

HOW TO WRITE A
VIEWSTORE UTILITY

Applicable
Hardware :

BBC B
BBC B+
BBC Master 128
BBC Master Compact

Support Group
Acorn Computers Limited
Acorn House
Vision Park
Histon
Cambridge CB4 4AE

Related
Application
Notes:

Copyright © Acorn Computers Limited 1992

Every effort has been made to ensure that the information in this leaflet is true and correct at
the time of printing. However, the products described in this leaflet are subject to continuous
development and improvements and Acorn Computers Limited reserves the right to change
its specifications at any time. Acorn Computers Limited cannot accept liability for any loss
or damage arising from the use of any information or particulars in this leaflet. ACORN,
ECONET and ARCHIMEDES are trademarks of Acorn Computers Limited.

Viewstore Hints and Tips

16th January 1992

Support Group Application Note
Number: 012
Issue: 1
Author:

HOW TO WRITE A VIEWSTORE UTILITY
by Mark Cotton, author of VIEW, VIEWSHEET AND VIEWSTORE

Since the available space for ROM code is limited to 16k, ViewStore has provision for extra programs or
utilities that exist outside the ROM to be used. ViewStore is supplied with several utilities that supplement
the ROM, and has an interface built into it to allow utility programs to use routines inside the ROM.
Certain areas of memory are also allocated for use by utility programs. Given the knowledge of the
interface and memory allocation, it is possible to write extra utilities for ViewStore. The purpose of this
document is to define the utility interface to enable third parties to write their own utilities. A good
knowledge of ViewStore and assembly language will be essential.

The Interface

Various routines within the ROM are available for use by utilities. The routines provide the utility with the
means to access format files and data records and indexes and assorted useful functions. The ROM has a
jump table at the beginning which directs calls to the various routines in the ROM.

As well as access to the ROM routines, the utility has memory allocated to it. Three areas of memory are
available to a utility:

A section of zero page
A section of language absolute workspace
A section of main memory

The amount of zero page and language workspace available to a utility depend upon which ROM routines
the utility is going to use. The size and position of the piece of main memory available can only be
determined when the utility is run: pointers to the start and end of the main workspace are passed when the
utility is started.

The zero page, language workspace and main memory not available to the utility is used by the ViewStore
ROM itself. A utility should not alter this memory, but the addresses of some locations are defined to allow
utilities to read useful parameters.

Utility Format

The format of a utility must conform to certain rules. When a utility is located and loaded from the filing
system, ViewStore relocates the code to run at a particular point in memory. This point varies according to
the size of the format file loaded and the MOS "high water mark". On machines with second processors
attached, ViewStore relocates the utility to run in the space left above the ROM: from &C000 to &F800.
Using this relocating system, ViewStore make optimum use of the memory available.

Since it is not easy to write position independent code for the 6502, the ROM includes a relocating system.
The utility must provide certain information about itself to enable this system to work. The format of a
utility is as follows:-

2

25th June 1992Support Group Application Note No. 012, Issue 1

Support Group Application Note No. 012, Issue 1

.start JMP code
EQUW bitmap-start

 EQUW start
 EQUS "version no/copyright string"

.code /utility code begins here

/end of utility code

.bitmap /relocation bitmap

/end of utility

The first word after the initial JMP gives the offset from the beginning of the utility to the relocation
bitmap.

Since the utility is relocated after being loaded, the actual assembly address is not important, but ViewStore
must be told at what address the utility has been assembled, so that it can calculate how much needs to be
added or subtracted from the addresses to be relocated. The second word after the JMP gives the assembly
address. This &2000 for most of the supplied utilities.

The version no/copyright string is not essential, but it's a good idea to include one so that you can identify
the code.

The main hurdle for anyone writing their own utilities will be the generation of the relocation bitmap. This
identifies the addresses that must be relocated. There is a bit in the bitmap for every byte of code in
the utility, excluding the bitmap itself. A bit set to zero indicates that an address is not to be relocated; a bit
set to one indicates that an address is to be relocated.

It is only possible to relocate addresses using this system, not single bytes. This means that it is not
possible to set up or move addresses using immediate data:

LDA #place
STA var
LDA #place AND &FF
STA var+1

is not allowed. You must use the form:

LDA palcew
STA var
LDA placew+1
STA var+1

 .placed EQUW place

In the bitmap, a bit which is set is taken to refer to a 16 bit address within the program; it is therefore
impossible to have two adjacent bits set since the second bit it referring to the high byte of the address.

3

25th June 1992Support Group Application Note No. 012, Issue 1

Support Group Application Note No. 012, Issue 1

Given eight adjacent bytes, all represented by a single byte in the bitmap, the most significant bit in the
bitmap byte corresponds to the first code byte, and the least significant bit to the last code byte.

As an example: the first byte of a relocation bitmap always corresponds to the JMP and EQUW structure at
the beginning of the utility. Assuming that you have a copyright string (which contains no addresses to be
relocated), the first byte of the bitmap should always be &44. The bit string for this is:

 MSB LSB

 0 1 0 0 0 1 0 0

The first three bits correspond to the three bytes of the JMP instruction. The second two bytes of the JMP
instruction contain the address to jump to, which must be relocated. The first bit of the two bits for this
address is therefore set. The next two bits correspond to the bitmap offset word. This remains constant for
any load address, so these two bits are zero. The next two bits are for the assembly address, which will alter
as the utility is relocated, and the first bit is a 1 accordingly. The last bit is for the first byte of the copyright
string; zero since this has no addresses to be relocated.

The bitmaps for the utilities which are supplied with ViewStore were generated automatically by an
assembler which is not available on the market. If you are going to write a utility for ViewStore, you must
find a way of generating relocation bitmaps. This could be done in one of three ways:

1. Generate it by hand
2. Write a program to take an assembled utility and generate the bitmap
3. Modify an assembler to generate relocation bitmaps
4. Assemble it at two different addresses and write a program to compare

 the two resulting code files. Those locations which have changed
 need a set bit in the bitmap.

For most people, the last option will be the simplest.

The Utility Environment

Most utilities will want to operate upon existing databases. It is possible, though, to have a utility which
does not operate on existing data, but creates data, or doesn't act on data at all.

An example of this is the SETUP utility, which creates blank databases. It doesn't refer to any existing data.
Utilities which need to access either format files or data files must first check that a database has been
loaded, and abort with an error message if there is no loaded database.

This is done by checking the location FILMOD. If FILMOD is non-zero, then a database is loaded. If zero,
there is no database loaded.

The normal sequence of operation will be to load a database in ViewStore, with the LOAD command. This
loads the format file into memory, and locates the data file. A utility is then started with the UTILITY
command. The utility can read the format file as it requires, and can open and process the information in
the data file. It can use a subset of data identified by the select file.

Once the utility is running, it can take control of the machine as it needs to, using the memory available to
it, and the ROM routines as required.

4

25th June 1992Support Group Application Note No. 012, Issue 1

Support Group Application Note No. 012, Issue 1

Naming of Addresses

In this document, all location and routine addresses will be referred to by name. Tables of addresses and
values are at the end of the document.

You will notice that the names of a block of addresses being with "TEMP". These locations are available
for use by the utility as temporary storage, but some are used and altered by routines in the ROM.

Temporaries

The numbered temporaries are all either a single byte or two bytes long. Those from TEMPFD to TEMP05
are all one byte long; those from TEMP06 to TEMP14 are all two bytes long. The two byte temporaries are
used to store and pass addresses; the single byte temporaries are used to store one byte quantities.

Often, values are passed to and from routines using temporaries, as well as registers in the CPU. Many
routines "corrupt" certain temporaries; a list of the temporaries a routine corrupts is given in a summary at
the end. Utilities can use temporaries whenever they wish, but of course their use must not clash with any
routines that you call in the ROM.

Entry Parameters

When the utility is started, the following data is provided:

 TEMP14 contains the start address of free main memory
 VWSLIM contains the address of the byte after the last free byte
 in main memory

VWSLIM will not change while the utility is running, and the utility must not alter VWSLIM. TEMP14
may be altered by a ROM call, so it is best to store it somewhere else for later reference.

The utility is called with a JSR instruction, and ViewStore expects the utility to hand back control, when it
is finished, with an RTS instruction.

.start TSX
 STX stksav

.

.
.error LDX stksav

 TXS
 RTS

Zero Page

Zero page is divided up into four areas of different types:

 ViewStore variables read only for utilities. Below &50.
 Temporaries TEMPFD-TEMP14. Start at &50. read/write for utilities; also used as

 parameter areas and workspace for ROM routines.

5

25th June 1992Support Group Application Note No. 012, Issue 1

Support Group Application Note No. 012, Issue 1

 Floating point FACCxxand FWRKxx. Start at &6B. read/write for utilities; if the floating
 accumulators point calls are not used by the utility. this area can be used as general

workspace.

 General workspace VWSXTZ-&8F inclusive.

Language Workspace

 LWORK 16 byte parameter block used by ROM routines.
 FBLOCK 27 byte filename work area.
 LINBUF 256 byte work area used by one or two ROM routines.
 VWSXTL-VWSITL area used by ISAM index system. Can be used as general workspace if the

utility is not using indexes.
 General workspace VWSITL-&7FF inclusive.

ROM Routines

I will describe the ROM routines in the categories that they fall into. The routine addresses and parameters
are summarised in table 1. All routines should be called with a JSR instruction, except for CALUTI which
should be called with a JMP instruction, since returning control to the utility is not usually sensible as the
new utility will overwrite the old one in memory.

Data File Control

These routines give the utility access to the database data file, using the current select file if required. It is
only possible to read sequentially through the data file using these calls, but the data will be returned in
sorted order if the selected data was sorted.

The utility should not close the intermediate file if it uses it. This is done automatically when control is
returned to the ROM.

INIIMF Initialise data sequence. Called to start the data
 reading sequence.
 MXTIMF Get next from data sequence. Each call returns the
 next data record in the sequence.

INIIMF

This routine is called to initiate a sequence of data transfers. It opens the main data file, and stores its
handle in the location EFILE. According to the state of the carry flag on entry, it asks the user if he wishes
to use a select file. The user responds with a yes or no, and ViewStore opens the select file (S.database)
accordingly. After this, the select file is transparent to the utility; repeated calls to NXTIMF will either
return all the records in the data file if the select file is not being used, or the subset of records in the select
file, if specified.

6

25th June 1992Support Group Application Note No. 012, Issue 1

Support Group Application Note No. 012, Issue 1

On entry: CC Don't ask "Use select file (Y,N)?" question.
 CS Ask select file question.

On exit: VC No error.
 VS Error; error code in A.

NXTIME

After starting the sequence with a call to INIIMF, repeated calls to MXTIMF return the records in the data
file one by one.

On entry: A low byte of address to store record.
 Y high byte of address to store record.
 TEMP13 address of the byte after the last byte
 available to store the record.

On exit: VC No error.
 VS Error; error code in A.

 CC Not end of file.
 CS End of file (returned on the call after the
 last record has been processed).

Errors

Many of the ROM routines can return an error status. An error is usually indicated by either the Carry flag
(C), or the Overflow flag (V). When an error is indicated, the error code is in the A register. To report the
error to the user, call the routine REPERL with this code A. The various error codes and messages are
summarised later. A utility can use a ROM error message by loading the appropriate code into A, and
calling REPERL.

All file calls have the same error trapping system: after a call, V is set to indicate an error, clear if there was
no error. This includes errors causing a BRK, that is control is returned to the calling routine even when a
BRK is occurred. When you call REPERL with the returned error code, the BRK message will be reported
as normal.

REPERL

Reports the error message for the error code in A:

On entry: A contains error code.

On exit: A,X,Y undefined.

Field and Record Control

Much of ViewStore's manipulation is on fields and records; accordingly, there are several routines available
to make this easier. There are some routines to locate fields in the header, format file or current record;
routines to compare field values; and routines to find the size of a given field.

7

25th June 1992Support Group Application Note No. 012, Issue 1

Support Group Application Note No. 012, Issue 1

Most of these routines use the two temporaries TEMP06 and TEMP07. TEMP06 points to either a field
within the format file, or a field within the current record. TEMP07 points to a field within the current
record. The Y indirect indexed addressing mode is used in conjunction with these temporaries to access the
field contents: the temporary points to the beginning of the field, and the Y register gives the offset from
there.

Remember that the format file itself is in the same format as a data file. The same routines are used to
process information in records of the database as in the format file itself. For each field in the database,
there is a record in the format file, and this record details the characteristics of its corresponding field in the
database. The header record is the first record in the format file.

Data Format

The data format is summarised in table 10 at the end of the document. All fields in ViewStore are stored in
ASCII, even numbers and dates; each field ends with an end of field marker; each record ends with an end
of record marker; and the file ends with an end of file marker; after the end of file marker, the file is padded
up to the physical end of file with null characters. If you are processing a field's contents, you should test
for the end of field using the CHKEOF and CHKEOR routines. These routines set the flags according to
the character that they find. Don't check for the character value explicitly.

Generally, when you make a call to a routine that locates a field, the x register indicates where the field is to
be found:

 X=0 Field in header; A has field number.
 X=1 to 254 Field in format file; X gives format file record number;
 A has field number. The field numbers of the various format
 file fields are summarised below.

X=225 Field in current record; A has field number; Y has record
 number.

Fields within a record are numbered from 1 to 254. If you ask for a field which is not in the record, the
routine will return with the Carry flag set. Whereas ViewStore knows where the format file is located, the
address of the current record could be anywhere, and before fields within the current record can be
accessed, you must tell ViewStore its address with the SETDPS routine.

GETFLD General field locate routine; can locate a field in the
 header, format file or current record.
 GETFRC Find the address of a field in the current record.

GETXFL Return first non-space character of a field in the A
 register, folded to upper case if applicable.

SETDPS Set the address of the beginning of the current record.
 CHKEOF Check the character in the A register for an end of field
 character.

CHKEOR Check the character in the A register for an end of
 record character.
 SIZFLD Return the size of a given field.
 CMPFLD Compare two fields of the same type and set the flags.
 SCHFLD Return the number of a field, given its name.
 SCHFLN Return the next field number, given a name, for an
 ambiguous name specification.

8

25th June 1992Support Group Application Note No. 012, Issue 1

Support Group Application Note No. 012, Issue 1

 GETWID Return the display width for a particular field.
 GETKYW Return the key width for a particular field.
 CALSBN Calculate the number of spaces required to be output
 before a numeric field to right justify it within the
 display width.

GETFLD

This routine locates a field in either the database header, the format file or the current record. If the field is
in the current record, the address of the first character of the field is set into TEMP06 and also into
TEMP07. If the field is in the format file, TEMP07 is left unaltered, and the address of the field is put into
TEMP06.

If X is equal to 255, then the routine uses the value in the Y register to locate a record in a list of current
records. The list of records is numbered from 0 onwards. The usual way to use this part of the routine will
be with Y set to zero, in order to locate a field within a single current record. If you are using a list of
records, then you must not set Y to too high a value, so that the routine runs off the end of the list, unless
you have an end of file marker after the last record.

Before you use this routine, you must have set the position of the first record in the list by using the
SETDPS call.

On entry: A field number of field to locate; field start
 at 1.
 X=0 find field in header record.
 X=1 to find field in format file record; X gives the
 X=254 number of the format file record.
 X-255 find field in list of current records; Y has
 the number of the record to search, starting
 at zero.
 Y only significant if X=255.

On exit: CS field or record not found; TEMP06 (and TEMP07
 if X=255) point to the end of record marker if
 field not found, the end of file marker if
 record not found.
 CC field and record found; TEMP06 points to the
 beginning of the field; if the call was made
 with X=255 then TEMP07 also points to the
 beginning of the field.
 A,Y undefined.
 X preserved.

GETFRC

This call first sets X to 255, and then calls the GETFLD routine. The entry and exit conditions are as for
GETFLD when X-255, except that X will always return set to 255.

9

25th June 1992Support Group Application Note No. 012, Issue 1

Support Group Application Note No. 012, Issue 1

GETXFL

GETXFL returns the first non-space character in a field, folded to upper case if alphabetic. It is intended
primarily for reading the value of single character fields in the format file, such as the "Field type" field.

GETXFL first calls the routine GETFLD. The entry conditions are the same as GETFLD. If the call to
GETFLD fails, ie the Carry flag is set, then the A register is cleared, and the routine ends. If the field is
found, then the first character of the field is returned, folded to upper case if alphabetic. If the field is blank,
then the end of field marker will be returned.

On entry: See GETFLD

On exit: TEMP06 and TEMP07 set as for GETFLD.
 CS field or record not found, as GETFLD; A set to
 zero.
 CC field found; A contains first non-space
 character, folded to upper case if alphabetic.
 X,Y See GETFLD.

SETDPS

This routine stores the address of the records to be used when using one of the field locate routines with X
set to 255. It should be called whenever the address of one of the records in the list or of one of the fields in
the records has altered. It need not be called if none of the fields has moved, since ViewStore will keep
track of its position in the list of records, and move backwards or forwards as necessary to find the field you
have asked for.

If you are reading records one by one using the NXTIMF call, for example, then you must call SETDPS
with their address of the record for each record that you read: the alignment of the fields will alter for each
record.

On entry: A contains low byte of the address of the first
 record in the list.
 Y contains the high byte of the address of the
 first record in the list.

On exit: A,X,Y undefined.

CHKEOF

CHKEOF checks the character in the A register for an end of field marker. It should be used rather than
checking for the character explicitly since it handles classes of characters rather than single values.
Generally, it is not necessary to detect illegal characters explicitly, it is enough to detect them as an end of
field marker.

On entry: A contains character value to be checked.

On exit: EQ end of field.
 CS end of record (EQ also set).

10

25th June 1992Support Group Application Note No. 012, Issue 1

Support Group Application Note No. 012, Issue 1

 VS illegal character (EQ also set).
 A,X,Y preserved.

CHKEOR

CHKEOR checks the character in the A register for an end of record marker.

On entry: A contains character to be checked.

On exit: EQ end of record.
 CS end of file (EQ also set).
 VS space character (EQ also set).
 A,X,Y preserved.

SIZFLD

SIZFLD is provided to allow you to determine the size of a field. First of all you should locate the field,
using one of the field locator routines such GETFLD, which set up TEMP06. Then call SIZFLD.

On entry: TEMP06 points to the beginning of the field.

On exit: A,Y have length of field in characters.
 EQ zero length field.
 X preserved.
 TEMP06 preserved.

CMPFLD

CMPFLD compares the values of two fields of the same type, and sets the 6502 flags register like the CMP
instruction. TEMP07 points to the first field (equivalent to the contents of the 6502 A register in the CMP
instruction), and TEMP06 points to the second field. If the two fields being compared are strings, then
wildcards are allowed in the second string.

On entry: A contains the field type: A, N, D or Y; must
 be in upper case.
 TEMP07 points to field 1.
 TEMP06 points to field 2.

On exit: VS error in one of the fields supplied: eg
 illegal date; result not valid.
 C flag set according to compare.
 Z flag set according to compare.
 A,X,Y undefined.

11

25th June 1992Support Group Application Note No. 012, Issue 1

Support Group Application Note No. 012, Issue 1

SCHFLD

SCHFLD is used to find the number of a field, given its name. It searches the list of fields in the format file
until it finds one that fits the name given. The name that you specify can obtain wild cards: the single
wildcard "?", and the multiple wildcard "*" are both allowed. SCHFLD will always return the first field in
the format file that fits the name you have given. You can either continue searching for more fields by
using the SCHFLD call described next.

The name of the field is set up in the 16 byte LWORK area. It should be terminated by a null, or an end of
field marker. It must not be longer then 16 bytes, including the delimiter.

On entry: LWORK contains name to search for; maximum of 16
 bytes including delimiter; delimiter null
 or end of field marker; wildcards "?" and
 "*" valid.

On exit: CS no field found to match the name; A has
 error code.
 CC field found OK; field number in X.

SCHFLN

After calling SCHFLD, you can search for other fields which also fit the field specification that you gave
given, by making repeated calls to SCHFLN. Before you call SCHFLN, you must have called SCHFLD
first, to start the sequence, and this call must have successfully found a field.

You can keep calling SCHFLN until the call returns with the Carry flag set to indicate that it has found no
more fields.

On entry: Must have called SCHFLD first, and this
 must have returned with the Carry flag
 clear.
 A Contains field number to start searching
 from. This should be one more than the
 last value that SCHFLD or SCHFLN returned
 in X.

On exit: CS no more fields found; A has error code
 (report only if required).
 CC field found; field number in X.

GETWID

GETWID returns the display width of a field, as defined in the format file. If there is no display width
defined, a series of defaults comes into action.

Display width defined Display width
No display width, Sheet mode 18
No display width, Card mode 0

12

25th June 1992Support Group Application Note No. 012, Issue 1

Support Group Application Note No. 012, Issue 1

On entry: X contains number of field for which width is
 required.

On exit: CS field doesn't exit.
 CC field found; A has display width.
 X preserved.
 Y undefined.

GETKYW

This routine finds the key width for a given field. It uses the value defined in the format file, if any;
otherwise a system of defaults operates:

Key width defined Key width
No key width, display width defined Display width
No key width or display width 10

On entry: X contains number of field for which width is
 required.

On exit: CS field doesn't exist.
 CC field found; A has already width.
 X preserved.
 Y undefined.

GETKYW

This routine finds the key width for a given field. It uses the value defined in the format file, if any;
otherwise a system of defaults operates:

Key width defined Key width
No key width, display width defined Display width
No key width or display width 10

On entry: X contains the field number for which the key
 width is required.

On exit: A contains key width; if field doesn't exist, a
 default key width of 10 is returned.
 X preserved.
 Y undefined.

CALSBN

This routine is used when displaying numeric fields, to calculate the number of spaces to be output before
the number in order to right justify the number within its field width. This also takes into account the
decimal places specified in the format file.

13

25th June 1992Support Group Application Note No. 012, Issue 1

Support Group Application Note No. 012, Issue 1

On entry: X contains the field number.
 TEMP07 points to the beginning of the field in
 question.
 TEMP03 contains the field display width, as returned
 by the GETWID routine.

On exit: A gives number of spaces to output, zero if the
 number is wider than the field, or there are
 too many decimal places.
 X undefined.
 Y undefined.
 TEMP03 preserved.
 TEMP07 preserved.

File Control

File handling in ViewStore is centred around three things: error handling, FBLOCK and prefixes. Since the
error handling provided by the normal filing system interface provided is completely unsatisfactory for a
program such as ViewStore, I have developed a system which gives control of what happens after a disc or
filing system error. For the utility writer, this system is transparent: you can forget about it as long as you
use the calls provided, and don't call the filing system directly. If you do this, you can forget all about BRK
errors and handlers.

The system is the same for all file calls: the state of the Overflow (V) flag indicates after a call whether an
error has occurred. If there has been an error, then the V flag is set, and the A register contains the error
code. If you detect an error, you should unravel yourself from any routines, report the error by calling the
REPERL routine, and then close any files that you have opened yourself, before returning to control of the
ROM. You shouldn't close the intermediate file: this is done automatically when control is passed back to
the ROM.

Filenames

FBLOCK is a small of memory used to store and manipulate filenames. Several routines are provided
which work on the filename in FBLOCK, altering directories and prefixes.

A filename in ViewStore is made up of threes parts:

 Prefix
 Directory
 Name

ViewStore maintains a list of the current prefixes for each different file type: data; format; sort and so on.
A routine which adds a specified prefix to a directory and name stored in FBLOCK is available. The
maximum length of a prefix is 13 characters, excluding delimiter. The current prefixes can only be altered
with the PREFIX command in ViewStore's Command Mode.

14

25th June 1992Support Group Application Note No. 012, Issue 1

Support Group Application Note No. 012, Issue 1

ViewStore considers directories to be single character; of course the prefix can include multiple character
directories, but the filenames of data and format files, for example, begin with directories, and these are
always single character directory names, whatever the filing system. Directories must be separated from the
name itself by a dot, making the total size of the directory section of a filename 2 characters.

The name part of the filename can be up to 10 characters long. This does not include the directory and
separator, or the delimiter. Names are always delimited with a Carriage Return character.

Part Max. Size (exc. delimiter) Example

Prefix 13 :2.
Director 2 d.
Name 10 datafile

MOVFBK Moves a filename from the store area into FBLOCK.
MOVNAY Moves a filename out of FBLOCK into the store area.
CHKDIR Checks for the presence of a directory in a filename in
 FBLOCK, and returns the directory character, if there is one.
SETDIR Sets a directory into a filename in FBLOCK.
STXPRE Stores the required prefix with a filename in FBLOCK.
OPFILE Gives access to the filing system OSFIND call.
OSHCAL Gives access to the filing system OSFILE call.
XOSARG Vector with error trapping to OSARGS.
XOSBGE Vector with error trapping to OSBGET.
XOSBPU Vector with error trapping to OSBPUT.
XOSCLS Vector with error trapping to OSFIND with A=0; used to close a file.
XOSGBP Vector with error trapping to OSGBPB.
CALUTI Loads and runs a utility format file.

MOVFBK

MOVFBK moves a filename from ViewStore's list into FBLOCK. A summary of the filenames available
and their offsets is given in table 8. Filenames are not stored with prefixes attached, but they do include the
directory. You must use the routine STXPRE to add a prefix to the filename once it has been moved to
FBLOCK, before calling one of the file routines.

On entry: Y contains the offset of the filename to be
 moved into FBLOCK.

On exit: A,X,Y undefined.

MOVNAY

This routine is the inverse of MOVFBK; it moves a filename from FBLOCK into ViewStore's list of names.
The filename in FBLOCK should not include the prefix when this routine is called. The list of filename
offset values is given in table 8.

15

25th June 1992Support Group Application Note No. 012, Issue 1

Support Group Application Note No. 012, Issue 1

On entry: X contains the offset of the filename area in
 which the name currently in FBLOCK is to be
 stored.

On exit: A,X,Y undefined.

CHKDIR

CHKDIR checks whether the filename in FBLOCK has a directory, and if it does, it returns the directory.
The filename should not include the prefix when this routine is called.

On entry: filename to check in FBLOCK.

On exit: CS filename contains directory; directory
 character found returned in A; offset from
 beginning of FBLOCK to the directory character
 is in X.
 CC no directory found.
 Y undefined.

SETDIR

SETDIR forces a directory into the filename in FBLOCK. It doesn't matter whether the filename there
contains a directory or not; SETDIR will make space for it. The filename must not include a prefix when
SETDIR is called.

On entry: A contains directory character to set into name
 in FBLOCK.

On exit: A,X,Y undefined.

STXPRE

This is the routine that you use to add a prefix to a name. The name itself, including directory, should be in
FBLOCK. Normally, adding the prefix to a name is the last thing you do before calling the filing system to
do some operation on the file: opening or deleting the file, for example. Names themselves should be
stored without prefix attached, the prefix being added only when calling the filing system itself.

A list of the prefix offsets for different file types is given in table 7.

On entry: X contains the offset of the prefix required.

On exit: A,X,Y undefined.

16

25th June 1992Support Group Application Note No. 012, Issue 1

Support Group Application Note No. 012, Issue 1

OPFILE

OPFILE is an equivalent of the filing system "OSFIND" call, used for opening files. It assumes, however,
that the filename is ready in FBLOCK. OPFILE cannot be used to close a file, as OSFIND can; use the
XOSCLS call to close a file. OPFILE also uses the ViewStore error trapping system.

On entry: A contains file open code, as for OSFIND; eg.
 &40 is open for input.

On exit: VS error occurred; error code in A.
 VC no error occurred; file handle is in both A
 and Y registers; usual OSFIND error of file
 handle being zero when the file can't be
 found is trapped: V is set, and the ViewStore
 "File not found" error code is in A; Y is
 zero.
 X undefined.

OSHCAL

OSHCAL gives the utility access to the filing system OSFILE routine. It uses the OSFARA area as its
control block. Note that this spills over into the LWORK area, which will be corrupted after an OSHCAL
call. OSHCAL assumes that the filename (when required) is set up in FBLOCK. OSHCAL also sets the
high order addresses into the control block at OSFARA +4 and +5; +&C and +&D; and at +&10 and +&11.
ViewStore error trapping is also enabled.

On entry: A contains reason code as for normal OSFILE
 (see filing system manual).
 OSFARA set up with whatever the reason code action
 requires, eg. start and end addresses for file
 save.

On exit: VS error occurred; error code in A.
 VC completed successfully; file type in A when
 relevant.
 X,Y undefined.

XOSARG

XOSARG is equivalent to OSARGS, except that ViewStore error handling is enabled.

On entry: See filing system manual for OSARGS.

On exit: VS error occurred; error code in A.
 VC no error; see filing system manual for
 results.

17

25th June 1992Support Group Application Note No. 012, Issue 1

Support Group Application Note No. 012, Issue 1

XOSBGE

XOSBGE is equivalent to OSBGET, except that ViewStore error handling is enabled.

On entry: See filing system manual for OSBGET.

On exit: VS error occurred; error code in A.
 VC no error; see filing system manual for
 results.

XOSBPU

XOSBPU is equivalent to OSBPUT, except that ViewStore error handling is enabled.

On entry: see filing system manual for OSBPUT.

On exit: VS error occurred; error code in A.
 VC no error; see filing system manual for
 results.

XOSCLS

XOSCLS is equivalent to OSFIND with A=0, in order to close a file. ViewStore error trapping is also
enabled.

On entry: Y contains handle of file to be closed.

On exit: VS error occurred; error code in A.
 VC file closed successfully.
 X,Y undefined.

XOSGBP

XOSGBP is equivalent to OSGBPB, except that ViewStore error handling is enabled.

On entry: See filing system manual for OSGBPB.

On exit: VS error occurred; error code in A.
 VC no error; see filing system manual for
 results.

CALUTI

CALUTI is provided to allow utilities to call other programs stored in utility file format. The SELECT
utility, which is provided with ViewStore, uses this call to call the SORT program when it is required.
Parameters can be passed between the programs using temporaries, or other memory space. The CALUTI
call can be thought of as the logical equivalent of the Basic CHAIN statement.

18

25th June 1992Support Group Application Note No. 012, Issue 1

Support Group Application Note No. 012, Issue 1

The utility should exit under the prefix given for utilities; CALUTI applies the utility prefix to the name
given automatically. If the utility is not found, the "Insert utility disc and hit a key" message will be
generated, and ViewStore will wait until a key is pressed before continuing.

On entry: A contains low byte of address of name of
 utility to be loaded. Name must be terminated
 by Carriage Return.
 Y contains high byte of address of name of
 utility to be loaded.
 TEMP14 contains the address of the first byte of free
 memory that the utility being loaded is to
 use. This will normally be the same value as
 passed to the initial utility.

On exit: VS error occurred; error code in A. Otherwise,
 control is passed to the new utility.

Floating Point

Unfortunately, a discussion of floating point is outside the scope of this document. However, certain of the
key routines in a floating point package are in the ROM itself, and entry points to these routines are
provided. The REPORT utility which is provided with ViewStore uses these routines, and implements
many more inside itself. The routine most obviously missing from this set is a routine to output a floating
point number in ASCII. If you wish to do this, you will have to work out how to do it yourself.

I can refer you to the "Advanced Basic Rom User Guide", published by the "Cambridge Microcomputer
Centre", which contains useful information about the floating point package in Basic, and how it works.
The floating point in ViewStore works in the same way.

Remember that there is no need to understand floating point to write a utility, since the date in ViewStore
files is stored in ASCII format, not as floating point numbers. Use of floating is only necessary when you
wish your utility to provide floating point arithmetic.

The two accumulators, FWRK and FACC are in zero page. If you are not using the floating point package
in your utility, you can use the zero page allocated to the accumulators for your own purposes.

FONE Sets FACC to value of one.
FTENFX Multiplies FACC by 10 (not normalised).
FTENGQ Divides FACC by 10 (not normalised).
FADDWI Adds FACC and FWRK; answer in FACC, not rounded.
FTENX Multiplies mantissa by 10.
FRDDK Reads in ASCII number to FACC. Low byte of address of string

 in A; high byte of address of string in Y.
FTST Tests number of FACC and sets flags.
FNEG Swaps sign of number in FACC.
FCLR Sets FACC to zero.
FADDW Adds FACC and FWRK; answer in FACC, rounded.
FDIVA Divides FACC by FWRK; answer in FACC.
FMULX Multiples FACC by FWRK; answer om FACC.

19

25th June 1992Support Group Application Note No. 012, Issue 1

Support Group Application Note No. 012, Issue 1

General

These routines are an assortment of useful subroutines for which entry points are provided.

GETDEC Get a decimal number.
KINCH Flush keyboard buffer, and get an input character.
MULPLY Multiply two single byte integers.
OUTDEC Output a decimal number.
PSTRNG Output a string.
RELLIN Read a line of input.
SKPCBL Skip blanks.

GETDEC

GETDEC reads a number as an ASCII string and converts it into binary. The maximum size of a binary
number that it can return is two bytes. No errors are generated for overflows; GETDEC will return the
bottom sixteen bits of an arbitrarily large number.

On entry: TEMP06 points to start of string.
 Y gives offset from beginning of string to start
 of ASCII number; no leading blanks allowed.

On exit: A contains low byte of number.
 X contains high byte of number.
 Y is updated to point to the non-numeric
 character that terminated the number.
 EQ no number was found; A,X,Y undefined.

KINCH

Call this routine to get a character of input from the keyboard. The keyboard buffer is flushed first.
ESCAPEs are detected and acknowledged automatically, using the OSBYTE 126 call, and the Carry flag
indicates whether ESCAPE was detected.

On entry: No entry conditions.

On exit: CC A contains input character.
 CS ESCAPE was detected.

MULPLY

MULPLY multiplies two eight bit numbers together, giving a sixteen bit result:

On entry: A contains an 8-bit number.
 Y contains an 8-bit number.

On exit: A contains the low byte of the result.
 Y contains the high byte of the result.

20

25th June 1992Support Group Application Note No. 012, Issue 1

Support Group Application Note No. 012, Issue 1

 CS if Y is non-zero (the result is greater than
 255).
 X preserved.

OUTDEC

Call OUTDEC to output a sixteen bit decimal number to the VDU.

On entry: X contains the low byte of the number.
 Y contains the high byte of the number.

On exit: A,X,Y undefined.

PSTRNG

PSTRNG outputs a string in-line with the code to the VDU. The string must be delimited with a null, zero
byte.

For example: JSR PSTRNG
 EQUS "This will be output to the VDU"
 EQUB 0

On entry: Immediately following the JSR call, there is a
 string delimited with a null. The string must
 not be more then 256 characters long,
 including the delimiter.

On exit: A,Y undefined.
 X preserved.

RELLIN

RELLIN reads a line of input, and puts it into LINBUF. The input is terminated with a Carriage Return or
an ESCAPE. The OSWORD 0 call is used to get the input. TEMP06 is left pointing to the beginning of
LINBUF, and Y gives the offset to the first non-space character in LINBUF.

On entry: No entry parameters.

On exit: LINBUF contains the line of input; maximum 256
 characters.
 TEMP06 points to LINBUF.
 CMDPAR gives offset from TEMP06 to the first
 non-space character.

 CS ESCAPE terminated input.

21

25th June 1992Support Group Application Note No. 012, Issue 1

Support Group Application Note No. 012, Issue 1

SKPCBL

SKPCBL skips spaces in a line of input, terminated by a Carriage Return.

On entry: TEMP06 points to beginning of input string.
 CMDPAR gives offset from start of string to start
 skipping spaces.

On exit: CMDPAR gives offset to first non-space character
 after initial value.
 A contains first non-space character.
 EQ hit CR at end of line, before non-space
 character was found.

The Index System

The ViewStore ROM contains a set of routines for creating and maintaining index files. These are used
internally by code in the ROM, and also by the INDEX utility. They are very powerful and could be used
by extra utilities to great effect.

You will be familiar with the way the ViewStore itself uses the index system. A utility could use indexes
side by side with the ROM, or it could build and maintain indexes for its own purpose.

In a ViewStore index file, you can store a "key", and associate with the key a pointer value, 4 bytes in size.
They key can be any string of ASCII characters, and the pointer value any four byte integer, but usually the
pointer value is used to remember a record file address.

The characters that make up an index key must be between the values 32 and 254, inclusive. Since the
alphabetical value of numbers and dates is not the same as the value we generally wish these data types to
have (that is numbers in numerical order, and dates in age order), the ASCII number and date fields as they
are stored in ViewStore data files must be converted into another form before being sent to the index
system. A routine, ADJVAL, is provided to do this. Remember, if you are building or altering an index
file, to use the ADJVAL routine on the key.

The index system uses a technique akin to that of IBM's ISAM (indexed sequential access method) and
VSAM (virtual sequential access method) systems.

Nearly all the calls to alter an index file are made through one routine, with a reason code: ISAM.

ISAM uses some workspace in the language workspace area. If you re not using the index system, the
utility can use this workspace for its own purposes.

ADJVAL Routine to adjust values of different key types.
CCRTIX Create an index file.
GETIXN Return index name for a given field number.
IDXSCH Search for an index, given a field name.
ISAM General entry point to ISAM package.

22

25th June 1992Support Group Application Note No. 012, Issue 1

Support Group Application Note No. 012, Issue 1

ADJVAL

This routine is called before sending a key to ISAM for an operation. It adjusts the value of number and
date fields into "index format", ready for ISAM.

If you give it a date value to adjust, it will check the validity of the date as it is processing the value. An
error code is returned if a problem is found with the date; in this case the value left in the buffer will be
legal, but will be an incorrect conversion from the date that you supplied.

On entry: X has field number of field being adjusted.
 LINBUF has field value to be adjusted, delimited with
 an end of field marker.

On exit: LINBUF contains adjusted field value.
 CS error was found in date value.

CRTIX

CRTIX is used to create a new index file. You must supply the name of the file, and the number of bytes of
disk space that you wish to reserve for the file. If a file with the name that you have exists already, it will
be overwritten.

The maximum amount of space that you can reserve is 65535 bytes.

On entry: FBLOCK has filename of file that you wish to create,
 with PREFIX already inserted.
 A contains keysize of file.
 X contains low byte of number of bytes to
 reserve.
 Y contains high byte of number of bytes to
 reserve.

On exit: VC file created OK.
 VS error occurred; error code in A.

GETIXN

GETIXN extracts the name of the index for a particular field from the format file, and places it in
FBLOCK, with the index prefix automatically inserted.

On entry: X contains the field number of the field for
 which you require the index name.

On exit: CC no error; name is in FBLOCK with prefix.
 CS error occurred; error code is in A.

23

25th June 1992Support Group Application Note No. 012, Issue 1

Support Group Application Note No. 012, Issue 1

IDXSCH

Given a field name specification (which may include the wildcards "?" and "*"), IDXSCH looks for a field
with this name, and checks whether this field has an index switched on.

On entry: LWORK contains field name to search for, which may
 contain wildcards.
 A contains field number of field to start
 searching from.

On exit: CC field found OK; X contains number of field
 found.
 CS no field found; error code in A.

ISAM

ISAM is the routine that you call to perform operations on an index file. The reason code of the operation
you wish to perform is loaded into A. A summary of reason code values is given at the end in table 4.

All calls to ISAM update the Carry and Overflow flags. The carry flag indicates whether an "internal" error
occurred - such as "No key found". The Overflow flag indicates when a filing system error occurred - such
as "Disk fault". A list of internal ISAM errors is given in table 5. Note that you can't call the error
reporting routine REPERL with an internal ISAM error code; the internal code is only for checking within a
program.

Key values are passed to ISAM in LINBUFl 4 byte pointer values are passed in REG1. ISAM can handle a
maximum of nine indexes open at one time. The maximum size of a key is 105 bytes.

Indexed sequential files have the two features that you can locate a particular key by giving its value, and
that you can also read up and down the index in key order. ISAM works by having a "position". Certain
calls set the file "position", some move the position up and down, and some calls destroy the position
altogether. The "Search" call sets the file position; the "Next" and "Previous" calls move the position, and
the "Insert" and "Delete" calls destroy the position.

If you execute a "Next", or a "Previous" call on an index file with no position, the index is said to be set at
the beginning.

The A, X and Y registers are all undefined after a call to ISAM.

Reason codeEffect

A=ISMFLO Tell ISAM that file is open.

 Before you make this call, you should have opened the file
 with the filing system. This call just informs ISAM that
 you have opened the file, and tells it to reverse some
 workspace for the file.

 On entry: Y contains handle of already opened file,
 as returned by the filing system.

24

25th June 1992Support Group Application Note No. 012, Issue 1

Support Group Application Note No. 012, Issue 1

 On exit: The file position is reset.
 VS file already open; internal error code
 in A.
 CS internal error occurred; internal error
 code in A.

A=ISMSCH Search for key in index.

 This call attempts to find the key in LINBUF in the index
 that you specify. If no key is found, the index is still
 "positioned", and you can use the "Get next key" and "Get
 previous key" calls. A subsequent "Get next key" call
 after a key was not found, returns the next highest value
 key that is in the index.

 On entry: Y contains the handle of the file.
 LINBUF contains key to seaborne for.

 On exit: VS filing system error occurred; error
 code in A.
 CS key not found; internal error code in
 A. The file position is set.
 REG1 contains pointer value of key, if
 found.

A=ISMINS Insert key into index.

 This call inserts the key in LINBUF into the index file.

 On entry: Y contains the handle of the file.
 LINBUF contains the key to insert.
 REG1 contains pointer value to be associated
 with the key.

 On exit: The file position is reset.
 VS filing system error occurred; error
 code in A.
 CS index is full; internal error code in
 A.

A=ISMNXT Return next sequential key.

 This call returns the pointer value of the next sequential
 key, from the current file position.

 On entry: Y contains the file handle.

 On exit: VS filing system error occurred; error
 code in A.
 CS At end of file; internal error code in
 A. The file position is advanced by one.

25

25th June 1992Support Group Application Note No. 012, Issue 1

Support Group Application Note No. 012, Issue 1

 REG1 contains the pointer value associated
 with the key.

A=ISMDEL Delete key from index.

 This call deletes the specified key and associated pointer
 value from the index file.

 On entry: Y contains the file handle.

 On exit: The file position is reset.
 VS filing system error occurred; error
 code in A.
 CS Key not found; internal error code in
 A.
 REG1 contains the pointer value associated
 with the key.

A=ISMCLS Close file.

 This call closes the file; it both calls the filing system
 to close the file, and closes the file within ISAM as well.
 This is slightly different from the ISMOPN call, which
 requires the filing system open call to be separate.

 On entry: Y contains the file handle.

 On exit: VS filing system error occurred; error
 code in A.

A=ISMPRE Return previous key in index file.

 This call returns the pointer value of the previous
 sequential key in the index, from the current file position.

 On entry: Y contains the file handle.

 On exit: VS filing system error occurred; error
 code in A.
 CS Beginning of file; internal error code
 in A. The file position is moved back
 by one.
 REG1 contains the pointer value associated
 with the key.

Printer Control Routines

The printer control routines handle the printer driver for the utility. A printer driver must be loaded from
ViewStore Command Mode before calling the utility, or the default printer driver in the ROM is used.

26

25th June 1992Support Group Application Note No. 012, Issue 1

Support Group Application Note No. 012, Issue 1

Highlights can be sent to the printer driver from a utility, but there is no provision for handling of the printer
options byte or microspacing. Highlights begin at 128 for highlight 1.

A utility can test the state of the printer by examining the location PRNFLG. If bit 7 of PRNFLG is set,
then the printer is switched on. If bit 6 of PRNFLG is set, then the printer is not actually on, but waiting: a
call to PRNON will switch on the printer.

The printer should be switched off before reporting errors.

ASKPRN Ask about printer.
 PRNON Switch waiting printer on.
 PRNOFF Switch printer off.
 PSCOUTT Send character to printer/screen vector.

ASKPRN

This routine prompts the user with the question "Screen or Printer (S,P)?". According to the response, bit 6
of PRNFLG is updated to indicate whether the printer is waiting. If bit 6 is set, a subsequent call to
PRNON by the utility will switch on the printer.

On entry: No entry conditions.

On exit: PRNFLG Bit 6 set if printer is waiting; clear if
 screen is to be used.
 A,X,Y undefined.

PRNON

If the printer is waiting, that is bit 6 of PRNFLG is set, a call to PRNON will switch it on, calling the printer
on routine in the printer driver.

On entry: No entry conditions.

On exit: A,X,Y undefined.

PRNOFF

If the printer is switched on, a call to PRNOFF will switch it off.

On entry: No entry conditions.

On exit: PRNFLG Bit 7 clear. Bit 6 unaltered.
 A,X,Y undefined.

27

25th June 1992Support Group Application Note No. 012, Issue 1

Support Group Application Note No. 012, Issue 1

PSCOUT

This routine vectors characters either to the screen or the printer, depending which is enabled. A utility
which wishes to use the printer optionally should send all output to this routine, and in conjunction with the
ASKPRN, PRNON and PRNOFF calls, output can be directed by the user of the utility to the screen or
printer, depending on his answer to the ASKPRN question.

PSCOTT automatically strips off trailing spaces from printer output.

On entry: A contains character to be printed. Highlight
 codes begin at 128 for highlight 1.

On exit: A,X,Y preserved.

Summaries

Table 1 - Routines and Addresses

Routine Address Temporaries Altered

PSCOTT &802A
KINCH &802D
PRNON &8030 10
PRNOFF &8033 10
ISAM &8036 01,02,03,04,05,06,08,10,14
FONE &8039
FTENFX &803C
FTENFQ &803F
FADDW1 &8042
FTENX &8045
GETXFL &8048 04,05,06,06,11
INIIMF &804B 00,04,05,06,07,10,11,12
CMPFLD &804E 01,02,03,04,05
RELLIN &8051 06,07,08
FRDDK &8054 04,05,10
FTST &8057
FNEG &805A
FCLR &805D
FADDW &8060
FDIVA &8063 LWORK
FMULX &8066
REPERL &8069 04,05,06,07,10,11,12
SETDPS &806C
GETFRC &806F 04,05,06,07,11
OUTDEC &8072 04,10,11
NXTIMF &8075 03,04,05,10
SCHFLD &8078 02,03,04,05,06,07,11
CHKEOR &807B
CHKEOF &807E
PSTRNG &8081 12

28

25th June 1992Support Group Application Note No. 012, Issue 1

Support Group Application Note No. 012, Issue 1

MULPLY &8084 05,10
GETDEC &8087 05,10
ADJVAL &808A 01,02,03,04,05,06,07,10,11
CALUTI &808D 03,04,05,06,07,08,09,10,11,12,LWORK
SKPCBL &8090
STXPRE &8093 05
MOVFBK &8096
MOVNAY &8099
CHKDIR &809C 05
SETDIR &809F 04,05
OSHCAL &80A2
CRTIX &80A5
GETKYW &80A8 02,04,05,06,07,10,11
IDXSCH &80AB
GETIXN &80AE
GETWID &80B1 04,05,06,07,10,11
CALSBN &80B4 04,05,06,07,10,11
SIZFLD &80B7
GETFLD &80BA 04,05,06,07,11
SCHFLN &80BD 02,03,04,05,06,07,11
ASKPRN &80C0 06,07,08,12
OPFILE &80C3
XOSCLS &80C6
XOSBGE &80C9
XOSBPU &80CC
XOSGBP &80CF
XOSARG 780D2

Table 2 - Field Numbers of the Header

DIFDES 1 Description
DIFDSM 2 Display mode S/C
DIFRCS 3 Record size
DIFCAP 4 Capacity
DIFIDX 5 Index field
DIFSCM 6 Screen Mode

Table 3 - Field Numbers of the Format File

RFFFNA 1 Name
RFFWID 2 Width
RFFTYP 3 Type
RFFPOX 4 X screen position
RFFPOY 5 Y screen position
RFFALS 6 Scroll Y/N
RFFDCP 7 Decimal places
RFFRLO 8 Low limit
RFFRHI 9 High limit
RFFIDX 10 Index Y/N

29

25th June 1992Support Group Application Note No. 012, Issue 1

Support Group Application Note No. 012, Issue 1

RFFKYW 11 Key width
RFFIXN 12 Index name
RFFPRO 13 Prompt
RFFVLS 14 Value list

Table 4 - ISAM Commands

ISMFLO 0 open file
ISMSCH 1 search
ISMINS 2 insert key
ISMNXT 3 next key
ISMDEL 4 delete key
ISMCLS 5 close file
ISMPRE 6 previous key

Table 5 - ISAM Internal Errors

ISEFLO 0 file already open
ISEKXP 1 beginning of file for previous key
ISELSK 2 end of file for next key
ISEKXI 3 key already exits
ISENKF 4 no key found

Table 6 - Memory Layout

ViewStore variables available for read by the utility

VWSLIM &B memory limit

FILMOD &44 editing file or not
PRNFLG &47 printer flag
XSSAVE &48 stack save for filing system
SSAVE &49 stack save for ISAM & FP
CURCHN &4A intermediate file channel
EFILE &4B main file channel
REG1 &4C 4-byte register

Temporaries

TEMPFD &50 single byte temporaries
TEMPFE &51
TEMPFF &52
TEMP00 &53
TEMP01 &54
TEMP02 &55
TEMP03 &56
TEMP04 &57

30

25th June 1992Support Group Application Note No. 012, Issue 1

Support Group Application Note No. 012, Issue 1

TEMP05 &58
TEMP06 &59 two byte temporaries
TEMP07 &5B
TEMP08 &5D
TEMP09 &5F
TEMP10 &61
TEMP11 &63
TEMP12 &65
TEMP13 &67
TEMP14 &69

VWSSTZ &6B start of zero page workspace

FACCS &6B floating point accumulator
FACCXH &6C
FACCX &6D
FACCMA &6E
FACCMB &6F
FACCMC &70
FACCMD &71
FACCMG &72

FWRKS &73 floating point work accumulator
FWRKXH &74
FWRKX &75
FWRKMA &76
FWRKMB &77
FWRKMC &78
FWRKMD &79
FWRKMG &7A

VWSXTZ &7E start of free if using FP

OSFARA &500 OSFILE/OSHCAL work area

LWORK &50D work area - 16 bytes

FBLOCK &563 filename work area - 27 bytes

VWSSTL &5D3 start of language workspace
LINBUF &5DC line buffer/ISAM key buffer (256 bytes)
VWSXTL &6DC language workspace after LINBUF
VWSITL &799 start of language workspace if using ISAM.

Table 7 - Offsets for Prefixes

DATPRE 0 data prefix
FMTPRE &E format prefix
IDXPRE &1C index prefix
SRTPRE &2A sort prefix

31

25th June 1992Support Group Application Note No. 012, Issue 1

Support Group Application Note No. 012, Issue 1

UTIPRE &38 utility prefix

Table 8 - Offsets for Filenames

EFLNAM &1B data file name
FFLNAM &2B format file name
PRNAME &35 printer name
UTINAM &42 utility name
ARGNAM &4F name work area

Table 9 - Error Codes

MEMERR 1 not enough money
MISERR 2 mistake
NEMERR 3 no end marker
BDFERR 4 bad file
ENDERR 5 end of data
NUMERR 6 not numeric
RANERR 7 range error
VLSERR 8 value not in list
TBGERR 9 overflow
REAERR 10 read error
RTBERR 11 record too big
BDIERR 12 bad directory
BDNERR 13 bad name
FLNERR 14 field not found
FNOERR 15 file not open
TMFERR 16 too many files
SKFERR 17 stack overflow
NOFERR 18 no index field
DATERR 19 bad date
NFSERR 20 no fields on screen
BDMERR 21 bad mode
ESCERR 22 escape
NDSERR 23 normal display
FDSERR 24 format edit disabled
DMOERR 25 data mode only
BPRERR 26 bad prefix
DCPERR 27 too many places
FNIERR 28 field not indexed
BDPERR 29 bad pointer
BFSERR 30 bad FS

FNXERR 127 x not found

32

25th June 1992Support Group Application Note No. 012, Issue 1

Support Group Application Note No. 012, Issue 1

Table 10 - File Format

&9 end of field marker
&D end of record marker
&1 end of file marker
&3 space character
&2 deleted character
&0 file pad character

Each Field in the record is terminated by an end of field marker.

Each record in the field is terminated by an end of record record.

The file is terminated by an end of file marker.

Any expansion space in a record is represented by multiple space characters after the last end of field
marker, but before the end of record marker.

A deleted record is represented by multiple deleted characters followed by an end of record marker.

Any padding space between the end of file marker and the physical end of file is filled with file pad
characters.

33

25th June 1992Support Group Application Note No. 012, Issue 1

Support Group Application Note No. 012, Issue 1

