
A MARSHALL CAVENDISH 	COMPUTER COURSE IN WEEKLY PARTS

LEARN PROGRAMMING - FOR FUN AND THE FUTURE

Vol. 2 	 No 22

BASIC PROGRAMMING 48

SIMPLE MUSIC 	 669

Turn your computer into a keyboard instrument

MACHINE CODE 23

COMMODORE DISK DRIVE CONVERTER 677

Converts tape-based programs for disk drive

PERIPHERALS

CARING FOR TAPES AND DISKS 	683 1
Protect your valuable programs and data

GAMES PROGRAMMING 22

USING YOUR TEXT COMPRESSOR 	684

Put your compressor to work on an epic adventure

PERIPHERALS

TRIPPING THE LIGHT FANTASTIC 	690 1
What's the benefit of hooking a light pen to your micro?

BASIC PROGRAMMING 49

CHANCE AND PROBABILITY 	 694

The toss of a coin, the throw of dice ...

INDEX
The last part of INPUT, Part 52, will contain a complete, cross-referenced index.
For easy access to your growing collection, a cumulative index to the contents
of each issue is contained on the inside back cover.

PICTURE CREDITS
Front cover, Dave King. Pages 669, 670, Steve Bielschowsky/Berry Fallon
Design. Page 672, Peter Reilly. Page 675, Sue Hillwood-Harris. The Sound of
Music © Chappell Music Ltd. Pages 676, 678, 680, Gerry Banks. Page 683,
Malcolm Livingstone. Pages 684, 686, 688, Kevin O'Keefe. Page 690, Dave
King/Studio 10. Page 692, Dave King. Pages 694, 696, Jim Mawtus. Pages 697,
698, 699, Digital Arts.

© Marshall Cavendish Limited 1984/5/6
All worldwide rights reserved.

The contents of this publication including software, codes, listings,
graphics, illustrations and text are the exclusive property and copyright of
Marshall Cavendish Limited and may not be copied, reproduced,
transmitted, hired, lent, distributed, stored or modified in any form
whatsoever without the prior approval of the Copyright holder.

Published by Marshall Cavendish Partworks Ltd, 58 Old Compton Street, London W1V 5PA,
England. Printed by Artisan Presss, Leicester and Howard Hunt Litho, London.

HOW TO ORDER
YOUR BINDERS
UK and Republic of Ireland:
Send £4.95 (inc p & p) (1R£5.95) for
each binder to the address below:

Marshall Cavendish Services Ltd,
Department 980, Newtown Road,
Hove, Sussex BN3 7DN

Australia: See inserts for details, or
write to INPUT, Times Consultants,
PO Box 213, Alexandria, NSW 2015

New Zealand: See inserts for details, or
write to INPUT, Gordon and Gotch
(NZ) Ltd, PO Box 1595, Wellington
Malta: Binders are available from local
newsagents.

here are four binders each holding 13 issues.

BACK NUMBERS
Back numbers are supplied at the regular cover price (subject to availability).

UK and Republic of Ireland:
INPUT, Dept AN, Marshall Cavendish Services,
Newtown Road, Hove BN3 7DN

Australia, New Zealand and Malta:
Back numbers are available through your local newsagent.

COPIES BY POST
Our Subscription Department can supply copies to any UK address regularly at £1.00 each.
For example the cost of 26 issues is £26.00; for any other quantity simply multiply the number
of issues required by £1.00. Send your order, with payment to:

Subscription Department, Marshall Cavendish Services Ltd,
Newtown Road, Hove, Sussex BN3 7DN

Please state the title of the publication and the part from which you wish to start.

HOW TO PAY: Readers in UK and Republic of Ireland: All cheques or postal orders
for binders, back numbers and copies by post should be made payable to:

Marshall Cavendish Partworks Ltd.

QUERIES: When writing in, please give the make and model of your computer, as
well as the Part No., page and line where the program is rejected or where it does
not work. We can only answer specific queries—and please do not telephone. Send
your queries to INPUT Queries, Marshall Cavendish Partworks Ltd, 58 Old
Compton Street, London W1V SPA.

INPUT IS SPECIALLY DESIGNED FOR:
The SINCLAIR ZX SPECTRUM (16K, 48K,128 and +),
COMMODORE 64 and 128, ACORN ELECTRON, BBC B
and B+,and the DRAGON 32 and 64.

In addition, many of the programs and explanations are also
suitable forthe SINCLAIR 2X81, COMMODORE VIC 20, and
TANDY COLOUR COMPUTER in 32K with extended BASIC.
Programs and text which are specifically for particular machines
are indicated by the following symbols:

SPECTRUM 168,
4814128, and + 	COMMODORE 64 and 128

El ACORN ELECTRON,
BBC B and B+ 1U: DRAGON 32 and 64

TANDY TRS80 a .c., EcK VIC 20

"'r
 TANDY COMPUTER

NOTES AND SCALES
TONES AND SEMITONES
PLAYING TUNES BY EAR

MUSICAL KEYBOARD ON
YOUR COMPUTER

With a little simple musical theory,
and a short program, transform your
computer into a keyboard
instrument and become a virtuoso of
the plastic buttons

Each of the computers covered here, except
the ZX81, has the facility to generate sound of
some sort. The article on pages 230 to 235
explains how your computer's sound com-
mands work. You can set the pitch, duration,
and sometimes other aspects too, of the note
that your computer plays.

The computers vary in several important

respects. Most importantly, on the Spectrum,
Dragon and Tandy, you only have the facility
to play one note at a time—whereas the BBC
and Commodores can play a chord of two or
more notes simultaneously. Also on the
Acorns and Commodores, you are able to
change the whole quality of the sound. In
some respects, the difference between these

and the other computers is a bit like the
difference between a mouth organ and a
simple synthesizer.

But none of these differences matters at the
moment. You can play simple tunes on any of
the computers, and this article explains how
to get started. It begins with a little very
simple musical theory, so you will understand

the background, and then goes on to give a
program which converts part of your
computer's keyboard into a simple musical
instrument. In a later article, you will see how
to extend this to exploit more of your
computer's special abilities.

But first, a couple of simple, fundamental
definitions. 'Pitch' is the property of 'high-
ness' or 'lowness' that sounds possess, so a
musical note that sounds higher than a second
note is said to have a higher pitch than it, and
a note lower than another note has a lower
pitch than it. And 'musical interval' is the
`musical distance' between two notes. The
two notes at the beginning of 'Oh, I do like to
be beside the seaside' have a small musical
interval between them, as you shall see, while
those at the beginning of 'Here comes the
bride' have quite a large one: sing the first few
notes of each to yourself, and notice the
difference. (Start on the same note each time).

A SIMPLE SCALE
A scale is a series of notes, each higher than
the last. While technically the notes are
named after letters from A to G, it is often
helpful to use the easily remembered labels
do, re, me, fa, so, la, and ti. The scale starts
at do, and goes up to the next do, going
through 8 notes.

The do -re -me scale is known as the
`major scale', to put is slightly more techni-
cally. The major scale is defined by the
particular set of musical relationships be-
tween its notes, rather than by its pitch; it's a
kind of abstract arrangement of musical inter-
vals which can be moved bodily to any pitch
but will still retain its 'major' quality.

WHAT ABOUT THE BLACK KEYS
The white keys on a keyboard instrument are
named A, B, C, D, E, F and G, then A, B, C
and so on again, in a repeating cycle. The
major scale is produced by playing the 8
white keys from a 'C' up to the next 'C', and
this is, reasonably enough, called the scale of
`C major': C is do, D is re and so on. As you
saw above, a major scale can start on any
pitch, but C major starts on the note C, which
has a particular pitch: choosing to start the
scale on C 'anchors' the abstract major scale to
a particular pitch.

What, then, are the black keys for? Well,
the major scale doesn't include all possible
notes between its bottom and top notes.
Notes, not belonging to the scale, exist be-
tween do and re, and between certain other
pairs of its notes: the black keys provide these
notes. The 'black' note between C and D (do
and re in C major) is called C sharp or D flat,
(`sharp' simply means 'raised' and 'flat' means

lowered'). It depends upon whether you base
your definition on the note above, or below,
the black note. The note between D and E is
D sharp or E flat, and so on. Notice that there
isn't a black key between E and F (that is,
between mi and fa in C major), or between B
and C (ti and do in C major) so no note exists
between them.

The interval between any key and its
immediate neighbour (whether a black or a
white key) is called a semitone, so C to C
sharp, C sharp to D, and E to F are all
semitones. An interval containing 2 semi-
tones, eg C to D, are known as a 'tone' or
`whole tone'. The arrangement of tones and
semitones that defines a major scale is as
follows: there are

2 semitones =1 tone between do and re,
(C and D in C major)

2 semitones =1 tone between re and mi,
(D and E in C major)

1 semitone 	between mi and fa,
(E and F in C major)

2 semitones =1 tone between fa and so,
(F and G in C major)

2 semitones =1 tone between so and la,
(G and A in C major)

2 semitones =1 tone between la and
(A and B in C major)

1 semitone 	between ti and do,
(B and C in C major)

DIFFERENT MAJOR SCALES
So altogether there are 12 semitones from the
bottom do to the top do, distributed among
the 8 notes of the major scale as you can see
above.

Suppose you want to construct a major
scale on the note G, say, so that do will be G,
re will be A and so on. If you just play the 8
white keys from a G up to the next G, the
arrangement of intervals isn't right: the num-
ber of steps between la and ti, and between ti
and do, aren't correct. In fact, you need to
take F sharp rather than F as the ti in the new
scale, then the arrangement of steps will be
correct. You might like to check this on the
diagram of the keyboard.

In a similar way, the major scale with F as a
starting note has the notes F, G, A, B flat, C,
D, E and F—B has to be flattened or the note
fa, and the intervals mi-fa and fa-so will be
wrong. In fact, you can construct a major
scale on any note, if you sharpen or flatten the
right notes, but any major scale built on a
starting note other than C will necessarily use
one or more black keys: only the major scale
starting on C uses the white keys alone. This
makes it the easiest scale to play in, and
explains why it's so popular. You can refer

to the notes either as C, D, E 	C, or do, re,
mi ... do; this article uses the latter se-
quence, since it's more meaningful than the
former one to most people.

Many, many tunes can be played using the
major scale, in particular, folk songs, nursery
tunes and some hymns. So, for example,
`Three Blind Mice' starts with the notes:

mi, re, do,
mi, re, do,
so, fa, fa, mi,
so, fa, fa, mi

And the hymn 'Jerusalem' starts with ft
do, mi, so,
la, do, 	<>1'\ •
la, so, fa, so

This just gives the relative pitches of the
notes, of course, and not the rhythm; standard
musical notation, which is not covered in this
article, is a sophisticated system containing
pitch, rhythm and also loudness and softness
information.

More complicated pieces of music won't
contain just the notes of the major scale and
no others. Typically, they will start in one
scale and, as the piece unfolds, will move
temporarily into other scales which use some
notes not part of the first scale; so for
example, the hymn 'Oh God Our Help in
Ages Past' starts:

so, mi, la, so, do, do, ti, do
so, do, so, la, fa sharp, so

because the second phrase makes a very brief
visit to the major scale on a different note,
before returning to the original scale. Notes
foreign to the scale may also be used to make
the tune more colourful. The first three notes
of 'Oh, I do like to be beside the seaside'
illustrate this: they are 'so', 'so sharp', and
`la', and the song continues with so, mi, re,
do.

WHY BOTH SHARPS AND FLATS?
Why do musicians use a sharp (F sharp) when
creating G major, and a flat (B flat) with F
major? F sharp and G flat are the same actual
black key, after all. So why couldn't G flat be
used in place of F sharp in G major, or A
sharp in place of B flat in F major, thus
getting rid of sharps entirely, or of flats
entirely? You need both sharps and flats
because it helps if each different note in the
scale is identified by its own, different, letter
name: to replace B flat by A sharp would turn
the F major scale into F, G, A, A sharp, C, D,
E and F, giving two As but no Bs, which
could be confusing. And if you replaced the F
sharp in G major by a G flat, you'd get two

Gs (G flat and G) but no Fs. Using sharps
where there should be flats and vice versa is a
musical howler, like a spelling mistake in
English, and music packages that let you use
only sharps or only flats, arguing that C sharp
is exactly equivalent to D flat, are inelegant.

FREQUENCY AND INTERVALS
Musical sounds are produced by repetitive
vibrations in the air. The higher the rate of
repetition, or 'frequency', of the vibration,
the higher the pitch of the resulting note. The
unit for measuring frequency is cycles-per-
second (cps), or, more commonly, Hz (stand-
ing for hertz, and meaning the same thing).

If you take a note with a frequency of say
256 Hz (the frequency of the note C), and
double its frequency to give 512 Hz, the
second note is a C exactly an octave above the
first. (An octave is the musical interval be-
tween the low do and the high do in the
simple scale from do to the do above). A
further frequency doubling, to give 1024 Hz,
produces the next C, whose pitch is exactly an
octave above the previous one, and so on. So
multiplying the frequency of a note by some
value adds a given musical interval to that
note.

Now you've seen that there are 12 equal
semitones in the octave (there are 13 keys, 8
white and 5 black, with 12 semitones between
them). If doubling the frequency gives rise to
the addition of a musical octave, and there are
12 semitones in an octave, then what multip-
lication of frequency will add the musical
interval of a semitone? Well, with the octave
we have

frequency of a note x 2 =
frequency of the note an octave above.

Let's call 'X' the multiplication required for a
semitone: then we have

frequency
*X*X*X*X*X*X*X*X*X .X*X*X =

frequency of octave above.

So the number which divides the ratio 2:1
into 12 equal divisions in the correct way is
the twelfth root of 2 (evaluated by the BASIC
expression 21(1/12)). Multiplying 256 Hz by
it adds a semitone, another multiplication
adds a second semitone, and so on, until after
12 cumulative multiplications the frequency
of the upper octave is reached. This is why the
twelfth root of two is a fundamental constant
in music, and crops up frequently in articles
on music.

TUNES IN THE MAJOR SCALE
Suppose you want to play a tune on the simple
keyboard programs later in the article. How

do you know which note is do, which is re,
and so on, if you're not given this inform-
ation? In other words, how can you play tunes
`by ear'? If you just start on a note at random,
and try and fit the rest of the notes around it,
the chances are you'll get it wrong.

Is there a method you can use to deduce
how a tune fits into the major scale? It helps if
you can find which note in the tune is do, so
you can use this to deduce the position of the
rest of the notes. Many tunes start on do (the
hymn Jerusalem, for example), or finish on it
(Three Blind Mice), or both start and finish
on it (Pop Goes the Weasel). And do is
generally the note in the tune which acts as a
kind of musical focal point or its centre of
gravity. Once you've found which note in the
tune is do you can, with a bit of luck, find the
rest of the notes. Try to play the tune from the
beginning, note by note; you'll have to listen
very carefully to what you're playing,
deciding whether the tune goes up or down at
each point, and whether it goes to a neigh-
bouring note in the scale (which it often will),
or skips a note, or 2 notes, or whatever.

If you make a mistake about which note of
the tune is do, then some of the notes you play
just won't sound right: they'll sound sharp or
flat, and you'll have to re-assess which note is
do. But if you persevere, this will become
easier, you'll develop an intuition about
scales, and eventually you'll be able to pick
out any tune on a musical keyboard. But to
start you off, this article gives the notes for
several tunes.

KEYBOARD PROGRAMS
The programs all use the top two rows of the
computer keyboard as a simple musical key-
board; 'Q', 'W', `E', 'R', 'T', 'Y', `U', 'I' will
play do, re, mi and so on to do, and the keys
to the right of these on the same row play in
the next octave. The keys '2', '3', '5', '6', '7'
act as the black notes, so the computer keys
correspond to the layout of the musical
keyboard in this way:

2 3 	5 6 7 	etc
Q W E R T Y U I etc

d r mf s 1 t d
oei a o a i o

The programs display this information const-
antly as a reminder while the program runs.
In addition, when notes in the first octave of
the major scale are being played, their names
are displayed as the program runs.

Type in the program and RUN it. Follow-
ing the listings there are some guidelines on
how to become a keyboard virtuoso.

The musical keyboard as it appears on
the Dragon and Tandy

The Spectrum program sets up the top two
rows of the keyboard as a sort of musical
instrument, so that when you press particular
keys, an appropriate note is played.

The program begins by setting up vari-
ables for the duration of each note, the Line
number of the main loop (this is stored as a
variable loop, rather than an actual number
1000 to save memory), and for the PRINT AT
position of part of the screen display. It then
continues by setting up the screen display,
and then starts the sound-generating part.

Loop is where the program returns after
playing a note, and where the program waits
for a key to be pressed. When a key is pressed,
the CODE number of the character just pressed
is put into the variable note.

The computer then goes to the Line
number which is held in note. The line
numbers correspond to the CODE numbers of
the keys that the program uses (from 48 to
121). And the BEEP command in each line is
set to play the appropriate note (for example,
the Q key plays do). You will remember from
the article on page 230 that the first number
after BEEP gives the note's duration (here a
variable, d), the second gives its pitch.

Some of the keys also print on the screen
the name of the note they are playing—this
happens with all the notes in the first octave of
the major scale, and is done in the same line as
that which plays the note.

When the note has been played, the com-
puter returns to the main loop, at Line 1000,
to wait for another keypress.

1 GOTO 900
47 GOTO loop
48 BEEP d,15: GOTO loop
50 BEEP d,1: GOTO loop
51 BEEP d,3: GOTO loop
53 BEEP d,6: GOTO loop
54 BEEP d,8: GOTO loop

55 BEEP d,10: GOTO loop
57 BEEP d,13: GOTO loop
101 PRINT AT y,x;"Ml": BEEP d,4: GOTO loop
105 PRINT AT y,x;"DO": BEEP d,12: GOTO

loop
111 BEEP d,14: GOTO loop
112 BEEP d,16: GOTO loop
113 PRINT AT y,x;"DO": BEEP d,0: GOTO

loop
114 PRINT AT y,x;"FA": BEEP d,5: GOTO loop
116 PRINT AT y,x;"SO": BEEP d,7: GOTO loop
117 PRINT AT y,x;"TI": BEEP d,11: GOTO loop
119 PRINT AT y,x;"RE": BEEP d,2: GOTO loop
121 PRINT AT y,x;"LA": BEEP d,9: GOTO loop
800 GOTO loop
900 LET d = .03: LET x=5: LET

loop =1000
901 BORDER 4: PAPER 4: CLS
902 PRINT AT 8,6;"ifi❑ r ❑ m ❑

f ❑ s ❑ ILIt ❑ d"
903 PRINT AT 9,6;"o ❑ eCli1=1

910 LET a$="02030E11=1 	5,1?
5E6071=10 0900"

920 FOR y=3 TO 4: GOSUB 990
930 NEXT y
940 LET a$="0111WEIEDREIT '

DY111U11110 OOP"
941 PAPER 7: INK 0
950 FOR y=4 TO 6: GOSUB 990
960 NEXT y
980 LET x=15: LET y=15: GOTO loop
990 FOR i =1 TO LEN a$
991 IF a$(i) < > CHR$ 32 THEN PRINT AT

y,x + i;a$(i);
992 NEXT i:RETURN
1000 PRINT AT y,x;CHR$ 32;CHR$ 32
1005 LET a$=1NKEY$: IF a$="" THEN

GOTO 1000
1100 LET note= CODE a$: GOTO note

When you RUN this program and hold down a
key for a long time you will hear a pulsating
sound. This is because the Spectrum needs to
BEEP for a fixed length of time. So what the
program actually does is to play the same note
over and over again, for a very short time.

The Commodore computers have quite com-
plicated sound facilities, which need several
POKEs to use. How you can do this, is
explained on pages 232 and 233. Some of the
POKEs need only be done once, to 'initialize'
the sound chip—and these are done at the
start of the program, in the subroutine start-
ing at Line 3000. This sets, for example, the
wavelength of each sound. (Since the Vic's
sound works in a different way, this routine is
not in the Vic program.)

The subroutine which starts at Line 4000

READs the data for the notes that are to be
used into an array, so that the music-
generating commands can access them easily.
The subroutine from Line 6000 onwards sets
up the screen display.

When the computer has GOne to all these
SUB routines, it waits for you to press a key.
When you do, the key's ASCII code is put
into the variable X to be used to set the pitch of
the note that is played in Lines 120 and 130.
These two lines POKE the high byte and the
low byte needed for each note, into memory.
The Vic needs only one POKE to set the pitch,
and this is done in Line 104.

The IF X$ = ... lines check to see whether
the key you have pressed has been assigned a
name within the scale—and if it has, the
computer prints it.

If you have pressed a key which does not
play a note, all that happens is that the
computer goes through the same routine, to
play a note, but plays a nonexistent note—so
no sound is heard.

Line 150 PEEKs the keyboard to see if the
key is still being pressed—and if it is, the 'gate
is held open' so that the sound carries on.
This is how the continuous sound effect is
achieved.

As soon as you are no longer pressing the
key, the sound is stopped_, the cursor sent
back to the top left of the keyboard, and the
computer returns to Line 100 to GET another
keypress.

The values held in the array TA% for each
note for the Vic do not correspond exactly
with those in the Vic manual. The reason for
this is that the Vic's sound chip has quite poor
`frequency resolution', which means that it
cannot be exactly in tune. So the notes in this
program are in tune with each other, but
not with, say, a piano that is in 'concert pitch'.

40 GOSUB 3000
50 GOSUB 4000
70 GOSUB 6000
100 GET X$: PP = PEEK(197): IF X$=

"" THEN 100
110 X =ASC(X$):POKE 198,0
111 IF X$="Q" OR X$="I" THEN

PRINT "I§IDO"
112 IF X$="W" THEN PRINT "IMRE"
113 IF X$="E" THEN PRINT "@IMI"
114 IF X$="R" THEN PRINT 121FA"
115 IF X$="T" THEN PRINT "ERISO"
116 IF X$="Y" THEN PRINT "I§LA"
117 IF X$="U" THEN PRINT "IETI"
120 POKE SI + 4,33
130 POKE SI ,LQ%(X)
140 POKE SI +1,HQ%(X)
150 IF PP=PEEK(197) AND PP< >64

THEN 150
170 POKE SI + 4,32
180 PRINT "1§11110"
190 GOTO 100
3000 SI = 54272
3010 FOR I = SI TO SI + 28: POKE

1,0:NEXTI
3020 POKE SI +5,16 +11
3030 POKE SI +6,16'15+12
3040 POKE SI +24,4
3050 RETURN
4000 DIM HQ%(255), LQ%(255)
4010 TMP =4455
4020 FOR I =1 TO 22
4030 READ V$: V= ASC(V$)
4040 LQ%(V) = TM P —256*INT(TMP/

256): HQ%(V) =TMP/256
4050 TMP=TMP*(2T(1/12))
4060 NEXT: RETURN
4070 DATA 0,2,W,3,E,R,5,T,6,Y,7,U,1
4080 DATA 9,0,0,P,@, -;',E,1
6000 PRINT "0": PRINT
6010 POKE 53280,8: POKE 53281,8
6020 BL$ = "El ODD .2.2113

PJPJFJ5PJ 6 PJ 7 PJPJPJ 9 110

6030 PRINT BL$: PRINT BL$
6040 PRINT "0";
6050 WH$ = " oouziAnplw

plEpppirpirplupitplopi
Pll@PJAPJT"

6060 PRINT WH$: PRINT WH$:PRINT WH$
6065 PRINT
6070 PRINT"111111 ❑ ❑ D ❑ R ❑ M ❑

F ❑ S ❑ LOTO D"
6080 PRINT"III ❑ 1:00111E1111111

ADOCIA11110 0"
6090 RETURN

40 GOSUB 4000
50 GOSUB 6000
90 POKE 36878,0
100 GET X$: PP= PEEK(197):1FX$=""

THEN 100
102 X = ASC(X$):POKE198,0
104 POKE 36876,TA%(X)
106 FOR V=1 TO 5: POKE 36878,V: NEXT
111 IF X$="Q" OR X$="I" THEN

PRI NT"I§IDO"
112 IF X$="W" THEN PRINT"EgIRE"
113 IF X$="E" THEN PRINTI§IMI"
114 IF X$="R" THEN PRINT"I§FA"
115 IF X$ ="T" THEN PRINT"I§SO"
116 IF X$ ="Y" THEN PRINTI§ILA"
117 IF X$ ="U" THEN PRINT1§TI"
150 IF PP=PEEK(197) AND PP< >64

THEN 150
180 PRINT"El El El"
185 FOR V=4 TO 0 STEP - 1: POKE

36878,V: NEXT

You can make the Spectrum's quiet BEEP
sound louder in a number of ways. Several
companies sell add-ons to channel the
sound through an external amplifier and
loudspeaker. But you do not need to spend
any money at all.

If your tape recorder has a monitoring
facility, you can use its speaker. First,
connect the MIC leads between the Spec-
trum and the tape recorder, and then press
RECORD and PLAY on your recorder.
After this, any sound will come out of the
loudspeaker on your tape recorder. An
advantage of this, is that you can now
control the tone and volume of the sound.

This does, though, have a low back-
ground noise, from the recorder's motor.
If you find this too loud, an add-on is the
only answer.

190 GOTO 100
4000 DIM TA%(255)
4010 FOR I =1 TO 22: READ V$,V:

TA%(ASC(V$)) =255— V: NEXT
4020 RETURN
4030 DATA Q,90,2,85,W,80,3,76,E,72,

R,67,5,64,T,60,6,57,Y,54,7,51,U,48,I,45
4040 DATA 9,42,0,40,0,38,P,36,@,34,

6000 PRINT "0": PRINT
6010 POKE 36879,127
6020 BL$="111 n.2113 PJPJ PERI

6 1171n1 PJ9110"
6030 PRINT BL$; PRINT BL$
6040 PRINT "a";
6050 WHS="aMCIPJWPIENIRM

THYPJUNINOPIP"
6060 PRINT WH$: PRINTWH$: PRINTWH$
6070 PRINT"."
6080 PRINT"D ❑ R ❑ M ❑ F ❑

S ❑ L ❑ T ❑ D"
6090 PRINT"ODE ❑ I ❑ A ❑

ODA ❑ I ❑ 0"
6100 RETURN

Lines 5 and 6 set the autorepeat to work faster
than usual to make the program work better.
The values of the frequency for each note are
stored in the array TA by Lines 10 to 20. After
this, Lines 30 to 51 print up the keyboard in
red background and black ink.

The main routine of the program starts at
Line 100, with the computer waiting for you

Why doesn't the Dragon and
Tandy keyboard program have
auto-repeating keys?
The Dragon and Tandy program uses
IN KEY$ to check the keyboard. It would
be possible to use PEEK, which is the
usual way to provide an auto-repeat, but
the computer would need to PEEK about
20 numbers, one for each key. And
because each number has no logical
numeric connection with the next (since
the keys are QWE ... and not ABC ...)
these would need to be in a DATA
statement which takes a long time
to check. It's quicker to press
each key twice.

to press a key. The next Line, 110, actually
plays the note, using the SOUND command
(see page 233 to see how this works and what
each number following it means).

The third number in this SOUND com-
mand sets the pitch. The function ASC re-
turns the ASCII code of a character—here the
key that you have just pressed. The number
that this function gives is then used to tell the
computer which number in the array to look
at—and so which note to play (TA holds the
pitch for each note that the program uses).

If you have pressed a key which is not used
by the program, this is detected by Line 105.
The value of TA for every key that is not used
is 0 so all this line does is to check whether
this value is 0 or not. When the pitch is 0, the
computer goes back to wait for another
keypress. The reason for this is so that the
computer does not try to play a note with a
pitch of 0—try it, and you'll see why.

Once the computer has played a valid note,
it carries on and prints up the name of the
note it has just played in the top left-hand
corner of the keyboard. It first prints up two
spaces, and then prints up the so, or whatever
name applies to the note; if the note has not
been assigned a name (only the notes in the
main octave actually have names in this
program) nothing is printed.

The computer then returns to the start of
the main loop to wait for another keypress.
Electron changes are at the end.

5 . FX11,12
6 •FX12,15
10 DIM TA(255)
15 FOR I =1 TO 22
20 READ V$,V: TA(ASC(V$)) =V:NEXT

30 MODE 1: COLOUR 129: COLOUR 0: VDU
12

35 BL$="111111000021113
• ❑ 5 ❑ 6 ❑ 7 ❑❑❑ 9 ❑
00111111 A ❑\"

36 PRINT: PRINT: PRINT BL$: PRINT BL$
40 COLOUR 3
45 WH$=" ❑❑❑❑❑ Q ❑ W ❑ E

❑ R ❑ T ❑ Y ❑ U ❑ 1 ❑ O ❑ P ❑ @

46 PRINT WH$: PRINT WH$: PRINT WH$
48 COLOUR 2:PRINT,
50 PRINT "1:10111111EDDRIIIM

❑ F ❑ S ❑ L ❑ T ❑ D"
51 PRINT" ❑❑❑❑❑ ODE ❑ 1

D AD 0 DADIDO"
100 A$ = GET$: IF A$ = "" THEN 100
105 IF TA(ASC(A$)) =0 THEN 100
110 SOUND 1, +15,TA(ASC(A$)),3
115 VDU 31,15,13:PRINT" ❑ ❑ ": VDU 31,

15,13
120 IF A$ ="Q" OR A$="1" THEN PRINT

"DO"
130 IF A$="W" THEN PRINT "RE"
140 IF A$="E" THEN PRINT "MI"
150 IF A$ ="R" THEN PRINT "FA"
160 IF A$="T" THEN PRINT "SO"
170 IF A$="Y" THEN PRINT "LA"
180 IF A$,:---"U" THEN PRINT "TI"
200 GOTO 100
1000 DATA 0,101,2,105,W,109,3,113,E,117
1010 DATA R,121,5,125,T,129,6,133,Y,137
1020 DATA 7,141,U,145,I,149,9,153,0,157
1030 DATA 0,161,P,165,@,169, ,173,[,177
1040 DATA \,181,_,185

For the Electron delete Line 1040 and alter:

15 FOR 1=1 TO 17
35 BL$=" ❑❑❑❑❑❑ 203 ❑❑❑

5 ❑ 6 ❑ 7 ❑ ❑ ❑ 9 ❑ 0"
45 WH$="1=11:11=111(1111WEIEEIR

❑ T ❑ Y ❑ U ❑ I ❑ O ❑ P"
1030 DATA 0,161,P,165

® Ii
The Dragon and Tandy program starts by
clearing the screen in blue, and setting up the
volume, note length, and tempo for the PLAY
commands which the program uses. Page 235
explains how the string in Line 10 sets these
parameters.

Lines 20 and 30 set up the notes which the
program uses into the array N$. Line 40 sets
up a string to hold the various possible keys
for each note, and one to assign a name (do,
re, me, and so on) to some of the notes.

The lines 50 to 110 set up the screen
display, and sets the screen colours to give
orange and black.

Then the computer waits for a key to be
pressed; if the key that is pressed is not set to

play a note, the computer returns to Line 120
to wait for another keypress.

Line 140 actually plays the note, using the
PLAY command. The pitch is set by making
the variable NT dependent upon which key
has been pressed, and using the character NT
spaces into the array N$ as the pitch.

Then, using an ON ... GOTO ... statement,
the computer prints the name of the note it
has just played (if a name has been assigned to
that note) before returning to wait for your
next keypress.

10 CLS3:PLAY"V31L4T8":B$ = CH R$(175)
20 DIM N$(21):FORK=0T019:READ

N$(K):NEXT
30 DATA C,C # ,D,D # ,E,F,F # ,G,G #,A,

A # ,B 4 O4C,04C# ,04D,04D # ,04E,
04F,04F # ,04G

40 M$="Q2W3ER5T6Y7U1900P@— " +
CHR$(8):D$ = "QWERTYUIO"

50 FORK = OT06:READA:N =2*A +20*
INT(A/10):POKE1093 + N,A:POKE1125
+ N,A:NEXT

60 DATA 50,51,53,54,55,57,48
65 POKE1113,45:POKE1145,45
70 FORK =0T011:READA:POKE1124+

K .2,A:POKE1156+ K .2,A:POKE
1188 + K . 2,A:NEXT

80 DATA 81,87,69,82,84,89,85,73,
79,80,64,95

90 PRINT@260,"d"B$"r"B$"m"B$
"1"Brs"B$"1"B$"t"B$"d";

100 PRINT@292,"o"B$"e"B$"i"B$
"a"B$"o"B$"a"B$"1"B$"o";

110 SCREEN0,1
120 A$=INKEY$:IF A$="" THEN120
130 NT =1NSTR(M$,A$):IF NT= 0 THEN120
140 PLAY"03" + N$(NT +1)
150 PRINT@O,;:D =1NSTR(D$,A$):

ON D GOTO 170,180,190,200,
210,220,230,170

160 PRINTB$;B$;:GOT0110
170 PRINT"DO";:GOT0110
180 PRINT"RE";:GOT0110
190 PRINT"Ml";:GOT0110
200 PRINT"FA";:GOT0110
210 PRINT"SO";:GOT0110
220 PRINT"LA";:GOT0110
230 PRINT"TI";:GOT0110

TICKLING THE IVORIES
So what can you play with this musical
keyboard? Try the nursery rhyme Top Goes
the Weasel'. This starts on the note do, so the
first key will be `Q'; you'll need to experiment
with the rhythm until it sounds right:

Q,E,W,R,E,T,E,Q
Q,E,W,R,E,Q
Q,E,W,R,E,T,E,Q
Y,W,R,E,Q

And now the famous bit from Beethoven's
Ninth Symphony (try it and you'll recognize
it, even if you don.t know the name):

E,E,R,T,T,R,E,W
Q,Q,W,E,E,W,W
E,E,R,T,T,R,E,W
QQW,E,WAIQ
W,E,Q,W,E,R,E,Q
W,E,R,E,W,Q,W,T
E,E,R,T,T,R,E,W
QQW,E,WAQ

Now the song from 'The Sound of Music':

Q,W,E,Q,E,Q,E
W,E,R,R,E,W,R
E,R,T,E,T,E,T
R,T,Y,Y,T,R,Y
T,Q,W,E,R,T,Y
Y,W,E,5,T,Y,U

U,E,5,6,Y,U,I
I,U,Y,R,U,T, I

There are just three notes foreign to the scale
towards the end.

Finally, here are the keys you should press
to play the beginning of the Bach piece lesu,
Joy of Man's Desiring':

Q,W,E,T,R,R,Y,T,T, I ,U, I,T,E
Q,W,E,R,T,Y,T,R,E,W,E,Q

Unfortunately, at this point the tune goes off
the end of the keyboard. But you can play it
all in the major scale starting on fa:

R,T,Y,I,7,7,0,I,I,@,P,@,I,Y
R,T,Y,7,I,O,I,7,Y,T,Y,R,E,R,T
Q,E,T,7,Y,T,Y
R,T,Y,I,7,7,O,I,I,@,P,@,I,Y
R,T,Y,W,I,7,Y,T,R,Q,R,E,R

(The `@' indicates the key next to 'P' on the
Commodore, BBC, Dragon and Tandy key-
boards. Unfortunately as there is no equiva-
lent key next to the P on the Spectrum and
Electron, this note is not available and these
computers cannot play this tune.)

Try your hand at 'Three Blind Mice'. To
get you going; here are the first few lines:

E,W,Q,E,W,Q
T,R,R,E,T,R,R,E
T,I,I,U,Y,U,I,T,T
T,I,I,U,Y,U,I,T,T

Commodore programs that SAVE
to and LOAD from tape can be
made to work with a disk drive after
using this simple machine code
converter routine

INY
LDA (&FB),Y
BNE WG
JMP STOP
WG LDA &FB
ADC # 3
STA &FB
LDA &FC
ADC #0
STA &FC
AD LDX #0
STX &033E
JMP NEXT
ABCMP #34
BNE AC
LDX &033E
CPX # 0
BNE AD
LDX #1
STX 3033E
JMP NEXT
A B LDX &033E
CPX # 1
B EQ NEXT

So far most programs given in INPUT have
assumed that you are SAVEing to and LOADing
from tape. But more and more people are
buying disk units which are a faster and more
efficient way of SAVEing your programs.

Of course, if you do have a disk unit you
can modify the programs given in INPUT
and elsewhere to work with it, by hand,
yourself. But why not let your computer do it
for you? The following assembly language
program will modify tape-dependent
programs for use with disk drives on the
Commodore 64 and Vic 20.

The BBC Micro does not need a conver-
sion program as it will default to disk drive if
one is present. The Electron and ZX81 don't
have disk drive units. It is not possible to give
one for the Dragon as there are three different
disk systems available. And a Microdrive
conversion program for the Spectrum was
given last time.

1
The following program converts all Commo-
dore programs written for use with tape into
programs that will work with your disk drive.

Essentially all it has to do is add ,8 after any
tape command. 8 is the device number for the
first disk drive attached. But this program
goes a little further than that. There is a
difference SAVEing on disk rather than tape. If
you SAVE on tape you can overwrite one
program with another, or save a program or
file as many times as you like under the same
name. But you cannot SAVE a program or file
on disk twice with the same name. If you try,
you'll get a disk error message.

Programs with names prefixed by @: ❑
will overwrite any previous version on the
disk. So this utility also adds @: ❑ before
the name of any program.

However, program names are sometimes
stored as strings. To have this disk utility go
back over the program, find the appropriate
string, and add @: ❑ to it, would double the
length of the routine. So this eventuality has
not been covered. If one of your programs
does store file names this way you have no
alternative but to add @: ❑ within the quotes
at the beginning of the program name
yourself.

ORG ❑ 49152
LDA # 0
STA &033E
CLC
LDA &2B
ADC # 3
STA &FB
LDA &2C
ADC # 0
STA &FC
NEXT LDY #0
INC &FB
BNE AA
INC &FC
AA LDA &FB
CMP &2D
BNE BB
LDA &FC
CMP &2E
BNE BB
JMP STOP
BB LDA (&FB),1
CMP # 0
BNE A
I NY
LDA (&FB),Y
BNE WG

LOCATING SAVES, LOADS,
OPENS AND VERIFYS
AVOIDING KEYBOARD

GRAPHIC COMMANDS
OVERWRITING FILES

USING A DATA TABLE
MOVING THE PROGRAM UP

ADDING DATA
UPDATING THE SYSTEM

VARIABLES

CMP #147
BEQ LOOP
CMP #148
BEQ LOOP
CMP #149
BEQ LOOP
CMP #159
BEQ LOOP
JMP NEXT
LOOP INY
LDA (&FB),Y
CMP #32
BEQ LOOP
CMP #0
BEQ COLINE
CMP #58
BEQ COLINE
CMP #44
BEQ COMMA
JMP LOOP
COMMA INY

 (&FB),Y

CMP #49
BEQ CG
JMP NEXT
CG LDA #56
STA (&FB),Y
JMP QUOTES
COLINE DEY
LDA (&FB),Y
CMP #32
BEQ COLINE
CPY #0
BNE KK
INY
CC JSR INSERT

LDA LABEL-1,Y
STA (&FB),Y
INY
CPY #8
BNE CC
JMP NEXT
KK LDA (&FB),Y
CMP #34
BEQ LL
CMP #36
BEQ LL

JMP NEXT
LL INY
JSR INSERT
JSR INSERT
LDA #44
STA (&FB),Y
INY
LDA #56
STA (&FB),Y

QUOTES LDY #1
RR LDA (&FB),Y
CMP #0
BEQ SS
CMP #58
BNE TT
SS JMP NEXT

TT CMP #34
BEQ UU
INY
JMP RR
UU INY

STA &FE
SUB DEC &FD
LDA # 255
CMP &FD
BNE DD
DEC &FE
DD LDY #
LDA (&FD),Y
LDY # 1
STA (&FD),Y
LDA &033C
CMP &FD
BNE SUB
LDA &033D
CMP &FE
BNE SUB
INC &2D
BNE EE
INC &2E
EE LDY &FF
RTS
STOP JSR &A533
RTS
LABEL BYT &22
BYT &40
BYT &3A
BYT &20
BYT &22
BYT &2C
RYT

LDA (&FB),Y
CMP #32
BEQ UU
CMP #64
BNE VV
JMP NEXT
VV JSR INSERT
JSR INSERT
JSR INSERT
LDA # 64
STA (&FB),Y
I NY
LDA # 58
STA (&FB),Y
I NY
LDA # 32
STA (&FB),Y
JMP NEXT
INSERT STY &FF
C LC
LDA &FC
STA &033D
PP TYA
ADC &FB
BCC QQ
INC &033D
QQ STA &033C
LDA &2D
STA &FD
LDA &2E

HOW IT WORKS
The first thing the program does is load 0 into
the accumulator and store it in memory
location 033E. This clears a byte that is going
to be used as a flag later in the routine.

The pointer to the start of BASIC is kept in
memory locations 43 and 44, or 2B and 2C in
hex. The first four instructions of this routine
store this pointer in the zero page memory
locations FB and FC which are in the user
area of the zero page. There you can manipu-
late them.

Then the Y register is loaded with the
number 0. INC &FB INCrements the contents
of FB, in other words moving the pointer onto
the next byte of the BASIC program. If the
result is zero when this is incremented, the
following Branch if result Not Equal com-
mand, BNE AA, does not operate—and the
high byte of the pointer is incremented. This
way, the transition across the edge of a page is
automatically accounted for.

The contents of the low byte of the pointer
are then loaded into the accumulator and
compared with the low byte of the pointer in
45 and 46, or 2D and 2E in hex. This points to
the end of BASIC. If the low bytes match, the
high bytes are compared as well. Obviously, if
both bytes match, this routine has reached the
end of the BASIC program—so it jumps to
STOP at the end of the routine.

Otherwise, the byte pointed to by FB and
FC offset by the value carried in the Y register
is loaded into the accumulator by LDA
(&FB),Y. You will note that the value carried
in the Y register is always 0 at this point, so
there is no offset. But indirect addressing is
needed at this point and all the indirect
addressed instructions are indexed.

CHECKING FOR QUOTES
Two of the Commodore keyboard graphics
symbols, clear screen and insert, can be
confused with the tape commands, LOAD and
SAVE. The ASCII codes for the two graphs
symbols are the same as the tokens for the
commands. But there is one way to tell the
difference between them. The graphics sym-
bols always appear in quotes, while SAVE and
LOAD never do. Even if the words SAVE and
LOAD appear in quotes, they are not com-
mands and are not tokenized. They are stored
as ASCII characters so that they can be
PR INTed on the screen.

So the routine has to check whether the
byte it is dealing with is in quotes or not. How
you do this is set a flag—in this case the
memory location 033E that was cleared at the
beginning of the program. The flag should be
set when the first quote in a line is
encountered. And when the second quote in a
line is encountered you have to reset it again.

Then this flag can be examined when nece-
ssary later in the program.

CM P # 0 starts the check-for-quotes rout-
ine by looking for 0 which is the end of line
marker. This is done in case there has only
been one quote mark in a line. If 0 is found,
BNE AB does not make the branch, 0 is loaded
into the X register and stored in 033E,
clearing the flag. Then JMP NEXT takes the
processor back to start checking the next byte
of the BASIC program.

If 0 is not found, the processor branches to
the label AB and compares the byte with 34,
the ASCII value of quote marks. Again if one
is found the BNE does not make the branch.
The contents of memory location 033E is
loaded into the X register and compared with
0. If it is zero, the BNE AD does not make the
branch, 1 is loaded into the X register and
stored back in 033E. If it's not zero—that is, if
it has previously been set to 1—the BNE AD
takes the processor back to the routine which
stores 0 in 033E to clear it. Either way, it
meets a JMP NEXT, which starts the routine off
on the next byte of BASIC again.

However, if no quote is found, the E;JE AC
takes the processor on to LDX &033E which
loads the contents of 033E into the X register.
This is compared to 1 to see whether it is set.
If it is, BEQ NEXT takes the processor back to
start on the next byte again. If not, it goes on
to check for the tape commands.

FINDING TAPE COMMANDS
The next byte of the BASIC program is still
in the accumulator, and CM P compares it with
the number 147, the token for LOAD. If it is
147, the following Branch if EQual, BEQ LOOP,
sends the processor to the LOOP label.

If the byte
is not the token for
LOAD, it is compared
with 148, the token for SAVE, 149,
the token for VERIFY, and 159, the token
for OPEN. If none of these tape commands is
found, JMP NEXT sends the processor back
again to the beginning of the routine to deal
with the next byte. But if any of these tokens
are found, the processor is sent off the LOOP
routine.

THE LOOP ROUTINE
INY increments the Y register and LDA
(&FB),Y loads the next byte after the tape
command into the accumulator. The routine
then uses CMP # 32 to check if it is a space.
32 is the ASCII for a space.

If the next character is a space, BEQ LOOP
sends the processor back to the beginning of
the LOOP routine again to see whether the
following character is a space as well.

Otherwise, CMP # 0 checks for a 0 end of
line marker. If it is found, BEQ COLINE takes
the processor off to the COLINE routine.

If it's not a space or an end of line marker,
the byte is compared with 58, the ASCII code
for a colon. If it is a colon, BEQ COLINE
branches to the COLINE routine.

The next thing that is checked for is a
comma. CM P # 44 compares the byte with the
ASCII for a comma (44). If the next byte is a
comma, BEQ COMMA sends the processor off
to execute the COMMA routine. If not, JMP

LOOP
jumps back
to the beginning of
the LOOP routine, so that
the next byte can be checked
for a space, end of line, colon or
comma.

THE COMMA ROUTINE
If the loop routine found a comma, it sends
the processor off to the COMMA routine. This
immediately increments the contents of the Y
register and LDA (&FB),Y loads the ac-
cumulator with the contents of the byte
following the comma.

This is compared with 49, the ASCII for 1.
The number 1 after an output command
indicates device number 1—a tape recorder—
is to be used. The number 2 would indicate
the screen, 4 a printer, 8 a disk drive. So if
what follows is not a 1, the routine branches
right back to the beginning of the routine
again.

If the next byte is the ASCII for 1, 56—the
ASCII for 8—is loaded into the accumulator
by LDA # 56. This is then stored in the
appropriate location by STA (&FB),Y. The
processor jumps to the QUOTES routine.

THE COLINE ROUTINE
The first thing the COLINE routine does is
decrement the Y register. Then it loads the
accumulator with the contents of the byte
immediately before the colon or end of line
marker. If this is a space, CMP # 32 and BEQ
CO LINE sends it back to do it again. In other
words, the routine moves back from the colon
or end of line marker until it bumps into a
character that is not a space. What it is looking
for is a program name in quotes.

When it has found something, a character
that is not a space, CPY # 0 checks to see
whether the Y register contains 0, which

would mean that it has gone all the way back
to the tape command. If it has, BEQ KK takes
the processor to the KK routine.

JSR INSERT Jumps to the INSERT
SubRoutine which moves the rest of the
BASIC program up one byte in memory, so
that something can be inserted. Then the
accumulator is loaded with data from the
LABEL table at the end of the program.

THE KK ROUTINE
If, when the routine was checking back from
the colon or end of line marker, it found a
character other than the token for the tape
save command, the KK routine is called which
checks for quotes or dollar signs.

So the first thing it does is load up the byte
in question. CMP #34, BEQ LL and CMP

BEQ LL checks for quote marks or a

This immediately increments the Y register to
look at the next byte, then moves the rest of
the BASIC program up two bytes to leave a
two-byte space, by calling the INSERT sub-
routine twice.

What needs to be filled into the two spaces
left empty here is ,8. This transforms the tape
commands SAVE "progname" or SAVE P$, or
whatever you've called your program, into the
disk commands SAVE "progname",8 or SAVE
P$,8.

So the accumulator is loaded with 44, the
ASCII for a comma, which is then stored in
the appropriate byte by the STA (&FB),Y.
Then the Y register is incremented and the
accumulator loaded with 56, the ASCII for 8,
so that the same STA (&FB),Y instruction loads
the 8 into the next byte.

Remember, this part of the program is only
executed if there is nothing following the tape
command, except spaces and a colon or end of
line marker. So Y starts off as 0. It is then
incremented to point to the first byte past the
command, and LDA LABEL — 1,Y loads the
accumulator with the first byte in the LABEL
table. This byte is then stored in the BASIC
program. INY increments Y. CPY # 8 com-
pares the contents of the Y register with 8. If
Y hasn't clocked up as far as 8, BNE CC sends
the processor back to move the BASIC
program up again and store another byte from
the table.

The seven bytes of data in the LABEL table
are 22, 40, 3A, 20, 22, 2C and 38 which are
the hex for the ASCII codes of the characters
making up "g: D ",8. This turns the simple
tape command LOAD, for example, into LOAD

,, 58.

When these seven bytes-have been inserted
the Y register is incremented to 8 and the BNE
CC instruction does not make the branch and
JMP NEXT sends the processor back to the
beginning of the program to start searching
for the next tape command.

dollar sign and takes the processor to LL if
either occur. If the byte contains a character
that is neither of these, it is an illegal character
under these circumstances. So the routine
ignores it and jumps back to NEXT to check the
next character.

THE LL ROUTINE
If the KK routine has picked up a quote mark
or a dollar sign it branches to the LL routine.

THE QUOTES ROUTINE
The QUOTES routine starts by setting Y back
to 1, with LDY # 1, then it loads up the first
byte after the tape-instruction token with LDA
(&FB),Y. This is then compared to 0 and 58 to
check when it has reached the end of the
BASIC statement in question again.

A rather peculiar construction is used here
with BEQ SS branching to an instruction with
an unconditional jump, JMP NEXT. This is
used because the branch instruction will not
branch more than 128 bytes backwards, or
127 bytes forward. Branch instructions only
carry a one-byte offset while a JMP has a two-
byte offset.

The next thing that is tested for is a quote
mark, and if CMP #34 finds one BEQ UU
branches on to the UU routine. If a quote mark
is not found, the contents of Y are incremen-
ted and JMP RR loops to check the next byte.
So the processor goes round and round this
loop looking at the BASIC program a byte at a
time until it hits an end of line marker, such

as a colon or a quote mark.
Although the Y register is incremented

either way, the CMP # 34 test turns out a
single I NY before the branch cannot be used
instead of the two used after the branch here,
thereby saving a byte. I NY affects the zero flag,
which the BEQ UU uses when deciding which
way to branch.

The next byte is then compared to 32, the
ASCII for a space. If it is a space, the routine
loops and the Y register is incremented again
until the check hits something other than a
space.

The next thing that is checked for is a @.
Obviously, if the program name already has a
@:C] to allow it to be overwritten, you don't
want to add another one. So if the next byte is
64—ASCII for @—the processor jumps back
to NEXT. Otherwise, it moves on to VV and
calls the INSERT routine three times, moving
all of the rest of the BASIC up three bytes in
memory.

Then the numbers 64, 58 and 32 are stored
in the three byte space created. These three

numbers are the ASCII codes for @: and a
space respectively. Once that has been done,
JMP NEXT takes the processor back to the
beginning again to check the rest of the
BASIC program.

THE INSERT ROUTINE
The insert routine has been called several
times during the machine code program so
far. What it does is shift all the BASIC
program following the point reached up in
memory one byte.

The first thing it does is to store the
contents of the Y register in the zero-page
location FF. The contents of the Y register
must be the same after you come out of the
INSERT routine as they were when you entered
it, otherwise you will lose your place in the
program. But during the INSERT routine you
are going to need the Y register. So its
contents are saved at the beginning and, you
will notice, the contents of FF are loaded back
into the Y register at the end.

The carry flag is then cleared by the CLC,
ready for the additions coming up. The value
of the high byte of the pointer stored in FC is
then copied into memory location 033D by
LDA &FC and STA &033D.

The contents of the Y register—which
counts how many bytes past a tape instruction
the program has reached—is transferred into
the accumulator so that it can be added to the
low byte of the pointer in FB and FC, which
carries the address of the tape-instruction
token itself. So the result of the addition gives
the address of the last byte of BASIC program
that is not going to be shifted up memory.

The result is stored in 033C whether it
overflows the eight-bit accumulator or not.
But if it does, the carry flag is set, the BCC—
Branch Carry Clear—does not make the
branch, and INC &033D increments the high
byte of the pointer.

The system variable that points to the start
of the variables area—that is one byte after the
end of the BASIC program—is carried by 2D
and 2E. This is copied into FD and FE so that
its value can be used.

After the label SUB there is a little routine
which decrements the pointer in FD and FE.
The first time this is done it decrements the
pointer so that it points to the last byte of the
BASIC program. But this little routine is
going to be used over and over again to move
byte by byte down the BASIC program.

The Y register is loaded with 0 and the
accumulator is loaded with the contents of the
memory location pointed to by the contents of
FD and FE, offset by Y. Y is then incremen-
ted by 1 and STA (&FD),Y stores the byte back
again one location further up memory.

The pointer you've stored in 033C and
033D which tells you where you are in the
BASIC program is compared with the value
in FD and FE. If they are not the same and
the routine has not worked its way all the way
down to where the insert is to be made, the
routine branches back to the label SUB where
the pointers are decremented and the next
byte is shifted.

When both bytes of the pointers match, all
the BASIC program after the insert has been
shifted. The only thing left to do in the
routine is to update the end of BASIC/start of
variables area system variable. This is done by
INC &2D, BNE EE and INC &2E.

The LDY &FF restores the value of the Y
register and RTS returns to the instruction
after the routine was called.

TIDYING UP
By moving the BASIC program about in
memory you have messed up all the pointers
which point to the beginning of each line of
BASIC. These are stored at the beginning of
the preceding line of BASIC.

Luckily there is a ROM routine which
corrects them all. So all you have to do is call
the subroutine at A533 with JSR &A533. RTS
then returns the computer to BASIC.

What follows is not strictly assembly lan-
guage. It is data. The BYT is an assembler
directive which tells it to set aside one byte of
memory for the data which follows.

To call the program use:

SYS 49152

Don't forget to enter a BASIC program that
needs converting first though, otherwise call-
ing the machine code routine will be a waste of
time. And if you do forget, the routine will
crash.

To SAVE this program you have to use your
machine code monitor (see page 280). But if
you want to use the monitor to SAVE to disk
instead of tape and try to convert it with this
program, you are going to run into some
difficulty. The machine code monitor is an
unusual program because the SAVE option is
accessed from a print statement. The SAVE is
not actually done by the program itself. You
do it when you move the cursor to SAVE on the
screen and press IRETURN I. So the monitor is
one of the programs you will have to amend
by hand.

This is easy enough to do. You simply have
to add ,8 to the end of Line 330. So Line 330
should read:

330 PRINT"gg ggP1- 46,"BB":P1- 45,"
B2: PR I NT" gg ggSAVE"CHR$(34)
N$CH R$(34)",8"

And when you LOAD the machine code
program back in off tape you must suffix the
LOAD instruction with a ,8,1 as in:

LOAD "PROGNAME",8,1

The ,8 tells your computer that a disk drive is
being used and the ,1 tells the machine to put
the code back in the same place in memory it
was taken from. Then type NEW to reset the
BASIC pointers.

ECK
The assembly language program given above
will work on Vic 20 as well. But you will have
to relocate it as what follows 49152 is not a
protected area. Try using 7168 as your origin
but don't forget to alter the pointers to shift
RAMTOP first to protect it. To do that use
the following POKEs:

POKE 51,255
POKE 52,27
POKE 55,255
POKE 56,27

Then:

C LR

The ROM that puts the BASIC line pointers
right after all the shifting has been down at the
end of the routine is different too. It starts at
C533 so that instruction should read JSR
&C533.

If you don't have a commercial assembler
for your Vic 20 you can enter the program via
your machine code monitor (see page 280). If
you don't fancy hand assembling it here is the
hex machine code which you can enter
directly:

There is another circumstance under
which the disk converter program won't
work. It is when the program name has
been stored as a string, as in:

SAVE P$

The program will add the ,8 after the
dollar sign, so this instruction will work
once. But as the actual program name is
stored elsewhere in a line like:

P$ = "DATAFILE"

the routine can add the @: ❑ before the
name, to allow it to be overwritten.

So when the program tries to overwrite
a file, you will get an error message.

A9 00 8D 3E 03 18 A5 2B 69 03 85 FB A5 2C
63 00 85 FC AO 00 E6 FB DO 02 E6 FC A5
FB C5 2D DO 09 A5 FC C5 2E DO 03 4C 60
1D B1 FB C9 00 DO 21 C8 B1 FB DO 08 C8
B1 FB DO 03 4C 60 1D A5 FB 69 03 85 FB
A5 FC 69 00 85 FC A2 00 8E 3E 03 4C 12 1C
C9 22 DO OF AE 3E 03 EO 00 DO ED A2 01
8E 3E 034C 12 1C AE 3E 03 EO 01 FO A8 C9
93 FO OF C9 94 FO OB C9 95 FO 07 C9 9F FO
03 4C 12 1C C8 B1 FB C9 20 FO F9 C9 00 FO
1C C9 3A FO 18 C9 2C FO 03 4C 7D 1C C8
B1 FB C9 31 FO 03 4C 12 1C A9 38 91 FB 4C
DD 1C 88 B1 FB C9 20 FO F9 CO 00 DO 11
C8 201C 1D B9 631D 91 FB C8 CO 08 DO
F3 4C 12 1C B1 FB C9 22 FO 07 C9 24 FO 03
4C 121C C820 1C 1D 201C 1D A92C 91 FB
C8 A9 38 91 FB AO 01 B1 FB C9 00 FO 04 C9
3A DO 034C 121C C9 22 FO 04 C8 4C DF
1C C8 B1 FB C9 20 FO F9 C9 40 DO 03 4C 12
1C 20 1C 10 201C 1D 20 1C 1D A9 40 91
FB C8 A9 3A 91 FB C8 A9 20 91 FB 4C 12 1C
84 FF 18 A5 FC 8D 3D 03 98 65 FB 90 03 EE
3D 03 8D 3C 03 A5 2D 85 FD A5 2E 85 FE C6
FD A9 FF C5 FD DO 02 C6 FE AO 00 B1 FD
AO 01 91 FD AD 3C 03 C5 FD DO E7 AD 3D
03 C5 FE DO EO E6 2D DO 02 E6 2E A4 FF 60
20 33 C5 60 22 40 3A 20 22 2C 38

To call the program use: SYS 7168

Don't forget to enter a BASIC program that
needs converting first though, otherwise call-
ing the machine code routine will be a waste of
time. If you do forget, the routine will crash.

To SAVE this program you have to use your
machine code monitor. But if you want to use
the monitor to SAVE to disk you are going to
run into some difficulty. The machine code
monitor is an unusual program because the
SAVE option is accessed from a print state-
ment. The SAVE is not actually done by the
program itself. You do it when you move the
cursor to SAVE on the screen and press
IRETURN I. So the monitor is one of the
programs you will have to amend by hand.

This is easy enough to do. You simply have
to add ,8 to the end of Line 330. So Line 330
should read:

330 PRINT"g PE46,"BB":PE45,"
B2: P RI NT" gg gg SAVE"C H R$ (34)
N$CH R$(34)",8"

And when you LOAD the machine code
program back in off tape you must suffix the
LOAD instruction with a ,8,1, as in:

LOAD "PROGNAME",8,1

The ,8 tells your computer that a disk drive is
being used and the ,1 tells the machine to put
the code back in the same place in memory it
was taken from. Then type NEW to reset the
BASIC pointers.

PROTECTING THE
INFORMATION

TAKING BACK-UPS
INDEXING

POSTING TAPES AND DISKS

Even if you're the sort of person
who keeps important information on
the backs of old envelopes, storing
tapes and disks is one area where it
doesn't pay to be disorganized

Storage systems based on magnetic tapes or
disks make it possible for the home computer
user to keep vast amounts of information, or
thousands of programs, in a very compact
form.

But the efficiency of magnetic storage
systems is also a potential weakness. Because
one small disk or tape can contain so much
information, any damage may have disastrous
results. And magnetic media are particularly
vulnerable.

SECURITY
Obviously, the most important thing is to
make sure that once you have put information
on to tape or disk, it stays there—and that you
can get it back when you want to. There are
two sorts of damage that can affect magnetic
media—physical and magnetic.

Physical damage can be anything from
bending a disk or crushing a tape, to getting
dirt on the surface. Prevent this by protecting
them at all times when they are not actually in
use. Always keep disks in their sleeves, and
store them in a proper disk box. Keep tapes in
their boxes—preferably in a rack (which also
makes them easier to find). Store well away
from heat, damp or dust.

Never touch the surface of a disk, or the
exposed section of tapes. Rewinding tapes
after use is good practice, since it means that
only the less vulnerable leader is exposed, and
also the tape is ready for use next time. Don't
leave tapes in the recorder for a long time with
the machine left on PLAY, as the head can
kink the exposed section. Similarly, don't
leave disks in the drive unit.

Magnetic fields strong enough to corrupt a
stored file are put out by many pieces of
household equipment. Loudspeakers contain
strong magnets, and so do some electric
motors even when they are not running—but
there are less obvious sources. In general keep
tapes—and especially disks—well away from

any electrical equipment, including the
television.

BELT AND BRACES
Accidents will happen, so it's worth keeping
back-ups or taking extra precautions—
especially for your most important files.

In general, it's a good idea to record two
versions of everything, even on the same tape
or disk. There's less likelihood of both being
lost than just one being corrupted. But if the
file is very important, make a copy on another
tape or disk. Keep this one somewhere else—
and don't use it. It can be a good idea to take
tape back-ups of important disks—tape is less
prone to corruption.

Protect your tapes from overwriting by
removing the two knock-out sections from the
back edge. Disks can be locked to prevent
overwriting.

KEEPING TRACK
Tapes and disks build up over a long period,
and it can be very hard to remember exactly
what you put where. So the general rule is to
label things as much as you can. Economy
permitting, keep each file on a separate, short
tape—or reserve disks for related files only.

Give each file a clear, unique name (within
the confines of what your system permits). In
particular, if you have several developments
of one program, give each a new name (or
number). Write the file names on the cassette
label as well as the inlay card—tape can get
separated from the case. Don't write on disk
labels with a hard pen—this can score the
disk. Keep a file index book to list all the
names, where the file is, and any notes.

On the file it's worth including a REM
statement with a date and description.

SENDING FILES
Tapes and disks are a very convenient way to
send information or programs through the
post. Tapes are reasonably strong and travel
well—surprisingly, the case is more likely to
suffer, so remove this and save weight, too.
You can get special tape posting wallets, but
for most purposes a padded bag is perfectly
adequate.

The biggest risk with disks is bending, so
pack them between two stiff cards.

Mark the outside of the package
`MAGNETIC MEDIA HANDLE WITH
CARE'. For extra assurance, you can send it
recorded delivery, or even registered mail.

Sharpen up your pencil and get to
work on your masterpiece. With a
fully-functioning text compressor,
you can write the epic adventure
you've always dreamed about

By now you should have a machine code
program stored on tape. The program will be
exactly the same whether you have started
from the assembly language listing, or the
hexadecimal. But you will need to write some
BASIC in order to use the machine code.

In this part of Games Programming you'll
be shown how to use BASIC with the ma-
chine code text compressor, and how to
harness the compressor to an adventure game.

DEVELOPING ADVENTURE GAMES
Earlier in INPUT you were shown how to
write adventure games. With only a few
alterations to the programs, you can use the
text compressor to save a large amount of
memory.

Initially, write the adventure according to
the framework given earlier, but only include
short messages, because they will be removed
later. For example, you may want to say
something along the lines of YOU HAVE
ARRIVED IN A LEAFY GLADE. THERE
IS A WOODEN LEG PARTIALLY
HIDDEN BY A TABLECLOTH. Instead of
entering this in full, use something like
LEAFY in the PRINT statement. Do this with
each of the PRINT statements so you can test
that the adventure actually works, iron out
bugs and make sure that there aren't any
glaring logical mistakes.

Once you are satisfied with the game itself,
you can move on to use the text compressor
and rewrite the PRINT statement.

The first thing to do is to work out what
your messages are actually going to say. If you
have a printer, the task may be a little simpler
as you can list the program, and work along-
side the listing. Write out a list of messages,
with the line numbers to which the messages
correspond. Any PRINT statement with more
than two or three words, is worth encoding.
Very short messages will save little or no
memory space by being encoded, so you may
want to save the work of encoding ther

SAVING MEMORY WITH THE
TEXT COMPRESSOR

ENCODING PRINT STATEMENTS
HOW THE DECODING

ROUTINE WORKS

ADAPTING YOUR ADVENTURE
PROGRAM

MERGING THE ADVENTURE
AND CODING PROGRAMS
CHECKING THE MEMORY

WHAT'S HAPPENING
As you encode your text, the machine code
program stores the binary in an array Z or Z%,
depending on which machine the program has
been written for. Another array, A or A%,
contains pointers which enable the machine to
keep track of where in Z or Z% each of the
messages start.

When you want to decode—that is, to print
the coded messages on screen—the pointers in
A or A% are used to pick out the right section
of binary for the decoding routine to work on.
As the binary is decoded, the characters are
fed into a string—Z$—which has been previ-
ously defined as being the length of the
longest message. To make the message appear
on the screen, all you need do is to tell the
computer to PRINT Z$—and give it the appro-
priate number from A or A% that tells it which
part of the message to feed into Z$.

Mill1111.1111111111r
Having tested the adventure program con-
taining the short PRINT statements, you can
start using the text compressor.

With the adventure game still in memory,
LOAD or type in these program lines. See page
339 for how to merge programs.

9900 CLEAR 64580: LOAD""CODE
9905 LET mem = 60000 — (PEEK

23653 + 256`PEEK 23654)
9910 PRINT "About CI ";mem;" ❑ bytes free"
9915 DIM z (INT (mem/5))
9920 INPUT "How many messages",n
9925 DIM a(n)
9930 RANDOMIZE USR 64600
9935 LET z(1) =11
9940 FOR m=1 TO. 1,
9945 CLS

9950 INPUT INVERSE 1;"Enter message
number ❑ ";(m), LINE z$

9955 IF z$ = "" THEN LET m = n: GOTO 9975
9960 RANDOMIZE USR 64607
9965 LET a(m) =z(1)
9970 IF mem +, z(1) <1100 AND

mem + z(1) > 900 THEN PRINT "About
1000 bytes left"

9975 NEXT m
9980 PRINT FLASH 1; TAB 6;"Now save your

program";TAB 6;"Do NOT RUN or
CLEAR!";TAB 31;"

Type GOTO 9900 after positioning the tape
containing the text compressor in your tape
recorder. The machine code will be LOADed
by Line 9900.

The program looks at how much memory
remains, and prompts you for the number of
messages you wish to enter. When you have
entered this, the program will prompt you to
type in each message in turn. You must be
careful about entering messages which extend
over more than one line.Ile° noyuse a carriage
return for formatting t is, WeCauseithe 0C-

puter will interpret it as an ended message.
Instead, fill the lines up with spaces so that
the messages format correctly—spaces don't
use up too much memory space.

The program warns you when there is
about 1000 bytes of memory remaining. If
you receive this message when typing in, be
careful that the program doesn't crash
because parts of the programs overwrite each
other. If you think you will run out of
memory space, look at your list of messages
for ways to shorten them, and start entering
them again from the beginning.

When you've finished, there's a prompt to
tell you to SAVE the program. Just type SAVE
"name of program", and the adventure and the
compressed text will be SAVEd together.

With the compressed text safely on tape,
you can change the adventure program so that
it can use the machine code text compressor
and the stored data instead of the temporary
PRINT statements. Delete all the lines from
9900 onwards, and type in this short subrout-
ine instead:

9900 LET Z(1) = A(N):RANDOMIZE USR
65067: PRI NT Z$

9910 RETURN

Now go through the program, substituting a
new instruction in place of each PRINT state-
ment for which you have encoded a message.
Suppose you wish to call the coded message
for the second PRINT statement. Change

PRINT "message"

to

LET N =2:GOSUB 9900

This sets the variable N equal to the number
of the message and then goes to the subrout-
ine. This picks the Nth element of the array A,
the pointers which select the right part of Z,
loads the message into Z$ and prints it out.

Finally, you'll need a dummy Z$, for the
machine code to use so that it can display the
decoded text. As near to the start of the
program as possible, define Z$ as anything
you like, but it must be long enough to accept
the longest message. Something
along the lines of:

1 LET Z$="XXXXXXXXXXXXXetc."

With the new version of the
program completed SAVE it again
on tape. When you want to
play the game, type

CLEAR 64580
LOAD""CODE (loading the
text compressor)
LOAD' (adventure plus
compressed text)

Never press RUN to run the program with the
compressed text, because you'll lose all of
your messages. Always type GOTO 1 instead.

ECK' .11111111.
Once you have the adventure containing the
shortened messages functioning to your satis-
faction, you can enter these lines. The SYS
calls are for the Commodore 64, but these are
the numbers which you will need to substitute
for the Vic 20 with various expansions:

Commodore 	Vic 20
64 	+ 8K + 16K + 24K + 32K
52718 	15854 24046 32238 36334
52678 	15814 24006 32198 36294
52976 	16112 24304 32496 36592
53008 	16144 24336 32528 36624

Also for the Vic, change Line 9905 to:

9905 DIM A%(N):T= INT
(FRE(0)12.01):

IF T-80<0 THEN
PRINT "NO

ROOM!":
END

9900 INPUT "DHOW MANY MESSAGES";
N:IF N=0 THEN 9900

9905 DIM A%(N):T= INT((FRE(0) +
65536)/2.01):IF T-80<0 THEN
PRINT"NO ROOM!":END

9910 DIM Z%(T):PRINT "D":Z$=
"TEST":SYS 52678:FOR L=1 TO N

9930 Z$="":PR1NT "gg a ENTER
MESSAGE";L:INPUT Z$:IF
Z$="" THEN N = L —1:GOTO 9960

9940 PRINT:SYS 52718:A%(L)=Z%(0):
IF Z%(T — 80) < >0 THEN N = L:GOTO
9960

9950 NEXT L
9960 Z$ = "123456789012345678901234

5678901234567890":Z$=Z$+Z$
9965 SYS 52976:PRINT "1:2"
9970 FOR L=1 TO N:Z%(0)=A%(L):SYS

53008:PRINT "a MESSAGE";L:
PRINT Z$

9980 NEXT L:PRINT "gaSAVE TO TAPE
(Y/N)?' ,

9990 GET A$:1F A$< >"Y" AND
A$ < >"N" THEN 9990

9995 IF A$="N" THEN RUN
10000 INPUT "ENTER NAME";N$:

OPEN 1,1,1,N$:PR1NT# 1,N
10010 FOR L=1 TO N:PRINT#1,A%(L)

CHR$(44):NEXT L
10015 FOR L=1 TO T:IF Z%(L) < >0 THEN

NEXT L
10020 T= L:PRINT#1,T:FOR L=1 TOT:

PRINT# 1,Z%(L)CHR$(44):IF Z%(L) < > 0
THEN NEXT L

10030 CLOSE 1

UN tIte program and respond to the
mpilf any of these messages needs to be

attpd n two lines, don't use any carriage
returns ikille messages because

the program
will interpret

them as the end of
the message. Instead
fill up the lines with

spaces—spaces do not
waste too much memory.

Once you have completed entering the
text, you'll be prompted to SAVE it to tape.
Delete the lines from 9900 onwards, and add
these lines to the start of the program:

10 CLR:INPUT "ENTER NAME";N$:
OPEN 1,1,0,N$:INPUT#1,N:D1M A%(N)

20 FOR L=1 TO N:INPUT#1,A%(L):NEXT L
30 INPUT#1,T:DIM Z%(T):FOR L=1 TO

T:INPUT#1,Z%(L):IF Z%(L)< >0 THEN
NEXT L

40 CLOSE 1
50 Z$ = "1234567890123456789012345

678901234567890":Z$=Z$+Z$
60 SYS 52976

Add this to the program, too:

9899 END
9900 Z%(0) =A%(L):SYS 53008:PRINT Z$:

RETURN

Don't forget to change the SYS for the Vic.
Each of the PRINT statements for which you

have compressed text must now be changed
into a GOSUB 9900. For example, if Line 500
contains the fifth message, change:

500 PRINT "SWAMP"

to

500 L=5:GOSUB 9900

L is a variable which is set equal to the number
of the message. In the subroutine it picks the
Lth element of the array A%, the pointers
which select the right part of Z%. When you
come to play the game, LOAD the text com-
pressor itself into the memory first. Enter:

LOAD"name of text compressor",1,1

Then NEW the computer.
Next, LOAD the adventure and
RUN it. It will take care of
LOADing the compressed text, but make
sure that you have the tape containing
the compressed text ready.

As soon as you've debugged your adventure
program containing the brief PRINT state-
ments, and are satisfied with the game, you
can think about using the text compressor.

The first step is to find out how much
memory remains after the adventure program
is in memory—type PRINT (?2 + ?3•256).
You'll need this figure a little later, so write it
down.

LOAD or type in the program below, and
RUN it:

10 MODE6:HIMEM = &6000— &200:PRINT
"LOOKING FOR ENCODE":'LOAD
"ENCODE"

20 INPUT"WHAT WAS THE VALUE OF
MEMORY LOCATIONS 2 + 256 .3 0 ",A$

30 INPUT"HOW MANY PIECES OF TEXT DO
YOU WANT TO ❑ ❑ HAVE ❑ ",A: IF A<1
THEN 30

40 B = INT((&6000 — &200 — EVAL(A$) —
A*4— &300)/4) +1

50 DIM a%(A +1),z%(B):z$ = STRING$
(255," ❑ ")

60 ESTRING = HIMEM +174:CALL
HIMEM +161

70 PRINT"ENTER YOUR MESSAGES NOW"
80 T= 0:REPEAT
90 T=T +1
100 INPUTLINE z$:IF z$="" THEN

z$ = " ❑ "
110 a%(T) = USR(ESTRING)AND&FFFF
120 PRINT"YOU HAVE 0 ";B*4 r a%(T);

"0 BYTES LEFT"

130 UNTIL (A=T OR a%(T)>B'4-40 OR
z$= "0")

140 IF z$=" ❑ " THEN 160
150 z$ ="0":a%(T+ 1) = USR(ESTRING)

AND&FFFF
160 INPUT"FILENAME PLEASE 0",A$:

C=LEN(A$):1F C<1 OR C>8 THEN
PRINT"TOO LONG":GOTO 160

170 H = OPENOUT(AS)
180 PRINT # H,A,B,T
190 FOR P=1 TO T:PRINT # H,a%(P):

NEXT
200 X= (a%(T+ 1) DIV 4) + 1:PRINT# H,X
210 FOR P=1 TO X:PRINT # H,z%(P):NEXT
220 CLOSE # H
230 END

RUNning the program will cause the coder to
be LOADed from tape. Make sure you have the
tape positioned correctly and the PLAY button
on the tape machine is depressed.

Enter the amount of memory remaining in
response to the prompt; also the number of
messages you have noted down. As you enter
each message, there's an indicator showing
how much memory remains. Be careful not to
run out of memory, or the program will crash
when you RUN it. If you do get close to
running out of memory, the messages will
have to be shortened, and entered from the
start again.

When you've completed the encoding pro-
cess, the program will prompt you for a
filename for the encoded text, and SAVE it on
tape or disk.

LOAD the adventure back into the machine,
and add these lines to the start of the program.
You may have to RENUMBER the adventure to
accommodate the lines.

10 MODE6:HIMEM = &6000 — &200:PRINT
"LOOKING FOR DECODE":'LOAD
"DECODE"

20 *OPT1,1
30 *0 PT2,1
40 z$ = STR1NG$(255," ❑ ")
50 INPUT"WHAT IS THE NAME OF YOUR

DATA PROG RAM",A$

60 IF LEN(A$) >8 THEN 50
70 H =OPENIN(AS)
80 INPUT # H,A,B,T
90 DIM a%(A),z%(B)
100 FOR P=1 TO T:INPUT # H,a%(P):NEXT
110 INPUT# H,X
120 FOR P=1 TO X:INPUT # H,z%(P):NEXT
130 CLOSE # H

140 CALL HIMEM +116
150 DSTRING = HIMEM +308

Add this PROCedure to the end of the
program:

20000 DEF PROCWORD(N)
20010 z%(0) =a%(N):CALL DSTRING:

PR1NTz$:ENDPROC

Finally, the PRINT statements will have to be
replaced by PROCedure calls. For example
Line 500 may contain the fifth message:

500 PRINT "CASTLE"

You'd change it to:

500 PROCWORD (5)

The number 5 is the variable N, which is used
in the PROCedure to select the right pointers
from a% which then pick the right message
out of z%. SAVE the completed adventure on
tape before you attempt to RUN it. When you
do RUN the program to play the game or test
it, have the text decoder and compressed text
cassettes to hand ready to LOAD them in.

14Z !Hi
Having debugged your adventure containing
the brief PRINT statements, you can now think
about starting to use the text compressor.

First, make sure that you have RUN the
adventure so that all the variables have been
set up. Now find out how much memory
remains—see page 268—and write the figure
down.

CLOAD or type in the program below, and
RUN it (note on the Tandy, omit the 0 in all
USR calls. Change POKE 144,1 to POKE 146,1):

PCLEAR1:CLEAR 200,32379:POKE 144,1
20 PRINT" POSITION TAPE AT CODER, PRESS

" PLAY FOLLOWED BY ENTER": MOTORON
'10 A$=INKEY$:IF A$< >CHR$(13) THEN 30

40 CLOADM"CODER"
50 CLS:INPUT" ❑ ENTER AVAILABLE

MEMORY El ";M:M = I NT(M)
60 IF M <10 THEN PRINT" MEMORY TOO

SMALL":END
70 DEFUSR9=32496:DEFUSR8 =32513:

NA =INT(M/55 — 9):IF NA < 1
THENNA=1

80 DIM A(NA),Z(NA'10):Z$="DUMMY": 	_
N = USR09(VARPTR(Z$))

90 CLS:PRINT" INPUT TEXT NUMBER:";
NT+1

100 LINEINPUTZ$:IF Z$="" THEN 150
110 A(NT)=USR08(VARPTR(Z(1)))
120 IF A(NT)> NA*50 THEN PRINT

" AVAILABLE STORAGE EXCEEDED":END
130 NT=NT+1:IF NT>NA THEN PRINT

" ALL POINTERS USED ":FORK =1
T01000:NEXT:GOT0150

140 GOTO 90
150 CLS:H = A(NT —1)
160 IF PEEK(H +VARPTR(Z(1))) < >0 THEN

H = H + 1:GOT0160
170 CLS:PRINT" SAVE DATA TO TAPE

(Y/N) ?',
180 A$=INKEY$:1F A$< >"Y"

ANDA$ < >"N" THEN 180
190 IF A$="N" THEN 300
200 PRINT"POSITION TAPE, THEN PRESS

ENTER":MOTORON
210 A$=INKEY$:1F A$< >CHR$(13) THEN

210
220 INPUT" ENTER FILENAME ❑ ";F$
230 OPEN"0",# —1,F$:PRINT# —1,H:

FORK= — 5TOH
240 PRINT# —1,PEEK(VARPTR(Z(1))+K):

NEXT
250 PRINT" ❑ DO YOU WISH TO SAVE THE

111E1001110EIECI POINTERS (Y/N)

260 A$=INKEY$:1F A$ < >"Y" AND
A$ < >"N" THEN 260

270 IF A$="N" THEN 290
280 PRINT# —1,NT:FORK=OTONT:

PRINT# —1,A(K):NEXT
290 CLOSE # —1
300 CLS:PRINT"NUMBER OF TEXT ARRAY

ELEMENTS REQUIRED =";1 + INT
(H/5)

310 PRINT:PRINT"NUMBER OF POINTER
ARRAY ELEMENTS REQUIRED =";NT

320 PRINT:PRINT"DO YOU A HARD COPY OF
THEE El ❑ 1:1 El 	POINTERS (Y/N) ?"

330 A$ = I NKEY$:IF A$ < > "Y" AND
A$ < > "N" THEN 330

340 IF A$="N" THEN 150
350 FORK = OTONT-1:PRINT# —2,

"POINTER 1=1";K,A(K):NEXT
360 GOTO 150

The program allows you to enter your list of
messages into the text compressor, but first it
CLOADs in the coder.

RUN the program, and follow the instruc-
tions for CLOADing the coder. Next, enter the
available memory, which you noted down
after RUNning the adventure. There will be a
prompt for each message. You should enter
each of your messages, making sure that you

don't use a carriage return in the middle,
because the machine will interpret it as the
message ending. If you want to make a
message more than one line long, fill up the
lines with spaces, which, incidentally, take up
very little memory space.

If there's enough memory for all of your
messages, the program asks you if you want to
save the data on tape. If you're satisfied with
your messages, you should select the Y
option—make sure that you have a tape ready
to receive the compressed text.

You have the option of not saving the
pointers on tape, which will allow you to save
even more memory. Unfortunately, you'll
find that the next part of your adventure
development is made a lot more fiddly. If you
do decide not to save the pointers, you will
need a list of their values. There's an option to
make a hard copy of the pointers for those of
you who have a printer.

If your messages occupy too much memory
space, the computer will tell you

AVAILABLE MEMORY EXCEEDED.
Check how much of your text remains, which
will give you some guide to how much you
should shorten your messages—because of
the way that the text is coded into varying
length binary numbers, it's almost impossible
to predict exactly by how much the messages
have to be shortened. You may just be
unlucky enough to find that the messages still
do not fit, so it's safest to cut a little more than
the number of letters would suggest.

When you need to RUN the program, type
RUN 50 because the coder is already in
memory, and it's a waste of time to CLOAD it
again.

With the compressed text stored safely on
tape, you can CLOAD back your adventure.
Now add these lines to the beginning of the
program—you may have to RENUMber your
adventure to accommodate the extra lines.

10 CLEAR256,32379: D E FUS R7 = 32496:
DEFUSR6 = 32507:POKE 144,1

20 CLOADM"DECODER"
30 DIMZ(106),A(21)
40 N = USR07(VAR PTR (Z$))
50 OPEN"I",# —1,"FILENAME"
60 INPUT# —1,H:FORK= —5 TO H:

INPUT # —1,N:POKE VARPTR(Z(0))
+ K,N:NEXT

70 INPUT # —1,NT:FORK = OTONT:
INPUT # —1,A(K):NEXT:CLOSE # —1

80 Z$ = "LENGTH OF LONGEST MESSAGE IN
DUMMY CHARACTERS"

You should have the tape containing the
decoder and the one containing the com-
pressed text to hand when you RUN the
adventure, for it needs to CLOAD them from
tape to function correctly. You will probably
need to change the FILENAME in Line 50 to
the name of your compressed text.

Now you need to change all the PRINT
statements for which you now have some
compressed text. For example, if Line 1050 is
the tenth message and reads like this:

1050 PRINT" DARK ROOM "

it should be changed to:

1050 N = A(10):GOSUB9000:PR1NTZ$

where the number in the brackets is the
number of the message. You'll now need a
subroutine like this so that the right part of
the coded text will be selected and fed into Z$
to be PRINTed on the screen:

9000 DV = USR06(VARPTR(Z(1)) + N):
RETURN

CSAVE the altered adventure program on tape
ready for use.

Pointing is a natural way to indicate
what you want. Light pens give you
an electronic pointer that you can
use for anything from screen
graphics to menu selection

Communicating with your computer usually
means putting in the information through the
keyboard, although there are a number of
alternatives. Probably the commonest of these
is a joystick—which you can use not just for
games, but also for more serious applications.
But another method that's not much more
expensive and offers some distinct advantages
is with a light pen.

Light pens are an exciting alternative to
conventional control. As the name suggests,
they're very similar to a conventional pen and
you use them with a natural movement to
`draw' or otherwise indicate points on the
screen. Because they can detect which po-
sition on the screen you are pointing to, they
can, for instance, be used to make choices
from a program that is directed by a menu.
With conventional control, this would typi-
cally require you to take your eyes away from
the screen and press one or more keys. With a
light pen, you simply point at the option.

APPLICATIONS
Light pens are particularly suited to applic-
ations where you need to be able to locate a
random position quickly on the screen. This
may be to enter the coordinates of that po-
sition, to place a mark, draw a line, select from
a menu or a host of other applications.

Light pens can be fast, easy to use, very
accurate and are particularly suited to applic-
ations such as graphics. Here, using the
cursor control (or even worse, entering co-
ordinates via the keyboard), can be slow and
laborious. With a light pen you can either
draw `freehand'—where you trace the outline
you want drawn with the light pen—or you
can point at the screen with the pen to choose
various options from a graphics program,
such as specifying the corners of a box.

Also, more and more games using light
pens are appearing on the market. They tend
to be of the type where objects are moved
from one position to another.

Another development is a trend in the
design of more serious applications programs,
such as wordprocessors or accounts programs
to adopt a 'you get what you see' approach.
This means that instead of entering instruc-
tions by using control characters or function

keys, they are entered by aligning the cursor
with the desired item on the menu, in effect
by pointing at the item.

Up until recently, applications for light
pens have largely been left up to the users to
work out for themselves. But now, with
interest building up, more software writers
are producing at least some programs with the
light pen specifically in mind.

A number of programs available allow the

pen to be used to create lines, circles, squares
or other geometric shapes and fill them with
various colours. Some graphics programs also
allow the use of a light pen for freehand
drawing. In conjunction with 'fill' commands
these programs allow the user to create some
inventive and intricate artwork.

One program, in particular, lets you use a
light pen to define graphics characters, or
symbols. You could then use a second

A CONVENIENT ALTERNATIVE
TO THE KEYBOARD

WHAT CAN A LIGHT PEN DO?
HOW LIGHT PENS WORK

SENSITIVITY

HIGH OR LOW RESOLUTION?
CHOOSING A LIGHT PEN

IS YOUR LIGHT PEN COMPATIBLE
WITH YOUR COMPUTER?

PROBLEMS WITH LIGHT PENS

program to construct complicated pictures, in
the same way as the articles on pages 484 to
491 and 528 to 533 do; the advantage is that
you can use a light pen to select the various
different options and characters, instead of
having both to type in your choices with the
keyboard and calculate screen coordinates.

Although light pens are not used all that
much in games, which tend to use joystick
control, some games, where objects on screen

need to be moved between various points—
for example chess, or draughts—do lend
themselves well to light pen control.

Other games which you can buy for light
pens include simple card games, word games,
and maze games. In a maze game, for in-
stance, you can use the light pen to point to
objects which you want to pick up to help you
to escape.

There is also a new development in the
games field of light pens—the light rifle. This
is already available for the Spectrum and
Commodore computers, and is specifically
designed for games. A variety of games
software is already compatible with this rifle.

HOW LIGHT PENS WORK
You may have seen light pens on television or
in the shops and apart from the lead, they look
very like a large writing pen.

Essentially, though, a light pen 'reads' a
position on a television or monitor screen.
When it is pointed at the screen the
electronics in the pen and the computer work
together to calculate the coordinates of that
point. This is possible because of the way in
which the display on cathode ray tubes (the
type used in televisions and monitors) is
created. A tiny light dot scans the screen from
left to right and from top to bottom. In the
case of a British standard television set, it zig-
zags down the 625 lines of the display 50
times in every second. This scanning is so fast
that the eye cannot detect the movement and
we perceive a stable image.

Light pens contain a light sensor in or near
the tip. This sensor, which is usually either a
light-sensitive transistor or diode, detects the
scanning dot as it flies past. An electrical
signal is produced, amplified and relayed to
the computer. As it is the computer which
controls the display on the screen, and there-
fore, 'knows' where the scanning dot will be
on the screen from moment to moment it can
then calculate the X and Y coordinates of the
exact position of the tip of the light pen on the
screen by comparing the moment of the
impulse from the pen and the position of the
dot.

Models of light pen differ in several ways:
in the type of light sensor used; where the

light sensor is placed (some, for example,
channel the light to the sensor via a piece of
optical fibre); where they house the associated
electronics; whether they allow you to use
different operating modes; whether, and if so
how, they show you when they have picked
up a signal; and last but not least, the type of
computer with which they are compatible.
These factors in turn affect the light pen's
operating characteristics. Apart from price,
the characteristics which distinguish a good
light pen from a bad one are its sensitivity and
resolution.

SENSITIVITY
A light pen's sensitivity refers to the range of
screen light intensities which the pen can
register. The better ones are able to pick up
most, if not all of the colours displayed on a
properly adjusted colour television screen.
Lesser quality ones find it difficult to detect
anything but the brightest colours. For many
uses this is sufficient but it does impose a
severe limitation on the flexibility of use of a

• If you find that your light pen behaves
rather erratically, or is inaccurate, it may
be picking up light from the room. You
might need to shut the curtains, or turn off
any very bright lamps.
• You may need to adjust the brightness
and contrast controls on your television or
monitor until the pen is able to work
properly.
• When you use a light pen to make a
choice from a menu, you should be careful
not to wave the pen around—point it
straight at the option you require; other-
wise the pen could well detect a wrong dot.
• Some of the new light pens also detect
which colour is on the screen; if you use
one of these, make sure your software tells
the pen which colours to detect. You may
also need to adjust your TV or monitor's
colour until it corresponds exactly with
the light pen.

light pen, particularly in graphics applic-
ations where the drawing background may
well be dark.

One problem with light pens is invalid
detections. These occur when sensitivity is
increased by a large amplification of the signal
from the light sensor. Increasing sensitivity
increases the likelihood of the pen being
falsely triggered by light sources other than
those of the screen—even daylight.

The more expensive light pens use a
number of methods to ensure that only valid
detections are made. The combination of light
sensor and light filters can be chosen, for
instance, closely to match the colour charac-
teristics of the dot on the screen. Also,
electronic filters can be used to ensure that the
light source is actually from the screen. Light
from the screen flickers 50 times a second. A
simple electronic circuit (called a 'high-pass
filter') is used to select only light that flickers
at this frequency.

HIGH RESOLUTION PENS
Once the hurdles of sensitivity and validity
are cleared, resolution can still be a problem.
Resolution refers to the area of the point on
the screen which is detected. This can vary
from a single screen point or pixel, with a
good light pen, to a bunch of characters with
the worst.

A light pen's resolution depends on the
type of sensor it uses, its speed of reaction and
the method of 'collimation', or collecting
light. Some light pens use an opaque tube to
channel the light to the sensor, others use
collimation optical lenses, or short lengths of
fibre optics. High resolution is important if
the pen is to be used for drawing rather than
just detecting. A high resolution pen with
good collimation can pinpoint a smaller dot,
and so is more accurate.

Models of light pen differ in the amount of
documentation and software which the manu-
facturer provides with them. For a light pen
to work at all it requires support from
software routines. The programming is fairly
simple, whatever pen and computer you own.
Future programs in INPUT will include
routines using light pens.

Because the pens need software to work,
how useful and accurate they are depends
largely upon how good the software is. Some
manufacturers provide a cassette with
example programs on, while others just pro-
vide listings to show you how to use the pen.

CHOOSING A LIGHT PEN
 There are several factors to consider when

selecting a light pen. For instance, you should
take accuracy into account. While some light

pens may have a high resolution in theory,
they do not necessarily keep to it accurately.
Some light pens are so inaccurate that, in a
drawing program, lines drawn with them
appear as a series of seemingly random pixels
all over the screen.

With this, and all features of light pens, it
seems to be a case of you get what you pay
for—the more you pay, the more accurate the

pen should be. Prices of light pens vary from
the price of a typical memory expansion to the
price of a cheaper home computer. However,
as with most products associated with com-
puting, prices are falling.

Some light pens, usually the more expen-
sive ones, also provide two useful features not
mentioned so far. The first of these features is
some sort of signal to let you know when the

pen has detected a valid light dot. The second
is some control that lets you determine when
the signal is conveyed to the computer.

Light pens usually use a light-emitting-
diode' to tell you when a valid dot has been
detected. This feature is not essential if you
just want the pen for drawing, but does help if
you are using the pen . to read positions from
the screen, or make choices from a menu.

Pens often have a switch to let you send the
information from the pen to the computer
only when you want; this facility is useful for
two main reasons: first, it reduces the chance
of accidental, or false, readings (which would
choose the wrong option on a menu, or plot
the wrong dot). Second, it gives you more
control over the readings taken by the pen.
There are various types of switches used for

this; some of the better pens, for example,
have hoods or miniature buttons on the front,
so that the switch is only turned on when the
pen actually touches the TV or monitor
screen.

When you are buying a light pen, you
should try it out before you buy it, just to
make sure it does what you want.

COMPATIBILITY
Another basic you must check before buying
is whether or not it actually works with your
computer. Like most other computer peri-
pherals, light pens only work with the com-
puter that they are made for.

You can sometimes get around this pro-
blem by connecting the pen to an interface;
the Spectrum and ZX81, especially, almost
certainly need an interface. If you buy a light
pen specifically for your Sinclair computer,
you may find some of these come with the
interface built-in.

Don't forget that light pens need software
to work. If you buy a pen that is not designed
specifically for your computer, you might
have to write or buy some software yourself to
make it work.

PROBLEMS WITH LIGHT PENS
Light pens are prone to problems if they are
not kept clean. Because they deal with light at
fairly low intensity, any dirt on the front of
the pen, or on the screen, can interfere with
the light signal that the pen picks up. How-
ever, it's easy to clean the pen and/or the
screen with one of many commercially avail-
able, alcohol-based cleaning kits.

Another problem peculiar to the light pen
is that it obscures at least part of the screen
when you use it. This is not too much of a
handicap unless the program has a lot of detail
on the screen.

Before buying, you must be sure that you
can't do what you want more easily with a
joystick. Don't forget that using a light pen
for drawing can be very uncomfortable since
the screen is vertical, as opposed to the normal
action of drawing on a horizontal pad of
paper.

Given the growing trend in both games
and more serious applications to make the
user interact more closely with the display,
and the speed, ease of use, and the low cost of
the light pen, it is bound to find increasing
popularity. With that the price will drop and
more software will become available with the
light pen in mind. For the user who is looking
for a cheap add-on that will allow a little more
than just playing games, and enhance playing
games to boot, a light pen is an ideal
acquisition for the micro owner.

Whether your interests lie in games
strategy or in predicting life or death
situations, don't rely on luck. Instead
find out how to make well-informed
guesses—and win

The power of computers lies in their ability to
obey instructions repeatedly, accurately and
at great speed. Compared with the almost
instant thought processes of human beings,
however, the performance of computers is
much outclassed. The human brain is parti-
cularly good at making judgements and com-
parisons of parameters such as distance, speed
and intensity of light.

But even this most sophisticated of organs
fails pitifully when we try to judge the
outcome of events. Yet it is essential to be able
to say, for example, that, 'for insurance
purposes, people are expected to live to 65 or
70 years', or that 'there is unlikely to be a
major earthquake in the UK within the next
century'. Such statements are common in
everyday speech—we weigh up the odds—and
they are also important for social, commercial
and scientific purposes. When we use words
such as odds, prospects, doubt, expectations and
likely, we are making mental calculations of
probability.

PROBABILITY EXPLAINED
Probability is a scientific measure of chance,
and is used to judge the likely outcome of an
event. It relies on there being a measurable
number of outcomes, as in football matches,
tossing coins, rolling dice, playing cards and
playing fruit machines. Naturally, you should

be able to measure or quantify the outcomes,
so events such as horse racing and football
matches are difficult subjects for probability.
If you say 'I expect to win' then you are saying
that you think there is a high probability that
you'll win.

Most people rely on intuition as their main
tool in calculating probability or chance.
They guess. You can, however, give yourself a
good edge in many matters involving chance
by looking carefully at what the outcomes of
any event might be, and which ones are more
likely. You can learn to predict the probable
results, and although there is no certainty
about them, you are more likely to be right
than someone who is making uninformed
guesses.

PROBABILITY AND COMPUTING
So what has probability to do with comput-
ing? The answer is, quite a lot. Although the
sort of probability mentioned above is very
loose and dependent upon guesswork, it is
possible to deduce mathematical rules with
certain types of event which allow us to
predict the likely result with a fair degree of
accuracy.

There are two ways in which computers
can be useful here. In the first case, they can
be used to simulate the event itself—it is a lot
easier to get a computer to throw a die two

thousand times to see what comes up than to
do it yourself. Secondly, if you know the
formulae for the expected outcome, you can
also get the computer to calculate the result.

Depending upon your interests, this can be
a purely theoretical exercise, or the basis of
many useful applications of the computer.
For an obvious application, look no further
than games, many of which contain large
elements of chance, where, for example,
your score is dependent on the likelihood of
particular results. But you could equally well
write a program to tell you the chance of rain
on any particular day (or the chance of a
volcanic eruption in the UK!). For the mo-
ment, let's concentrate on the theory. Later
on in INPUT, you'll see how you can set up
some of these applications.

MEASURING PROBABILITY
The theory of measuring probability requires
that you know the number of outcomes for
any event, and that each of these occurs at
some measurable frequency. The probability
of any particular event occurring is the num-
ber of times it happens (its frequency) com-
pared to the total of all the possible outcomes.
In other words it is this frequency expressed
as a fraction of all the possible outcomes.

Notice that if something is a certainty, its
probability is 1. This is because if it happens

WHAT IS PROBABILITY?
HOW TO MEASURE IT

PROBABILITY, FREQUENCY
AND CHANCE

COIN TOSSING PROGRAM

PROBABILITY OF SEVERAL
OUTCOMES

PASCALS TRIANGLE
FREQUENCY DISTRIBUTION

PREDICTING THE OUTCOME

every time, its frequency equals the number
of possible outcomes so when these are
divided into one another, the result is 1. So 1
is the highest possible probability. And for all
of several possible outcomes, their separate
fractional probabilities will always total 1
when added together.

One of the simplest and oldest methods of
reasoning probability is to spin a coin, and
predict the result. Because the coin has two
sides only, you know intuitively that in any
number of tosses, you should get heads
coming up half the time and tails the other
half, ignoring the remote chance of the coin
landing on its edge. To illustrate this method,
key and RUN the first program (you need a
Simons' BASIC cartridge for the Commo-
dore 64, and a Super Expander cartridge for
the Vic 20 for options 3 and 4):

5 BORDER 7: PAPER 7: INK 9: CLS
10 DIM n(4)
20 RESTORE 9000: FOR n=1 TO 4: READ

n(n): NEXT n
30 INPUT "Which test (1 —4)?",x: CLS
40 BORDER x: GOTO n(x)
50 REM Probability
60 REM Coin Toss
70 LET h = 0: LET t = 0
80 PRINT AT 2,6;"Press SPACE to toss"

90 PRINT AT 20,10;"HEADS:— ❑ 0";AT
21,10;"TAILS:— DO"

100 IF INKEY$< > CHR$ 32 THEN GOTO
100

110 IF x=2 THEN FOR n=1 TO 100
120 IF INT(RND*2) =1 THEN LET h = h +1:

PRINT AT 10,15;"H";AT 20,18;h: GOTO
130

125 LET t=t +1: PRINT AT 12,15;"T";AT
21,18;t

130 IF x=1 THEN IF 1NKEY$< > CHR$ 32
THEN GOTO 130

140 PRINT AT 10,15;" ❑ ";AT 12,15;"
150 IF x=1 THEN FOR m=1 TO 100: NEXT

m: GOTO 120
155 NEXT n: STOP
9000 DATA 70,70,170,460

10 PRINT" ❑ MENTER OPTION (1 —4)"
20 POKE 53280,3: POKE 53281,1
30 INPUT X:PRINT "0":IF X<1

OR X>4 THEN 10
40 ON X GOTO 70,70,180,460
50 REMPROBABILITY
60 REM 	COIN TOSS
70 H =0:T=0
80 PRINT "Empipipimia

PRESS THE SPACE BAR TO TOSS"
90 PRINT "igiggggiggHEADS:-

0":PRINT "TAILS: — 0"

100 GET A$:IF A$< >" ❑ " THEN 100
110 IF X=2 THEN FOR N=1 TO 100
120 IF INT(RND(1) .2) +1 =1 THEN

H=H +1 :PRINT "I§IggglaHEADS":
GOTO 130

125 T=T+1 :PRINT "l§gggla
TAILS"

130 PRINT "gig gggg gg";TAB(7);
H:PRINT TAB(7);T

140 IF X=1 THEN GET A$:1F A$< >" ❑ "
THEN 130

150 IF X=1 THEN 120
160 NEXT N:END

The program is as for the Commodore 64,
except these lines:

20 POKE 36879,27
80 PRINT "ginHIT SPACE BAR

TO TOSS."

10 MODE1
20 VDU23;8202;0;0;0;
30 PRINT:INPUT"WHICH TEST

(1 —4)1=1",X:CLS
40 ON X GOTO 70,70,180,460 ELSE 30
50 REM 	PROBABILITY
60 REM 	 COIN TOSS
70 H = 0:T= 0

80 PRINT TAB(6,2)"PRESS THE SPACE BAR
TO TOSS"

90 PRINT TAB(15,28)"HEADS:— ❑ 0"
TAB(15,30)"TAILS: 0 0"

100 G =GET:IF G< >32 THEN 100
110 IF X = 2 THEN FOR N=1 TO 100
120 IF RND(2)-1 THEN H=H+1:PRINT

TAB(19,15)"H" TAB(23,28);H: ELSE
T = T+ 1:PRINT TAB(19,17)"T"
TAB(23,30);T

130 IF X=1 THEN G =GET:IF G<>32
THEN 130

140 PRINT TAB(19,15);" ❑ " TAB(19,17);" ❑ "
150 IF X=1 THEN FOR D=0 TO

1000:NEXT:GOTO 120 ELSE NEXT
160 END

Users of the Tandy micro should change the
223 at Line 130 to 247.

10 PMODE3,1:CLS
20 INPUT" ❑ WHICH TEST (1 —4)0";X
30 CLS:IF X<1 OR X>4 THEN 20
40 ON X GOTO 70,70,180,460
50 REM 	PROBABILITY
60 REM 	COIN TOSS
70 H = 0:T= 0
80 PRINT@65,"PRESS THE SPACE BAR TO

TOSS"
90 PRINT@288,"HEADS: — ❑ 0":PRINT

"TAILS:— ❑ 0"
100 A$ =1NKEY$:IF A$< >" ❑ " THEN 100
110 IF X=2 THEN FORN=1T0100
120 IFRND(2)-1 THENH = H +1:PRINT

@204,"H":PRINT@295,H; ELSE
T = T +1: PRINT@207,"T":
PRINT@327,T;

130 IF X=1 AND PEEK(345) < >223 THEN
130

140 PRINT@204,""

150 IF X=1 THEN FORD = OT0200:
NEXT:G0T0120 ELSENEXT

160 A$=INKEY$:1F A$< >CHR$(13) THEN
160 ELSEEND

This program will be developed through this
article. When you RUN it you are prompted to
enter a number to select a test. At this stage,
you have entered only the first two tests, so
enter 1, and you are ready to toss a coin—
using the space bar or ISPACEI. The crux of the
program is Line 120 which sets ones (Heads)
or zeros (Tails) randomly. When a head is
thrown, Line 120 PRINTs an H, but it PRINTs a
T when a tail is thrown. The same line keeps a
running count of the number of heads and
tails as you toss repeatedly. Line 150 sets a
delay (except on the Commodores) between
tosses.

A few tosses will probably give very differ-
ent values for H and T, but larger numbers of
tosses will soon verify that they in fact occur
with what becomes closer and closer to equal
frequency—a half of the total number of
tosses or 5050. To demonstrate this fact on a
large number of tosses, RUN the program
again, but enter 2 to select the second test.
This time when you press the space bar or
ISPACEI, Line 110 sets up a loop to toss the
coin 100 times. Notice that the display shows
H and T very close to 50. Change the 100 at
Line 110 to 1000 and RUN, entering 2 again,
and notice that both H and T are very close to
500.

Remember that although in a short test you
could get heads every time you toss a coin, the
probability of a head is always a half. You
have to bear this in mind if you are looking at
more than one event. Many people believe
that if you toss a coin after getting ten tails in a
row, then the chance of getting a head is

greater than it would otherwise be. This is not
the case. Past events cannot influence the fact
that either a head or a tail is equally likely each
time you throw. If you toss 11 coins at once,
however, the probability of getting 11 tails is
smaller than of getting ten tails and one
head—although, in fact, it is even more likely
that you will get close to an equal number of
each.

MULTIPLE EVENTS
When there are several events, you need some
additional information to be able to predict
the probability of each outcome. One essential
piece of information is the total of all possible
outcomes. For example, if you toss a coin
twice, there are three possible outcomes: two
heads, a head and a tail, and two tails. You
might think that each of these will occur a
third of the time. In fact, the probabilities are
two heads (1/4), two tails (1/4) and a head and
a tail (1/2). To understand the third proba-
bility in the list, you need another essential
piece of information—the number of occur-
rences of each outcome. A head and a tail
occur twice, because there are two ways to get
the result—a head then a tail, and a tail then a
head—giving a total of four outcomes, three
of which are different.

In practice, there are two mathematical
tricks to spare you the effort of working out
the number of each outcome. These are the
binomial theorem and Pascal's Triangle.
Binomial means consisting of two terms. If an
event has only two possible outcomes, and
you know the probability of each, then you
can use the binomial theorem to give the
probabilities.

The binomial theorem tells us what to
expect from repeated tests of an event with
two outcomes. Call the probability of one
outcome P and call the other outcome Q.
(Remember that P and Q must add up to 1.)
Call the number of events N.

In the example of tossing a coin, both P,
the chance of a head, say, and Q, the chance of
a tail, will be I, for one toss. According to the
binomial theorem, the chance of any event
occurring twice is the probability of it hap-
pening once, multiplied by itself. In general,
the rule is that it is the probability of the event
raised to the power N. So for two heads in two
tosses, PIN =1*1 = I. There is thus a one in
four chance of getting two heads in a row.
Similarly, for five in a row, PIN gives 2t5, or
1/32.

As you will see later, you can use this
method to calculate probability in any case
where there are only two possible outcomes—
the yes/no or head/tail instance. But what
about the chance of something like getting

three heads and two tails out of five throws?
For the answer to this, we need a more
complex model.

A triangle of numbers devised by the
French mathematician, Pascal, has many app-
lications in mathematics, and it is equally
useful here. It gives all the possible outcomes
of any event with two results, and can be
thought of as a number of rows of numbers.
The first seven rows are as follows:

Row 0 	 1
Row 1 	 1 	1
Row 2 	1 2 1
Row 3 	1 	3 3 	1
Row 4 	1 4 6 4 1
Row 5 	1 	5 10 10 5 	1
Row 6 	1 	6 15 20 15 6 	1

To construct a triangle like this, write down
the first two rows—Row 0 and Row 1—which
are easily remembered. Row 2 then starts with
a 1 to the left and ends with a 1 to the right of
Row 1. The middle number (2) is obtained by
adding the numbers in the row above (1 + 1).
Similarly, Row 6 is obtained by adding 5 + 1,
5 + 10, 10 + 10, 10+5 and 5 + 1. By cont-
inuing this process, you can extend the
triangle to a large number of rows, which
would be difficult to figure otherwise.

Pascal's triangle gives all the information
you need, if you are tossing several coins (or
one coin several times). The number of coins
gives the row to look at; the number of items
in the row gives the number of different
outcomes. For example, there are two out-
comes for one coin (1 and 1 in Row 1) and
seven for six coins (1, 6, 15, 20, 15, 6 and 1 in
Row 6). The sum of numbers in the row gives
the total number of outcomes (2 for one coin,
4 for two coins and so on). Each number in the
row gives the probability. For example, in
Row 2, the first number (1) is the probability
of two heads, the second number (2) is the
probability of a head and a tail, and the third
number (1) is for two tails. Of course, the
frequency number has to be divided by the
total number of outcomes (four, in this case)
to give the probability. Notice that the result
of adding up the numbers in each row is
always a power of two (1, 2, 4, 8, 16). This is
because for any one event, there are only two
outcomes.

You can see how this method could be
useful if you wish to calculate the proba-
bilities of tossing, for example, 30 coins, but it
would be very tedious in constructing the
triangle to Row 30 and doing the
calculations—besides the large space required
to write the numbers. There is, however, a
graphical method to deal with such cases, and
here you can get the computer to help.

DISTRIBUTION CURVES
When there are many outcomes, and the
probabilities seem unclear, you can often get
good enough results to give you the answer
you want by plotting a distribution curve.
This is done by plotting the frequency of the
results that you have on a graph—a frequency
distribution. As with any graphical method,
you can see at a glance much of the inform-
ation it contains. If, for example, you were
playing a game in which a coin is tossed 30
times, say (the same as tossing 30 coins at
once), you could display the number of heads
(or tails) from each set of 30 tosses. To see the
result, key the next section of program,
without erasing the first section:

a
170 REM Rnd Peaks
175 PLOT 0,0: DRAW 180,0
180 FOR x=4 TO 160 STEP 4
190 LET gm =0: GOSUB 610
200 FOR n=0 TO h: PLOT x,n*6: NEXT n

220 NEXT x 	t---
230 STOP
610 REM Toss
620 LET h =0: LET t=0
630 PRINT AT 4,22;"HEADS:—",h;AT

6,22;"TAILS:—";t
640 IF gm< >0 THEN PRINT AT 0,0;

"GAMES: —";gm;AT 21,3;"HEADS FROM
30 TOSSES:"

650 FOR s=1 TO 30
660 IF RND> =.5 THEN LET h=h+1:

PRINT AT 5,31;"H";AT 4,29;h;" ❑ ": GOTO
670

665 LET t=t +1: PRINT AT 5,31;"T";AT
6,29;t;" 111 "

670 NEXT s
680 RETURN

170 REM 	RNDPEAKS
180 HIRES 0,1:FOR X=0 TO 300 STEP 20
190 GM =0:GOSUB 610

170 REM 	 RNDPEAKS
180 FOR X=0 TO 1264 STEP 16
190 GM =0:PROCTOSS
200 FOR Y=0 TO H'30 STEP 10
210 PLOT69,X,Y
220 NEXTY:NEXTX
230 END
610 DEF PROCTOSS
620 H = 0:T= 0
630 PRINT TAB(28,4);"HEADS:0";H;

200 FOR Y=0 TO H*6 STEP 6
210 TEXT X,200—Y,"",1,1,8
220 NEXT Y,X
230 GOTO 230
610 REM TOSS
620 H =0:T= 0
630 TEXT 220,10,"HEADS:",1,1,8
632 TEXT 220,20,"TAILS:"1,1,8
640 IFGM < >OTHENTEXT 0,0,

"GAMES:",1,1,8:TEXT 100,0,
"HEADS FROM 30 TOSSES:",1,1,8

650 FOR TS =1 TO 30
660 IF INT(RND(1)*2) +1 =1 THEN

H=H +1 :GOTO 670
665 T=T+1
670 TEXT 263,10,STR$(H),1,1,8
672 TEXT 263,20,STR$(T),1,1,8
674 TEXT 263,10,STR$(H),0,1,8
676 TEXT 263,20,STR$(T),0,1,8
678 NEXT TS
680 RETURN

170 REM 	 RNDPEAKS
180 GRAPHIC 2:FOR X=0 TO 1023 STEP 30
190 GM =0:GOSUB 610
200 FOR Y=0 TO H*34 STEP 34
210 POINT 1,X,995—Y
220 NEXT Y,X
230 GOTO 230
610 REM TOSS
620 H = 0:T= 0
630 CHAR 1,9,"HEADS:"
632 CHAR 2,9,"TAILS:"
640 IFGM< >OTHEN:CHAR 0,9,

"GAMES:":CHAR 3,1,"HEADS FROM 30:"
650 FOR TS =1 TO 30
660 IF INT(RND(1)*2) + 1 =1 THEN

H=H +1 :GOTO 670
665 T=T+1
670 CHAR 1,15," ❑ ❑ El "
672 CHAR 2,15," ❑ ❑ El "
674 CHAR 1,15,STR$(H)
676 CHAR 2,15,STR$(T)
678 NEXT TS
680 RETURN

"CIO" TAB(28,6);"TAILS:171";T;"111111"
640 IF GM< >0 THEN PRINT

TAB(2,9);"GAMES: ❑ " TAB(13,30);
"HEADS FROM 30 TOSSES: 0"

650 FOR TS =1 TO 30
660 IF RND(2) —1 THEN H = H +1:

PRINT TAB(39,5);"H" TAB(35,4);
H ELSE T= T + 1:PRINT TAB(39,5);
"T" TAB(35,6);T

670 NEXT
680 ENDPROC

NCO
170 REM 	RNDPEAKS
180 PCLS4:SCREEN1,0:FOR X=0 TO 255

STEP 4
190 GM = 0:GOSUB610
200 FOR Y=0 TO H'6 STEP 2
210 PSET(X,188—Y,2)
220 NEXT Y,X
230 GOT0160
610 H = 0:T=0
650 FORTS =1 TO 30
660 IF RND(2)-1 THENH = H +1

ELSET = T + 1
670 NEXT
680 RETURN

Now RUN the program, entering 3 to select
the third test. You should see a graph with a
series of points ascending to various peaks on
the screen. This is one of the many shapes that
are possible with this type of analysis. The
peaks are the number of heads from 30 tosses
plotted along the Y-axis, and they are spaced
out regularly along the X-axis. Notice that
there are more higher than lower peaks. This
is because the chance of you getting around
15, or about 12 to 17 heads are much higher
than those for smaller or larger numbers of
heads. You can see a similar pattern to this in
the numbers in Pascal's triangle, with much
larger values near the middle.

Line 180 sets up a loop to space out the
peaks along the X-axis. The variable GM sets
the number of 30-toss games to zero (Line
190) and a routine (Lines 610 to 680) is called
to make each set of 30 tosses. This routine
uses the elements of the second test, but it
tosses the 'electronic' coin 30 times, instead of
100. Except on the Dragon and Tandy
micros, as you run this test, you can notice the
letters H and T (head and tail) coming up at
the top right-hand corner of the screen. Once
30 tosses have been reached, the number of
heads, which is accumulated in the routine, is
scaled at Line 200 and PLOTted (Line 210) as
Y-coordinates. The Dragon and Tandy can-
not output text on a graphics screen, so this
part of the display is omitted.

To get the most value from such an

analysis, you need to arrange the information
to display one of the more recognizable
statistical curves—a normal distribution. Key
the next few lines to see a typical curve of this
type:

450 REM Norm. Dist.
460 DIM g(30)
470 PLOT 4,150: DRAW 0,-140: DRAW

245,0
480 GOSUB 560
485 IF 1NKEY$< >CHR$32 THEN GOTO 485
560 REM Graph
570 PLOT 4,10: FOR x=0 TO 1200 STEP 20
580 DRAW 4,600'FN n(ABS

((x —600)/140))+10— PEEK 23678
590 NEXT x: RETURN
600 DEF FN n(x)=1/(P1 . 1.4142*

2 . 71 81((x1 2)/2))

450 REM 	NORM DIST
460 HIRES 0,1:DIM G(30)
470 LINE 0,0,0,200,1:LINE 0,200,320,200,1
480 GOSUB 560
485 GET A$: IF A$ < > "0" THEN 485
490 END
560 REM GR
565 DEF FN N(X)=1/(ir'1.4142'

2.7181((r2)/2))
570 FOR X=1 TO 320
580 PLOT X,199—(FNN((X-160)/

24)'530),1
590 NEXT X: RETURN

ECK
450 REM 	NORM DIST
460 GRAPHIC 2: DIM G(30)
470 DRAW 1,0,0, TO 0,1023 TO 1023,

1023
480 GOSUB 560
485 GET A$:IF A$< > "E" THEN 485
490 END
560 REM GR
565 DEF FN N(X)=1/(ir'1.4142'

2.7181((X12)/2))
570 POINT 1,0,1015:FOR X=1 TO 1023

STEP 8
580 DRAW 1 TO X.1015 —

(FNN((X — 511)/69)*3000)
590 NEXT X:RETURN

450 REM 	 NORM DIST
460 DIM G(30)
470 MOVE 40,700:DRAW 40,100:

DRAW 1200,100
480 PROCGR
485 G =GET: IF G< >32 THEN 485
490 END

560 DEF PROCGR
570 GCOL0,1:MOVE 40,100:FOR

X=40 TO 1200 STEP 8
580 DRAW X,3000*FNNORM

((X-600)/120) +104
590 NEXT:GCOL0,3:ENDPROC
600 DEF FNNORM(X)=1/(P11.4142*

2.718 A ((X A 2)12))

14_Z
450 REM 	NORM DIST
460 DIM G(30)
470 PCLS:SCREEN1,0:LINE(0,0) —

(0,191),PSET:LIN E — (255,191),PSET
480 GOSUB560
485 A$=INKEY$:IF A$< >

THEN 485
560 DEFFND(X) =1/(4.4429*

2.7181*((X*X)/2))
570 COLOR2,3:DRAW"BM2,190":

FORX = 2 TO 255 STEP2
580 LINE— (X,191-640*FND

((X —127)/24)),PSET
590 NEXT:RETURN

RUN the program and enter 4 to see an ideal
normal-type distribution curve. Line 460
dimensions an array, which you need later to
keep a count of heads thrown. Line 470 draws
two X–Y coordinate axes, and Line 480 calls a
routine to draw the curve. This routine uses a
mathematical function (Line 580) to draw the
curve, which explains its perfect shape—all
the points join up to give a smooth curve. The
function is defined at Line 600 (Line 560 on
the Dragon and Tandy and Line 565 on the

Commodore 64 and Vic 20 micros). Do not
press any other keys yet, because the routine
is incomplete, and will give an error.

A smooth curve is very rarely obtained
when the information is plotted from actual
data. This is to be expected, because you are
dealing with probabilities, and not certainties.
The probability of an outcome—such as a
shower of rain during the monsoon season in
India—is high, but there have been periods
when drought replaces the expected down-
pours. The next test illustrates this point well.
What it does is to repeat the earlier coin
tossing experiment many times and plot the
results. Key the second part of the fourth test:

490 FOR g =1 TO 200: LET gm =g
500 GOSUB 610
510 LET g(h) =g(h) +1
520 PLOT 8 + 8*h,10 +4 .g(h)
530 PRINT AT 21,25;h;" El"
540 NEXT g
550 STOP

490 FOR GM =1 TO 200
500 GOSUB 610
502 TEXT 43,0,STRS(G1),0,1,8
504 TEXT 263,0,STR$(G2),0,1,8
510 G(H)=G(H) +1
520 PLOT H10+10,200 —G(H)*4,1
530 TEXT 43,0,STR$(GM),1,1,8:G1 =GM
532 TEXT 263,0,STR$(H),1,1,8:G2=H
540 NEXT GM
550 GOTO 550

490 FOR GM =1 TO 200
500 GOSUB 610
502 CHAR 0,15," ❑ OE"
504 CHAR 3,15," ❑ "
510 G(H)=G(H)+1
520 POINT 1,H*34,1023 — G(H) . 20
530 CHAR 0,15,STR$(GM)
532 CHAR 3,15,STR$(H)
540 NEXT GM
550 GOTO 550

490 FOR GM =1 TO 500
500 PROCTOSS
510 G(H)=G(H)+1
520 PLOT69,40*H,10*G(H) + 100
530 PRINT TAB(35,30);H;" ❑ "

TAB(9,9);GM
540 NEXT GM
550 END

490 FOR GM =170500
500 GOSUB610
510 G(H)=G(H)+1
520 PSET(H .8 + 7,192 — G(H)'2,3)
530 NEXT
540 GOTO 160

Now RUN the fourth test again. When the
ideal curve has been drawn, press the space
bar or 'SPACE to start tossing. Then notice a
series of points 'grow' to fill the space within
the curve. When the test is complete, 500
(200 on the Spectrum and Commodores)
points will have been PLOTted (set at Line
490). On some micros, such as the Spectrum,
the running time for this test is several
minutes. This is why the Spectrum and
Commodore perform the test fewer times by
using 200 rather than 500 in Line 490. Users
of the Commodore 64 can speed up the
execution of this test further by entering
GOTO 640 at Line 625 and GOTO 678 at Line
667, but you must delete these changes to run
the other tests.

This section of the program calls the
routine (Line 500) that tosses a coin 30 times
so, as in the third test, the tosses are flashed at
the top, right-hand side of the screen (except
on the Dragon and Tandy). Each set of 30
tosses is a game, and can result in any number
of heads between 0 and 30. So in the array at
Line 460, H can vary between 0 and 30. The
Spectrum does not have 0 as the first variable
in an array—as do other micros such as the
Acorns—so some provision could be made for
the rare event when no heads result from a
game of 30 tosses. But this is likely to be such

a rare occurrence because of the way that the
random numbers are generated, that no pro-
vision is made here. In fact, extremely small
or extremely large numbers of heads out of 30
tosses are most unlikely—their occurrence is
possible, but the probability of this happening
is very low.

Using the array, Line 510 keeps a count of
the results of each game. For example, every
time the result of a game is 11 heads, the array
G(11) is increased by one. Similarly, every
time the result is 15 heads, G(15) is increased
by one. At the start, all array variables are 0.

After each game, Line 520 scales the value
of H (the number of heads for 30 tosses) to
yield X and Y coordinates. The next time the
same result occurs, a point is plotted at the
same X-position, but one unit farther up the
Y-axis. Line 530 keeps a count of H for each
game, as well as a count of the number of
games.

USING THE CURVE
Run the fourth test a few times to see how the
profile of points within the curve varies, then
do the same again, but with smaller end values
for GM at Line 490. Even without the ideal
curve, you will soon be able to imagine an
idealized curve through the peaks. In pract-
ice, however, the reverse of this imaginary
process is of far greater value—if you know
the profile of the curve, you can predict the
results of future tests.

The value of H at the central peak is of
special interest. It is the mean, or mathemat-
ical average, of the 31 possible H-values along
the X-axis. In this case, it is 15. The mean
identifies the peak of the curve. This is the
most likely single value, but by itself it is not a
particularly useful piece of information.
Although you can say that 15 is most likely, 14
or 16 are only slightly less likely. There's a
number of common values around the peak,
and it is also useful to know how widely these
are spread. So the mean is used to specify
another important statistical parameter—the
standard deviation—a measure of the spread.
The formula for standard deviation is com-
plicated, but not without good reason. Once
you have calculated this parameter, you can
assign a probability to any point on the curve.

The standard deviation is a measure of how
much the values vary on both sides of the
mean. For example, a section of the curve
with a spread of 1.96 on either side of the
mean will enclose 95 per cent of the results. If
you extend the standard deviation to 2.58, the
curve will include 99 per cent of the results. If
you use commercial statistics software pack-
ages, they will have the facility to calculate
standard deviation.

A CASE OF SIX OUTCOMES
There are many instances of events that have
more than the two possible outcomes in the
simple example of the coin throwing. In such
cases, working out the likelihood of any one
event is not as easy as picking the relevant row
of Pascal's Triangle. For example, in the case
of dice, when you roll one die there are six
possible outcomes. Providing you are using
balanced dice, the six results are equally
likely. The results from two dice can be
worked out by drawing up a table, but in-
evitably, the more results you have the more
complicated the method of working them out
you have to follow becomes.

Here is a table of all the results possible
from rolling a pair of dice:

first dice value
1 	2 	3 	4 	5 	6

	

1 	2 	3 	4 	5 	6 	7

	

second 2 	3 	4 	5 	6 	7 	8
dice 	3 	4 	5 	6 	7 	8 	9
value 	4 	5 	6 	7 	8 	9 10

	

5 	6 	7 	8 	9 10 11

	

6 	7 	8 	9 10 11 12

As you can see in the table, there are 36
possible ways the dice can fall—six rows times
six columns—although there are only 11
different results. Several other facts are appa-
rent from this table. There is only one chance
in 36 of getting either the lowest or the highest
score (2 or 12 occur only once in the table),
whereas there are six chances in 36 (1/6) of
getting a score of seven. There are also six
chances in 36 of throwing a double. These are
given by the diagonal numbers 2 (two ones) to
12 (two sixes).

With a combination of the Binomial
theorem and this table, you can work out the
probabilities of multiple events. A good
example of a multiple dice throw event can be
taken from the game of Monopoly. If you end
up in jail, you have three goes to try and throw
a double, otherwise you have to pay the fine.
Intuitively, it appears that you have a 5050
chance of getting off (3 goes, and 1/6 chance
each time), but this is not the case. From the
table, you can see that the chance of not
throwing a double each time is 3036 (5/6).
Using the binomial theorem, you can see that
the chance of not throwing a double three
times in a row is 5/6 to the power of 3, or
125/216. This is about 58 per cent chance of
failure, so if you can afford to, and you want
to get out of jail, it pays to pay the fine and
leave jail without further ado.

U
UDGs

animals
	

484-491,528-533
creating extra
	

450
redefining numbers
	

452-457
SAVEing on tape
	

532-533
& high resolution graphics

	
531

storing the data
	

451-457
User defined functions 	578-583

V
Videotex
Virtual memory
Volatile storage

Wireframe drawing,
and colour
combining images
in 3 dimensions
with perspective

Wordprocessing

512
662-668
560-565
605-611
541-545

614
545
504

CUMULATIVE INDEX

An interim index will be published each week. There will be a complete index in the last issue of INPUT

A
Adventure games,

using the text compressor
Applications

CAD
	

566-572,573-577
conversions program
	

520-527
extend your typing
	

498-503
ASCII codes 	 420-421
ASCII files 	 622-623
Assembler

Dragon, Tandy
	

440-444
ATTR, Spectrum
	

656-658
Autorun 	 460-461
Axes for graphs 	415-416,470-471

B
Barchart 	 470-476
Basic programming

bouncing ball graphics 	584-592
Commodore 64
graphics 	 420-421
defining functions 	 578-583
detecting collisions 	 656-661
formatting 	 433-439
making more of UDGs

450-457,484-491,528-533
plotting graphs
	

413-419,470-476
probability
	

694-700
protecting programs
	

458-463
simple music
	

669-675
using files
	

622-627
wireframe drawing

	
509-513,662-668

wireframes in 3D
	

560-565
wireframe perspective
	

605-611
Bootstrap programs 	459-463
Bug Tracing
	

477-483
Bulletin boards 	 613
Bytes, saving

Acorn
	

546-552,593-595

C
Cardgame graphics 	 534-540
Cassette storage 	 504-505
Character sets

redefining 	 450-457
Collisions, detecting 	 656-661
Communications 	 612-615
Computer Aided Design,

program 	 566-572,573-577
Control commands,

in wordprocessing 	 545
Conversion program 	520-527

D
Data storage 	 413
Datafiles
	

623-624
Defining functions
	

578-583
Dip switches
	

646
Disk drives 	 506-508

converting programs for,
Commodore 64
	

676-682
Displays, improving
	

433-439
Distribution curves 	 697-700
Drawing in 3D
	

560-561
Drop outs
	

504
Duck shooting game
	

492-497

E
Editing programs

Commodore 64
	

420
Dragon
	

596-597
Electronic mail
	

614

F
Files, using
	

622-627
commands for
Acorn
	

626-627
Dragon, Tandy
	

627
Commodore 64, Spectrum,
Vic 20
	

626
FLASH command

Spectrum
	

434

G
Games programming

adventures, planning your own 422-427
duck shooting game 	492-497
using joysticks 	 464-469
pontoon game 	 535-540
pontoon game-2 	 553-559
pontoon game-3 	 598-604
text compressor

628-636,648-655,684-689
Graphics, CAD program
Graphics, ROM

Commodore 64
Graphs
Grid, drawing a

H
Histograms and barcharts

Imperial to metric
conversions
	

520-527
Interest on savings

program
	

583
Inversing the screen

ZX81
	

432

J
Joysticks,

duck shooting game
	

492-497
in games
	

464-469
interface, Electron
	

467-468
JOYSTK

Dragon, Tandy
Jungle picture

K
Keyboard, as a musical instrument

672-674

L
Legends

for graphs
	

416
Letter frequency,

for text compressor 	 636
Light pens 	 690-693

M
Machine code programming

animation
Vic 20, ZX8I

Ellipse, drawing a
Commodore 64, Dragon,
Tandy, Vic 20
	

581
684-689 	Epson codes 	 646-647

Escape codes
	

646

566-572

420
413-419
512-513

470-476

N
Networks
Number keys

redefining

0
On-board graphics

Commodore 64

assembler
Dragon, Tandy
Spectrum

modifying programs for
disk, Commodore 64
modifying programs for
the microdrive

Spectrum
program squeezer
Acorn
Dragon, Tandy

Memory
saving, Acorn
SAVEing on tape

Microdrives
saving and loading on

Modems
Monitors and TVs
Motion

equations of
Multicoloured background
Music

musical keyboard
scales

sharps and flats
tunes

546-552,593-595
637-641

672-674
670-672

671
674-675

Screen pictures
from UDGs

Seikosha codes
Serial access

tape systems
Space station,

drawing a
Speed POKE

	

614 	Dragon, Tandy
Spelling-checker

	

450-457 	Storage devices
String functions

Acorn, Spectrum
Stunt rider UDG, Vic 20
Submarine UDG, Vic 20
SYS

Commodore 64, Vic 20

Dragon, Tandy

	

430-444 	Program symbols

	

477-482 	Commodore 64
Protecting disks and tapes

	

676-682 	Protecting programs

616-621

546-552
532-533

505
616-621
612-615
445-449

584-592

420

490

Reverse graphics symbols
Commodore 64

ROM graphics
Commodore 64

Quote mode
Commodore 64

S

Q

R

666-668

444
543-544
504-508

484-491

505-506

420
683

459-463

637-641

581
429
430

463

647

420

420

420

P T
Tape storage 	 504-505
Teletext 	 614
Text compressor

628-636,648-655,684-689
Tokens

Commodore 64 	 421
Trace program

Spectrum 	 477-483
Commodore, Vic 20 	 514-519

TVs and monitors 	 445-449
Typing tutor part 4 	 498-503

Parameters for functions 	578-583
Pascal's Triangle 	 697
Pie charts 	 474-476
PEEK, Commodore 64

Vic 20, 	 656,658-659
Peripherals

data storage devices 	504-508
light pens 	 690-693
modems 	 612-615
setting up a printer 	 642-647
TVs and monitors 	 445-449
Who needs wordprocessors? 	541-545

Planning screen displays 	433-439
POINT, Acorn 	 656,659-660

Dragon, Tandy 	 556,660-661
Pontoon program 	 534-540

468-469 Pontoon program-2 	553-559

	

485-491 	Pontoon program-3 	598-604
PPOINT, Dragon, Tandy 	656,660-661
PRINT 	 434-438

Acorn, Commodore 64,
Spectrum, Vic 20 	 434

PRINT AT
Acorn 	 434
Spectrum 	 434,436

PRINT SPC
Commodore 64, Vic 20 	434-435

PRINT TAB
Acorn 	 434,438
Commodore 64, Vic 20 	 435
Spectrum 	 434

PRINT @
Dragon, Tandy 	 435

PRINT #, Commodore 64, Vic 20 	644
Printers, setting up 	 642-647

control commands 	 644-647
Program squeezer

	

428-432 	Acorn 	 546-552,593-595

The publishers accept no responsibility for unsolicited material sent for publication in INPUT. All tapes and
written material should be accompanied by a stamped, self-addressed envelope.

—J If you want to see whether you would
make a pilot, why not start by typing in
our ON-SCREEN FLIGHT
SIMULATOR?

..JFed-up with working out UDGs on
paper? There's a handy SCREEN
PLANNER PROGRAM to spare you all
the effort

—/Learn more about music generation,
including how to TRANSCRIBE YOUR
FAVOURITE TUNES onto the computer

-...1Find out how you can link up to other
enthusiasts via the telephone system and
a computer BULLETIN BOARD

JDiscover more of the theory and
practice of SORTING METHODS, with
routines for even greater speeds

-J PLUS ...for SPECTRUM users, a
guide to the subtle SOUND EFFECTS
possible in MACHINE CODE

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36

