16th January 1992

Support Group Application Note ‘

Acorn®

Issue: 1
Author:
HOW TO WRITE A
VIEWSTORE UTILITY
Applicable Related
Hardware : Application
BBC B Notes: Viewstore Hints and Tips
BBC B+

BBC Master 128
BBC Master Compact

Copyright © Acorn Computers Limited 1992

Every effort hasbeenmadeto ensurethatthe informationin this leafletis true andcorrectat

thetime of printing. However,the productsdescribedn this leafletaresubjectto continuous Support Group
developmenandimprovementsand Acorn Computerd.imited reserveshe right to change o
its specificationsat any time. Acorn Computerd.imited cannotacceptliability for any loss Acorn CompUters Limited
or damagearising from the use of any information or particularsin this leaflet. ACORN, Acorn House
ECONET and ARCHIMEDES are trademarks of Acorn Computers Limited. ..

Vision Park

Histon

Cambridge CB4 4AE

Support Group Application Note No. 018sue 1 25th June 1992

HOW TO WRITE A VIEWSTORE UTILITY
by Mark Cotton, author of VIEW, VIEWSHEET AND VIEWSTORE

Sincethe availablespacefor ROM codeis limited to 16k, ViewStorehasprovisionfor extraprogramsor

utilities thatexistoutside theROM to be used.ViewStoreis suppliedwith severalutilities thatsupplement
the ROM, and has an interfacebuilt into it to allow utility programsto use routinesinside the ROM.

Certain areasof memory are also allocatedfor use by utility programs. Given the knowledgeof the

interfaceand memoryallocation,it is possibleto write extra utilities for ViewStore. The purposeof this

documentis to define the utility interfaceto enablethird partiesto write their own utilities. A good

knowledge of ViewStore and assembly language will be essential.

The Interface

Variousroutineswithin the ROM areavailablefor useby utilities. Theroutinesprovidethe utility with the
meansto accesdormat files and datarecordsandindexesandassorteduseful functions. The ROM hasa
jump table at the beginning which directs calls to the various routines in the ROM.

As well asaccesdo the ROM routines,the utility hasmemoryallocatedto it. Threeareasof memoryare
available to a utility:

A section of zero page
A section of language absolute workspace
A section of main memory

The amountof zero pageandlanguageworkspaceavailableto a utility dependuponwhich ROM routines
the utility is going to use. The size and position of the piece of main memory availablecan only be
determinedvhenthe utility is run: pointersto the startand endf the mainworkspacearepassedvhenthe
utility is started.

The zeropage languagenvorkspaceand main memorynot availableto the utility is usedby the ViewStore
ROM itself. A utility should not alter this memory, but the addresses of some locations are defined to allo
utilities to read useful parameters.

Utility For mat

The formatof a utility mustconformto certainrules. Whena utility is locatedandloadedfrom the filing
system \ViewStorerelocateshe codeto run at a particularpoint inmemory. This point variesaccordingto
the size of the format file loadedandthe MOS "high water mark”. On machineswith secondprocessors
attached\ViewStorerelocateghe utility to runin the spaceleft abovethe ROM: from &C000 to &F800.
Using this relocating system, ViewStore make optimum use of the memory available.

Sinceit is not easyto write positionindependentodefor the 6502,the ROM includesa relocatingsystem.
The utility must provide certaininformation aboutitself to enablethis systemto work. The format of a
utility is as follows:-

Support Group Application Note No. 018sue 1 2

Support Group Application Note No. 018sue 1 25th June 1992

.Start JMP code

EQUW bitmap-start

EQUW start

EQUS "version no/copyright string”
.code /utility code begins here

/end of utility code
.bitmap /relocation bitmap
/end of utility

The first word after the initial JIMP gives the offset from the beginningof the utility to the relocation
bitmap.

Sincethe utility is relocatedafter beingloaded the actualassemblyaddresss notimportant,but ViewStore

must be told at what address the utility has been assembled, so that it can calculate how much needs to |
addedor subtractedrom the addresseto berelocated. The secondword afterthe JIMP givesthe assembly
address. This &2000 for most of the supplied utilities.

The versionno/copyrightstring is not essentialput it's a goodideato include one so that you canidentify
the code.

Themain hurdlefor anyonewriting their own utilities will bethe generatiorof therelocationbitmap. This
identifies the addresses that must be relocated. There is a bit in the bitmap for every byte of code in
theutility, excludingthe bitmapitself. A bit setto zeroindicatesthatanaddresss notto berelocateda bit
set to one indicates that an address is to be relocated.

It is only possibleto relocateaddressesising this system,not single bytes. This meansthat it is not
possible to set up or move addresses using immediate data:

LDA #place

STA var

LDA #place AND &FF
STA var+1

is not allowed. You must use the form:

LDA palcew

STA var

LDA placew+1

STA var+1
placed EQUW place

In the bitmap, a bit which is setis takento refer to a 16 bit addresswithin the program;it is therefore
impossible to have two adjacent bits set since the second bit it referring to the high byte of the address.

Support Group Application Note No. 018sue 1 3

Support Group Application Note No. 018sue 1 25th June 1992

Given eight adjacentbytes,all representedby a single byte in the bitmap, the most significantbit in the
bitmap byte corresponds to the first code byte, and the least significant bit to the last code byte.

As anexample: thefirst byte of arelocationbitmapalwayscorrespondso the IMP andEQUW structureat
the beginningof the utility. Assumingthatyou havea copyrightstring (which containsno addresseto be
relocated), the first byte of the bitmap should always be &44. The bit string for this is:

MSB LSB
01000100

Thefirst threebits correspondo the threebytesof the IMP instruction. The secondwo bytesof the IMP
instructioncontain theaddresdo jump to, which mustbe relocated. The first bit of the two bits for this
addresss thereforeset. The nexttwo bits correspondo the bitmapoffsetword. This remainsconstantor
anyloadaddresssothesetwo bits arezero. Thenexttwo bits arefor theassemblyaddresswhich will alter
astheutility is relocatedandthefirst bit is a 1 accordingly. Thelastbit is for thefirst byte of the copyright
string; zero since this has no addresses to be relocated.

The bitmapsfor the utilities which are suppliedwith ViewStore were generatedautomaticallyby an
assemblewhich is not availableon the market. If you aregoingto write a utility for ViewStore,you must
find a way of generating relocation bitmaps. This could be done in one of three ways:

Generate it by hand

Write a program to take an assembled utility and generate the bitmap
Modify an assembler to generate relocation bitmaps

Assemble it at two different addresses and write a program to compare
the two resulting code files. Those locations which have changed
need a set bit in the bitmap.

Hown e

For most people, the last option will be the simplest.
The Utility Environment

Most utilities will wantto operateupon existing databaseslt is possible though,to havea utility which
does not operate on existing data, but creates data, or doesn't act on data at all.

An exampleof thisis the SETUPultility, which createdlankdatabaseslt doesn'referto anyexistingdata.
Utilities which needto accesseither format files or datafiles mustfirst checkthat a databasénas been
loaded, and abort with an error message if there is no loaded database.

Thisis doneby checkingthelocationFILMOD. If FILMOD is non-zero, thera databasés loaded. If zero,
there is no database loaded.

Thenormalsequencef operationwill beto loada databasén ViewStore,with the LOAD command. This
loadsthe format file into memory, andocatesthe datafile. A utility is then startedwith the UTILITY
command. The utility canreadthe formatfile asit requires,andcanopenand procesghe informationin
the data file. It can use a subset of data identified by the select file.

Oncethe utility is running,it cantake control of the machineasit needso, usingthe memoryavailableto
it, and the ROM routines as required.

Support Group Application Note No. 018sue 1 4

Support Group Application Note No. 018sue 1 25th June 1992

Naming of Addresses

In this documentall locationand routineaddressewvill be referredto by name. Tablesof addresseand
values are at the end of the document.

You will noticethatthe namesof a block of addressebeingwith "TEMP". Theselocationsare available
for use by the utility as temporary storage, but some are used and altered by routines in the ROM.

Temporaries

Thenumberedemporariesreall eithera singlebyte or two byteslong. Thosefrom TEMPFDto TEMPO5
areall onebytelong; thosefrom TEMPO6to TEMP14areall two byteslong. The twobytetemporarieare
used to store and pass addresses; the single byte temporaries are used to store one byte quantities.

Often, valuesare passedo and from routinesusing temporariesas well asregistersin the CPU. Many
routines”corrupt” certaintemporariesa list of the temporariesa routine corruptsis givenin a summaryat
the end. Utilities can usdemporariesvheneverthey wish, but of coursetheir usemustnot clashwith any
routines that you call in the ROM.

Entry Parameters

When the utility is started, the following data is provided:
TEMP14 contains the start address of free main memory
VWSLIM contains the address of the byte after the last free byte

in main memory

VWSLIM will not changewhile the utility is running,andthe utility mustnot alter VWSLIM. TEMP14
may be altered by a ROM call, so it is best to store it somewhere else for later reference.

The utility is calledwith a JSRinstruction,andViewStoreexpectshe utility to handbackcontrol, whenit
is finished, with an RTS instruction.

.Start TSX

STX stksav
.error LDX stksav
TXS
RTS

Zero Page

Zero page is divided up into four areas of different types:

ViewStore variables read only for utilities. Below &50.
Temporaries TEMPFD-TEMP14. Start at &50. read/write for utilities; also used as
parameter areas and workspace for ROM routines.

Support Group Application Note No. 018sue 1 5

Support Group Application Note No. 018sue 1 25th June 1992

Floating point FACCxxand FWRKxx. Start at &6B. read/write for utilities; if the floating
accumulators point calls are not used by the utility. this area can be used as general
workspace.

General workspace VWSXTZ-&8F inclusive.

L anguage Workspace
LWORK 16 byte parameter block used by ROM routines.
FBLOCK 27 byte filename work area.
LINBUF 256 byte work area used by one or two ROM routines.
VWSXTL-VWSITL area used by ISAM index system. Can be used as general workspace if the

utility is not using indexes.
General workspace VWSITL-&7FF inclusive.

ROM Routines

I will describethe ROM routinesin the categorieghattheyfall into. Theroutineaddresseandparameters
aresummarisedn tablel. All routinesshouldbe calledwith a JSRinstruction,exceptfor CALUTI which
shouldbe calledwith a JMP instruction,sincereturningcontrol to the utility is not usually sensibleasthe
new utility will overwrite the old one in memory.

Data File Controal

Theseroutinesgive the utility accesdo the databaselatafile, usingthe currentselectfile if required. It is
only possible to read sequentially through the data file using these calls, but the data will be returned in
sorted order if the selected data was sorted.

The utility shouldnot closethe intermediatdfile if it usesit. This is doneautomaticallywhen controlis
returned to the ROM.

INIIMF Initialise data sequence. Called to start the data
reading sequence.

MXTIMF Get next from data sequence. Each call returns the
next data record in the sequence.

INITMF

This routine is called to initiate a sequenceof datatransfers. It opensthe main datafile, and storesits
handlein thelocationEFILE. Accordingto the stateof the carryflag on entry, it asksthe userif hewishes
to use aselectfile. The userrespondswith a yesor no, and ViewStoreopensthe selectfile (S.database)
accordingly. After this, the selectfile is transparento the utility; repeateccalls to NXTIMF will either
returnall the recordsin the datafile if the selectfile is not beingused,or the subsef recordsin the select
file, if specified.

Support Group Application Note No. 018sue 1 6

Support Group Application Note No. 018sue 1 25th June 1992

On entry: CcC Don't ask "Use select file (Y,N)?" question.
CS Ask select file question.

On exit: VC No error.
VS Error; error code in A.

NXTIME

After startingthe sequencavith a call to INIIMF, repeatectallsto MXTIMF returntherecordsin the data
file one by one.

Onentry: A low byte of address to store record.
Y high byte of address to store record.
TEMP13 address of the byte after the last byte
available to store the record.

On exit: VC No error.
VS Error; error code in A.
CcC Not end of file.
CS End of file (returned on the call after the

last record has been processed).
Errors

Many of the ROM routinescanreturnan errorstatus. An erroris usuallyindicatedby eitherthe Carryflag
(C), or the Overflowflag (V). Whenan erroris indicated the errorcodeis in the A register. To reportthe
error to the user,call the routine REPERLwith this codeA. The variouserror codesand messagesire
summarisedater. A utility can use &ROM error messagey loading the appropriatecodeinto A, and
calling REPERL.

All file callshavethe sameerrortrappingsystem:afteracall, V is setto indicateanerror,clearif therewas
no error. Thisincludeserrorscausinga BRK, thatis controlis returnedto the calling routineevenwhena
BRK is occurred. Whenyou call REPERLwith thereturnederror codethe BRK messagevill bereported
as normal.

REPERL

Reports the error message for the error code in A:

Onentry: A contains error code.

On exit; AXY undefined.

Field and Record Control

Much of ViewStore'smanipulationis on fields andrecords;accordingly thereare severaloutinesavailable
to makethis easier. Thereare someroutinesto locatefields in the headerformatfile or currentrecord;
routines to compare field values; and routines to find the size of a given field.

Support Group Application Note No. 018sue 1 7

Support Group Application Note No. 018sue 1 25th June 1992

Most of theseroutinesusethe two temporariesSTEMPO06 and TEMPO7. TEMPOG6 pointsto either a field

within the format file, or a field within the currentrecord. TEMPO7 pointsto a field within the current
record. TheY indirectindexedaddressingnodeis usedin conjunctionwith thesetemporarieto accesghe
field contentsithe temporarypointsto the beginningof the field, andthe Y registergivesthe offset from

there.

Remembethat the format file itself is in the sameformat as a datafile. The sameroutinesare usedto
processnformationin recordsof the databasesin the formatfile itself. For eachfield in the database,
thereis arecordin the formatfile, andthis recorddetailsthe characteristicsf its correspondingdield in the
database. The header record is the first record in the format file.

Data Format

The dataformatis summarisedn table 10 atthe endof thedocument.All fieldsin ViewStorearestoredin

ASCII, evennumbersanddates;eachfield endswith anendof field marker;eachrecordendswith an end
of recordmarker;andthefile endswith anendof file marker;afterthe endof file marker,thefile is padded
up to the physicalendof file with null characters.If you areprocessing field's contentsyou shouldtest
for the endof field usingthe CHKEOF and CHKEOR routines. Theseroutinessetthe flags accordingto

the character that they find. Don't check for the character value explicitly.

Generally whenyou makea call to aroutinethatlocatesafield, the x registerindicateswherethefield is to
be found:

X=0 Field in header; A has field number.

X=11t0 254 Field in format file; X gives format file record number;
A has field number. The field numbers of the various format
file fields are summarised below.

X=225 Field in current record; A has field number; Y has record

number.

Fieldswithin a recordare numberedrom 1 to 254. If you askfor a field which is notin the recordthe
routinewill returnwith the Carryflag set. WhereasviewStoreknowswherethe formatfile is located,the
addressof the currentrecord could be anywhere,and before fields within the currentrecord can be
accessed, you must tell ViewStore its address with the SETDPS routine.

GETFLD General field locate routine; can locate a field in the
header, format file or current record.

GETFRC Find the address of a field in the current record.

GETXFL Return first non-space character of a field in the A
register, folded to upper case if applicable.

SETDPS Set the address of the beginning of the current record.

CHKEOF Check the character in the A register for an end of field
character.

CHKEOR Check the character in the A register for an end of
record character.

SIZFLD Return the size of a given field.

CMPFLD Compare two fields of the same type and set the flags.
SCHFLD Return the number of a field, given its name.
SCHFLN Return the next field number, given a name, for an

ambiguous name specification.

Support Group Application Note No. 018sue 1 8

Support Group Application Note No. 018sue 1 25th June 1992

GETWID Return the display width for a particular field.

GETKYW Return the key width for a particular field.

CALSBN Calculate the number of spaces required to be output
before a numeric field to right justify it within the
display width.

GETFLD

This routinelocatesafield in eitherthe databasdeaderthe formatfile or the currentrecord. If thefield is
in the currentrecord, theaddressof the first characterof the field is setinto TEMPO06 and also into
TEMPO?7. If thefield is in the formatfile, TEMPOQ7is left unalteredandthe addresof thefield is putinto
TEMPOG.

If X is equalto 255, thentheroutineusesthe valuein the Y registerto locatea recordin a list of current
records. The list of records is numbered from 0 onwards. The usual way to use this part of the routine w
be with Y setto zero,in orderto locatea field within a single currentrecord. If you areusinga list of
records thenyou mustnot setY to too high a value,sothatthe routinerunsoff the endof thelist, unless

you have an end of file marker after the last record.

Before you use this routine, you must have set the position of the first recordin the list by using the
SETDPS call.

Onentry: A field number of field to locate; field start
at 1.
X=0 find field in header record.
X=1to find field in format file record; X gives the
X=254 number of the format file record.
X-255 find field in list of current records; Y has
the number of the record to search, starting
at zero.
Y only significant if X=255.
On exit: CS field or record not found; TEMPO06 (and TEMPO7

if X=255) point to the end of record marker if
field not found, the end of file marker if
record not found.

CcC field and record found; TEMPO6 points to the
beginning of the field; if the call was made
with X=255 then TEMPOQ7 also points to the
beginning of the field.

AY undefined.

X preserved.

GETFRC

This call first setsX to 255, andthencallsthe GETFLD routine. The entry andexit conditionsare asfor
GETFLD when X-255, except that X will always return set to 255.

Support Group Application Note No. 018sue 1 9

Support Group Application Note No. 018sue 1 25th June 1992

GETXFL

GETXFL returnsthe first non-spacecharacteiin a field, folded to uppercaseif alphabetic. It is intended
primarily for reading the value of single character fields in the format file, such as the "Field type" field.

GETXFL first calls the routine GETFLD. The entry conditionsarethe sameas GETFLD. If thecall to
GETFLD fails, ie the Carry flag is set,thenthe A registeris cleared,andthe routineends. If thefield is
found,thenthefirst characteof thefield is returnedfoldedto uppercaseif alphabetic.If thefield is blank,
then the end of field marker will be returned.

On entry: See GETFLD

On exit: TEMPO6 and TEMPOQ7 set as for GETFLD.
CS field or record not found, as GETFLD; A set to
zero.
CcC field found; A contains first non-space
character, folded to upper case if alphabetic.
XY See GETFLD.

SETDPS

This routine storesthe addresf the recordsto be usedwhenusingoneof thefield locateroutineswith X
setto 255. It shouldbe calledwhenevethe addresof oneof therecordsn thelist or of oneof thefieldsin
the recordshasaltered. It neednot be calledif noneof the fields hasmoved,sinceViewStorewill keep
trackof its positionin thelist of recordsandmovebackwardsor forwardsasnecessaryo find thefield you
have asked for.

If you arereadingrecordsone by oneusingthe NXTIMF call, for example thenyou mustcall SETDPS
with their addresf therecordfor eachrecordthatyou read:the alignmentof thefields will alterfor each
record.

Onentry: A contains low byte of the address of the first
record in the list.
Y contains the high byte of the address of the

first record in the list.

On exit; A XY undefined.

CHKEOF

CHKEOF checksthe charactelin the A registerfor an endof field marker. It shouldbe usedratherthan
checking for the characterexplicitly since it handlesclassesof charactersrather than single values.
Generally,it is not necessaryo detectillegal charactergxplicitly, it is enoughto detectthemasan endof
field marker.

Onentry: A contains character value to be checked.
On exit: EQ end of field.
CS end of record (EQ also set).

Support Group Application Note No. 018sue 1 10

Support Group Application Note No. 018sue 1 25th June 1992

VS illegal character (EQ also set).
AXY preserved.

CHKEOR

CHKEOR checks the character in the A register for an end of record marker.

Onentry: A contains character to be checked.
On exit: EQ end of record.
CS end of file (EQ also set).
VS space character (EQ also set).
AXY preserved.
SIZFLD

SIZFLD is providedto allow you to determinethe size of afield. First of all you shouldlocatethe field,
using one of the field locator routines such GETFLD, which set up TEMP06. Then call SIZFLD.

Onentry: TEMPOG6 points to the beginning of the field.

On exit: AY have length of field in characters.
EQ zero length field.
X preserved.

TEMPO6 preserved.

CMPFLD

CMPFLD compareghe valuesof two fields of the sametype, andsetsthe 6502flagsregisterlike the CMP
instruction. TEMPO7 pointsto thefirst field (equivalentto the contentsof the 6502 A registerin the CMP
instruction),and TEMPO6 pointsto the secondfield. If the two fields being comparedare strings,then
wildcards are allowed in the second string.

Onentry: A contains the field type: A, N, D or Y; must
be in upper case.
TEMPO7 points to field 1.
TEMPO6 points to field 2.

On exit: VS error in one of the fields supplied: eg
illegal date; result not valid.
C flag set according to compare.
Z flag set according to compare.
AX,Y undefined.

Support Group Application Note No. 018sue 1 11

Support Group Application Note No. 018sue 1 25th June 1992

SCHFLD

SCHFLDis usedto find thenumberof afield, givenits name. It searcheshelist of fields in the formatfile
until it finds onethat fits the namegiven. The namethat you specify can obtainwild cards:the single
wildcard"?", andthe multiple wildcard"*" arebothallowed. SCHFLD will alwaysreturnthefirst field in
the format file that fits the nameyou havegiven. You can either continuesearchingfor more fields by
using the SCHFLD call described next.

The nameof thefield is setupin the 16 byte LWORK area. It shouldbe terminatedoy a null, or anendof
field marker. It must not be longer then 16 bytes, including the delimiter.

Onentry: LWORK contains name to search for; maximum of 16
bytes including delimiter; delimiter null
or end of field marker; wildcards "?" and

"*" yalid.
On exit; CS no field found to match the name; A has
error code.
CC field found OK; field number in X.

SCHFLN

After calling SCHFLD, you cansearchfor otherfields which alsofit the field specificationthat you gave
given, by makingrepeatectalls to SCHFLN. Beforeyou call SCHFLN, you musthavecalled SCHFLD
first, to start the sequence, and this call must have successfully found a field.

You cankeepcalling SCHFLN until the call returnswith the Carryflag setto indicatethatit hasfound no
more fields.

On entry: Must have called SCHFLD first, and this
must have returned with the Carry flag
clear.
A Contains field number to start searching
from. This should be one more than the
last value that SCHFLD or SCHFLN returned

in X.
On exit: CS no more fields found; A has error code
(report only if required).
CC field found; field number in X.

GETWID

GETWID returnsthe displaywidth of a field, asdefinedin the formatfile. If thereis no displaywidth
defined, a series of defaults comes into action.

Display width defined Display width
No display width, Sheet mode 18
No display width, Card mode 0

Support Group Application Note No. 018sue 1 12

Support Group Application Note No. 018sue 1 25th June 1992

Onentry: X contains number of field for which width is
required.
On exit: CS field doesn't exit.
CcC field found; A has display width.
X preserved.
Y undefined.
GETKYW

This routine finds the key width for a given field. It usesthe value definedin the format file, if any;
otherwise a system of defaults operates:

Key width defined Key width
No key width, display width defined Display width
No key width or display width 10
Onentry: X contains number of field for which width is
required.
On exit: CS field doesn't exist.
CcC field found; A has already width.
X preserved.
Y undefined.
GETKYW

This routine finds the key width for a given field. It usesthe value definedin the format file, if any;
otherwise a system of defaults operates:

Key width defined Key width

No key width, display width defined Display width

No key width or display width 10

Onentry: X contains the field number for which the key

width is required.

On exit: A contains key width; if field doesn't exist, a
default key width of 10 is returned.
X preserved.
Y undefined.
CALSBN

This routineis usedwhendisplayingnumeric fieldsto calculatethe numberof spacego be outputbefore
the numberin orderto right justify the numberwithin its field width. This also takesinto accountthe
decimal places specified in the format file.

Support Group Application Note No. 018sue 1 13

Support Group Application Note No. 018sue 1 25th June 1992

Onentry: X contains the field number.
TEMPO7 points to the beginning of the field in
guestion.

TEMPO3 contains the field display width, as returned
by the GETWID routine.

On exit: A gives number of spaces to output, zero if the
number is wider than the field, or there are
too many decimal places.

X undefined.
Y undefined.
TEMPO3 preserved.
TEMPO7 preserved.

File Control

File handlingin ViewStoreis centredaroundthreethings:errorhandling,FBLOCK andprefixes. Sincethe
error handling providedy the normalfiling systeminterfaceprovidedis completelyunsatisfactoryfor a
programsuchasViewStore,| havedeveloped systemwhich givescontrol of whathappensaftera discor
filing systemerror. For the utility writer, this systemis transparentyou canforgetaboutit aslong asyou
usethecallsprovided,anddon'tcall thefiling systemdirectly. If you do this, you canforgetall aboutBRK
errors and handlers.

The systemis the samefor all file calls: the stateof the Overflow (V) flag indicatesaftera call whether an
error hasoccurred. If therehasbeenan error,thenthe V flag is set,andthe A registercontainsthe error
code. If you detectan error,you shouldunravelyourselffrom any routines,reportthe error by calling the

REPERLroutine,andthencloseanyfiles thatyou haveopenedyourself,beforereturningto control of the

ROM. You shouldn'tclosethe intermediatdfile: this is doneautomaticallywhencontrolis passedackto

the ROM.

Filenames

FBLOCK is a small of memoryusedto storeand manipulatefilenames. Severalroutinesare provided
which work on the filename in FBLOCK, altering directories and prefixes.

A filename in ViewStore is made up of threes parts:

Prefix
Directory
Name

ViewStoremaintainsa list of the currentprefixesfor eachdifferentfile type: data;format; sortandsoon.
A routine which addsa specifiedprefix to a directory and namestoredin FBLOCK is available. The
maximumlengthof a prefix is 13 charactersexcludingdelimiter. The currentprefixescanonly be altered
with the PREFIX command in ViewStore's Command Mode.

Support Group Application Note No. 018sue 1 14

Support Group Application Note No. 018sue 1 25th June 1992

ViewStoreconsiderdirectoriesto be single characterpf coursethe prefix caninclude multiple character
directories,but the filenamesof dataand format files, for example,beginwith directories,and theseare

alwayssinglecharactedirectorynameswhateverthefiling system. Directoriesmustbe separatedrom the

name itself by a dot, making the total size of the directory section of a flename 2 characters.

The namepart of the filenamecanbe up to 10 characterdong. This doesnot include thedirectory and

separator, or the delimiter. Names are always delimited with a Carriage Return character.

Part Max. Size (exc. delimiter) Example

Prefix 13 2.

Director 2 d.

Name 10 datafile

MOVFBK Moves a filename from the store area into FBLOCK.

MOVNAY Moves a filename out of FBLOCK into the store area.

CHKDIR Checks for the presence of a directory in a filename in
FBLOCK, and returns the directory character, if there is one.

SETDIR Sets a directory into a filename in FBLOCK.

STXPRE Stores the required prefix with a flename in FBLOCK.

OPFILE Gives access to the filing system OSFIND call.

OSHCAL Gives access to the filing system OSFILE call.

XOSARG Vector with error trapping to OSARGS.

XOSBGE Vector with error trapping to OSBGET.

XOSBPU Vector with error trapping to OSBPUT.

XOSCLS Vector with error trapping to OSFIND with A=0; used to close a file.

XOSGBP Vector with error trapping to OSGBPB.

CALUTI Loads and runs a utility format file.

MOVFBK

MOVFBK movesa filenamefrom ViewStore'slist into FBLOCK. A summaryof the filenamesavailable
andtheir offsetsis givenin table8. Filenamesarenot storedwith prefixesattachedbuttheydo includethe
directory. You mustusethe routine STXPREto add a prefix to the filenameonceit hasbeenmovedto
FBLOCK, before calling one of the file routines.

Onentry: Y contains the offset of the filename to be
moved into FBLOCK.

On exit: AX)Y undefined.

MOVNAY

Thisroutineis theinverseof MOVFBK; it movesa filenamefrom FBLOCK into ViewStore'dist of names.
The filenamein FBLOCK shouldnot include theprefix whenthis routineis called. The list of filename
offset values is given in table 8.

Support Group Application Note No. 018sue 1 15

Support Group Application Note No. 018sue 1 25th June 1992

Onentry: X contains the offset of the filename area in
which the name currently in FBLOCK is to be
stored.

On exit: AX,Y undefined.

CHKDIR

CHKDIR checkswhetherthe filenamein FBLOCK has adirectory,andif it does,it returnsthe directory.
The filename should not include the prefix when this routine is called.

On entry: filename to check in FBLOCK.
On exit: CS filename contains directory; directory

character found returned in A; offset from
beginning of FBLOCK to the directory character

isin X.
CcC no directory found.
Y undefined.

SETDIR

SETDIR forcesa directory into the filenamein FBLOCK. It doesn'tmatterwhetherthe flenamethere
containsa directoryor not; SETDIR will makespacefor it. The filenamemustnot includea prefix when
SETDIR is called.

Onentry: A contains directory character to set into name
in FBLOCK.

On exit: AX)Y undefined.

STXPRE

Thisis theroutinethatyou useto adda prefix to aname. The nameitself, includingdirectory,shouldbein
FBLOCK. Normally, addingthe prefix to a nameis the lastthing you do beforecalling thefiling systemto
do someoperationon the file: openingor deletingthe file, for example. Namesthemselveshould be
stored without prefix attached, the prefix being added only when calling the filing system itself.

A list of the prefix offsets for different file types is given in table 7.

Onentry: X contains the offset of the prefix required.

On exit; AXY undefined.

Support Group Application Note No. 018sue 1 16

Support Group Application Note No. 018sue 1 25th June 1992

OPFILE

OPFILE is anequivalentof thefiling system"OSFIND" call, usedfor openingfiles. It assumeshowever,
that the filenameis readyin FBLOCK. OPFILE cannotbe usedto closea file, as OSFIND can;usethe
XOSCLS call to close a file. OPFILE also uses the ViewStore error trapping system.

Onentry: A contains file open code, as for OSFIND,; eg.
&40 is open for input.

On exit: VS error occurred; error code in A.

VvVC no error occurred; file handle is in both A
and Y registers; usual OSFIND error of file
handle being zero when the file can't be
found is trapped: V is set, and the ViewStore
"File not found" error code isin A; Y is
Zero.

X undefined.

OSHCAL

OSHCAL givesthe utility accesgo the filing systemOSFILE routine. It usesthe OSFARA areaasits
controlblock. Note that thisspills overinto the LWORK area,which will be corruptedafteran OSHCAL
call. OSHCAL assumeshatthe filename(whenrequired)is setup in FBLOCK. OSHCAL alsosetsthe
high orderaddressemto the controlblock at OSFARA +4 and+5; +&C and+&D; andat+&10 and+&11.
ViewStore error trapping is also enabled.

Onentry: A contains reason code as for normal OSFILE
(see filing system manual).

OSFARA set up with whatever the reason code action

requires, eg. start and end addresses for file

save.
On exit: VS error occurred; error code in A.
VC completed successfully; file type in A when
relevant.
XY undefined.

XOSARG

XOSARG is equivalent to OSARGS, except that ViewStore error handling is enabled.

On entry: See filing system manual for OSARGS.
On exit: VS error occurred; error code in A.
VC no error; see filing system manual for
results.

Support Group Application Note No. 018sue 1 17

Support Group Application Note No. 018sue 1 25th June 1992

XOSBGE

XOSBGE is equivalent to OSBGET, except that ViewStore error handling is enabled.

On entry: See filing system manual for OSBGET.
On exit: VS error occurred; error code in A.
VC no error; see filing system manual for
results.
XOSBPU

XOSBPU is equivalent to OSBPUT, except that ViewStore error handling is enabled.

On entry: see filing system manual for OSBPUT.
On exit: VS error occurred; error code in A.
VC no error; see filing system manual for
results.
XOSCLS

XOSCLS s equivalentto OSFIND with A=0, in orderto closea file. ViewStoreerror trappingis also
enabled.

Onentry: Y contains handle of file to be closed.
On exit: VS error occurred; error code in A.

VC file closed successfully.

XY undefined.
XOSGBP

XOSGBP is equivalent to OSGBPB, except that ViewStore error handling is enabled.

On entry: See filing system manual for OSGBPB.
On exit: VS error occurred; error code in A.
VC no error; see filing system manual for
results.
CALUTI

CALUTI is providedto allow utilities to call other programsstoredin utility file format. The SELECT
utility, which is providedwith ViewStore,usesthis call to call the SORT programwhenit is required.
Parametersanbe passedetweenthe programsusingtemporariespr othermemoryspace. The CALUTI
call can be thought of as the logical equivalent of the Basic CHAIN statement.

Support Group Application Note No. 018sue 1 18

Support Group Application Note No. 018sue 1 25th June 1992

The utility shouldexit underthe prefix given for utilities; CALUTI appliesthe utility prefix to the name
given automatically. If the utility is not found, the "Insert utility disc and hit a key" messagewill be
generated, and ViewStore will wait until a key is pressed before continuing.

Onentry: A contains low byte of address of name of

utility to be loaded. Name must be terminated
by Carriage Return.

Y contains high byte of address of name of
utility to be loaded.

TEMP14 contains the address of the first byte of free
memory that the utility being loaded is to
use. This will normally be the same value as
passed to the initial utility.

On exit: VS error occurred; error code in A. Otherwise,
control is passed to the new utility.

Floating Point

Unfortunately,a discussiorof floating pointis outside thescopeof this document. However,certainof the
key routinesin a floating point packageare in the ROM itself, and entry points to theseroutinesare
provided. The REPORTutility which is providedwith ViewStore usestheseroutines,and implements
many moreinsideitself. Theroutinemostobviouslymissingfrom this setis a routineto outputa floating
point number in ASCII. If you wish to do this, you will have to work out how to do it yourself.

| canrefer you to the "AdvancedBasic Rom User Guide", publishedby the "CambridgeMicrocomputer
Centre",which containsuseful information aboutthe floating point packagein Basic,and how it works.
The floating point in ViewStore works in the same way.

Remembethatthereis no needto understandloating point towrite a utility, sincethe datein ViewStore
files is storedin ASCII format, not asfloating point numbers. Use of floating is only necessaryvhenyou
wish your utility to provide floating point arithmetic.

The twoaccumulatorsFWRK andFACC arein zeropage. If you arenot usingthe floating point package
in your utility, you can use the zero page allocated to the accumulators for your own purposes.

FONE Sets FACC to value of one.

FTENFX Multiplies FACC by 10 (not normalised).

FTENGQ Divides FACC by 10 (not normalised).

FADDWI Adds FACC and FWRK; answer in FACC, not rounded.

FTENX Multiplies mantissa by 10.

FRDDK Reads in ASCIl number to FACC. Low byte of address of string
in A; high byte of address of string in Y.

FTST Tests number of FACC and sets flags.

FNEG Swaps sign of number in FACC.

FCLR Sets FACC to zero.

FADDW Adds FACC and FWRK; answer in FACC, rounded.
FDIVA Divides FACC by FWRK; answer in FACC.

FMULX Multiples FACC by FWRK; answer om FACC.

Support Group Application Note No. 018sue 1 19

Support Group Application Note No. 018sue 1 25th June 1992

General
These routines are an assortment of useful subroutines for which entry points are provided.

GETDEC Get a decimal number.

KINCH Flush keyboard buffer, and get an input character.
MULPLY Multiply two single byte integers.

OUTDEC Output a decimal number.

PSTRNG Output a string.

RELLIN Read a line of input.

SKPCBL Skip blanks.

GETDEC

GETDECreadsa numberasan ASCII string and convertsit into binary. The maximumsize of a binary
numberthatit canreturnis two bytes. No errorsare generatedor overflows; GETDECwill returnthe
bottom sixteen bits of an arbitrarily large number.

Onentry: TEMPO6 points to start of string.
Y gives offset from beginning of string to start
of ASCII number; no leading blanks allowed.

On exit: A contains low byte of number.
X contains high byte of number.
Y is updated to point to the non-numeric
character that terminated the number.
EQ no number was found; A,X,Y undefined.
KINCH

Call this routine to get a characterof input from the keyboard. The keyboardbuffer is flushed first.
ESCAPEsare detectedand acknowledgedautomatically,usingthe OSBYTE 126 call, andthe Carry flag
indicates whether ESCAPE was detected.

On entry: No entry conditions.

On exit: CcC A contains input character.
CS ESCAPE was detected.

MULPLY

MULPLY multiplies two eight bit numbers together, giving a sixteen bit result:

Onentry: A contains an 8-bit number.
Y contains an 8-bit number.

On exit: A contains the low byte of the result.
Y contains the high byte of the result.

Support Group Application Note No. 018sue 1 20

Support Group Application Note No. 018sue 1 25th June 1992

CS if Y is non-zero (the result is greater than
255).
X preserved.

OUTDEC

Call OUTDEC to output a sixteen bit decimal number to the VDU.

Onentry: X contains the low byte of the number.
Y contains the high byte of the number.

On exit: AX,Y undefined.

PSTRNG

PSTRNGoutputsa stringin-line with the codeto the VDU. The stringmustbe delimitedwith a null, zero
byte.

For example: JSR PSTRNG
EQUS "This will be output to the VDU"
EQUB 0

On entry: Immediately following the JSR call, there is a

string delimited with a null. The string must
not be more then 256 characters long,
including the delimiter.

On exit: AY undefined.
X preserved.

RELLIN
RELLIN readsa line of input, andputsit into LINBUF. Theinputis terminatedwith a CarriageReturnor

an ESCAPE. The OSWORDO call is usedto get theinput. TEMPOGis left pointing to the beginningof
LINBUF, and Y gives the offset to the first non-space character in LINBUF.

On entry: No entry parameters.
On exit: LINBUF contains the line of input; maximum 256
characters.

TEMPOG6 points to LINBUF.
CMDPAR gives offset from TEMPOG to the first
non-space character.

CS ESCAPE terminated input.

Support Group Application Note No. 018sue 1 21

Support Group Application Note No. 018sue 1 25th June 1992

SKPCBL
SKPCBL skips spaces in a line of input, terminated by a Carriage Return.
Onentry: TEMPOG6 points to beginning of input string.

CMDPAR gives offset from start of string to start
skipping spaces.

On exit: CMDPAR gives offset to first non-space character
after initial value.
A contains first non-space character.
EQ hit CR at end of line, before non-space

character was found.

Thelndex System

The ViewStore ROM containsa set of routinesfor creatingand maintainingindex files. Theseare used
internally by codein the ROM, andalsoby the INDEX utility. Theyarevery powerfulandcould be used
by extra utilities to great effect.

You will be familiar with the way the ViewStoreitself usesthe index system. A utility could useindexes
side by side with the ROM, or it could build and maintain indexes for its own purpose.

In aViewStoreindexfile, you canstorea "key", andassociatavith the key a pointervalue,4 bytesin size.
Theykey canbe any string of ASCII charactersandthe pointervalueany four byteinteger,but usuallythe
pointer value is used to remember a record file address.

The characterghat makeup an index key mustbe betweenthe values32 and 254, inclusive. Sincethe
alphabeticalvalue of numbersanddatesis not the sameasthe valuewe generallywish thesedatatypesto
have(thatis numbersan numericalorder,anddatesin ageorder),the ASCII numberanddatefields asthey
are storedin ViewStore datafiles must be convertedinto anotherform before being sentto the index
system. A routine, ADJVAL, is providedto do this. Rememberif you are building or alteringan index
file, to use the ADJVAL routine on the key.

The index systemusesa techniqueakin to that of IBM's ISAM (indexedsequentialaccessnethod)and
VSAM (virtual sequential access method) systems.

Nearly all the calls to alter an index file are made through one routine, with a reason code: ISAM.

ISAM usessomeworkspacein the languageworkspacearea. If you re not using the index system,the
utility can use this workspace for its own purposes.

ADJVAL Routine to adjust values of different key types.
CCRTIX Create an index file.

GETIXN Return index name for a given field number.
IDXSCH Search for an index, given a field name.
ISAM General entry point to ISAM package.

Support Group Application Note No. 018sue 1 22

Support Group Application Note No. 018sue 1 25th June 1992

ADJVAL

This routineis called beforesendinga key to ISAM for an operation. It adjuststhe value of numberand
date fields into "index format", ready for ISAM.

If you give it a datevalueto adjust,it will checkthe validity of the dateasit is processinghe value. An
error codeis returnedif a problemis found with the date;in this casethe valueleft in the buffer will be
legal, but will be an incorrect conversion from the date that you supplied.

Onentry: X has field number of field being adjusted.

LINBUF has field value to be adjusted, delimited with

an end of field marker.

On exit: LINBUF contains adjusted field value.

CS error was found in date value.
CRTIX
CRTIX is usedto createa newindexfile. You mustsupplythe nameof thefile, andthe numberof bytesof
disk spacethatyou wish to reservefor thefile. If afile with the namethatyou haveexistsalready,it will
be overwritten.

The maximum amount of space that you can reserve is 65535 bytes.

Onentry: FBLOCK has filename of file that you wish to create,
with PREFIX already inserted.

A contains keysize of file.
X contains low byte of number of bytes to
reserve.
Y contains high byte of number of bytes to
reserve.
On exit: VC file created OK.
VS error occurred; error code in A.

GETIXN

GETIXN extractsthe name of the index for a particular field from the format file, and placesit in
FBLOCK, with the index prefix automatically inserted.

Onentry: X contains the field number of the field for
which you require the index name.

On exit: CC no error; name is in FBLOCK with prefix.
CS error occurred; error code is in A.

Support Group Application Note No. 018sue 1 23

Support Group Application Note No. 018sue 1 25th June 1992

IDXSCH

Givenafield namespecification(which may include thevildcards"?" and™*"), IDXSCH looksfor afield
with this name, and checks whether this field has an index switched on.

Onentry: LWORK contains field name to search for, which may
contain wildcards.
A contains field number of field to start

searching from.

On exit; cC field found OK; X contains number of field
found.
CS no field found; error code in A.
| SAM

ISAM is theroutinethatyou call to performoperationson anindexfile. The reasoncodeof the operation
you wish to perform is loaded into A. A summary of reason code values is given at the end in table 4.

All callsto ISAM updatethe CarryandOverflowflags. Thecarryflag indicateswhetheran"internal” error
occurred- suchas"No key found". The Overflow flag indicateswhenafiling systemerroroccurred- such
as "Disk fault”. A list of internal ISAM errorsis given in table 5. Note that you can't call the error
reportingroutineREPERLwith aninternallSAM errorcode;theinternalcodeis only for checkingwithin a
program.

Key valuesarepassedo ISAM in LINBUFI 4 byte pointervaluesarepassedn REG1. ISAM canhandlea
maximum of nine indexes open at one time. The maximum size of a key is 105 bytes.

Indexedsequentiafiles havethe two featuresthat you canlocatea particularkey by giving its value,and
thatyou canalso readup anddown theindexin key order. ISAM works by havinga "position”. Certain
calls set the file "position”, somemove the position up and down, and somecalls destroy theposition
altogether. The "Search"call setsthe file position;the "Next" and"Previous"calls movethe position,and
the "Insert" and "Delete"” calls destroy the position.

If you executea "Next", or a "Previous"call on anindexfile with no position,theindexis saidto be setat
the beginning.

The A, X and Y registers are all undefined after a call to ISAM.
Reason codeEffect
A=ISMFLO Tell ISAM that file is open.
Before you make this call, you should have opened the file
with the filing system. This call just informs ISAM that
you have opened the file, and tells it to reverse some
workspace for the file.
On entry: Y contains handle of already opened file,

as returned by the filing system.
Support Group Application Note No. 018sue 1 24

Support Group Application Note No. 018sue 1

25th June 1992

On exit: The file position is reset.
VS file already open; internal error code
in A.
CS internal error occurred; internal error
code in A.

A=ISMSCH Search for key in index.

A=ISMINS

A=ISMNXT

This call attempts to find the key in LINBUF in the index
that you specify. If no key is found, the index is still
"positioned”, and you can use the "Get next key" and "Get
previous key" calls. A subsequent "Get next key" call
after a key was not found, returns the next highest value
key that is in the index.

On entry: Y contains the handle of the file.
LINBUF contains key to seaborne for.
On exit: VS filing system error occurred; error
code in A.
CS key not found; internal error code in
A. The file position is set.
REG1 contains pointer value of key, if
found.

Insert key into index.

This call inserts the key in LINBUF into the index file.

On entry: Y contains the handle of the file.
LINBUF contains the key to insert.
REG1 contains pointer value to be associated
with the key.
On exit: The file position is reset.
VS filing system error occurred; error
code in A.
CS index is full; internal error code in
A.

Return next sequential key.

This call returns the pointer value of the next sequential
key, from the current file position.

On entry: Y contains the file handle.
On exit: VS filing system error occurred; error
code in A.
CS At end of file; internal error code in

A. The file position is advanced by one.

Support Group Application Note No. 018sue 1

25

Support Group Application Note No. 018sue 1

25th June 1992

A=ISMDEL

A=ISMCLS

A=ISMPRE

REG1 contains the pointer value associated
with the key.

Delete key from index.

This call deletes the specified key and associated pointer
value from the index file.

On entry: Y contains the file handle.
On exit: The file position is reset.
VS filing system error occurred; error
code in A.
CS Key not found; internal error code in
A.
REG1 contains the pointer value associated
with the key.
Close file.

This call closes the file; it both calls the filing system

to close the file, and closes the file within ISAM as well.
This is slightly different from the ISMOPN call, which
requires the filing system open call to be separate.

On entry: Y contains the file handle.
On exit: VS filing system error occurred; error
code in A.

Return previous key in index file.

This call returns the pointer value of the previous
sequential key in the index, from the current file position.

On entry: Y contains the file handle.
On exit: VS filing system error occurred; error
code in A.

CS Beginning of file; internal error code
in A. The file position is moved back
by one.

REG1 contains the pointer value associated
with the key.

Printer Control Routines

The printer control routineshandlethe printer driver for the utility. A printer driver mustbe loadedfrom
ViewStore Command Mode before calling the utility, or the default printer driver in the ROM is used.

Support Group Application Note No. 018sue 1

26

Support Group Application Note No. 018sue 1 25th June 1992

Highlights canbe sentto the printerdriver from a utility, butthereis no provisionfor handlingof the printer
options byte or microspacing. Highlights begin at 128 for highlight 1.

A utility cantestthe stateof the printer by examiningthe location PRNFLG. If bit 7 of PRNFLGIs set,
thenthe printeris switchedon. If bit 6 of PRNFLGis set,thenthe printeris notactuallyon, butwaiting: a
call to PRNON will switch on the printer.

The printer should be switched off before reporting errors.
ASKPRN Ask about printer.
PRNON Switch waiting printer on.

PRNOFF Switch printer off.
PSCOUTT Send character to printer/screen vector.

ASKPRN
This routine promptshe userwith the question'Screenor Printer(S,P)?". Accordingto theresponsebit 6
of PRNFLG is updatedto indicate whetherthe printer is waiting. If bit 6 is set, a subsequentall to
PRNON by the utility will switch on the printer.
On entry: No entry conditions.
On exit: PRNFLG Bit 6 set if printer is waiting; clear if
screen is to be used.
AX,Y undefined.

PRNON

If the printeris waiting, thatis bit 6 of PRNFLGis set,a call to PRNONwill switchit on, calling the printer
on routine in the printer driver.

On entry: No entry conditions.
On exit: AX)Y undefined.
PRNOFF

If the printer is switched on, a call to PRNOFF will switch it off.
On entry: No entry conditions.

On exit; PRNFLG Bit 7 clear. Bit 6 unaltered.
A XY undefined.

Support Group Application Note No. 018sue 1 27

Support Group Application Note No. 018sue 1 25th June 1992

PSCOUT

This routine vectorscharacterither to the screenor the printer, dependingwhich is enabled. A utility
which wishesto usethe printer optionally shouldsendall outputto this routine,andin conjunctionwith the
ASKPRN, PRNON and PRNOFFcalls, output can be directedby the userof the utility to the screenor
printer, depending on his answer to the ASKPRN question.

PSCOTT automatically strips off trailing spaces from printer output.

Onentry: A contains character to be printed. Highlight
codes begin at 128 for highlight 1.

On exit: AX)Y preserved.

Summaries

Table 1 - Routines and Addresses
Routine Address Temporaries Altered

PSCOTT &802A

KINCH &802D

PRNON &8030 10

PRNOFF &8033 10

ISAM &8036 01,02,03,04,05,06,08,10,14
FONE &8039

FTENFX &803C
FTENFQ &803F
FADDW1 &8042
FTENX 88045

GETXFL &8048 04,05,06,06,11
INIIMF &804B 00,04,05,06,07,10,11,12
CMPFLD &804E 01,02,03,04,05
RELLIN &8051 06,07,08

FRDDK &8054 04,05,10

FTST &8057

FNEG &805A

FCLR &805D

FADDW &8060

FDIVA &8063 LWORK

FMULX &8066

REPERL &8069 04,05,06,07,10,11,12
SETDPS &806C

GETFRC &806F 04,05,06,07,11
OUTDEC &8072 04,10,11

NXTIMF &8075 03,04,05,10
SCHFLD &8078 02,03,04,05,06,07,11

CHKEOR &807B
CHKEOF &807E

PSTRNG &8081 12
Support Group Application Note No. 018sue 1 28

Support Group Application Note No. 018sue 1

25th June 1992

MULPLY
GETDEC
ADJVAL
CALUTI
SKPCBL
STXPRE
MOVFBK
MOVNAY
CHKDIR
SETDIR
OSHCAL
CRTIX
GETKYW
IDXSCH
GETIXN
GETWID
CALSBN
SIZFLD
GETFLD
SCHFLN
ASKPRN

&8084
&8087
&808A
&808D
&8090
&8093
&8096
&8099
&809C
&809F
&80A2
&80A5
&80A8
&80AB
&80AE
&80B1
&80B4
&80B7
&80BA
&80BD
&80C0

05,10

05,10

01,02,03,04,05,06,07,10,11
03,04,05,06,07,08,09,10,11,12,LWORK

05

05
04,05

02,04,05,06,07,10,11
04,05,06,07,10,11
04,05,06,07,10,11
04,05,06,07,11

02,03,04,05,06,07,11
06,07,08,12

OPFILE

XOSCLS
XOSBGE
XOSBPU
XOSGBP
XOSARG

&80C3
&80C6
&80C9
&80CC
&80CF
780D2

Table 2 - Field Number s of the Header

DIFDES 1
DIFDSM 2
DIFRCS 3
DIFCAP 4
DIFIDX 5

DIFSCM 6

Description
Display mode S/C
Record size
Capacity

Index field
Screen Mode

Table 3 - Field Number s of the Format File

RFFFENA 1
RFFWID 2
RFFTYP 3
RFFPOX 4
RFFPOY 5
RFFALS 6
RFFDCP 7
RFFRLO 8
RFFRHI 9

RFFIDX 10

Name

Width

Type

X screen position
Y screen position
Scroll Y/N
Decimal places
Low limit

High limit

Index Y/N

Support Group Application Note No. 018sue 1

29

Support Group Application Note No. 018sue 1

25th June 1992

RFFKYW 11 Key width

RFFIXN 12

Index name

RFFPRO 13 Prompt
RFFVLS 14 Value list

Table4 - ISAM Commands

ISMFLO 0
ISMSCH 1
ISMINS 2

ISMNXT 3
ISMDEL 4
ISMCLS 5
ISMPRE 6

open file
search
insert key
next key
delete key
close file
previous key

Table5-1SAM Internal Errors

Table6 - Memory Layout

ISEFLO O
ISEKXP 1
ISELSK 2
ISEKXI 3
ISENKF 4

file already open

beginning of file for previous key
end of file for next key

key already exits

no key found

ViewStore variables available for read by the utility

Temporaries

VWSLIM

FILMOD
PRNFLG
XSSAVE
SSAVE
CURCHN
EFILE
REG1

TEMPFD
TEMPFE
TEMPFF
TEMPOO
TEMPO1
TEMPO2
TEMPO3
TEMPO4

&B memory limit

&44 editing file or not

&47 printer flag

&48 stack save for filing system
&49 stack save for ISAM & FP
&4A intermediate file channel
&4B main file channel

&4C 4-byte register

&50 single byte temporaries
&51

&52

&53

&54

&55

&56

&57

Support Group Application Note No. 018sue 1

30

Support Group Application Note No. 018sue 1

25th June 1992

TEMPO5
TEMPOG6
TEMPO7
TEMPOS8
TEMPO9
TEMP10
TEMP11
TEMP12
TEMP13
TEMP14

VWSSTZ

FACCS

FACCXH
FACCX

FACCMA
FACCMB
FACCMC
FACCMD
FACCMG

FWRKS

FWRKXH
FWRKX

FWRKMA
FWRKMB
FWRKMC
FWRKMD
FWRKMG

VWSXTZ
OSFARA
LWORK
FBLOCK
VWSSTL
LINBUF

VWSXTL
VWSITL

DATPRE
FMTPRE
IDXPRE

SRTPRE

&58
&59
&5B
&5D
&5F
&61
&63
&65
&67
&69

&6B

&6B
&6C
&6D
&6E
&6F
&70
&71
&72

&73
&74
&75
&76
&77
&78
&79
&7A

&7E
&500
&50D
&563
&5D3
&5DC

&6DC
&799

Table 7 - Offsetsfor Prefixes

0
&E
&1C
&2A

two byte temporaries

start of zero page workspace

floating point accumulator

floating point work accumulator

start of free if using FP
OSFILE/OSHCAL work area
work area - 16 bytes
filename work area - 27 bytes

start of language workspace

line buffer/ISAM key buffer (256 bytes)
language workspace after LINBUF

start of language workspace if using ISAM.

data prefix
format prefix
index prefix
sort prefix

Support Group Application Note No. 018sue 1 31

Support Group Application Note No. 018sue 1

25th June 1992

UTIPRE

EFLNAM
FFLNAM
PRNAME
UTINAM
ARGNAM

Table9 - Error Codes

MEMERR
MISERR
NEMERR
BDFERR
ENDERR
NUMERR
RANERR
VLSERR
TBGERR
REAERR
RTBERR
BDIERR
BDNERR
FLNERR
FNOERR
TMFERR
SKFERR
NOFERR
DATERR
NFSERR
BDMERR
ESCERR
NDSERR
FDSERR
DMOERR
BPRERR
DCPERR
FNIERR
BDPERR
BFSERR

FNXERR

&38

Table 8 - Offsetsfor Filenames

&1B
&2B
&35
&42
&4F

O©CoOoO~NoO O WNEPE

utility prefix

data file name
format file name
printer name
utility name
name work area

not enough money
mistake

no end marker
bad file

end of data

not numeric

range error

value not in list
overflow

read error

record too big

bad directory

bad name

field not found

file not open

too many files
stack overflow

no index field

bad date

no fields on screen
bad mode

escape

normal display
format edit disabled
data mode only
bad prefix

too many places
field not indexed
bad pointer

bad FS

x not found

Support Group Application Note No. 018sue 1

32

Support Group Application Note No. 018sue 1 25th June 1992

Table 10 - File For mat

&9 end of field marker
&D end of record marker
&1 end of file marker

&3 space character

&2 deleted character
&0 file pad character

Each Field in the record is terminated by an end of field marker.
Each record in the field is terminated by an end of record record.
The file is terminated by an end of file marker.

Any expansionspacein a recordis representedy multiple spacecharactersafter the last end of field
marker, but before the end of record marker.

A deleted record is represented by multiple deleted characters followed by an end of record marker.

Any padding space between the end of file marker angltysical end of file is filled with file pad
characters.

Support Group Application Note No. 018sue 1 33

