
A MARSHALL CAVENDISH 	COMPUTER COURSE IN WEEKLY PARTS

LEARN PROGRAMMING - FOR FUN AND THE FUTURE

Vol. 2 	 No 20

BASIC PROGRAMMING 44

GETTING THINGS IN PERSPECTIVE 	605

With a few twists and turns, simple grids build up

to perspective wireframe drawings of a cube

PERIPHERALS

A computer, a telephone line and a modem can put you
in touch with other computers across the globe

MACHINE CODE 21

Run this utility through your Spectrum, and it will
give Microdrive compatibility to just about any program

BASIC PROGRAMMING 45

Understand how computers can store units of information,
and how you can make use of it

GAMES PROGRAMMING 20

The problem with adventures is packing in enough text
—so here's a cunning way to compress it

INDEX
The last part of INPUT, Part 52, will contain a complete, cross-referenced index.

PICTURE CREDITS
Front cover, Ian Craig. Pages 605, 608, Trevor Lawrence/Projection. Pages 606,
607, Berry Fallon Design. Page 610, Trevor Lawrence. Page 611, Mickey Finn.
Page 612, Chris Mynheer. Page 615, Jeremy Gower. Pages 616, 618, 620,
Graeme Harris. Page 622, Kuo Kang Chen. Pages 624, 626, Ian Craig. Pages
628, 630, 633, David Lloyd.

© Marshall Cavendish Limited 1984/5/6
All worldwide rights reserved.

The contents of this publication including software, codes, listings,
graphics, illustrations and text are the exclusive property and copyright of
Marshall Cavendish Limited and may not be copied, reproduced,
transmitted, hired, lent, distributed, stored or modified in any form
whatsoever without the prior approval of the Copyright holder.

Published by Marshall Cavendish Partworks Ltd, 58 Old Compton Street, London WIV 5PA,
England. Printed by Artisan Presss, Leicester and Howard Hunt Litho, London.

HOW TO ORDER
YOUR BINDERS
UK and Republic of Ireland:
Send £4.95 (inc p & p) (1R£5.95) for

each binder to the address below:

Marshall Cavendish Services Ltd,

Department 980, Newtown Road,

Hove, Sussex BN3 7DN

Australia: See inserts for details, or

write to INPUT, Times Consultants,

PO Box 213, Alexandria, NSW 2015

New Zealand: See inserts for details, or

write to INPUT, Gordon and Gotch

(NZ) Ltd, PO Box 1595, Wellington

Malta: Binders are available from local

newsagents.

There are Jour binders each holding 13 issues.

BACK NUMBERS
Back numbers are supplied at the regular cover price (subject to availability).

UK and Republic of Ireland:
INPUT, Dept AN, Marshall Cavendish Services,

Newtown Road, Hove BN3 7DN

Australia, New Zealand and Malta:
Back numbers are available through your local newsagent.

COPIES BY POST
Our Subscription Department can supply copies to any UK address regularly at £1.00 each.

For example the cost of 26 issues is £26.00; for any other quantity simply multiply the number

Df issues required by £1.00. Send your order, with payment to:

Subscription Department, Marshall Cavendish Services Ltd,

Newtown Road, Hove, Sussex BN3 7DN

Please state the title of the publication and the part from which you wish to start.

HOW TO PAY: Readers in UK and Republic of Ireland: All cheques or postal orders

for binders, back numbers and copies by post should be made payable to:

Marshall Cavendish Partworks Ltd.

QUERIES: When writing in,please give the make and model of your computer,as

well as the Part No., page and line where the program is rejected or where it does

not work. We can only answer specific queries—and please do not telephone. Send

your queries to INPUT Queries, Marshall Cavendish Partworks Ltd, 58 Old

Compton Street, London WIN" SPA.

INPUT IS SPECIALLY DESIGNED FOR:
The SINCLAIR ZX SPECTRUM (16K, 48K,128 and +),
COMMODORE 64 and 128, ACORN ELECTRON, BBC B
and B+, and the DRAGON 32 and 64.

In addition, many of the programs and explanations are also
suitable for the SINCLAIR ZX81, COMMODORE VIC 20, and
TANDY COLOUR COMPUTER in 32K with extended BASIC.
Programs and text which are specifically for particular machines
are indicated by the following symbols:

El
a

SPECTRUM 168,
488,128, and + 	COMMODORE 64 and 128

ACORN ELECTRON,
BBC B and B+ 1= DRAGON 32 and 64

TRSBO a D181 	VIC 20 T 1C'OLODYUR COMPUTER

THE EFFECT OF VIEWPOINT
BEFORE YOU START

THE TRANSFORMATIONS
SETTING INITIAL VARIABLES

CALLING THE ROUTINE

Impressive! That's the only way to
describe the manipulative power of
this program—the third in the series
on wireframe graphics, that adds
perspective and viewpoint

The wireframe drawing program given in the
last two articles allows you to draw a cube in
three dimensions and change its size. But it
presents you with the same viewpoint every
time; the front face of the cube is always
facing the front, and although you can see
through the wire frame, there's no way to
view it from the top, side or anywhere else you
fancy. This article gives you extra routines
that allow you to specify the position of your
eye so you can look at the cube from any
direction.

This is a very useful facility, especially
when you come to draw more complicated
objects, as the view from different directions
may reveal hidden or obscured features. Also,
by specifying a succession of different coordin-
ates for the position of your eye, you can get
an impression of 'flying by' the object, or
walking round it. However, the sequence of
drawings possible on a home computer is very
slow and the effect doesn't match the spe - •
of commercial wireframe drawings
where the viewer seems to zoom round
the car, planet or whatever at great
speed. But the principles are
the same.

THE EFFECT OF VIEWPOINT
On page 560, we showed how it is possible to
depict a three-dimensional object on a two-
dimensional screen by using a visual conven-
tion which can be interpreted by the eye and
brain of the viewer. The previous programs
did this by using an isometric projection, in
which slanting lines are understood to be
receding or advancing from the screen.

The more common form of visual conven-
tion is perspective drawing, in which
lines that would move away from

the viewer con-

verge towards
a point in the distance,

known as a vanishing
point, and are foreshortened as they

get 'further away'. In true three-
point perspective, there are actually

three vanishing points—one for lines
drawn along each of the three axes. The

position of the three points is fixed by the
relationship between the position of the

viewer and the position of the object to be
depicted. (But remember, these points are

imaginary within the visual convention.)
This gives a clue as to how an object like a

cube can be depicted from different view-
points in three-dimensional space. It will be
necessary to set up further transformations
which produce the effect of convergence
towards a vanishing point, and also fore-
shorten the object.

The first thing you will need to know is the
relationship between the position of the
viewer and that of the object. To determine
this, you have to relate the viewpoint to the X,
Y and Z axes which you have set up on the
screen. The programs which follow do just
that, and then perform the necessary
transformations.

BEFORE YOU START
To RUN the new sections of program listed
here you need the Grid routine given on page
512 and the Acorns need the Line routine too
(page 511). So, if you SAVEd a copy of those
routines you should LOAD them in now. It's a
good idea to LOAD in the Circle drawing
routine on page 513 as well. You won't need it
this time but it is handy to have all the
routines together ready for the globe drawing
program which follows in the next article. So
the lines you need are 5000 to 6160 (and 9500
to 9550 for the Acorn as well); all other lines
can be deleted.

As before, you'll have to type in several
sections of program before you can RUN
anything—because the eye position as well as
the transformations for rotation and perspec-
tive have to be set up first.

DEFINING YOUR VIEWPOINT
The first section of program calculates the
variables needed to determine the position of
your eye in three-dimensional space:

8000 LET XV= X: LET YV=Y: LET ZV=Z
8010 LET WV =YV*YV+ZV*ZV
8020 LET PV=SQR (XV*XV + WV)
8030 IF PV= 0 THEN RETURN
8035 LET WV = SQR WV
8040 LET XU = XV/PV
8050 LET YU = YV/PV
8060 LET ZU=ZV/PV
8070 LET WU = WV/PV
8080 REM EYE-ORIENTATION
8090 LET A= XV*YV: LET B=ZV: GOSUB

8450: LET G = H
8100 LET A= YV: LET B = XV: GOSUB 8450:

LET G=G+H
8110 LET SG =SIN G

To represent a three-dimensional im-
age coordinates are transformed from
three-dimensional axes (X1, Y1, Z1) and
(Xv, Yv, Zv) to the screen axes (X,Y)

A distant viewpoint gives only slight
perspective effect, whereas a close
viewpoint (right) distorts the image

8120 LET CG =COS G
8140 LET R1 =WU*CG
8150 LET R2= —WU*SG
8160 LET R3= —XU
8170 LET R4= —YU
8180 LET R5= —ZU
8190 LET R6 = XV*XU +YV*YU +ZV*ZU
8200 IF WU = 0 THEN GOTO 8350
8210 LET XT=XV*WU—(YV*YU

+ZV*ZU)*XU/WU
8220 LET YT = (YV*ZU —ZMU)/WU
8230 LET R7= (ZU*SG —XU*YU*CG)/WU
8240 LET R8= (—YU*SG—XU*ZU*CG)/WU
8250 LET R9= CG*XT+SG*YT
8260 LET S1 = (ZU*CG +XU*YU*SG)/WU

8270 LET S2= (—YU*CG +XU*ZU*SG)/WU
8280 LET S3= —SG*XT+CG*YT
8330 RETURN
8350 LET R7= —1
8360 LET R8=0
8370 LET R9=0
8380 LET S1=0
8390 LET S2=1
8400 LET S3=0
8410 RETURN
8450 IF B< >0 THEN LET H =ATN (A/B):

RETURN
8460 LET H = P1/2: RETURN

8000 XV= X:YV=Y:ZV=Z
8010 WV = YV*YV + ZV*ZV
8020 PV = SQR(XV*XV + WV)
8030 IF PV= 0 THEN RETURN
8035 VVV=SQR(WV)
8040 XU = XV/PV
8050 YU =YV/PV
8060 ZU=ZV/PV
8070 WU =WV/PV
8080 REM EYE-ORIENTATION
8090 A =XV*YV:B =ZV:GOSUB 8450:

G =H
8100 A =YV:B =XV:GOSUB 8450:

G=G+H

In a three point perspective system, a
viewpoint is taken along each of the

three axes—X, Y and Z. This enables any
image to be represented as the eye

would see the object

8110 SG=SIN(G)
8120 CG = COS(G)
8130 REM ROTATION MATRIX
8140 R1 =WU*CG
8150 R2= —WU*SG
8160 R3= —XU
8170 R4= —YU
8180 R5= —ZU
8190 R6 = XV*XU + YV*YU +Z1/"ZU
8200 IF WU=0 THEN 8340
8210 XT = XV*WU — (YV*YU +ZV*ZU)

'XU/WU
8220 YT= (YV*ZU—ZMU)/WU
8230 R7 = (ZU*SG—XU*YU*CG)/WU
8240 R8= (—YU*SG—XU*ZU*CG)/WU
8250 R9= CG*XT+ SG*YT
8260 S1 = (ZU*CG +XLVYU*SG)/WU
8270 S2= (—YU*CG +XU*ZU*SG)/WU
8280 S3= —SG*XT+CG*YT
8330 RETURN
8340 REM SPECIAL CASE ON X-AXIS
8350 R7=-1
8360 R8=0
8370 R9=0
8380 51=0
8390 S2=1
8400 S3=0
8410 RETURN
8450 IF B< >0 THEN H=ATN(A/B):

RETURN
8460 H= n/2:R ETU R N

8000 DEF PROCposition(X,Y,Z)
8010 LOCAL WV,WU,G,SG,CG,XT,YT
8020 XV= X
8030 YV=Y
8040 ZV = Z
8050 WV =YV*YV + ZV*ZV
8060 PV=SQR(XV*XV + WV)
8070 WV = SQR(WV)
8080 IF PV= 0 THEN ENDPROC
8090 XU = XV/PV
8100 YU =YV/PV
8110 ZU = ZV/PV
8120 WU =WV/PV
8130 REM EYE ORIENTATION
8140 G = FNatan(XV*YV,ZV)

+ FNatan(YV,XV)
8150 SG=SIN(G)
8160 CG =COS(G)
8170 REM ROTATION MATRIX
8180 R11 = WU*CG
8190 R21 = —WU*SG
8200 R31= —XU
8210 R32= —YU
8220 R33= —ZU
8230 R34 = XV*XU +YV*YU +ZV*ZU
8240 IF WU=0 THEN 8340
8250 XT=XV*WU— (YV*YU+ZV*ZU)

"XU/WU

8260 YT = (YrZU — ZV'YU)/WU
8270 R12 = (ZU'SG — XU'YU`CG)/WU
8280 R13 = (— YU`SG — XU*ZU`CG)/WU
8290 R14 = CG*XT +SG*YT
8300 R22 = (ZU*CG +XU*YU*SG)/WU
8310 R23= (—YU*CG +XU*ZU*SG)/WU
8320 R24= —SG*XT+CG*YT
8330 ENDPROC
8340 REM SPECIAL CASE ON X-AXIS
8350 R12= —1
8360 R13=0
8370 R14=0
8380 R22=0
8390 R23=1
8400 R24= 0
8410 ENDPROC
8450 DEF FNatan(A,B)
8460 IF B< >0 THEN =ATN(A/B) ELSE= PI/2

Key in Lines 8000 to 8410 as for the
Commodores, then add the following lines:

8450 IF B < > 0 THEN H=ATN(A/B) ELSE
H = P1/2

8460 RETURN

To understand what's going on you have to
remember that the Z axis is the one coming
towards you out of the centre of the screen,
the Y axis points up the screen, and the X axis
points along the screen.

The position of the eye is at (XV, YV, ZV);
the V stands for Viewpoint. The variable WV

gives the distance in the Y and Z directions
combined. The position of the object you're
looking at is assumed to be the origin (0, 0, 0)
in space which is placed at the centre of the
screen for simplicity. Line 8030 (8080 for
Acorn) causes the routine to abort if the eye
position is placed at the origin, because it is
difficult to look at your own eye—without a
mirror. The variables XU, YU and ZU are the
distances in the X, Y and Z axis directions of a
line of unit length drawn between the origin
and the eye position. WU is the distance in the
Y and Z directions combined.

When viewing an object, you can get
different views by moving around the object
from left or right. This angle is measured
starting from the X axis and is set at Line 8090
(8140 for Acorn) and 8100. A check is made
(Lines 8450 and 8460) to prevent division by
zero, which would interrupt the program by
causing an error message.

This gives a normal view when you are
looking directly along the X axis and it
gradually rotates round as you move round,
giving more interesting views. Lines 8140 to
8280 (8180 to 8320 for Acorns) set variables
that define the orientation of the eye position
in space. The eye position is located so that its
Z axis lies along the line from the eye to the
origin of the screen.

The rest of the routine sets variables for the
special case, when the eye position is actually
on the X axis.

THE TRANSFORMATIONS
The next section transforms the X, Y and Z
coordinates of the cube to the final screen
coordinates. These transformations take into
account the position of the eye and the effect
of perspective:

8500 LET X1 = T1*X + T4*Y + T7
8510 LET Y1 =T2*X +TFY + T8
8520 LET Z1 = T3*X + T6*Y + T9
8540 LET X2 = R1*X1 + R7'Y1

+ R8•21 + R9
8550 LET Y2 = R2'11 + S1*Y1

+S2*Z1 +S3
8560 LET Z2 = R3*X1+ R4*Y1

+ R5 .71 + R6
8575 IF Z2 < ZN THEN RETURN
8580 LET X3= D'X2/Z2
8590 LET Y3 = — D'Y2/Z2
8600 RETURN

[CK
8500 X1 =T1*X +TCY +T7
8510 Y1 =In(+TFY +T8
8520 Z1 =T3*X +T6*Y +79
8530 REM 2—D TO 3—D
8540 X2 = R1*X1+ RTY1 + R871+ R9
8550 Y2 = R2*X1 +S1*Y1 + 5221 + S3
8560 Z2 = R3*X1+ R4*Y1+ R571+ R6
8570 REM OBJECT TO EYE
8575 IF Z2 < ZN THEN RETURN
8580 X3 = D'X2/Z2
8590 Y3 = D'Y2/Z2
8600 RETURN

El
8500 DEF FNtrans(X,Y)
8510 LOCAL X1,Y1,Z1,X2,Y2,Z2
8520 REM 2—D TO 3—D
8530 X1 =T11*X+T12*Y+T13
8540 Y1 =T21*X+T22•Y +T23
8550 Z1 = T31•X + T321/ +T33
8560 REM OBJECT TO EYE
8570 X2= R11'11 +1312*Y1

+ R13*Z1 + R14
8580 Y2 = R21*X1 + R22*Y1

+ R2371 + R24
8590 Z2 = R31*X1 + R32"Y1

+ R3371+ R34
8600 IF Z2 < ZMIN THEN = FALSE
8610 REM 3—D TO 2—D
8620 X3 = D'X2/Z2
8630 Y3 = D'Y2/Z2
8640 =TRUE

This routine uses complicated matrix arith-
metic to transform the coordinates (X,Y), but
basically they are the transformation steps
described on pages 561 to 564. Lines 8500 to

8520 (8530 to 8550 for Acorn) transform the
2-D plotting plane (X,Y) to 3-D space (Xl, Yl,
Z1). Lines 8540 to 8560 (8570 to 8590 for
Acorn) transform the 3-D space coordinates
(X1, Y1, Z1) to be positioned according to the
eye position and direction (X2, Y2, Z2). Line
8575 (8600 for Acorn) checks whether the
new position to be plotted is too close to the
eye position—that is, Z2 lies between 0 and ZN
(or 0 and ZM IN on the Acorns), or whether it is
behind the eye (Z2 negative). In both these
cases, the plotting position is ignored as it
would be impossible to view the object. If the
position is farther away than ZN or ZM I N from
the front of the eye position, then the screen
coordinate position (X3, Y3) is calculated—at
the end of the routine. The D/Z2 parameter on
these lines adds perspective to the picture by
projecting the object on to a flat screen at a set
distance D from the eye. If you set D to a small
value this has the effect of moving the screen
close to the eye so the perspective is more
pronounced. When D is large, the screen is a
long way off, so the perspective effect is quite
small—the image appears virtually undistor-
ted, even when it is viewed obliquely in any
direction.

SETTING INITIAL VARIABLES
The next step is to rewrite the Initialize and
Draw routines to make use of the new
Transform routines:

9000 CLS
9020 LET XM = 256: LET YM =176
9030 LET XD=XM/2: LET YD=YM/2
9040 LET ZN =1
9042 INPUT "ENTER PROJECTION PLANE

DISTANCE",D
9045 IF D < =0 THEN LET D=1000*ZN
9050 LET T1=1: LET T2=0: LET T3=0
9060 LET T4=0: LET T5=1: LET T6=0
9070 LET T7=0: LET T8=0: LET T9=0
9090 CLS : RETURN
9500 LET X =XS: LET Y=YS:

GOSUB 8500: IF Z2<ZN THEN
GOTO 9520

9505 IF X3 < —127 OR Y3 < —87 OR
X3>128 OR Y3>88 THEN
GOTO 9550

9510 PLOT 127 + X3,87 + Y3
9520 LET X= XE: LET Y = YE:

GOSUB 8500: IF Z2 <Zn THEN
GOTO 9550

9525 IF X3 < —127 OR Y3 < —87 OR
X3 >128 OR Y3 >88 THEN
GOTO 9550

9530 DRAW 127 + X3— PEEK 23677,
87 +Y3— PEEK 23678

9550 RETURN

9000 PRINT "0"
9020 XM = 320:YM = 200
9030 XD=XM/2:YD=YM/2
9040 ZN =1
9042 INPUT "ENTER PROJECTION PLANE

DISTANCE";D
9045 IF D= <0 THEN D = 10007N
9050 Ti = 0:T2 = 0:T3 = 0
9060 T4 0:T5 = 0:T6 =0
9070 T7=0: T8= 0:T9= 0
9085 PRINT "0"
9090 RETURN
9500 X= XS:Y = YS:GOSUB 8500:

IF Z2<ZN THEN 9520
9505 IF X3 < —159ORY3< —990RX3

> 1590RY3 > 99 THEN 9550
9510 IX= INT(160+ X3):

IY = (100 — Y3)

9520 X= XE:Y = YE:GOSUB 8500:
IF Z2<ZN THEN 9550

9525 IF X3 < —159ORY3< —990RX3
>159ORY3 > 99 THEN 9550

9540 LINE IX,IY,160+ X3,
100—Y3,1

9550 RETURN

ECK
9000 SCNCLR
9020 XM =1023:YM =1023
9030 XD=XM/2:YD=YM/2
9040 ZN =1
9042 PRINT "RENTER PROJECTION

PLANE DISTANCE":INPUT D
9045 IF D= <0 THEN D=

1000 .ZN
9050 Ti = 0:T2 = 0:T3 = 0
9060 T4 =0:T5 =0:T6 =0

9070 T7 = 0:T8 = 0:T9 = 0
9085 PRINT "a"
9090 RETURN
9500 X = XS:Y=YS:GOSUB 8500:

IF Z2<ZN THEN 9520
9505 IF X3 < —511ORY3< —5110RX3

> 511ORY3 > 511 THEN 9550
9510 POINT 2,INT(511 +X3),

INT(511 —Y3)
9520 X= XE:Y =YE:GOSUB 8500:

IF Z2<ZN THEN 9550
9525 IF X3< —511ORY3< —5110RX3

> 511ORY3 > 511 THEN 9550
9530 DRAW 2 TO 511 +X3,511 —Y3
9550 RETURN

LI
9000 DEF PROCINIT
9010 CLS:CLG

9020 XMAX=1280:YMAX=1024
9030 XMID=XMAX/2:YMID=YMAX/2
9035 VDU29,XMID;YMID;
9040 ZMIN =1
9042 INPUT"ENTER PROJECTION PLANE

DISTANCE ❑ ",D
9045 IF D< =0 THEN D=1000 .ZMIN
9050 PROCXvector(1,0,0)
9060 PROCYvector(0,1,0)
9070 PROCorigin(0,0,0)
9085 CLS
9090 ENDPROC
9100 DEF PROCMOVE(X,Y)
9120 IF FNtrans(X,Y) THEN MOVE X3,Y3
9130 ENDPROC
9200 DEF PROCDRAW(X,Y)
9220 IF FNtrans(X,Y) THEN

DRAW X3,Y3
9230 ENDPROC

• S

= 	

‘Ak\ 9000 PCLS 	\kk ■•4\‘
9020 XM =256:YM =192 	1 	4.-

9030 XD =XM/2:YD YM/2 	:sz..kve
9040 ZN =1
9042 CLS:INPUT" ❑ ENTER PROJECTION

PLANE DISTANCE III";D
9045 IF D= <0 THEN D=1000'ZN
9050 T1 =1:T2= 0:13 = 0
9060 T4 = 0:15=1:T6= 0
9070 T7=0:18= 0:19 = 0
9085 CLS
9090 RETURN
9500 X = XS:Y = YS:GOSUB8500:

IF Z2 < ZN THEN 9520
9505 IFX3 < -127ORY3< -960RX3

>128ORY3 > 95 THEN 9550
9510 DRAW"BM"+STR$(INT(127

+ X3)) + "," + STR$(1NT(95 - Y3))
9520 X = XE:Y = YE:GOSUB8500:

IF Z2 < ZN THEN 9550
9525 IFX3 < -127ORY3< -960RX3

>128ORY3> 95 THEN 9550
9530 LINE - (127+ X3,95 -Y3),PSET
9550 RETURN

Line 9020 sets the maximum dimensions of
the screen in the X and Y directions, and Line
9030 sets the mid point. Line 9040 sets the
closest allowable position of points to be
plotted to the eye position. The variable D
gives the actual distance from the eye position
to the projection plane—the screen—and de-
termines the perspective. Values of D are
entered when you RUN the program, so you
can vary the degree of perspective. If no value
is given—by pressing I ENTER or RETURN I--
then Line 9045 sets a default value of 1000.
Lines 9050 to 9070 pass values to the trans-
formation constants, to specify the plane in
which the image is to be drawn in three-
dimensional space.

The section of program above continues
with the revised drawing routine. For Acorn
micros, Line 9120 MOVEs the cursor to the
required screen position, and Line 9220
DRAWs to a new position. For the other
computers, however, variables for the trans-
formation constants are first set (Line 9500),
then a check is made (Lines 9505 and 9525) to
determine whether a new point to be plotted
(Lines 9510 and 9530) is on the screen. This
check is necessary to prevent an error message
if you try to plot off the screen.

CALLING THE ROUTINE
You now need the routine to draw the grid. If
you do not have a typed copy of the program
from the previous article, then enter those
program lines now, as well as this program.

110 GOSUB 9000
120 LET L=20: LET N =3
125 GOSUB 505: GOTO 140
130 GOSUB 500
140 IF X=0 AND Y=0 AND Z=0 THEN

GOTO 170
150 GOSUB 1000
160 GOTO 130
170 CLS
180 STOP
500 IF 1NKEY$="" THEN GOTO 500
505 CLS
510 INPUT "INPUT EYE POSITION

(X,Y,Z)",X,Y,Z
520 GOSUB 8000
530 RETUR

RIM 1000 LET . ii21111.0w
1010 LE 	 LET T3 = 0
1020 LE tjariiir LET T6 = 0
1030 LE 	;7644 , — -P: LET

T9= P
1040 GOSUB 1200: RE-M -BOTTOM
1050 LET T7= -P: LET 	-P:

LET 1-4=P
1060 GOSUB 1200: REM TOP
1070 LET T4=0: LET T5=0: LET T6= -1
1080 GOSUB 1200: REM LEFT
1090 LET T7= - P: LET T8= P: LET T9= P
1100 GOSUB 1200: REM RIGHT
1110 LET T1=0: LET T2= -1: LET T3=0
1120 GOSUB 1200: REM BACK
1130 LET T7= P: LET T8= P: LET T9= p\X
1140 GOSUB 1200: REM FRONT
1170 RETURN
1200 LET XA = 0: LET YA= 0: LET LW= L:X

LET LH =L: LET NX=N: LET NY= N
1210 GOSUB 5000

0 1220 RETURN 	

Amy Amy um.

41111MIVAY
41/A IIMA

vA WNW
100 PI= rr
110 GOSUB 9000
120 L =100:N =3
125 GOSUB 505:GOTO 140
130 GOSUB 500
140 IF X = OANDY =OANDZ = OTHEN170
150 GOSUB1000
160 GOTO 130
170 NRM:PRINT "0":END
500 IF PEEK(197)=64 THEN 500
505 NRM
510 INPUT" ❑ INPUT EYE POSITION

(X,Y,Z)";X,Y,Z
520 GOSUB 8000
530 HIRES 0,1
540 RETURN
1000 P = L/2
1010 11=1:T2=0:13=0
1020 14=0:T5=1:T6=0

1030 T7 = - P:T8 = - P:T9 = -P
1040 GOSUB 1200
1050 T7= -P:T8= - P:T9=P
1060 GOSUB 1200
1070 T4= 0:T5= 0:T6= -1
1080 GOSUB 1200
1090 17= - P:T8=P:T9=P
1100 GOSUB 1200
1110 T1 = 0:T2 = -1:T3=0
1120 GOSUB 1200
1130 T7= P:T8= P:T9 = P
1140 GOSUB 1200
1170 RETURN
1200 XA= 0:YA= 0:LW = L:LH =L:

NX= N:NY = N
1210 GOSUB 5000
1220 RETURN

13:K
100 PI = 7E

110 GOSUB 9000
120 L =100:N =3
125 GOSUB 505:GOTO 140
130 GOSUB 500
140 IF X = OANDY =OANDZ = OTHEN170
150 GOSUB1000
160 GOTO 130
170 GRAPHIC 0:PRINT" ❑ ":END
500 IF PEEK(197) =64 THEN 500
505 GRAPHIC 0
510 PRINT" ❑ INPUT EYE POSITION":

INPUT"(X,Y,Z)";X,Y,Z
520 GOSUB 8000
530 GRAPHIC 2
540 RETURN
1000 P = L/2
101011=1:12= 0:13=0
1020 14=0:T5=1:T6=0
1030 T7= - P:T8= - P:T9= -P
1040 GOSUB 1200
1050 T7= - P:T8= - P:T9=P
1060 GOSUB 1200
1070 T4= 0:T5= 0:T6= -1
1080 GOSUB 1200
1090 T7 = - P:T8 = P:T9 = P
1100 GOSUB 1200
1110 T1=0:12= -1:T3=0
1120 GOSUB 1200
1130 T7 = P:T8= P:T9= P
1140 GOSUB 1200
1170 RETURN
1200 XA= 0:YA = 0:LW = L:LH =L:

NX = N:NY = N
1210 GOSUB5000
1220 RETURN

100 MODEO
110 PROCINIT
120 L =100:N = 5
130 REPEAT

140 V = FNgetposition
150 IF V THEN PROCCUBE
160 UNTIL NOT V
170 MODE1
180 END
500 DEF FNgetposition
510 IN PUT"EYE POSITION (X,Y,Z) ❑ ",

X,Y,Z
520 PROCposition(X,Y,Z)
530 CLS
540 = (X < > 0)0 R (Y < > 0)0R(Z < > 0)
1000 DEF PROCCUBE
1010 LOCAL P
1020 P = L/2
1030 PROCXvector(1,0,0)
1040 PROCYvector(0,1,0)
1050 PROCorigin(— P, — P, — P)
1060 PROCSIDE:REM BOTTOM
1070 PROCorigin(— P, — P,P)
1080 PROCSIDE:REM TOP
1090 PROCYvector(0,0, —1)
1100 PROCSIDE:REM LEFT
1110 PROCorigin(— P,P,P)
1120 PROCSIDE:REM RIGHT
1130 PROCXvector(0, —1,0)
1140 PROCSIDE:REM BACK
1150 PROCorigin(P,P,P)
1160 PROCSIDE:REM FRONT
1170 ENDPROC
1200 DEF PROCSIDE
1210 PROCGRID(0,0,L,L,N,N)
1220 ENDPROC
9600 DEF PROCXvector(DX,DY,DZ)
9610 T11 = DX
9620 T21 = DY
9630 T31 = DZ
9640 ENDPROC
9700 DEF PROCYvector(DX,DY,DZ)
9710 T12 = DX
9720 T22 = DY
9730 T32 = DZ
9740 ENDPROC
9800 DEF PROCorigin(X,Y,Z)
9810 T13=X
9820 T23 = Y
9830 T33 = Z
9840 ENDPROC

100 PI = 4*ATN(1):PMODE4,1
110 GOSUB 9000
120 L = 20:N = 5
125 GOSUB505:GOTO 140
130 GOSUB 500
140 IF X = OANDY = OANDZ = 0

THEN170
150 GOSUB 1000
160 GOTO 130
170 CLS
180 END
500 IF 1NKEY$ = "" THEN 500

505 CLS
510 INPUT" ❑ INPUT EYE POSITION

(X,Y,Z) ❑ ❑ ❑ ";X,Y,Z
520 GOSU B8000
530 PCLS:SCREEN1,1
540 RETURN
1000 P = L/2
1010 T1 =1:T2= 0:T3= 0
1020 T4 = 0:T5 =1:T6 = 0
1030 T7= — P:T8 = — P:T9 = —P
1040 GOSUB 1200 'BOTTOM
1050 T7 = — P:T8 = — P:T9 = P
1060 GOSUB 1200 'TOP
1070 14 = 0:T5= 0:T6= —1
1080 GOSUB 1200 'LEFT
1090 T7= — P:T8 = P:T9 = P
1100 GOSUB 1200 'RIGHT
1110 Ti = 0:T2 =- —1:T3 = 0
1120 GOSUB 1200 'BACK
1130 T7 = P:T8 = P:T9 = P
1140 GOSUB 1200 'FRONT
1170 RETURN
1200 XA = 0:YA =- 0:LW = L:LH = L:

NX=N:NY=N
1210 GOSUB 5000
1220 RETURN

Now RUN the program. If the program is
working correctly, it enters the 'Initialization'
routine starting at Line 110. This routine sets
up some variables and prints a prompt for you
to enter a value for D—the projection plane
distance. The perspective built into the
program is such that the greater this distance,
the farther away the object appears which
means it shows very little perspective. Enter a
value of 1000 to begin with. The program
returns to Line 120, which specified the
length L of each side of the cube, and the
number of grid squares N along each side.
Lines 130 to 160 read in the coordinates of
the eye position (Line 510), and then draw the
cube from that position. As soon as the first
view is drawn you can enter a new set of
coordinates to see the cube from a new
direction. When you enter the values 0, 0 and
0, the program ends. The routine from Lines
500 to 530 actually calls the Position routine
(Line 520) to set up the transformation
constants. The Cube routine (Lines 1000 to
1170) then positions and draws each of the six
sides. The Side routine (Lines 1200 to 1220)
plots each side as a grid, using the Grid
routine.

Try different values for the eye position to
see the effect on the view. A value of 1000 for
D and 200, 0 and 0 for X, Y and Z are good to
start with. Then try 100 for D and 20, 0, 0 for
X, Y, and Z. The cube appears the same size
but the perspective is much more pronoun-
ced. To enter new values for X, Y and Z, press

any key and the prompt will appear. To enter
new values for D you have to press BREAKS and
then RUN the program again. You'll be given a
prompt for D then a second prompt for X, Y
and Z.

On machines like the Acorn, the view is
automatically 'clipped' if any part of it falls
outside the screen. Thus it does not matter if
you come in really close and the cube spills off
the edge of the screen. This can give more
spectacular views with exaggerated perspec-
tive. On some machines such as the Spectrum,
an error is reported if points to be plotted
fall outside the screen area. Thus the program
ignores any line which would go out of the
available area. This may lead to odd results
since all of a line is omitted, even if just the tip
of it would be over the maximum permitted
point. Points closer than a certain minimum
distance, and points behind the eye, ZN (ZM IN
for Acorns), are ignored. So if the eye position
is very close to or inside the cube, spurious
results will also occur. It is possible to check
for such points and clip the lines approxi-
mately but this requires considerable extra
code and computation.

Save a copy of the complete listing on tape
or disk, because in a future article you can
learn how to use the same routines to draw
duplicate shapes, and to produce some spec-
tacular circular graphics.

If you're fed up with games or
simply want to use your computer
to its fullest, why not consider
linking yourself to bigger and better
computers?

Even the humblest of home computers can be
connected to the telephone system and thence
to some of the most powerful computers and
biggest databases on Earth. Linked in this
way you can access phenomenal amounts of
information or, in a more practical sense,
communicate with other computer enthusi-
asts locally, nationally, or internationally.

`Hacking' is the popular term used to
describe computer use of this sort. And while
it seems improbable that you could infiltrate
sensitive databases (though this has hap-
pened!) or trigger the next World War (which
has only happened in fiction), almost any-
thing is possible. A computer, a linking device
called a modem, a telephone and the appropri-
ate, usually very simple, software can quite
literally open up the world.

Computers can communicate with each
other in three basic ways. They can send
messages to each other over long distances

using telephone lines or radio waves (or in
some cases both). They can share the same
information storage system (which in practice
means sharing the same disk units). Or they
can be connected directly and share each
other's processor and memory.

HELLO WORLD
Of these options, the first is undoubtedly the
most exciting, even thrilling, step forward for
the home computing enthusiast. It is already
possible to obtain equipment and software, at
reasonable prices, which will enable your
computer to talk to another computer almost
anywhere on the globe over the very same
`lines' which are used already for
telecommunications.

Through the telephone
system, access to a huge
range of facilities is
possible—from
software exchange

set up amongst groups of friends to huge
business, news and information services
costing users several thousand pounds a year.

Computer communications is one of those
areas of new technology where the future
really is here today. By enabling one com-
puter to talk to another over long distances it
is already possible to live and work from your
own home without ever stepping outside the
front door.

You can peruse shopping lists, examine
illustrations of the goods for sale, compare
prices and order what you want from the
comfort of your own armchair. You can
control your finances, pay bills instantly and

WORLDWIDE CONNECTION
BULLETIN BOARDS

ARMCHAIR SHOPPING
TELETEXT AND VIDEOTEX

ELECTRONIC MAIL

NETWORKING
PROBLEMS OF SECURITY

OTHER COMMUNICATIONS
COMPATIBILITY PROBLEMS

TYPES OF MODEM

keep an up-to-the-minute check on your
financial position. An increasing number of
jobs can be done from home using a micro,
especially those office jobs which involve
using and processing information.

A secretary and boss, for example, could be
miles apart in their own homes and still work
well together using computer communic-
ations. Having roughed out a letter on his or
her own micro the boss can send it, complete
with spelling mistakes and bad grammar, to
the secretary who then corrects it, formats it

so that it looks presentable, lets
the boss have a quick check and,

finally, sends it.

BULLETIN BOARDS
A lonely life? Perhaps, but not necessarily. It
is also possible to contact other people with
similar interests by computer. In some in-
stances it doesn't matter where in the world
they are, the cost of contacting them could be
as little as a local telephone call. You can call
up what is known as a bulletin board to read
messages left by other people and to leave
messages yourself. There are even bulletin
boards set up for dating purposes!

If you did decide to leave the comfort of
your own home and venture outside you
could book almost anything by computer—
taxis, theatre tickets, holidays, flights and
much more besides.

Although there are many problems in
linking up computers—caused mainly by the
failure of manufacturers to establish common
standards—almost every week sees another
small breakthrough and every now and then
there's a major breakthrough. Much of this

pioneering work is carried out at the grass-
roots level by enthusiastic amateurs and stu-
dents and their teachers at universities and
other higher education establishments.

The growth of interest in computer com-
munications, and indications that it is the next
exciting area for exploration, are shown in the
fact that more and more bulletin boards are
being set up.

You could, if you wanted to, set up your
own bulletin board. Some are set up by
companies, usually electronics companies,
who provide some space for users while using
other space on the 'board' to advertise their
own goods and services. Others have been set
up by groups of computer enthusiasts and by
colleges and universities and this is the area of
fastest growth. Although often usable at any
time of day, bulletin boards run by hobbyists
tend to be geared to evening use.

ARMCHAIR SHOPPING
Many people take the view that these uses of
computer communications are so far-fetched
that they are likely to remain in the realms of
science fiction for many years to come. But
everything described so far is possible today.
Some people are so familiar with armchair
banking and shopping that they regard it as a
part of everyday life.

You can use your computer to access
information about goods and prices at a wide
range of shops. Or you can buy goods and
services and pay for them with little more
than a few keystrokes on the computer. The
`work' is done by a large central computer.
This holds all the information and carries out
the electronic transfer of money from the
customer's account to the shop's account.

TELETEXT AND VIDEOTEX
You can link up to any of the growing number
of teletext and videotex services even with a
small home micro as long as it and your
television set have been adapted properly. In
the case of the UK's two current teletext
services, ORACLE (run by the independent
television companies) and CEEFAX (run by
the BBC) this means you have access to
hundreds of pages of information including
program listings and programs that can be
loaded directly into your computer. Direct
downloading in this instance is usually only
possible with a BBC computer connected to a
special teletext decoder.

Sending and receiving—or uploading and
downloading—software is one of the areas of
greatest potential in computer communic-
ations. Software is already being transmitted
by both TV and radio. But while software
available through teletext can be directly
downloaded, the software available from local
radio stations must usually be recorded on
tape first and then loaded in the normal way.

The major drawback of teletext, which uses
broadcast signals, is that communication is
one way only. But a viewdata system such as
Prestel, which uses the telephone lines, can be
two way. This means that your own machine
can talk to the Prestel computer. In fact, there
are several Prestel computers, offering the
same service and, to some extent, interlinked,
dotted around the UK. As well as making it
much safer, this duplication of computers also
helps to keep the system cheaper for the user
who is charged realistic rates for using the
telephone. The closer the computer is to the
subscriber the cheaper the call—and many are
on a local charge basis.

In conjunction with Prestel there are ser-
vices such as Micronet which, as its name

suggests, is a network for micro owners
enabling them to talk to each other and also
providing a software service for subscribers.
Micronet uses the Telecom network but is
produced by an independent publisher.

Another national computer communic-
ations network run, like Prestel, by British
Telecom is Telecom Gold. Prestel is intended
to be an information service and many users
have a specially made keyboard dedicated
solely to accessing the Prestel service. Tele-
com Gold, however, is much more flexible,
developed especially for micro owners and
therefore allowing a much greater degree of
two-way communication.

It can, for instance, send and receive
information at a wider range of speeds which
means that it's accessible to more makes of
micro. Subscribers to the system are given
access, via a password, to a Prime 750
minicomputer. Users have all sorts of facil-
ities at their disposal including Infox, which
allows business subscribers to write their own
programs to develop and manage a database,
do spreadsheet calculations and write reports.

ELECTRONIC MAIL
Within systems like Telecom Gold it is
possible to set up your own 'mailbox'. Any-
one who wants to get in touch can write a
letter and leave it stored in the computer for
you to read at leisure. Both sender and
receiver must have computers, of course!
Electronic mail of this type is a powerful
business facility which is a step up from
simple bulletin boards.

NETWORKS
Most of the well known uses of computer
communications involve many small com-
puters having access to one large computer,
but all sorts of combinations are possible.

A network could involve mainframe com-
puters, minicomputers, microcomputers and
the whole range of peripherals. The New York
Times, for instance, uses all three types of
computer in one of the most sophisticated
newspaper production systems in the world.
In this sort of system, several people working
in one office may each use their own terminal
linked to a minicomputer while one terminal
in the office is linked to a mainframe.

The day-to-day work—in the case of a
newspaper editorial office, writing news
stories or features—can be carried out using
the minicomputers while the mainframe com-
puter is used for the administration of the
company and for databases.

Meanwhile, journalists working away from
the office—at home, for instance—can use a
microcomputer with a modem to gain access

to databases to gather information for their
story over the telephone lines. Using a com-
puter and a modem they can send a complete
story to the office in a matter of seconds.

Many correspondents at baseball games
now sit at a keyboard and screen rather than a
typewriter. At the press of a couple of buttons
their summary of the game and the result can
be fed into the office computer. Investigative
reporters can carry out spot checks on inform-
ation by calling up the database on the
mainframe computer.

Because manufacturers of computers have
failed to agree on common international stan-
dards, there are problems in linking up
computers but, one by one, these are being
overcome and computers are becoming more
and more compatible with each other. This is
especially so in the case of computer com-
munications using telephone lines, because of
the way in which the signals are transmitted.

SECURITY
The fact that many different computers can
now communicate with each other over the
telephone lines delights most micro owners—
but horrifies many universities, large com-
panies and government agencies! The pro-
blem for many of these institutions is that
they, too, use the telephone lines for internal
and external connections for their big main-
frame and minicomputers. This makes them
vulnerable.

All sorts of elaborate security surrounds
these big computers but in some cases it's
been proved that the most sophisticated
security is not enough. Computers at all sorts
of organisations have been broken into. There
have even been stories that people have
accessed American military computers.

This was the basis of the film War Games
and has been the subject of much controversy,
especially in the USA where there have been
complaints that hundreds of thousands of
dollars worth of damage has been done by
computer enthusiasts interfering with the
mainframe computers of large corporations.

It's the potential offered by computer
communications that has also led to fears of
massive computer frauds netting the
electronic criminals millions of pounds. In-
stead of jemmies or guns, robberies are
committed with computers and telephones.
Sometimes one of the biggest problems that
banks and other vulnerable institutions have
is finding out if they have been robbed at all!
So much business is done by computers
carrying out financial transactions
electronically—using the telephone lines, of
course—that detection of electronic crime is
becoming more and more difficult. This is

especially so if the criminal has managed to
change all the records relating to his crime.

OTHER COMMUNICATIONS MEDIA
Telephones aren't the only means for commu-
nicating with other computers. Radio waves
can also be used. The sort of short wave
equipment used by radio hams can be used to
open up a link between one computer and
another—as long as both computers are con-
nected up to equipment which is capable of
transmitting and receiving radio waves.

The fastest communication between com-
puters uses the technology of fibre optics.
Information is coded in light pulses and sent
down thin strands of 'glass'. This new tech-
nology is reckoned to be much more efficient
than any present method, and it enables
information to be carried at the speed of light.
Fibre optic communications are already in use
and there is no reason why the same principles
should not be applied to computer commun-
ications as well.

Direct links between computers and other
peripherals are most common in offices. More
than two computers can be linked together to
form a network which could, for instance,
enable a number of computers to share the
same facilities such as printers or disk drives.

TOWER OF BABEL
No matter what means of communication is
chosen there is always the problem of compat-
ibility. A micro can only communicate with
another micro—or with any other peripheral
device—through the right interface. Without
the correct combination of cables and sockets
and a code that both machines will under-
stand, communication is impossible.

The telephone line is by far the most
common medium for carrying messages be-
tween one computer and another over long
distances. This can only accept a serial signal
rather than the speedier parallel type.

This does not mean that all computers with
parallel interfaces are unable to send signals
via the telephone system. There is hardware
and software available that will enable it to do
so but it may be expensive—in some in-
stances, more than the computer!

One of the problems with using a telephone
for communication between computers is that
computers carry information in discrete (sep-
arate) electrical pulses. But telephone systems
are designed to carry the human voice—
which is an analogue signal, continuous and
variable. So data from a computer has to be
converted into a similar signal.

MODEMS
The equipment used to convert the
computer's data into signals which can be
transmitted over the telephone lines, and vice
versa, of course, is a modem. The word is an
abbreviation of MOdulator/DEModulator,
which is a description of the function of a
modem.

There are two types of modem, the acoustic
coupler and the hard wired or direct connect
modem. Both come in a variety of shapes and
sizes but are usually contained in a box. The
acoustic coupler has two rubber cups which
will accommodate the telephone handset.

The acoustic coupler is connected to the
micro and turns signals from the micro into
tones which can be sent down telephone lines.
It also converts incoming tones from another
computer into digital information which the
receiving computer can understand.

Hard wired modems encode (or modulate)
data from the computer directly into electrical
signals and decode (or demodulate) incoming
information into serial bits which can be
understood by the computer. These hard
wired modems can transmit information at
faster speeds than acoustic couplers and are
less prone to errors.

160 REM cp 213
170 REM jr z,insert
180 REM cp 14
190 REM jr nz,notfp
200 REM Id de,5
210 REM add hl,de
220 REM notfp cp 13
230 REM jr nz,nxtchr
240 REM inc hl

70 REM inc hl
80 REM nxtchr inc hl
90 REM Id a,(hi)
100 REM cp 239
110 REM jr z,insert
120 REM cp 248
130 REM jr z,insert
140 REM cp 214
150 REM jr z,insert

Spectrum programs that SAVE to
and LOAD from tape can be made to
work with a Microdrive by putting
them through this simple machine
code routine

So far, all the programs given in INPUT have
assumed that you are SAVEing to and LOADing
from tape. But more and more people are
now using Microdrives or disk units.

Of course, if you do have a Microdrive you
can modify the programs given in INPUT to
work with them, by hand, yourself. But why
not let your computer do it for you? The
following assembly program will modify
many BASIC, tape-dependent programs for
use with the Microdrive on the 48K Spec-
trum. If you have a 16K machine, the
program will still work on this. But you will
need your own assembler since the INPUT
assembler will not run on the 16K (unless of
course, you want to hand assemble the
program). And you will need to relocate the
start address. The 16K origin should be at
32400 and you will have to CLEAR to 32399.

Similar programs can be written for other
machines, but the BBC Micro does not need a
conversion program as it will default to disk
drives, if the equipment is present. The
Electron and ZX81 don't have disk drives,
and it is not possible to give a program for the
Dragon as there are three different disk
systems available. A disk program for the
Commodore 64 and the Vic will follow.

To turn the normal tape instructions—LOAD,
SAVE, VERIFY and MERGE—into the Spectrum
Microdrive instructions *"m",1; has to be
added after the instruction, giving
LOAD*"m",1; and SAVE*"m",1; and
VERIFY*"m",1; and MERGE*"m",1;. And
also, everything following the addition has to
be shoved up in memory to make room. The
following program makes the substitution
and the shift for you. Following the explan-
ation of how it works, you'll find detailed
instructions on how to use it. Please refer to
the Spectrum assembler modification on the
inside back cover of Issue 18.

10 REM org 65200
20 REM Id h1,(23635)
30 REM start push hl
40 REM pop ix
50 REM inc hl
60 REM inc hl

LOCATING SAVES, LOADS,
MERGES AND VERIFYS

AVOIDING FLOATING
POINT NUMBERS

USING THE STACK

USING A DATA TABLE
MOVING THE PROGRAM UP

ADDING DATA
UPDATING THE SYSTEM

VARIABLES

250 REM push hl
260 REM Id de,(23627)
270 REM and a
280 REM sbc hl,de
290 REM pop hl
300 REM jr c,start
310 REM rst 8
320 REM defb 255
330 REM insert inc hl

340 REM Id a,(h1)
350 REM cp 42

360 REM jr z,nxtchr
370 REM push hl

380 REM Id hl,(23641
' 390 REM pop de

400 REM push de
410 REM and a
420 REM sbc hl,de

430 REM Id b,h
440 REM Id c,I

450 REM Id h1,(23641)
460 REM Id de,13

What happens if I call this
machine code program when
there is no BASIC program in
memory?
Don't worry. The machine code
program will not crash. When there is
no BASIC program there are no
variables either. So the system variables
PROG, VARS and ELINE all point to the
same address. The next thing above
ELINE memory is the edit line. In direct
mode, the command is not transferred to
the BASIC area when you press 'RETURN .
So when you call the machine code
program, the RANDOMIZE USR 65200
followed by the 'RETURN stays in edit
line area.

The machine code routine then runs.
It starts searching through the memory
locations after PROG, which in this case
is the edit line, for a LOAD, SAVE, MERGE
or VERIFY. It won't find one. And when
it hits the 'RETURN , it recognizes it as an
end of line character. So it subtracts the
value of VARS from the current byte
pointer and goes onto the restart routine
which returns to BASIC if there is no
carry. But if the current byte pointer
is past VARS, the subtraction will
not give a carry, so the routine
always returns to BASIC.

470 REM add hl,de
480 REM ex de,h1
490 REM Id hl,(23641)
500 REM dec hl
510 REM dec de
520 REM Iddr
530 REM ex de,h1
540 REM inc de
550 REM Id hl,table
560 REM Id bc,13
570 REM Idir
580 REM Id bc,13
590 REM pop hl
600 REM push hl
610 REM call $1664
620 REM Id e,(ix +2)
630 REM Id d,(ix +3)
640 REM Id h1,13
650 REM add hl,de
660 REM ex de,h1
670 REM Id (ix +2),e
680 REM Id (ix +3),d
690 REM pop hl
700 REM jr nxtchr
710 REM table defb 42
720 REM defb 34
730 REM defb 109
740 REM defb 34
750 REM defb 44
760 REM defb 49
770 REM defb 14
780 REM defb 0
790 REM defb 0
800 REM defb 1
810 REM defb 0
820 REM defb 0
830 REM defb 59
840 REM end
This program uses several of the important
system variables which point to the BASIC
area. These include PROG, VARS and ELINE
which you should remember from the Spec-
trum memory map (see page 210). The
pointer in 23,635 and 23,636, PROG, points to
the first byte of the BASIC area. Normally
this is fixed at 23,755, but when you plug in
your Microdrive it shifts. So you have to look
up the appropriate system variable.

The system variable, VARS, at 23,627 and
23,628, points to the first byte of the variables
area—that is, the first byte past the end of the

BASIC program area in memory.
And ELI N E, at 23,641 and 23,642, points to

the first byte of the edit line, or the first byte
past the end of the variables area.

HOW IT WORKS
The first assembly language instruction Id
h1,(23635) loads the HL register pair with the
address given by the system variable PROG.
This is the address of the first byte of the
BASIC program. This is then pushed onto
the stack and popped off again into the IX
register.

The HL register is going to be used as a
pointer, travelling byte by byte through the
program, while the IX register is going to be
used to mark the beginning of each line of
BASIC. This will be needed later when the
byte carrying the line length has to be altered,
which it will have to be when the additional
instructions for accessing the Microdrive
have been added.

This strange manoeuvre, pushing the poin-
ter onto the stack and popping it off again, is
used because there are no instructions that use
both the HL and IX registers. This is because
the HL and IX registers are equivalent.
Instructions using the HL register use the IX
register if a one byte prefix is specified before
the opcode.

Each line of BASIC begins with the
BASIC line number—which takes up two
bytes—and the line length—which takes up
another two bytes. Obviously, there are not
going to be any tape instructions in this part
of the line, so they can be skipped over by
incrementing the HL register four times with
the inc hl instruction.

The Id a,(h1) instruction then loads the
accumulator with the first byte of the line
proper. The next set of instructions compare
it with the tokens for the various tape instruc-
tions which have to be changed.

THE CHECKS

The cp 239 compares the first byte with the
token for a LOAD. And if it is a LOAD, the jr z—
jump relative if zero—jumps to the insert
routine.

The cp 248 compares it with the token for
SAVE. The cp 214 compares it with the token
for VERIFY. And cp 213 compares it with the
token for MERGE. If any of these occur, the
processor jumps to the insert routine.

There is one other circumstance when
these numbers could occur when they would
not be the token for a tape instruction—in a
floating point number (numbers stored in a
scientific format, a topic to be covered later in
INPUT). But all floating point numbers are
always prefixed with the marker 14. So cp 14

checks for that. And if the marker 14 is not
found the next instruction jr nz—jump rela-
tive if not zero—jumps over the next two
instructions to the label notfp and continues
with the program. Otherwise, the DE register
is loaded with 5, and that is added to the HL
register to skip over the next five bytes—
floating point numbers on the Spectrum are
always five bytes long.

The next thing that has to be checked for is
a new line character which marks the end of a
line of BASIC. The ASCII for this is 13. If
the character is not a new line marker, the jr nz
jumps back to nxtchr. The inc hl then incre-
ment the HL register ready to deal with the
next character.

If the character is a new line marker, HL is
incremented, to move onto the first byte of
the next line, and pushed onto the stack. The
HL register has to be used for another job for
a moment, but its contents must be saved.
Storing them on the stack is the most conve-
nient way to do this.

The next thing to check, if the program has
hit a new line marker, is whether it has come
to the end of the program. So the address of
VARS—the address of the first byte after the
end of the BASIC program—is loaded into

the DE register. The and a ands the ac-
cumulator with itself, which is a quick way o:
clearing the carry flag.

Then DE—which contains the value o:
VARS—is subtracted from HL—which carrie
the program pointer to the first byte past th(
last line of BASIC dealt with.

THE END OF BASIC
When the Microdrive conversion program
has not reached the end of the BASIC
program, the value of the pointer is bound to
be less than that of VARS—so the subtraction
will need a borrow and set the carry flag.

But when the end of the program has been
reached, the pointer in HL will carry the same
value as VARS, the subtraction will not require
a borrow and the carry flag will not be set.

Before the result is tested, the original
value of the pointer in HL is popped back off
the stack—otherwise HL would carry the
value after the subtraction.

The jr c—jump relative if carry flag set—
then does the test. If the carry flag is set, and
the end of the BASIC program has not been
reached, the processor jumps back to the label
start. The contents of HL are copied into IX
and the routine starts on the new line.

If the carry flag is not set, and the end of
the program has been reached, the jump is not
made and the next two instructions are
performed.

The rst 8 and defb 255 are an alternative
way of returning to BASIC. rst 8 returns the

computer to BASIC via the error message
routine. This throws up the error message
specified by the next byte in memory. defb is
the assembler directive which defines—or
sets aside—a byte of memory for the data. In
this case, the number 255 is put into that
location. The rst or restart routine automati-
cally increments whatever is given in this byte
and returns that error message. It also clears
the machine stack, so you don't have to worry
about pushing and popping, as you would
with a normal ret instruction. When it incre-
ments 255, or FF in hex, it gets 0. The error
message associated with 0 is OK—but with
the interface connected you end up with a
Program Finished error message.

THE INSERT ROUTINE
The next instruction starts the insert routine.
And the first thing to be done is to check that

the conversion for Microdrive has not already
been done. You don't want to add the
*"m",1; twice. So the routine checks that the
next byte is not a *.

To do this, inc hl increments the HL
register so that it looks at the next byte. This
is then loaded into the accumulator by the Id
a,(hI) and compared to 42—the ASCII code
for *—by cp 42. If the next character is a *,
the jrz,nxtchr jumps back to nxtchr and shifts
the following characters along as normal—in
other words, it does not go on to insert the
Microdrive instruction, as it assumes it is
already there.

If the next character is not a *, the jump is
not made and the next instruction is executed.
This pushes the HL register onto the stack
because the HL register is going to be used for
other jobs again and the pointer HL must be
saved for use later.

HL is then loaded with the address of
ELINE—the first byte past the end of the
variables area—by Id a,(23641). The next item
on the stack is then popped off into the DE
register. The last thing to be pushed onto the
stack was the contents of the HL, which were
then the current position pointer.

Once this pointer has been copied into the
DE register, it is pushed back onto the stack,
because it will be needed again later. But this
pop and push does leave the value of the
pointer in the DE register as well as on the
stack.

The carry flag is cleared again with the and
a, and the value of the pointer is subtracted
from the value of ELINE. This gives the num-
ber of bytes left in the program and variables
area after the tape instruction has been dealt
with. The variables as well as the program are
going to be shifted up in memory.

The sbc hl,bc puts the result of the sub-
traction in the HL register. The result is then
stored in the BC register. This has to be done
a byte at a time with the two instructions Id
b,h and Id c,1 because there is no Id bc,h1
instruction. Well, you can't have everything.

The pointer ELINE is then loaded into the
HL register again and the DE register is
loaded with 13. The contents of these two
registers are added to give the address ELINE
has to be moved to allow the Microdrive
additions to be made—they take 13 bytes,
remember. The result of the add is put in the
HL register and the ex de,h1 exchanges the
contents of the HL and DE registers, effec-
tively storing the result of the addition in the
DE register.

HL is then loaded with ELINE again. The
dec hl and dec de then decrements the HL
and DE registers, so that HL now points to
the last byte in the variables area—in other

words, the last byte that has to be moved—
and DE contains the address, 13 bytes on, to
which it has to be moved.

MAKING THE SHIFT
The Iddr—load, decrement and repeat—
actually makes the shift. It loads the contents
of the memory location pointed to by HL,
into the memory location pointed to by DE
(the easy way to remember which way round
the shift goes is to think of DE as standing for
DEstination), decrements HL, DE and BC
and repeats the operation if BC is not zero. It
is not hard to see that this one instruction will
shift the contents of the variables area and the
program byte by byte 13 bytes up in memory.
And it will keep on doing so until it works its
way down the tape instruction.

The ex de,h1 exchanges HL and DE again,
so the address of the tape instruction is now
put into DE. This is incremented by inc de to
point to the next byte after the tape instruc-
tion. The Iddr instruction does the decre-
menting and testing after the last byte has
been moved, so the pointers have been de-
cremented one too many times. This inc
compensates for that.

The HL register is then loaded with the
start address of the table of data given at the
end of the assembly listing here. As you can
see these are stored in the form of defb. These
are defined bytes. The 13 bytes stored there
are the *"m",1;. You'll see that the first six
bytes are the ASCII codes for *"m", and 1.
And the last byte is the ASCII for ;.

Bytes seven to twelve contain the number 1
in floating point format. You'll note that it is
prefixed by the token 14, for which the
program checked early on. The following five
bytes contain the actual floating point format
version of 1. (Floating point numbers will be
dealt with more fully in a later chapter.)

BC is then loaded with the number 13. It is
going to be used as a counter to count these 13
bytes as they are stored in the space left by
shifting the rest of the BASIC program up.

The Idir—load, increment and repeat—
instruction loads the contents of the memory
location pointed to by HL into the memory
location pointed to by DE, increments HL
and DE, decrements BC and repeats the
process if BC is not zero. In other words, it
reads the 13 bytes from the data table into
space created after the tape instruction. So,
for example, it converts SAVE into
SAVE*"m",1;, to turn the tape SAVE instruc-
tion into the Microdrive version.

TIDYING UP
Once the conversion has been done, the
system variables have to be updated. This is

done by calling the so-called 'pointers' rout-
ine in ROM which begins at 1664 in hex. But
first BC must hold the number of bytes the
pointers are to be changed by and HL must
contain the value of the current byte. It only
updates the system variables that relate to
addresses above this point in memory.

The Id bc,13 loads BC with 13, and pop hl
and push hl put the address of the current byte
into the HL register, then back on the stack so
it can be used again.

The next bit of tidying up to be done is
fixing the line length. The second and third
byte of each line of BASIC store the length of
that line. The start address of the line was
stored in the IX register at the beginning of
the assembly language routine, remember. So
Id e,(ix + 2) and Id d,(ix + 3) load the contents
of the second and third bytes of the current
line into the E and D registers. As you know

these two registers are usually used as a
register pair in the order DE. So the higher
byte, the third, goes into D and the lower, the
second, goes into E.

HL is then loaded with 13, and HL and DE
are added. This boosts the line length by 13,
but the result is put in HL and it needs to be
in DE. There is no add de,h1 instruction.
Additions and other similar arithmetic func-
tions can only be performed on the ac-
cumulator or HL register pair.

The ex de,h1 moves the result into DE. It
needs to be in DE to perform the next two
instructions—Id (ix + 2),e and Id (ix+3),d.
There are no similar instructions with the L
and H registers. There are no instructions
using the HL and the IX registers together.

The Id (ix+ 2),e and Id (ix+ 3),d loaded
the new, increased line length into the second
and third bytes of the line. The current byte

pointer is then popped off the stack into HL,
so that it is ready to be incremented to point to
the next byte of the program when jr nxtchr
jumps back to the label nxtchr and the whole
process starts all over again.

HOW TO USE IT
Don't forget to CLEAR to one less than the
origin to protect this program from overwrit-
ing. You'll need to do that both before you
assemble it, and before you LOAD the program
in again if you SAVE the object code on
Microdrive or tape.

You should SAVE the source code along
with the assembler, using the normal tape or
Microdrive SAVE instructions, before you try
testing the program. That way, if it crashes,
you don't have to key the whole thing in
again. All you have to do is LOAD the program
in again and modify the assembly language.

Naturally, to test it you'll have to input a
program that has tape instructions on it. The
best one to use is the machine code monitor
(see page 280). That way, if the program is
working, you can use it to SAVE the machine
code direct to Microdrive.

Otherwise, you can SAVE this program—
and any other machine code program—to tape
using:

SAVE "name" CODE start address, number of
bytes

The "name" here is the name of the program
and must be in quotes. start address is the
origin-65,200 was used here. And number of
bytes is the length of the machine code. This
program is 136 bytes long. The start address
and the number of bytes must be separated by
a comma.

To SAVE on Microdrive use:

SAVE*"m",1; "name" CODE start address,
number of bytes

And to LOAD it back off tape you use:

LOAD "name" CODE

and to LOAD back into the machine from the
Microdrive:

LOAD*"m",1; "name" CODE

You can put start addresses after the CODE in
the LOAD instructions. If this is different from
the place at which the program was as-
sembled, the LOAD will relocate it, starting at
the new address. This program will not
relocate after it has been assembled though,
because of the use of the label table which the
assembler fills in with an absolute address.

To run the program, you use one of the
regular machine code calls like:

RANDOMIZE USR 65200

WARNING
You do have to be a bit careful when using
programs originally designed for use with
tape that have been converted for use with
Microdrive. One problem is that on tape
you can SAVE more than one program with
the same name. In fact, when you're
developing a program it is quite
common—although bad practice—to SAVE
each stage of development under the same
file name. On Microdrive, though, you
will get an error message if you try to do
this without erasing the first file.

To do this you use the command:

ERASE"m",1;"filename"

where filename is the name of the file or
program.

You also have to watch for null strings.
A tape program might have LOAD A$ in it,
for example. If A$ turns out to be a null
string, with tape, LOAD "" will simply
LOAD the next thing on the tape.
LOAD*"m",1;"" will not work with a
Microdrive though.

Your tape-dependent programs might
also have PRINT instructions to tell you to
position the tape and to press play, or play
and record, on the tape recorder. You'll
have to check through the program and
remove these instructions by hand.

The word 'files' means many
different things in computing,
embracing everything from a loose
descriptive term to specific ways of
storing and accessing information

A good knowledge of what files are and how
they are used can enormously extend the
versatility of your computer.

File is the word used to describe any kind
of data unit stored in a form which makes it
accessible to your computer. Although an
obvious application of the term is to the
storage of information, even taping a BASIC
program is, in this sense, creating a file. Filing
can thus be applied to a BASIC program, a
section of machine code, the 'text' produced
by a wordprocessing program, or the raw data
of filing programs.

FILE TYPES
File types take several forms. Each has differ-
ent requirements and uses.

The easiest—and commonest—form of
storing information is what's called a serial
file. A file of this type consists of data that is
read, item by item, from a storage device in
exactly the same sequence as it was written.

Described simply, a serial file consists of
three types of data: a header which among
other things identifies the file; then there's a
`raw' data which goes to make up the file; and
finally, (except on the Acorns) some kind of
marker which identifies the end of the file.

One of the disadvantages of a serial file is
that information can only be processed in the
order in which it has been stored. This means

that if your program has to look for something
in the middle of a file you have saved, the
whole lot has to be loaded in so the search can
start at the beginning.

The situation is improved greatly if the
information is actually arranged into some
sort of order. In any database application,
files are typically ordered alphanumerically.
In this form, a serial file can correctly be
called a sequential file, although this term is
often used to describe any file that's been
stored serially. But it's worth noting that a
true sequential file has some sort of structure
that is defined by the user or the program
from which it came.

DISK - BASED FILES
The very great restriction of tape-based
storage systems is that they can only read
information serially, thus many tape-based
files have to take the form of sequential files.
For most common applications this is, thank-
fully, not a problem.

In fact, serial files are often used not just on
tape, but also on the much more versatile
disk-based storage systems (see page 504 to
508). However, the manner in which disk
systems read data makes them suitable for, in
particular, one other type of file: a random
access file (otherwise called a direct access or
relative file). There are other types of disk-

based filing system, but these either are not
used by home computers, or are peculiar to
certain disk-operating systems.

A disk is formatted before use to give a
certain number of blocks in which data can be
stored. Each of these is a bit like a cell in a
honeycomb, linked but clearly separate. The
blocks are identifiable by track and sector
coordinates; this enables them to be accessed
directly and, if necessary, in any order (ran-
domly) by a suitable program. This enables
individual blocks to be called up, amended
and saved once again without any of the
others having to be disturbed—nothing else
need be held in memory. As a result, inform-
ation processing takes place very much faster
and the actual size of the file itself is restricted
only by the capacity of the disk system in use.

ASCII FILES
If file information is independent of a
program and can be stored separately, you can
have an almost infinite number of files. With a
wordprocessing program, for example, you
can have separate files for standard letters,
articles, and so on.

But one of the real benefits of using a
system of separate files is that different types
of program can access information from 'fore-
ign' files—and not necessarily on the same
computer. A spreadsheet can access files for

PROGRAM AND DATAFILES
RESTRICTIONS OF TAPE

INFORMATION TRANSFERS
BETWEEN PROGRAMS

SO WHAT IS A DATAFILE?

WHAT WRITE AND READ
MEAN TO A COMPUTER

OPENING AND CLOSING FILES
COMMANDS AND PROCEDURES

USED BY YOUR COMPUTER

other, different applications, and a standard
database can be used to 'construct' datafiles
for any number of subjects and actually take a
variety of forms.

This can be done using sequential files
written in the common language of the ASCII
code (see pages 315 to 320). This is possible
on most computers—even those that might
err from true ASCII.

Everything that's saved, including com-
mand words and variables, is stored in strings
of the relevant ASCII characters. The
program, in effect, becomes a text file.

Once saved in this form, the information is,
in theory at least, accessible to other com-
puters capable of being linked to your ma-
chine. Typically, though, you'll be using an
ASCII file so that you can call it up from a
wordprocessing program. In this way, the
editing facilities of this may be used to full
effect, and the program can then be saved
after editing as a text file.

Note that the 'transportability' of ASCII
files from one machine to another may be
impeded if embedded control codes have been
used. Control codes of this kind might typi-
cally be generated by a wordprocessing
program for a printer. These are not standard
codes, and although the transfer would be
possible, the program would most likely crash
as soon as it was run.

DATAFILES
Any database program, such as a compute-
rized filing system, spreadsheet or accounts
package works by manipulating information
which you have already fed in. The last thing
you want to do is type in all the information in
an applications program such as a mailing list
each time you intend using the program! You
might as well write out the labels by hand.

The answer is to store the information
separately from the program as a datafile.
Keeping the information separate greatly
extends the capabilities of a program and, to
some extent, frees the computer from any
memory restrictions as the storage device can
be used as a kind of 'virtual' memory calling
in only information as it is required.

The smallest component of any filing or

data system, computerized or not, is in fact a
single entry. Several entries typically make up
a record. Each of these records is divided into
fields. Each field has a label, title or heading
which remains more or less fixed for every
record in that file—this simply indicates the
nature of the entries made in the other part of
the field. The record then forms part of,
perhaps, a batch of similar records—a file.
You can see this type of structure in operation
in the file program on page 46.

Consider a simple card-index file. The file
is like the complete set of cards, related by
some overall subject—a club membership list
perhaps. A record is an individual card, which
could be for a single member of that club.
And the fields are the separate entries on that
card—the name, address, and so on.

In a 'paper' system, a file may be carried in
a loose-leaf folder, box, cabinet—or whatever.
All these 'containers' of records are often
referred to as files but are essentially physical
means of storing and (in some cases) trans-
porting information.

It's not quite the same in a computer data
system. Unless all the data is actually re-
corded on the same tape or disk it hasn't quite
got the same 'physical' relationship as pieces
of paper have to their filing cabinet. In some
applications the data is completely stand-
alone and would occupy a separate tape or
disk. In others, the data must form an integral
part of a program and cannot be considered a
separate database.

Stand-alone datafiles (and in some cases
integral datafiles) can often be called up by
programs which were not originally respo-
nsible for their creation. Thus information
entered via a spreadsheet program could be
accessed by a wordprocessing program. Note
the use of the word accessed rather than
transferred—the program looks at and uses
the information, and does not remove it. In a
paper system, however, transference is the
only way in which information can move from
file to file without being copied.

FILE NAMES
What does not differ, however, is the need to
describe a file by name. It would be difficult,
perhaps impossible, to access data in a com-
puterized system without a name for a
program to hunt for.

Names for computer files have to be chosen
with some care if a program is to access these
properly. Tape data can be loaded on a 'next
program in' basis if there is no name. But any
search routine needs a name to latch on to.

On tape systems it is possible to have
different files sharing the same name—or to
save files with no name at all. But both pose

severe problems. For example, if you instruct
the computer to load the latest version of two
files with the same name, it cannot make this
decision, but will stop at the first it comes
across. The solution is always to use a proper
file name, and ensure that it is unique.

When you are using a disk-based system
the protocol for the way you use file names is
very much the same as for tape. But on some
systems it is quite possible to overwrite a
wanted file by unwittingly using the same
name. Better disk operating systems prevent
this happening. You can usually take special
precautions to prevent this happening, such
as locking the file.

In choosing a name make sure you stick to
the length limits of each machine or system.
On tape, a file name's length is restricted to 10
characters on the Spectrum, 16 on the Com-
modore, 10 for the Acorn and 8 for the
Dragon/Tandy. On disk systems the length
may differ.

Finally, use a file name which is easily
remembered! It's a good idea to keep a
separate record of what these are.

WRITING AND READING
The process of transferring data files to and
from storage is described by the words write
and read. Each computer has a different set of
input/output commands for writing and read-
ing but the general routine is the same for all.

In a typical application, a core program of
some description is the first thing to be loaded
into the computer—this might be a database
or a wordprocessing program, for instance.
Or, you could enter a program by hand.

If the program needs working data which is
not available from within the program, this
has either got to be loaded—or read in—from
a data file or entered manually. This data is
then manipulated, edited, amended or other-
wise worked on. Data cannot be erased or
amended while it is actually on a tape or disk.
With some types of file, all the information
has to be loaded into the computer, even if
only a very small part of it has to be changed.
This is the case with the Spectrum and
Microdrive. In other cases, you can work on
parts of the data by calling just what's needed.

Finally, the information is written out
to an external storage device such as a tape or
disk file, or another device such as a printer.

Let's look at the write and read stages more
closely—in this order for convenience. First,
an instruction must be given to the computer
to open a channel so that it knows information
is about to be passed somewhere. Other
information can be provided along with the
channel open command, to specify just what
peripheral device is being addressed. Usually

the peripheral will be a tape or disk unit.
After the channel has been opened, another

command is used to change the output device
if this is necessary. The computer has to know
which device it is addressing regardless of
whether information is coming in or going
out. This other information is provided by
additions to the main commands or use of
alternative command words. On some com-
puters, you must be careful if more than one
device is fitted to your computer—as your
computer may default to a particular value.

Commands are then used to send or write
information to the nominated device. When
you are reading information, the steps are
similar up to this point but the commands for
receiving or reading information obviously

reverse the direction of transmission. In each
case, a buffer within the computer is used as a
temporary information store, passing parcels
of information onwards, piecemeal, normally
only when the buffer is full.

When communications are complete, the
opened channel is given the instruction to
close. All information in the pipeline (within,
in other words, a partially-filled buffer) is
then forced to complete its journey, the
computer marks the end of the file and
generally tidies up.

No other information can be passed to or
from a closed file until it is reopened. But this
need not impede file handling on other
opened channels in systems where several
opened channels can operate at once.

While on the subject of terminology,
several other words are used to describe the
information transfers which take place when
files are being written and read. For instance,
external devices which receive data during a
writing sequence are said to listen. Those that
send data to the computer are said to talk.

The actual instructions used by the various
computers do differ slightly, so now let's look

at these. You will have come across most of
them in programs you've already keyed in.
Note that the normal SAVE and LOAD com-
mands (and variants) which apply to program
files are not listed here.

In each of the examples here the letter N
stands for the file number which relates all the
various input/output commands, and X or X$
is the data which passes along the file
channels.

If you're using a cassette storage system, you
are limited to using program files, bytes and
arrays only. Therefore, the need to consider
file handling procedures is, at this level,
mainly of academic interest because the capa-
bility is so limited. True data files can,
however, be handled rather more rapidly with
the Microdrive fitted. The range of
input/output keywords which can be used are:

OPEN #
This is used to prepare the system for transfer
of information. It takes the standard form
OPEN # N;"m";1;"filename" where the file-
name can be a string or previously assigned
variable. Data is sent along a stream number
N, along the Microdrive channel (m), to the
Microdrive file.

PRINT#
Used in the form PRINT # N;X (or X$) to write
data to the buffer.

1 N KEY$
This gets a single character or empty string
from the keyboard each time it is used.

INPUT
Gets data from the keyboard until IENTER1 is
pressed.

INPUT #
This is used in the form INPUT # N;X (or X$)
to get data from the buffer until a carriage
return is reached.

CLOSE #
This closes a previously opened stream using
the instruction format CLOSE # N.

The instruction for opening up, using and
then closing a channel on the Commodores

can make use of the following BASIC 2 input
(read)/output (write) keywords:

OPEN
Sets up a channel for input or output. It's
used in the form OPEN N,D,S,X$ where the file
number (in which N can range from 1 to 127)
is followed by device number D. Each
peripheral—and this includes modems and
printers in addition to disk and tape storage
units—has its own number (disk for example
is usually 8, tape is 1, and the screen is 3).

This number is followed by a secondary
address S, and then a string (X$). All but the
file number can be optional. The secondary
address is given a specific range of values
depending on the device number used and a
precise number within that range depending
on the function of the OPEN statement.

The closing string can be a file name alone
in the case of tape read/write operations, but
for input/output to disk consists of drive
number, file name, file type, and a specified
read/write instruction. In the latter form, a
typical reading instruction might take the
form OPEN3,8,3,"0:FILENAME,S,R".

A great amount of control is possible from
within an OPEN statement, as you can see.
And, in reality, it takes a somewhat different
form for each device.

CM D
Changes the output device number when this
is necessary, typically to redirect information
from the screen (to which the system defaults)
to another device (whose number must be
specified in a previous OPEN instruction).

GET
Gets one character at a time from the
keyboard.

GET #
Gets one character as a time through an
OPENed channel. It takes the form GET # N,X.

INPUT
Gets a data string from the keyboard.

INPUT #

Gets a data string through a previously
OPENed channel, and takes the form
INPUT # N,X. The string is assigned to the
specified variable and assumed to be complete
when a carriage return value is received.

PRINT
Directs information to the screen.

PRINT#
Directs information along a previously
OPENed channel, to the screen, unless another
device has been specified.

CLOSE
Closes a previously OPENed channel using the
statement CLOSE N.

1:11
On the BBC micros a system of default filing
is employed and any file-handling operation
will be directed to or from the most 'senior'
device fitted to the computer. Eligible devices
generally will be tape and disk units but
ROM, Econet and others may be fitted.
Typically, though, all input and output will
go to a disk rather than tape unit if both are
fitted. The lesser device has to be specified
when a channel is specially directed to it (for
example, using *TAPE or *T. to pass inform-
ation to the tape unit if a disk unit is fitted).
On the Electron no such problem exists.

OPENIN
This sets up a channel for input (reading) or
output (writing) in BASIC 1, but input only
in BASIC 2. The instruction takes the form
N = OPENIN("FILENAME") which opens a file
called FILENAME and assigns its channel num-
ber to variable N. The file name can be a string
or string variable and is optionally enclosed
within brackets.

OP ENO UT
Opens a new file to receive output, in both
BASIC 1 and BASIC 2. It's used in the same
way as OPENIN but for writing information.

OPENUP
Opens an existing file for input or output in
BASIC 2 only. It follows the same form as
OPENIN.

IN PUT #
Gets a data string through a previously
opened channel. It is used in the form
I N P UT # N,Z$ to read a string from a file with
channel number N and assigns it to Z$.

PRINT#
Sends information out through a previously
opened channel. The instruction takes the
form PRINT # N,X where Xis a number that is
sent out.

CLOSE*
This closes a previously opened file. The
operating system then marks the end of the
file. The instruction takes the form
CLOSE # N. Another form of this instruction
is CLOSE # 0 which closes all open files. maives,
Several straightforward keywords are used to
open lines of communication with, typically, a
tape recorder. Disk units can be fitted but the
file-handling requirements of these are dic-
tated by the operating systems in use.

OPEN
This opens a channel to a specified device.
For writing (output) to tape it takes the form
OPEN "0", # —1,"FILENAME" where only
the FILENAME string is defined by the user's
program. The device number (# —1) is that

of a tape recorder. The input instruction from
tape takes the basically similar form OPEN
"I", # —1,"FILENAME".

I NKEY$
Gets a single character from the keyboard.

INPUT #
Gets string data from storage when a file is
being read back. The additional instruction
EOF(— 1)—end of file—must precede the
INPUT # —1 statement to avoid an input
error. This simply makes sure that, when a
device is talking, it doesn't continue to do so
past the marker placed on the tape by the
CLOSE # —1 instruction which terminated a
prior writing operation.

PRINT#
This PRINTS information to device number
N when the instruction takes the form
PRINT# N,X$, where data for the string is
obtained with an INPUT instruction. N is —1
for a tape recorder and — 2 for a printer.

CLOSE #
This keyword closes communication to the
device specified. It takes the form CLOSE # N
where the value of N is usually —1.

If you're keen on adventure games,
but frustrated by the limitations of
your machine's memory, how about
a program to fit the same amount of
text into a lot less space?
The main problem with writing adventure
games seems to be that there's never enough
space for your latest masterpiece. Short of
buying a new machine or a memory expansion
there may seem little you can do except pull in
the horizons of your adventure world, or
simplify the program.

The only other way of easing the pressure
on your straining memory locations is to try
to find a way of making the program occupy
less space. The usual methods for shortening
programs, such as those on page 333, will not
have too much effect, because most of the
program is text. What you need, then, is some
method of making text occupy less space.

Text is normally stored in computers as
ASCII code—see pages 314 to 320. Using
ASCII code will make each character occupy
eight bits—one byte—of memory space.

If each character could be squeezed into
less than eight bits, memory space would be
saved. There are several possible routes open
to you, each with advantages and drawbacks.

Probably the easiest way to compress text is
to use only part of the ASCII coding. If you
will be satisfied with a limited range of
characters—upper case only, plus numbers
and some punctuation—it's very easy to store
each character in six bits.

Choosing a range of ASCII characters
from 20 to 5F hex,for example, will give a fair
range of characters for use in the game. If 20
hex is subtracted from each of the codes, the
range will be reduced to 0 to 3F hex—which
can be stored in six bits.

Using this kind of coding will enable you to
reduce your memory requirements by a
quarter—you'll be able to pack four charac-
ters into the space previously occupied by
only three. In order to decode the stored
characters, all that has to be done is to take
each six bits in turn and add 20 hex to the
number to turn it back to the original ASCII.

The main disadvantage with this kind of
coding is that you are forced into choosing

a range of 40h characters before you start
programming, and you must stick to them—if
you want a character outside the range, hard
cheese! It could be that having the output
in upper case only will be un-
acceptable to users of 	 -

machines that normally
output lower case to the

, 	 • screen—so you will need
to make an alternative
arrangement. Given
these problems, a better 	 •

alternative is needed.
One possibility

approximates to how
the Chinese language
operates, assigning a
unique character, or numeric
value, to every word. This
method of coding entails you
deciding on the full vocabulary
for your adventure, and assigning
each word a number. Coding consists of
comparing each of the words with a list of
data, then storing each code in memory.
Decoding consists of doing the reverse.

This 'Chinese Approach' offers very effi-
cient use of memory, but needs to be re-
written for each new adventure. Of course,
you can start off with a very large vocabulary
and hope that you've chosen the right words
for your needs, but that, in itself, is very
wasteful of memory space. You may find
yourself using some very large numbers as
codes, and the list will take ages to scan.

The best alternative of all would be some
kind of text compression system which will
work with any adventure—in fact, on any text
you wish to feed it. The compressor must
make as efficient use as possible of the
available memory, in terms of how it com-
presses the text and the amount of space the
compression software itself occupies.

It's very important that the text compres-
sor recognizes a full set of upper and lower
case characters, numbers and punctuation.

Such a scheme requires a more radical
approach from those outlined above—but it is
possible to meet all the conditions, and a
system of this type is the basis of the program
which follows.

THE COMPRESSION SYSTEM

This text compressor borrows some inform-
ation from the world of cryptography—the
study of ciphers and codes. This tells us
something about the structure of the text
which is to be the subject of the compressor.

When code-breaking, it is very useful to
know about how often certain letters occur in
written English, as it enables the decoder to
look for similar patterns in the coded words.
To this end, cryptographers have laboriously
plodded through large tracts of English text,
counting how many times each letter, even
pairs of letters, or whole words, occur.

The INPUT text compressor relies on the
frequency of occurrence of single letters and,
in certain cases, letter pairs. Binary numbers

HOW TEXT IS STORED
WAYS OF SAVING SPACE

ASCII CODE AND A
REPLACEMENT

ASSEMBLY LISTING

are given to each of the letters of the
alphabet—letters which occur often are given
short, economical binary numbers, and letters
which are least common are given the longest
binary numbers.

One important by-product of using this
kind of coding is that, if you test the text
compression software with random, meaning-
less letters, there will quite possibly be little,
or no, compression. If, on the other hand, you
use English, you'll find that the compression
is quite marked. Interestingly, the com-
pression with, say, Spanish or German will be
considerably less, because the patterns of
occurrence will be quite different, requiring a
different system of coding.

In addition to the codes for the letters

occurring singly, the compressor also con-
cerns itself with the two most common letters
which may follow each letter. There is a
summary of the codes in the table on page
636. You'll see that, for example, the most
common letter following the letter T is H, and
the second most common is I. There are
special codes for these common following
letters, again designed for economy.

When the compressor is encoding text, it
remembers what the last letter was, and looks
to see if the next letter is either the first or
second most common following letter. If the
letter is one of the common ones, the code at
the top of the column is used. If the machine
doesn't find one of the common letters, then
the ordinary code for the letter occurring

alone is used. This
pattern is continued all

through the coding. For
each new letter—or other

character—the machine first checks
if it is one of the two most common

letters to follow the previous one.
Perhaps it's easiest to work through an

example. You might have a message saying:

A troll appears

Coded as ASCII, the message will occupy 15
bytes, for the fifteen characters (including
spaces). But using the text compressor, it will
be coded as follows:

00 	 space 	011
a 	10000 	a 	10000
space 	011 	p 	110110

010 	p 	110110
r 	10100 	e 	010
o 	010 	a 	10000

10110 	r 	10100
1 	10110 	s 	10001

The message occupies slightly less than nine
bytes—a compression of just over 40%.

The codes for each of the available charac-
ters are in the table on page 636—notice that
there are variations between the machines.

ENTERING THE COMPRESSOR
The text compressor has been written in
machine code to speed up the coding and
decoding of textual material.

The listing will be given as both hexadeci-
mal and as assembly language. In this part of
Games Programming, there is the assembly
language listing for the coding part of the
program. The decode part of the assembly
listing will follow, along with the hexadecimal
listing for the complete program.

You'll need a commercial assembler to use
with the assembly listing or wait for the
machine code listing. If you are following the

ability easily to find any typing mistakes you
might make.

Enter the source code this week, but don't
assemble—just SAVE it on tape until you have
the complete listing.

ORG 64600

	

ESTART LD 	HL,11

	

LD 	(MARRY + 1),HL
R ET

ECODES PUSH IX
PUSH IY
CALL ESETUP

	

MARRY LD 	BC, # FFFF

	

LD 	(IY + 8),C

	

LD 	(IY + 9),B
PUSH IY
ADD 	IY,BC

machine code strand, the assembler published
earlier in INPUT will be too slow to assemble
such a large program.

Without a commercial assembler, you will
need to enter the short BASIC program given
for your machine. RUN the program and enter
all the hex—the program will POKE the hex
into the correct memory locations. But more
about that next time.

The text compressor was written using the
Hisoft Devpac assembler, so you may find
that your assembler won't recognise some of
the following listing. To use another as-
sembler, check that it will allow you to
evaluate arithmetic expressions—if your as-
sembler will not, it's probably easiest to enter
the hex listing which follows later in INPUT.

Other variations between assemblers in-
clude using h following a figure to designate

hexadecimal
numbers, instead
of the # symbol
used here. The Hisoft
Devpac allows you
to use binary numbers—
those preceded by%—whilst
in others you'll have to evaluate
the numbers yourself, because the assembler
doesn't understand binary. EQU isn't sup-
ported by some assemblers, so try omitting
that part entirely—just have a line containing
the label and nothing else. Finally, some
assemblers recognise a non-standard form of
ADD—try replacing ADD A,8 with ADD 8, for
example.

If you aren't sure how to convert the listing
so that it's compatible with your assembler, or
it seems a great deal of trouble to do the
conversion, you'd probably be better off
using the hexadecimal listing, sacrificing the

LD 	C,(HL)
INC 	HL
LD 	B,(HL)
PUSH HL
INC 	HL
ADD 	HL,BC
LD 	(ECTEST+1),HL
LD 	A,7
LD 	(BITCNT +1),A
LD 	HL,CSP
LD 	(PREFCD + 2),HL

ECLOOP POP 	HL
INC 	HL

PUSH HL
LD 	A,(HL)
AND A

ECTEST LD 	BC, # FFFF
SBC 	HL,BC
JR 	Z,ECLEND
CALL ENCODE
ADD A,0
JR 	Z,ECLOOP

ECLEND POP 	HL
LD 	A,0
CALL ENCODE
INC 	IY
PUSH IY
POP 	HL
POP 	BC
LD 	A,(BITCNT+ 1)
ADD A,249
SBC 	HL,BC
LD 	(MARRY +1),HL
POP 	IY
POP 	IX
RET

ENCODE LD 	B,CLAST— CODE+ 1

CP 	"4"
JR 	C,LAKE
XOR #20

LAKE 	LD 	C,A
LD 	HL,CLAST

TRYC 	SUB 	(HL)
JR 	Z,MATCH
CP 	#20
JR 	NZ,NOUPP
LD 	A,"i"+ # 20

REDO 	PUSH HL
PUSH BC
CALL ENCODE
POP 	BC
POP 	HL
JR 	MATCH

NOUPP CP 	# E0
JR 	NZ,NOLOW
LD 	A," 	"+ #20
JR 	REDO

NOLOW LD 	A,C
DEC 	HL
DJNZ TRYC
RET

MATCH LD 	A,B
PREFCD LD 	IX, # FFFF
BITCNT LD 	E, # FF

DEC 	E
DEC 	E
DEC A
JR 	Z,SPACEE
CP 	(IX + FIRST— CODE)
JR 	NZ,NOTFIR
LD 	A,0
JR 	TOP

NOTFIR DEC 	E
CP 	(IX + SECOND — CODE)

JR 	NZ,LONG
LD 	A,%010 '32
JR 	TOP

SPACEE LD 	A,%011 '32
DEC 	E
JR 	TOP

LONG 	DEC 	E
DEC 	E
DEC 	E
DEC 	E
DEC 	E
ADD A,255 + CODE — CLAST
CP 	255 + CEIGHT— CLAST
JR 	NC,TOP
INC 	E
SLA 	A
ADD A,CLAST— CEIGHT + 1
CP 	255 + CSEVEN — CLAST

+ CSEVEN — CEIGHT
JR 	NC,TOP
INC 	E
SLA A
ADD A,CLAST— CSEVEN

+ CEIGHT— CSEVEN +1
CP 	255 + CSIX— CSEVEN

+ CSIX — CSEVEN + CSIX
—CEIGHT+CSIX
—CLAST

JR 	NC,TOP
INC 	E
SLA 	A
ADD A,CLAST— CSIX +

CEIGHT— CSIX +
CSEVEN — CSIX +
CSEVEN — CSIX+ 1

TOP 	LD 	C,A
LD 	A,(HL)
CP 	"T"
JR 	Z,TOPOUT
LD 	A,(IX)
CP 	,c

JR 	NZ,HOLD
LD 	HL,CPUN

HOLD 	LD 	(PREFCD + 2),HL
TOPOUT LD 	A,C
TOPACT LD 	BC,(BITCNT+ 1)

LD 	B,C
INC 	B

JAR 	RLCA
DJNZ JAR
LD 	IX,LO
ADD 	IX,BC
LD 	B,A
AND 	(IX+1)
OR 	(IY)
LD 	(IY),A
LD 	A,B
AND (IX+ UP — LO+ 1)
LD 	(IY + 1),A
LD 	A,E
CP 	%10000000

JR 	C,DONE
ADD A,8
INC 	IY

DONE 	LD 	(BITCNT+ 1),A
LD 	A,0
RET

CODE 	EQU 	$
CSP 	DEFB "El"
CA 	DEFB "A"
CS 	DEFB "S"
CO 	DEFB "0"
CT 	DEFB "T"
CR 	DEFB "R"
CI 	DEFB "I"
CL 	DEFB "L"
CE 	DEFB "E"

DEFB "C"
CSIX 	EQU 	$
CUP 	DEFB "i"
CAR 	DEFB "_"
CU 	DEFB "U"

DEFB "M"
Cp DEFB "P"

DEFB "W"
DEFB "Y"

CN DEFB "N"
DEFB "B"
DEFB "G"

CSEVEN EQU 	$
CD 	DEFB "D"
CF 	DEFB "F"

DEFB "V"
CH 	DEFB "H"
CEIGHT EQU 	$

DEFB "K"
DEFB "Q"

CX DEFB "X"
DEFB "J"
DEFB "Z"
DEFB "["

CPO 	DEFB "V"
CLAST DEFB "1"
CPUN 	EQU $
FIRST 	DEFB CUP—CODE

DEFB CN—CODE
DEFB CT—CODE
DEFB CN — CODE
DEFB CH—CODE
DEFB CE—CODE
DEFB CN—CODE
DEFB CE—CODE
DEFB CR—CODE
DEFB CH — CODE
DEFB CS—CODE
DEFB CL—CODE
DEFB CN—CODE
DEFB CE—CODE
DEFB CO—CODE
DEFB CA—CODE
DEFB CA—CODE
DEFB CD—CODE

DEFB CE—CODE
DEFB CE—CODE
DEFB CE—CODE
DEFB CT—CODE
DEFB CE—CODE
DEFB CE—CODE
DEFB CE—CODE
DEFB CU—CODE
DEFB Cp —CODE
DEFB CU — CODE
DEFB CE—CODE
DEFB CAR—CODE
DEFB CAR — CODE
DEFB CSP — CODE
DEFB CAR—CODE

SECOND DEFB CT—CODE
DEFB CT—CODE
DEFB CE—CODE
DEFB CF—CODE
DEFB CI—CODE
DEFB CO — CODE
DEFB CT—CODE
DEFB CI — CODE
DEFB CD—CODE
DEFB CO—CODE
DEFB CT—CODE
DEFB CN — CODE
DEFB CS—CODE
DEFB CA—CODE
DEFB CE—CODE
DEFB CH — CODE
DEFB CO—CODE
DEFB CT—CODE
DEFB CL—CODE
DEFB CH—CODE
DEFB CI—CODE
DEFB CO—CODE
DEFB CI—CODE
DEFB CA—CODE
DEFB CI — CODE
DEFB CX — CODE
DEFB CT—CODE
DEFB CO—CODE
DEFB CI—CODE
DEFB CUP—CODE
DEFB CPO — CODE
DEFB CAR—CODE
DEFB CUP—CODE

LO 	DEFB 0
DEFB %1
DEFB %11
DEFB %111
DEFB %1111
DEFB %11111
DEFB %111111
DEFB %1111111

UP DEFB %11111111
DEFB %11111110
DEFB %11111100
DEFB %11111000
DEFB %11110000

DEFB %11100000
DEFB %11000000
DEFB %10000000
DEFB 0

	

ESETUP LD 	HL,(23627)

	

LD 	0,0

	

LD 	C,2

	

EREPEAT LD 	A,(HL)

	

CP 	# E0

	

JR 	NC,VFOR

	

CP 	# CO

	

JR 	NC,VSA

	

OP 	# AO

	

JR 	NC,VMN

	

CP 	# 80

	

JR 	NC,VNA

	

CP 	# 60

	

JR 	NC,VN

	

JR 	VS
VFOR 	LD 	E,19

ADD HL,DE

	

JR 	EREPEAT
VMN 	INC 	HL

	

LD 	A,(HL)

	

CP 	# E0

	

JR 	C,VMN
VN 	LD 	E,6

ADD HL,DE

	

JR 	EREPEAT
VS 	CP 	"Z"

	

JR 	NZ,VSA
PUSH HL

	

DEC 	C

	

JR 	Z,FINDEX
VSA 	INC 	HL

	

LD 	E,(HL)

	

INC 	HL

	

LD 	D,(HL)

	

INC 	HL
ADD 	HL,DE

	

LD 	0,0

	

JR 	EREPEAT
VNA 	CP 	"z" + #20

	

JR 	NZ,VSA
PUSH HL

	

POP 	IY

	

DEC 	C

	

JR 	Z,FINDEX

	

JR 	VSA

	

FINDEX POP 	HL

	

INC 	HL
R ET

0 1 ICE
The assembly listing that follows is for
the Commodore 64, but if you own an
expanded Vic 20 you can easily adapt it
so that it will run in your machine. In the
assembly listing, the parts to change
have been printed in bold type, so look in
the table for the equivalent.

Commodore 64 	Vic 20 expansion
+8K +16K +24K +32K

CD 	3D 	5D 	7D 	BD
CE 	3E 	5E 	7E 	BE
CF 	3F 	5F 	7F 	BF

Vic 20 owners with 8, 16 or 24K ex-
pansions must also change two pointers.
POKE the two memory locations first.

Vic 20 + 8K 	POKE 52,61 POKE 56,61
Vic 20 + 16K POKE 52,93 POKE 56,93
Vic 20 + 24K POKE 52,125 POKE 52,125

The Commodore 64 program starts at CD14,
so if you have a Vic 20 you'll have to change
the CD to the equivalent for your machine.
The assembly listing is wrongly ordered.
It should start at LDX #$1F, 20 lines
from the bottom of column 1, page 633.
Omit the final PHA. Then enter the lines
from the beginning down to RTS.
Don't assemble the program until you have
the complete listing, but just SAVE the source
code on tape—remember, the second half of
the listing is still to come. You will need to tell
the assembler the start address for the code.

Commodore 64 	CD14
Vic 20 + 8K 	3D14
Vic 20 + 16K 	5D14
Vic 20 + 24K 	7D14
Vic 20 +32K 	BD14

PHA 	 LDA $2F
TYA 	 STA $61
PHA 	 LDA $30
LDY # $08 	STA $62
STY $CE1A 	LDY # $00
LDY # $00 	LDA ($61),Y
STY $CE13 	CMP # $DA
LDA ($2D),Y 	BNE $CE0A
INY 	 INY
CMP # $5A 	LDA ($61),Y
BNE $CDEO 	CMP #$80
LDA ($2D),Y 	BEQ $CE12
CMP #$80 	LDY #$02
BEQ $CDE6 	CLC
TYA 	 JSR $CE6B
ADC # $06 	BCC $CDFB
TAY 	 LDA # $FF
BNE $CDD3 	LDY #$08
INY 	 STA ($61),Y
STY $CE2F 	DEY
PLA 	 LDA # $FF
TAY 	 STA ($61),Y
PLA 	 SEC
RTS 	 JSR $CE6B
PHA 	 LDA # $07
TXA 	 STA $CD99
PHA 	 LDA # $00
TYA 	 STA $ C D42
PHA 	 STA $ C E40

LDY # $FF 	LDA #$5F
LDA ($2D),Y 	BNE $CD29
STA $CE42 	PLA
INY 	 DEX
LDA ($2D),Y 	BPL $CD16
STA $65 	RTS
INY 	 PLA
LDA ($2D),Y 	TXA
STA $66 	LDY #$FF
LDY #$FF 	CMP # $OA
CPY #$FF 	BEQ $CD4A
BEG $CE4F 	STA $CD42
LDA ($65),Y 	LDX $CD99
JSR $CD14 	DEX
INC $CE40 	DEX
BNE $CE3F 	CMP $CE9D,Y
JSR $CD14 	BNE $CD58
LDA # $06 	LDA # $00
CMP $CD99 	BEQ $CD89
LDA $61 	DEX
SBC $63 	CMP $CEBE,Y
STA $CE1A 	BNE $CD62
LDA $62 	LDA # $40
SBC $64 	BNE $CD89
STA $CE13 	CMP #$01
PLA 	 BPL $CD6A
TAY 	 LDA # $60
PLA 	 BPL $CD89
TAX 	 DEX
PLA 	 DEX
RTS 	 DEX
LDA $61 	DEX
STA $63 	DEX
ADC ($61),Y 	ADC # $DF
STA $61 	CMP # $F8
INY 	 BPL $CD89
LDA $62 	INX
STA $64 	ASL A
ADC ($63),Y 	ADC # $07
STA $62 	CMP #$F0
RTS 	 BPL $CD89
LDX # $1 F 	INX
PHA 	 ASL A
SEC 	 ADC # $OF
SBC $CE7D,X 	CMP #$C8
BEQ $CD3F 	BPL $CD89
CMP #$80 	INX
BEQ $CD25 	ASL A
CMP # $20 	ADC # $37
BNE $CD30 	CPY #$0B
TXA 	 BNE $CD92
PHA 	 LDY # $20
LDA #$5E 	STY $CD42
JSR $CD14 	STX $CDB5
PLA 	 LDX $CD99
TAX 	 BNE $CD9A
BPL $CD3F 	ROR A
CMP #$E0 	ROR A
BNE $CD3A 	ROR A
TXA 	 ROR A
PHA 	 ROR A

ROR A 	 STA ($61),Y
ROR A 	 LDA =$FF
ROR A 	 BPL $CDCO
PHA 	 EOR # $F8
ROL A 	 INC $61
AND $CEEO,X 	BNE $CDCO
LDY # $00 	INC $62
ORA ($61),Y 	STA $CD99
STA ($61),Y 	LDA # $00
INY 	 RTS
PLA 	 PHA
AND $CEE8,X

The BBC and Electron both have their own
built-in assemblers, so there will be no hex
listing published next week. The first part of
the text compressor follows. Type it in and
SAVE it, but don't RUN—assemble—it yet
because the second half will follow next time.

10 MODE6
20 HIMEM =&6000 — &200
30 MC=HIMEM
40 P%= MC
50 ZCOD =112:ZPCT =114:ZDOL =116:

ZBOX=118:ZUSE =116
60 CUP= P%+10:CAR = P%+11:

CLAST = P%+ 31:FIRST= P%+ 32:
SECOND = P%+65:LO = P%+ 98:
UP = P%+106:CPUN = FIRST

70 CODE = P%:$P%=" ❑ ASOTRILEC":
P%=P%+10

80 CSIX=P%:?P%=&5E:P%?1 =&5F:
$(P%+ 2) = "UM PWYNBG":
P% = P% + 10

90 CSEVEN=P%:$P%="DFVH":
P% = P% + 4

100 CEIGHT=P%:$P%="KQXJZN"
110 P%= FIRST
120 FOR T=1 TO 2
130 READ A$
140 FOR P=1 TO LEN(A$) STEP 2
150 V= EVAL("&"+ MID$(A$,P,2))
160 IF V<16 THEN PRINT"0";
170 PRINT; —V;
180 ?P%= V:P%= P%+ 1
190 NEXT
200 NEXT
210 FOR T=0 TO 3 STEP 3
220 P%= MC+ &74
230 [OPT T
240 .SETUP ❑ LDA # &04: LDX # &F4
250 .NXTZ ❑ STX ZUSE: STA ZUSE + 1
260 LDY # 02: LDA (ZUSE),Y
270 CMP #ASC("$"): BNE NTDOL
280 STX ZBOX: LDA ZUSE +1
290 STA ZBOX + 1: BNE DON
300 .NTDOLLICMP # ASC("%")
310 BNE DON: STX ZPCT
320 LDA ZUSE +1: STA ZPCT + 1

330 .DON ❑ LDY # 0: LDA (ZUSE),Y
340 TAX: INY: LDA (ZUSE),Y
350 BNE NXTZ: .OUTZEI RTS
360 .ESETUP ❑ LDY #12
370 STY ESTRING +1
380 LDY #0: STY HIOFF+1
390 JMP SETUP
400 .ESTRINGEILDA # &FF: PHA
410 ADC ZPCT: STA ZCOD
420 .HIOFF ❑ LDA # &FF: PHA
430 ADC ZPCT+1: STA ZCOD +1
440 LDY #7: STY JAR +1: LDA #0
450 STA PREFCD +1
460 STA EASTER +1
470 LDA (ZBOX),Y
480 STA LCNPT +1: LDY #5
490 LDA (ZBOX),Y: STA ZDOL +1
500 DEY: LDA (ZBOX),Y
510 STA ZDOL
520. EASTER ❑ LDY # &FF
530 .LCNPT ❑ CPY #&FF
540 BEQ EEXIT: LDA (ZDOL),Y
550 JSR ENCODE: INC EASTER +1
560 BNE EASTER
570 .EEXIT ❑ JSR ENCODE
580 LDA JAR +1: CMP #7
590 JSR ZINC: SEC: LDA ZCOD
600 SBC ZPCT: STA ESTRING +1
610 LDA ZCOD +1: SBC ZPCT+1
620 STA HIOFF+1: PLA: TAX: PLA
630 RTS
640 .ENCODE ❑ CM P # ASC("©")
650 BMI ENC2: EOR # &20
660 .ENC2 ❑ LDX # CLAST — CODE
670 .TRYC PHA: SEC: SBC CODE,X
680 BEQ MATCH: CMP # &20
690 BNE NTUPP: TXA: PHA
700 LDA # &5E: .RED0111JSR ENC2
710 PLA: TAX: BPL MATCH
720 .NTUPPOCMP #&E0
730 BNE NTLOW: TXA: PHA
740 LDA # &5F: BNE REDO
750 .NTLOW ❑ PLA: DEX: BPL TRYC
760 RTS: .MATCH 111 PLA: TXA
770 .PREFCD ❑ LDY #&FF
780 CMP # CUP—CODE
790 BEQ BITCNT: STA PREFCD +1
800 .BITCNT LDX JAR +1: DEX
810 DEX: CMP FIRST,Y
820 BNE NTFIR: LDA #0: BEQ TP
830 .NTFIR ODEX: CMP SECOND,Y
840 BNE NTSEC: LDA # &40
850 BNE TP: .NTSECOCMP #1
860 BPL LONG: LDA # &60: BPL TP
870 .LONG ❑ DEX: DEX: DEX: DEX
880 DEX: ADC #254+ CODE — CLAST
890 CMP # 255+ CEIGHT—CLAST
900 BPL TP: INX: ASL A
910 ADC # CLAST—CEIGHT
920 CMP # 255+ CSEVEN —CLAST+

CSEVEN — CEIGHT

930 BPL TP: INX: ASL A
940 ADC # CLAST— CSEVEN +

CEIGHT— CSEVEN
950 CMP #255+ CSIX•4— 2*

CSEVEN — CEIGHT— CLAST
960 BPL TP: INX: ASL A
970 ADC # CLAST— CSIX•4+ 2*

CSEVEN + CEIGHT
980 .TP ❑ CPY # CAR — CODE
990 BNE TPACT
1000 LDY # CPUN —CODE
1010 STY PREFCD +1
1020 .TPACTOSTX LADA +1
1030 LDX JAR +1
1040 .JAR BNE JAR +2: ROR A
1050 ROR A: ROR A: ROR A
1060 ROR A: ROR A: ROR A
1070 ROR A: PHA: ROL A
1080 AND LO +1,X: LDY #0
1090 ORA (ZCOD),Y
1100 STA (ZCOD),Y: INY: PLA
1110 AND UP +1,X: STA (ZCOD),Y
1120 .LADAULDA # &FF
1130 .ZINC ❑ BPL DONE
1140 FOR # &F8: INC ZCOD
1160 BNE DONE: INC ZCOD +1
1170 .DONE ❑ STA JAR +1: LDA #0: RTS
1180]:NEXT
1190 •SAVE"ENCODE" 5E00 ❑ 5FC0

The Dragon and Tandy versions of the coder
are almost identical, but for three small
alterations. The things to alter are printed in
bold type, and if you own a Tandy you should
change them as follows: change 8B 30 to B3 ED
and change 8C 37 to B4 F4. The program was
written using the DASM assembler. If you
have a different one, you may have to change
the © signs which denote labels. Apostrophes
are used instead of exclamation marks on the
Tandy assembler to denote ASCII code.

The assembly listing should be entered,
assembled and then SAVEd to tape. The start
address is 32380:

@CODE EQU *
@CSP FCB $20
@CA FCB !A
@CS FCB !S
@CO FCB !O
@CT FCB !T
@CR FCB !R
@CI FCB !I
@CL FCB !L
@CE FCB !E

FCB !C
@CSIX EQU •
@CUP FCB !
@CAR FCB $5F
@CU FCB !U

FCB !M
@CP FCB !P

FCB !W
FCB !Y

@CN FCB !N
FCB !B
FCB !G

@CSEVEN EQU
@CD FCB !D
@CF FCB !F

FCB !V
@CH FCB !H
@CEIGHT EQU *

FCB !K
FCB !Q

@CX FCB !X
FCB !J
FCB !Z
FCB $5B

@CPO FCB $5C
@CLAST FCB $5D
@CPUN EQU •
@FIRST FCB @CUP — @CODE

FCB @CN—@CODE
FCB @CT—@CODE
FCB @CN—@CODE
FCB @CH—@CODE
FCB @CE—@CODE
FCB @CN—@CODE
FCB @CE—@CODE
FCB @CR —@CODE
FCB @CH—@CODE
FCB @CS—@CODE
FCB @CL—@CODE
FCB @CN—@CODE
FCB @CE—@CODE
FCB @CO—@CODE
FCB @CA —@CODE
FCB @CA —@CODE
FCB @CD —@CODE
FCB @CE—@CODE
FCB @CE—@CODE
FCB @CE—@CODE
FCB @CT—@CODE
FCB @CE—@CODE
FCB @CE—@CODE
FCB @CE—@CODE
FCB @CU —@CODE
FCB @CP —@CODE
FCB @CU —@CODE
FCB @CE—@CODE
FCB @CAR—@CODE
FCB @CAR—@CODE
FCB @CSP—@CODE
FCB @CAR—@CODE

@SECOND FCB @CT—@CODE
FCB @CT—@CODE
FCB @CE—@CODE
FCB @CF—@CODE
FCB @CI—@CODE
FCB @CO—@CODE

FCB @CT—@CODE
FCB @CI—@CODE
FCB @CD — @CODE
FCB @CO—@CODE
FCB @CT—@CODE
FCB @CN—@CODE
FCB @CS—@CODE
FCB @CA —@CODE
FCB @CE—@CODE
FCB @CE—@CODE
FCB @CH —@CODE
FCB @CO—@CODE
FCB @CT—@CODE
FCB @CL—@CODE
FCB @CH—@CODE
FCB @CI—@CODE
FCB @CO—@CODE
FCB @CI—@CODE
FCB @CA —@CODE
FCB @CI—@CODE
FCB @CX—@CODE
FCB @CT—@CODE
FCB @CO—@CODE
FCB @CI—@CODE
FCB @CUP — @CODE
FCB @CPO —@CODE
FCB @CAR—@CODE
FCB @CUP —@CODE

@LO FCB 0
FCB $1
FCB $3
FCB $7
FCB $F
FCB $1F
FCB $3F
FCB $7F

@UP FCB $FF
FCB $FE
FCB $FC
FCB $F8
FCB $F0
FCB $E0
FCB $C0
FCB $80
FCB 0

@USR9 PSHS D
JSR $8B30
STD @ZPTR +1
CLR @MARRY +1
CLR @MARRY +2
PULS D
RTS

@USR8 PSHS A,B,X,Y,U
LDA #7
STA @JAR +1
LDD # @CSP
STD @PREFCD +1
JSR $8B30
TFR D,X
PSHS X

@MARRY LDD #$ABCD

LDA #! A

@REDO PSHS U
JSR @ENCODE
PULS U
BRA @MATCH

@NOUPP CMPA # $E0
BNE @NOLOW
LDA #$5F
BRA @REDO

@NOLOW TFR B,A
CMPU # @CODE-1
BGT @TRYC
RTS

@MATCH TFR U,D
@PREFCD LDX #$ABCD

LDA @JAR +1
STA @EXTRA +2

CMPA #7
BEQ @PULSE
LDA ,Y+

@PULSE PULS D
COMA
COMB
ADDD #1
LEAX D,Y
STX @MARRY +1
PULS A,B,X,Y,U
RTS

@ENCODE LDU #@CLAST +1
TFR A,B

@TRYC SUBA ,-U
BEQ @MATCH
CMPA # $20
BNE @NOUPP

LEAY D,X
JSR $8C37

@ZPTR LDU #$ABCD
PULU B
PULU A
ADDD ,U
LDU ,U
STD @CAMP + 2
BRA @CAMP

@ENCLOP PULU A
PSHS U
JSR @ENCODE
PULS U

@CAMP CMPU #$ABCD
BNE @ENCLOP
CLRA
JSR @ENCODE

SUBA #2
SUBB # @CODE (see note overleaf)
BEQ @BITCNT
CMPX # @CAR
BNE @STEW
LDU #@CPUN

@STEW STU @PREFCD +1
@BITCNT CMPB @FIRST—@CODE,X

BNE @NOTFIR
LDB #0
BRA @TOP

@NOTFIR DECA
CMPB @SECOND —@CODE,X
BNE @LONG
LDB # $40
BRA @TOP

@SPACEE LDB # $60
DECA
BRA @TOP

@LONG SUBA #5
SUBB #@CLAST—@CODE +1
CMPB # 255 +@CEIGHT—@CLAST
BPL @TOP
INCA

ASLB
ADDB # @CLAST—@CEIGHT + 1
CMPB # 255 +@CSEVEN —
@CLAST+@CSEVEN —@CEIGHT
BPL@TOP
INCA
ASLB
ADDB #@CLAST—@CSEVEN+
@CEIGHT—@CSEVEN +1
CMPB # 255 +@CSIX—@CLAST+
@CSIX—@CEIGHT+@CSIX-
@CSEVEN + @CSIX — @CSEVEN
BPL @TOP
INCA
ASLB
ADDB #@CLAST—@CSIX+
@CEIGHT—@CSIX+@CSEVEN —
@CSIX+@CSEVEN —@CSIX +1

@TOP EQU •
@EXTRA LDX # $00FF

LSRB
@JAR BRA $F+*

RORB
RORB

RORB
RORB
RORB
RORB
RORB
PSHS B
ROLB
ANDB @LO +1,X
ORB ,Y
STD ,Y
PULS B
ANDB @UP+1,X
STB 1,Y
CMPA #$00
BGE @DONE
ADDA #8
LDB ,Y+

@DONE STA @JAR +1
RTS
END

Note: Most assemblers will show an error at
SUBB # @CODE. Don't worry, the program
should run. If not, replace @CODE with $86.

CODE VALUES 	If in 	Most
If in 	punctua- 	popular

Main 	upper 	tion 	1st 	2nd
character 	case 	code 	(00) 	(010) Coded

.space 	© 	message 	i 	t 	011
ends

a 	A 	! 	n 	t 	10000
b 	B 	, 	 e 	1 	111010
c 	C 	# 	h 	o 	11000
d 	D 	$ 	e 	i 	1111000
e 	E 	% 	r 	d 	10111
f 	F 	& 	t 	o 	1111001
g 	G 	 e 	h 	111011
h 	H 	(e 	a 	1111011
i 	I) 	n 	t 	10101
j 	J 	 u 	o 	11111011
k 	K 	+ 	e 	i 	11111000
1 	L, 	e 	i 	10110
m 	M 	- 	e 	a 	110101
n 	N d 	t 	111001
o 	0 	/ 	n 	f 	10010
P 	P 	0 	o 	e 	110110
q 	Q 	1 	u 	x 	11111001
r 	R 	2 	e 	o 	10100
s 	S 	3 	t 	e 	10001
t 	T 	4 	h 	i 	10011
u 	U 	5 	n 	s 	110100
v 	V 	6 	e 	i 	1111010
w 	W 	7 	a 	h 	110111
x 	X 	8 	p 	t 	11111010
Y 	Y 	9 	a 	o 	111000
z 	Z e 	i 	11111100
T 	 > 	s 	t 	110010

? 	,(l) 	.(n) 	110011

If in 	Most
punctua- 	popular

Main 	 tion 	1st 	2nd
character 	 code 	(00) 	(010) 	Coded

Spectrum

{ 	 ; ; 	4--- 	T 	11111101
I 	 < 	4- 	1 	11111110
} 	 = 	space 	4— 	11111111

Commodore/Vic
; 	4- ::

 •• 	 f 	11111101
::1 	 < 	,_ 	1 	11111110
11 	 = 	space 	4— 	11111111

Acorn
{ 	 ; 	•- 	T 	11111101
I 	 < 	.-- 	I 	11111110
} 	 = 	space 	4- 	11111111

Dragon/Tandy
. ; 	4.--- 	T 	11111101
< 	4- 	 11111110
= 	space 	4— 	11111111

The table above is really intended for the characters in punctu-
ation code, the main characters are unlikely to be used.

In the main table, for the Dragon and Tandy, you should read
upper case letters in the 'main character' column and reversed
characters in the 'upper case' column. The reason for this is that
upper case characters are the most commonly used.

Where up arrows and left arrows appear in the table, please
note that these are not keyboard symbols, but are used by the
machine to go into capital or punctuation mode. They will not
work at all as keyboard symbols.
Note: when using the text compressor, use only characters
from the table, or the text will become corrupted.

TAKE VOLUME 1 REE
AND RECEIVE
VOLUME 2 ON
TEN DAY TRIAL

Simply fill in the Introductory Offer
form and post today.

SEND NO MONEY NOW NO STAMP NEEDED

THIS IS NOT A BOOKCLUB

HOW THIS OFFER WORKS
1. Your FREE Volume I will be sent to
you along with Volume 2 on ten day
trial. If you're not entirely satisfied,
simply return Volume 2 only and your
application will be cancelled.

NOTHING FURTHER WILL BE SENT
TO YOU.

2. If you keep Volume 2 you pay just
£5.95 (inclusive of postage and
handling). Within a month you'll
receive the further Volumes (3-24) all
on ten day trial.

Even though you have the complete
series, you only pay for ONE-VOLUME-
A-MONTH which is just £5.95 (fully
inclusive).

THIS IS NOT A BOOK CLUB — there
is no commitment to buying a
minimum number of books by
accepting this FREE OFFER.

D
 M

a
rs

h
a

ll
 C

a
v
e
n

d
is

h
,

U
n

it
 1

,
N

e
w

to
w

n
 R

o
a

d
,

H
o
v
e
.

E
as

t
S

u
ss

ex
,

8
N

3
 7

D
R

.

A 	
NE

 I

111111111111111111111111111111
4„(3$4,0 SPECIAL INTRODUCTORY OFFER am

Simply address your envelope (no stamp required) to: 	IMP
Marshall Cavendish House, FREEPOST, Hove,

/IN 	 East Sussex, BN3 2ZZ. 	 INS
MMI YES! I'D LIKE TO TRY VOLUME 1 TO KEEP FREE

WITH NO COMMITMENT TO BUY ANYTHING. 	
Nor

m. Please send me Volume 1 of The Knack for me to keep is.
mg FREE along with Volume 2 on ten day trial. If not satisfied I

shall return Volume 2 and cancel my order. Or I shall pay t
• for Volume 2 and you will then send me the remaining B.

NM Volumes (3-24) on ten day trial. For those I keep I need I
NM only pay for at the rate of ONE-VOLUME-A-MONTH. Elba

• III Each volume costs £5.95 (fully inclusive of postage and RR
NM handling) — except of course Volume 1 which is mine to IMIN
NM keep FREE in any event. 	 mar

MN 101111IiM

M. Signature 	 (lamover 18)
r=1 Orders not accepted without signature 	 1.111

ME Name ame 	 IIINI
11.1 No Address 	 IMO

	 MMI
•
	 Post Code 	

INN
NM Tel No 	 STD Code 	
mmi Offer applies UK and Northern Ireland only 	 All orders subject to acceptance me

DISCOVER HOW EASY IT IS TO IMPROVE,
ALTER AND REPAIR YOUR HOME, WHEN

YOU'VE GOT THE KNACK.
This step-by-step guide gives you the
confidence to tackle every DIY jot
and succeed!
The Knack is all the DIY skills you've ever wanted
and will ever need, in one of the most comprehen-
sive series of books ever published on the subject.

Decorating, tiling, carpentry, plumbing, heating
—you name it and you'll find the techniques of
each skill clearly explained and fully
illustrated.

Thousands of step-by-step colour photo-
graphs and diagrams will showyou
everything you need to know to get a
professional finish, at a fraction of the
cost, everytime you DIY.

ULearn how to DETECT THINGS ON
SCREEN—the basis of many games
which involve moving graphics

11 Create a complete WIREFRAME
picture of a SPACE STATION

Add the DECODING routine to your
MACHINE CODE TEXT COMPRESSOR

UGet it down on paper with a guide to
SETTING UP A PRINTER

CiPlus,for the DRAGON and TANDY, a
PROGRAM SQUEEZER to save memory

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36

