM
D9F0
CMP
&01 ;until page address (in &01) =0
D9F2
BEQ
&D9FD
;
D9F4
INY

 ;increment pointer
D9F5
BNE
&D9EE ;if not zero loop round again
D9F7
INY ;else increment again (Y=1) this avoids overwriting the RTI
 ;instruction at &D00 D9F8 INX

 ;increment X
D9F9
INC
&01 ;increment &01
D9FB
BPL
&D9EE ;loop until Page (in 01)=&80 then exit

Note that RAM addressing for 16K loops around to &4000=&00 hence the
checking of &01 for 00. This avoids overwriting zero page on BREAK
which would cause the machine to crash!

D9FD
STX
&028E ;writes marker for available RAM 40 =16K,80=32
DA00
STX
&0284 ;write soft key consistency flag

This routine shows the basic structure of a loop. Those of you who
program in BASIC will recognise it as a very simple structure:

10 A=A+1
20 IF A<20 GOTO 10

The loop uses zero page addressing with the target address in 00 and
01 (Page) and the index in Y.

The loop is exited when the value in 01 becomes negative. Remember
that all values between 0 and &7F are considered to be positive, so
the BPL instruction can be used to exit the loop at page &80, the
first negative number. This is the first of the useful loop techniques

we'll see in this series.

Notice that the first byte of each page is left unchanged. This is
useful if you want information to survive a BREAK of this type. This
clearing of memory is not normally carried out.

Next week we'll have a look at the normal RESET path.

BBC 6502 Machine Code
Part Four: Cleaning up even more mess

As we saw last week, a normal warm reset avoids the memory clearance
and proceeds to set up the System VIA.

DA03 LDX #&0F ;set PORT B data direction register to output on bits
 ;0-3 and input bits 4-7
DA05 STX &FE42 ;

The next bit is a little more complicated and is intimately bound up
with hardware. The function is to set up the addressable latch IC 32
for peripherals via PORT B.

The latch value is written by writing the value to &FE40 bits 0 to 2
and either a 1 or 0 to bit 3.

Writing the value + 8 therefore writes a 1 to the latched address,
otherwise a 0 is written.

Value Peripheral Effect
+ 0 8

0 Sound chip Enabled Disabled
 Speech Chip
1 (RS) Low High
2 (WS) Low High
2 (WS) Low High
3 Keyboard
 Write Disabled Enabled
4 C0 address
 modifier Low High
5 C1 address
 modifier Low High
6 Caps LED On Off
7 Shift LED On Off

C0 and C1 are involved with hardware scroll screen address.

 ;X=&F on entry
DA08 DEX ;loop start
DA09 STX &FE40 ;Write latch IC32
DA0C CPX #&09 ;Is it 9?
DA0E BCS &DA08 ;If not go back and do it again
 ;X=8 at this point
 ;Caps Lock On, SHIFT Lock undetermined
 ;Keyboard Autoscan on
 ;Sound disabled (may still sound)

Next the keyboard is scanned to determine the values of the keyboard
links and whether a Ctrl-Break has been performed.

Remember that although we have spent a lot of time reading this, we
are probably less than 200 microseconds after BREAK was pressed.

The check for Ctrl-Break is effectively looking for simultaneous
keypresses.

DA10 INX ;X=9
DA11 TXA ;A=X
DA12 JSR &F02A ;Interrogate keyboard
DA15 CPX #&80 ;for keyboard links 9-2 and CTRL key (1)
DA17 ROR &FC ;rotate MSB into bit 7 of &FC

DA19 TAX ;Get back value of X for loop
DA1A DEX ;Decrement it
DA1B BNE &DA11 ;and if >0 do loop again
 ;On exit if Carry set link 3 is made
 ;link 2 = bit 0 of &FC and so on
 ;If CTRL pressed bit 7 of &FC=1 X=0
DA1D STX &028D ;Clear last BREAK flag
DA20 ROL &FC ;CTRL is now in carry &FC is keyboard links
DA22 JSR &EEEB ;Set LEDs
 ;Carry set on entry is in bit 7 of A on exit
DA25 ROR ;Get carry back into carry flag

To review what the operating system has done so far, about 400
microseconds after a BREAK press or about 2 milliseconds from a power
on. Memory may have been cleared, NMIs have been short circuited, IRQs
disabled. The keyboard has been scanned for made links and for Ctrl
being pressed.

We have also located two important and undocumented subroutines: &F02A
toscan the keyboard and &EEEB to set the keyboard LEDs.

The F02A routine scans for the key whose code is in X being pressed:

F02A LDY #&03 ;Stop Auto scan
F02C STY &FE40 ;by writing to system VIA
F02F LDY #&7F ;Set bits 0 to 6 of port A to input on bit 7.
 ;Output on bits 0 to 6
F031 STY &FE43 ;
F034 STX &FE4F ;Write X to Port A system VIA (key to check)
F037 LDX &FE4F ;Read back &80 if key pressed (M set)
F03A RTS ;And return

The routine at &EEEB switches on the selected keyboard lights.

EEEB PHP ;Save flags
EEEC LDA &025A ;Read keyboard status
 ;Bit 7=1 shift enabled
 ;Bit 6=1 control pressed
 ;Bit 5 =0 shift lock
 ;Bit 4 =0 Caps lock
 ;Bit 3 =1 shift pressed
EEEF LSR ;Shift Caps bit into bit 3
EEF0 AND #&18 ;Mask out all but 4 and 3
EEF2 ORA #&06 ;Returns 6 if caps lock OFF &E if on.
 ;Remember add 8 to the value for the addressable
 ;latch to send a 1.
EEF4 STA &FE40 ;Turn on or off caps light if required
EEF7 LSR ;Bring shift bit into bit 3
EEF8 ORA #&07 ;
EEFA STA &FE40 ;Turn on or off shift lock light
EEFD JSR &F12E ;Set keyboard counter
EF00 PLA ;Get back flags into A
EF01 RTS ;Return

In this part we've had a look at subroutines using JSR and RTS, the
machine code equivalent of GOSUB, PROC or FN. Subroutines are often
used in machine code to perform such frequently needed functions as
scanning a keyboard or turning on and off lights.

We've also discovered that the byte at &25A contains the keyboard

status. Try changing it for yourself. You can therefore use OR and AND
to set the shift and Caps lock status of the machine for a particular
program.

Next week we'll examine setting up the default vector table in memory.

BBC 6502 Machine Code
Part Five: Vectors Victor

The next stage is to set up the vectors on page 2.

DA26 LDX #&9C ;
DA28 LDY #&8D ;
DA2A PLA ;Get back A from &D9DB DA2B
BEQ &DA36 ;If A=0 power up reset so go to DA36 with X=&9C
 ;Y=&8D
DA2D LDY #&7E ;else let Y=&7E
DA2F BCC &DA42 ;and if not CTRL- BREAK go to DA42 for a WARM RESET
DA31 LDY #&87 ;else Y=&87 COLD RESET
DA33 INC &028D ;&28D=1
DA36 INC &028D ;&28D=&28D+1
DA39 LDA &FC ;Get keyboard links set
DA3B EOR #&FF ;Invert
DA3D STA &028F ;and store at &28F
DA40 LDX #&90 ;X=&90

What we have done is to set up the high water marks for the reset of
vectors.

&28D=0 Warm reset, X=&9C, Y=&7E
&28D=1 Power up , X=&90, Y=&8D
&28D=2 Cold reset, X=&9C, Y=&87

DA42 LDA #&00 ;A=0
DA44 CPX #&CE ;zero &200+X to &2CD
DA46 BCC &DA4A ;
DA48 LDA #&FF ;then set &2CE to &2FF to &FF
DA4A STA &0200,X ;
DA4D INX ;
DA4E BNE &DA44 ;
 ;A=&FF X=0

This is another IF-GOTO loop, but in this case it is a double function
loop. The test at DA44 to DA46 means that A is 0 only for values of X
between the high water mark and &CD. Above this value A is set to &FF
by the instruction at &DA48. This saves a few bytes of space,
essential when writing a tightly-filled ROM.

The next instructions set up the printer port. The only reason for
doing this now is to save two bytes. A must be &FF at this point so it
is used to set up the User VIA for outputs as the printer port.

DA50 STA &FE63 ;Set port A of user VIA to all outputs (printer out)
DA53 TXA ;A=0 DA54 LDX #&E2 ;X=&E2

START OF LOOP
DA56 STA &00,X ;set zero page addresses &E2 to &FF to zero
DA58 INX ;
DA59 BNE &DA56 ;X=0

Now set up the vectors in page 2 from the table at &D940:

DA5B LDA &D93F,Y ;copy data from &D93F+Y
DA5E STA &01FF,Y ;to &1FF+Y
DA61 DEY ;until
DA62 BNE &DA5B ;1FF+Y=&200

Note that this is a decrementing loop which, for loops ending when an
index register reaches zero, is faster and shorter because no compare
is needed. More space saved!

Now the RS423 port is set up via a subroutine affecting the ACIA.
(Asynchronous Communications Interface Adaptor)

DA64 LDA #&62 ;A=&62
DA66 STA &ED ;store in &ED
DA68 JSR &FB0A ;set up ACIA ;X=0

Now Acorn clears the interrupt and enable registers of both VIAs.

DA6B LDA #&7F ;bit 7 is 0!
DA6D INX ;
DA6E STA &FE4D,X ;
DA71 STA &FE6D,X ;
DA74 DEX ;
DA75 BPL &DA6E ;
 ;This loop only has two passes as X=0 on entry.
DA77 CLI ;Briefly allow interrupts to clear anything
 ;pending
DA78 SEI ;Disallow again NB: all VIA IRQs are disabled
DA79 BIT &FC ;If bit 6=1 then JSR &F055 as there must be a
 ;hardware interrupt!
DA7B BVC &DA80 ;else DA80
DA7D JSR &F055 ;

What have we here? Another undocumented routine. If bit 6 of &FC is
set there must have been a hardware interrupt when the SEI occurred.

From the circuit diagram the only place that this IRQ could have come
from is the 1MHz bus - let's have a look at the routine at &F055.

F055 JMP (&FDFE) ;Jim paged entry vector

So we jump to some piece of hardware on the 1MHz bus. This would
probably be a ROM which would take over the system at power on and
Break. This has some very interesting applications. It was designed by
Acorn to provide a crude Econet facility to allow a batch of machines
to be functionally tested without the need to install a full Econet
kit.

Next week we shall examine the VIA bus.

BBC 6502 Machine Code
Part Six: The VI bus

The next interesting routine we find in the BBC operating system is
the one that sets up the system VIA interrupts. It is located at
&DA80. Refer to the manual for the meanings of Sheila addresses.

DA80 LDX #&F2 ;Enable interrupts 1,4,5,6 of system VIA
DA82 STX &FE4E ;
 ;0 Keyboard enabled as needed
 ;1 Frame sync pulse
 ;4 End of A/D conversion
 ;5 T2 counter (for speech)
 ;6 T1 counter (10 mSec intervals)

DA85 LDX #&04 ;set system VIA PCR
DA87 STX &FE4C ;
 ;CA1 Interrupt on negative edge (Frame sync)
 ;CA2 Handshake output for keyboard
 ;CB1 Interrupt on negative edge (end of conversion)

 ;CB2 Negative edge (Light pen strobe)
DA8A LDA #&60 ;Set system VIA ACR
DA8C STA &FE4B ;
 ;Disable latching
 ;Disable shift register
 ;T1 counter continuous interrupts
 ;T2 counter timed interrupt

DA8F LDA #&0E ;Set system VIA T1 counter (low)
DA91 STA &FE46 ;
 ;This becomes effective when T1 hi set
DA94 STA &FE6C ;Set user VIA PCR
 ;CA1 interrupt on -ve edge (Printer Acknowledge)
DA80 LDX #&F2 ;enable interrupts
 ;CA2 High output (printer strobe)
 ;CB1 Interrupt on -ve edge (user port)
 ;CB2 Negative edge (user port)
DA97 STA &FEC0 ;Set up A/D converter Bits 0 and 1 determine
 ;channel selected
 ;If Bit 3=0 it is set for an 8-bit conversion.
 ;If bit 3=1 12-bit conversion.

Now although the machine now knows how much RAM it has it still
doesn't know if it's a Model A or Model B, so it does not know if a
user VIA is present at &FE60-FE6F.

The next routine tests for the presence of a user VIA. The system
timers are then set up to interrupt every 10mSec. Sound channels are
cleared and the serial ULA is set up. Then the function keys are
reset.

Now we need a catalogue of sideways ROMS. This is not a catalogue in
the conventional sense as the ROM title is always at the same place in
the ROM itself and can be read from there. It is a catalogue of the
ROM types and positions.

There is a ROM latch at &FE30. Writing a number between 0 and 15 to
this switches the corresponding ROM into the area between &8000 and
&BFFF. A short subroutine does this and maintains a copy of the
current ROM in zero page at location &F4.

 ;on entry X=required ROM number
DC16 STX &F4 ;RAM copy of ROM latch
DC18 STX &FE30 ;Write to ROM latch
DC1B RTS ;and return

You should use this subroutine if you want to switch ROMs. Now we can
look at the ROM cataloguing routines;

A ROM is considered to be valid if it contains a string identical to
astring at location &DF0C in the Operating System ROM.

DF0C DB ')C(' ;
DF0F DB 0 ;

The location of this string is pointed to by an offset byte located at
&8007.

;X=0 on entry
DABD JSR &DC16 ;Set up ROM latch and RAM copy to X
DAC0 LDX #&03 ;Set X to point to offset in table
DA80 LDX #&F2 ;Enable interrupts
DAC2 LDY &8007 ;Get copyright offset from ROM
DAC5 LDA &8000,Y ;Get first byte
DAC8 CMP &DF0C,X ;Compare it with table byte
DACB BNE &DAFB ;If not the same then goto DAFB

DACD INY ;Point to next byte
DACE DEX ;(s)
DACF BPL &DAC5 ;and if still +ve go back to check next byte.
 ;This point is reached if 4 bytes indicate
 ;valid ROM

Next the first 1K of each ROM is checked against higher priority ROMs
to ensure that there are no matches. If a match is found, the lower
priority ROM is ignored.

A ROM type byte is located at &8006. A catalogue of these bytes is
held at &2A1-&2B0. If bit 7 of this byte is 0 then the ROM is BASIC.
The position of this ROM is stored at &24B.

Now the ROMs are catalogued it is time to set up the speech system and
screen. More about that next week.

BBC 6502 Machine Code
Part Seven: Talk to me

The operating system start-up routines next checks the SPEECH system.
At this point the X register is set to 16 (&10) by previous routines.

This is one of the reasons why this routine is inserted here. Setting
X to the required value would use two more bytes. This is not much
space but it can make the difference between all of the OS fitting
into a single ROM and a complete hardware or software redesign.

DB11 BIT &FE40 ;If bit 7 low then we have speech system fitted
DB14 BMI &DB27 ;else goto DB27 for screen set up routine.
DB16 DEC &027B ;(027B)=&FF a RAM flag that indicates that a speech
 ;chip is present.
DB19 LDY #&FF ;Y=&FF
DB1B JSR &EE7F ;Initialise speech generator
DB1E DEX ;via this
DB1F BNE &DB19 ;loop

Now X = 0 so:

DB21 STX &FE48 ;Set T2 timer for speech
DB24 STX &FE49 ;

Screen set-up

X=0 on entry to this routine which gets the default screen mode and
then goes off to the screen setup routine.

DB27 LDA &028F ;Get back start up options (mode)
DB2A JSR &C300 ;then jump to initialise screen.

One of the things that I wondered when I got a BBC was how the RESET
key could possibly act as a soft key. As we all know BREAK acts as
soft key 10. But the keyboard buffer is cleared by the Reset. Tucked
away is the five-byte routine that makes the BREAK key act as soft
key 10.

Soft keys work by inserting a byte greater than 127 into the keyboard
buffer. &CA is the code for key 10.

DB2D LDY #&CA ;Y=&CA
DB2F JSR &E4F1 ;to enter this value in the keyboard buffer

Simple isn't it? You can use the routine yourself although further
investigation will show that E4F1 is part of an OSbyte call. Remember
that the keyboard buffer is buffer 0.

E4F1 LDX #&00 ;X=0 keyboard buffer

* *
* OSBYTE 153 Put byte in input *
* Buffer checking for ESCAPE *
* *

On entry X = buffer number which is either 0 or 1. If it's 0 then the
keyboard buffer is selected. If it's 1 then it is the RS423 buffer.

Notice that the JSR to EF41 ensures that ONLY the keyboard buffer can
be selected. Once again we are looking at coding economy, in this case
with a specific keyboard buffer entry routine. Y contains the
character to be written.

E4F3 TXA ;A=buffer number
E4F4 AND &0245 ;and with RS423 mode (0 treat as keyboard 1 ignore
 ;Escapes no events no soft keys)
E4F7 BNE &E4AF ;so if RS423 buffer AND RS423 in normal mode (1)
E4AF ;
E4F9 TYA ;else Y=A character to write
E4FA EOR &026C ;compare with current escape ASCII code (0=match)
E4FD ORA &0275 ;or with current ESCAPE status (0=ESC, 1=ASCII)
E500 BNE &E4A8 ;if ASCII or no match E4A8 to enter byte in buffer
E502 LDA &0258 ;else get ESCAPE / BREAK action byte
E505 ROR ;Rotate to get ESCAPE bit into carry
E506 TYA ;get character back in A
E507 BCS &E513 ;and if escape disabled exit with carry clear
E509 LDY #&06 ;else signal EVENT 6 Escape pressed
E50B JSR &E494 ;
E50E BCC &E513 ;if event handles ESCAPE then exit with carry clear
E510 JSR &E674 ;else set ESCAPE flag
E513 CLC ;clear carry
E514 RTS ;and exit

This routine will normally be accessed by assembly language
programmers by OSbyte 138 which calls EF43.

BBC 6502 Machine Code
Part Eight: Breaker Break

One of the 'secret' features of the BBC Micro OS 1.20 when it was
arrived was the BREAK intercept. This is a useful method of taking
over the machine and is sometimes used by ROM software.

There are two entry points, entered with the carry flag reset to 0 and
set to 1 respectively. The first call comes before sideways ROM calls.

Enter BREAK intercept with Carry Clear

DB32 JSR &EAD9 ;check to see if BOOT address is set up if so
 ;JMP to it

The address &287 is written by OSbyte 247 and the jump addresses in
&288 and &289 by OSbytes 248 and 249. The machine code for JMP is &4C.

EAD9 LDA &0287 ;get BREAK vector code
EADC EOR #&4C ;produces 0 if JP (4C) not in &287
EADE BNE &EAF3 ;if not goto EAF3
EAE0 JMP &0287 ;else jump to use
BREAK code
EAF3 RTS ;Return

The RTS at the end of another routine is used because it saves code.

Frequently you will find machine code routines where a lot of branches
go to a single RTS for just this reason. If you are writing your own
code remember that the RTS must be within range of the branch. One of
the most common assembler errors is a branch out of range that in turn
causes more errors when you add an extra RTS.

Obviously at this point the machine could be totally in your control.
You can return control to the OS with an RTS or just continue on your
merry way.

Remember that the sideways ROMs don't have any workspace yet and you
can't really run BASIC or any other language as the workspace will not
exist. But, assuming that you don't want to do any of this, let's go
back to the OS routines after testing for BREAK intercept.

DB35 JSR &F140 ;set up cassette options
DB38 LDA #&81 ;test for tube to FIFO buffer 1
DB3A STA &FEE0 ;
DB3D LDA &FEE0 ;
DB40 ROR ;put bit 0 into carry
DB41 BCC &DB4D ;if no tube then DB4D
DB43 LDX #&FF ;else
DB45 JSR &F168 ;issue ROM service call &FF to initialise TUBE system
DB48 BNE &DB4D ;if not 0 on exit (tube not initialised) DB4D
DB4A DEC &027A ;else set tube flag to show its active

Now the Tube is flagged as active, or not as the case may be. We
continue next week, with the setup routines for the sideways ROMs.

BBC 6502 Machine Code
Part Nine: A ROM with a view

Now we nearly have a working system, we are, perhaps, 400 milliseconds
into the Power up routine. Now is the time to set up all of those nice
sideways ROMs we catalogued earlier.

First we set up workspace and hence the value of BASIC's PAGE
variable. The call to ROMs is made via F168. This is available to the
programmer as OSBYTE 143.

A ROM can have a number between 0 and 15 and will have two entry
points - a Service entry at &8003 and a Language entry at &8000. If
the ROM does not contain language code it will not have a language
entry.

ROMs are paged into main memory by writing the ROM number to a latch
at &FE30. Hardware could be arranged to allow 256 ROMs although the
operating system does not support this.

The Break Intercept code could be used to make drastic hardware
modifications like this.

* *
* OSBYTE 143 *
* Pass service commands *
* to sideways ROMs *
* *

 ;on entry X=command number
F168 LDA &F4 ;get current ROM number
F16A PHA ;store it
F16B TXA ;command in A
F16C LDX #&0F ;set X=15

The next bit of code is a countdown loop to send the command code to
each enabled ROM in turn. The Map at &2A1 is used to decide which ROMs
are active. Note the use of a countdown loop. This gives code economy
and explains why the highest ROM number has priority.

F16E INC &02A1,X ;read bit 7 on ROM map (no ROM has type 254 &FE)
F171 DEC &02A1,X ;
F174 BPL &F183 ;if not set (+ve result)
F176 STX &F4 ;else store ROM number in &F4
F178 STX &FE30 ;switch in paged ROM
F17B JSR &8003 ;and jump to service entry
F17E TAX ;on exit put A in X
F17F BEQ &F186 ;if 0 (command recognised by ROM) reset ROMs & exit
F181 LDX &F4 ;else point to next lower ROM
F183 DEX ;
F184 BPL &F16E ;and go round loop again
F186 PLA ;get back original ROM number
F187 STA &F4 ;store it in RAM copy
F189 STA &FE30 ;select original page
F18C TXA ;put X back in A
F18D RTS ;and return

Couldn't be easier! So we can now return to the main body of the
routine.

DB4D LDY #&0E ;set current value of PAGE
DB4F LDX #&01 ;issue call to claim absolute workspace
DB51 JSR &F168 ;via F168
DB54 LDX #&02 ;send private workspace claim call
DB56 JSR &F168 ;via F168

OSHWM is OS High Water Mark. The highest address used by the operating
system.

DB59 STY &0243 ;set primary OSHWM DB5C
STY &0244 ;set current OSHWM
DB5F LDX #&FE ;issue call for Tube to explode character set etc.
DB61 LDY &027A ;Y=FF if tube present else Y=0
DB64 JSR &F168 ;and make call via F168

We now have the machine set up to enter a language, all the filing
systems have been set up and the sideways ROMs activated.

Next week we finally start the screen messages.

BBC 6502 Machine Code
Part Ten: Stringing it along

The next routine shows why the Machine start up message is not always
seen on third-party kit.

DB67 AND &0267 ;if A=&FE and bit 7 of 0267 is set then continue
DB6A BPL &DB87 ;else ignore start up message
DB6C LDY #&02 ;output to screen
DB6E JSR &DEA9 ;'BBC Computer ' message

Looking at the routine in DE9A we find a very useful string printing
routine. Remember that Y = 2 on entry.

DEA9 LDA #&C3 ;point to start &C300
DEAB STA &FE ;store it
DEAD LDA #&00 ;point to lo byte
DEAF STA &FD ;store it and start loop with Y=2
DEB1 INY ;print character in string
DEB2 LDA (&FD),Y ;pointed to by &FD/E +Y
DEB4 JSR OSASCI ;print it expanding Carriage returns

DEB7 TAX ;store A in X
DEB8 BNE &DEB1 ;and loop again if not =0
DEBA RTS ;else exit

Here is the string delimited by BRK. The code for BRK is 00. Y is 3
when the first character is read so its address is &C303.

C303 DB 13 ;Carriage Return
C304 DB 'BBC Computer '
C311 BRK

Notice that the routine uses TAX to set the zero flag which marks the
end of the string. This is a useful tip.

The next part of the Operating system deals with printing correct
messages on the screen.

DB71 LDA &028D ;0=warm reset, If a cold reset continue
DB74 BEQ &DB82 ;
DB76 LDY #&16 ;by checking length of RAM
DB78 BIT &028E ;
DB7B BMI &DB7F ;and either
DB7D LDY #&11 ;
DB7F JSR &DEA9 ;finishing message with '16K' or '32K'
DB82 LDY #&1B ;and two new lines
DB84 JSR &DEA9 ;

Notice that Y is used to pick the appropriate message.

C312 DB '16K'
C315 DB 7 ;Bell
C316 BRK
C317 DB '32K'
C31A DB 7 ;Bell
C31B BRK
C31C DB 08,0D,0D

Notice the BBC Beep at this point indicates that nearly all set up
procedures have been finished.

The hum is generated by the Sound channel which is reset as part of
the start routine. Hence the HUM-BEEP start up. If the machine does
not start properly the sound signals give a strong clue to the nature
of the problem. Having got this far the OS gives us another chance to
take control.

Enter BREAK INTERCEPT ROUTINE WITH CARRY SET (call 1)

DB87 SEC ;
DB88 JSR &EAD9 ;look for break intercept jump
 ;SEE EARLIER PART

Next we set up the keyboard lights

DB8B JSR &E9D9 ;set up LEDs in accordance with keyboard status

This is another 'undocumented' OSBYTE call.

* *
* OSBYTE &76 (118) *
* SET LEDs to Keyboard Status *
* *

;osbyte entry with carry set
E9D9 PHP ;PUSH P

E9DA SEI ;DISABLE INTERRUPTS
E9DB LDA #&40 ;switch on CAPS and SHIFT lock lights
E9DD JSR &E9EA ;via subroutine
E9E0 BMI &E9E7 ;if ESCAPE exists (M set) E9E7
E9E2 CLC ;else clear V and C
E9E3 CLV ;before calling main keyboard routine to
E9E4 JSR &F068 ;switch on lights as required
E9E7 PLP ;get back flags
E9E8 ROL ;and rotate carry into bit 0
E9E9 RTS ;Return to calling routine
 ;
* Turn on keyboard lights and
* Test Escape flag
 ;
E9EA BCC &E9F5 ;if carry clear
E9EC LDY #&07 ;switch on shift lock light
E9EE STY &FE40 ;
E9F1 DEY ;Y=6
E9F2 STY &FE40 ;switch on Caps lock light
E9F5 BIT &FF ;set minus flag if bit 7 of &00FF is set indicating
E9F7 RTS ;that ESCAPE condition exists, then return

The Keyboard routine continues via the KEYV. This is a little long to
include here so we'll leave it until a later part. So back to the
Start up routine next week with the cassette system.

BBC 6502 Machine Code
Part Eleven: Language!

Having got the keyboard nicely set up the machine proceeds to
initialise a filing system and run a !BOOT file if one exists. The
start up options are already read from the keyboard links.

DB8E PHP ;save flags
DB8F PLA ;and get back in A
DB90 LSR ;zero bits 4-7 and bits 0-2 bit 4 which was bit 7
DB91 LSR ;may be set
DB92 LSR ;
DB93 LSR ;
DB94 EOR &028F ;EOR with start up options which may or may not
DB97 AND #&08 ;invert bit 4
DB99 TAY ;Y=A
DB9A LDX #&03 ;make initialisation call if Y=0 on entry
DB9C JSR &F168 ;RUN, EXEC or LOAD !BOOT file from a filing system.
DB9F BEQ &DBBE ;if a ROM accepts this call then
DBBE
DBA1 TYA ;else put Y in A
DBA2 BNE &DBB8 ;if Y<>0 DBB8
DBA4 LDA #&8D ;else set up standard cassette baud rates
DBA6 JSR &F135 ;via &F135 which is OSBYTE 140.
DBA9 LDX #&D2 ;
DBAB LDY #&EA ;
DBAD DEC &0267 ;decrement ignore start up message flag
DBB0 JSR OSCLI ;and execute /!BOOT
DBB3 INC &0267 ;restore start up message flag
DBB6 BNE &DBBE ;if not zero then DBBE
DBB8 LDA #&00 ;else A=0
DBBA TAX ;X=0
DBBB JSR &F137 ;set tape speed via OSBYTE 140.

We now have an active filing system. The next job is to preserve the
current language on soft RESET.

DBBE LDA &028D ;get last RESET Type
DBC1 BNE &DBC8 ;if not soft reset
DBC8

DBC3 LDX &028C ;else get current language ROM address
DBC6 BPL &DBE6 ;if +ve (language available) then skip search
 ;routine
For a cold break we search for the language with the highest priority.

DBC8 LDX #&0F ;set pointer to highest available ROM
DBCA LDA &02A1,X ;get ROM type from map
DBCD ROL ;put hi-bit into carry, bit 6 into bit 7
DBCE BMI &DBE6 ;if bit 7 set then ROM has a language entry so DBE6
DBD0 DEX ;else search for language until X=&ff

Check for Tube if no language found.

DBD1 BPL &DBCA ;check if tube present
DBD3 LDA #&00 ;if bit 7 of tube flag is set BMI succeeds
DBD5 BIT &027A ;and TUBE is connected else
DBD8 BMI &DC08 ;make error

No language error

DBDA BRK ;
DBDB DB &F9 ;error number
DBDC DB 'Language?' ;message
DBE5 BRK ;

This might seem odd as BRK is handled by the current language BRK
handler,but we don't have a language! We need to investigate further
in another part.

DBE6 CLC ;

OSBYTE 142 enter Language ROM at &8000 X=ROM number. Carry is set if
this is an OSBYTE call and clear if this is an initialisation routine.

DBE7 PHP ;save flags
DBE8 STX &028C ;put X in current ROM page
DBEB JSR &DC16 ;select that ROM
DBEE LDA #&80 ;A=128
DBF0 LDY #&08 ;Y=8
DBF2 JSR &DEAB ;display text string held in ROM at &8008,Y
DBF5 STY &FD ;save Y on exit (end of language string)
DBF7 JSR OSNEWL ;two line feeds
DBFA JSR OSNEWL ;are output
DBFD PLP ;then get back flags
DBFE LDA #&01 ;A=1 required for language entry
DC00 BIT &027A ;check if tube exists
DC03 BMI &DC08 ;and goto DC08 if it does
DC05 JMP &8000 ;else enter language at &8000

TUBE FOUND enter tube software

DC08 JMP &0400 ;enter tube environment

The Tube initialisation would have read the language across to the
TUBE usually but it could be loaded by a !BOOT file from the filing
system initialisation.

The operating system now stops general control of the system and hands
this to the language which looks after command lines etc. The OS
however still handles the screen, keyboard and much else.

Notice how every possible eventuality was taken into account during
the initialisation routine. This is one of the things that made the
Beeb a very powerful machine.

Next week we'll have a look at the Interrupt code.

BBC 6502 Machine Code
Part Twelve: Pardon me!

We finished the last part at the point where the operating systems
power up routine handed over control to the language. We'll write our
own language later in the series but for now let's dive into another
entry point.

When the processor's RQ pin (4) goeslow (0V) the processor finishes
off the current instruction and then goes off to run some microcode of
its own. This checks that the RDY (2) pin is high and that the
interrupt flag in the status register is 0 (not set). If it is set the
interrupt is ignored and the processor goes to the next instruction.
This continues when the IRQ pin is low.

If the flag is clear then the processor stores the program counter and
status register on the stack and sets the interrupt flag. The 6502
then gets the address stored in &FFFE and &FFFF and executes this
instruction next.

If a BRK instruction is found in executing code then the processor
performs exactly the same actions except that it does not check the
status register for the interrupt flag, it does set a flag in the
status register, the BRK flag.

The main entry point for IRQ (and BRK) for OS 1.20 is &DC51.

MAIN IRQ Entry point

;ON ENTRY STACK contains STATUS REGISTER,PCH,PCL
DC1C STA &FC ;save A
DC1E PLA ;get back status (flags)
DC1F PHA ;and save again
DC20 AND #&10 ;check if BRK flag set
DC22 BNE &DC27 ;if so goto DC27
DC24 JMP (&0204) ;else JUMP through IRQ1V

That's pretty straightforward so far. As you can see IRQ1V allows you
to put your own hardware at a higher priority than anything else in
the machine.

You can also write your own hardware interrupt handler if you wish.
This is the flexibility that made the BBC machine so remarkably
successful among knowledgeable users.

Let's look at the BRK handler now.

* BRK handling routine *
DC27 TXA ;save X on stack
DC28 PHA ;
DC29 TSX ;get status pointer
DC2A LDA &0103,X ;get Program Counter low byte
DC2D CLD ;
DC2E SEC ;set carry
DC2F SBC #&01 ;subtract 2 (1+carry)
DC31 STA &FD ;and store it in &FD
DC33 LDA &0104,X ;get hi byte
DC36 SBC #&00 ;subtract 1 if necessary
DC38 STA &FE ;and store in &FE
DC3A LDA &F4 ;get currently active ROM
DC3C STA &024A ;and store it in &24A
DC3F STX &F0 ;store stack pointer in &F0
DC41 LDX #&06 ;and issue ROM service call 6
DC43 JSR &F168 ;(User BRK) to ROMs
 ;now &FD/E points to byte after BRK

 ;ROMS may use BRK for their own purposes
 ;and many do!

It's interesting to see what happens with the ROM handler. This is
also an entry point for OSBYTE 143 so you can use this in your own
code.

* OSBYTE 143 *
*Pass service commands to sideways ROMs *
 ;on entry X=command number
F168 LDA &F4 ;get current ROM number
F16A PHA ;store it
F16B TXA ;command in A
F16C LDX #&0F ;set X=15
 ;send commands loop
F16E INC &02A1,X ;read bit 7 on ROM map (no ROM has ;type 2)
4 &FE)
F171 DEC &02A1,X ;
F174 BPL &F183 ;if not set (+ve result)
F176 STX &F4 ;else store ROM number in &F4
F178 STX &FE30 ;switch in paged ROM
F17B JSR &8003 ;and jump to service entry
F17E TAX ;on exit put A in X
F17F BEQ &F186 ;if 0 (command recognised by ROM)
 ;reset ROMs & exit
F181 LDX &F4 ;else point to next lower ROM
F183 DEX ;
F184 BPL &F16E ;and go round loop again
F186 PLA ;get back original ROM number
F187 STA &F4 ;store it in RAM copy
F189 STA &FE30 ;select original page
F18C TXA ;put X back in A
F18D RTS ;and return

Useful little routine that. So back to the BRK handler.

DC46 LDX &028C ;get current language
DC49 JSR &DC16 ;and activate it
DC4C PLA ;get back original value of X
DC4D TAX ;
DC4E LDA &FC ;get back original value of A
DC50 CLI ;allow interrupts
DC51 JMP (&0202) ;and JUMP via BRKV (normally into current language)

Next week we'll carry on by taking a look at the BRK handler.

BBC 6502 Machine Code
Part Thirteen: Give us a BRK

BRK is usually handled by the default language (or by a Sideways ROM).
However, it may be that you are running a machine code program before
a current language is set up or perhaps your language doesn't handle
BRK (it should but you never know).

That's when a default BRK handler takes over.

* DEFAULT BRK HANDLER *

DC54 LDY #&00 ;Y=0 to point to byte after BRK
DC56 JSR &DEB1 ;print message

Let's have a look at the print routine. Remember that the error-
handling layout is:

BRK
Error Number (1 byte)

Message
BRK

Y plus the address in &FD &FE points to the error message on entry.

DEB1 INY ;point to first ;character in string
DEB2 LDA (&FD),Y
DEB4 JSR OSASCI ;print it
 ;expanding
 ;Carriage
 ;returns
DEB7 TAX ;store A in X to change flags
DEB8 BNE &DEB1 ;and loop again if not =0
DEBA RTS ;else exit

A standard print routine, nothing out of the ordinary but nice and
compact.

You can use this in your own print routines by changing the zero page
values. Back to the default BRK handler and an interesting bit of
code.

DC59 LDA &0267 ;if BIT 0 set and DISK EXEC error
DC5C ROR ;occurs
DC5D BCS &DC5D ;hang up machine!

Nasty! But the machine has to be in a pretty unusual configuration for
this to happen. Mind you, setting 0267 then doing a JSR to DC59 would
confuse the average user.

DC5F JSR OSNEWL ;else print two newlines
DC62 JSR OSNEWL ;
DC65 JMP &DBB8 ;and set tape speed before entering the current
 ;language
DBB8 LDA #&00 ;else A=0
DBBA TAX ;X=0
DBBB JSR &F137 ;set tape speed via OSBYTE 141.

There's the end of the BRK handling code. As I said before this is
generally handled by the default language but you can arrange for your
own code or a Sideways ROM to handle it.

Next week we'll return to the interrupt system with a look at the
default entry point for IRQ1.

BBC 6502 Machine Code
Part Fourteen: The story so far...

We left the interrupt-handling routine just after it had gone off to
the IRQ1V vector. If you don't change the vector the code continues
from DC93.

One very important thing to remember about an interrupt-driven machine
like the BBC is that the interrupt flag is not set for too long. If it
is the machine could crash. This means that interrupt routines are
short and snappy.

* Main IRQ Handling routines, default IRQIV destination *

DC93 CLD ;clear decimal flag
DC94 LDA &FC ;get original value of A
DC96 PHA ;save it
DC97 TXA ;save X
DC98 PHA ;
DC99 TYA ;and Y
DC9A PHA ;on the stack

 ;note the pre-CMOS code!
DC9B LDA #&DE ;A=&DE
DC9D PHA ;store it
DC9E LDA #&81 ;save &81
DCA0 PHA ;store it (a RTS will now jump to DE82)

This is quite a useful technique as we will see later. If we now use
JMP to go to an OS routine we can ensure that the routine, which ends
with an RTS, causes execution to go to a specified point.

This saves a lot of code as it can be arranged that the first device
found that called the interrupt will be the only one handled. This, in
turn, saves time!

We now poll the hardware looking for who caused it. The first routine
deals with the serial/tape system.

DCA1 CLV ;clear V flag
DCA2 LDA &FE08 ;get value of status register of ACIA
DCA5 BVS &DCA9 ;if this was source then DCA9 to process
DCA7 BPL &DD06 ;else if no interrupt requested DD06
DCA9 LDX &EA ;read RS423 timeout counter
DCAB DEX ;decrement it
DCAC BMI &DCDE ;and if <0 DCDE
DCAE BVS &DCDD ;else if >&40 DCDD (RTS to DE82)
DCB0 JMP &F588 ;else read ACIA via F588
 ;RTS ends routine!!
DCB3 LDY &FE09 ;read ACIA data
DCB6 ROL ;
DCB7 ASL ;
DCB8 TAX ;X=A
DCB9 TYA ;A=Y
DCBA LDY #&07 ;Y=07
DCBC JMP &E494 ;check and service EVENT 7 RS423 error
DCBF LDX #&02 ;read RS423 output buffer
DCC1 JSR &E460 ;
DCC4 BCC &DCD6 ;if C=0 buffer is not empty goto DCD6
DCC6 LDA &0285 ;else read printer destination
DCC9 CMP #&02 ;is it serial printer??
DCCB BNE &DC68 ;if not DC68
DCCD INX ;else X=3
DCCE JSR &E460 ;read printer buffer
DCD1 ROR &02D2 ;rotate to pass carry into bit 7
DCD4 BMI &DC68 ;if set then DC68
DCD6 STA &FE09 ;pass either printer or RS423 data to ACIA
DCD9 LDA #&E7 ;set timeout counter to stored value
DCDB STA &EA ;
DCDD RTS ;and exit (to DE82)

 ;A contains ACIA status
DCDE AND &0278 ;AND with ACIA bit mask (normally FF)
DCE1 LSR ;rotate right to put bit 0 in carry
DCE2 BCC &DCEB ;if carry clear receive register not full so DCEB
DCE4 BVS &DCEB ;if V is set then DCEB
DCE6 LDY &0250 ;else Y=ACIA control setting
DCE9 BMI &DC7D ;if bit 7 set receive interrupt is enabled so DC7D

DCEB LSR ;put BIT 2 of ACIA status into
DCEC ROR ;carry if set then Data Carrier Detected applies
DCED BCS &DCB3 ;jump to DCB3

DCEF BMI &DCBF ;if original bit 1 is set TDR is empty so DCBF
DCF1 BVS &DCDD ;if V is set then exit to DE82

DCF3 LDX #&05 ;X=5
DCF5 JSR &F168 ;issue ROM call 5 'unrecognised ;interrupt'

We've seen this ROM service routine call before.

DCF8 BEQ &DCDD ;if a ROM recognises it then exit to DE82
DCFA PLA ;otherwise get back DE82 address from stack
DCFB PLA ;
DCFC PLA ;and get back X, Y and A
DCFD TAY ;
DCFE PLA ;
DCFF TAX ;
DD00 PLA ;
DD01 STA &FC ;&FC=A
DD03 JMP (&0206) ;and offer to the user via IRQ2V

That was a little convoluted, to say the least. Next week we look at how the
VIAs are dealt with.

BBC 6502 Machine Code
Part Fifteen: Hardware VIA interrupts

After deciding that it wasn't the ACIA that caused the interrupt, the
VIAs are the next port of inquisition.

* VIA INTERRUPTS ROUTINES *

DD06 LDA &FE4D ;read system VIA interrupt flag register
DD09 BPL &DD47 ;if bit 7=0 the VIA has not caused interrupt goto DD47

DD0B AND &0279 ;mask with VIA bit mask
DD0E AND &FE4E ;and interrupt enable register
DD11 ROR ;rotate right twice to ;check for IRQ 1 (frame sync)

DD12 ROR ;
DD13 BCC &DD69 ;if carry clear then no IRQ 1, else IRQ 1 means
 ;interrupt request 1. This is different from the
 ;vector IRQ1.

DD15 DEC &0240 ;decrement vertical sync counter
DD18 LDA &EA ;A=RS423 Timeout counter
DD1A BPL &DD1E ;if +ve then DD1E
DD1C INC &EA ;else increment it
DD1E LDA &0251 ;load flash character counter
DD21 BEQ &DD3D ;if 0 then flash system is not in use, ignore it
DD23 DEC &0251 ;else decrement counter
DD26 BNE &DD3D ;and if not 0 go on past reset routine

This routine resets the flashing character system.

DD28 LDX &0252 ;get mark period count in X
DD2B LDA &0248 ;current VIDEO ULA control setting in A
DD2E LSR ;shift bit 0 into C to ;check if first colour
DD2F BCC &DD34 ;is effective if so C=0. Jump to DD34
DD31 LDX &0253 ;else get space period count in X
DD34 ROL ;restore bit
DD35 EOR #&01 ;and invert it
DD37 JSR &EA00 ;then change colour

DD3A STX &0251 ;&0251=X resetting the counter

DD3D LDY #&04 ;Y=4 and call E494 to check and implement vertical
DD3F JSR &E494 ;sync event (4) if necessary
DD42 LDA #&02 ;A=2
DD44 JMP &DE6E ;clear interrupt 1 and exit

Remember the RTS routine last time?

* PRINTER INTERRUPT USER VIA 1 *

DD47 LDA &FE6D ;Check USER VIA interrupt flags register
DD4A BPL &DCF3 ;if +ve USER VIA did not call interrupt
DD4C AND &0277 ;else check for USER IRQ 1 printer interrupt.
DD4F AND &FE6E ;
DD52 ROR ;
DD53 ROR ;
DD54 BCC &DCF3 ;if bit 1=0 then no ;interrupt 1 so DCF3
DD56 LDY &0285 ;else get printer type
DD59 DEY ;decrement
DD5A BNE &DCF3 ;if not parallel then :CF3
DD5C LDA #&02 ;reset interrupt 1 flag
DD5E STA &FE6D ;
DD61 STA &FE6E ;disable interrupt 1
DD64 LDX #&03 ;and output data to parallel printer
DD66 JMP &E13A ;and exit via RTS

* SYSTEM INTERRUPT 5 Speech *

DD69 ROL ;get bit 5 into bit 7
DD6A ROL ;
DD6B ROL ;
DD6C ROL ;
DD6D BPL &DDCA ;if not set this is not ;a speech interrupt so DDCA
DD6F LDA #&20 ;
DD71 LDX #&00 ;
DD73 STA &FE4D ;
DD76 STX &FE49 ;and zero high byte of Timer t2
DD79 LDX #&08 ;&FB=8
DD7B STX &FB ;
DD7D JSR &E45B ;and examine buffer 8
DD80 ROR &02D7 ;shift carry into bit 7
DD83 BMI &DDC9 ;and if set buffer is empty so exit
DD85 TAY ;else Y=A
DD86 BEQ &DD8D ;
DD88 JSR &EE6D ;control speech chip
DD8B BMI &DDC9 ;if negative exit
DD8D JSR &E460 ;else get a byte from buffer
DD90 STA &F5 ;store it to indicate speech or file ROM
DD92 JSR &E460 ;get another byte
DD95 STA &F7 ;store it
DD97 JSR &E460 ;and another
DD9A STA &F6 ;giving address to be accessed in paged ROM
DD9C LDY &F5 ;Y=&F5
DD9E BEQ &DDBB ;and if =0 then DDBB
DDA0 BPL &DDB8 ;else if +ve DDB8
DDA2 BIT &F5 ;if bit 6 of F5 =1 (&F5)>&40
DDA4 BVS &DDAB ;then DDAB
DDA6 JSR &EEBB ;else continue for more speech processing
DDA9 BVC &DDB2 ;if bit 6 clear then DDB2
DDAB ASL &F6 ;else double address in &F6/7
DDAD ROL &F7 ;
DDAF JSR &EE3B ;and call EE3B
DDB2 LDY &0261 ;get speech enable/disable flag into Y
DDB5 JMP &EE7F ;and JMP to EE7F

DDB8 JSR &EE7F ;Call EE7F
DDBB LDY &F6 ;get address pointer in Y
DDBD JSR &EE7F ;
DDC0 LDY &F7 ;get address pointer high in Y
DDC2 JSR &EE7F ;
DDC5 LSR &FB ;
DDC7 BNE &DD7D ;
DDC9 RTS ;and exit

Next week we continue with a look at the remaining System Interrupts.

BBC 6502 Machine Code
Part Sixteen: Timers and Keyboard Interrupts
--
The last part showed how the BBC Micro handles some of the system
interrupt calls. Most of these are pretty routine so we won't continue
with an interminable list.

The next interesting routines concern how the timers and keyboard
interrupts are handled.

* SYSTEM INTERRUPT 6 10mS Clock *

DDCA BCC &DE47 ;bit 6 is in carry so if clear there is no 6 so go
 ;on to DE47
DDCC LDA #&40 ;Clear interrupt 6
DDCE STA &FE4D ;

This is the start of the update timers routine, This is interesting
because of the way that the timer information is stored. It's very
clever. There are two timer stores, &292-6 and &297-B. These are
updated by adding 1 to the current timer and storing the result in the
other, the direction of transfer being changed each time of update.

This ensures that at least one timer is valid at any call as the
current timer only is read. Other methods would cause inaccuracies if
a timer was read while being updated.

DDD1 LDA &0283 ;get current system clock store pointer (5,or 10)
DDD4 TAX ;put A in X
DDD5 EOR #&0F ;and invert lo nybble (5becomes 10 and vv)
DDD7 PHA ;store A
DDD8 TAY ;put A in Y. Carry is always set at this point
DDD9 LDA &0291,X ;get timer value
DDDC ADC #&00 ;update it
DDDE STA &0291,Y ;store result in alternate
DDE1 DEX ;decrement X
DDE2 BEQ &DDE7 ;if 0 exit
DDE4 DEY ;else decrement Y
DDE5 BNE &DDD9 ;and go back and do next byte
DDE7 PLA ;get back A
DDE8 STA &0283 ;and store back in clock pointer (ie. inverse
 ;previous contents)
DDEB LDX #&05 ;set loop pointer for countdown timer
DDED INC &029B,X ;increment byte and
DDF0 BNE &DDFA ;if not 0 then DDFA
DDF2 DEX ;else decrement pointer
DDF3 BNE &DDED ;and if not 0 do it again
DDF5 LDY #&05 ;process EVENT 5 interrupt timer
DDF7 JSR &E494 ;
DDFA LDA &02B1 ;get byte of inkey countdown timer
DDFD BNE &DE07 ;if not 0 then DE07
DDFF LDA &02B2 ;else get next byte
DE02 BEQ &DE0A ;if 0 DE0A
DE04 DEC &02B2 ;decrement 2B2
DE07 DEC &02B1 ;and 2B1
DE0A BIT &02CE ;read bit 7 of envelope processing byte
DE0D BPL &DE1A ;if 0 then DE1A
DE0F INC &02CE ;else increment to 0
DE12 CLI ;allow interrupts
DE13 JSR &EB47 ;and do routine sound processes
DE16 SEI ;bar interrupts
DE17 DEC &02CE ;DEC envelope processing byte back to 0
DE1A BIT &02D7 ;read speech buffer busy flag
DE1D BMI &DE2B ;if set speech buffer is empty, skip routine

DE1F JSR &EE6D ;update speech system variables
DE22 EOR #&A0 ;
DE24 CMP #&60 ;
DE26 BCC &DE2B ;if result >=&60 DE2B
DE28 JSR &DD79 ;else more speech work
DE2B BIT &D9B7 ;set V and C
DE2E JSR &DCA2 ;check if ACIA needs attention
DE31 LDA &EC ;check if key has been pressed
DE33 ORA &ED ;
DE35 AND &0242 ;(this is 0 if keyboard is to be ignored, else
 ;&FF)
DE38 BEQ &DE3E ;if 0 ignore keyboard
DE3A SEC ;else set carry
DE3B JSR &F065 ;and call keyboard
DE3E JSR &E19B ;check for data in use defined printer channel
DE41 BIT &FEC0 ;if ADC bit 6 is set ADC is not busy
DE44 BVS &DE4A ;so DE4A
DE46 RTS ;else return

* SYSTEM INTERRUPT 4 ADC end of conversion *

DE47 ROL ;put original bit 4 from FE4D into bit 7 of A
DE48 BPL &DE72 ;if not set DE72
DE4A LDX &024C ;else get current ADC channel
DE4D BEQ &DE6C ;if 0 DE6C
DE4F LDA &FEC2 ;read low data byte
DE52 STA &02B5,X ;store it in &2B6,7,8 or 9
DE55 LDA &FEC1 ;get high data byte
DE58 STA &02B9,X ;and store it in hi byte
DE5B STX &02BE ;store in Analogue system flag marking last channel
DE5E LDY #&03 ;handle event 3 conversion complete
DE60 JSR &E494 ;
DE63 DEX ;decrement X
DE64 BNE &DE69 ;if X=0
DE66 LDX &024D ;get highest ADC channel present
DE69 JSR &DE8F ;and start new conversion
DE6C LDA #&10 ;reset interrupt 4
DE6E STA &FE4D ;
DE71 RTS ;and return

* SYSTEM INTERRUPT 0 Keyboard *

DE72 ROL ;get original bit 0 in bit 7 position
DE73 ROL ;
DE74 ROL ;
DE75 ROL ;
DE76 BPL &DE7F ;if bit 7 clear not a keyboard interrupt
DE78 JSR &F065 ;else scan keyboard
DE7B LDA #&01 ;A=1
DE7D BNE &DE6E ;and off to reset interrupt and exit
DE7F JMP &DCF3 ;and again a subroutine to exit.

Now we come to the point you've all been waiting for. This mystery
RTSreturns all subroutines to &DE82.

************** exit routine
DE82 PLA ;restore registers
DE83 TAY ;
DE84 PLA ;
DE85 TAX ;
DE86 PLA ;
DE87 STA &FC ;store A

* IRQ2V default entry *

DE89 LDA &FC ;get back original value of A

DE8B RTI ;and return to calling routine.

NEXT WEEK: OSBYTE entry.

BBC 6502 Machine Code
Part Seventeen: The BBC Operating System
--
We've been examining the BBC operating system in some detail over the
last few weeks. Unfortunately the demise of Micronet means that we
cannot finish completely, as we hoped. So we've put together the next
twenty weeks' articles in the form of a completely commented
disassembly of OS 1.20.

This is an excellent example of BBC programming and is full of tips.

Just to remind you of the main points of the software. Entry points
are pointed to by a jump table in the last six bytes of the ROM.

The font characters are located from &C000 to &C2FF.

OK, so here it is all commented and ready for you to peruse.

Ed says: I have uploaded the series of disassembly articles as ten
 short TSW files. Look on Micronet on 700100239 (before it's
 too late!)
ÿ
 *********** THE END **********

