
BBC BASIC (Z80) FOR THE BRITISH BROADCASTING CORPORATION MICROCOMPUTER PLUS 
Z80 SECOND PROCESSOR RUNNING CP/M* 

Part no 409003 
Issue no 2 
Date September 1984 



NOTE:  Within  this  publication  the  term 'BBC'  is  used  as  an 

abbreviation for 'British Broadcasting Corporation'. 

® Copyright Acorn Computers Limited 1984 

Neither the whole nor any part of the information contained in, or the 

product described in, this manual may be adapted or reproduced in any 

material  form  except  with  the  prior  written  approval  of  Acorn 

Computers Limited (Acorn Computers). 

The product described in this manual and products for use with it are 

subject to continuous development and improvement. All information of a 

technical  nature  and  particulars  of  the  product  and  its  use 

(including the information and particulars in this manual) are given by 

Acorn Computers in good faith. However, it is acknowledged that there may 

be errors or omissions in this manual. A list of details of any amendments  

or  revisions  to this manual can  be obtained upon request from  Acorn  

Computers  Technical  Enquiries.  Acorn  Computers welcome comments and 

suggestions relating to the product and this manual. 

All correspondence should be addressed to: 

Technical Enquiries Acorn Computers 

Limited Newmarket Road Cambridge CB5 8PD 

CP/M® is a registered trademark of Digital Research Inc 

First published 1984 Published by Acorn Computers Limited 



CONTENTS 

Introduction 1 

1  Running BBC BASIC 3 

2  Program flow control 5 
 Loop operations 5 
 Local variables 6 
 Stack pointer control 6 

3  Assembly language and operating system calls  7 
 The assembler 7 
 The USR function 7 
 The CALL statement 8 
 Operating system access 8 
 'Star' commands and the OSCLI statement  9 

4  The CP/M® filing system 11 
 Filenames 11 
 Filing system operations 11 
 CP/M 'operating system' commands  11 
 File size, EXT# and EOF# 12 
 Random access files 13 

5  Data file formats 15 

6  Other differences between the 6502 and Z80 versions  17 

7  Transfer of programs from the BBC Microcomputer DFS  19 



Introduction 

The Z80 version of BBC BASIC has been designed to be compatible with the 
6502 version supplied with the BBC Microcomputer. In general, therefore, 
the BBC Microcomputer user guide can be used as a reference manual for both 
versions. There are, however, a number of differences between the two 
versions that the user should be aware of. Some of these differences  
result from the characteristics of CP/M, some from the use of the Z80 
processor and some from the dual processor architecture 



1 Running BBC BASIC 
BBC BASIC (Z80) is supplied on a CP/M  format floppy disc, suitable only 
for use with the Z80 second processor. The name of the file is 
BBCBASIC.COM. To run BBC BASIC type 
 
BBCBASIC  
 
and press RETURN. The system will reply: 

Acorn BBC BASIC (Z80) Version 2.00 (0  Copyright 

R.T.Russell 1983  

> 

 
Alternatively, you may type BBCBASIC 

<filename> 

Where <filename> is the filename of a BASIC program. In this case the 

introductory message will not appear and the system will proceed as if a 

CHAIN "filename" command had been issued after initialisation. A default 

extension of .BBC is used if none is supplied. This can be useful in 

allowing BBC BASIC programs to be executed in batch mode using the CP/M 

SUBMIT facility. Such programs should terminate with a *CPM command to 

return to CP/M and allow the next program in the batch stream to execute. 



2 Program flow control 

BBC BASIC (Z80) uses a single control stack (the processor's hardware 

stack) for all looping and  nesting  operations,  whereas  the  6502 

version uses  separate  stacks  for  FOR...NEXT,  REPEAT...UNTIL  and 

GOSUB...RETURN operations. The main effects of this difference are as 

follows. 

Loop operations 

There is no limit (except memory size) to the level of nesting of 

FOR...NEXT, REPEAT...UNTIL and GOSUB...RETURN operations. The error 

messages 

Too many FORs Too many REPEATS Too 

many GOSUBs 

do not exist; instead the 

No room 

message (not trappable) will be issued if all stack space is used up. 

In some circumstances the Z80 version is less tolerant of jumping out of 

loops. For example, consider the following program: 

100 PROCtest(5) 
110 END 
120 DEF PROCtest(x) 
130 FOR i=l TO 10 
140 IF i=x THEN GOTO 160 : REM Jump out of loop 
150 NEXT i 
160 ENDPROC 
If this is run on the 280 version it will result in the error message No 

PROC at line 160 

because ENDPROC was encountered when NEXT was expected. On the 6502 version 

the program will run without error, but if PROCtest is called more than ten 

times the 

Too many FORs 

error will result.  This  situation should not be encountered in a properly  

structured  program,  but  if  it  is  there are  three main solutions: 

- Eliminate the necessity of jumping out of the loop by rewriting as a 

REPEAT...UNTIL loop, or otherwise. This is the preferred solution: 

120 DEF PROCtest(x) 
130 i=0 
140 REPEAT i=i+1 
150 UNTIL i=x OR i=10 
160 ENDPROC 

- Exit the loop prematurely by setting the loop variable to a value 

greater than the limit value (assuming a positive step) and jumping 



to the NEXT statement: 

120 DEF PROCtest 
130 FOR i=1 TO 10 
140 IF i=x THEN i=11 : GOTO 150 
150 NEXT 
160 ENDPROC 

Enclose  the  loop in  a dummy outer  loop and utilise  the  BASIC 

capability to 'pop' an inner FOR...NEXT loop, as follows: 

120 DEF PROCtest(x) 
125 FOR duimny=1 TO 1 
130 FOR i=1 TO 10 
140 IF i=x THEN GOTO 155 : REM Jump to an outer NEXT is OK 
150 NEXT i 
155 NEXT dummy 
160 ENDPROC 

Local variables 

Local variables are also stored on the processor's stack, so you cannot 

make an array LOCAL by using a FOR...NEXT loop. For example: 

200 DEF PROCtest 

210 FOR i=l TO 10 

220 LOCAL A(i) 

230 NEXT i 

will give the message: 

Not LOCAL at line 220 

if run on the Z80 version. In this instance it is necessary to fabricate 

the loop using IF...THEN: 

200 DEF PROCtest 
210 i=l 
220 LOCAL A(i) 
230 i=i+l 
240 IF i<= 10 THEN 220 

Stack pointer control 

HIMEM determines the initial value of the stack pointer, which can be 

changed only when the stack is empty. Therefore, HIMEM cannot be changed 

within a procedure, function, subroutine, FOR...NEXT loop or REPEAT. . . 

UNTIL loop . 



3 Assembly language and operating calls 

Because the language processor is a Z80  rather  than a 6502,  the 

assembler and machine code calls  (CALL and USR)  operate  somewhat 

differently. It is assumed in the following sections that you are 

reasonably familiar with the Z80 instruction set and the standard Zilog 

assembly language mnemonics. 

The assembler 

The Z80 assembler included as part of BBC BASIC (Z80) is accessed in the 

same way as the assembler in the 6502 version. It includes those facilities  

provided  on  Issue  2  of  the  6502  version.  The  main differences to 

note are as follows: 

- The  standard  Z80  mnemonics  are  accepted,  ie  those  in  the  Z80 

Assembly Language Programming Manual. 'ADD', 'ADC', and 'SBC' must be 

followed by 'A' or  'HL'  (eg ADD A,C is accepted but ADD C is not), but 

the brackets around the port number in 'IN' and 'OUT' are optional  (ie  

both  OUT  (5),A and OUT  5,A  are  accepted).  The instruction 'IN 

F,(C)' which is not explicitly mentioned in the Z80 programming manual, 

is NOT accepted but the equivalent object code is produced from the 

instruction 'IN <HL),(C)'. 

- There must always be at least one space between the op-code and the 

operand(s). 

- Comments are introduced by a semi-colon (;) or by a backslash (\). 

- Pseudo-op's provided are DEFB (define byte), DEFW (define word) and DEFM 

(define message). These behave in the same fashion as EQUB, EQUW,  and  

EQUS  on  the  6502  version.  Those used  to  other  Z80 assemblers 

should note that DEFB and DEFW must be followed by a single value only. 

OPT may be used to simulate a MACRO capability. There is no equivalent to 

EQUD. 

- Because the Z80 has no privileged zero page instructions the 'Byte' error 

does not exist; instructions needing an 8-bit operand simply take the 

least significant byte of the operand value. 'Out of range' is  issued  

if  the destination of a  relative  jump  (JR  or DJNZ) instruction is 

too distant, and also if an RST instruction has an illegal operand. 

- A few illegal instructions (eg ADD HL,IX) are accepted without an error 

messsage being issued. 

The USR function 

This function calls a machine code subroutine whose address is its argument 

and returns a 32-bit integer value. The processor's A, B, C, D, E, F, H and 

L registers are initialised to the least significant bytes of the integer 

variables A%, B%, C», D%, E%, F%, H%, and L% respectively, and the returned 

value is the 32-bit integer composed of the Z80 registers H, L, H', L', 

most significant to least significant. USR behaves differently if the 

argument is in the range &FF00 to &FFFF (see 'Operating System access' 

overleaf). 



The CALL statement 

CALL allows a machine code subroutine to be called, with optional passing 

of parameters. The CALL statement sets up a parameter block which contains 

details of the parameters (their types and addresses). Parameters are 

passed by reference and can therefore be altered by the machine code  

routine.  On entry to the subroutine the processor's registers are set up 

as described for USR above; also the Z80's IX register is set to the 

address of the parameter block and IY to the address of the subroutine 

(this can be useful if the machine code routine needs to find out where it 

is). The parameter block contains the following information:- 

number of parameters   - 1 byte  (IX) 
1st parameter type     - 1 byte  (IX+1) 
1st parameter address  - 2 bytes (IX+2, IX+3), LS first 
2nd parameter type     - 1 byte  )  repeated as often 
2nd parameter address  - 2 bytes )    as necessary. 

Note that parameter type and parameter address are exchanged compared with 

the 6502 BASIC. Parameter types are as follows:- 

0 - 8-bit byte (eg ?X) 
4 - 32-bit integer variable (eg !X or X%) 
5 - 40-bit floating point number (eg V) 

128 - A 'fixed string' (eg $X) 
129 - A string variable (eg A$) 

Except in the case of a string variable, the parameter address is the 

actual address at which the parameter is stored. Integer variables are 

stored  least  significant  byte  first  and  fixed  strings  as  the 

characters of the string followed by a carriage return (&0D). Floating 

point variables are stored least significant byte first,  the fifth byte 

being the binary exponent.  If the exponent is zero,  then the variable is 

either zero or has an integer value determined by the other four bytes. If 

the exponent is non-zero then the variable has a floating point value; if 

the exponent is 127 then 0.5<=value<l, if 128 then 1<=value<2, if 129 then 

2<=value<4 etc. The most significant bit of the fourth byte is the sign bit 

(=1 for negative). Note that an integer value can be represented in two 

ways, for example the value -5 can be represented as &00FFFFFFFB or as 

&82A0000000; X=-5 will result in the former and X=-5.0 in the latter. 

In the case of a string variable, the parameter address is the address of a 

'string descriptor' which gives the current length of the string, the 

number of bytes allocated to the string and the address of the string (LS 

byte first) in that order. Note that, once again, the order of these items 

is not the same as in the 6502 version. 

Operating system access 

Addresses in the range &FF00 to &FFFF provide access to the machine 

operating system, as with the BBC Microcomputer on its own. In order to 

achieve the greatest compatibility between the 6502 and the Z80 versions of 

BBC BASIC, CALL and USR behave differently when addressing this area of 

memory.  In both cases,  the processor's A,  H,  and L registers  are  

initialised  to  the  least  significant  bytes  of  the integer variables 

A%, Y%, and X% respectively. In the case of USR, the returned 32-bit value 

is composed of the processor's F, H, L and A registers corresponding to the 

6502's P, Y, X and A registers, most 



significant to least significant. Assuming that the address used is one of 

the legal OS  entry points,  the  call  will be communicated through the 

Tube to the 6502 processor where it will be executed as normal. Any result 

returned will be communicated through the Tube back to the Z80, the Z80' s 

F, H, L and A registers corresponding to the 6502's P, Y, X and A 

registers. Although the format of the Z80's flags register F is not 

identical to the 6502's status register P, the carry bit is in the same 

position, so nearly all OS calls made from BASIC will work correctly. 

'Star' commands and the OSCLI statement 

As with the 6502 version, operating system commands can be issued from 

BASIC either by preceding them with a star (eg *FX 4,1) or by using the 

OSCLI statement (eg OSCLI "FX 4,1") However, before being passed to the  

operating  system  the  command  is  checked  to  see  if  it corresponds 

to one of the CP/M filing system commands (see overleaf). If it does, the 

appropriate CP/M function is carried out and control is returned to BASIC; 

if it does not, the command is passed to the 6502 operating  system in  the  

usual way.  If you need  to pass  an operating system command to the 6502 

which happens to have the same name as one of the CP/M commands (eg *DIR) 

then it should be preceded with another star; ie **DIR $ or OSCLI "*DIR $" 

will cause the Acorn DFS to set its default directory to "$" rather than 

result in a CP/M disc directory listing. 



4 The CP/M filing system 

BBC BASIC (Z80) runs under the CP/M operating system. Generally, 
input/output (eg the console) bypasses CP/M and uses the standard BBC 
Microcomputer operating system conventions (eg CTRL B switches on the 
printer) ; this is to maintain the best compatibility with the 6502 BASIC. 
File operations, however, use CP/M as the filing system and this gives rise 
to some characteristics of which you should be aware. 

Filenames 

Filenames accord with the usual CP/M conventions, ie they consist of an 
optional drive letter, a filename of up to eight letters and an optional 
'extension' of up to three letters, eg D:FILENAME.EXT. The colon is part of 
the drive specification and the full stop is part of the extension. If the 
drive letter is omitted, the current drive is assumed. If the extension is 
omitted, .BBC is assumed. Lower case letters within  filenames  are  
converted  to  their  upper  case equivalents. 

Filing system operations 

The statements and functions which access the CP/M filing system are SAVE, 
LOAD, CHAIN, OPENOUT, OPENIN, OPENUP, EXT#, PTR#, BPUT#, BGET#, PRINT#, 
INPUT#. EOF# and CLOSE#. As CP/M does not provide the facility for opening 
a file for 'input only', OPENIN and OPENUP have identical effect. Note that 
CP/M is used unconditionally as the filing system; 
it is not possible to change to another (eg TAPE). Access to other BBC 
Microcomputer filing systems may be achieved by direct calls (from BASIC or 
machine code) to the various entry points in page &FF (eg OSFIND, OSBGET, 
OSBPUT etc). 

CP/M operating system commands 

Those filing system operations which are not provided directly by BASIC 
statements and functions (eg file deletion and renaming) are made available 
as pseudo operating system commands. That is, they appear to the user to be 
normal operating system commands but are actually processed by the Z80 and 
are not sent to the 6502 I/O processor. These commands are similar to the 
facilities provided by CP/M's console command processor and use the same 
syntax: 

*ERA filename   Erase (delete) the file 'filename'. If the filename 
contains a wildcard (? or *) then all files matching the 
name are deleted. The drive defaults to the current 
drive and the extension to .BBC unless otherwise 
specified. 

*REN file2=filel  Rename filel to be called file2. The filenames must be 
unambiguous (wildcards are not permitted). The 
extensions default to .BBC. 

*TYPE filename    Type the contents of the specified text file to the 
screen. 

*DIR              List the disc directory (catalogue). The default drive 
is the currently logged drive and the default extension 
is .BBC (ie all .BBC files are listed). The command *DIR 
*.* will list all files on the disc. 



Six more commands, which are not standard CCP commands, are provided: 

*RESET             Resets the CP/M disc system. This command must be 

issued after changing a disc. 

*CPM               Return to CP/M (warm boot). 

*BYE               Has the same effect as *CPM. 

*DRIVE  d        Selects  drive  d  as  the  current  drive  for 

subsequent  file  operations.   The  colon  is 

mandatory. 

*LOAD file aaaa  Loads  the named file to memory address aaaa 

(hexadecimal).  Note that this command differs from 

the normal BBC Microcomputer command in that the load 

address must always be explicitly given. 

*SAVE file aaaa bbbb Saves an area of memory to a disc file, where aaaa is 

the hexadecimal start address and bbbb-1 is the end 

address. Instead of specifying the end address, the 

length of the data block to be saved may be given, 

preceded by a plus sign (eg *SAVE file aaaa +1111). 

Note that this command differs  from  the  normal  BBC  

Microcomputer command in  that  the  saved  file  is  

always  a multiple of 128 bytes long, and that there 

is no execute address  or  reload address  associated 

with the file. 

Operating system commands may be entered in lower case, and filenames may 

optionally be enclosed within quotation marks. Commands may be abbreviated 

by using a full stop, eg *DR. is equivalent to *DRIVE. Filing system 

commands other than those listed above (eg *DUMP) are not intercepted by 

the Z80 and are passed to the current filing system selected on the 6502. 

File size, EXT# and EOF# 

CP/M (2.2) maintains file lengths only as a multiple of 128 bytes, and this 

is reflected in the value returned by EXT#. Another effect of this 

limitation is that the end-of file flag EOF# cannot be used to indicate the 

precise end of data in the file with any certainty: up to 127 bytes (nulls) 

may be read after the last data item before the EOF# flag  is  found  to  

be  TRUE.  If  these additional  nulls  cannot  be tolerated,  a deliberate 

end-of-file marker should be included in the file (eg an illegal data 

value, if the file's content allows this) or alternatively the file's exact 

length (the value of PTR# after the last data item has been written) can be 

written as the first record of the file: 

100 file=OPENOUT(filename$) 
110 IF file=Q PRINT "Directory full":END 
120 PRINT# file,0 : REM.  write dummy value to reserve space 
.... REM.  write data to file 
200 length=PTR# file 
210 PTR# file=0 
220 PRINT# file,length : REM.  write length as first record 
230 CLOSES file 

 



EXT# performs a directory read operation so is quite slow. If repeated use 
of the file length is necessary, use EXT# once and save the result in a 
variable. 

Random access files 

CP/M supports random access files, and unlike the Acorn DFS such files need 
not occupy contiguous space on the disc. There is therefore no equivalent 
to the 'can't extend' error, and it is quite acceptable to lengthen an 
existing file by opening it for update and writing new data items at its 
end: 

100 file=OPENUP(filename$) 
110 IF file=0 PRINT "File not found":END 
120 INPUT# file,length : REM. length stored as first record 
130 PTRft file=length 
... REM. write new data at end of file 
200 length=PTR# file 
210 PTR» file=0 
220 PRINT# file,length 
230 CLOSE# file 

CP/M files may be 'sparse', ie areas of a random access file to which data 
has never been written need not occupy any disc space. Such unwritten areas 
are limited by this implementation of CP/M to blocks of 2K bytes in size; 
if the file pointer (PTR#) is set to a value within an unwritten block, EOF 
will be set to TRUE. It is possible for the 'virtual length' of a file 
(returned by EXT# ) to be greater than the total capacity of the disc, but 
is limited by CP/M to 8M bytes (&800000 bytes). 



5 Data file formats 

Data files written by the PRINT* statement, and read by the INPUT# 
statement, have a different format from files used by the 6502 BASIC. 
String items consist of the characters of the string followed by carriage 
return (and therefore occupy n+1 bytes where n is the length of the string) 
and numeric items (whether integer or floating point) consist of five bytes 
of binary data. The stored items are not 'typed', therefore the 'Type 
mismatch' error is not produced when reading files; if no carriage return 
is found within 256 characters when reading a string value, a null string 
is returned. 

Because strings are written in a straightforward fashion, it is possible to 
create a conventional text file (compatible with a Text Editor for example) 
by using the PRINT* statement. To separate lines of text with carriage-
return line-feed it is simply necessary to add the line feed character 
using BPUT# : 

150 PRINT file,text$ : BPUT# file,10 

Programs which use PTR# to position the file pointer when reading a data 
file with INPUT will probably need modifying if transferred from the 6502 
BASIC to the Z80 BASIC. 

 



6 Other differences between the 6502 and Z80 versions 

The following differences are of a minor nature, and will not normally be 
of importance to the programmer. They are listed here for the sake of 
completeness: 

END, or an untrapped error, closes all open files. STOP leaves files open 
to aid debugging. File control blocks are contained within the dynamic 
variable area so all files should be closed before using CLEAR, CHAIN etc 
or editing the program. 

The default prompt from an INPUT statement is '? ' rather than '?' (ie 
there is a space after the query). 

REPORT does not issue a new-line preceding the error string, so you can 
position the message anywhere on the screen. 

A program line with a line number of zero cannot be entered (it is treated 
as an immediate command). 

Integer variables do not increment or decrement in a 'circular' fashion; 
you get "Too big" if you try to increment above &7FFFFFFF or decrement 
below &80000000. 

Leading spaces are automatically stripped from program lines. 

The random number generator is initialised by RUN, therefore RND will 
return zero until RUN (or CHAIN) is first issued. 

LISTO defaults to 7. 

Characters with an ASCII value of less than 13 have no effect on COUNT. 

MODE can be used within a procedure or function, and has no effect on 
HIMEM.   HIMEM   can   be   returned   to   its   initial   value  with 
HIMEM=(!6)AND&FF00. 

Trapped errors neither restore the DATA pointer nor turn off TRACE mode. 

The 'Bad program' error performs a NEW operation. 

The numeric range of floating-point numbers is approximately 5.9E-39 to 
3.4E38. 

INSTR returns the value zero if the string being searched for is a null 
string. 

The exact result of complex calculations may differ from the 6502 version 
because of differing rounding techniques. 

 



7 Transfer of programs from the BBC Microcomputer DFS 

The filing systems used by the BBC Microcomputer alone and with the Z80 
second processor differ. The BBC Microcomputer alone uses DFS and with the 
Z80 it uses CP/M. A utility program DIP has been provided to transfer 
programs or data between these filing systems. 

As is usual for CP/M utilities, DIP can be invoked for a single operation, 
eg 

A>DIP FRED=:1.$.BERT 

Alternatively, DIP can be invoked and will then prompt repeatedly until 
terminated by CTRL C, eg 

A>DIP 
*FRED=:1.$.BERT 
*:1.$.JIM=BILL 
*CTRL C A> 

To copy from CP/M to DFS the valid syntax for a command is: 

<DFS filename>=<CP/M filename>[,/B][/Ixxxx] 

and to copy from DFS to CP/M the valid syntax is: 

<CP/M filename>=<DFS filename>[/B] 

where [ . . . ] indicates that the contents of the brackets are optional 
(the brackets should not be typed). <DFS filename> represents a filename 
acceptable to the Acorn DFS. The filename must be given in full, ie 
:drive.dir.name. <CP/M filename> represents a filename following the usual 
CP/M conventions, eg FRED, B.FRED, FRED.EXT, A:FRED.EXT 

The /B switch 

6502 and Z80 BBC BASIC store BASIC programs in slightly different formats. 
The /B switch is used to convert between these formats, eg 

>DIP DESTN.BBC=:3.B.SOURCE /B >DIP 
:1.$.DEST=A:SOURCE.BBC /B 
Note that there must be at least one space before /B. The /I 

switch 

Some CP/M assemblers produce object files always starting at 100 (hex). It 
is therefore sometimes convenient to ignore the first N characters of a 
CP/M file 'when transferring to DFS. This is done with the ignore 
characters switch (I). The switch takes an argument representing the 
hexadecimal number of characters to be ignored, eg 

>DIP :1.$.THING=THING.COM /I 0F00 

to ignore the first &F00 characters when transferring THING.COM from CP/M 
to DFS. 
 

Note that there must be at least one space before /I; the leading zeros are 
optional. 

The /I switch does not affect DFS load and execution addresses. These can 
be sorted out later if necessary using OSFILE 2 and 3. 

 


