
A MARSHALL CAVENDISH 8 COMPUTER COURSE IN WEEKLY PARTS

RN PROGRAMMING - FOR FUN AND THE FUTURE

Vol 1 	 No 8

PERIPHERALS
simmemor

PRINTERS: THE CHOICES 	 225

To take a hardcopy of a listing or write a letter, you

need a printer—but which sort?

GAMES PROGRAMMING 8

BREAKING THE SOUND BARRIER 	 230

Build up a library of exciting sound effects to add to

your games routines

MACHINE CODE 9

L_
GETTING TO THE HEART OF IT iM 111236

The CPU is the heart of the machine and controls all

operations. Learn how to communicate with it

BASIC PROGRAMMING 15

UNDERSTANDING PEEK AND POKE 	 240

Look into your computer's memory and use the values

that are stored there

BASIC PROGRAMMING 16

DRAGON/TANDY: BETTER GRAPHICS 	248

Setting up colour UDGs on these machines

BASIC PROGRAMMING 17

MAKING PICTURES WITH MATHS 	 250

Understanding SIN and COS, and what you can do with them

INDEX
The last part of INPUT, Part 52, will contain a complete, cross-referenced index.

For easy access to your growing collection, a cumulative index to the contents

of each issue is contained on the inside back cover.

PICTURE CREDITS
Front cover, Dave King. Pages 225, 226, 228, Nick Farmer. Pages 230, 232, 233,
234, 235, Tudor Art Studios. Pages 236, 237, 238, Chris Lyon. Pages 240, 242, 244,
Dave King/Ian Craig/Roy Flukes. Pages 243, 245, 246, Ian Stephen. Page 248,
Associated Press/Graham Bingham. Pages 250, 252, 254, JD Audio Visual. Page
255, Ray Duns. Equipment loaned by Lasky's, Tottenham Court Road, London WI.

© Marshall Cavendish Limited 1984/5/6
All worldwide rights reserved.

The contents of this publication including software, codes, listings,
graphics, illustrations and text are the exclusive property and copyright of
Marshall Cavendish Limited and may not be copied, reproduced,
transmitted, hired, lent, distributed, stored or modified in any form
whatsoever without the prior approval of the Copyright holder.

Published by Marshall Cavendish Partworks Ltd, 58 Old Compton Street, London W1V SPA,
England. Printed by Artisan Presss, Leicester and Howard Hunt Litho, London.

ilOW TO ORDER
YOUR BINDERS
UK and Republic of Ireland:
Send £4.95 (inc p & p) (1R£5.45) for
each binder to the address below:

Marshall Cavendish Services Ltd,
Department 980, Newtown Road,

Hove, Sussex BN3 7DN

Australia: See inserts for details, or
write to INPUT, Gordon and Gotch
Ltd, PO Box 213, Alexandria, NSW

2015

New Zealand: See inserts for details,

or write toINPUT,Gordon and Gotch

(NZ) Ltd, PO Box 1595, Wellington

Malta: Binders are available from

local newsagents.

There are four binders each holding 13 issues.

BACK NUMBERS
Copies of any part of INPUT can be obtained from the following addresses at the
regular cover price, with no extra charge for postage and packing:

UK and Republic of Ireland:
INPUT, Dept AN, Marshall Cavendish Services,
Newtown Road, Hove BN3 7DN

Australia, New Zealand and Malta:
Back numbers are available through your local newsagent

COPIES BY POST
Our Subscription Department can supply your copies direct to you regularly at £1.00

each. For example the cost of 26 issues is £26.00; for any other quantity simply
multiply the number of issues required by £1.00. These rates apply anywhere in the

world. Send your order, with payment to:

Subscription Department, Marshall Cavendish Services Ltd,

Newtown Road, Hove, Sussex BN3 7DN

Please state the title of the publication and the part from which you wish to start.

HOW TO PAY: Readers in UK and Republic of Ireland: All cheques or postal orders

for binders, back numbers and copies by post should be made payable to:

Marshall Cavendish Partworks Ltd.

QUERIES: When writing in,please give the make and model of your computer,as
well as the Part No., page and line where the program is rejected or where it does

not work. We can only answer specific queries –and please do not telephone. Send

your queries to INPUT Queries, Marshall Cavendish Partworks Ltd, 58 Old

Compton Street, London WIV SPA.

INPUT IS SPECIALLY DESIGNED FOR:
The SINCLAIR ZX SPECTRUM (16K, 48K,128 and +),
COMMODORE 64 and 128, ACORN ELECTRON, BBC B
and B+,and the DRAGON 32 and 64.

In addition, many of the programs and explanations are also
suitable for the SINCLAIR ZX81, COMMODORE VIC 20, and
TANDY COLOUR COMPUTER in 32K with extended BASIC.
Programs and text which are specifically for particular machines
are indicated by the following symbols:

SPECTRUM
K,128, and tiK COMMODORE 64 and 128

El ACORN ELECTRON,
BBC B and B+ 1Z1 DRAGON 32 and 64

TANDY IRS80 a nun [411 VIC 20 mr COLOUR COMPUTER

■ DO YOU NEED A PRINTER?
■ CHOOSING THE RIGHT TYPE
■ BUYING THE PAPER
■ CONNECTING THE PRINTER TO

YOUR COMPUTER

If you've ever wanted a 'hard' copy
of your program or a screen dump
of some graphics then you'll need a
printer. But how do you know
which sort to buy?

Buying a printer is one way to extend the
usefulness of your computer and develop your
programming skills. But it can be a very
expensive investment, and since the choices
and range of prices are just as varied as for
computers, only the best-informed micro user
can be sure of the need for a printer or of
buying the most suitable one.

The normal way in which a computer
outputs information to the user is onto a TV
screen or VDU. A printer is just an alternative
means of displaying the same information. But
don't imagine that both devices have the same
uses—one is no substitute for the other. The
key role of a printer is to give a 'hard' copy or

permanent record of any information that can
be brought to the screen.

For example, there are many attractive
graphic designs—computer art, maybe—that
you could print and file or even frame, but
without a printer they exist only fleetingly on
the VDU screen. If you write a lengthy
program, you may well want a record of the
listing to keep or to work on away from the
computer. If you write or buy business
programs, you will need to print graphs or
charts to be included in reports. And for
Computer Aided Design you need a record of
shapes or objects that can be referred to away
from the computer.

All home computers have a keyboard,
which is similar to that of a typewriter, so you
can type and print correspondence, data—or
even a book—as on a typewriter. Your capa-
city to handle text can be extended far beyond
mere typing and into the realms of word
processing, where you can manipulate text in

A single column
of blunt needles
strikes an inked
ribbon to form the
pattern of dots that
make up each character
of a dot matrix printer

all sorts of ways. Given the right software,
your micro already has this ability, but a
carefully composed block of text—whether it is
just a short letter or even the contents of a
booklet—is of little use if it cannot be printed.

And almost all users would find a printer
helpful as a programming aid. As well as
providing a back-up or copy of your work, it is
often far easier to spot mistakes on paper than
by scrolling through the program on a VDU
screen. The merits of the VDU are many but,
generally, people are more familiar with
printed information so they find it easier to
work with than an electronic image.

These attributes may well make a printer
appear an essential aid to all computer users.
But it is as well to remember that these abilities
are not all built into every printer, and the
most versatile printers are prohibitively ex-
pensive. For example, not all printers can
handle graphics, and only a few can print in
more than one colour—usually (although not
always) at great expense. For this reason, it is
most important to assess your needs and
choose wisely. The type you choose depends
on the application for which it is intended. To
help you choose, start by thinking about the
working characteristics of the different
systems that are available.

TYPES OF PRINTER
There are four types of printer that might be
suitable for the home micro user. These are the
impact dot matrix, daisywheel, thermal, and
pen printers.

The impact dot matrix printer is the most
popular type. As with all modern printers, the
carriage remains stationary while the print
head advances across the width of the paper.
The print head contains a closely grouped
vertical column of needles which are attached
to solenoids. When a solenoid is activated, its
needle is pushed forwards against an ink
ribbon onto the paper, making an ink dot. By
firing the right combination of needles and
advancing the position of the print head, a
character is formed.

Commodore users have a choice of two dot
matrix printers which are dedicated to their
machines—the difference is in price and per-
formance. The advantage of these is that they
do not need interfacing—see page 229—and
that they will print out Commodore ROM
graphics characters. Other printers will not do
this, which is a disadvantage for listing
programs, for example.

Printing speeds of the dot matrix are among
the fastest available, ranging from 80 charac-

ters per second (cps) to over 400. One disad-
vantage of some of these printers, however, is
that the characters do not have true
descenders—the 'tails' on letters, such as 'g'
and 'q'. They make the entire character sit
above the line, without the tail dropping
below. True descenders are desirable for clar-
ity and attractive presentation, and this feature
is available on the better dot matrix printers.

Early designs of impact dot matrix printers
used a seven-needle print head to produce
characters in a matrix, or pattern, of 5 x 7
dots—five columns of seven rows. More recent
designs employ nine needles to produce a 7 x 9
or 9 x 9 matrix.

Even with the best dot matrix printers, the
characters can appear distinctly dotted,
although they are clearly legible. They are
quite suitable for most non-professional work,
and can be made to print pictures from the
screen. But for quality presentation, attempts
have been made to improve the print clarity of
the dot matrix printer.

One method, known as multipass printing,
makes the print head print each line of text
twice—once in one direction, and a second
time in the opposite direction—before the
paper is advanced. On the second pass, there
is, invariably, a minute misalignment between

the printing needles and the characters already
printed, so the needles tend to print in the
spaces between dots. This effectively gives
bolder, less-dotted characters, but of course it
halves the printing speed.

Another method (which incurs no signifi-
cant loss of printer speed) uses multiple
columns of needles in the print head. The
characters are formed in multiple steps—the
right column fires first, then as it settles, the
one to its left fires, and so on.

Although these methods give a significant
improvement, the quality of dot matrix prin-
ters is below the best possible. Whenever high
quality (such as formal correspondence) is
required, the best choice is a solid-fount
printer. Solid-fount means that the letters are
formed by raised type characters which are an
exact mirror image of the shape you want to
print—just like the letters on an ordinary
typewriter.

SOLID FOUNT PRINTERS
The first solid-fount printers for use with
microcomputers were in fact adapted from
golf-ball electric typewriters. Although the
print quality was excellent, the mass of the
golf-ball print head (designed for the fastest
typist's speeds of up to 15 characters per

second) slowed down the printers and made
them unreliable. Consequently, the daisy-
wheel printer (also known as the petal printer)
was developed.

Daisywheel printers employ a removable
printing element which resembles a daisy
flower with petals radiating from the central
cluster. Each petal has an embossed character
at its tip, which is struck by a hammer when
rotated into place. Because the daisywheel is
removable, it is a simple matter to change to a
different typeface, just by interchanging the
wheels. The print quality is generally equal to,
or better than, that of a typewriter and far
superior to that of a multipass, impact dot-
matrix printer, but printing speeds are slower
than those of matrix printers. Speeds of
between eight and 70 cps are usual.

To improve printing speed, many
modern daisywheel printers are bi-
directional, so that they print
alternate lines from left to right
and from right to left. This dis-
poses of the need for carriage
returns, which waste time.
These printers also have
circuits that tell the print
head when it is quicker to
return at the end of a short

line to pick up the next line, or to continue
to the edge of the paper, then print the next
line in the opposite direction.

A number of text enhancements are pos-
sible with daisywheel printers. Bold type,
underlining and true descenders are stan-
dard. Type styles can be combined by chang-
ing wheels between a first and second pass.
Modern daisywheels are made of plastic, for
lightness. The petals are made of soft plastic
so that they are elastic and return to the start-
ing position after being struck. The charac-
ters themselves are made of hard resin. They
strike the ribbon with sharp edges so the print
quality is clear, and the ribbon lasts a long
time. There are three type sizes: four, five and
six characters per centimetre. Replacement

Daisywheel printers are unsurpassed for
high-quality printing. Changing the set
of characters is as easy as replacing
the daisywheel itself (shown above)

wheels cost about as much as a cassette copy of
a good adventure game.

NON-IMPACT PRINTERS
Less popular than impact printers are the non-
impact dot matrix types. The best known of
these are the thermal and the electrostatic
printers. Thermal printers require a paper
coated with a heat-sensitive chemical. The
paper is expensive but printing does not
require a ribbon. The print head comprises a
matrix of small heating elements. When the
pattern to be printed is selected, the elements
that make up the pattern are heated to between
100 and 150°C, darkening the heat-sensitive
dyes on the paper.

One of the cheapest printers on the market
is Sinclair's own ZX printer—a thermal type.
This is compatible with both the Spectrum
and the ZX81, and connects to the terminals in
the machine's user port. It costs about a third
as much as the Spectrum micro itself.

Naturally, such a modest sum won't buy a
printer with the highest performance, but it is
satisfactory for most needs that don't require
letter-quality printing. It allows you to print
text or graphics, and the typeface is readable
though not always sharp. For providing a hard
copy of a program listing or screen image,
however, this is quite acceptable.

Besides its rock-bottom price, the ZX prin-
ter is remarkable for its smallness—it fits
comfortably in the palm of one hand and
weighs barely one kilogram. These dimensions
limit the number of characters per line to 32—
the same as the screen display. The paper is
roll-fed and very narrow, only 100 mm (4 ins)
wide and has a distinctive silvery sheen
because of its aluminium coating.

If you are a ZX81 user then there is one
great disadvantage: you need a more powerful
power supply to drive the printer—which
takes its power from the computer.

Electrostatic printers require a supply of
liquid toner (usually carbon particles sus-
pended in a solution of iso-paraffin). Charac-
ters are formed by charging the coated paper,
which is then passed through a toner solution.
The black particles in the toner adhere to the
charged areas of the paper. The excess toner is
removed and the paper is heated to fix it.

Thermal and electrostatic printers are more
reliable than impact dot matrix types, (because
there is less mechanical wear) but they have a
much lower resolution.

One of the most interesting recent develop-
ments is a low-cost pen printer/plotter. This
draws (with inked pens) pre-programmed
characters on to the paper, but was designed
specifically to produce charts and graphs. On
less-expensive models, ball-point pens are
used one at a time to draw on to ordinary
untreated paper. Commodore users can buy a
printer of this type which is dedicated to their
machines.

Typically, the write head holds up to four
pens, so multicolour prints can be drawn. The
standard alphanumeric character set is neat
and easily legible, but you could program your
own characters using your computer's graphic
facilities. Print speeds with the standard char-
acter set are about 12 cps. A replacement set of
four pens costs about the same as a couple of
data cassettes.

PAPER CONSIDERATIONS
When selecting a printer, it is most important
to know how you want the printed product to
look. This applies not only to the typeface but
also the paper size and appearance. Besides the
coated papers required by thermal and
electrostatic printers, there is a wide variety of
paper styles available in widths ranging from
10 to 40 cm. Some printers can use several
different types and sizes of paper; others only
one. Paper can be bought as standard loose
sheets (just like normal typing paper), in rolls,
or fanfolded. The fanfold type is the paper
normally associated with computer print-
outs—it has sprocket holes along each side and

Pen printers have widespread
applications in Computer Aided
Design, and they are useful
for generating a full range of
alphanumeric characters

is supplied as a continuous sheet folded
concertina-style with perforations between
each 'page', so it can be separated into sheets or
torn at convenient lengths.

Each type of paper requires its own feed
mechanism. For fanfold paper a tractor or
sprocket feed is used. The holes along each
side of the paper mesh with sprocket pins on
small wheels, which rotate to drive the paper
past the print head. When used with an impact
printer, multiple copies can be printed using
carbon paper interleaved between the sheets.

A friction feed mechanism (similar to a
typewriter feed) is required to print on loose
sheets and roll paper. The paper is pressed
against moving plates by pressure rollers. Roll
paper is fed from an axle; a different input tray
is necessary for loose sheets. For
correspondence-quality printing, loose sheet is
undoubtedly the best; fanfold and rolls are
better for program printouts and graphics.

INTERFACING
Regardless of which type of printer you decide
to buy, the most important point to consider is
if it is compatible, or can be made compatible,
with your make of computer. The computer
can communicate with a printer only if the
machines are suitably interfaced.

Essentially, an interface is the hardware
(together with any software required to control
it) that makes it possible to connect two
systems. Some systems can be connected
simply with a lead, either because they have
been made compatible during manufacture or
because they are sold with interfaces. Others
are sold entirely without interface, or with only
part of the interface required—just the hard-
ware, maybe.

Do not wait until you have bought a printer
to find out about interface requirements,
because the additional cost can amount to as
much as a third of the price of the machine.

If both machines are from the same manu-
facturer, they are usually either already com-
patible, or can be made so by adding an

interface. And independent printer manu-
facturers try to make their printers compatible
with as many computers as possible—usually
by providing suitable interfaces. So although
interfacing is crucial, it need not be a
problem—if you make sure before you buy.

You can buy interface conversion modules
for some machines, but there is also a possi-
bility that the software you wish to run—
particularly some word processing programs—
may require a particular interface.

To ensure some degree of compatibility
between the products of different manufac-
turers, a number of interface standards exist.
Probably the most famous is the RS232C,
which is a serial interface—data for each
character is transmitted and received sequenti-
ally. Both the computer and the printer,
however, deal with information for any one
character in parallel (at the same time), so some
means of conversion to and from a serial
format is necessary.

These duties are left to an integrated circuit
chip known as a Universal Asynchronous
Receiver and Transmitter (UART). A UART
in the computer receives coded characters
either from the keyboard or memory, converts
them from parallel into a serial format, adds
other transmission codes and, providing the
printer is ready to accept data, transmits the
string of characters.

An identical UART in the printer accepts
the data, decodes it and, so long as there are no
errors, outputs the data in parallel format.
Data transfer rates (Baud rates) vary between
different printers from 75 to 19,200 bits per
second, which is equivalent to about 7 to 1800
characters per second.

To overcome the speed limitations on the
computing time caused by the slowness of the
printer mechanism, a buffer memory is often
employed. Information to be printed is stored
in the buffer, releasing the computer to per-
form other tasks. Memory sizes range from 80
characters to 8000. The larger the memory,

the less frequently data transmission needs
take place and, consequently, the less of a
demand the printer places on computer time.
So a large memory is recommended.

The other type of serial interface commonly
found on printers is the 20 mA current loop
interface. Originally used on teletype ter-
minals, it has been largely replaced by RS232
as it is not as fast and so cannot be used for the
quicker, modern printers.

The most popular printer interface, how-
ever, is the Centronics interface. Designed by
the printer manufacturer of the same name in
the 1970s, it has become the accepted stan-
dard, mainly because of its simplicity. Cen-
tronics is a parallel interface, so data is trans-
ferred simultaneously over a set of parallel
data lines.

Originally developed for interfacing mea-
surement instruments with a computer, IEEE
488 is a sophisticated parallel interface stan-
dard allowing fully duplex (simultaneous two-
way) communications. Consequently, because
of its availability on many microcomputers, it
has been incorporated into a number of printer
designs. Generally, however, many of the
facilities it offers are not necessary for use with
printers, and Centronics offer a better parallel
interface option.

By the time you have decided on the type of
printer to buy, you should have some idea of
the price—including interface. Of course,
price may have been the deciding factor in the
first place. Be warned that some machines are
sold without a connecting lead, which can cost
twice as much as a low-price game on disk.

Whether you opt for a printer that costs as
much as your computer or one costing ten
times as much, you are well advised to see the
particular software package and printer you
want working connected to your computer
before you commit yourself. Usually, de-
monstration units are available, but might not
be displayed, so don't be afraid to ask.

Liven up your games and make them
more exciting by adding some sound
effects—anything from beeps,
explosions and alien-zapping noises
to a funeral march or a steam train

Games programs usually have all kinds of
sound effects to make them more exciting—
explosions, zaps, pings, small tunes, or what-
ever takes the programmer's fancy.

This part of Games Programming aims to
provide you with a small library of ready-
made sound effects. You can use the effects
as they are or as a basis for your own
experiments.

Remember that there are no hard-and-fast
rules for producing sound effects. If your game
needs a noise to accompany a figure being
assaulted with a sockful of lumpy .custard,
you'll have to sit at your machine and experi-
ment. Conversely, some seemingly-unlikely
sounds can be wonderful if you happen to
invent the right kind of graphics.

How you incorporate sound effects into
your programs depends on their complexity
and how often they are used. For simple effects
that are only used once in a program, it's best
to put them after an IF ... THEN, but for more
complex ones, or ones used many times, it's
best to use them in a subrou0e.

The sophistication of the effects you will be
able to achieve depends partly upon your own
programming skill, but it is also determined by
the sound capabilities of your computer. For
example, the Spectrum's sound generator is
limited to a BEEP whose pitch and duration can
be controlled by the user. On the other hand,
the Commodore and Acorn machines have
very sophisticated sound generators capable of
synthesizing a huge range of different effects.
The ZX81 has no sound at all.

a
The Spectrum has a single sound facility, BEEP
in BASIC. It's simple to program and can be
used to liven up your programs considerably.
For example, here is a routine which will play a
series of bleeps:

8000 FOR n =1 TO 12
8010 BEEP .03,30
8020 NEXT n

As you can see from the program lines above,
BEEP is followed by two numbers separated by
a comma.

The first number determines the length of
the note—the larger the number the longer the
note. A value of one will cause a note one
second long to be played, and larger numbers
or decimal fractions work accordingly.

The second number sets the pitch of the
note, 0 being middle C. Each whole number
above or below this represents a semitone
higher or lower—a step on to the next note on a
piano keyboard, if you like. For sounds in
games, very low pitches of about — 32 are
often used to imitate explosions and zaps.

The BEEP command will be explained in
more detail in a future issue of INPUT, in
particular how to use it for making music.

In the routine above, a FOR ... NEXT loop is
used to play a series of notes. The lines below
use two loops, with the control variable of each
loop tun, the pitch of each note. This results

■ INVENTING THE RIGHT SOUND
■ ADDING SOUND EFFECTS TO

THE RANDOM MAZE GAME
■ USING BEEP, PLAY, SOUND

AND ENVELOPE

■ MAKING EXPLOSIONS, PINGS AND
ZAPPING NOISES

■ FROM NOISE TO MUSICAL NOTES
AND TUNES

■ FURTHER EXPLOSIONS

in an effect which you might like to use when
an alien has been zapped in your games.

8000 FOR n =4 TO 0 STEP —1
8010 BEEP .01,n
8020 NEXT n
8030 FOR n =1 TO 4
8040 BEEP .01,n
8050 NEXT n

Here is a routine using a FOR ... NEXT loop in a
similar way, but this time the effect is more of a
`congratulations' sound. You might use it
when the player has killed all the monsters, or
to celebrate 'hitting the jackpot' in a fruit
machine game.

8000 FOR n=10 TO 60 STEP 5
8010 BEEP .01,n
8015 BEEP .01,n — 2
8020 NEXT n

Try experimenting with the BEEP command to
produce other sound effects for your games.
Try using loops and subroutines as well, to
liven up your programs.

SOUNDS FOR THE MAZE
The random maze game given in the last issue
can be improved no end by the inclusion of
some sound effects. Add Lines 365 and 500, to
the original program, and change Line 400:

365 BEEP .01,10
400 LET lives= lives-1:RESTORE 500:

FOR f = 0 TO 10: READ a,b: BEEPa,b:
NEXT f: IF lives> 0 THEN GOTO 260

500 DATA .45,0,.3,0,15,0,.45,0,.3,3,
—1,.45,0

If you now RUN the program you will find that
you are greeted by a sound whenever you
reach the treasure, and by a funeral march
whenever you lose a life. Try changing the
values of a and b to create different effects.

This example shows that you will need to be
careful when using sound effects in games,
since the computer stops doing whatever it is
doing while it is BEEPing, and so your game
might contain some unwelcome pauses. Even
if you only include short effects, this may
render your game too slow to be playable.

The Commodore 64 has an extremely so-
phisticated sound feature employing three
highly controllable 'voices' or sound channels.
A wide variety of sounds are possible, starting
with simple sound effects of the type that can
be incorporated within any games program.

One, two or three voices can be used to
create these effects and shortly you'll see how
these can be combined. The 'nuts and bolts'
explanation of how to program the SID chip is
left to a later BASIC Programming article,
however.

The SID chip used by the 64 is extremely
powerful and a wide variety of interesting—
and useful—sound effects can be created with
comparatively little programming. Unlike the
VIC graphics chip, which requires a large
number of POKEs at almost every stage of the
process, many of the necessary POKEs for the
SID chip locations need only be made once.
Thereafter, one or two subtle value changes
can often radically alter the nature of the sound
produced.

Up to five types of setting usually have to be
made for each sound, and to explain the effects
of these, key in this short program:

10 S=54272
30 POKE S + 1,255
40 POKE S+ 5,219
50 POKE S+24,15
60 POKE S+4,129
70 FOR Z=1 TO 5000: NEXT Z
80 POKE 5+4,128
100 GOTO 30

RUN the program and a few seconds later you
should hear the sound of waves breaking on
the shore. Note how the sound chip locations
are represented in relation to the starting
address (S) at 54272-this makes it much
easier to remember which one you're dealing
with. The first setting, S + 1, is one of two
possible frequency control registers-we're
using the one which sets the high byte, which
in effect means a frequency number of 255
times the figure used, the maximum figure 255
in this instance. Try changing this to some-
thing smaller, say 10, and reRUN the program
for a slightly different wave noise.

Location S + 5 is the envelope generator
which we need not bother too much about
here. S + 24 in the next line is the volume
setting location when values of up to 15 are set.
This is the maximum loudness, and it's worth
setting this value and making any necessary
adjustments on the volume control of the TV
for the simple demonstrations here.

On the next line, S + 4 is used. This is the
location of the voice-1 control register which is
used to select, amongst other things, the
waveform (by setting one of the higher bit
values). The value 129 selects a random noise
waveform-try changing this to 33 or 17 for a
high pitched sound. Leave the value at 17 and
change the POKEd value in Line 30 to 10 and
shorten the delay loop in Line 70 by putting in
50 in place of 5000. Now reRUN the program
to hear how seascape sounds have been con-
verted to that of a puffing steam train!

In a complete games program, such changes
could be introduced by changing the values of
variables at appropriate points and thus a wide
variety of effects may be possible from a simple
sequence of settings in which only a few values
will need to be changed.

SOUNDS FOR THE MAZE
If you have SAVEd the maze game which
appeared on page 196, you may like to add the
following three lines once the program has
been LOADed. You need to turn the Commo-
dore off and on before LOADing:

102 S=54272:POKE S+5,33:POKE

5 + 6,255:POKE S + 24,15:POKE
S+4,33:POKE S+1,0

2002 POKE S + 1,Z
3005 POKE S +1,250:FOR Z=1 TO

10:NE)(T Z:POKE 5+1,0

The first of these initializes the sound system,
and the second and third add rather welcome
sound effects which really do make the game
much more interesting-see what you think!

Here are some other sound effects which
you may like to experiment with. First, we
have to set up the sound system: (NEW your
computer first)

5 S = 54272:W(1) =17:W(2)=33:
W(3)=129

10 FOR Z=S TO S + 24: POKE Z,0:
NEXT Z

15 P=1 :W=1 :REM P (1-13)
W (1-3)

20 POKE S+24, 15 :REM VOLUME
25 POKE S+5,15 :REM ATTACK/

DECAY
30 POKE S+4,W(W):REM WAVEFORM
35 POKE S+6,15 :REM SUSTAIN/

RELEASE
40 ON P GOSUB 55,60,65,70,75,80,

85,90,95,100,105,110,115
50 POKE S+4,W(W)-1:POKE S+ 5,0:

POKE S,0:POKE S +1,0:END
55 FOR Z=1 TO 75 STEP.1: POKE

S+ 1,Z: NEXT Z: RETURN
60 FOR Z=1 TO 75 STEP.1: POKE

S+1,ABS(SIN(Z) . 15):
NEXT Z: RETURN

65 FOR Z=75 TO 5 STEP-1:POKE
S+ 1,Z:POKE S,Z:NEXT Z:
RETURN

70 FOR Z=1 TO 100:POKE S + 1,
RND(1)"75:NEXT Z:RETURN

75 FOR Z=1 TO 200:POKE S+1,ABS
(TAN(Z)+5):NEXT Z:
RETURN

80 POKE S+1,10:POKE 5,127:FOR
Z=1 TO 15 STEP.05:POKE
S+24,Z:NEXT Z:RETURN

85 FOR Z=1 TO 250 STEP 1:POKE
S+1,Z:POKE S+1,255-Z:
NEXT Z:RETURN

90 FOR Z=5 TO 100STEP 5: FOR ZZ
=10 TO 100 STEP 10:POKE S+1,
Z:POKE S,ZZ:NEXT ZZ,Z:
RETURN

95 FOR Z=20 TO 200 STEP 10: FOR
ZZ=1 TO 20:POKE S+ 1,Z-
ZZ:POKE S +1,ZZ+ 50:NEXT ZZ,Z:
RETURN

100 FOR Z=1 TO 40:FOR ZZ=1 TO
RND(1)10:POKE S
NEXT ZZ,Z:RETURN

105 FOR Z=10 TO 100 STEP 10:

FOR ZZ = 5 TO Z:POKE 5+1,
Z-MNEXT ZZ,Z:RETURN

110 POKE S+1,RND(1)•200 +5:FOR
Z=1 TO RND(1) .500 +100:
NEXT Z:RETURN

115 POKE S +1,RND(1)•200 +5:FOR
Z=1 TO RND(1) . 1 00 STEP
.2:POKE S+24,Z:NEXT Z:RETURN

Lines 10 to 50 initialize the system, and each
line that follows is a separate sound effect
which you can introduce into the program by
an appropriate adjustment to the values P and
W in Line 15. P represents the one-line sound
effects of Lines 55 to 115. W is the waveform
and adjusting the value of this from 1 to 3
selects triangle, sawtooth or noise forms-
whichever is suitable for your effects.

RUNning the program in its entered form
produces a loud howl. CLR the screen and LIST
Line 15 and RUN the program again. You
should now have Line 15 with RUN displayed
below it on the screen, and it's a simple matter
to make changes to both P and W to try out
three variations of each sound effect line.

With P = 2 W =1 you have, for instance, a
warbling sound This changes to a Tardis-like
sound when W = 3. Other interesting effects
are possible with the following combinations
ofPandW:P=7 W=1,P= 9 W=1,P=10
W =1 or 2, and P =12 W =1. But there are
plenty of others-try experimenting, you
might be surprised at the results!

Further effects are possible by adjusting the
POKEd value in Lines 25 and 35.

Sound on the Vic 20 works in a similar fashion
to sound on the 64, but is a little less
sophisticated.

Five special registers govern sound
generation-36874 controls low notes, 36875
controls middle notes, and 36876 controls high
notes; 36877 is a noise generator; 36878 con-
trols the volume. All the registers normally
contain the value 0—off. The tone registers
can contain values from 128 to 255, and the
volume register can contain values from 1 to
15. If a number greater than 0 is POKEd into
any of the tone registers they will continue
generating sound until they are switched off by
POKEing 0 back into them.

Here is a short library of sounds which will
illustrate how the registers can be used to
produce special effects. First an 'end of game'
sound:

10 POKE 36878,15
20 FOR Z=128 TO 255:POKE

36875,Z:NEXT Z
30 POKE 36875,0

or a motorbike:

10 POKE 36878,15:FOR Z=1 TO 100
20 POKE 36875,(150+ RND(1)*5)
30 POKE 36875,0:NEXT Z

Or this interesting sci-fi effect, borrowing
values from other memory locations:

10 POKE 36878,15
20 FOR Z=60000 TO 60999: POKE

36876,PEEK(Z):NEXT
30 POKE 36876,0

LI
The Acorn machines have two commands
which can be used to produce sounds—
SOUND and ENVELOPE. SOUND can be used
on its own to produce simple effect, whilst
ENVELOPE allows you to make modifica-

tions—quite literally 'shaping' the sound—
so that more sophisticated effects can be
obtained.

Here is the kind of effect you can get from
using SOUND alone:

SOUND 1, — 15,80,100

The four numbers allow you to select channel,
volume, pitch and note duration. You can
choose either channel 1 or channel 0—channel
1 allows you to produce pure musical tones and
0 allows you to produce noise.

In the volume position, — 15 turns the
sound on, and 0 turns the sound off. Numbers
between 1 and 16 are ENVELOPE numbers, but
more about that later. Note that earlier Acorn
operating systems only allow ENVELOPES be-
tween 1 and 4.

Pitch may take numbers from 0 to 255. 0
produces a very low bass note, whilst 255
produces a high treble note.

Finally, you can vary duration between 0
and 255—the larger the number, the greater
the duration. 255 will give you a continuous
note—one which will play until you stop it,
either by pressing 'ESCAPE or from within a
program.

One of the best features of the sound on the
Acorn machines is that the computer is free to
do other things whilst it generates sounds. On
some other micros everything stops when they
make sounds—they can either make sounds or
move graphics in an arcade-type game, for
example.

Everything above applies to both the BBC
and the Electron. However, there are some
differences between the machines—the BBC
has more sophisticated sound facilities.

Firstly, there are two extra sound channels,
numbered 2 and 3. These are identical to

channel 1 and are used for producing musical
notes—so on this machine you can play two or
three notes at the same time. Secondly, the
volume may be varied in steps between 0 and
— 15. The Electron will take intermediate
values, but any number less than 0 will be
treated as 'on'.

SOUNDS FOR THE MAZE
If you SAVEd the random maze game from
Games Programming 7 (page 197) you might
like to add some sound effects.

Firstly, a small bleep which will sound as
the man is moved around the maze:

795 SOUND1, — 15,150,1

The second sound happens when the player
succeeds in recovering some treasure. Add
Line 225 and change Line 830:

225 ENVELOPE1,128,2,0,0,50,0,0,127,
0,0, —127,126,0

830 IF H=226 THEN SOUND 1,1,150,10:
PRINT TAB(RND(36+ D*40)+1,
RND(22)+4)CHR$(226): SC= SC
+ MT— TIME: TIME = 0

And lastly, a funeral march for when the player
loses a life:

891 RESTORE: FOR T=1 TO 11
892 READ D,P
893 SOUND1,-15,P,D
894 SOUND1,0,0,1
895 NEXT
896 DATA 12,5,8,5,4,5,12,5,8,17,4,13,

8,13,4,5,8,5,4,1,12,5

ENVELOPE
The treasure-finding sound uses ENVELOPE as
well as SOUND. ENVELOPE cannot be used on

its own because all it does is to modify the
SOUND.

Unfortunately, there isn't enough space
here to explain the complexities of
ENVELOPE—there are 14 separate numbers
associated with the command—but it will be
fully explained in a later issue of INPUT. But
some feel for what ENVELOPE does can be
gained from just experimenting with the
ENVELOPEs given in this issue.

If you do decide to use ENVELOPE as well as
SOUND, the volume number in the SOUND
command will have to match the ENVELOPE
number. In other words, make sure that the
second number in SOUND matches the first
number in ENVELOPE.

MORE SOUND EFFECTS
Here are a variety of sound effects which you
can put in your own games programs. The
ENVELOPE line can be put anywhere in the
program as long as it precedes the SOUND
command which refers to it.

One of the most useful sound effects in
games is an explosion like this one:

10 ENVELO P E1,131,0, 0,0,0, 0,0,126,
— 3,0,0,126,0

20 SOUND 0,1,6,100

Alternatively, you may want a crash sound like
this:

10 ENVELOPE1,1,0,0,0,0,0,0,126,
—1,-3,-126,126,0

20 SOUND 0,1,60,35

Or a siren like this:

10 ENVELOPE3,1,3, — 3,3,10,20,10,
127,0,0,0,126,126

20 SOUND 1,3,100,20

These sounds would be most at home in a
down-to-earth game—say, one involving
tanks, aircraft, or even in a car racing game.

For an alien-zapping game you'll need some
more abstract sounds like this one:

10 ENVELOPE1,130,20, — 2,0,5,30,0,
126,0,0, — 7,126,0

20 SOUND 1,1,100,10

Or a ping:

10 ENVELOPE2,1,0,0,0,0,0,0,126,
—1, —1, —1,126,0

20 SOUND 1,2,170,3

Or a vibro beam:

10 ENVELOPE1,1, —16,48, —16,3,1,
3,7,65,0, — 4,65,126

20 SOUND 1,1,220,8

You can use these effects as they stand, or you
could try matching a different ENVELOPE with
the SOUND. All you need remember to do is to
match the ENVELOPE numbers. You may also
wish to try altering some of the numbers in
SOUND and ENVELOPE. It's worth spending
some time experimenting.

NC1
There are two keywords on the Dragon and
Tandy which produce sound effects—SOUND
and PLAY. Both use the same sound generator,
and you can't really affect the quality of the
note it produces. SOUND controls the pitch
and duration of the note, while PLAY allows
you to select a string of notes—to play a tune,
for example. SOUND is the simplest to use and
can be used to produce effects like the one in
the following program. When you RUN it don't
forget to turn up the volume on your TV, or
you won't hear a thing.

10 FOR Q=1 T05
20 SOUND 200,1
30 NEXT Q

The series of blips can be altered by changing
the numbers after the SOUND command. The
first number controls the pitch of the note, and
can take a value from 1 to 255. The lowest note
is produced by 1, and the highest by 255—as a
guide for those of you who know something
about music, 89 gives middle C.

The second figure after SOUND regulates
the length of the blips. Again, the range of
values is from 1 to 255-16 gives about one
second's duration.

These blips would be very suitable for use
in a space or fantasy game, but wouldn't be
much use with a more realistic type of theme.
Just like the screen flash on page 161, you have
to be careful when to use them. Always use
appropriate sound effects.

If you decide that you need a more so-
phisticated type of effect you'll have to aban-
don the SOUND command because it is too
limited. Instead you'll have to use PLAY as
explained later.

SOUNDS FOR THE MAZE
If you have SAVEd the random maze game on
pages 194 to 196 you can greatly improve the
game by adding these sound effects.

You should change Line 230 so that it reads:

230 IF X< > LX OR Y < > LY THENPUT
(X1,Y1) — (X1 + BS — 1,Y1 + BS — 1),B,
PS ET: LX = X: LY = Y:PLAY"T5005DG"

and change Line 240 to:

240 IFF= 1 THENF = 0:SC = SC +
(TI — TIMER):TI = TI — 10:PLAY

"T1003BCDEFGA":GOT0130

and finally, change Line 500 to:

500 CLS:SCREEN0,0:PLAY"T302
L2CL4CL12CL2CL4D # L8DL4DL8
CL4C01 L8B02L2C" :LI = LI —1

You can use the computer's editor, or re-type
the lines in full.

Now RUN the program and listen to what
happens as you move the man around. You'll
get a different sound when the treasure is
recovered, and a funeral march when a life is
lost.

One thing that you must be careful to avoid
is that your sound effects do not slow down
your game too much. Every time the computer
makes a sound it stops doing everything else.
In games programming, this means that any
screen movement stops whilst the sound is
being made—in fact, when you want a pause,
you can use a sound instead of a FOR . .. NEXT
loop to create a delay in your programs. For
this reason, the sound in Line 230 is very short
so that the delay is kept to a minimum. You can
even 'fine tune' your programs with sound.

THE PLAY COMMAND
PLAY always operates on a string containing
instructions for the computer. The string in
Line 230 of the previous program contains the
instructions 150050G. T stands for Tempo—
speed, if you like—and can be set to any value
from 1 to 255. 0 is the Octave, and may take a
value from 1 to 5-1 is the lowest and 5 the
highest. The last two letters, D and G, are
notes. Very broadly, what T5005DG means is
`Play two high notes fairly quickly'.

Try altering the values of T and 0 to see
what kind of effects you can get.

In Line 240 the string is T1003BCDEFGA,
which plays a rising scale, except for the first
note.

The funeral march in Line 500 is more
complex. A full explanation of how to write
music on the computer will have to wait until
later, but notice how the note length, L, is
varied during the tune. In fact you can choose
to vary any of the parameters in the string at
any point during the tune, making the PLAY
command very flexible.

EXPLOSIONS
The PLAY command can also be used to
produce sound effects for explosions which
can be very useful in games.

The following sound effects can be used
either on their own, or with the visual effects
you saw on pages 161 to 167.

Try this effect:

10 PLAY "T16001L3OGF # FE # D # D C #
D# DFE#"

You could use it when something is hit, or
explodes on the screen. For example, you
could incorporate it in the program on page
100, by adding the PLAY command to Line 270
before the GOTO.

A nice reverberating sound can be set up
like this:

10 PLAY "T8001 L2BFBFBFBFBFBFBFBFBF"

Two notes are repeated over and over in the
lowest octave. Try manipulating the tempo
and note length to get variations on this sound.

You can get your sound effects to repeat by
using a routine like this:

10 F$ = "T10002L10AG BE # DFADF # "

20 F$ = F$ + F$
30 PLAY F$

Line 10 is the string of instructions for the
sound. Line 20 concatenates the string so that
when Line 30 PLAYS it, the sound repeats.

A SIREN
Being able to make a sound repeat has other
applications. Suppose you want a siren to warn
the player of approaching enemies. You could
use a program like this:

10 CLEAR 250
20 F$ = "T15004L8CDD # EF # FGF #

FED # DC # CD # DC # C"
30 F$ = F$ + F$ + F$ + F$
40 PLAY F$

With the siren effect a very long string will be
built up by concatenating four lots of the
original F$ before it is played. The Dragon
and Tandy have only a limited amount of
string storage when the machines are first
switched on, and the new sound effect will be
much too large for the available memory.

You therefore have to reserve more string
space by CLEARing some more memory-250
bytes of string space are reserved by Line 10.

Be careful that you reserve 250 extra bytes
of memory when you use the sound effect in a
games program, or else you will suffer an
OS—out of string space—error.

Don't be disappointed if your experiments
do not produce effects that are comparable to
the best effects in commercial games. Some
very good effects are possible from BASIC,
but the most sophisticated are written in
machine code—a topic which will be dealt with
later on in INPUT.

To understand machine code you
have to understand how the
microprocessor works and what it
can do. It is the brain of the
machine, as well as its heart

Computers have memories. But they do a great
deal more than just remember things, because
they are also able to manipulate what they
memorize. The manipulation is done by the
Central Processing Unit (CPU), also called the
microprocessor.

A microprocessor looks like any other
chip but it is very different from the
others. They are passive devices
that simply remember what
they are told to. But the
microprocessor is
intelligent. It can
add, subtract, move
information from one
memory location to another
and shift and rotate their
bit patterns. And learn-
ing to manipulate and
communicate with the
microprocessor is
what machine code is
all about.

THE HEART OF THE MACHINE
Everything that happens in your computer is
under the direct control of the microprocessor.
It's the heart of the machine. It does the
arithmetic, copies data from one memory
location to another, assigns functions to areas
of memory and runs your programs. And when

you write machine code programs, it
is the microprocessor you
are communicating with. - 	Inside the micro-

processor, there are
a number of spe-
cialized memory 0,. locations called

registers. Each
of them has a

specific function,
d which of them
is used depends
entirely on the

instructions you

give when you write your machine code.
One of the important things about registers

is that they don't have addresses. This makes
them very fast to use.

THE REGISTERS
Each of the various chips in the home com-
puters under consideration here has a different
set of registers. But some of the registers are
still common to all the machines. All of them
have a 16-bit PC register. This is the program
counter. It stores the address of the next byte of
the machine code program to be executed. In
other words it tells the computer whereabouts
it is in the program. And as each byte of the
machine code program is executed, the PC
register is incremented by 1.

All home computers have at least one eight-
bit accumulator or A register. These are where
the computer does its arithmetic. If you want
to add one number to another, or subtract one
number from another, one of the numbers
should be in an accumulator. This also
affects multiplication and division—which are
only combinations of logical operations with
additions and subtractions.

Each of these machines also has a couple of
index registers. Those in the Spectrum, the
ZX81, the Tandy and the Dragon are 16-bit
registers which contain addresses. These ad-
dresses can be incremented or decremented or
have arithmetic operations performed on them
in the accumulator to give other addresses.
The Electron, BBC Micro, Vic 20 and Com-
modore 64 have eight-bit index registers
whose contents are added to an address to give
a further address.

Whichever way round it is done, this is
known as indexed addressing. It is most com-
monly used when reading data byte-by-byte
out of a table. The program will start with the
address of the first byte of the table, then work
its way through it by incrementing the index
register each time.

PUTTING UP THE FLAGS
In each of these home computers, one eight-bit
register stores what are known as flags. These
are single bits that are set, or reset, to 1 or 0
depending on the outcome of certain
operations.

■ WHAT THE CPU IS
AND WHAT IT DOES

■ COMMUNICATING WITH
THE MICROPROCESSOR

■ THE REGISTERS

■ HOW THE COMPUTER KEEPS
TRACK OF A PROGRAM

■ WHAT FLAGS INDICATE
■ MEMORY LOCATIONS

AND THE STACK

How to count in computerese
When you count things on a computer
you start at zero and work upwards, for
example, memory location are numbered
from 0000 to FFFF. The same goes for
the bits in a byte. When you number the
bits you start at the righthand end and
number from nought.

So the extreme righthand binary digit
is called the zero bit, or bit zero. The next
one to the left is called bit one, the next bit
two and so on, up to bit seven—the
extreme lefthand bit in a byte.

In some cases, the terms `righthand'
and lefthand' can be a little confusing,
especially when dealing with two-byte
numbers which can be stored either high-
low or low-high, depending how your
computer operates. In proper 'compu-
terese', these are called the most
significant—that is the one with higher
value—and the least significant. So if you
are storing an address-3D8E, say-3D
is the most significant byte and 8E the
least significant byte.

The Sinclairs, Commodores and
Acorns put the low or least significant
byte-8E here—into the lower memory
location. The high byte, which is worth
100 hex or 256 decimal times the value of
the low byte, 3D in this case, is put into
the memory location with the higher
address—that is the memory address stor-
ing 8E plus 1. There is one exception to
this low-high conventioir--BASIC line
numbers are stored high-low.

The Dragon and Tandy store all their
two-byte numbers with the high byte in
the lower memory location and the low
byte in the higher memory location.

The same terminology applies to bits.
In the binary number 01010101 the most
significant bit, bit seven is 0 and the least
significant bit, bit zero, is 1.

Each flag has its own particular meaning.
For example, the zero bit, the least significant
bit of the register—that is the one at the right-
hand end in the normal convention of
writing—is the carry or C flag. If you do an
addition or subtraction—or other logical or
arithmetic operations that will require a bit to
be borrowed or carried—then the C flag is set
to 1.

Other bits indicate whether the result of a
certain operation was zero (the zero flag), or
was negative (the sign flag), or overflowed the
register (the overflow flag). These flags are
common to all the machines, though they are
not necessarily in the same position in the flag
register. And there are other flags that are
specific to each machine.

Flags are used in conditional statements—
the equivalent of IF . . . THEN in BASIC. In the
machine code equivalent, you write instruc-
tions which will make the machine jump or
branch if the sign or the zero flag was set, say.

TH E STACK
Another register all these computers have is
the stack pointer. It holds the address of a
memory location. And like all pointers this

address marks the end of an area of memory.
That specialised area of memory is, of

course, the machine stack. This is a quick-
access area where information can be stored
temporarily and recalled without the normal
addressing procedures.

The stack is like an ordinary pile of papers.
When you want to put information into it, it
has to be piled on the top. And when you want
to take something out of it, you have to take it
from the top. The rule is last in, first out.

The microprocessor will only put things
onto the top of the stack, and if it is instructed
to take something from the stack it will always
take the top item. This means that you don't
have to specify the memory location you are
interested in, or its position in the stack. At any
one time there is only one top location, so the
microprocessor cannot get confused.

But you can. It is up to you to remember
which is in each memory location in the stack
and to make sure that the data you want is at
the top of the stack when you want to use it.

Now that you have grasped the concept of
the stack being a pile you can put things on the
top of and take things off the top of, there is
some bad news. In all the machines under

consideration here, the base of the stack is
towards the top of RAM, with the rest of the
stack piled, item by item, down underneath it.
So, in fact, you put things onto, and take things
off, the bottom of the stack.

This means that when a new item of data is
pushed onto the stack, the stack pointer is
decremented, and when a byte is pulled off the
stack pointer it is incremented. Otherwise, the
pile concept holds true, with the base of the
stack fixed by a system variable and items of
data added to or subtracted from the free end
one at a time.

SUBROUTINES
One of the most common uses of a stack is to
keep track of your place in a program when the
computer goes off to execute a subroutine.
When the computer hits an instruction that
tells it to jump to a subroutine, the contents of
the program counter are pushed onto the top
of the stack.

The address of the beginning of the sub-
routine is then written into the program
counters. As each instruction in the subroutine
is executed the program counter is incremen-
ted in the usual way—until it hits a return
instruction. Then data at the top of the stack is
pulled back into the program counter and
incremented in the normal way.

This explains why, in BASIC programs,
each nested subroutine must be completely
contained in the one preceding it, otherwise
the wrong departure addresses will be on the
top of the stack.

Now that you have some grasp of the more
important concepts behind machine code pro-
gramming you can find out how they relate to
the chips in your computer.

S5
There are 21 user registers in the Spectrum and
ZX81's Z80 chip. They are called user regis-
ters because they can be controlled by the user,
or programmer, of the machine.

There are two eight-bit accumulators, A
and A'. These cannot be used at the same
time, but you can switch between them
to perform two operations simultaneously. It is
not advisable to try this on the ZX81, though.
If the machine is in SLOW mode, the picture
will be lost.

The flag register, F, is also eight-bit,
although not all of the bits need concern you as
a programmer. The zero bit is the carry flag C;
bit one is the subtract flag N, which is only
brought into play when binary coded decimal, a
special binary representation of decimal, is
used; bit two is the parity/overflow flag PTV;
bit four is the half-carry flag H which is also
used in binary coded decimal; bit six is the zero

flag Z; and bit seven is the sign flag S. There is
an alternate flag register F' which is switched
in with A'.

There are six general purpose registers, BC,
DE and HL. These can either be used sepa-
rately as eight-bit registers, or in pairs as 16-bit
registers. And there is also an alternate set-
B'C', D'E' and H'L'. The HL and the alternate
H'L' registers can also be used as 16-bit
accumulators. The H'L' register must be
restored to its former value before returning to
BASIC, though.

The stack pointer is 16 bit, as are the index
registers, IX and IY. These hold addresses
which can be incremented or offset by adding
or subtracting numbers known as offsets, to
give another address. This facility is often used
to read a table of data from a base address.

IY usually points to the centre of the
systems variables and is used by ROM rout-
ines to index them. If the IY register is used,
its original value must be restored afterwards
or your computer will not work.

There are two other special purpose regis-
ters on the microprocessor, the I and the R.
The I register is used to store part of the
address used to initiate interrupt routines.
These are routines which interrupt the normal
flow of your machine code program every 50th

When would I use binary coded
decimal?
BCD is used when you need to print
numbers on the screen very quickly.
Unlike hex, BCD does not have to be
converted into decimals before mere
mortals can understand it, it is already in
decimal form.

To encode a two-digit decimal number
into a binary byte, you put the right-
hand digit into the least significant four
bits—known as a nibble, sometimes
printed as nybble—and the left-hand
digit into the most significant nibble.

This doesn't use all the possibilities—
there are after all 16 possible digits that
can be encoded into four binary bits, not
just ten. So it is wasteful of space. BCD
is really hex without the letters.

The only problem this creates is when
you get a number bigger than 9 in one of
the nibbles. This is where the half
carry flag comes in. (The. Acorn
computers carry numbers
automatically.)

of a second to perform some vital function like
scanning the keyboard.

The R register is the refresh register, but
you do not use it on the Spectrum or ZX81.

The bottom of the stack is at RAMTOP and
it can occupy as much of the RAM as required.
The stack pointer, or SP register, is 16-bit as it
stores the whole of the address of the last
occupied byte of the stack.

D3 VI EI
The Electron, BBC Micro and Vic 20 use the
same chip, the 6502, while the Commodore
64's 6510 chip is very similar and the way it
works is virtually identical.

Both these chips have a single eight-bit
accumulator and two eight-bit index registers,
X and Y. They contain offsets which are added
to an address to give another address. This
method is often used to read a table of data.
The address here would be the base address of
the table. To read the table a loop would be
constructed which incremented the offset each
time the computer went round. This would
direct the program to the next byte of the table
each time the loop was performed.

It is possible to direct a machine code
program to an address which contains another
address—though this must be in the zero
page, as the contents of any memory location
can only be eight bits long. You can offset
either of these two addresses, but the X
register must be used to offset from the first
address and the Y register to offset from the
second address.

The eight-bit P or processor register, known
on the Commodores as the status register,
contains the flags. The most important are the
carry flag C which occupies the zero bit; the
zero flag Z in bit one; the overflow flag V in bit
six and the sign flag N in bit seven.

There are three other flags whose use you
may come across. The decimal flag D, which is
bit three, is set when the microprocessor is
doing arithmetic in binary coded decimal, which
is a binary representation of normal decimal
figures. The break flag and the interrupt flag,
B and I, are used in interrupt routines. These
are routines which interrupt the normal flow of
your machine code programs at regular inter-
vals to perform vital functions like scanning
the keyboard to see if a key has been pressed.

The stack is confined to page one, with its
base at &01FF, so the stack pointer or SP
register only has to be eight bits long. It can
contain any number from &00 to &FF and
gives the least significant byte of the first free
address below the bottom of the stack. The
microprocessor already knows the most sig-
nificant bit of the address must be 01 as the
stack is on page one.

IM1 !HI
The microprocessor on the Dragon and Tandy
has two accumulators, the A register and the B
register, which can be used independently as
separate eight-bit registers, or together as a 16-
bit accumulator D.

It has two 16-bit index registers, X and Y.
These hold addresses which can be incremen-
ted or offset by adding or subtracting num-
bers, known as offsets, to give another address.
This is often used to read through a table of
data from a base address.

The condition code register holds the flags.
The zero bit is the carry flag C; bit one is the

overflow flag V; bit two is the zero flag Z; bit
three is the sign flag N; bit five is the half-carry
flag which is brought into play when binary
coded decimal, a special binary representation
of decimal numbers, is used; and bits four, six
and seven—the normal interrupt mask flag I,
the first interrupt mask flag F and the entire
flag E—are used in interrupt routines. These
are routines that interrupt the normal flow of
your machine code program at regular inter-
vals to perform vital functions like updating
the TIMER.

The Dragon and Tandy's 6809 chip also has
an eight-bit DP—or direct page— register which
stores the most significant byte of the ad-

dresses you choose to be on the direct page so
that any location on that page can be addressed
by its least significant byte only.

These are two 16-bit stack pointers, S and
U. The S pointer points to the last full address
on the hardware stack whose base is at
RAMTOP, or &H7FFF, unless it has been
pushed down to make room for a machine code
program. The U pointer is used with the user
stack, whose base is usually defined by the
user. The user stack is not used very often and
the U register is often used as an extra 16-bit
index register by the more sophisticated
Dragon and Tandy machine code or assembly
language programmer.

Here's your chance to have direct
control over your computer by
looking straight into its memory and
altering or using the values it stores.
And you can do it all in BASIC too.

Most of the time you can use a computer
without any need to be concerned with how its
memory works. When you write LET A=67 for
instance, the computer sorts out for itself
suitable free memory locations, labels them 'A'
and stores the number 67 in them. Then, when
you type PRINT A, the computer knows exactly
where to go to find it again. It does all this
automatically, and it is only when you come to
learn machine code that you have to tell the
computer which memory locations to use.

But there is a way, in BASIC, to look at the
computer's memory, and you can actually use
the values stored there in your programs. You
can also put in your own values to alter the way
the computer behaves.

The BASIC tools to do this are PEEK and
POKE. PEEK allows you to look at the value
stored in memory, POKE is used to put in your
own value. The Acorn computers use the
query ? and sometimes the piing ! instead of
PEEK and POKE, but the end result is the same.

HOW PEEK AND POKE WORK
The Commodore, Dragon, Tandy, 48K Spec-
trum and Acorn computers all have 65536
addressable memory locations, or 64K. The
16K computers have 32768 locations. Some of
this is ROM, which is the Read Only Memory.
The contents of the ROM are fixed so that
while you can look at it using PEEK, you cannot
POKE anything into it to alter what is already
there. The rest of the memory is the RAM—
the Random Access Memory, or Read Write
Memory as it is sometimes known. You can
PEEK and POKE this section of memory, and
this is where BASIC programs and variables
are stored.

This program allows you to look at any of
the computer's memory locations—the whole
of the ROM and the RAM:

13 [43 	T _

10 INPUT "ADDRESS. ..";A
20 LET N = PEEK(A)
30 PRINT "CONTENTS. .";N
40 GOTO 10

10 INPUT "ADDRESS.. .",A
20 N = ?A
30 PRINT "CONTENTS. .";N
40 GOTO 10

Aimr:

MEMOR
• HOW TO 	 • EEK AND POKE
■ 	POKEING CHARACTER ,,,TO

THE 	 ; (1.

_ 	 r .

-.''CONTROL r.-
"g3.10-1,-,,-.41111111111111•0111Ee- 	 ' 'A

Input any number you like between 0 and
65535 and you'll see what's in that location—
although if you try to PEEK into some areas of
memory you may be given a dummy value
rather than the real value stored there.

The contents of the RAM will depend on
what you were doing with your computer but
the contents of the ROM are fixed.

Notice that the numbers are always integers
between 0 and 255. In hex this is from 0 to FF,
which means they are all single bytes (a byte is
a two-digit hex number). Each memory loc-
ation will hold one byte, and any larger
number cannot be stored in one memory
location. If you add 1 to FF in hex you'll get
0100. This is two bytes and so needs to be
stored in two memory locations: 01 in one
location and 00 in another.

The next program lets you POKE numbers
into the memory. Only POKE single bytes at
this stage, that is any number between 0 and
255.

0 KC MI
10 PRINT "CONTENTS ... 	";PEEK(30000)
20 INPUT "NUMBER 	";N
30 POKE 30000,N
40 PRINT "NEW CONTENTS";PEEK(30000)
45 PRINT
50 GOTO 20

(For the Vic, change location 30000 to 900.)

10 PRINT "CONTENTS";?3000
20 INPUT "NUMBER 	",N
30 ?3000 = N

40 PRINT "NEW
CONTENTS";?3000

. 45 PRINT
50 GOTO 20

The program first prints out
the contents of the location

then POKEs your number
into it and prints out the

contents a second time to prove that your
number really is there.

You can change the memory location to any
other location you like. Notice that nothing
happens if you try to POKE into the ROM,
although you won't do any harm if you try.
You may crash the system if you POKE into
certain areas of RAM but again, it won't do any
lasting harm—simply switch off the machine
for a moment to reset the memory.

Now try POKEing a number bigger than 255
and see what happens. On the Dragon, Tandy,
Commodore and Spectrum you'll get an error
message because you can only get one byte into
each location. On the Acorn computers,
though, things are different. The computer
accepts the number but only the last or least
significant byte is stored. So if the number was
260—which is 0104 in hex—you'll find that
only the 04 part is stored.

POKEING ONTO THE SCREEN
If you look at the memory maps on pages 208
to 215 you'll find that a section of the memory
is devoted entirely to the screen display. If you
POKE certain numbers into that area then
characters will actually appear on the screen.
To see a particular character you have to POKE
its ASCII code on the Dragon, Tandy and
BBC computers, and its screen code on the
Commodore. The Spectrum uses a different
method described below. Try these lines:

POKE 1024,1: POKE 55296,3

ITZ
POKE 7680,1:POKE 38400,3

MODE 7: PRINT: ?&7C00 = 65

POKE 1024,65

You should see the letter A appear at the very

top left-hand corner of the screen.
On the BBC and Dragon it is important that

the screen has not scrolled before you try
POKEing characters or they could appear any-
where. So clear the screen first by typing CLS
then RETURNS or 'ENTER I. On the BBC a change
of mode will also reset the screen. Even typing
MODE 7 when you are already in MODE 7 will
still work. Note that you cannot POKE a
character like this on the Electron as it only
works in the teletext mode—MODE 7.

The reason you need two POKEs on the
Commodore is that the first puts the A on the
screen and the second prints it in a colour you
can see. It would be in the background colour
otherwise. You may be wondering what ad-
vantage there is in POKEing characters on the
screen when up to now you have managed
quite happily with PRINT AT, PRINT TAB or
PR INT @. Using PRINT to position characters is
usually the easiest and most convenient
method, but there are some cases where it is
better to POKE them. For example, if you
PRINT anything at the last screen position, then
the screen will always scroll—but you can
POKE characters here without any problem.
This is especially useful in games when you
want to move a character over the whole
screen.

SPECTRUM CHARACTERS
On the Spectrum, things are a bit different as it
is not possible to POKE a whole character on the
screen. A character, like a UDG, is made up of
dots on an 8 by 8 grid. And each line has to be
POKEd separately onto the screen in order to
build up the whole character.

Luckily, the shapes of the characters are
stored in the ROM, so you can PEEK into the
ROM to have a look at each line and then POKE
it onto the screen. The next program POKEs an
A at the top left of the screen:

10 LET dent =16384
20 FOR a =15880 TO 15887
30 POKE dest,PEEK a

40 LET dent = dest + 256
50 NEXT a

Line 10 sets the screen address for the first line
of the characters. The FOR ... NEXT loop steps
through the area of ROM where the character
is stored, and Line 30 prints that line of the
character on the screen. Line 40 increments
the screen address by 256 which brings it down
directly below the first, ready to print the next
line.

This method works, but it is rather slow and
so it is almost always better to use PRINT AT or
PRINT TAB on the Spectrum.

PEEKING THE ROM AND RAM
When you RUN the first program to look at the
computer's memory all you can get out of it are
numbers between 0 and 255. However, many
of these numbers are actually ASCII codes of
letters, some of which make up words and even
whole sentences.

Look at the box on page 243 if you're not
sure what ASCII codes are.

The next program reads through the whole
of the computer's ROM and converts the
numbers into characters before printing them
on the screen:

10 FOR A = 0 TO 16383
20 LET N = PEEK A
30 IF N > 31 AND N<127 THEN

PRINT CHR$N;
40 NEXT A

10 FOR A=40960 TO 49159
20 N= PEEK(A)
301F N>31 AND N<91 THEN

PRINT CHR$(N);
40 NEXT A

For the Vic, change Line 10 to:

10 FOR A = 49152 TO 57347

11
10 FOR A= &8000 TO &FFFF
20 N = ?A
30 IF N > 31 AND N<127 THEN

PRINT CHR$(N);
40 NEXT A

10 FOR A= &H8000 TO &HBFFF
20 N = PEEK(A)
30 IF N > 31 AND N<127 THEN

PRINT CHR$(N);
40 NEXT A

Lines 10 and 40 step through the whole of the
ROM, Line 20 PEEKs at each location, and
Line 30 converts the number into a character
and prints it out. Line 30 also limits the range
of numbers that are converted so the computer
doesn't try to print out control codes or
graphics symbols.

You can also print out the contents of the
RAM in exactly the same way—simply by
changing the memory addresses in Line 10.
The addresses given below print out part of
the area where BASIC programs are stored.
This lets you see the program
itself as it is actually stored
in the memory.

It is best to
turn off the computer for a second before
trying out this program to make sure that
the RAM isn't cluttered up with all sorts of
other programs. Here is the new Line 10:

	 '

10 FOR A = 23755 TO 65000

— ■

10 FOR A = 16510 TO 30000

10 FOR A= 2048 TO 40959

[.3
Use FOR A = 4096 TO 7679 for the unexpanded
Vic, but start at 1024 for the 3K and 4608 for
the others.

10 FOR A= &H1 E00 TO &H1F00

10 FOR A= PAGE TO PAGE + 255

Try looking at other areas of RAM in the same
way.

USING PEEK AND POKE
So far you've been looking at the computer's
memory in general and POKEing characters
onto the screen. This gives you a good idea of
how PEEK and POKE work but it is not
particularly useful in itself.

To do something really useful you have to
look at specific memory locations. For
example, on the Spectrum, memory location
23609 controls the sound that the keyboard
makes when you press a key. Normally it
contains 0 which makes a short click, but a
larger number—you can go up to 255—makes
a longer beep. POKE 23609,80 makes a
reasonable sort of blip noise.

What you can do with PEEK and
POKE depends mainly

on the computer you have.

ASCII CODE TABLE

Each character the computer uses has a code
number and most computers use a standard
code called the ASCII code. ASCII stands for
American Standard Code for Information
Interchange—pronounced ass-key for short.

These codes are the numbers used with
CHR$ and ASC (or CODE on the Spectrum).
CHR$ converts the number into a character
while ASC or CODE does the reverse and
converts a character into its code number.

Also, whenever the computer stores a word
in its memory it is the ASCII code of the
characters that are stored.

Here's a chart of the ASCII codes:
ASCII

chart

Code 	ASCII 	Code 	ASCII
number 	character 	number 	character

32 	space 	62 	>
33 	I 	 63 	?

34 	 64 	@
35 	:: 	 65 	A

36 	$ 	 66 	B

37 	% 	67 	C
38 	& 	68 	D

39 	 69 	E
40 	(70 	F

41 	I 	 71 	G
42 	* 	72 	H

43 	+ 	 73 	I

44 	, 	 74 	J

45 	— 	 75 	K

46 	 76 	L
47 	/ 	 77 	M

48 	0 	 78 	N

49 	1 	 79 	0

50 	2 	 80 	P
51 	3 	 81 	Q
52 	4 	 82 	R

53 	5 	 83 	S

54 	6 	 84 	T

55 	7 	 85 	U

56 	8 	 86 	V

57 	9 	 87 	W

58 	. 	 88 	X

59 	; 	 89 	Y
60 	< 	90 	Z

61 	=

For example, the other computer keyboards
don't make a noise when a key is pressed so
there's no memory location that controls the
keyboard sound. Also, what takes six or seven
PEEKs and POKEs on one computer may be
done with a single BASIC keyword on another
machine.

The Commodore makes the most use of
PEEK and POKE. The Spectrum, Dragon and
Tandy use them occasionally, often to alter the
way the keyboard works or to alter the screen
display. On the Acorn machines you may
never use them at all in a BASIC program,
although you would if you were using as-
sembly language.

Here, then, are some things to try out on
your computer.

You've already seen one POKE to alter the
sound of the keyboard. The next one alters the
length of time before a key starts to auto-
repeat—useful to speed up games relying on
key presses to move a character. In this, and
each of the following examples, X is a variable
which you should set when you type in the
Lines.

POKE 23561,X

X is normally set at 35 whenever the computer
is switched on so use a number less than 35 to
speed up the delay and a larger number—up to
255—for a longer delay.

It is also possible to alter the auto-repeat
itself by using:

POKE 23562,X

This time Xis normally 5. So use X =1 for fast
auto-repeat and X = 255 for very slow.

TIMING
The Spectrum doesn't have a TIME keyword so
you have to PEEK into the memory to make use
of the computer's internal timer. Time is
stored as three bytes in three consecutive
memory locations.

PRINT (PEEK 23672 + 256*PEEK 23673
+ 65536*PEEK 23674)

will tell you how many 50ths of a second your
Spectrum has been on since the last NEW.
Press NEW to reset the timer or POKE 0 into
each of the three locations.

MORE POKES
Here are two more POKEs that are useful when
you're writing programs that other people will
use. The first one makes sure that all letters
typed in will appear as capital letters:

POKE 23658,8

This is useful when you want all inputs to be
consistent. Use POKE 23658,0 to return to
normal.

The second one alters the cursor to any of
the keyboard characters or even whole key-
words depending which number you POKE in:

10 FOR X =1 TO 255
20 POKE 23617,X
30 INPUT a$
40 NEXT X

Line 30 says INPUT a, this is just to make a
cursor appear on the screen. As soon as you
INPUT something the program displays the
next cursor. The most interesting ones are
around X = 200 to 230. For example X = 210
gives you CONTINUE I as a cursor, and X = 225
gives you a A.

One common use of PEEK and POKE is to
provide an auto-repeat on the keyboard. The
Dragon and Tandy normally have no auto-
repeat, so using keys to move objects round in
a game would be quite tiring. You'd have to
keep pressing the key over and over again very
quickly. But you can use PEEKs to see which
keys are being pressed, allowing you to leave
your finger on the key for as long as you like.

This method has already been used in the
Game Programming section. What happens

when you press a key is that a special code
number is placed in one of 6 memory locations.
PEEK then checks these locations to see which
key is being pressed. It is very easy to use this
in your programs; for example, the next
program uses the cursor keys to draw on the
screen:

10 PMODE 0,1
20 PCLS
30 SCREEN 1,1
40 X= 127:Y= 95
50 IF PEEK(341) = 223 THEN Y=Y— 2
60 IF PEEK(342) = 223 THEN Y = Y + 2
70 IF PEEK(343) = 223 THEN X = X — 2
80 IF PEEK(344) = 223 THEN X = X + 2
90 IF X<0 OR X>255 THEN X=

— 255* (X < 0)
100 IF Y<0 OR Y> 191 THEN Y=

—191*(Y<O)
110 PSET(X,Y,5)
120 GOTO 50

On the Tandy, change the 223 to 247 in Lines
50 to 80.

The tables on pages 245 and 246 show what
code number is generated by each key and
which memory location it is stored in. For
example, if A is pressed, then PEEK(339)
should equal 251 on the Dragon or 254 on the
Tandy, and so on. You can now see where the
numbers after the PEEKs for the last program
came from.

MULTI-COLOURED SCREEN
The next program POKEs coloured lines onto
the screen. By putting different coloured lines
close to each other new shades are produced.
You can press any key while the program
is running to stop the display and
see the number for that shade.

10 PMODE 3,1:SCREEN 1,0:PCLS3
20 FOR K = 0 TO 255
30 POKE 178,K
40 LI N E (78,46) — (178,146), PSET, BF
50 IF 1NKEY$ < > `"' THEN 80

60Or"'
70 GOTO 70
80 CLS:PRINT K

Memory location 178 controls the foreground
colour. This normally ranges from 0 to 3,
giving four colours, but if you POKE a number
higher than K = 3 you'll get extra stripey
colours. PSET is used in Line 40 because we are
dealing with foreground colours. For back-
ground colours change PSET to PRESET and
change the 178 in Line 30 to 179.

When you stop the program you can see the
value of K for that shade and then you can use
that colour in your graphics programs.

SPEED CHANGES
Finally, here's a trick for speeding up the
computer—useful if you want to make a game
go faster after a player reaches a certain score.
Use the first POKE to speed up and the second
to return to normal:

POKE 65495,1
POKE 65494,1

Keyboard PEEKs and POKEs
Dragon

Address

Code Number .

191 	223 	239 	247 	251 	253 	254

338 	 ENTER 	X 	P 	R 	@ 	8 	0
339 	 CLEAR 	Y 	0 	1 	A 	9 	1

340 	 Z 	R 	J 	B 	 2
341 	 1 	S 	K 	C 	 3
342 	 i 	T 	L 	D 4 ,
343 	 — 	U 	M 	E 	— 	5
344 	 — 	V 	N 	F 6
345 	 SPACE 	W 	0 	G 	/ 	7

Tandy
Keyboard PEEKs and POKEs

Address
Code Number

191 	 223 	239 	247 	251 	253 	254

338 	ENTER 	8 X 	P 	H 	@
339 	CLEAR 	 9 	1 	Y 	Q 	I 	A

340 	 2 	Z 	R 	J 	B
341 	 3 	I' 	S 	K 	C

342 	 4 	1 	T 	L 	D

343 	 5 	 U 	M 	E

344 	 6 	— 	V 	N 	F

345 	 / 	7 	SPACE 	W 	0 	G

(You can use any number in place of the 1 as
they all have the same effect.)

There is only one problem with these
POKEs, and that is they may not work on all
processors, and may cause the program to
crash. But it's worth trying out to see if it
works on your machine.

And for those who think that games are too
fast, here is a way to slow down output to the
screen:

POKE 359,60

then use POKE 359,57 to return to normal. But
don't use this one on the Tandy as it disables
the auto-return to the text screen.

PEEKs and POKEs are two keywords which give
the Commodore user grass-roots control over
the machine. In fact, without them, there's
little you can do with the rich selection of
sound and graphics features which are so badly
supported by the version of BASIC used. And
much actual control of the machine can be
done in this way too.

A location-by-location memory map (which
is provided in the Programmer's Reference
Guide) is an essential accessory if you wish to
explore the less commonly used POKEs.

At this point, it's worth pointing out that no
damage can be caused to the computer itself if
you POKE a 'no go' memory location. But you
may get lots of meaningless figures if you PEEK
a sensitive area. At worst the computer may
crash, although even this is a rare event.

Here are some examples which give at least
an insight into the sort of control possible
through the use of PEEKS and POKEs:

COSMETIC CHANGES
Two of the most frequently used of all POKEs
on the Commodore 64 computer are the two

which set the screen and border colours:

POKE 53280, X for the border
POKE 53281, X for the screen

The value X can range from 0 to 15, which
corresponds to the colour codes listed in the
manual. Try POKEing the value 0 into both
locations: the result is a black screen with a
blue cursor. You can change this too. Press
'CTRL' and one or other of the colour keys to
find a combination you like. White or yellow
on black can look much more pleasing than the
normal start-up combinations of blues, and are
better suited to word processing and datafile
handling than more colourful displays.

Other POKEs in this section of memory
(53248-54271) relate to the use of the various
graphics modes such as sprites because here's
where the VIC chip is located.

KEY CONTROL
One of the most useful POKEs for games and
drawing programs is the familiar

POKE 650,X

Where any value of X above 128 switches on
an automatic key repeat facility, and where any
subsequent POKE of a lower value returns
things to normal.

Ever thought how best to protect your
programs? Well there's no certain way, of
course, but a POKE or two can make life
difficult to a casual intruder:

POKE 775, 200

This makes it impossible to use LIST in order to
inspect a program. Matters can be rectified by
POKEing the same location with 167.

Use of the IRUN/STOPI key can be prevented
using:

POKE 808, 239 	(POKE 808, 237)

Note that the second POKE listed here cancels
the effects of the first—and the remaining
POKE on and off forms are shown in this
manner too. This second POKE has, of course,
got to be entered (in direct program mode)
before normal keyboard functions can be
resumed. You may find this POKE useful in a
program routine that relied on keyboard input.
IRUN/STOPI and 'RESTORE' can also be disabled:

POKE 808, 251 	(POKE 808, 237)

Interestingly, the same location is used for
both protective methods. Now, this is some-
thing that happens quite a few times and
suggests an important use of POKEs where
multi-function locations are concerned—
switching the bits of each byte to high (`on') or
low (`off).

The maximum value of 255, for example, is
obtained if all bits of a byte are 'high': Let's
look at the individual bit values:

bit7 bit6 bit5 bit4 bit3 bit2 bitl bit0

128 64 32 16 8 	4 	2 	1

Added together, the values of bits 0 to 7 equal
255. Of the other values used with POKE 808,
the value 237 is obtained only when bit 4 and
bit 1 are 'low', or 'off' (in other words, 255
minus 16, minus 2). Value 234 is obtained
when bits 4, 2 and 1 are low. This sets the
computer back to normal. POKEing 808 with
239 switches on bit 1, and IRUN/STOPI is
disabled again.

MEMORY MANIPULATION
PEEKs and POKEs are commonly used for
memory manipulation so that various areas of
RAM can be protected from being overwritten
by BASIC. Also, different starting locations
can be assigned to, for example, the screen
memory locations. And temporary use can be
made of locations which normally serve a
different functuon (such as the tape in/out
buffer). More about this appears on pages 214
to 215 which describes how the Commodore
64's memory is arranged.

POKEab1e locations can be considered as
information storage 'cells' where a particular
value can range from 0 through to 255. Of
course, the information they contain may act as
switches, maybe for screen colour, maybe for a
particular sound—but the important distinc-
tion is that one location is responsible for only
one task. In many cases these have preset,
fixed or default values which can be examined
using the PEEK program outlined earlier.

Quite often it's useful to clear these loc-
ations of any old information or garbage and a
simple POKE of a 0 is all that's required.

Another interesting thing happens if you try
to POKE a value into an area of ROM/RAM

overlay (such as occurs on the 64 at memory
locations decimal 40960 and upwards). When
you PEEK, you get a value corresponding to
BASIC ROM, but when you POKE, you store a
figure into the RAM area 'beneath'. This
explains why a line such as POKE N, PEEK (N)
frequently appears in program listings for the
Commodore 64. Here's an example, a program
for copying the BASIC ROM into its underly-
ing RAM:

10 FOR N = 40960 TO 49151
20 POKE N, PEEK (N) : NEXT

RUN this and wait for about a minute for the
cursor to reappear: BASIC is now in RAM and
therefore in a position where it can be changed.
But before you can do this you have to flip
ROM out of the way. Enter this:

POKE 1,54

You are actually playing about with perhaps
the single most important location in
memory—but more on this in later articles.
The result is that you are left with a volatile
form of BASIC and any POKES in this area of
memory (40960 to 49151) can have amusing
consequences. In direct mode, enter this string
of PEEKs:

PRINT PEEK(41229),PEEK(41230),
PEEK(41231),PEEK(41232)

Now press I RETURN to display four figures: 76,
73, 83 and 212. If you now look up the ASCII
table, you will see that these figures corre-
spond to L, I, S and T (the latter being
obtained by deducting 128 from 212 to give
84). You've intruded onto the keyword LIST!

Suppose you wanted to change this. The
procedure is simply to POKE into the same
memory locations the corresponding ASCII
codes (with an added 128 for the last one). If,
for example, you wanted the keyword SHOW to
replace LIST, use this direct command
sequence:

POKE 41229,83: POKE41230,72:
POKE 41231,79: POKE 41232,215

Press 'RETURN' and the job's done. Type SHOW
and press I RETURN I to get your former program
listing. To return to normal, simultaneously
press I RUN/STOP I and I RESTORE I (or use POKE
1,55 if you want to do the same thing within a
program). Other keywords can be altered in
the same way.

The Acorn computers don't use the keywords
PEEK and POKE, they use indirection operators
instead. These are the query—?, the pling—!
and the string operator—$. You've already
seen how the query works and the others are

explained in the box on page 247. However,
the point is, Acorn recommend that you don't
use these operators in BASIC programs if at all
possible as the program will then not work
across the Tube to a second processor. This is
because the memory locations will all be quite
different when a second processor is fitted.

Virtually everything you want to do in a
BASIC program can be done with ordinary
keywords. Anything more complicated can be
done with the numerous operating system
calls.

But there are times, occasionally, when you
do need to look straight into the computer's
memory, and only the ?, ! or $ will do.

One good example is when you press BREAK
and then type OLD or 0. by mistake instead of
OLD or 0. and then try to LIST your program.
All you get is Line 0 followed by LD or a dot.
The computer thinks you were entering a new
program and your old program seems to have
vanished—very frustrating if you hadn't yet
saved it.

Luckily there is a way to get your program
back. When you typed OLD or 0. then the first
few bytes of your program were corrupted and
what was there will be lost for ever, but at least
you can retrieve the rest of your program.
Type in this Line and all should be well. But
don't give it a line number or you'll corrupt
even more of your program:

FOR A% = 7 TO 260: IF ?(PAGE + A%)
= &OD THEN ! (PAGE + 4) = &2020F420:
?(PAGE + 3) = A% ELSE NEXT

It works like this. PAGE is the start of the BASIC

ACORN INDIRECTION
OPERATORS

The query (?), is used on the Acorn computers
instead of PEEK and POKE, and in the jargon
this is known as an indirection operator. There
are two other indirection operators, the piing
(!) and the string ($). The piing gives the
contents of four memory locations and allows
you to PEEK and POKE four bytes at a time.
This is useful when you are storing large
numbers. For example,

!3000 = 99999

stores the number as four bytes in four
locations starting at 3000. To PEEK four
locations at a time simply use

PRINT !3000

The pling is also useful when you're dealing
with integer variables—the sort with a per-
cent sign after them, like year%—as these are
always stored as four bytes.

program, A% is a counter and &OD is the
carriage return code (the computer puts this
code at the end of each program line). The
program PEEKS at the memory starting at
PAGE + 7, thus missing out the first seven
corrupted bytes. When the carriage return
code is found which means the start of a new
line; a series of 4 bytes is POKEd into the
memory starting at PAGE + 4. The four bytes
are &2020F420 which gives two spaces fol-
lowed by REM (code F4) followed by another
space. It starts at PAGE + 4 to leave the 0 Line
number intact. Finally, ? (PAGE + 3) = A% puts
the correct length of line marker in the right
position.

If you now LIST the program you'll see
0 REM
followed by the rest of your program minus the
first Line or two.

The last program was useful and practical
but here are a couple of fun examples for the
BBC computer. They both address the inter-
nal control devices, an area you shouldn't
really POKE to as you can easily crash the
system. But it does no harm to experiment, and
if it does crash just press !BREAK' or switch off
for a moment.

The first one turns your keyboard into a
rather strange musical instrument:
?&FE40 = 0

The second alters the timers so everything the
computer does is slowed down:

?&FE45 =1 : ?&FE46 = 0

In both cases press BREAK to reset.

The string operator allows strings to be
placed in memory. The ASCII code of each
character is placed in a single location, with a
carriage return code in an extra memory
location at the end. Try this:

10 A = 3000
20 $A = "WORD"
30 PRINT $A: PRINT
40 FOR I = 0 TO 4
50 PRINT ?(A+ I);" ❑ ";CHRS? (A + I)
60 NEXT I

Line 20 pokes the string into memory and
Line 30 PRINTS out all characters starting at
location A up to the carriage return code. The
next few lines are there to prove that the word
really is stored as described. The ASCII code
and its character are printed out in turn as the
program loops through the memory from
location 3000 to 3004.

By the way, never confuse A$ with $A. The
first is simply a string variable named A, while
the second is a string operator operating on
memory location A.

consists of Green, Yellow, Blue and Red,
whilst colour set 1 consists of Buff (White),
Cyan, Magenta and Orange. The SCREEN
command allows you to choose the colour
'set—use SCREEN 1,0 for colour set 0 and
SCREEN 1,1 for colour set 1.

The difference between PMODE 1 and
PMODE 3 lies in the resolution they produce.
You'll see that graphics produced in PMODE 1
appear coarser than those drawn in PMODE 3
because of the lower resolution. The advantage
of PMODE 1 is that it uses less memory space,
and the graphics can be a little faster.

When you use PMODE 4 to draw black and
white UDGs, every pixel can be switched on
and off individually using binary is and Os. In
PMODE 3, though, the pixels work in blocks of
two, and in PMODE 1 they are in blocks of four.
Soon you'll see how 2-bit binary numbers
control the colour of these pixel blocks. Table
1 gives a list of the colours and resolutions
available in each PMODE.

SETTING UP COLOUR UDGs
Type in this program and RUN it:

10 PMODE3,1:PCLS:SCREEN1,0
20 FOR I =1 TO 9
30 READ A,B: POKE 1800 +112,A: POKE

1801 +112,8
40 NEXT
50 FOR K = 10 TO 22:POKE 1800 + K*32,

192: POKE 1801 + K*32,0: N EXT
60 GOTO 60
70 DATA 192,0,213,149,213,149,213,

149,234,170,234,170,213,149,213,
149,213,149

The Dragon and Tandy have five high-
resolution graphics modes, or PMODEs, num-
bered from 0 to 4. They differ in resolution, or
the fineness of the screen display, and the
colours which you can use. PMODEs may be
either two-colour or four-colour, and each has
a choice of colour sets.

When you use the four-colour modes-
,PMODEs 1 and 3—you'll see that colour set 0

You have already seen how to set up
monochrome UDGs (pages 38 to 41).
Now add colour to your Dragon or
Tandy graphics with useful extra
techniques for these machines

■ THE DIFFERENT COLOUR SETS
AND HOW TO USE THEM

■ SETTING UP COLOUR UDGS
■ PUTTING UP THE FLAG
■ EXPLORING THE PMODES

The program draws a flag and a flagpole on the
screen. It works very similarly to the program
on page 40 which produced black and white
UDGs by taking DATA and POKEing it on the
SCREEN. This time, so that you can see the
UDG a little more clearly, the DATA has been
POKEd into memory locations starting at 1800,
which puts it near the middle of the screen,
rather than 1536, which would have displayed
the UDG at the top left.

Line 10 selects PMODE 3, colour set 0—
Green, Yellow, Blue and Red—and clears the
screen ready for the UDG. Lines 20 to 40
POKE in nine pairs of DATA to draw the flag
itself. The rest of the UDG is drawn just by
repeating 192 and 0 over and over.

Line 50 draws the flagpole by POKEing 192
and 0 22 times. This is far better than using the
original FOR . . . NEXT loop because it saves you
having to type in 44 extra pieces of DATA in
Line 70.

Line 60 is the usual method for keeping the
high resolution screen switched on so that the
UDG can be seen.

The main difference in the program is in the
DATA itself. The DATA is in decimal and was
converted from an 8-bit binary number, using
the same method for the black and white
UDGs on page 38. The difference is that
instead of individual bits telling the computer
to switch individual pixels on or off, pairs of
bits tell the computer which colour to set pairs
of pixels—in PMODE 1 a pair of bits tells the
computer to set two pairs of pixels, one under
the other.

You can see how the flag is built up of pairs
of pixels by looking at fig. 1. You can write

two-bit binary numbers on each of the two-
pixel blocks—the colours they select will de-
pend on the colour set you have chosen. In
colour set 0 you write 00 on a green block, 01
on a yellow block, 10 on a blue block and 11 on
a red block. Four of these two-bit numbers
make up each 8-bit piece of DATA.

If you had chosen colour set 1 by typing
SCREEN 1,1 in Line 10, you would have drawn
the flag in Buff, Cyan, Magenta and Orange.
In this colour set, you write 00 where you
want a buff block, 01 on a cyan block, 10 on a
magenta block, and 11 on an orange block.

Try changing PMODE 3 to PMODE 1 in Line
10. RUN the program and you'll see an
elongated version of the flag on the screen.
Remember in PMODE 1 each piece of DATA is
now controlling four pixels instead of two.

If you were to plan a UDG in PMODE 1 you
would work with 2 x 2 pixel blocks and write
the 2-bit numbers representing colour on the
top line only of each block.

GRAPHICS MODE SIMULATION
Here is a program which will enable you to see
what effect decimal DATA has on pixels and
pixel colour in each of the PMODEs.

10 CLS
20 INPUT "GRAPHICS MODE (0 - 4) ❑ ";MO
30 MO= INT(M0):IF MO <0 OR MO > 4

THEN 20
40 INPUT "SCREEN NUMBER (0-1) ❑ ";ST
50 ST= INT(ST):IF ST <0 OR ST> 1

THEN 40
60 INPUT "NUMBER (0— 255) I=1";NU
70 NU= INT(NU):IF NU <0 OR NU >255

THEN 60
80 IF MO < 4 THEN LE= 2 ELSE LE =1
90 IF MO <2 THEN DE=2 ELSE DE=1
100 IF (MO AND 1)=1 THEN SP= —2 ELSE

SP= —1
110 FOR K=7 TO 0 STEP SP
120 FOR L=1 TO LE
130 FOR J=1 TO DE
140 IF SP= —I THEN PP =1358 + 32*J

+ (3— K)*LE+ L:CO=INT(.5
+ (NU AND 2 A K)/2 A K):GOTO 160

150 PP=1393 + 32*J + L—K:CO=INT(.5+
(NU AND 3*2 A (K - 1))/2 A (K - 1))

160 POKE PP,113 — SP*15 + CO*(14 — SP)
+ST*64

170 NEXT J,L
180 POKE PP-32*DE,47+ K
190 POKE PP-32*DE +1 +SP,48 + K
200 IF SP= —2 THEN POKE PP+ 31,112

—(CO>1)
210 POKE PP + 32,112 + (CO AND 1)
220 NEXT K
230 PRINT@482,"PRESS ANY KEY TO

CONTINUE !";
240 SCREEN 0,1—ST
250 A$=INKEY$:1F A$=`"' THEN 250
260 GOTO 10
When the program is RUN you'll be asked to
select a graphics mode and screen number.
Next type in a decimal number between 0 and
255. A display showing the colours and relative
size of pixel blocks will be shown, with the
relevant bit numbers above, and the binary
equivalents below.

Use this program to explore the possi-
bilities. In a later article, you'll learn how you
can animate your own UDGs.

192 isjik, i 	 0
. 213 1 III0 1 0 1 0 1 1U 0 1 0 1 0 1 149

2131E1010101 1E010101149
213 1 ill 0 1 0 1 0 1 1 El 0 1 0 1.0 1 149
2341 1 1 01 01 0 1 0 11 i . 170
234 1 1 1 0 1 0 1 0 1 0 1 L 	170
213 1 1 I0 	E111311 1 0 0 1 0 1 0 1 149
213 1 010 1 0 1 0 1 1 Ego 1 0 1 0 1 149
213 1 likl 0 1 01 01 	1 001 0 1 01 149
192 1 LI_ 	_ _, __A 0 0 [1,__ 	0
192 1 1 0061000 00 0 0 6 0 0 L 0

11 	 En
1 	1 	 II
11 	 II
1 1 	 In

COLOUR SET AVAILABLE
PMODE

NUMBER 	PIXELS 	SCREEN 1,0 	 SCREEN 1,1

0 	• •
• • 	Black, Green 	 Black, Buff

1 	 • • • Green, Yellow 	 Buff, Cyan, • •
Blue, Red 	 Magenta, Orange

2 	•• 	Black, Green 	 Black, Buff
3 	•• 	Green, Yellow, 	 Buff, Cyan,

Blue, Red 	 Magenta, Orange
4 	■ 	Black, Green 	 Black, Buff

Put some of those little-used maths
functions into action and see how to
use SIN, COS and TAN to find your
direction as well as drawing curves,
circles and ellipses

Computers are often associated with mathema-
tics, and although BASIC programming re-
quires no great skill in this area many of the
processes of BASIC would be very familiar to
any mathematician. However, many of them
are used not just for maths calculations, but
will control all sorts of other operations. Some
of the most useful mathematical functions are
those which are used to work out the relation-
ship between angles and distances—and these
have applications as seemingly far removed
from maths as graphics.

For example, suppose you wanted to draw a
clock. You might draw the outline of the clock
face using the CIRCLE command, if your
computer has one, but you would find it
difficult to PRINT the numbers in their correct
positions if you had to work out the co-
ordinates of each one tediously by hand. And,
of course, a clock without correctly positioned
numbers is of little use!

Fortunately, your computer's mathematical
functions can be used to take over jobs like
this. For example, to return to the clock-face
example, you know that the numbers are each
positioned one-twelfth of the way round the
circle. And your computer can calculate this if
you give it a number in degrees or radians—
both of which are measurements of the size of
an angle.

There are 360 degrees in a complete circle
and 2 times PI radians in a circle. On the
clock face, each number is 30 degrees (30°), or
PI divided by 6, around the circle from the
last—one twelfth of a complete circle, remem-
ber. PI (pronounced 'pie') is a number which
is often used in calculating various aspects of a
circle: such as its area, or circumference (the
distance around the circle), for example. PI is
roughly 22/7 or about 3.14, and your computer
has its value stored in memory (unless you own
a Dragon or Tandy, which do not). It is often
represented in calculations (and sometimes on
the computer keyboard) by the Greek letter n.

You may wonder whether you need to know
about both degrees and radians: surely they are
both equally useful, and you can make do with
using just one? The reason for bothering with
both measurements is that although the more
common measurement—especially for humans
—is degrees, the computers all work

in radians. This means that you
need to know about both in
order to avoid any possible
confusion.

For example, if you have a
pocket calculator, work out the
answer to SIN 30 on it. Then
use your computer to work out
the same calculation. The two
results will be different unless
your calculator was in RAD
mode. This is because the cal-
culator works in degrees, while
the computer works in radians.

DEGREES TO RADIANS
There is a simple way of converting between
the two measurements. To change a number in
degrees into one in radians, divide the number
by 180 and multiply the result by PI. To
change a number in radians into one in
degrees, do the opposite: multiply by 180, and
then divide by PI.

You can get used to these calculations by
using the next program. It will convert a
number in degrees into one in radians, or vice
versa. Try doing calculations on your cal-
culator, if you have one, using the functions
SIN, COS, and TAN. Once you have the answer,
convert the angle into radians, repeat the

calculations, and check your new answer
against the computer's.

There is no program for the Acorn com-
puters, as they have two functions (RAD and
DEG), which perform the same task.

a
10 INPUT "DO YOU WANT TO CONVERT

DEGREES INTO RADIANS(1) OR RADIANS
INTO DEGREES(2)?";a

20 IF a=2 THEN GOTO 80

■ CONVERTING DEGREES TO
RADIANS

■ DRAWING A COMPASS
■ MEASURING ANGLES ON THE

COMPASS
■ THE MEANING OF SIN, COS

AND TAN
■ DRAWING SIN AND COS GRAPHS
■ USING SIN AND COS TO PLOT

CIRCLES
■ BUILDING UP A SPHERE FROM

ELLIPSES

30 IF a< >1 THEN GOTO 10
40 INPUT "WHAT IS YOUR NUMBER?";b
50 PRINT "THAT IS ❑ ";b/180 . P1;

" ❑ RADIANS"
60 PRINT "PRESS ANY KEY TO GO AGAIN":

PAUSE 0: CLS : GOTO 10
70 INPUT "WHAT IS YOUR NUMBER?";b
80 PRINT "THAT IS ❑ ";b180/P1;

" 0 DEGREES"
90 PRINT "PRESS ANY KEY TO GO AGAIN":

PAUSE 0: CLS : GOTO 10

1. Circles are the basis
of a wide variety of real

life objects. As you go
round a circle, you turn
through a set angle—the
circle on the left shows a

complete turn is made up
of 360 degrees. There is
another way of express-

ing this, which your com-
puter uses—in radians.
There are two times PI

radians in a circle

10 PRINT "oggi DO YOU WANT TO
CONVERT DEGREES INTO"

20 PRINT "RADIANS(1) OR RADIANS
INTO DEGREES(2)":INPUT A

30 IF A<1 OR A>2 THEN 10
40 INPUT "L] WHAT IS YOUR NUMBER";

B:PRINT "A gg gl THAT IS";
50 IF A=1 THEN PRINT B/180*n;

"RADIANS"
60 IF A=2 THEN PRINT 13 . 180/n;

"DEGREES"
70 PRINT "L gg ggPRESS ANY KEY TO GO

AGAIN"
80 POKE 198,0:WAIT 198,1:RUN

AC II
10 PI = 4"ATN(1)
20 CLS
30 INPUT"DO YOU WANT TO CONVERT

DEGREES INTO RADIANS(1) OR RADIANS
INTO DEGREES(2) ";A

40 IF A=2 THEN GOTO 90
50 IF A< >1 THEN GOTO 20
60 INPUT"WHAT IS YOUR NUMBER ❑ ";B
70 PRINT"THAT ISE "; B PI/180;

" III RADIANS"
80 GOTO 110
90 INPUT "WHAT IS YOUR NUMBER ❑ ";B
100 PRINT "THAT IS ❑ ";B*180/P1;

" ❑ DEGREES"
110 PRINT "PRESS ANY KEY TO GO AGAIN"
120 A$ = INKEYVFAS= w' THEN GOTO 120
130 GOTO 20

When you RUN the program, the computer
will ask you first to INPUT a 1 or a 2, depending
on whether you want to convert degrees to
radians, or vice-versa. It will then ask you for
the number you want to convert, and when
you INPUT this, will display the answer for you.

This is all very well, but it can be very
difficult to visualize an angle that is only
represented by a number—and it is much
easier to understand if you can actually see the
angle drawn out. One familiar representation
of all the possible angles is on the face of a
compass, where the numbers round the cir-
cumference tell you the angle of the pointer.
You can thus check the angle by looking at a
real compass, but why bother when you can
get the computer to do it for you?

DRAWING A COMPASS
Because there is such a strong connection
between a circle and the measurements of an
angle you can use such measurements for
drawing anything like a clock or a compass
which are based on a circle.

The programs below for each computer
draw a compass face and place the numbers
marking the degrees in their correct positions.
North is at 0, East at 90, South at 180, and
West at 270 degrees. They will then display
any angle you want to see.

The Dragon and Tandy version of this

2. As A moves clockwise, p gets larger and q gets smaller

program does not PRINT any numbers around
the compass-face. As you know, the computer
can't PRINT on the screen in PMODE 4, which is
used for drawing the compass. Later in this
article, you will see how to overcome this
problem.

When you RUN the program, the computer
will ask you to INPUT a number. It will draw a
line from the centre of the circle to a point,
forming an angle of the size you have just told
it. So if you INPUT 90, the computer will draw
a line from the centre of the circle to the right.
If you INPUT 180, it will draw a line straight
down from the centre, representing an angle of
180 degrees.

Note that the computer will expect your
number to be in degrees, and so will translate it
into radians. If you look at each program
(except the Acorn version) you will see that the
INPUTed variable is divided by 180, and
multiplied by PI. This saves you having to
make the conversion yourself.

a
10 BORDER 4: PAPER 4:INK 0: CLS
20 CIRCLE 131,88,60
30 PLOT 131,84: DRAW 0,8: PLOT 127,

88: DRAW 8,0
40 FOR a = 0 TO 2•1'1 STEP PI/4
50 PLOT 131 + 55*SIN a,88 + 55*COS a:

DRAW 10*SIN a,10*COS a
60 NEXT a

70 PRINT AT 2,16;0
80 FOR b=45 TO 360 STEP 45
90 PRINT AT 10 —10*COS (b/180*PI),

15 + 10*SIN (b/180*PI);b
100 NEXT b
110 INPUT "CI ❑ 111 111111WHAT ANGLE IN

DEGREES ❑❑❑❑❑❑❑❑❑❑❑
DO YOU WANT DISPLAYED?",c

120 INK 2
130 PLOT 131,88: DRAW 45*SIN

(c/180*PI),45*COS (c/180*PI)
140 INK 0
150 INPUT "11100 YOU WANT TO GO

AGAIN Y/N?";d$
160 IF d$ = "y" THEN PLOT 131,88:

DRAW OVER 1;45*SIN (c/180*PI),
45*COS (c/180*PI)

170 IF d$ < > "y" THEN BORDER 7:
PAPER 7: CLS : STOP

180 PLOT 131, 84: DRAW 0,8: PLOT
127,88: DRAW 8,0: GOTO 110

A standard Commodore BASIC version of this
program would be very complex, and so if you
have a Simons' BASIC cartridge you should
plug it in—the Commodore program is in
Simons' BASIC. This applies to the remainder
of programs in the article, too:

5 INPUT "pm ENTER ANGLE";A:
A= A/180*n

10 HIRES 1,0
20 CIRCLE 160,100,70,70,1
25 TEXT 160,20,"0",1,1,10
28 TEXT 157,97," + ",1,1,10
30 FOR X=45 TO 360 STEP 45
35 TEXT 140+ 90*SIN(X/180*7r),

100 — 90*COS(X/180*ir),STR$(X),
1,1,10

40 NEXT X
60 FOR X=0 TO 1.75•n STEP n/4
65 LINE 160+ 70*SIN(X),100 —

70*COS(X),160 + 60 • SIN(X),
100 — 60*COS(X),1

70 NEXT X
80 LINE 160,100,45*SIN(A) +

160,100 — 45•COS(A),1
100 PAUSE 5:NRM:RUN

10 MODE1
20 MOVE 680,912
30 FOR A = 0 TO 2*PI + .05 STEP .05
40 DRAW680 — 400*COS(A + PI/2),512 +

400*SIN(A + PI/2)
50 NEXT
60 VDU5
70 FOR A= PI/4 TO 2*PI STEP PI/4
80 MOVE 630 — 450*COS(A + PI/2),512 +

450*SIN(A + PI/2)
90 PRINT;1NT(DEG (A) + .5)
100 MOVE 680 —350*COS(A + PI/2),512 +

350*SIN(A+ PI/2): DRAW 680—

400*COS(A + PI/2),512 + 400*SIN
(A+ PI/2)

110 NEXT
120 VDU4
130 A2= 0
140 MOVE660,512:DRAVV700,512:

MOVE680,492:DRAW680,532
150 VDU30:PRINT" "ANGLE"STRING$

(7," ❑ ") : INPUT TAB(5,2);A
160 GCOL0,0
170 MOVE 680,512
180 DRAW680-350*COS(A2+ PI/2),512

+350*SIN(A2+ PI/2)
190 A= RAD(A)
200 MOVE680,512
210 GCOL0,3
220 DRAW680-350*COS(A+ PI/2),512

+350*SIN(A+ PI/2)
230 A2 = A
240 GOTO 140

1.4:
10 PMODE4,1
20 PCLS
30 PI = 4*ATN(1)
40 CIRCLE(127,95),80,5
50 FOR X=0 TO 2131 STEP PI/4
60 LINE(127 + 72*SIN(X),95 — 72*COS

(X)) — (127 +79*SIN(X),95 —79*
COS(X)),PSET

70 NEXT X
80 CLS:INPUT" WHAT ANGLE DO YOU

WANT ❑ ";Z
90 SCREEN 1,1
100 X= 127+ 60*SIN(Z*131/180):Y = 95

—60*COS(Z*P1/180)
110 LINE(127,91) — (127,99),PSET
120 LINE(123,95) — (131,95),PSET
130 LINE(127,95) — (X,Y), PSET
140 IFINKEY$=`"' THEN 140
150 LINE(127,95) — (X,Y),PRESET
160 G0T080

Each program except the Spectrum's begins
by setting the correct graphics mode, in Line
10, and then clears the screen. Note that the
Commodore requires you to tell the computer
what angle you want displayed before it draws
the compass face, because you cannot print any
information on the screen while the computer
is in graphics mode.

As the Dragon and Tandy do not have PI
stored in their memory, Line 30 of the
program creates a variable, PI, equal to the
value of PI.

Then the programs all draw a circle for the
face of the compass. This is done using the
CIRCLE command on the Commodore,
Dragon, Tandy and Spectrum (Line 20 on the
Commodore and Spectrum, and Line 40 on
the others). The Acorn machines have no
CIRCLE command, and so the circle is drawn
out stage by stage in Lines 20 to 50. This
routine is explained later.

The programs then print the markings that
complete the compass face: numbers marking
the degrees in the correct places and short lines
at each degree-marking around the circle to
show exactly where the marked positions are.
All of these are positioned by reference to their
angular position, by methods described in
detail later on.

The next part of the programs—except on
the Commodore—asks you to INPUT your
chosen angle: Line 130 for the Acorn
programs, Line 80 in the Dragon and Tandy,
and Line 110 in the Spectrum version.
Because the Commodore INPUT has to be in
Line 5, at the beginning of the program, the
Commodore program redraws the compass
every time you want a new angle.

You will also notice that there is a cross in
the centre of the screen. This should help you
to check that the angles drawn by the com-
puter are correct: if you ask for an angle of 90
degrees, then the right hand horizontal line of
the cross should be obscured by the new line.
On the Spectrum, Acorn, Dragon and Tandy
the cross is drawn using two lines, while the
Commodore PRINTs a plus sign in the centre of
the screen.

When the computer has displayed the angle
you asked to see, it asks you whether you want

to check another angle. To mark in your latest
choice of angle, it first erases the old line (on
the Acorn and Spectrum). The Dragon and
Tandy erase the old line after a short pause,
generated by a FOR ... NEXT loop. The
Commodore does not need to erase the line
specifically, since it clears the whole screen
when it asks you for your next angle.

The Dragon, Tandy and Commodore all
pause after drawing the angle on the compass,
before asking you to INPUT another angle. The
Acorn program does not pause, but asks you
immediately for another angle, but does not
erase the last line until you have asked for
another. The Spectrum version has a routine
asking you whether you want another go—in
which case it erases the last line and starts
again—or not, in which case it stops.

You could extend the compass analogy by
replacing the degree markings with N, S, E,
and W, so that you could use the program as a
direction finder. For example, suppose you
want to travel on a bearing of 270 degrees, if
you INPUT 270 as the angle you want, then the
computer will draw a line showing the direc-
tion you should take. If you want to experi-
ment, see if you can work out which Lines
govern what, and where, is PR INTed around
the circle.

POINTS ON A CIRCLE
The programs above all use SIN and COS—two
BASIC functions which stand for 'Sine' and
`Cosine'. These are two of the computer's
`trigonometrical' functions. You can forget the
long name, since the functions are quite simple.

They refer to the position of a point on the
circumference of a circle, in relation to two
axes—basically, this means how far to right or
left it is, and how far up or down it is. The two
lines which form a cross in the centre of the
circle are the axes. The vertical line is called
the axis, and the horizontal line is called the

axis.
If you look at point A on the diagram (fig

2) you will see that there is a line connecting it
to each axis: these lines are labelled p and q.

You can see that as the line is drawn at the
moment, p and q are the same length. If A
moved down to the right along the circum-
ference of the circle, p would get larger and q
would get smaller. And when A is at the point
marked 90, q would be 0 while p would be
equal to the radius of the circle.

If you use the compass program you can see
this. Give the computer angles of 0, 30, 45,
and 90. As the line changes position you can
imagine how p and q, although not drawn on
the screen, change in length. And if you take a
ruler and measure the screen, you can work out
what lengths these are.

THE VALUE OF SIN AND COS
For any given angle the ratio between p and q
will always be the same. You can always work
out what this ratio is, but it changes as the
angle gets larger or smaller.

There is also a ratio between the radius of
the circle and p and q. Remember in the
example above, how when a was at 90, p was
equal to the radius of the circle. Like the
previous ratio, this will be the same for any
given angle, will change as the angle changes,
and can always be worked out.

The ratio between the radius and p is called
the 'sine' of the angle. The ratio between the
radius and q is called the 'cosine' of the
angle. You divide the line (whether it is p or q)
by the radius to get the sine or cosine, so when-
ever the radius is one unit long, the value of the
sine or cosine is equal to the length of p or q.

The triangle below (fig 3) is taken from the
compass diagram. The wedge shape is formed
by the angle between the x axis and point A at
the centre of the circle. A third line is dropped
from point A at right angles to the x axis to
form the other side of the triangle based
on A.

On this triangle the sine is the ratio between

the opposite side of the triangle (the side
`opposite' the angle), and the hypotenuse. The
hypotenuse is always the side opposite the
right angle (see fig 3). The third side is known
as the adjacent side.

In the same way as the sine, the cosine is the
ratio between another pair of the sides. There
is a remaining pair of sides which also have a
ratio, and this is called the tangent of the angle.
The ratios for each are:

sine 	= opposite/hypotenuse
cosine = adjacent/hypotenuse
tangent = opposite/adjacent

All three ratios can be worked out by your
computer, with the functions SIN, COS, and
TAN. So, for example, PRINT SI N.5 would print
the sine of an angle of .5 radians on the screen.

To refer back to the circle diagram, as the
point moves further around the circle in a
clockwise direction from the top of the circle,
the values of the sine and cosine become larger
and smaller respectively, because p and q are
changing size. After 90 degrees, though, on the
circle, the sine will start to decrease again. And
when the point passes 180, things change once
more.

Remember the sine measures how far to the
right of the 'y' axis a point is. This means that

in the left hand half of the circle, where the
point is to the left of the 'y' axis, the sine is
negative.

Similarly, as the point goes into the lower
half of the circle, where it is below the 'x' axis,
the cosine becomes negative. This is because
the cosine measures how far above the 'x' axis
any point is.

DRAWING SIN AND COS GRAPHS
The way the sine and cosine change as the
point goes around a number of points on the
circle can be made much clearer by plotting a
graph of their values for a range of angles. The
programs below for each computer will do just
that:

10 PLOT 0,88
20 DRAW 255,0
30 PLOT 20,0: DRAW 0,175

3. The ratio between the lengths of the
sides of any right-angled triangle is
fixed by the other angles. Depending
which sides you compare, the ratio is
called SIN, COS or TAN

4. A picture of a compass on the Commodore 5. The Spectrum compass showing an angle of 70 degrees
40 PLOT 10,158: DRAW 15,0: PLOT

10,18: DRAW 15,0
50 PRINT AT 2,0;1;AT 20,0; -1;AT

11,0;0;AT 20,15;180;AT 20,29;360
60 FOR a=0 TO 213 1 STEP .06
70 PLOT 20 +a*35,88+70*SIN a
80 PLOT INK 2;20 + a*35,88+70*COS a
90 NEXT a

10 HIRES 0,1:MULTI 3,7,1:COLOUR 6,6:
LINE 15,100,360,100,3

15 LINE20,0,20,200,3:TEXT 1,5," +1",
1,3,6

18 TEXT 1,170," -1",2,3,6:TEXT 6,90,
"0",3,3,6

20 FOR Z=0 TO 2* n STEP.05
30 PLOT Z*22+20,100 - SIN(Z)*80,1
35 PLOT Z*22+20,100 - COS(Z)*80,2
40 NEXT Z
50 GOTO 50

10 MODE1
20 DRAW 0,1024
30 MOVE0,512:DRAW 1280,512
40 VDU5:MOVE0,744:PRINT"1"
50 MOVE0,310: PRINT" - 1"
60 MOVE 0,500
70 FOR T= 0 TO 360 STEP 90
80 PRINT;T;
90 PLOT 0,180,0
100 NEXT
110 VDU4
120 X=0
130 MOVE 0,512
140 FOR T=0 TO 2*P1+ .1 STEP .1
150 DRAW X,512+200*SIN(T)
160 X=X+17
170 NEXT
180 MOVE 0,712

190 X=0
200 GCOL0,1
210 FOR T=0 TO 2 1 P1+.1 STEP .1
220 DRAW X,512 + 200*COS(T)
230 X=X+17
240 NEXT

1VZ
10 PMODE3,1
20 PCLS
30 PI =4*ATN(1)
50 LINE(6,95) - (255,95),PSET
60 LI NE(10,0) - (10,191), PSET
70 LIN E(6,45) - (10,45), PSET
80 LINE(6,145)- (10,145),PSET
90 SCREEN1,1
100 FOR X=72 TO 255 STEP 61
110 LINE(X,92) - (X,95),PSET
120 NEXT
130 FOR X=0 TO 2*P1 STEP PI/123
140 PSET(123*X/P1+ 10,95 50*SIN(X),3)
150 PSET(123*X/P1+ 10,95 - 50*COS(X),2)
160 NEXT
170 GOTO 170

As with the compass program, the Acorn,
Commodore, Dragon and Tandy versions all
start off by setting the correct graphics mode:
in Line 10. Again as before, the Dragon and
Tandy then set a variable for PI using the
calculation in Line 30.

Then the computers all draw the axes for
the graph, and all except the Dragon and
Tandy label each axis. The labels for the y axis
(the vertical one) are 1,0 and - 1, which
covers all the possible values. The labels for
the x axis are degrees from 0 to 360.

The Dragon and Tandy cannot PRINT on a
high resolution graphics screen, and so plots
short lines at intervals along the axes instead of
numbers as labels.

Your computer now PLOTs the graphs, one
for the sine, and one for the cosine. It does this
using a FOR ... NEXT loop to determine the
next angle, before it works out the SIN and
COS.

You saw above that there are 2*PI radians
in a circle. So, to take in every angle in a circle,
the loop is FOR T = 0 TO 2*P1. There is a STEP
in the loop so that the computer will not PLOT
every tiny angle, but one in three or four,
covering the same total angle: 2*PI radians, or
360 degrees.

This STEP makes the program much faster
on all but the Acorn computers although the
line is dotted as a result. Try removing the
STEP to see what difference it makes.

The crucial lines which work out the values
of SIN and COS (Acorn 150, 220; Commodore
30, 35; Dragon and Tandy 140, 150; and
Spectrum 70, 80) look very complicated, but
are in fact quite simple. Each line uses the
PLOT, PSET or DRAW command to draw the
graph: the Acorn draws a solid line, while the
other computers plot a series of points.

The positions at which the computer
DRAWS, or PLOTs a point, are determined by
the SIN or COS that appears in these lines. The
rather complicated looking set of other num-
bers simply alter the result of the SIN or COS
function to scale it to fit the screen position
wanted; because each computer has a different
screen layout, and different graphics com-
mands, these calculations are different for each
computer.

PLOTTING CIRCLES
We have seen how you can work out the
position of a point on the circumference of a
circle by referring to the x and y axis, if you
know the angle that it makes to the centre of
the circle, and the radius.

It's also possible to plot the position of the
point by working from these pieces of inform-
ation, and this gives you the key to how you
can draw a circle on the screen—or, for that
matter, how you can position characters or
marks around it as on the compass program.

What you need is a program which tells the
computer a centre and a radius for the circle,
and how to work out the x and y coordinates
for any given angle. Then, if you feed in a
whole series of angles, it will be able to plot a
whole series of points around the circum-
ference of the circle you have chosen. The
tricky bit is how to tell the computer to work
out the x and y coordinates, and this is where
our old friends SIN and COS come in.

Type in this short program:

20 FOR x = 0 TO 2131 STEP P1/30
30 PLOT 128 + 50•SIN x,88+50"C0S x
40 NEXT x

When you RUN the program, you will see a
series of dots which quickly run round to form
a circle. There is no reason why the circle
should not be continuous, except that it would
take a long time to draw.

In each program, except the Spectrum, the
computer is first put into a graphics mode. On
the Dragon and Tandy, the value of PI is also
defined. Then, a FOR ... NEXT loop instructs
the computer to move through a series of
angles from 0 to 2*PI (Line 30 on the
Spectrum, Dragon and Tandy, 20 on the
Commodore, 40 on the Acorn)—in other
words to form a complete circle. The amount
of the STEP here is what speeds the program
up, and causes the dotted effect.

In the following Line, the computer is then
instructed to PLOT a point for each angle. The
position of the point is determined by the
formula:

PLOT radius* SIN X, radius* COS X

Remember the circle diagram in fig 2, and how
these functions determine the coordinates for
any given angle. The other numbers added or
subtracted in this Line make the formula look
much more complicated than this, but the only
reason they are there is to set the centre of the
circle in relation to the computer's graphics
screen. On the Acorn machines this is at 680,
512; on the Commodore it is at 150, 100; the
centre on the Dragon and Tandy is at 127, 95
and the Spectrum's is at 128, 88.

To help you to become familiar with these
functions, try altering the centre position—on
the Acorn machines you need to change Line
30, which is the centre plus the radius, as well.
Or try altering the size of the circle by

changing the radius—set at 200 on the Acorn,
80 on the Commodore, Dragon and Tandy,
and 50 on the Spectrum.

There are other numbers, too, which can be
changed to alter the circle's appearance. At the
first line of the loop, the STEP governs the gap
between each dot. The smaller the STEP, the
closer to a complete circle would be drawn. If
you want more dots in your outline, then
decrease the size of the step by making the final
number smaller, (or by dividing PI by a larger
number).

10 HIRES 0,1
20 FOR X = 0 TO 2*rt STEP.01
30 PLOT S1N(X)"80 +150,COS(X) .

 80 +100,1
40 NEXT X
50 PAUSE 10

LI
20 MODE1
30 MOVE 680,712
40 FOR X=0 TO 2•PI + .05 STEP .05
50 PLOT 69,680 +200*COS(X+ P1/2),

512+ 200 . S1N(X + P1/2)
60 NEXT

10 PMODE 4,1:PCLS:SCREEN1,1
20 PI = 4*ATN (1)
30 FOR X = 0 TO 2*P1 STEP PI/45
40 PSET(127 + 80* SIN (X),95 — 80*

COS(X),5)
50 NEXT X
60 GOTO 60

How large a circle can my
computer DRAW?
The size of the largest circle your
computer can DRAW is limited, by the
size of the screen, to a radius of half the
smallest dimension of the screen. The
maximum radius for your computer is:
Acorn 512, Commodore 100, Vic 88,
Dragon and Tandy 95, and Spectrum 8f

For these numbers to be correct, the
circle's centre must be that number of
pixels into the screen, on both the x and
y axes. If the circle is too large the
Spectrum gives an 'Integer out of range'
error. The other computers draw as
much of the circle as they can,
although the effect on the
Commodore 64 varies.

DRAWING AN ELLIPSE
A much more interesting change can also be
made. This will change your circle into an
ellipse. To do this, make the number by which
you multiply the SIN either larger or smaller
than the number by which you multiply the
COS.

Multiplying the sine by a larger amount will
result in a wide, and short ellipse, while
multiplying the cosine by a larger amount will
give a taller and narrower ellipse.

The next programs will draw a series of
ellipses which together look like a picture of
the Globe:

a
10 FOR z = 0 TO 50 STEP 5
20 FOR x = 0 TO 2*PI STEP PI/15
30 PLOT 128 + z*SIN x,88 + 50*COS x
40 NEXT x
50 NEXT z

10 HIRES 0,1
15 FOR Z= 0 TO 100 STEP 10
20 FOR X = 0 TO 2*ir STEP.05
30 PLOT SIN (X)*Z +150,COS(X)*60

+ 100,1
40 NEXT X,Z
50 PAUSE 10

10 MODE 1
20 MOVE 680,712
30 FORZ= 0 TO 200 STEP 40
40 FORX = 0 TO 2*PI + .05 STEP .05
50 PLOT 69, 680 + COS(X + PI/2),

512 + 200*SIN(X + PI/2)
60 N EXT: N EXT

10 PMODE4,1: PCLS:SCREEN1,1
20 PI = 4* ATN (1)
30 FOR Z=0 TO 80 STEP5
40 FOR X = 0 TO 2*PI STEP PI/45
50 PSET(127 + Z* SI N (X),95 — 80*

COS(X),5)
60 NEXT X
70 NEXT Z
80 GOT080

The Globe programs are a slightly adapted
version of the circle program. Instead of
drawing one ellipse, a series of them is drawn
using a second FOR ... NEXT loop to vary the
size of the number by which the x coordinate is
multiplied. This makes the computer draw
each ellipse a different size.

You can make the ellipse 'grow' by any
amount you choose by adapting the size and
STEP of Z, the control variable.

RAM
	

25, 44, 46, 208-215
Random numbers 	 2-7
Random mazes 	 193-200
READ
	

40-44, 104-109
Registers 	 236-239
REPEAT...UNTIL, Acorn

	
36

Resolution, high and low
	

84
RESTORE
	

106-107
RETURN
	

62
RIGHTS
	

202-207
RND function 	 2-7
ROM
	

208-215
ROM graphics 	26-32, 107-109
Running man, building a, Acorn 	28-29

65

202-207
202-207
124-128

88-91
7

35-37

142

Helicopter, building a
Commodore 64

	

227 	Hexadecimal

	

104-109
	Hobbies file

House, drawing a

	

38, 42
	

Acorn

	

114
	

Commodore 64
33-37

31
38, 42, 45, 156-160

46-53, 75-79

107-108
108-109

T
TAB
Tank, controlling and

creating a
Teletext graphics, BBC
Terminating numbers
Timing
Twos complement

U

117-122

10-15
28
34

97, 101-103
179-183

CUMULATIVE INDEX

An interim index will be published each week. There will be a complete index in the last issue of INPUT

Keypress, detection of
Keywords, spelling of

Languages, computer
see Assembly language;
BASIC; Machine code

LEFTS
LEN
Letter writing program
LINE, Dragon, Tandy
Line numbers, in programs
Logical operators
Lower case letters,

Dragon, Tandy

Machine code
advantages of
binary coded decimal
binary numbers
drawing dragon with
games graphics
hexadecimal
low level languages
machine architecture
memory maps
negative numbers
nonary numbers
number bases
ROM and RAM
speeding up games routines

Maze programs
RIDS
Minefield game
MOVE, Acorn
Movement

Negative binary numbers,
conversion program

NEW
Nonary numbers
Null strings
Number bases

Paper for printers
Parameters
Password program
PAUSE

Commodore 64
Spectrum

PEEK
Peripherals, cassettes

joysticks
printers

Pixel
PLAY, Dragon, Tandy
PLOT
PMODE, Dragon, Tandy
POINT, Acorn
POKE
Positioning text

A
Anagram program
	

203
AND
	

35-36
Animation 	 26-32
Applications

family finance
	

136-143
hobbies' files
	

46-53, 75-79
letter writer
	

124-128
Assembly language 	 66-67
Assignment statement
	

66-67, 92
ATTR, Spectrum 	 68-69

B
BASIC 	 65
BASIC programming

arrays 	 152-155
decision making 	 33-37
how to PLOT, DRAW,
LINE, PAINT 	 84-91
inputting information 	129-135
PEEK and POKE 	 240-247
programmer's road signs 	60-64
READ and DATA 	 104-109
random numbers 	 2-7
refining your graphics 	184-192
screen displays 	 117-123
strings 	 201-207
structured programming 173-178, 216-219
the FOR ... NEXT loop 	16-21
using SIN and COS 	 250-256
variables 	 92-96

BEEP, Spectrum 	 230-231
Binary 	 38, 41, 44, 45, 113-116

negative numbers 	 179-183
Breaking out of a program 	 4
Bridge, drawing a

Spectrum 	 108
Bubble sort program 	216-219
Byte, definition of 	 114

C
Cassette recorders, choice of

	
24

Castle, drawing a
Dragon, Tandy
	

108
CHAS, Dragon, Tandy
	

26-27
CIRCLE
	

86-91
Circle, drawing a
	

255-256
Clock, internal
	

69-73
COLOUR
	

87-90
Colour UDGs, Dragon, Tandy

	
248-249

Compass, drawing a
	

251-253
Control variables 	 94
COS
	

250-256
CPU
	

236-239
Craps program 	 63
Cursor, definition of
	

7
control codes, Commodores
	

123

D
Daisywheel printers
DATA
Decimal

conversions from binary
converting fractions into binary

Decision making
Degrees to radians,

conversion program
	

250-251
Delays in programs 	 17
DIMensioning an array 	152-153
Dot matrix printers 	 226-227
DRAW
	

85-91
Drawing letters, Dragon, Tandy

	
191-192

E
Egg-timer program

Ellipse, drawing a
	

256
ENDPROC, Acorn
	

64
Error, causes of
	

36 	Joysticks

F
Family finance program 	136-143
Filing system program 	46-53, 75-79
Flow charts 	 173-178
Flying bird sprite, Commodore 64 168-172
FOR ... NEXT loop 	 16-21

G
Games

aliens and missiles
	

144-151
animation
	

26-32
arrays for games
	

155
bombing run program
	

161-167
controlling movement
	

54-59
firing missiles
	

55-58
fruit machine
	

36
guessing
	

3-5
levels of difficulty 	 193-200
maze game
	

68-74, 230-235
minefield
	

97-103
moving characters
	

54-59
random mazes
	

193-200
routines
	

8-15
scoring and timing
	

69-73
sound effects
	

230-235
space station game
	

144-151
visual explosions
	

161-167
GET, Commodore 64
	

55, 132-134
GETS, Acorn 	55, 57, 58, 103, 132-134
GETit, Commodore 64, Vic 20 	135
Golf-course, drawing a

Acorn, Spectrum 	 184-191
GOSUB 	 62-64
GOTO 	 18-21, 60-62
Graphics

characters 	 38-45
creating and moving UDGs 	8-15
drawing on the screen 	132-133
drawing pictures 	 107-109
explosions for games 	 161-167
fire-breathing dragon 	 80-83
frog UDG 	 10-15
instant embroidery 	 21
low-resolution 	 26-32
painting by numbers 	 19
refining your graphics 	184-192
sunset pattern 	 20
tank UDG 	 10-15
using PLOT, DRAW,
CIRCLE, LINE, PAINT 	85-90
using SIN and COS 	 250-256

H

3, 33-37
247

86
28-29, 103, 134-135

54-55, 132-135
3-5, 117-122, 129-135

130-131
206
2-3

PRINT 	 26-32, 117-123
Printer, choosing a 	 225-229

220-224 	PROCedures, Acorn 	 64
PSET, Dragon, Tandy 	 13, 90-91
Punctuation, in PRINT statements 119-123

54-55
19

S
238

	

66
	Satellite, building a

SAVE
Dragon, Tandy

	

113-116 	Scoring

	

80-83 	SCREEN, Dragon, Tandy

	

38-45 	Screen drawing program

	

156-160 	Screen formatting

	

65-67 	Shell, firing a

	

236-239 	Ship, drawing a

	

208-215 	Dragon, Tandy

	

179-183 	SID chip, Commodore 64

	

111-112 	Simons' BASIC, Commodore 64

	

110-116 	SIN

	

208-215 	Snow scene, Commodore 64

	

8-15 	SOUND, Acorn, Dragon, Tandy

	

68-75, 193-200 	Sound effects

	

202-207 	Spaces, using

	

97-99 	Commodore 64, Vic 20 	 122

	

71, 88-90 	Sprite, Commodore 64 	14, 15, 168-172

	

26-32, 59 	Stack 	 237-239
STEP 	 17, 21
STOP, Spectrum, ZX81 	 4, 64
String functions 	 201-207
String variables 	 4-5, 95-96 180-183
STRINGS 	 98, 205 10-15, 23 	
Structured programming 111

173-178, 216-219 96
Subroutines 	 62-63 110-116

67
35

35-36

228
64

133

UDG
colour UDGs, Dragon, Tandy 	248-249
definition of 	 8-15, 40-14
grids for 	 8-11
creating your own 	 38-45

V
VAL, Commodore 64 	 101
Variables 	 3-5, 92-96, 104-108
VDU command, Acorn 	28-29, 70, 99
Verifying saved programs 	24-25
VIC chip memory locations

Commodore 64 	 172

K

L

M

N

0
Opcodes
Operators
OR

P

IF... THEN
Indirection operators
INK, Spectrum
INKEY, Acorn
INKEYS
INPUT
INPUT prompts
INSTR

176-177 	INT, Commodore 64, Spectrum

26-27
22-25

97, 100-101
40, 90

132-133
117-123

10-15

191
231

87-88
250-256
186-188
233-235
230-235

88
101, 108

59, 101, 240-247
22-25

220-224
225-229

84
234-235

88-89
90
71

101, 108-109, 240-247
117-123

The publishers accept no responsibility for unsolicited material sent for publication in INPUT. All tapes and
written material should be accompanied by a stamped, self-addressed envelope.

/J Display your facts and figures in a
professional looking BAR CHART

Find out about ADVENTURE GAMES
in the start of a new series

Learn how LOGICAL OPERATORS
can extend your decision-making power

JStart entering some real MACHINE
CODE with a special machine code
monitor

If you've a lot of interrelated data you'll
need to store it in a 2-D ARRAY

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36

