
A MARSHALL CAVENDISH 32 COMPUTER COURSE IN WEEKLY PARTS

LEARN PROGRAMMING - FOR FUN AND THE FUTURE

Vol. 3 	 No 32

BASIC PROGRAMMING 67

PLAYING IN HARMONY 	 985

Better musical effects on the Commodores and Acorns
by using multiple voicing

MACHINE CODE 33

CLIFFHANGER: BEGINNINGTHE GRAPHICS 992 414
Putting in the data for the display—and how
to put together the separate routines

BASIC PROGRAMMING 68

PIECING IT TOGETHER 	 998

Employing the twin techniques of rubber-banding and
picking and dragging—for easier graphics

GAMES PROGRAMMING 32

CONTROLLING THE BOARD-2 	1004

Complete the programming of your Othello game,
and set the pieces in motion

APPLICATIONS 19
,M11111■••■•1111.

LET'S MAKE A DATE 	 1010 	7
A diary/calendar generator program that keeps track
of your important commitments

INDEX
The last part of INPUT, Part 52, will contain a complete, cross-referenced index.
For easy access to your growing collection, a cumulative index to the contents
of each issue is contained on the inside back cover.

PICTURE CREDITS
Front cover, Graeme Harris. Pages 985, 986, 987, 988, Berry Fallon
Designs/Projection Audio Visual. Pages 993, 996, Graeme Harris. Pages 998,
999, 1001, 1002, 1003, Kevin O'Keefe. Pages 1010, 1012, 1013, 1014, 1015, Ellis
Nadler. Pages 1011, 1012, 1013, 1015, Dave King.

© Marshall Cavendish Limited 1984/5/6
All worldwide rights reserved.

The contents of this publication including software, codes, listings,
graphics, illustrations and text are the exclusive property and copyright of
Marshall Cavendish Limited and may not be copied, reproduced,
transmitted, hired, lent, distributed, stored or modified in any form
whatsoever without the prior approval of the Copyright holder.

Published by Marshall Cavendish Partworks Ltd, 58 Old Compton Street, London W1V 5PA,
England. Printed by Artisan Presss, Leicester and Howard Hunt Litho, London.

HOW TO ORDER
YOUR BINDERS
UK and Republic of Ireland:
Send £4.95 (inc p & p) (IR£5.95) for
each binder to the address below:

Marshall Cavendish Services Ltd,
Department 980, Newtown Road,
Hove, Sussex BN3 7DN

Australia: See inserts for details, or
write to INPUT, Times Consultants,
PO Box 213, Alexandria, NSW 2015

New Zealand: See inserts for details, or
write to INPUT, Gordon and Gotch
(NZ) Ltd, PO Box 1595, Wellington
Malta: Binders are available from local
newsagents.

There are four binders each holding 13 issues.

BACK NUMBERS
Back numbers are supplied at the regular cover price (subject to availability).

UK and Republic of Ireland:
INPUT, Dept AN, Marshall Cavendish Services,
Newtown Road, Hove BN3 7DN

Australia, New Zealand and Malta:
Back numbers are available through your local newsagent.

COPIES BY POST
Our Subscription Department can supply copies to any UK address regularly at £1.00 each.
For example the cost of 26 issues is £6.00; for any other quantity simply multiply the number
of issues required by £1.00. Send your order, with payment to:

Subscription Department, Marshall Cavendish Services Ltd,
Newtown Road, Hove, Sussex BN3 7DN

Please state the title of the publication and the part from which you wish to start.

HOW TO PAY: Readers in UK and Republic of Ireland: All cheques or postal orders
for binders, back numbers and copies by post should be made payable to:

Marshall Cavendish Partworks Ltd.

QUERIES: When writing in, please give the make and model of your computer, as
well as the Part No., page and line where the program is rejected or where it does
not work. We can only answer specific queries—and please do not telephone. Send
your queries to INPUT Queries, Marshall Cavendish Partworks Ltd, 58 Old
Compton Street, London WIV SPA.

INPUT IS SPECIALLY DESIGNED FOR:
The SINCLAIR ZX SPECTRUM (16K, 48K,128 and +),
COMMODORE 64 and 128, ACORN ELECTRON, BBC B
and B+,and the DRAGON 32 and 64.

In addition, many of the programs and explanations are also
suitable for the SINCLAIR ZX81, COMMODORE VIC 20, and
TANDY COLOUR COMPUTER in 32K with extended BASIC.
Programs and text which are specifically for particular machines
are indicated by the following symbols:

SPECTRUM 16K, re;i
48K,128, and + 	J COMMODORE 64 and 128

ACORN ELECTRON, -"*"—,W
BBC B and B+ 	DRAGON 32 and 64

TANDY TRS80
MI 	VIC 20 T COLOUR COMPUTER

INCORPORATING MUSIC DATA
CHANGING THE TEMPO

COMPLETING THE HARMONY
GENERATING A NEW

HARMONIZING CHORD

There's no need to stick to one-
finger tunes, with our Playing in
Harmony program you can progress
to playing chords or simultaneous
melodies and harmonies

The two previous musical articles published
in INPUT discussed simple music theory and
how to turn your computer into a musical
instrument (pages 669-675), then how
to incorporate music data in a program
which subsequently scans through and
plays the sorted tune (pages 701-707).
But both these concentrated only on a
single melody line.

This article goes one step further
and provides programs that allow
chords, or simultaneous melodies
and harmonies to be played.
Although the theory of this has a
general application, of the computers covered
here, only the Commodore 64 and the BBC
have sound chips which render them capable
of playing more than one note at a time, so
only programs for these two are included.

The programs given here adopt the same
conventions as the two previous articles, so
you may want to reread these and refresh your
memory before you tackle the new
techniques.

WHAT IS A CHORD?
A chord is simply any group of notes played
simultaneously. If you play a handful of
random keys on a piano, that produces a
chord, although—confusingly—the sound
produced may be discordant. The commonest
and most pleasing chords contain three notes,
and are related to the major do, re, mi scale
discussed previously.

If you take do, the note two notes above it,
mi, and the note two notes above that, so—
these are C, E and G in the scale of C major—
and play these notes together, this is an
example of the simplest and best known of all
chords—the major chord. The name of the
chord is derived from the note it is built up
on: if this note is C, it is called the chord of C
major.

Any major chord has four semitones be-

tween the bottom note and the
middle note, and three semitones between
this and the top note.

You can also have a different sort of
chord—a minor chord—which has three
semitones between its bottom note and its
middle note, and four between the middle
note and the top note. So major and minor
chords both span seven semitones, but their
middle note is slightly higher or lower. This
gives the two chords different sound quality:
the major chord is usually considered brigh-
ter, and the minor chord sadder.

You can build up one other type of chord in
this way in a major scale. Starting on ti, or B
in the scale of C major, this chord contains B,
with D and F from the next octave up. This
has three semitones from its bottom to its
middle note and three from its middle to top
note. This is called a 'diminished' chord, and
is used much less frequently than the major
and minor chords.

There are seven notes in the major scale, on
which can be built three major, three minor
and one diminished chord. The three types of
chord are sometimes known as triads, since
they have three notes, and the note on which
the chords are built is known as the 'root', so
the root of E minor is the note E. The diagram

overleaf shows how these
chords might appear in sheet music.
Notes that are to be played simultaneously
appear one above the other.

HOW CHORDS ARE USED
If a tune in C major has the note C in it at a
given point, then any chord that also contains
C will harmonize with it and produce a
pleasing sound, richer than the melody on its
own.

The major chords C and F major and the
minor chord A, all contain the note C, so all
three of these chords will harmonize with a
melody note C. The melody note can act as
either the top, middle or bottom note of a
triad, so any note can be harmonized with
three different triads. C, for example, is the
bottom note of C major, the middle note of A
minor and the top note of F major. In fact, if a
melody contains C, then only an additional
two notes are needed to give the complete
three-note chord; E and G, to give the chord
C major. In this case the melody note func-
tions both as part of the melody and also as
part of the chord.

In the chord of C major, C need not always
be the lowest note. It doesn't matter which
note is at the top or bottom, or even if there is
more than one of any of the constituent notes.
Arrangements which don't contain C at the
bottom of the chord are known as 'inversions'
of the chord. The diagram on the previous
page shows a few different arrangements of
notes, all of which make up a chord C major.
The same principle applies, of course to other
chords.

HARMONIZING
The following program reads in a single
melody line from the DATA statement at the

Softer Sound on the Commodore
In the first program in the main article the
SID chip is programmed to produce very
characteristic bold sounds using saw-
tooth waveforms.

The chip can produce different sounds
using different waveforms by P0KEing
with different numbers* The Line to look
at is Line 3010* Originally EN and EF were
set to 33 and 32* If you change the values
to 17 and 16, you are instructing the SID
chip to produce more pleasing sounding
triangular waves instead.

end of the program and plays this melody
along with two notes, a little lower in pitch
than the melody, which harmonize with it.

A random process is used to generate the
other two notes of the three-note chord, so the
actual harmony will vary each time the tune is
played, but the chord produced is always a
triad from the key of C major. As it stands, the
DATA statements already contain a melody,
but you could try any tune in this program, so
long as it is in C major: in other words make
sure that the do in your tune corresponds to
C, with pitch number 13. Also don't let the
melody fall below this note. This still gives
you two octaves to play with, and the lowest
octave, with pitch numbers below 13, will
contain the two notes completing the
harmonization.

The notes in all three voices change at the
same time. Whenever the melody note
changes, a new harmonizing chord is gen-
erated. The program will produce sensible
harmonies, though not brilliant ones.

The melody 'When the Saints Go March-
ing In' is stored in the DATA statements at the
end of the program; one bar of music is stored
in each DATA statement. The diagram (right)
shows the opening of two variations that the
program may produce. The melody is the
same in each case, of course, but the har-
mony varies. With the first one, the four
chords are F major, C major, B diminished
and G major, and the second is C major, E
minor, D minor and C major.

10 GOSUB 3000
20 INPUT "DTEMPO";TP

30 G0SUB 4000
40 GOSUB 5000
90 K1 = 1:K2 =2:K3 = 3:K4 =4:K5 = 5
100 READPV,T:IFPV = 0THEN180
110 C = TB(PV)
120 11% = RND(K1)*K2 + K2:IF11%= K3THEN

12% = K5:GOT0135
130 I2%= RND(K1)*K2 + K4
135 I1%= C— 11%:12%= C-12%
140 POKEL1,LQ%(PV):POKEH1,

HQ%(PV)
150 POKEL2,LQ%(TA(11%)):

POKE1-12%,HQ%(TA(11%))
160 POKEL3,LQ%(TA(12%)):

POKEH3,HQ%(TA(12%))
170 POKEE1,EN:POKEE2,EN:

POKEE3,EN
180 FOR DL =1TOTP*T:NEXT
190 POKEE1,EF:POKEE2,EF:

POKEE3,EF
200 GOT0100
3000 SI = 54272
3010 EN = 33: EF = 32
3020 FOR I = SI TO SI + 28: POKE 1,0: NEXT
3030 POKE SI + 5,161 +8
3040 POKE SI +6,161 5+ 8
3050 POKE SI +12,161 +8
3060 POKE SI +13,1611 +8
3070 POKE SI+19,16 * 1 +8
3080 POKE SI + 20,1611 +8
3100 POKE SI + 24,6
3110 L1 =SI: H1 =S1+1:E1 =SI+ 4
3120 L2 = SI +7:H2 = L2 + 1:

E2=S1+11
3130 L3=SI+14:H3=L3+1:

E3=SI+18
3140 RETURN
4000 DIM HQ%(37), LQ%(37)
4010 -IMP= 2227:P2=21(1/12)

The subroutine at 4000 sets up the high
and low bytes in arrays LQ% and HQ% to
control the frequencies of the 37 notes in the
range of the instrument.

The subroutine at 5000 sets up two arrays
TA and TB that are used to define the scale of C
major and to deduce appropriate chords to
play with the melody. TA contains pitch
numbers corresponding to the succession of
`white' notes in the key of C major, which
could be called the note's 'scale number'. The

been removed from this part of the program
to increase speed although it does make it
harder to read.

The subroutine at 3000 initializes the SID
chip, setting values for the attack, decay,
sustain and release parameters for all three
voices. The sustain level for voice one is
higher than that for voices two and three:
consequently voice one sounds louder than
the other two voices, so the melody will sound
louder than the accompaniment.

4020 FOR I =1 TO 37
4030 LQ%(1) = TM P — 256* I NT

(TMP/256): HQ%(I)=TMP/256
4040 TM P = TMP* P2
4050 NEXT: RETURN
5000 DATA 1,3,5,6,8,10,12,13,15,

17,18,20,22,24,25,27,29,30,32,
34,36,37

5010 DIM TA(22):FOR 1=1 TO 22:
READ TA(I): NEXT

5020 DATA 1,1,2,2,3,4,4,5,5,6,6,7,
8,8,9,9,10,11,11, 12,12,13,13,14

5030 DATA 15,15,16,16,17,18,18,19,19,
20,20,21,22

5040 DIM TB(37): FOR 1=1 TO 37:
READ TB(I): NEXT: RETURN

10000 DATA 13,4,17,4,18,4
10002 DATA 20,20,13,4,17,4,18,4
10004 DATA 20,20,13,4,17,4,18,4
10006 DATA 20,8,17,8,13,8,17,8
10008 DATA 15,20,17,4,17,4,15,4
10010 DATA 13,8,13,8,17,8,20,8
10012 DATA 20,4,18,20,17,4,18,4
10014 DATA 20,8,17,8,13,8,15,8
10016 DATA 13,20

This is quite a complicated program, so
fairly detailed notes are provided. The
program shares, however, a certain amount of
code with the programs given in the previous
article (see pages 701-707).

Lines 10 to 90 set up the program, inputt-
ing a 'tempo' value, calling three initialization
subroutines, and setting variables K0 to K5 to
the values 0 to 5. Variables are used rather
than constants in the part of the program in
which speed is critical (Lines 100-200), since
variables can be handled faster than constants
in the form of groups of digits. Spaces have

first note of the scale, with scale number 1, C,
has pitch number 1, the second, D, has pitch
number 3, the fourth, F, has pitch number 6
and so on. TB returns the scale number which
corresponds to a given pitch number, so for
example the pitch number 13 corresponds to
the 8th note in the scale. The two arrays allow
the pitch number to be extracted given the
scale number, and vice versa: they allow
opposite operations to be performed. These
tables are needed by the logic that provides
the automatic harmony.

The main loop is from 100-200. Line 100
reads in the current pitch and duration values,
and bypasses the next piece of processing if
the note is a rest. Line 110 finds which scale
number it is, using the array TB. Line 120
randomly generates either 2 or 3, which
specifies how far below the melody the middle
note in the harmonizing chord will be. If it's
3, then the other note, controlled by 12, must
be 5 notes below the melody note. But if it's 2,
then the bottom note may be either 4 or 5
notes below the melody note, and this is
calculated by Line 130.

This invariably produces one of the three
possible triads that will harmonize with any
note. For example, if the melody note is A,
then the middle note may be F (2 notes in the
scale below it) or E (3 notes below it), and the
bottom note will be C or D. Consequently,
the note A will harmonize with the chord of F
major, D minor or A minor.

Line 135 sets 11 and 12 to the numbers of
the scale numbers that are to be used. Lines
140-160 POKE the high and low frequency
registers with the appropriate values; the
pitch for the melody is given by PV, which was
read from the DATA statements. The pitch for
the other two notes is derived using the array
TA, which converts the number of the scale
numbers into their pitch values. Lines
170-190 switch the envelopes on, execute a
delay loop, and switch the notes off at the end
of the notes.

There is no test for the end of data as this
would slow down the processing, so the
program will give an 'out of data' error
message when it has finished playing.

El
10 INPUT "TEMPO ", TP
20 GOSUB 5000
30 ENVELOPE 1,1,0,0,0,0,0,0,30,-2,

0,0,120,100
40 ENVELOPE 2,1,0,0,0,0,0,0,30,-2,

0,0,110,90
50 ENVELOPE 3,1,0,0,0,0,0,0,-127,-127,

— 127, — 127,0,0
100 READ PV,T: IF PV = 0 THEN 170
110 C=TB(PV)

120 11 = RND(2)+1: IF 11 =3 THEN 12=5:
GOTO 140

130 12=RND(2)+3
140 SOUND &11,1,53 + (PV —1)*4, —1
150 SOUND &12,2,53+ (TA(C —11) —1)

*4,-1
160 SOUND &13,2,53+ (TA(C —12) —1)

*4,-1
170 FOR DL =1 TO TP*T: NEXT
180 SOUND &11,3,0,-1
190 SOUND &12,3,0,-1
200 SOUND &13,3,0,-1
210 GOTO 100
5000 DATA 1,3,5,6,8,10,12,13,15,17,

18,20,22,24,25,27,29,30,32,34,
36,37

5010 DIM TA(22): FOR 1=1 TO 22: READ
TA(I): NEXT

5020 DATA 1,1,2,2,3,4,4,5,5,6,6,7,
8,8,9,9,10,11,11,12,12,13,13,14

5030 DATA 15,15,16,16,17,18,18,
19,19,20,20,21,22

5040 DIM TB(37): FOR 1=1 TO 37:
READ TB(I): NEXT: RETURN

10000 DATA 13,4,17,4,18,4
10002 DATA 20,20,13,4,17,4,18,4
10004 DATA 20,20,13,4,17,4,18,4
10006 DATA 20,8,17,8,13,8,17,8
10008 DATA 15,20,17,4,17,4,15,4
10010 DATA 13,8,13,8,17,8,20,8
10012 DATA 20,4,18,20,17,4,18,4
10014 DATA 20,8,17,8,13,8,15,8
10016 DATA 13,20

The logic of this has much in common with
the Commodore 64 version, so the notes for
that program should be read in conjunction
with these. Line 20 calls the subroutine at
5000, which initializes the two arrays TA and
TB, used to convert pitch numbers into scale
numbers and vice versa.

Line 30-50 define three envelopes: the
first one is used by the melody, the second by
the harmony (it is slightly quieter), and the
third is used to switch the sound off between
notes.

The main loop is from 100-210. Line 100
reads the next pitch and duration values, and
bypasses some processing if the note is a rest.
Line 110 deduces the scale number from the
pitch number, 120 and 130 generate the scale
numbers of the notes that will harmonize with
the melody, and the notes are played by Lines
140-160. Line 170 is a delay, and the notes
are switched off by Lines 180-200.

Notice that the SOUND commands each
have the second hex digit of their first
parameter set to 1, and their last parameter set
to —1. This ensures that each note continues
until it is interrupted by a new note, and
makes it easier to play notes simultaneously.

Is there any way of adapting a
home micro which is incapable
of playing more than one note at
a time to play chords or
simultaneous melodies and
harmonies*
Although the hardware on some home
micros such as the Spectrum doesn't
support music with more than one voice,
it is possible to add hardware that will
enable the Spectrum to do this. You can
interface your computer with a
synthesiser using MIDI, a recently
announced standard for connecting home
micros with certain keyboards.

The connection allows the computer's
memory to be used to store notes and be
used as a sequence-playing back
sequences of notes and chords which can
accompany live music.

The MIDI interfaces are now
available for the Spectrum, Commodore
64 and the Acorn. Portable MIDI
standard music keyboards will soon be
available to accompany the
microcomputer interfaces. These low-
cost units are being manufactured
specifically for home micro users*

SIMULTANEOUS MELODIES
With the previous program, all three musical
parts change simultaneously-when a melody
note changes, so does the accompanying
chord-and also, only triads are played. The
next program allows you to specify exactly
what is played by all three parts. Any combin-
ation of notes can be played, and the melody
can move at a different rate from the
accompaniment.

As before, the music is held in DATA
statements at the end of the program. The
data for the whole of the first voice-from the
beginning to the end-is stored first, then the
data for the whole of the second, and then the
whole of the third. For information on how to
convert sheet music into the form suitable for
this program read the previous music article
(pages 701-707).

The DATA for each of the three voices is
terminated by the special pair of values 99,99
(in Lines 10031, 20020 and 30020 in the data
supplied). The other DATA statements each
contain note definitions for exactly two bars,
to make it relatively easy to determine which

DATA statement contains note information for
which bar. If you want to modify this
program for a piece containing only two
voices, immediately follow the 99,99 pair at
the end of the second voice with another 99,99
pair, so the third voice is effectively assigned a
null batch of data.

The programs include data for 'Three
Blind Mice' in a three-part arrangement
shown in the diagram on page 988. The
harmony sticks mostly to simple triads: the
first chord is C major, the second is G major
and the third is C major again.

10 GOSUB 3000
20 INPUT "QTEMPO";TP
30 GOSUB 4000
40 GOSUB 5000
50 K0= 0:K1 =1:K2 = 2:K3 = 3
100 P1=0: P2=0: P3=0
110 GOSUB 1000
120 GOSUB 1100
130 GOSUB 1200
140IFT1 < > 99TH ENT1 = T1 - K1:I FT1 =

K0THENP1 = P1 + K2:GOSUB1000
150IFT2< >99THENT2= T2 - K1:IFT2=

K0THENP2= P2 + K2:GOSUB1100
160IFT3 < > 99THENT3 = T3 - K1:I FT3 =

K0TH EN P3 = P3 + K2:GOSUB1200
170 FOR DL =1 TO TP: NEXT
180 GOTO 140
1000 POKE E1,EF:T1 = DA%(K1, P1 + K1)
1010 PV=DA%(K1,P1):IF PV=99 OR

PV = K0 THEN RETURN
1020 POKE E1,EN:POKE H1,HQ%(PV):

POKE L1,LQ%(PV)
1030 RETURN
1100 POKE E2,EF:T2= DA%(K2,

P2+K1)
1110 PV=DA%(K2,P2):IF PV=99 OR

PV= K0 THEN RETURN
1120 POKE E2,EN:POKE H2,HQ%(PV):

POKE L2,LQ%(PV)
1130 RETURN
1200 POKE E3,EF:T3= DA%(K3,

P3+Kl)
1210 PV= DA%(K3,P3):IF PV=99 OR

PV= K0 THEN RETURN
1220 POKE E3,EN:POKE H3,HQ%

(PV):POKE L3,LQ%(PV)
1230 RETURN
3000 SI = 54272
3010 EN =33: EF =32
3020 FOR I =SI TO SI +28: POKE 1,0: NEXT
3030 POKE SI +5,16*1+1
3040 POKE SI +6,16*15+1
3050 POKE SI +12,16*1+1
3060 POKE 51+13,16*10+1
3070 POKE SI +19,161 +1
3080 POKE SI +20,16*10+1

3100 POKE SI +24,6
3110 Ll =SI: H1 =SI+1:

El =51+4
3120 L2=51+7:H2=L2+1:

E2=51+11
3130 L3=51+14:H3=L3+1:

E3= 51+18
3140 RETURN
4000 DIM HQ%(37), LQ%(37)
4010 TMP=2227:P2=21(1/12)
4020 FOR 1=1 TO 37
4030 LQ%(1)=TMP-256*INT(IMP/

256): HQ%(I) = TMP/256
4040 IMP =TMP * P2
4050 NEXT: RETURN
5000 DIM DA%(3,1000)
5010 FOR VN =1 TO 3: P=0
5020 READ DA%(VN,P): READ

DA%(VN,P + 1)
5030 P = P +2
5040 IF DA%(VN,P -2) = 99 THEN NEXT VN
5050 IF VN <4 THEN 5020
5060 RETURN
10000 DATA 17,6,15,6,13,12
10002 DATA 17,6,15,6,13,12
10004 DATA 20,6,18,4,18,2,17,12
10006 DATA 20,6,18,4,18,2,17,10,20,2
10008 DATA 25,4,25,2,24,2,22,2,24,2,

25,4,20,2,20,4,20,2
10010 DATA 25,2,25,2,25,2,24,2,22,2,

24,2,25,4,20,2,20,2,20,2,20,2
10012 DATA 25,4,25,2,24,2,22,2,24,2,

25,2,20,2,20,2,20,4,18,2
10014 DATA 17,6,15,6,13,12
10020 DATA 99,99
20000 DATA 8,6,12,6,8,12
20002 DATA 8,6,12,6,8,12
20004 DATA 15,6,13,6,8,12
20006 DATA 15,6,12,6,13,12
20008 DATA 17,6,15,6,17,6,18,6
20010 DATA 17,6,18,6,17,6,15,6
20012 DATA 13,6,15,6,17,6,12,6
20014 DATA 13,6,12,6,5,12
20020 DATA 99,99
30000 DATA 1,6,8,6,5,12
30002 DATA 1,6,8,6,5,12
30004 DATA 12,6,10,6,1,12
30006 DATA 12,6,8,6,10,12
30008 DATA 8,6,6,6,8,6,12,6
30010 DATA 8,6,8,6,8,6,6,6
30012 DATA 5,6,6,6,8,6,6,6
30014 DATA 8,6,8,6,1,12
30020 DATA 99,99

Lines 10 to 50 set up the program, by
inputting a 'tempo' value, calling several
initialization subroutines, and setting vari-
ables K0 to K3 to the values 0 to 3. Variables
are used rather than constants in the part of
the program in which speed is critical, as with
the previous program.

The subroutine at 3000 initializes the SID
chip. Again the sustain level for voice one is
higher than that for voices two and three for
voice one to sound louder than the other two
voices. Lines 3110-3130 set variables to the
addresses of high and low frequency registers
and envelope control registers for all three
voices; again variables are used for speed.

The subroutine at 4000 sets up the high
and low bytes in arrays LQ% and HQ% to
control the frequencies of the 37 notes in the
range of the instrument.

The subroutine at 5000 reads pitch and
duration value pairs from the DATA statements
into the array DA%(3.1000). The first index
gives the voice number, the second is for the
position in the array of the pitch and duration
pair being handled. It is not possible to READ
DATA directly from the DATA statements as the
music is played, since the Basic interpreter
supports only a single pointer that READs DATA
statement items from the current position. As
the logic of this program requires data to be
read from different parts of the DATA state-
ment region, the solution is to read the values
from the DATA statements into the array
mentioned, and this can then be read by 3
different pointers (P1, P2 and P3) which scan
along the array as the music plays. If the
different musical parts move with different
rhythms, then the pointers will scan through
the array at different rates. Line 5040 detects
the value 99 that ends the block of data for
each voice, advances the variable VN (for voice
number) to its next value, and resets the
pointer P to 0 (in Line 5010), to read in the
block of data for the next voice.

The subroutine at 1000-1030 handles a
new note in voice number 1; P1 points to the
current pair of values specifying its pitch and
duration. First the subroutine switches the
envelope off, thus ending the previous note. It
then fetches the duration data for the new
note, which is put into the variable T1. Line
1010 assigns the pitch value of the current
note to the variable PV; if it's 99, the end of the
data for that voice has been reached, and if it's
0 then the note is a rest. In either case the
subroutine is exited with a RETURN statement.
Otherwise, Line 1120 switches on the envel-
ope, and loads the high and low frequency
registers, accessing the arrays LQ% and HQ%
using the pitch value as an index. The
subroutines at 1100 and 1200 perform the
same operations for voices 2 and 3.

Line 100 sets the pointers that are to scan
through the array DA%, and 110-130 call the
subroutines at 1000,1100 and 1200 to set up
the first notes. Lines 140-180 constitute the
main loop of the program. Line 140 tests T1,
the duration value for the current note: a

value of 99 indicates that the end of the voice
data for that voice has been reached, and
nothing more is done. If it is not 99, the value
is decremented: if it becomes 0, it means that
the end of the note has been reached and a new
one is fetched by calling the subroutine at
1000. If the value hasn't yet reached 0, then
nothing is done. Lines 150 and 160 perform
similar operations for voices 2 and 3. Line 170
provides a delay loop which allows the tempo
to be altered. Each time round the loop
corresponds to a single time unit or clock
pulse for the piece of music being played.

10 INPUT "TEMPO ", TP
20 GOSUB 5000
30 ENVELOPE 1,1,0,0,0,0,0,0,30,-2,0,

0,120,100
40 ENVELOPE 2,1,0,0,0,0,0,0,30,-2,0,

0,110,90
50 ENVELOPE 3,1,0,0,0,0,0,0,-127,-127,

—127,-127,0,0
100 P1=0: P2=0: P3=0
110 GOSUB 1000
120 GOSUB 1100
130 GOSUB 1200
140 IF T1 < > 99 THEN T1 =T1 —1: IF T1=0

THEN P1 = P1 +2: GOSUB 1000
150 IF T2<>99 THEN T2=T2-1: IF T2=0

THEN P2= P2+2: GOSUB 1100
160 IF T3< >99 THEN T3=T3-1: IF T3=0

THEN P3= P3+ 2: GOSUB 1200
170 FOR DL =1 TO TP: NEXT
180 GOTO 140
1000 SOUND &11,3,0,-1
1005 T1= DA(1,P1 +1)
1010 PV=DA(1,P1): IF PV=99 OR PV=0

THEN RETURN
1020 SOUND &11,1,53+(PV-1)*4,-1
1030 RETURN
1100 SOUND &12,3,0,-1
1105 T2= DA(2,P2 +1)
1110 PV= DA(2,P2): IF PV=99 OR PV=0

THEN RETURN
1120 SOUND &12,2,53+ (PV —1)*4, —1
1130 RETURN
1200 SOUND &13,3,0,-1
1205 T3= DA(3,P3 +1)
1210 PV=DA(3,P3): IF PV=99 OR PV = 0

THEN RETURN
1220 SOUND &13,2,53+ (PV —1)"4, —1
1230 RETURN
5000 DIM DA(3,1000)
5010 FOR VN =1 TO 3: P=0
5020 READ DA(VN,P): READ DA(VN,P +1)
5030 P= P +2
5040 IF DA(VN,P —2)=99 THEN NEXT VN
5050 IF VN <4 THEN 5020
5060 RETURN
10000 DATA 17,6,15,6,13,12

10002 DATA 17,6,15,6,13,12
10004 DATA 20,6,18,4,18,2,17,12
10006 DATA 20,6,18,4,18,2,17,10,20,2
10008 DATA 25,4,25,2,24,2,22,2,24,2,

25,4,20,2,20,4,20,2
10010 DATA 25,2,25,2,25,2,24,2,22,2,

24,2,25,4,20,2,20,2,20,2
10012 DATA 25,4,25,2,24,2,22,2,24,2,

25,2,20,2,20,2,20,4,18,2
10014 DATA 17,6,15,6,13,12
10020 DATA 99,99
20000 DATA 8,6,12,6,8,12
20002 DATA 8,6,12,6,8,12
20004 DATA 15,6,13,6,8,12
20006 DATA 15,6,12,6,13,12
20008 DATA 17,6,15,6,17,6,18,6
20010 DATA 17,6,18,6,17,6,15,6
20012 DATA 13,6,15,6,17,6,12,6
20014 DATA 13,6,12,6,5,12
20020 DATA 99,99
30000 DATA 1,6,8,6,5,12
30002 DATA 1,6,8,6,5,12
30004 DATA 12,6,10,6,1,12
30006 DATA 12,6,8,6,10,12
30008 DATA 8,6,6,6,8,6,12,6
30010 DATA 8,6,8,6,8,6,6,6
30012 DATA 5,6,6,6,8,6,6,6
30014 DATA 8,6,8,6,1,12
30020 DATA 99,99

The subroutine at 5000 loads the array DA:
see the Commodore 64 program notes.

Lines 30-60 define the three envelopes
that are used as in the previous program.

The subroutine at 1000 sets up the next
note in voice one; first it forcibly switches the
note off, using envelope 3, then it retrieves
pitch and duration values using pointer P1 to
the current data pair. If it's a rest, or if the end
of the data for that voice has been reached
then the subroutine is left. Otherwise the new
note is started. The subroutines at 1100 and
1200 perform the same operations for the
other two voices.

Lines 100-130 initialize the pointers that
are to scan through the array, and set up the
first 3 notes by calls to the subroutines at
1000,1100 and 1200. The main loop is from
140-180. Line 140 tests the duration value
for the current note of voice one: if it's 99 then
the end of the voice data has been reached and
nothing more is done. If it isn't 99, the value is
decremented; if it becomes 0, then the end of
the note has been reached and a new one is
fetched by calling the subroutine at 1000.
Lines 150 and 160 perform similar operations
for voices 2 and 3. Line 170 provides a delay
loop which allows the tempo to be altered.
Each time round the loop corresponds to a
single time unit or clock pulse for the piece of
music being played.

Willie needs a cliff on which to
perform his acts of daring-do* And
you need to know how to couple
together the bits of programming
you have entered so far

It is now time to start drawing the cliff Willie
has to scale. To put this on the screen you
need a great deal of data. And again this is
POKEd into a data table by a BASIC program.
You will not be able to see the graphics at this
stage—displaying them is covered by the next
part. So for now, you just need to enter them
and save the resulting data table.

By now you should have a number of the
data POKEr programs and several machine
code routines. And it is also time to start
merging these together so that you can build
them week by week into the whole game.

Now you need the data for the UDGs—the
clouds, the seagulls, the boulders, the picnic
goodies, the holes, the snakes and Willie
himself. There is a lot of data here, but to get
smooth animation, moving objects have to be
drawn in several positions. The UDGs are
then alternated to give the impression of
continuous action.

5 CLEAR 56999
10 FOR n = 57000 to 57327: READ a:

LET a$ = STR$ a: POKE n,VAL
("BIN" + a$): NEXT n

9010 DATA 11000,111100,111100,11000,

111100,111100,111100,111100,111100,
111100,11000,11000,11000,11000,
11000,11110

9011 DATA 1,11,11,1,0,1,1,1,10000000,
11000000,11000000,10000000,0,0,0,
11100000,1110,0,1,10,100,1000,100,0,
0,0,10000000,1000000,100000,
100000,110000,0

9012 DATA 0,0,0,0,11000,111100,111100,
11000,0,10000,10000,11110,11100000,
0,1100,100100,1000010,10000010,
1000011,0,0,0,0,0

9013 DATA 0,0,0,0,1,11,11,1,0,0,0,0,
10000000,11000000,11000000,
10000000,0,1,1,1,1110,0,1,10,0,0,0,
11100000,0,0,10000000,1000000,100,
1000,100,0,0,0,0,0,100000,100000,
110000,0,0,0,0,0

9014 DATA 11100,111110,1111111,11111111,
11111111,11111110,11111100,111000,11,
111,1111,1111,1111,111,11,1,10000000,
11000000,11100000,11110000,
11110000,11110000,11100000,
11000000

9015 DATA 0,0,111,11000,100000,
1000000,1000000,10000000,0,0,11111,
10100000,11000000,0,0,0,0,0,
10000000,1000000,1011100,100010,
10,10,10000000,1000000,1111100,10,
10,1,0,0,0,0,0,100,1010,10001,
11100000,0,10,100,1000,100,100,100,
11111000,0

9016 DATA 0,0,1111000,10000110,1,1,0,0,
0,0,11110,1100001,10000000,
10000000,0,0,0,0,0,0,10000111,
1111001,0,0,0,0,0,0,11100001,
10011110,0,0

9017 DATA 100010,10100,1000,1000,1000,
1000,1000,1000,11000,111100,110110,
1111110,1111110,111100,11000,11000,
11000,11000,1100,1100,110,110,11,11,
110,110,1100,1100,11000,11000,
110000,110000,1100000,1100000,
11000110,11000011,1100110,1101100,
111000,11.1000

9018 DATA 10000100,11010110,11111111,
11111111,11111111,11111111,11111111,
11111111,-0,1,11,111,11111,111111,
1111111,11111111

9019 DATA 0,0,11111111,11111111,111100,
111100,11111111,11111111,110,1000,

1110110,11111111,11111111,11111111,
1111110,111100,10000,10000,10000,
111000,111000,111000,111000,111000,
10000,111000,1111100,111000,111000,
111000,10000,10000

9020 DATA 0,0,0,100000,1010001,
10001010,100,0,0,0,0,10000010,
1000101,101000,10000,0

RUN the program and SAVE the resulting
machine code data table using the instruction:

SAVE "CIiff4" CODE 57000,327

GETTING IT ALL TOGETHER
Long programs often have to be written and
assembled in bits. This then gives you the
problem of merging the bits together to give
one long working program. And just because
the various parts work separately, this does
not mean the whole thing will work when it is
put together.

One of the main problems is overwriting.
If you have SAVEd a few too many bytes there
is a danger that you will overwrite part of the
next routine. If you are SAVEing your as-
sembled routines using the machine code
monitor you have to supply the start address
and the number of bytes you want to SAVE. Or
if you use the Spectrum's own machine code
SAVE command you use the format:

SAVE "name" CODE

which again is followed by the start address, a
comma, then the number of bytes to be
SAVEd.

Obviously there is no problem with the
start addresses. With machine code assembled
from assembly language programming the
start address of the object code is the same as
the origin. After all, when the assembler is
RUN it takes the origin and starts assembling
the machine code program from there. And
with data tables POKEd in from BASIC, the
start address is the initial value of the variable
in the FOR ... NEXT loop which picks up the
DATA and stores it in memory a byte at a time
when the program is RUN.

But working out the number of bytes to be
SAVEd can cause problems. The end address
given by assemblers is often the first free
address past the end of the program. And

THE PROFILE OF THE SLOPE
ADDING UDG AND SPRITE DATA

SIMULATING SMOOTH ANIMATION
LOADING PROBLEMS

SAVEING EXTRA BYTES

The 'CLIFFHANGER' listings published in this
magazine and subsequent parts bear absolutely no
resemblance to, and are in no way associated with,
the computer game called 'CLIFF HANGER' re-
leased for the Commodore 64 and published by
New Generation Software Limited.

sometimes all you are given is the start
address of the last instruction, so if the
routine does not end with a ret, it does not
give a true end address.

The usual way round this problem is to
SAVE an extra couple of bytes. But that can
cause overwriting problems.

The answer is to LOAD your programs back
into the computer in order up memory. LOAD
the one with the lowest origin or start address
first, then the next lowest, then the next and
so on. This means that any extra bytes SAVEd
at the end of the routine will be overwritten
by the beginning of the next program—

instead of the other way round. And it means
that any ret that has been added to allow you
to test single routines will be overwritten too.

When all the routines and data tables have
been LOADed, SAVE them back to tape or
Microdrive as one program under another
name—the start address will be the start
address of the first program, and the end
address will be the end address of the last
program. Then, if you have any problem you
can put the various pieces back together and
try again. Using the SAVE option on your
assembler don't forget to SAVE the assembly
language and the BASIC POKEr programs as
well in case you need to re-assemble them
later.

If you have any problems with the data
tables, you can LOAD up the machine code
routines—in order up memory again—and
LOAD up and RUN the BASIC POKEr
programs again. These must be LOADed one
at a time, RUN and NEWed before you LOAD
the next one. Again the whole area of memory
should be SAVEd to tape under a new program
name.

ECK
The following program supplies the data for
the sprites—the clouds, the seagulls, the
boulders, the picnic goodies, the holes, the
snakes and Willie himself. It may look like
there is a lot of data here, but to get smooth
animation, moving objects have to be drawn
in several positions. The sprites are then
alternated to give the impression of cont-
inuous action.

20 V = 53248
30 S = 230
40 FOR I =S*64 TO(S + 8) * 64
50 READA:POKEI,A:NEXT
60 POKEV + 21,1:POKEV,100:POKEV + 1,

100: PO K EV + 39,0: PO K E2040,237
100 PRINT"DFINISHED":STOP
1000 DATA0, 0,0, 0, 0,0, 0,0,0,0, 0,0, 0,7,

128,0,7,64,0,7,128,0,7,128,0,15,192,
0,11

101 0 DATA64,0,11,64,0,11,64,0,12,192,0,7,
128,0,3,0,0,3,0,0,3,0,0,3,0,0,3

1020DATA0,0,3,128,0,3,192,0
1040DATA0,0,0,0,0,0,0,0,0,0,0,0,0,7,

128,0,7,64,0,7,128,0,7,128,0,15,192,
0,11

1050 DATA64,0,6,96,0,28,112,0,56,216,
0,7,128,0,3,128,0,3,192,0,31,96,0,
31,96

1060DATA0,24,56,0,16,60,0,0,0,0,0
1080DATA0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0

1090 DATA30,0,0,63,0,0,94,128,0,237,
192,0,243,192,0,243,192,0,237,192,0,
94,128

1100 DATA0,63,0,0,30,0,0,0
1120DATA0,0,0,0,0,0,15,192,0,245,96,

15,170,160,245,85,96,255,170,224,
255

1130 DATA245,224,255,255,224,143,255,
224,128,255,224,240,15,160,255,0,
32,255

1140DATA240,96,255,255,224,15,255,
224,0,255,192,0,15,128,0,0,0,0,0,0,0,
0,0,0,0

1160DATA0,0,0,0,0,0,0,0,0,0,0,0,0,
0,24,0,0,60,0,0,102,0,0,60,0,0,
120,0

1170 DATA120,0,0,120,0,0,60,0,0,30,
0,0,30,0,0,30,0,0,60,0,0,120,0,0,
120,0,0

1180DATA48,0,0,32,0,0,0
1200 DATA36,0,0,24,0, 0,8,0,0,16,0,0,8,

0,0,24,0,0,60,0,0,102,0,0,60,0,0,
120,0

1210 DATA0,120,0,0,120,0,0,60,0,0,30,
0,0,30,0,0,30,0,0,60,0,0,120,0,0,
120,0,0

1220DATA48,0,0,32,0,0,0
1240DATA0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,255,0,0,255,0,0,255,0,0,
255

1250 DATA0,0,255,0,0,255,0,0,255,0,0,
255,0,0,255,0,0,255,0,0,255,0,0,
255,0,0

1260DATA255,0,0,255,0,0,255,0,0,0
1280DATA0,0,0,0,0,0,0,0,0,192,0,1,32,

192,2,27,48,26,4,8,36,8,8,66,8,16,
130

1290 DATA4,96,132,0,144,128,0,8,64,0,8,
68,43,48,56,65,64,8,64,128,7,35,0,
0,220

1300 DATA0,0,0,0,0,0,0,0,0,0,0,0

The following program provides the user-
defined graphics which make up the charac-
ters that stand still. It also defines the letters
of the alphabet. This gives you a unique
typeface for your game. Although this is not
entirely necessary, it is often done in commer-
cial games.

20FOR I = 0T0263:READA:POKE12288
+ I,A:NEXT

30FOR I = 0T0127:READA:POKE12672

+ I,A: N EXT
40PRINT"O FINISHED":STOP
1000 DATA60,66,153,145,145,153,

66,60
1010DATA56,68,130,130,254,130,

130,0
1020 DATA248,132,130,252,130,130,

252,0
1030 DATAl24,130,128,128,128,130,

124,0
1040DATA248,132,130,130,130,132,

248,0
1050 DATA248,132,128,248,128,132,

248,0
1060DATA248,132,128,248,128,128,

128,0
1070DATA120,132,128,152,132,132,

120,0
1080DATA132,132,132,252,132,132,

132,0
1090DATA56,16,16,16,16,16,56,0
1100DATA56,16,16,16,16,144,112,0
1110 DATA132,136,144,224,144,136,

132,0
1120DATAl28,128,128,128,128,128,

252,0
1130 DATA130,198,170,146,130,130,

130,0
1140 DATA130,194,162,146,138,134,130,0
1150 DATA124,130,130,130,130,130,124,0
1160DATA124,130,130,252,128,128,128,0
1170DATA124,130,130,252,136,132,130,0
1180DATA124,130,130,252,136,132,130,0
1190DATA120,132,128,52,12,132,120,0
1200DATA254,146,16,16,16,16,16,0
1210 DATA130,130,130,130,130,130,

124,0
1220 DATA130,130,130,130,68,40,16,0
1230DATA130,130,146,146,146,146,

124,0
1240DATA130,68,40,16,40,68,130,0
1250DATA130,68,40,16,16,16,16,0
1260DATA254,4,8,16,32,64,254,0
1270 DATA56,56,16,254,40,68,130,0
1280 DAfAl 70,170,170,255,255,255,255,

255
1290DATA3,7,15,31,31,63,63,127
1300DATA223,239,255,255,239,247,255,

255
1310 DATA223,239,255,255,239,247,255,

255
1320 DATA0,0,0,0,0,0,0,0
1470DATA124,130,130,130,130,130,

124,0
1480 DATA16,48,16,16,16,16,56,0
1490DATA124,130,2,124,128,128,254,0
1500 DATA124,130,2,124,2,130,124,0
1510 DATA144,144,144,252,16,16,16,0
1520 DATA252,128,128,248,4,4,252,0
1530DATA60,64,128,248,132,132,252,0
1540DATA252,4,4,8,16,32,64,0

1550DATAl20,132,132,120,132,132, 120,0
1560DATA120,132,132,124,4,4,120,0
1590DATA0,0,36,90,153,0,0,0
1600 DATA0,0,231,24,24,0, 0,0
1610DATA129,66,36,24,24,0,0,0
1620 DATA0,0,231,24,24, 0 ,0, 0
1630DA1A34,85,132, 0,34,85,132,0
1640 DATA223,187,183,219,191,219, 219,239

RUN these programs, then SAVE the machine
code data table it makes, using your machine
code monitor.

PICKING UP THE PIECES
Long programs often have to be written and
assembled in bits. This then gives you the
problem of merging the bits together to give
one long working program. And just because
the separate parts work, this does not mean
the whole thing will work when it is put
together.

When one routine calls another, there is
always the problem that it calls it in the wrong
place. And data tables may not coincide
properly with the appropriate data pointers.
But these problems can be eliminated by
checking the individual sections programs
thoroughly.

This assumes that when you have finished
merging the parts of the program together
you haven't lost anything in the process.
Unfortunately, it is all to easy to lose a byte or
two when you are concatinating various dif-
ferent programs in memory. And the loss of
even a single byte can cause the whole
program to crash or malfunction.

One of the main problems is overwriting.
If you have a few too many bytes there is a
danger that you will overwrite part of the
next routine. If you are SAVEing your as-
sembled routines using the machine code
monitor you have to supply the start address
and the number of bytes you want to SAVE.

Obviously, there is no problem with the
start addresses. With machine code assembled
from assembly language programming the
start address of the object code is the same as
the origin. After all, when the assembler is
RUN it takes the origin and starts assembling
the machine code program from there. And
with data tables POKEd in from BASIC, the
start address is the initial value of the variable
in the FOR ... NEXT loop which picks up the
DATA and stores it in memory a byte at a time
when the program is RUN.

But working out the number of bytes to be
SAVEd can cause problems. The end address
given by assemblers is often the first free
address past the end of the program. And
sometimes all you are given is the start
address of the last instruction, so if the

routine does not end with a RTS, it does not
give a true end address.

The usual way round this problem is to
SAVE an extra couple of bytes. But that can
cause overwriting problems.

The answer is to LOAD your programs-
using the LOAD"name",1,1 command-back
into the computer in order up memory. LOAD
the one with the lowest origin or start address
first, then the next lowest, then the next and
so on. This means that any extra bytes SAVEd
at the end of the routine will be overwritten
by the beginning of the next program-
instead of the other way round. And it means
that any RTS that has been added to allow you
to test single routines will be overwritten too.

When all the routines and data tables have
been LOADed, SAVE them back to tape or
disk as one program under another name-
the start address will be the start address of
the first program and the end address will be
the end adrdress of the last program. Then if
you have any problem you can put the various
pieces back together and try again. Using the
SAVE option on your assembler don't forget to
SAVE the assembly language and the BASIC
POKEr programs as well in case you need to re-
assemble them at a later stage.

If you have any problems with the data
tables, you can LOAD up the machine code
routines-in order up memory again-and
LOAD up and RUN the BASIC POKEr
programs again. These must be LOAded one at
a time, RUN and NEWed before you LOAD the
next one. Again the whole area of memory
should be SAVEd to tape under a new program
name.

Ell
The following program POKES the data for the
UDGs-the clouds, the seagulls, the boul-
ders, the picnic goodies, the holes, the snakes
and Willie himself-into memory. There is a
lot of data here, but to get smooth animation,
moving objects have to be drawn in several
positions. The UDGs are then alternated to
give the impression of continuous action.
Each character is made up of eight bytes of
data, and there are 16 bytes of DATA in each
DATA line. The last figure in each line is a
checksum which is totalled in Line 900. The
program will check that the DATA adds up and
will tell you which line an error has occurred
in if you have keyed the DATA in wrongly.

If you get an error message without a line
number, you have missed out a line com-
pletely. As always, type PAGE = &3000 and
NEW before you key the program in.

60 DATA"FFFFFFFFFFFFFFFF",2040
70 DATA"183C3C1800000000",168

80 DATA"000000003C3C3C3C",240
90 DATA"3C3C000000000000",120
100 DATA"0000000000080808",24
110 DATA"1000181818181838",192
120 D AT A" 0000000000080878" ,136
130 DATA"030018244241C200",388
140 DATA"3C3C181818181838",296
150 DATA"030301020404040C",33
160 DATA"4231C20000000000",309
170 DATA" F F3E181818181838",493
180 DATA" F F63C20000000000",548
190 DATA"183C6E7E7E3C1818",554
200 DATA"2214080808080808",102
210 DATA"00DDFFFFFFFFFFFF",1751
220 DATA"0001070 F1 F3F3F7 F",307
230 DATA"0080E0F0F8FCFCFE",1598
240 DATA"1C3E7FFFFFFE7C38",1161
250 DATA"387CFEFFFF7F3E1C",1161
260 DATA"00EE110000EE1100",510
270 DATA"0078860101000000",256
280 DATA"001 E618080000000",383
290 DATA"0000008779000000",256
300 DATA"000000E19E000000",383
310 DATA"0000000000101010",48
320 DATA"080018181818181C",156
330 DATA"000000000010101E",62
340 DATA"C000182442824300",515
350 DATA"3C3C18181818181C",268
360 DATA"0F03010204080400",37
370 DATA"4282430000000000",263
380 DATA" F F3E18181818181C",465
390 DATA" F FA2430000000000",484
400 DATA"0000071820404080",319
410 DATA"00001FA040000000",255
420 DATA"000080405C220202",322
430 DATA"80403E0202010000",259
440 DATA"000000040A11E000",255
450 DATA"020408040404F800",274
460 DATA"0000000081818183",518
470 DATA"C3C3C7C7E7EFEFEF",1736
480 DATA"0810080402040201",45
490 DATA"0204080408102010",90
500 DATA"2040804020402040",480
510 DATA"2010201000100010",128
520 DATA"1008040804020102",45
530 DATA"0402040810081020",90
540 DATA"4020408040204020",480
550 DATA"1020102010001000",128
560 DATA"0000FFFFFF000000",765
570 DATA"000000FFFFFF0000",765
580 DATA"00000000007F7F00",254
590 DATA"0000000000FEFE00",508
600 DATA" 007 F7 F0000000000",254
610 DATA"00FEFE0000000000",508
620 DATA"000000000000007F",127
630 DATA"00000000000000FE",254
640 DATA"7F00000000000000",127
650 DATA" F E00000000000000",254
660 DATA"000000003C7EFFFF",696
670 DATA"FFFFFFFF7F7F3F0F",1352
680 DATA"FFFFFFFFFEFEFCF0",2020

690 DATA"0000000101010000",3
700 DATA"3878C08080800000",752
710 DATA"1818181824428181",456
720 DATA"81818181818181FF",1158
730 DATA"007E7E7E7E7E7E00",756
740 DATA"0000010103000000",5
750 DATA"20F8FCFCFE000000",1038
760 DATA"0000000000030101",5
770 DATA"0000000000FEFCFC",758
780 DAWF8F8F87070702020",1144
790 DATA"0000017F7F7F3C80",570
800 DATA"0007FCF0C0000000",691
810 DATA"80C0F07030000000",720
820 DATA"000000008080C070",560
830 DATA"0000000000030F3F",81
840 DATA"70330F8FCCF07030",925
850 DATA" FCF0000000000000",684
860 DATA"000000000000030F",18
870 DATA"0000030F3FFCF0C0",765
880 DATA"0F000000030 F0F0C",72
890 DATA"030F3FFCF0C00000",765
900 DATA 40941
940 P% = &1534
950 S%=0
960 FORA% = 60T0890STEP10
970 READA$,B%
975 IFLEN A$ < >16 THEN B%= 0: GOTO

1030
980 Ph= 0
990 FO RC% = 0TO7
1000 ?(C%+ P%) = EVAL("&" +

MID$(A$,C%*2 + 1,2))
1010 T%= T%+ ?(C% + P%)
1020 NEXT
1030 IFT% < > B% PRINT"Data error in

line 0 ";A%:END
1040 S%= S%+ T%
1050 P%= P%+ 8
1060 NEXT
1070 READB%
1080 I FB% < > S% PRINT"Data error"

RUN this program to POKE the DATA into
memory. *SAVE the resulting machine code
data table using the instruction:

*SAVE "MCliff4"1534 ❑ 17E0

PUTTING PROGRAMS TOGETHER
Long programs often have to be written and
assembled in bits. This then gives you the
problem of merging the bits together to give
one long working program. And just because
the separate parts work, this does not mean
the whole thing will work when it is put
together.

One of the main problems is overwriting.
If you have a few too many bytes there is a
danger that you will overwrite part of the next
routine. If you are *SAVEing the object code
you have to supply the start address and the
end address-or the number of byte with a

plus sign in front—of the machine code you
want to *SAVE.

Obviously there is no problem with the
start addresses. With machine code assembled
from assembly language programming the
start address is the same as the origin. The
origin is given in the P% value just before the
square bracket switches on the assembler.
When the assembler is RUN this value is used
at start address for the machine code* And
with data tables POKEd in from BASIC, the
start address is the initial value of the variable
in the FOR .*. NEXT loop which picks up the
DATA and stores it in memory a byte at a time
when the program is RUN.

But working out the number of bytes to be
*SAVEd can cause problems. No end address
is given by the Acorn's assembler* You can
work out the end address of course* When the
assembler is RUN the memory addresses that
each instruction is put in appears on the
screen* So you will be able to read the start
address of the last instruction* You can then
count the number of bytes the machine code
equivalent of the last instruction takes and
add it on to give the end address*

But it is usual to *SAVE a couple of extra
bytes to be on the safe side* Unfortunately
this can cause overwriting problems* These
extra bytes may overwrite the beginning of
the program that follows*

The answer is to *LOAD your programs
back into the computer in order up memory*
*LOAD the one with the lowest origin or start
address first, then the next lowest, then the
next and so on* This means that any extra
bytes *SAVEd at the end of the routine will
be overwritten by the beginning of the next
program—instead of the other way round*
And it means that any RTS that has been
added to allow you to test single routines will
be overwritten too. But don't forget to type in
PAGE = &3000 and NEW before you *LOAD
your machine code programs back.

When all the routines and data tables have
been *LOADed, *SAVE them back to tape or
disk as one program under another name—
the start address will be the start address of
the first program and the end address will be
the end address of the last program. Then if
you have any problem you can put the various
pieces back together and try again* Don't
forget to SAVE the assembly language and the
BASIC POKEr programs as well in case you
need to re-assemble them later*

MI kW
Add the following program lines to the
BASIC data P0KEr you've been building up.

110 READ A$

120 FOR A=1 TO LEN (A$)
130 POKE AD,ASC(MID$(A$,A,1))
140 AD = AD + 1
150 NEXTA
160 DATA ###!##!###!##!

#!# #!# #!# # #!# #!!
170 FORA =1 TO 702
180 READA$:POKEAD,VAL(" &H" + A$)
190 AD = AD +1:NEXTA
200 IF AD < >18238 THENPRINT"ERROR"
210 DATA 55,54,50,50,40,40,0,0,7F,5F,57,

D7,F5,FF,D5,75,DD,77,5D,D5,7D,75,5D,77,
F5,FD,57,75,DD,77,5D,D5,FD,5F,57,D7,5D,
FF,D5,7F,75,77,FD,F7,D5,5D,75,77,55,D5,
D5,5D,5D,D7,F5,7D,D5,5D,5D,D7,55,57,
FF,7F,57,57,FD,FD

220 REM sun
230 DATA 55,75,D5,55,55,75,D5,55,75,75,D5,

D5,5D,5D,D5,D5,5D,5D,D7,55,57,5D,D7,
5D,D5,D5,5D,5D,75,D7,DD,75,7D,5D,75,
D5,5D,75,5D,D7,57,75,5D,5D,F5,D5,57,75,
5D,D5,57,75,57,55,55,D7,F7,55,55,DD

240 DATA 57,55,55,D5,77,55,55,DF,D5,D5,57,
55,5D,D5,57,7F,F5,75,5D,55,57,75,5D,F5,
57,5D,75,5F,5D,57,D7,55,75,75,57,55,55,
77,75,05,55,07,75,05,55,D7,75,75,57,57,
5D,75,57,57,5D,55,55,57,5D,55

250 REM numbers
260 DATA 7D,D7,D7,D7,7D,5D,7D,5D,5D,FF,

7D,D7,5D,75,FF,FD,57,FD,57,FD,5D,7D,
DD,FF,5D,FF,D5,7D,57,FD,7F,D5,FD,D7,
7D,FF,57,5D,75,75,7D,D7,7D,D7,7D,7F,D7,
7F,57,57'

270 REM graphics
280 DATA 57,5F,5F,57,5F,5F,5F,5F,D5,F5,F5,

D5,F5,F5,F5,F5,5F,5F,57,57,57,57,57,57,
F5,F5,D5,D5,D5,D5,D5,FD,55,55,55,55,55,
55,55,55,57,5F,5F,57,55,57,57,57,D5,F5,
F5,D5,55,55,55,FD,55,55,55,55,55,55,55,
55,55,55,55,55,55,55,55,55,FD,55,57,5D,
75,D5,75,55

290 DATA 55,55,D5,75,5D,5D,5F,55,55,55,55,
55,55,55,55,55,55,55,55,55,57,5F,5F,57,55,
55,55,55,D5,F5,F5,D5,55,57,57,57,FD,55,
57,5D,55,55,55,FD,55,55,D5,75,75,D5,75,
55,55,55,55,55,5D,5D,5F,55,55,55,55,55,
55,55,55,55,55,55,55,55,55,55,55,55,57,5F,
5F,57

300 DATA 55,55,55,55,D5,F5,F5,D5,55,55,55,
55,55,55,55,55,55,55,55,55,55,55,55,55,55,
57,57,57,FD,55,57,5D,55,55,55,FD,55,55,
D5,75,55,55,55,55,55,55,55,55,55,55,55,
55,55,55,55,55,75,D5,75,55,55,55,55,55,
5D,5D,5F,55,55,55,55,55,55,55

310 DATA 55,55,55,55,55,55,57,5F,7F,FF,FF,
FF,7F,5F,F5,FD,FF,FF,FF,FD,F5,D5,55,55,
55,55,55,55,55,55,5F,7F,FF,FF,FF,7F,5F,57,
D5,F5,FD,FF,FF,FF,FD,F5,55,55,55,55,55,
55,55,55,5D,57,55,55,55,55,55,55,5D,75,
D5,D5,D5,D5,D5,D5,57,5F,7D,7F,7F,5F,57,
57,D5,F5

320 DATA FD,FD,FD,F5,D5,D5,57,57,55,55,55,
55,55,55, D5, D5, F5, F5,7 D,7 D,5 F,5 F,55,55,
55,55,57,57,5 F,5 F,7 D,7 D, F5, F5, D5, D5,55,
55,7D,7D,F5,F5,7D,7D,5F,5F,55,55,7D,5F,
7D, F5, D5, D5,55,55, AA,AA,56,56,AA,AA,
55,55,AA,AA,95,95,AA,AA,55,55,7F,FF,FF,
FF,7F,5F,81

330 DATA 15,7D,FF,FF,FF,FD,F5,57,57,57,5F,
5F,5F,5F,5F,55,55,55,D5,D5,D5,D5,D5,57,
5F,7F,5F,5F,5F,57,57,55,D5,F5,D5,D5,D5,
55,55,AA,AA,AA,A6,99,6A,AA,AA,AA,AA,
AA,AA,A9,66,9A,AA,AA,AA,AA,6A,9A,A6,
A9,AA,AA,AA,AA,A6,99,6A,AA,AA,

The hashes and exclamation marks in Line
160 define the silhouette of the cliff. A #

means a flat section and a ! means a slope.
Lines 210 to 330 supply the data needed

for the UDGs—the sun, the boulders, the
picnic goodies, the holes, the snakes and
Willie himself* It may look like there is a lot of
data here, but to get smooth animation mov-
ing objects have to be drawn in several
positions. The UDGs are then alternated to
give the impression of continuous action*

THE SUM OF THE PARTS
Long programs often have to be written and
assembled in bits* This then gives you the
problem of merging the bits together to give
one long working program. And just because

the separate parts work, this does not mean
the whole thing will work when it is put
together*

One of the main problems is overwriting.
If you have a few too many bytes there is a
danger that you will overwrite part of the next
routine* If you are CSAVEing your assembled
routines using the machine code monitor you
have to supply the start address and the
number of bytes you want to CSAVE. Or if you
use the Dragon's own machine code CSAVE
command you use the format:

CSAVEM "name",

which again is followed by the start address, a

comma, the last address to be CSAVEd, ano-
ther comma, then the entry address* In this
case you should not worry too much about the
entry address as the machine code routines
you have so far will be called by a bootstrap
program you'll be given later. For now,
though, give any old entry address.

Obviously there is no problem with the
start addresses. With machine code assembled
from assembly language programming the
start addiess of the object code is the same as
the origin* After all, when the assembler is
RUN it takes the origin and starts assembling
the machine code program from there* And
with data tables POKEd in from BASIC, the
start address is the initial value of the variable
in the FOR *** NEXT loop which picks up the
DATA and stores it in memory a byte at a time*

But working out the number of bytes to be
CSAVEd can cause problems. The end address
given by assemblers is often the first free
address past the end of the program. And
sometimes all you are given is the start
address of the last instruction, so if the
routine does not end with a RTS, it does not
give a true end address.

The usual way round this problem is to
CSAVE an extra couple of bytes* But that can
cause overwriting problems.

The answer is to Load your programs—
using the CLOADM command—back into the
computer in order up memory. Load the
one with the lowest origin or start address
first, then the next lowest, then the next and
soon* This means that any extra bytes CSAVEd
at the end of the routine will be overwritten
by the beginning of the next program—
instead of the other way round* And it means
that any RTS that has been added to test
routines will be overwritten too.

When all the routines and data tables have
been CLOADed, CSAVE them back to tape or
disk as one program under another name—
the start address will be the start address of
the first program and the end address will be
the end address of the last program* Then if
you have any problem you can put the various
pieces back together and try again. Don't
forget to SAVE the assembly language using
the SAVE option on your assembler and SAVE
the BASIC POKEr programs just in case*

If you have any problems with the data
tables, you can LOAD up the machine code
routines—in order up memory again—and
LOAD up and RUN the BASIC POKEr
programs again* These must be LOADed one
at a time, RUN and NEWed before you LOAD
the next one* Again the whole area of memory
should be SAVEd to tape under a new program
name. Alternatively you can SAVE the BASIC
POKEr program as one large program.

Putting together a complex graphic
image is simplified by assembly-line
techniques—`picking and dragging'
shapes, and 'rubber-banding' to
expand standard elements

Computer Aided Design (CAD) packages can
relieve the effort of repetitive design pro-
blems such as planning a supermarket, ini;
which a large number of identical objects—,
shelves, freezers and so on—have to be fitted
into a given floor area.

This kind of software ranges from highly
sophisticated packages running on large
mainframes to simple programs running on
home micros, such as INPUT's (see page
566). No matter what the level of sophistic-
ation, there are two basic principles
employed—the unlikely-sounding 'rubber-
banding' and 'picking and dragging'.

This article looks at how you can pick and
drag, and rubber-band in BASIC.

RUBBER BANDING
Rubber banding is the name given to the way
in which shapes can be drawn using CAD
programs.

The idea behind rubber-banding is a
simple one—it is easier to draw a straight line
by defining the two end points and joining
these together with a ruler than it is to draw a
line freehand. This idea was used by the early
Egyptians in pyramid construction and is still
implemented on computers. In the computer
version, you set one end of the line, and then
allow a cursor to be moved round the screen at
the other end. A line is always stretched
between the two, and the technique gets its
name because it looks like a rubber band as it
is stretched and contracted.

Experimenting with various lines on screen
will allow you to visualise the alternatives
before deciding on the final position. And the
same basic idea can be extended from single
lines to many, especially those used in geo-
metric and regular shapes.

Try the following program. It will allow
you to experiment with rubber-banding for
yourself.

10 BORDER 0: PAPER 0: INK 7: CLS
15 LET initialise = 80: LET rubberband=

130: LET draw =210: LET fix =240
17 DRAW 0,175: DRAW 255,0: DRAW

0,-175: DRAW —255,0
20 GOSUB initialise

40 GOSUB rubberband
50 IF INKEY$< >"q" THEN GOTO 40
60 STOP
90 OVER 1
100 LET centrex =128: LET centrey = 86
110 LET x=128: LET y=86
115 PLOT centrex,centrey
120 RETURN
140 IF INKEY$=" ❑ " THEN GOSUB fix:

GOTO 150
145 GOSUB draw
150 IF INKEY$="z" THEN LET x= x-1
160 IF INKEY$="x" THEN LET x=x+1
170 IF INKEY$="k" THEN LET y=y+1
180 IF INKEY$="m" THEN LET y = y-1
190 GOSUB draw
200 RETURN
220 PLOT centrex,centrey: DRAW x — PEEK

23677,y — PEEK 23678
230 RETURN
250 OVER 0: GOSUB draw
255 OVER 1
270 LET centrex = x: LET centrey = y
280 RETURN

Like the following Commodore programs,
the listing below uses Simon's BASIC to
access the high resolution graphics. Commo-
dore users will thus need either to plug in
Simons' BASIC cartridge or enter INPUT's
own hi-res graphics utility starting on pages
872 to 877. In the latter case, the various hi-
res commands need to be prefixed with an @.
10 HIRES 0,1:POKE 650,128:

MULTI 0,4,5
20 CX = 80:CY =100:X = CX:Y = CY
100 GET A$:IF A$=" ❑ " THEN LINE

CX,CY,X,Y,2:CX=X:CY=Y
110 IF A$="Z" AND X>1 THEN X=X-2
120 IF A$="X" AND X<158

THEN X=X+2
130 IF A$=";" AND Y>1 THEN Y=Y-2
140 IF A$="/" AND Y<199

THEN Y=Y+2
160 FOR Z=1 TO 2:LINE CX,CY,X,Y,4:

NEXT Z
170 GOTO 100

BASIC PRINCIPLES OF
COMPUTER AIDED DESIGN

DRAWING SHAPES BY
RUBBER BANDING

FIXING POINTS

PICKING AND DRAGGING
MOVING SHAPES AT WILL

EXPANDING, CONTRACTING
AND ROTATING SHAPES

FIXING SHAPES

10 MODE 4
20 PROCinitialize
30 REPEAT
40 PROCrubberband
50 UNTIL INKEY(—17)
60 MODE 6
70 END
80 DEF PROCinitialize
90 GCOL 3,1
100 centrex = 640:centrey = 512
110 x =640:y=512
120 ENDPROC
130 DEF PROCrubberband
140 PROCdraw
150 IF INKEY(—98) THEN x=x —10
160 IF INKEY(-67) THEN x=x+10
170 IF INKEY(-73) THEN y=y+10
180 IF INKEY(-105) THEN y=y-10
200 ENDPROC
210 DEF PROCdraw
217 IFINKEY(-99)THEN PROCfix
220 MOVE centrex,centrey:DRAW x,y
225 MOVE centrex,centrey:DRAW x,y
230 ENDPROC
240 DEF PROCfix
250 GCOL 0,1:MOVE centrex,centrey:DRAWx,y
260 GCOL 3,1
270 centrex = x:centrey = y
280 ENDPROC

Tandy owners should ensure that V is set to
247 in Line 20.

10 PCLEAR8:PMODE4,5:PCLS:
PMODE4,1:PCLS:SCREEN1,1

20V =- 223:CX = 127:CY = 95:
X =127:Y = 95

30 GOSUB 100
40 FORK = 1T04:PCOPYK + 4TOK:NEXT
50 IF PEEK(338) < > 191 THEN 30
60 CLS:END
100 IF PEEK(345) =V GOSUB 300
110 IF PEEK(341) =V AND Y>0 THEN

Y = Y — 1
120 IF PEEK(342) =V AND Y<191 THEN

Y=Y +1
130 IF PEEK(343)=V AND X> 0 THEN

X= X-1

140 IF PEEK(344) = V AND X<255 THEN
X= X +1

200 LINE(CX,GY) — (X,Y),PSET
210 RETURN
300 GOSUB 200
310 FORK =1T04:PCOPYK TOK + 4:NEXT
320 CX = X:CY = Y
330 RETURN

The programs work very simply. A point in
the centre of the screen is fixed, and a second
point plotted and replotted at a position
determined by four keypresses—Z left, X
right, K up and M down (Acorn users should
use : for up and / for down, and Dragon, the
arrow keys). A line is drawn between the two
points continuously, the repeated drawing of
the line gives it a flickery appearance.

Once your line has been positioned to your
satisfaction, you should press the space bar.
This will fix the end point, and you can use
the same four keys to stretch the line in
another dl, ion.„

Acorn users may be a little confused by the
use of GCOL in Lines 90 and 260. In a two-
colour graphics mode, such as 0 or 4, the
GCOL 3 statement can be used successfully for
animation—moving the line around the
screen is really an animation exercise. The
parameter 3 instructs the computer to Exclus-
ively OR (EOR) the colour specified with the
colour already present on screen.

If you look at this truth table, you'll see
how GCOL 3 works. A zero represents the
colour specified not being present; a one
represents the colour specified being present.

0 EOR 0 gives 0
0 EOR 1 gives 1
1 EOR 0 gives 1
1 EOR 1 gives 0

If the colour specified is white, and the
background is not white (black), putting a
white shape on the black will give a white
shape. Putting a white shape exactly on an
identical white shape, will cause the white
shape to turn black—in other words, the

shape will disappear. In this program, then,
the continual drawing and redrawing of the
line turns it on and then off at each position,
giving the animation effect.

Now add these lines and see how much
more flexible rubber-banding becomes when
you can erase lines.

15 LET initialize = 80: LET rubberband =
130: LET draw =210: LET fix =240: LET
clear =310

17 GOSUB clear
144 IF INKEY$="c"THEN GOSUB

clearGOT0150
310 CLS
320 DRAW 0,175: DRAW 255,0: DRAW

0,-175: DRAW —255,0
330 GOSUB initialize
340 RETURN

105 IF A$=CHR$(13) THEN
CX=X:CY=Y

135 "FX 15,1
145 IF INKEY(—83) THEN PROCclear
215 IF INKEY(—51) THEN

GCOL0,0:GOT0225 ELSE GCOL3,1
300 DEF PROCclear
310 CLG
350 PROCinitialize
360 ENDPROC

105 IF PEEK(339) =191 THEN
PMODE4,5:PCLS:PMODE4,1

301 A$=INKEY$
302 A$ = INKEY$:IF A$="" THEN 302
304 IF A$="D" THEN 320

The Commodore and Dragon/Tandy
programs simply draw out the line when the
D key is pressed (c in Spectrum), but again
the Acorn program uses GCOL to erase the
line. In Line 215, GCOL 0,0 draws a black line
over whatever is displayed on screen.

PICKING AND DRAGGING
In many CAD packages there is a range of
predefined shapes presented as a menu. In an
application such as room design, these shapes
would be the various fittings and furniture,
but picking and dragging, as it is called, can
equally be applied to printed circuit design,
where the predefined shapes will be the
various electronic components that are to be
used in the circuit.

But why is this called picking and dragg-
ing? Simply because to use this kind of

package, you must pick a shape, and drag it to
whatever position you wish.

The program that follows allows you to
pick and drag from a range of five geometrical
shapes. In addition, you can plot them in any
position on screen, and go on to manipulate
another shape; expand or contract a shape;
rotate a shape; or erase the screen.

a
10 BORDER 0: PAPER 0: INK 7: OVER 0: CLS
15 LET initialize =100: LET pick = 270: LET

give= 430: LET drag =490: LET
point = 390: LET draw = 640: LET
fix = 700: LET clear = 750: LET
check = 820: LET triang = 860: LET
square = 930: LET rectan =1010: LET
pent =1090: LET hex =1180

17 GOSUB clear
40 GOSUB pick
50 GOSUB give
60 GOSUB drag
70 IF INKEY$ < >"q" THEN GOTO 40
80 STOP
110 OVER 0
120 LET x=30: LET y=50: LET phi =0: LET

scal =1
130 LET mex =120: LET flag = 0: LET

select =0
140 LET c=scal*COS (phi)
150 LET s=scarSIN (phi)
170 LET tx =32: LET ty= 25: GOSUB triang
190 LET tx =70: LET ty =25: GOSUB square
210 LET tx =120: LET ty = 25: GOSUB rectan
220 LET tx =180: LET ty =25: GOSUB pent
230 LET tx =230: LET ty= 25: GOSUB hex
240 OVER 1
250 PRINT OVER 1; INK 6;AT 20,mex/8;" A "

260 RETURN
300 GOSUB point
310 GOSUB check
320 IF CODE INKEY$ =8 THEN LET

mex = mex — 8
330 IF CODE INKEY$ = 9 THEN LET

mex =mex + 8
340 GOSUB point
350 IF INKEY$="s" THEN LET flag =1
360 IF flag = 0 THEN GOTO 300
370 GOSUB point
380 RETURN
400 PRINT INK 6; OVER 1;AT 20,mex/8;" A "

410 RETURN
440 IF.mex <40 THEN LET select =1
450 IF mex> =40 AND mex <70 THEN LET

select= 2
460 IF mex> =70 AND mex <150 THEN LET

select = 3
465 IF mex> =150 AND mex <180 THEN

LET select =4
470 IF mex> =180 THEN LET

select = 5

480 RETURN
510 IF INKEY$="c" THEN GOSUB clear:

GOTO 517
515 GOSUB draw
517 IF INKEY$=" ❑ " THEN GOSUB fix:

GOTO 520
518 GOSUB draw
520 LET c=scal*COS (phi)
540 LET s=scarSIN (phi)
550 IF INKEY$="z" THEN LET x =x-3
560 IF INKEY$="x" THEN LET x=x +3
570 IF INKEY$="k" THEN LET y= y + 3
580 IF INKEY$="m" THEN LET y = y-3
590 IF INKEY$="n" THEN LET scal=scar1.1
600 IF INKEY$="j" THEN LET scal=sca1/1.1
610 IF INKEY$="h" THEN LET

phi = phi + (6*P1/180)
620 IF INKEY$="b" THEN LET

phi = phi — (6'1'1/180)
630 RETURN
645 LET tx =x: LET ty=y
650 IF select =1 THEN GOSUB triang
660 IF select = 2 THEN GOSUB square
670 IF select = 3 THEN GOSUB rectan
675 IF select =4 THEN GOSUB pent
680 IF select= 5 THEN GOSUB hex
685 FOR n=1 TO 30: NEXT n
690 RETURN
700 REM fix
710 FOR n=1 TO 100: NEXT n
714 IF INKEY$="d" THEN OVER 1
715 IF INKEY$< >"d" THEN OVER 0
717 GOSUB draw
720 PRINT AT 20,1;" ❑❑❑❑❑❑

0001 ❑❑❑❑❑❑❑❑
0000 ❑❑❑❑❑❑
EIDE1111": OVER 1

730 GOSUB initialize
740 RETURN
760 CLS
770 DRAW 0,175: DRAW 255,0: DRAW

0,-175: DRAW —255,0
780 GOSUB initialize
790 RETURN
820 REM check
830 IF INKEY$="c" THEN GOSUB clear
840 IF INKEY$="e" THEN STOP
850 RETURN
860 REM triang
870 PLOT INVERSE 1;tx,ty
880 PLOT —7*s+ PEEK 23677,6*c+ PEEK

23678
890 DRAW — 6 * c + 11 * s, — 5"s — 9 * c
900 DRAW 12%,10*s
910 DRAW — 6*c — 11 * s, — 5*s + 9 * c
920 RETURN
930 REM square
940 PLOT INVERSE 1;tx,ty
950 PLOT 6 * c-6*s+ PEEK 23677,

5*s +5 * c + PEEK 23678
960 DRAW — 12 * c, —10 * s

970 DRAW 12*s,-10*c
980 DRAW 12 * c,10*s
990 DRAW —12"s,10"c
1000 RETURN
1010 REM rectan
1020 PLOT INVERSE 1;tx,ty
1030 PLOT 12*c-6*s+ PEEK 23677,

10 * s +5*c+ PEEK 23678
1040 DRAW — 24*c, — 20*s
1050 DRAW 12*s, —10%
1060 DRAW 24 * c,20"s
1070 DRAW —12*s,10*c
1080 RETURN
1090 REM pent
1100 PLOT INVERSE 1;tx,ty
1110 PLOT —10"s+ PEEK 23677,

9"c+ PEEK 23678
1120 DRAW —10% + Ts, —8*s —6*c

The program works as follows:
Lines 110 to 260 are the initialization

subroutine, setting values for a range of
variables, and drawing the shapes along the
bottom of the screen by calling the appropri-
ate subroutines.

Lines 300 to 380 read the left and right
cursor keys, allowing you to move the arrow,
and the s key, which makes the picked shape
appear at the centre of the screen. Lines 400
and 410 are the point subroutine, replotting
the arrow in response to the cursor key
presses.

Lines 440 to 480 are the give subroutine. It
checks the position of the arrow in relation to

key. Lines 760 to 790 are the clear subroutine,
which is called when the c key is pressed—the
check is in the check subroutine. The check
subroutine—Lines 820 to 840—also checks
for the escape option—pressing the e key—
which stops the program.

10 HIRES 0,1:POKE 650,128
20 GOSUB 1000
30 GOSUB 2000
40 GOSUB 3000
50 GOSUB 4000
60 GOTO 20

1130 DRAW 4*c +13 * s,3*s —11*c
1140 DRAW 12%,10"s
1150 DRAW 4*c —13 * s,3*s + 11*c
1160 DRAW —10*c— Ts, —8*s +6"c
1170 RETURN
1180 REM hex
1190 PLOT INVERSE 1;tx,ty
1200 PLOT —12% + PEEK 23677,

10*c+ PEEK 23678
1210 DRAW —10*c +6*s, —8"s-5*c
1220 DRAW 12%, —10"c
1230 DRAW 10% + 6"s,8"s — 5*c
1240 DRAW 10*c — 6*s, 8"s + 5*c
1250 DRAW —12*s,10*c
1260 DRAW —10% —6"s, — 8*s + 5"c
1270 RETURN

the range of shapes. The select variable is set
according to the position of the pointer.

The drag subroutine is at Lines 510 to 630.
The selected shape is redrawn in response to
key presses. The shape can be moved around
using the z, x, k and m keys; n and j allow you
to scale the shape up or down; and h and b
allow you to rotate the shape clockwise or
anticlockwise. The space bar fixes the shape
on screen.

The shapes are drawn by a combination of
the draw subroutine, between Lines 645 and
690, and the various shapes subroutines—
select tells the program which one is to be
drawn.

The fix subroutine—Lines 710 to 740 —
fixes the shape on screen in response to the d

1000 CC = 1:X = 40:Y =131:
PH=0:SC=1

1010 ME=122
1020 C=SC:S= 0
1030 X =60:Y =177:GOSUB 5000
1040 X=100:Y=174:GOSUB 5100
1050 X=140:GOSUB 5200
1060 X =180:Y =170:GOSUB 5300
1070 X =220:GOSUB 5400
1090 X =160:Y =100
1100 RETURN
2000 GOSUB 2500
2010 GET A$
2020 IF A$="11" AND ME >52 THEN

ME=ME-10
2030 IF A$="111" AND ME <232 THEN

ME=ME+10
2050 IF A$< >"S" THEN 2000
2070 RETURN
2500 FOR Z=1 TO 2:TEXT ME,190,

1000 X =20:Y =131:PH = 0:SC =1
1010 ME =122:ST = 0:V1=223:

V2 = 247
1020 C=SC:S=0:COLOR5
1030 X = 40:Y =177:G0SUB5000
1040 X =80:Y =174:GOSUB5100
1050 X =120:GOSUB5200
1060 X 160:Y =170:G0SUB5300
1070 X =200:GOSUB5400
1080 FORK =1T04:PCOPYK TOK +4:NEXT
1090 X =127:Y =85
1100 RETURN
2000 COLOR0:GOSUB 2500
2010 A$=1NKEY$:GOSUB4500

" ♦ ",2,1,8:NEXT Z
2510 RETURN
3000 SL=5:IF ME<222 THEN SL=4
3010 IF ME<172 THEN SL=3
3020 IF ME<112 THEN SL=2
3030 IF ME <82 THEN SL=1
3040 RETURN
4000 CC = 2:FOR Z=1 TO 2:0N SL GOSUB

5000,5100,5200,5300,
5400:NEXT Z

4010 GET A$
4020 IF A$ = "D" THEN CC =1:0N SL

GOSUB 5000,5100,5200,5300,
5400:RETURN

4030 C=SC*COS(PH)
4040 S=SC*SIN(PH)
4050 IF A$="11" THEN X= X-3
4060 IF A$="11" THEN X=X+ 3
4070 IF A$=" ❑ " THEN Y = Y -3
4080 IF A$="g9" THEN Y=Y+3
4090 IF A$="M" THEN SC=SC*1.1
4100 IF A$="N" THEN SC=SC/1.1
4110 IF A$="K" THEN

PH = PH +ATN(1)/7.5
4120 IF A$="L" THEN

PH = PH -ATN(1)/7.5
4140 IF A$=CHR$(13) THEN

RETURN
4145 IF A$="Q" THEN END
4150 GOTO 4000
5000 LINE X -7.2 * S,Y -7.2T,

X - 6*C + 3.6*S,Y + 6*S + 3.6*C,CC
5010 LINE X- 6T + 3.6*S,Y + 6*S + 3.6T,

X + 6*C + 3.6*S,Y - 6*S + 3.6 * C,CC
5020 LINE X +6T +3.6*S,

Y -6*S +3.6T,X-7.2*S,Y-7.2T,CC
5030 RETURN
5100 LINE X + 6*S -6T,Y - 6*S - 6T,

X - - 6T,Y + 6*S - 6*C,CC
5110 LINE X -6*S -6*C,Y + 6*S - 6T,

X + 6*S - 6*C,Y + 6*S + 6T,CC
5120 LINE X +6*S -6*C,Y +6*S+6*C,

X + + 6T,Y + 6T - 6*S,CC
5130 LINE X+6*S+6T,Y +6*C-6*S,

X + 6T -6*S,Y - 6*S - 6T,CC
5140 RETURN
5200 LINE X +12T - 6*C,Y - 6T -12*S,

X -12T - 6*S,Y - 6T +12*S,CC
5210 LINE X -12T - 6*S,Y - 	+ 12 * S,

X -12T + 6*S,Y + 6T +12*S,CC
5220 LINE X -12T +6*S,Y +6T +12*S,

X + 12T + 6*S,Y + 6T - 12 * S,CC
5230 LINE X +12*C+6*S,Y + 6T -12*S,

X +12*C - 6*S,Y - 6T -12*S,CC
5240 RETURN
5300 LINE X -10.2*S,Y -10.2T,

X - 9.8*C - 3.2*S,Y - 3.2T + 9.8*S,CC
5310 LINE X -9.8T -3.2*S,

Y - 3.2*C + 9.8*S,X - 6*C + 10.2*S,
V +10.2*C+6*S,CC

5320 LINE X -6T +10.2*S,Y+10.2*C+6*S,

X + 6T +10.2*S,Y + 10.2T - 6*S,CC
5330 LINE X +6*C +10.2*S,Y +10.2T -6*S,

X +9.8T -3.2*S,Y - 3.2T - 9.8*S,CC
5340 LINE X +9.8T -3.2*S,

Y - 3.2T - 9.8*S,X -10.2*S,Y -10.2T,
CC

5350 RETURN
5400 LINE X -12 * S,Y -12T,

X -10.4*C - 6*S,Y - 6T + 10.4*S,CC
5410 LINE X- 10.4T - 6*S,Y - 6T + 10.4*S,

X -10.4T + 6*S,Y + 6T + 10.4*S,CC
5420 LINE X -10.4T +6*S,Y +6T +10.4*S,

X +12 * S,Y+12T,CC
5430 LINE X +12*S,Y+12T,

X + 10.4T + 6*S,Y + 6T - 10.4*S,CC
5440 LINE X + 10.4*C +6*S,Y +6"C-10.4*S,

X + 10.4T - 6*S,Y - 6T - 10.4*S,CC
5450 LINE X +10.4T -6*S,Y -6T -10.4*S,

X - 12*S,Y -12T,CC
5460 RETURN

Tandy owners should alter the values of V1
and V2 in Line 1010. Make V1 equal to 247,
and V2 equal to 253.

10 PCLEAR8:PMODE4,5:PCLS:
PMODE4,1:PCLS:SCREEN1,1

20 GOSUB 1000
40 GOSUB 2000
50 GOSUB 3000
60 GOSUB 4000
70 IF INKEY$< >"Q" THEN 40
80 CLS:END

2020 IF A$=CHR$(8) AND ME >32 THEN
ME = ME -10

2030 IF A$=CHR$(9) AND ME <212 THEN
ME=ME+10

2040 COLOR5:GOSUB2500
2050 IF A$ < >"S" THEN 2000
2060 COLOR5:G0SUB2500
2070 RETURN
2500 DRAW"BM"+STR$(ME)+

",190U5NG2F2"
2510 RETURN
3000 SL=5:IF ME<192 THEN SL=4
3010 IF ME<152 THEN SL=3
3020 IF ME<102 THEN SL=2
3030 IF ME<62 THEN SL=1
3040 RETURN
4000 ON SL GOSUB 5000,5100,5200,

5300,5400
4010 IF PEEK(339) =191 THEN

PCLS:GOSUB1000:RETURN
4020 IF PEEK(345) =V1 THEN FOR

K =1T04:PCOPYK TOK + 4:NEXT:
RETURN

4030 C = SC*COS(PH)
4040 S=SC*SIN(PH)
4050 IF PEEK(343)=VI THEN X =X-1
4060 IF PEEK(344) = V1 THEN X = X +1
4070 IF PEEK(341) = V1 THEN Y = Y-1
4080 IF PEEK(342) = V1 THEN Y =Y +1
4090 IF PEEK(343) =V2 THEN SC = SC*1.1
4100 IF PEEK(344) = V2 THEN SC = SC/1.1
4110 IF PEEK(341) =V2 THEN

PH = PH +ATN(1)/7.5
4120 IF PEEK(342) =V2 THEN

PH = PH —ATN(1)/7.5
4130 FORK =1T04:PCOPYK +4TOK:NEXT
4150 IF PEEK(338) = V1 THEN RETURN

ELSE4000
4500 IF A$=CHR$(12) THEN PCLS:

GOSUB1000
4510 IF A$="Q" THENCLS:END
4520 RETURN
5000 LINE(X —7.2*S,Y —7.2*C) —

5130 LINE — (X + 6*C — 6*S,Y — 6"S — 6*C),
PSET

5140 RETURN
5200 LI NE(X + 12*C — 6*S,Y — 6*C — 12*S) —

(X — 12*C —6*S,Y-6*C +12*S),PSET
5210 LINE — (X —12*C + 6*S,Y + 6*C + 12*S),

PSET
5220 LINE— (X+ 12"C + 6*S,Y + 6*C — 12*S),

PSET
5230 LINE— (X+ 12*C — 6*S,Y — 6*C — 12*S),

PSET
5240 RETURN
5300 LI NE(X —10.2*S,Y-10.2*C) —

(X —9.8*C — 3.2*S,Y — 3.2"C +9.8*S),PSET
5310 LINE — (X — 6*C + 10.2*S,Y + 10.2*C +

6*S),PSET
5320 LINE — (X + 	+10.2*S,Y +10.2*C —

6*S),PSET
5330 LINE— (X + 9.8*C-3.2*S,Y —3.2*C —

9.8*S),PSET
5340 LINE — (X —10.2*S,Y-10.2*C),PSET
5350 RETURN
5400 LINE(X —12*S,Y-12*C) —

(X —10.4*C — 6*S,Y — 6*C +10.4*S),PSET
5410 LINE — (X — 10.4*C + 6*S,Y + 	+

10.4*S),PSET
5420 LINE— (X +12"S,Y 1 2*C),PSET

5430 LINE— (X + 10.4*C + 6*S,Y + 6*C —
10.4*S), PSET

5440 LINE — (X +10.4T — 6*S,Y —6*C —
10.4*S), PSET

5450 LINE — (X —12*S,Y-12*C),PSET
5460 RETURN

Initialization takes place between Lines
1000 and 1100. Lines 2000 to 2070 are the
picking subroutine. The arrow beneath the
range of five shapes is moved in response to
the left and right cursor controls.

Lines 3000 to 3040 determine which shape
is being pointed at—ME is the position of the
arrow. Pressing the S key will make the shape
appear in the main screen area.

Lines 4000 to 4150 are the drawing sub-
routine. Line 4000 directs the program to the
subroutine containing the instructions for
drawing the chosen shape. Line 4020 fixes the
shape on screen if the space bar is pressed.
Lines 4090 and 4100 read the M and N keys,
which cause the shape to get bigger or smaller.
The final option is rotation—Lines 4110 and
4120 read the K and L keys. Pressing 'CLEAR
will clear the screen, ready for next effort.

The remaining subroutines contain in-
structions for drawing the five shapes. Lines
5000 to 5030 draw the triangle; Lines 5100 to
5140 draw the square; Lines 5200 to 5240
draw the rectangle; Lines 5300 to 5350 draw
the pentagon, and Lines 5400 to 5460 draw
the hexagon.

There is no error checking in the program,
so any attempt to draw off the screen to the
top or left will produce an FC ERROR. Pressing
Q will cause the program to end.

(X — 6*C + 3.6*S,Y + 	+ 3.6*C),PSET
5010 LINE — (X + 	+ 3.6*S,Y — 	+

3.6*C),PSET
5020 LINE — (X —7.2*S,Y —7.2*C),PSET
5030 RETURN
5100 LINE(X + 6*C — 6*S,Y — 6*S — VC) —

(X — 	— 6*C,Y + 6*S — 6*C),PSET
5110 LINE — (X + 6"S — 6*C,Y + 6*S + VC),

PSET
5120 LINE— (X + 6"S + 6*C,Y + 6*C — VS),

PSET

Ell
10 MODE4
20 PROCinitialize
30 REPEAT
40 PROCpick
50 PROCgive
60 PROCdrag
70 UNTIL INKEY(-17)
80 MODE 6
90 END
100 DEF PROCinitialize
110 GCOL 0,1
120 x =100:y=300:phi =0:scal =1
130 mex =608:flag = FALSE:select =0
140 c=scal*COS(phi)
150 s=scal*SIN(phi)
160 VDU 5
170PROCtriang(120,100)
180 MOVE 0,200:PRINT;"triangle"
190 PROCsquare(360,100)
200 MOVE 272,200:PRINT;"square"
210 PROCrectan (620,100)
220 MOVE 482,200:PRINT;"rectangle"
230 PROChexgon(880,100)
240 MOVE 782,200:PR INT;"hexagon"
250 PROCpentgon (1130,100)
260 MOVE 1014,200:PRINT"pentagon"
270 GCOL 3,1
280 ENDPROC
290 DEF PROCpick
300 PROCpoint(mex)
310 REPEAT
320 PROCpoint(mex)
330 PROCcheck
340 IF INKEY(-26)

THEN mex = mex -10
350 IF INKEY(-122)

THENmex = mex + 10
360 PROCpoint(mex)
370 IF INKEY(-82) THENflag =TRUE
380 UNTIL flag
390 PROCpoint(mex)
400 ENDPROC
410 DEF PROCpoint(menux)
420 MOVE menux,20
430 VDU 94
440 ENDPROC
450 DEF PROCgive
460 IF mex <200 THEN select =1
470 IF mex> =200 AND mex <450 THEN
select = 2
480 IF mex> =450 AND mex <720 THEN

select = 3
490 IF mex> = 720 AND mex <970 THEN

select =4
500 IF mex >970 THEN select = 5
510 ENDPROC
520 DEF PROCdrag
540 IF INKEY(-83) THEN PROCclear ELSE

PROCdraw(select)

550 IF INKEY(-99) THEN PROCfix ELSE
PROCdraw(select)

560 c=scal*COS(phi)
570 s=scal*SIN(phi)
580 IF INKEY(-98)

THEN x=x-10
590 IF INKEY(-67)

THEN x=x+10
600 IF INKEY(-73)

THEN y=y+10
610 IF INKEY(-105)

THEN y=y-10
620 IF INKEY(-102)

THEN scal=scar1.1
630 IF INKEY(-86)

THEN scal=sca1/1.1
640 IF INKEY(-71)

THEN phi= phi+ RAD(6)
650 IF INKEY(-87)

THEN phi = phi - RAD(6)
660 ENDPROC
670 DEF PROCdraw(select)
680 IF select =1

THEN PROCtriang(x,y)
690 IF select = 2

THEN PROCsquare(x,y)
700 IF select = 3

THEN PROCrectan(x,y)
710 IF select = 4 THEN PROChexgon(x,y)
720 IF select = 5 THEN PROCpentgon(x,y)
730 ENDPROC
740 DEF PROCfix
750 GCOL 0,1:PROCdraw(select)
760 GCOL 3,1
770 PROCinitialise
780 ENDPROC
790 DEF PROCclear
800 GCOL 0,0
810 MOVE 0,210:MOVE 1279,210
820 PLOT 85,1279,1023:MOVE 0,1023
830 PLOT 85,0,210
840 PROCinitialise
850 ENDPROC
860 DEF PROCcheck
870 IF INKEY(-83) THEN PROCclear
880 IF INKEY(- 17) THEN END
890 ENDPROC
900 DEF PROCtriang(x,y)
910 MOVE x,y
920 PLOT 0, - 36*s,36*c
930 PLOT 1, -30*c + 54*s, -30*s - 54*c
940 PLOT 1,60*c,60 * s
950 PLOT 1, -30% - 54*s, - 30*s + 54*c
960 ENDPROC
970 DEF PROCsquare(x,y)
980 MOVE x,y
990 PLOT 0,30*c - 30%,30*s + 30*c
1000 PLOT 1, -60*c, -60*s
1010 PLOT 1,60*s,-60*c
1020 PLOT 1,60%,60%
1030 PLOT1, - 60*s,60*c

1040 ENDPROC
1050 DEF PROCrectan(x,y)
1060 MOVE x,y
1070 PLOT 0, 60"c - 30 * s,60% + 30%
1080 PLOT 1, -120*c, -120*s
1090 PLOT 1,60*s, -60*c
1100 PLOT1, 120 * c,120%
1110 PLOT 1, -60 * s,60"c
1120 ENDPROC
1130 DEF PROCpentgon(x,y)
1140 MOVE x,y
1150 PLOT 0, -51*s,51*c
1160 PLOT 1, -49*c + 35*s, - 49% - 35*c
1170 PLOT 1,19*c +67*s,19"s-67%
1180 PLOT 1,60*c,60*s
1190 PLOT 1,19*c - 67*s,19*s + 67%
1200 PLOT 1,- 49*c - 35*s, - 49*s+ 35"c
1210 ENDPROC
1220 DEF PROChexgon(x,y)
1230 MOVE x,y
1240 PLOT 0, - 60*s,60*c
1250 PLOT 1,- 52% + 30%, - 52*s - 30%
1260 PLOT 1,60*s, -60"c
1270 PLOT 1,52*c + 30*s,52*s - 30*c
1280 PLOT 1,52*c - 30%,52% + 30*c
1290 PLOT 1, - 60*s,60*c
1300 PLOT 1, -52*c -30*s, - 52*s + 30%
1310 ENDPROC

The program works like this:
After initialization, the program enters the

program's main loop-the REPEAT...UNTIL
between Lines 30 and 70. The program will
run until the Q key is pressed, which will END
the program. PROCinitialize sets the size, po-
sition and orientation of the shape you choose.
The five shapes are drawn at the bottom of the
screen.

PROCpick, between Lines290and 400, reads
the left and right cursor keys, so you can point
to the desired shape. PROCpoint is to be found
between Lines 410 and 430, and prints the
arrow on screen.

PROCgive checks the position of the arrow,
and sets select according to the shape being
pointed at. PROCdrag first checks for a press on
the C key-this clears the screen-and then
checks for a press on the space bar-this fixes
the shape on the screen. The rest of the
PROCedure reads the Z,X,: and / keys, which
move the shape, and then read the M and N
keys, which alter the size of the shape, and the
K and L keys which rotate the shape.

PROCdraw calls the appropriate shape draw-
ing PROCedure, according to the value of select
which has been passed. The shapes are drawn
by the PROCedures at the end of the program,
and their functions are given by their names.

Finally, PROCcheck reads the C and Q keys.
A press on C will clear the screen, and Q will
quit the program.

PART TWO OF OTHELLO
COMPLETING THE

PLAYER'S TURN
THE COMPUTER'S MOVE

ANNOUNCING THE WINNER

After the interval, INPUT's Othello
game comes to its climax* At the
end of the second half you'll have
the complete game to act upon.
Now make up some wily moves ***

When you have completed this second part of
the Othello game you will have the whole
program to pit your wits against. This time,
here are the lines needed to complete the
player's turn, along with the computer's move
routine, and the end of game routine.

AFTER THE INTERVAL

2090 IF NF = 1 THEN GOTO 2120
2100 PRINT AT 17,0;"YOUR MOVE ISN'T

NEXT TO ONE OFIIIII1MY PIECES": FOR
F=1 TO 500: NEXT F

2110 PRINT AT 17,0;"0 	E1111
❑❑❑ 1110111 ❑❑❑❑❑❑❑❑❑
❑❑❑ 171 ❑ EI ❑❑❑❑❑❑ 0 ❑ 171
01=1011 El": GOTO 2000

2120 LET RF =0: FOR Q=1 TO 8: IF
C(Q)=0 THEN GOTO 2170

2130 LET XP= X: LET YP=Y
2140 LET XP=XP+D(Q,1): LET

YP=YP+D(Q,2): IF XP=0 OR XP= 9
OR YP=0 OR YP = 9 THEN LET C(Q) =0:
GOTO 2170

2145 IF B(XP,YP) =2 THEN GOTO 2140
2150 IF B(XP,YP) =1 THEN LET RF = 1:

GOTO 2170
2160 IF B(XP,YP) =0 THEN LET C(Q) =0
2170 NEXT Q
2180 IF RF=1

THEN GOTO
2210

2190 PRINT AT 17,0;"YOUR MOVE DOES NOT
FLANK A ROW": FOR F=1 TO 500: NEXT
F

2200 PRINT AT 17,0;"01110 ODD
0110 ❑❑❑❑❑❑❑❑❑❑❑
OLlOOLICIDOCI":GOTO 2000

2210 FOR Q=1 TO 8: IF C(Q)=0 THEN
GOTO 2250

2220 LET XP = X + D(Q,1): LET
YP = Y + D(Q,2)

2230 IF B(XP,YP) =1 THEN GOTO 2250
2240 LET B(XP,YP) =1: LET

XP=XP+D(Q,1): LET YP=YP+D(Q,2):
GOTO 2230

2250 NEXT Q
2260 LET B(X,Y) =1
2270 LET CP=2: RETURN

CK
2090 IFNF=1THEN2120
2100 PRINT"ggYOUR MOVE ISN'T

NEXT TO ONE OF MY PIECES":
FORF = 0T01500:NEXT

2110 PRINT" ❑❑❑❑❑❑❑❑
❑ ❑❑❑❑❑❑❑❑❑❑❑❑❑❑
❑ ❑❑❑❑❑❑❑❑❑❑ 111a11 ❑
El El DOC 1[:] 01010":GOT02000

2120 RF = 0:FORQ = 1T08:IFC(Q) = 0
THEN2170

2130 XP=X:YP=Y
2140 XP=XP+D(Q,1):YP=YP+

D(Q,2):IF(XP=0ORXP=9)OR
(YP = 0ORYP = 9)THENC(Q) =0:
GOT02170

2145 IFB(XP,YP) = 2THEN2140
2150 IFB(XP,YP) =1THENRF =1:

GOT02170
2160 IFB(XP,YP) =0THENC(Q) = 0
2170 NEXT
2180 IFRF=1THEN2210
2190 PRINT"NYOUR MOVE DOES

NOT FLANK A ROW":FORF=0TO
1500:NEXT

2200 PRINT" ❑❑❑❑❑❑❑❑
❑❑ 111 ❑❑ 111 ❑❑❑ 0 ❑❑❑❑❑
0 ❑❑❑ 111 ❑❑ 111 ❑❑❑ ":
GOT02000

2210 FORQ=1T08:IFC(Q) =0THEN2250
2220 XP= X + D(Q,1):YP = Y + D(Q,2)
2230 IFB(XP,YP)=1THEN2250
2240 B(XP,YP)=1:XP=XP+D(Q,1):

YP=YP+D(Q,2):GOT02230
2250 NEXTQ
2260 B(X,Y) =1
2270 CP = 2:RETURN

NCI !HI
2090 IF NF=1 THEN 2120
2100 COLOR1:LINE(0,182) — (255,

191),PSET,BF:DRAW"C4S8BM0,
182":A$= "THAT ISNT NEXT TO ONE OF
MINE":GOSUB 9300: FOR F=1 TO
900:NEXTF

2110 GOTO 2000
2120 RF= 0:FOR Q=1 TO 8:IF C(Q) =0

THEN 2170
2130 XP=X:YP=Y
2140 XP= XP + D(Q,1):YP = YP + D(Q,2):

IF XP =0 OR XP= 9 OR YP=0 OR YP=9
THEN C(Q)=0:GOTO 2170

2145 IF B(XP,YP) = 2 THEN 2140
2150 IF B(XP,YP) =1 THEN RF=1:

GOTO 2170
2160 IF B(XP,YP)= 0 THEN

C(Q) =0
2170 NEXT Q
2180 IF RF=1 THEN 2210
2190 COLOR1:LINE (0,182)-

(255, 191),PSET,BF:DRAW
"S8C4BM0, 182":A$= "YOUR

MOVE DOESNT FLANK A ROW":
GOSUB 9300:FOR F=1 TO

900:NEXTF
2200 GOTO 2000
2210 FOR Q=1 TO 8:IF C(Q)= 0

THEN 2250
2220 XP= X + D(Q,1):YP =Y + D(Q,2)
2230 IF B(XP,YP) =1 THEN 2250
2240 B(XP,YP)=1:XP=XP+D(Q,1):

YP=YP+D(Q,2):GOTO 2230
2250 NEXT Q
2260 B(X,Y) =1
2270 CP = 2:RETURN

Line 2090 checks the flag NF, to make sure
that there is a piece belonging to the computer
in an adjoining square before jumping to Line
2120. If there isn't a piece, Line 2100
displays an error message.

The program next checks in Lines 2120 to
2170 to see if the move flanks a row.

Line 2140 makes sure that the position
being checked falls within the boundaries of
the board. If it doesn't, then that direction is
abandoned and the next tried. Line 2145
makes sure that the piece being checked does
belong to the computer. If it does, then the
program jumps back to Line 2140 to update
the position.

In Line 2180 the success of the last
operation is checked. If a row was found the
program jumps to Line 2210. Lines 2190 to
2200 PRINT a message to tell the player that a
row has not been flanked and the program
jumps back to Line 2000.

The move itself is made in Lines 2210 to
2260. The loop in Line 2210 checks if a
suitable row has been found by looking at
C(Q). If there is not a row in that direction the
program jumps to the NEXT Q at Line 2250.
XP and YP are set to the first square of the row
being taken—see Line 2040.

In Line 2230 the computer checks for the
end of a row. If an end is found, the program
jumps to Line 2250. Line 2240 sets the
square to one then jumps back to Line 2230 to
check the next square.

In Line 2260 the player's square is set to
one. The CP flag is set to two for the computer
in Line 2270 and the program RETURNS.

THE COMPUTER'S MOVE

3000 PRINT ""THINKING ...": LET NF =1:
LET MX=0: FOR X=1 TO 8: FOR Y=1
TO 8

3010 IF B(X,Y) < >0 THEN GOTO 3070
3020 FOR F=1 TO 8: LET XP = X: LET

YP=Y: LET DX= D(F,1): LET DY=D(F,2):
LET RF =0

3030 LET XP=XP+DY: LET YP=YP+ DX: IF

XP= 0 OR XP = 9 OR YP =0 OR YP = 9
THEN GOTO 3060

3040 IF B(XP,YP) =1 THEN LET RF=1:
GOTO 3030

3050 IF B(XP,YP) =2 AND RF=1 THEN LET
N(NF)=F: LET X(NF) =X: LET Y(NF)=Y:
LET NF=NF+1: LET F=9

3060 NEXT F
3070 NEXT Y: NEXT X: LET NF= NF —1
3075 IF NF=0 THEN GOTO 3300
3080 FOR F=1 TO NF: LET X=X(F): LET

Y=Y(F): LET DX= D(N(F),1): LET
DY=D(N(F),2): LET CF= 0

3090 LET X = X + DY: LET Y=Y+ DX: IF
B(X,Y) =1 THEN LET CF=CF +1: GOTO
3090

3100 IF CF> MX THEN LET MX= CF: LET
MF= F

3110 NEXT F
3180 FOR F=1 TO 8: LET X = X(MF): LET

Y=Y(MF): LET DX=D(F,1): LET
DY= D(F,2)

3190 LET X = X+ DY: LET Y=Y+DX
3195 IF X<1 OR X>8 OR Y<1 OR Y>8

THEN GOTO 3260
3200 IF B(X,Y) =1 THEN GOTO 3190
3210 IF B(X,Y) =2 THEN GOTO 3230
3220 IF B(X,Y) =0 THEN GOTO 3260
3230 LET X=X(MF): LET Y=Y(MF)
3235 LET•13(X,Y) = 2: LET X = X+ DY: LET

Y=Y+DX
3240 IF B(X,Y) =2 THEN GOTO 3260
3250 GOTO 3235
3260 NEXT F
3265 PRINT X(MF),Y(MF): INPUT A$
3270 LET CP=1: RETURN
3300 PRINTAT 17,0;"I CANNOT

MAKE A MOVE":FOR F=1 TO
500:NEXT F

3305 PRINTAT 17,0;"0 0 ❑ 0 0 0
❑❑❑❑❑❑❑❑❑❑❑❑❑
❑❑❑❑❑❑❑❑❑❑❑❑❑ "

3310 LET CP=1
3320 RETURN

3000 NF =1:MX = 0:FORX=1T08:
FORY=1T08

3010 IFB(X,Y) < >0THEN3070
3020 FORF=1T08:XP=X:YP=Y:

DX= D(F,1):DY= D(F,2):RF = 0
3030 XP=XP + DY:YP=YP + DX:IF

(XP = 0ORXP = 9)0R(YP = 0ORYP = 9)
THEN3060

3040 IFB(XP,YP) =1THENRF =1:
GOT03030

3050 IFB(XP,YP)=2AND RF=1 THEN
N(NF) = F:X(NF) =X:Y(NF) =Y:
NF=NF+1:F=9

3060 NEXT F
3070 NEXT Y:NEXT X:NF = NF —1

3075 IF NF=0 THEN 3300
3080 FORF=1TONF:X=X(F):Y=

Y(F):DX=D(N(F),1):DY=D(N
(F),2):CF= 0

3090 X= X + DY:Y=Y+ DX:IFB(X,Y)
=1THENCF=CF+1:GOT03090

3100 IFCF> MXTHENMX=CF:MF= F
3110 NEXT
3180 FORF=1T08:X=X(MF):Y=Y

(MF):DX = D(F,1):DY= D(F,2)
3190 X=X+DY:Y=Y+DX
3195 IF X<1 ORX>8 OR Y<1 OR Y>8

THEN3260
3200 IFB(X,Y)=1THEN3190
3210 IFB(X,Y)=2THEN3230
3220 IFB(X,Y)=0THEN3260
3230 X= X(MF):Y=Y(MF)
3235 B(X,Y) = 2:X= X + DY:Y =Y + DX
3240 IFB(X,Y)=2THEN3260
3250 GOT03235
3260 NEXT
3265 PRINTX(MF),Y(MF):POKE

198,0:WAIT198,1:POKE 198,0
3270 CP =1:RETURN

3300 PRINT "AgICANNOT MAKE A
MOVE":FOR F=1 TO1500:NEXT

3310 PRINT" ❑❑❑❑❑❑❑❑❑❑
❑❑❑❑❑❑❑❑❑ :CP=1: RETURN

3000 COLOR1:LINE (0,182) — (255,191),
PSET,BF:A$ = "COMPUTERS MOVE":
DRAW "S8C3BM66,182":GOSUB 9300:
NF =1:MX = 0:FOR X=1 TO 8:FOR Y=1
TO 8

3010 IF B(X,Y) < > 0 THEN 3070
3020 FOR F=1 TO 8:XP = X:YP = Y:

DX= D(F,1):DY= D(F,2):RF= 0
3030 XP = XP + DY:YP = YP + DX:IF XP = 0

OR XP =9 OR YP = 0 OR YP =9 THEN
3060

3040 IF B(XP,YP) =1 THEN RF =1:GOTO
3030

3050 IF B(XP,YP) = 2 AND RF =1
THEN N(NF) = F:X(NF) =X:
Y(NF)=Y:NF= NF+1:F= 9

3060 NEXT F
3070 NEXT Y,X:NF = NF —1

3075 IF NF =0THEN 3300
3080 FOR F=1 TO NF:X=X(F):Y=Y

(F):DX= D(N(F),1):DY= D(N(F),2):
CF =0

3090 X = X + DY:Y = Y + DX:IF B(X,Y) =1
THEN CF = CF +1:GOTO 3090

3100 IF CF> MX THEN MX= CF:MF = F
3110 NEXT F
3180 FOR F=1 TO 8:X = X(MF):Y = Y

(MF):DX = D(F,1):DY= D(F,2)
3190 X=X+ DY:Y=Y+ DX
3195 IF X<1 OR X>8 OR Y<1 OR Y>8

THEN 3260
3200 IF B(X,Y) =1 THEN 3190
3210 IF B(X,Y) =2 THEN 3230
3220 IF B(X,Y)= 0 THEN 3260
3230 X = X(MF):Y =Y(MF)
3235 B(X,Y) = 2:X = X + DY:Y = Y + DX
3240 IF B(X,Y) =2 THEN 3260
3250 GOTO 3235
3260 NEXT F
3265 DRAW "S16;C2;BM118,150" + NU$

(X(MF)) + NU$(Y(MF)) + "S8"
3270 CP =1:RETURN
3300 CO LOR1:LIN E(0,182) — (255,191),

PSET,BF:A$ = "I CANNOT MOVE":DRAW
"S8C4B M66,182":GOSU B9300: FOR F =1
TO 50:NEXT:CP =1:RETURN

The number of squares in a row is set to
one, and the maximum number of pieces
found in a row is set to zero in Line 3000.
Two loops—with control variables X and Y—
are initiated. These hunt through the board
for empty spaces. It is this section of program
which is really time-consuming. As the num-
ber of empty squares decreases as the game
progresses, so the time taken for the
computer's move also decreases.

Line 3010 checks to see if the square is
empty. If it isn't, then the computer jumps to
the NEXT statements in Line 3070. Lines 3020
to 3060 check to see if the square is at the end
of a row which the computer can take. XP and
YP are used as before. DX and DY represent the
direction array DO contents and save quite a
lot of space.

Line 3030 checks to see if the square to be
tested lies on the board. If it doesn't, the next
direction is tested. If the square tested is a
player's square then the routine jumps back to
Line 3030 to check if the next square is
occupied by the player.

In Line 3050 the board is checked to see if
it is occupied by the computer. If it is and a
row has been found, the start positions are
recorded in X() and YO, the direction number
being stored in NO. The counter to indicate
the number of coordinates found is also
increased.

Only the first row is stored, to ensure

ensure that the search takes as little time as
possible.

Lines 3080 to 3110 find which move gives
the longest score in a straight line. A loop
from one to NF (number of squares found) is
set up. X and Y are equated with X(F) and Y(F).
The direction coordinates, DX and DY, are set
to the directions indicated by N(F). CF, a
temporary count is zeroed on each execution
of the loop.

Line 3090 checks to see if the piece being
tested is a player's piece. If it is, then CF is
increased and the next square in that direction
tested. Line 3100 tests to see if the number
found (CF) is greater than the previous max-
imum (MX). If it is, then MX is set to equal CF,
and MF, the coordinates of the 'best' piece set
to the loop index F.

The move routine is carried out by Lines
3180 to 3260. Lines 3180 starts a loop from
one to eight. This is done so that rows in all
directions can be found.

X, Y, DX and DY are set as before, and in
Line 3195, X and Y are tested to ensure they
are still on the board. If they are not, the
program jumps to the NEXT at Line 3260.

Line 3200 checks to see if the player
occupies this square. If he does, the routine
jumps to try the next square in the line. At
this point no squares are altered, the routine is
only testing.

If the row ends in a computer occupied
square, X and Y are reset and Lines 3235 to
3250 alter all the squares in the row. If an
empty square is found, the next direction is
tried.

Once the routine has decided on the square
it wishes to move into, Line 3265 PRINTS the
coordinates and waits for a key to be pressed
(specifically, < ENTER > on the Spectrum).
Line 3270 sets the CP flag to one for the
player's turn, then RETURNS to the main loop.

END OF GAME

4000 IF PS>CS THEN GOTO 5000
4010 IF PS= CS THEN GOTO 6000
4020 PRINT AT 17,0; INK 2;"THAT WAS EASY!
4030 PRINT "DO,YOU WANT ANOTHER

GAME ('Y' OR 'N')"
4040 LET A$=1NKEY$: IF A$< >"Y" AND

A$ < >"N" THEN GOTO 4040
4050 IF A$="Y" THEN RUN
4060 STOP
5000 PRINT AT 17,0; INK 2;"YOU WERE

LUCKY!"
5010 GOTO 4030
6000 PRINT AT 17,0; INK 2;"WE DREW,I

NEED MORE PRACTICE": GOTO 4030

4000 IFPS>CSTHEN5000
4010 IFPS=CSTHEN6000
4020 PRINT"]THAT WAS EASY!"
4030 PRINT"gDO YOU WANT ANOTHER

GAME(`Y' OR 'N')"
4040 GETA$:IFA$ < > "Y"ANDA$ < >

"N"THEN4040
4050 IFA$="Y"THENRUN
4060 END
5000 PRINT" gg AYOU WERE LUCKY!"
5010 GOT04030
6000 PRINT"gg AWE DREW,I NEED MORE

PRACTICE":GOT04030

4000 IF PS>CS THEN 5000
4010 IF PS= CS THEN 6000
4015 A$ = "THAT WAS EASY"
4020 COLOR1:LINE (0,182) — (255,191),

PSET,BF:DRAW "S8C2BM70,182":
GOSUB 9300

425 FOR F=1 TO 1500:NEXTF
4030 COLOR1:LINE (0,182) — (255,191),

PSET,BF:A$=" DO YOU WANT ANOTHER
GAME":DRAW "C3BM0,182":
GOSUB 9300

4040 A$=INKEY$:IF A$ < >"Y" AND
A$ < >"N" THEN 4040

4050 IF A$="Y" THEN RUN
4060 END
5000 A$ = "YOU WERE LUCKY"
5010 GOTO 4020
6000 A$=" IT IS A DRAW":GOTO 4020

The end of game routine is located from Line
4000 onwards. Lines 4000 itself checks to see
if the player has won by comparing PS and CS.
The program jumps to Line 5000 to PRINT
the win message. Line 4010 tests for a draw,
and the message routine is located at Line
6000. If the computer has won, the program
reaches Line 4020 and displays a message to
rub salt in the wound!

The remaining lines are simply an 'another
go?' option.

Again, the Acorn program has been written
differently from the others, so the routines are
a little different from those described earlier.

YOUR MOVE
440 DEFPROChumanmove
450 *FX15,1
460 COLOUR 2:COLOUR 128:INPUT TAB

(0,25)SPC(80)TAB(0,25),"What
is your move?'""(row,col) ", y%,x%

470 IF x%=0 AND y%=0 THEN
eg%=1:ENDPROC

475 IF y%=9 THEN cp%=2:ENDPROC
480 IF x%<1 OR x%>8 OR y%<1 OR

y%> 8 THEN VDU 7:GOTO 450
490 IF b%(x%,y%) < >0 THEN

PROCbadmove(1):GOTO 450
500 nf%= 0:FOR f%=1 TO 8: cf% = 0:IF

x% + d%(f%,1) = 0 OR x% + d%(f%,1) = 9
THEN 530

510 IF y%+d%(f%,2) = 0 OR
y% + d%(f%,2) = 9 THEN 530

520 IF b%(x% + d%(f%,1),y% +
d%(f%,2)) = 2 THEN cf%=1: nf%=1

530 c%(f%) = 0:IF cf% = 1 THEN

c%(f%) = f%
540 NEXT f%
550 IF nf%< >1 THEN PROCbad

move(2):GOTO 450
560 rf%= 0:FOR q%=1 TO 8:IF c%(q%) =0

THEN 630
570 xp%=x%:LET yp%=y%
580 xp%=xp%+d%(q%,1):

yp%=yp%+d%(q%,2)
590 IF xp%= 0 OR xp%=9 OR yp%= 0 OR

yp%=9 THEN c%(q%)=0:GOTO 630
600 IF b%(xp%,yp%) =2 THEN 580
610 IF b%(xp%,yp%) =1 THEN rf%=1:GOTO

630
620 IF b%(xp%,yp%) = 0 THEN c%(q%) = 0
630 NEXT q%
640 IF rf%< >1 THEN PROCbadmove

(3):GOTO 450
650 FOR q%=1 TO 8:IF c%(q%) = 0 THEN

710
660 xp%=x%+d%(q%,1):

yp%=y%+d%(q%,2)
670 IF b%(xp%,yp%) =1 THEN 710
680 b%(xp%,yp%) =1
690 xp%=xp%+d%(q%,1):

yp%=yp%+d%(q%,2)
700 GOTO 670
710 NEXT q%
720 b%(x%,y%) =1: cp% = 2
730 PROCdisplayboard
740 ENDPROC

The player enters a move in response to the
prompt. Line 470 checks if the player wants
to stop the game, and Line 480 checks if the
input is outside the correct range.

If the square is already occupied, Line 490
calls PROCbadmove. Lines 500 to 550 check if
the move is into a square that is next to one of
the computer's pieces. If it isn't, then Line
550 calls PROCbadmove. Lines 560 to 640
check if the move is into a position that flanks
a row. If it doesn't, then Line 640 calls
PROCbadmove once again. Each of these lines
passes a different parameter value to
PROCbadmove which determines the message
that appears on screen.

The final section of the PROCedure sets the
arrays ready for PROCdisplay board to display
the new status of the board—pieces will
always change status after a move has been
made.

COMPUTER'S MOVE
750 DEFPROCcomputermove
760 COLOUR 3: PRINT TAB(0,25);"Thinking

..."SPC 40
770 nf%=1: mx%= 0
780 FOR x%=1 TO 8
790 FOR y%=1 TO 8
800 IF b%(x%,y%) < >0 THEN 890

810 FOR f%= 1 TO 8
820 xp% = x%: yp% =
830 dx%=d%(f%,1): dy%=d%(f%,2):

rf%= 0
840 xp%= xp%+ dy%: yp%= yp%+ dx%
850 IF xp% = 0 OR xp% = 9 OR yp%= 0 OR

yp%= 9 THEN 880
860 IF b%(xp%,yp%) =1 THEN rf%= 1:GOTO

840
870 IF b%(xp%,yp%) =2 AND rf% = 1 THEN

n%(nf%) = f%: x%(nf%) = x%:
y%(nf%) = y%: nf%= nf%+ 1:LET f%= 9

880 NEXT f%
890 NEXT y%
900 NEXT x%:LET nf%= nf% —1
905 IF nf%= 0 THEN1205
910 FOR f% = 1 TO nf%
920 x%= x%(f%)
930 y%= y%(f%)
940 dx%=d%(n%(f%),1)
950 dy%= d%(n%(f%),2): cf%= 0
960 REPEAT
970 x%= x%+ dy%: y%= y%+ dx%
980 IF b%(x%,y%) =1 THEN cf%= cf% + 1
990 UNTIL b%(x%,y%) < >1
1000 IF cf%> mx% THEN mx%= cf%:

mf% = f%
1010 NEXT f%
1020 FOR f% = 1 TO 8
1030 x%= x%(mf%): y%=y%(mf%)
1040 dx%= d%(f%,1): dy%=d%(f%,2)
1050 x%= x%+ dy%:

y%= y%+ dx%
1060 IF x%<1 OR x%>8 OR y%<1 OR

y%>8 THEN 1160
1070 IF b%(x%,y%) =1

THEN 1050
1080 IF b%(x%,y%) =2

THEN 1100
1090 IF b%(x%,y%) = 0

THEN 1160
1100 x%= x%(mf%):LET y%=y%(mf%)
1110 REPEAT
1120 b%(x%,y1)/0)
1130 x%= x%+ dy%
1140 y%=y%+dx%
1150 UNTIL b%(x%,y%) =2
1160 NEXT f%
1170 PRINT TAB(0,25);"My move is Ill";

y%(mf%);",";x%(mf%): * FX15
1180a% = I NKEY(1000)
1190 cp% =1
1200 ENDPROC
1205 PRINT"I CANNOT MAKE A MOVE":

FOR F=1 TO 2000: NEXT:ENDPROC

PROCcomputer move follows the same gen-
eral structure as PROChuman's move, but
must also choose a move for the computer.

In Line 780 the number of squares in a row
is set to 1, and the maximum number of pieces

found in a row is set to zero. This is the
computer's start point for its explorations for
a good move. Two loops are initiated in Lines
780 and 790. These hunt through the board
for empty spaces.

It is this section of program which is really
time-consuming. As the number of empty
squares decreases as the game progresses, so
the time taken for the computer's move also
decreases. The computer is searching for
empty squares which are at the•end of rows of
pieces.

Lines 1000 to 1160 look for the best
possible position for the new piece. Line 1170
displays the move. You are given ten seconds
to look at the move before it is plotted. The
wait can be overridden by tapping any key.

BAD MOVES
1210 DEFPROCbadmove(t%)
1220 COLOUR 1:VDU 7:PRINT TAB(0,25);
1230 IF t% = 1 THEN PRINT "You cannot move

ontoan occupied square."
1240 IF t% = 2 THEN PRINT "Your move isn't

nextto one of my pieces."
1250 IF t%=3 THEN PRINT "Your move

doesn't El ❑ ❑ flank a row. ❑ ❑ El"
1260 *FX15,1

1270 a% = INKEY(500)
1280 PRINT TAB(0,25);SPC(40)
1290 ENDPROC

PROCbad move contains three error messages.
Parameters are passed from PROChuman's
move if bad moves are found. t% is set
according to the nature of the bad moves, and
Lines 1230 and 1250 display the message.

THE END
1300 DEFPROCgameover
1310 COLOUR 3:PRINT TAB(0,25);

SPC(80);TAB(0,25);
1320 IF ps% > cs% THEN PRINT"You were

lucky!"
1330 IF ps%< cs% THEN PRINT"That was

easy!"
1340 IF ps%= cs% THEN PRINT"It was a

draw!"
1350 REPEAT
1360 COLOUR 2:PRINTTAB(0,30);

"Play again (YIN) ?"
1370 x$ = GET$
1380 UNTIL INSTR("yYnN",x$) > 0
1390 IF x$="y" OR x$="Y" THEN RUN

ELSE CLS:COLOUR 3:END
1400 ENDPROC

Plan out all the important events in
the coming year and keep a note of
special dates such as birthdays with
this comprehensive calendar and
diary program.

Are you the sort of person who always forgets
your mother's birthday or only remembers a
dental appointment a day too late? And are
you surprised when a bill drops through the
letterbox even though you know it appears
regularly every quarter?

The program that accompanies these art-
icles will keep track of all these things for you*
It is easy to use and much more fun than
writing entries into a diary, so you'll have no
excuse to miss an appointment or forget to
pay the rates ever again. If you have a printer
you can make a hard copy of the diary to carry
around with you so you can check what's
coming even when you are away from the
computer.

AUTOMATIC CALENDAR
The program really does two things, printing
out either a calendar or a diary. The simplest
option prints out a calendar for any month in
any year between 1753 and 29,999 (or 3299 on
the Acorns). The calendar is displayed in the
usual way with the days of the week along the
top and the numbers of the days underneath*
The program automatically takes account of
leap years, and the date of Easter Sunday is
printed out underneath the month in which it
falls.

As well as looking at the single monthly
calendar you can also choose to print out a
calendar for a whole year* This is useful if you
have a printer as you can keep the calendar by
your desk or pin it on the wall, and there is
plenty of room on the printout to make notes
by any of the dates*

ELECTRONIC DIARY
The diary option is the one that lets you keep
track of what's happening* The entries are
made under four separate headings—Finance,
Appointments, Celebrations and Holidays—
and each is highlighted in a different colour so
when you use the diary it is easy to pick out a
particular type of entry*

Entering the information is very straight-
forward, and this program has an advantage
over an ordinary diary in that it will automati-
cally carry forward regular events such as bills
or birthdays, filling them in on the correct
date for all following months and years* For

example, when you make an entry under
Finance you are first asked whether it is
monthly, quarterly, annual or just a single
one-off event. Say you're entering details of
your monthly payments. You would type M
for monthly then enter the name RENT
followed by the date you first paid* The word
RENT will then appear on that date for every
following month.

The Celebrations option is for things such

as birthdays and anniversaries *so these are
automatically taken as annual events. The
Appointments and Holidays are all treated as
single events.

It doesn't matter in what order you enter
the dates, the computer will sort through
them all and group them together under the
correct month*

Once you've entered the data, it is best to
save it straight away, using the SAVE option in

MONTHLY CALENDAR
CALCULATING EASTER

YEARLY CALENDAR
FILLING IN THE DIARY

ENTERING REGULAR EVENTS

FINANCE, APPOINTMENTS,
CELEBRATIONS AND HOLIDAYS

HOW TO USE THE DIARY
ENTERING THE FIRST PART OF

THE PROGRAM

the menu, in case any disasters happen with
the program. The data is stored in a separate
file called DIARY and can be loaded in,
amended, updated or deleted at any time. So
you can easily keep your diary up to date.

USING THE DIARY
Once you've entered some data into the
program you can see how the monthly diary
works. Enter the number of the month and

the year and you'll see all the entries for that
month, including any regular finances or
celebrations carried forward from earlier
months or years. The entries are grouped
together in the different categories, each
highlighted in the same colours as those used
for the monthly calendar.

The program waits for you to press a key
before each group is printed on the screen.
This is in case there are too many entries to fit
on the screen in one go, and so it stops early
entries being scrolled off the screen before
you've had a chance to read them. If you have
a printer attached to the computer you can
choose to have a printout of all the entries.

If you now go back to the calendar option
and print out a calendar for the same month,
you can highlight the dates corresponding to
the diary entries by pressing F, A, C or H for
each of the four categories. Again, they are
colour-coded so you know which category the
dates refer to, although you need the diary to
see the details of each entry.

The best way to use the program depends
on exactly what you want to find out. If you
want to see what's coming in a particular
month then select the month diary. If, in-
stead, you want to scan through a year to see,
for example, how many financial events to
plan for, then the quickest way is to select the
monthly calendar for the first month, high-
light the financial dates by pressing F, move
on to the next month and so on for the rest of
the year. Once you use the program you'll see
just how versatile it is.

ENTERING THE PROGRAM
The program is rather long and so has been
split into three parts. The first part given here
sets up several of the routines and prints out
the main menu. The remainder of the
program follows later and there will also be
more detailed instructions on how to use it.
There are also changes to make to the
Acorn program so it can run on the Electron.
Don't forget to SAVE this part of the program
so you can add the extra routines next time.

10 DATA 2,4,1,3,7,31,28,31,30,31,30,31,
31,30,31,30,31

20 DATA "MNLY","QRLY","ANLY","SNGL"
30 BORDER 0: PAPER 0: INK 7: CLS
40 CLS
50 CLEAR : LET P=2
60LETZ$=" ❑❑❑❑❑ 0 ❑❑❑

0 ❑❑❑❑❑❑❑❑❑❑❑❑❑❑
101=1 ❑❑❑❑❑ "

70 DIM O$(1,31): DIM Q(4): DIM
L$(4,150,31): DIM T$(4,12): DIM C(4):
DIM Z(5)

80 FOR n=1 TO 5: READ Z(n): NEXT n
90 DIM D(12): FOR n=1 TO 12: READ D(n):

NEXT n
100 LET M$="January 	Februaryill March

❑❑❑❑ April ❑❑❑❑ May ❑❑❑
111111111Junelll 	D 0July111C1111
DE August ❑ DESeptemberOctober111 ❑
November ❑ December ❑ "

110 LET s$="SunMonTueWedThuFriSat"
120 DIM P$(4,4): FOR n=1 TO 4: READ

P$(n): NEXT n
130 LET T$(1) = "Finances": LET T$(2) =

"Appointments": LET T$(3) =
"Celebrations": LET T$(4) = "Holidays"

140 DEF FN M(A)= ((A/K2— INT (A/K2)) * K2)
150 LET SV= 0: LET M0=0: LET DA =0
160 PRINT "HAVE YOU ANY EXISTING

LISTINGS Y/N ?": LET K$="yn"
170 CLS : GOSUB 990: CLS : LET P=2
180 IF C=1 THEN GOSUB 760
190 IF C=2 THEN GOSUB 1760
200 IF C=3 THEN GOSUB 2240
210 IF C>3 AND C<8 THEN LET

KB = C-3: GOSUB 1140: LET SV=1
220 IF C=8 THEN GOSUB 1610: LET

SV= 0
230 IF C=9 AND SV=1 THEN PRINT :

PRINT "YOU HAVE NOT SAVED ANY
CHANGES—ARE YOU SURE YOU WANT
TO QUIT": LET K$="yn": GOSUB 1480:
IF KB = 2 THEN LET C=0

240 IF C< >9 THEN GOTO 170
250 CLS : PRINT "GOODBYE"
260 STOP
270 LET MX=0: LET A2=0
280 LET K2=4: IF FN M(YR) = 0 THEN LET

A2=1
290 LET K2=100: IF FN M(YR) =0 THEN

LET A2=0
300 LET K2=400: IF FN M(YR) = 0 THEN

LET A2=1

310 IF KB =2 THEN LET MX = A2 + 28
320 IF KB-0 THEN LET KB =1
330 IF KB < >2 THEN LET MX = D(KB)
340 LET KB = MX: RETURN
350 LET RS=0
360 IF DA= DE AND M0= ME AND KB=5

THEN LET KB =5: RETURN
370 IF KB = 5 THEN LET KB =7: RETURN
380 LET RS = Z(KB)
390 IF Q(KB) = 0 THEN G0T0 450
400 LET M4= Q(KB)
410 F0R 1=1 T0 M4
420 LET K$= L$(KB,1): LET K2=3: G0SUB

470: IF VAL K$(2 TO 3) < > DA THEN LET
K2=0

430 IF K2=1 THEN LET KB =7: RETURN
440 NEXT I
450 LET KB = RS
460 RETURN
470 IF KB< >1 THEN GOT0 520
480 IF VAL K$(1) = 3 THEN G0T0 540
490 IF VAL K$(1) =4 THEN G0T0 530
500 IF VAL K$(1) =1 AND VAL K$(2 T0

3) = DA THEN LET K2=1: RETURN
510 IF VAL K$(1) =2 AND FN M((((YR —

VAL K$(6 T0 9))*1 2) + (12—VAL K$(4 T0
5)) + M0D= 0 THEN LET K2=1:
RETURN

520 IF KB =3 THEN G0T0 540
530 IF VAL K$(2 T0 3) = DA AND VAL K$(4

T0 5) = M0 AND VAL K$(6 T0 9) =YR
THEN LET K2=1: RETURN

535 LET K2=0: RETURN
540 IF VAL K$(4 T0 5) = M0 THEN LET

K2=1: RETURN
550 LET K2=0: RETURN
560 LET Y2=0: LET D2=0: LET M2=0
570 LET Y2= YR —1
580 LET D2 = Y2*365 + INT (Y2/4) — INT

(Y2/100) + INT (Y2/400)
590 IF M0=1 THEN G0T0 630
600 F0R m=1 T0 M0-1
610 LET KB =m: G0SUB 270: LET

D2= D2+ KB
620 NEXT m
630 LET KB = D2+ DA: RETURN
640 LET MS= M0: LET DS= DA
650 LET DA =1: LET M0 = 3: G0SUB 560:

LET K2=7: LET DE= FN M(KB)
660 LET N2= (INT (YR/100)) —16: LET

C2 = 3 + N2 — INT ((N2 +1)/3) — INT
(N2/4)

670 LET K2=19: LET N2= FN M(YR +1):
LET K2=30: LET D2= FN
M(C2 + (N219))

680 IF N2>11 AND D2<27 THEN LET
D2= D2-1: G0T0 700

690 IF N2 < =11 AND D2=29 THEN LET
D2=28

700 LET D2= D2+21
710 LET D2= D2+1: LET K2=7: IF INT (FN

M(D2+DE)+0.1)< >1 THEN
G0T0 710

720 IF D2<32 THEN LET ME= 3
730 IF D2> =32 THEN LET D2= D2-31:

LET ME =4
740 LET DE= INT (D2+ 0.1): LET M0=MS:

LET DA= DS
750 RETURN
760 G0SUB 2510: G0SUB 2480
770 CLS
780 LET MK = 5
790 CLS
800 PRINT AT 17,0;"< BREAK > returns to menu"
810 PRINT "z,x keys alter month. 0"
820 PRINT INK 7;T$(1); INK 2;

"LIFO ❑ "; INK 7;T$(2); INK 4;" ❑ A"
830 PRINT INK 7;T$(3); INK 1;

"ETD ❑ "; INK 7;T$(4); INK 3;" ❑ H"
840 PRINT AT 0,0;
850 G0SUB 2570: IF MK <5 THEN PRINT

T$(MK)
860 PRINT # P: LET KB =1: G0SUB 1920
870 IF P=3 THEN PRINT #P
880 PRINT #P: LET T2= MK: LET S2=1:

G0SUB 2020
890 LET P=2
900 LET K$ = "zxfach O": G0SUB 1480: LET

A = KB
910 IF A=1 THEN LET M0= MO-1
920 IF A=2 THEN LET M0=M0 +1
930 IF M0=13 THEN LET M0=1: LET

YR =YR +1: G0SUB 640
940 IF MO=0 THEN LET M0=12: LET

YR =YR-1: G0SUB 640
950 IF A>2 AND A<7 THEN LET MK—A-2
960 IF A<3 THEN LET MK=5
970 IF A< >7 THEN G0T0 790
980 RETURN
990 CLS : PRINT PAPER 5; INK 1; AT 0,7;

"EICALENDAR & DIARY ❑ "; PAPER 6;
INK 0;AT 2,10;" ❑ MAIN MENU ❑ "

1000 FOR Z=1 TO 19: PRINT PAPER 1;
"00000001=1000000
❑❑❑❑❑❑❑❑❑❑❑❑❑❑❑
0 0 El": NEXT Z: PRINT AT 3,0

1010 PAPER 1: INK 7
1020 PRINT AT 4,1;"1 	 Look at monthly

calendar"
1030 PRINT AT 6,1;"2 	 Look at yearly

calendar"

1040 PRINT AT 8,1;"3 	 Look at month
diary"

1050 PRINT AT 10,1;"4 	 Review/
Edit Finance"

1060 PRINT AT 12,1;"5 	 Review/
Edit Appointments"

1070 PRINT AT 14,1;"6 	 Review/
Edit Celebrations"

1080 PRINT AT 16,1;"7 	 Review/
Edit Holidays"

1090 PRINT AT 18,1;"8 	Save the lists"
1100 PRINT AT 20,1; "9 	 Leave the

program"
1110 PRINT TAB 10;"please choose"

10 PRINT"0":DIM DL$(3,100):POKE
53280,1:POKE 53281,1

20 M1$ = "JANUARYD CIFEBRUARYD
MARCH ❑ D ❑ DAPR1LD El 	MAY
❑❑❑❑❑❑ JUNE ❑❑❑❑❑ "

30 M2$="JULYD 	DAUGUST
SEPTEMBEROCTOBER

NOVEMBER ❑ DECEMBER 0"
40 MN$= M1$ + M2$
50 ML$ = "312831303130313130313031"
60 DN$="SUNMONTUEWEDTHUFRISAT"
70 ST$(0)="FINANCIAL":ST$(1)=

"APPOINTMENTS"
80 ST$(2)="CELEBRAT1ONS":ST$(3)=

"HOLIDAYS"
90 CD$(1) = "MNLY":CD$(2) = "ORLY":

CD$(3)="ANLY":CD$(4)="SNGL"
100 CL(0)=28:CL(1)=31:CL(2)=156:CL(3)

=144:CL(4)=30:WH =5
110 Z=0:DR=0
120 GOSUB 2070
130 PP%= 0
140 POKE 53280,6:POKE 53281,13:PRINT

"0"TAB(9)"ClaDCALENDAR &
PLANNER ❑ M ❑ "

150 PRINTTAB(10)"MlaD ❑ DOD
❑❑ MENU ❑❑❑❑❑❑❑ •l ❑ "

160 pRINTTAB(12)"gggggigugni
1 YEAR CALENDAR"

170 PR1NTTAB(12)"gg gg2DSEE DIARY"
180 PRINTTAB(12)"ggg3 ❑ ALTER DIARY"
190 PRINTTAB(12)"gg gpo LEAVE

PROGRAM"
200 PRINTTAB(9)"gugggggigigg

M ❑ 1=1 D El ❑ ENTER CHOICE
0000 ❑ "

210 PRINTTAB(8)"a OrDEIDDD
ERERD?0?0?0?00000

❑ iei"
220 GET A$:IF A$=`"' GOTO 220
230 A = VAL(A$)
240 IF A<1 OR A>4 GOTO 220
250 POKE 53280,1:ON A GOSUB

290,290,1100,270
260 GOTO 130

270 IF DR =1 THEN GOSUB 2170
275 INPUT "ID I.PRESS (Q)UIT OR

(M)ENU"; RS$:IF RS$="M" THEN
RETURN

280 PRINT "00":POKE 53280,
14:POKE 53281,6:END

290 INPUT"D gg 	ENTER YEAR (1753
TO 29999)";Y

300 IF Y<1753 OR Y > 29999 GOTO 290
310 YY = Y:Y = Y —1
320 LY=0
330 IF YY/4=INT(YY/4) THEN LY =1
340 IF YY/100=INT(YY/100) THEN LY=0
350 IF YY/400=INT(YY/400) THEN LY =1
360 ND = 365*Y +INT(Y/4) — INT

(Y/100) +INT(Y/400) +1
370 ED=ND+59+LY
380 ND= ND — INT(ND/7)*7
390 ED = ED — INT(ED/7)*7
400 N = INT(YY/100) —16
410 C = 3 + N — INT((N + 1)/3) — INT (N/4)
420 N =YY +1 —INT((YY+1)/19) *

19:IF N=0 THEN N=19
430 D = C + 19 * N — INT((C +19*N)/ 30) * 30
440 IF N>11 AND D>27 THEN D=D+1
450 IF N< =11 AND D=29 THEN D=28
460 D = D +21
470 D=D+1
480 X = D + ED — INT((D + ED)/7) * 7
490 IF X< >1 THEN 470
500 EM =3:IF D>31 THEN

D=D-31:EM=4
510 ED = D
520 IF A=1 THEN GOSUB 870:RETURN
530 INPUT"Igl go gg pi WHICH

MONTH";A$:M =VAL(A$):IF M <1 OR
M >12 GOTO 530

540 GOSUB 550:RETURN
550 C = 5:Z = 0:PP =0
560 PRINT"D";CHR$(WH)
570 IF Z=0 THEN GOSUB 650
580 IF Z=1 THEN GOSUB 1870
590 PRINT"gg gg gr:GOSUB 2280:IF

K=8 THEN K=0:GOTO 560
600 GOSUB 980
610 ON K GOSUB1600,1600,1600,

1600,1830,1830,1850,2270
620 IF K=9 THEN RETURN
630 IF M >0 AND M <13 GOTO 560
640 RETURN
650 T=0
660 ML=VAL(MIDVML$,2*M-1,2)):

IF M=2 THEN ML=ML+LY
670 IF M=1 THEN T=0:GOTO 720
680 FOR N=1 TO M-1
690 T=T+VAL(MID$(ML$,2*N —1 , 2))
700 NEXT N
710 IF M>2 THEN T=T+LY
720 SD = T + ND — INT((T + ND)/7)*7
730 PRINT"CIMM"TAB(11)

"a"MIDVMN$,M * 9 — 8,9);
"0";YY;"gg 1":PRINT TAB(5);

940 FOR N=1 TO 7:PRINT"a"
MID$(DN$,3*N —2,3);".1 ❑ C";:
NEXT N

750 PRINT"A":PRINTTAB
(4*SD +5);

760 X= SD
770 FOR CD = 1 TO ML
780 GOSUB 1600
790 D$=STR$(CD) + " ❑ "
800 IF LEN(D$) <4 THEN D$=D$+

CHR$(32)
810 PRINTCHR$(CC);D$;:X=X +1
820 IF X > 6 THEN PRINT:

PRINTTAB(5);:X= 0
830 NEXT CD
840 IF M = EM THEN PRINT:

PRINTTAB(7)11 AgEASTER
SUNDAY 0 ";ED;" ❑ ";MID$(MN$,
M*9 — 8,9)

850 PRINT
860 RETURN
870 C=5
880 PRINT"ClgataM00111111111D0

YOU WANT A PRINTOUT
(Y/N)? ❑ 	O"

890 GET A$:IF A$="" GOTO 890
900 IF A$="Y" THEN GOSUB 2270
910 FOR M=1 T012
920 GOSUB 650
930 PRINT
940 IF PP= 0 THEN GETA$:IF A$="" GOTO

940
950 NEXT M
960 GOSUB 2280
970 RETURN
980 PRINTIMINMPlanFUN

INANCE,a MAU EPPOINTMENTS,
wHii MOLIDAYS"

990 PRINTTAB(7)"2141 IN
ELEBRATIONS,aN•EXT,
a LEAST"

1000 PRINTTAB(11)"aS•WAP,
aPIIIIRINTaMMENU"

1010 GET A$:IF A$="" GOTO 1010
1020 N=0
1030 N=N+1
1040 IF MID$("FACHNLSPM",N,1)

=A$ GOTO 1070
1050 IF N <9 GOTO 1030
1060 C=0:GOT01010
1070 K=N:C=N-1:IFC<4 THEN CP=C
1080 IF Z=1 AND K<5 GOTO 1010
1090 RETURN

10 MODE7
20 *FX229,1
22 *OPT2,1
24 *OPT1,1
30 *FX4,1
40 DIMList$(3,150),Type$(3), code%(4)

50 DayMonth$ = "3128313031303131
30313031"

60 MonthName$ = "January ❑ ❑

February0March1111111110April
❑ ❑❑❑ May ❑❑❑❑❑❑ June
❑❑❑❑❑ July ❑❑❑❑❑

Augustin ❑ ❑ SeptemberOctober
❑ ❑ November ❑ December ❑ "

70 DayName$="SunMonTueWedThu
FriSat"

80 Pay$="MnlyQrlyAnlySngl"
90 Type$(0)="Finances":Type$(1)

="Appointments":Type$(2)
="Celebrations":Type$(3)
= "Holidays"

100 F$=CHR$132+CHR$157+CHR$
135+CHR$141

110 SaveFlag%= 0:P%= 0:Month%
0:Day%= 0

120 PRINT"Have you existing lists (YIN)?"
130 REPEAT
140 MODE7:C%= FNmenu:MODE7
150 IF C%= 1 PROCscrM
160 IF C%=2 PROCannual
170 IF C%=3 PROCdiary
180 IF C%>3 AND C%<8

PROClist(C%-4):SaveFlag%=1
190 IF C%= 8 PROCsave:SaveFlag%

200 IF C%= 9 AND SaveFlag%=1
PRINT""You have not saved any
alterations":PRINT"Are you sure you wish to
leave (Y/N) ":IF FNget("YN") = 2 C%=0

210 UNTIL C%=9
220 *FX4,0
230 *FX229
240 CLS:PRINTTAB(12,12)"GOODBYE"
250 END
260 DEF FNmonthL(m%)
270 LOCAL max%,a%
280 IF Year%MOD4= 0 a%=1
290 IF Year%MOD100 = 0 a%= 0
300 IF Year%MOD400 = 0 a%=1
310 IF m%=2 max%=a%+ 28
320 IF m%< >2 max%=VAL(MID$

(DayMonth$,m%*2-1,2))
330 =max%
340 DEF FNmarker(type%)
350 LOCALa$,n%,flag%,max%
360 IF P%= 2 =32
370 IF type%= 5 AND Month%= Meast%

AND Day%=Deast% =134
380 IF type%= 5 =135
390 max%=VAL(List$(type%,0))
400 REPEAT
410 n%=n%+1
420 a$ = List$(type%,n%)

430 d%=ASC(MID$(a$,2,1))
440 IF d%< > Day% GOT0460
450 flag%=FNcheck(a$)
460 UNTIL flag%=1 OR n%> =max%
470 IF flag%=1 =135
480 n%= 129 +type%:IF n%= 132 =133
490 IF n%=131 =132
500 =n%
510 DEF FNcheck(a$)
520 LOCALt%,y%,m%,flag%
530 t%=ASC(MID$(a$,1,1))
540 y%=ASC(MID$(a$,3,1))
550 m%=y%AND&F
560 y%= (y%DIV16 +17) * 100 + ASC

(MID$(a$,4,1))
570 IF y%> Year% =0
580 IF (t%=1 AND Month%> =m%) OR

(t% =2 AND (m%— Month%)MOD3= 0)
OR (t%=3 AND m%= Month%) OR
(t% = 4 AND m%= Month% AND
y%=Year%) flag%=1

590 =flag%
600 DEF FNdayNo
610 LOCAL d%,m%,y%
620 y%=Year%-1
630 d%=y%"365+y%DIV4—y%DIV

100 + y%DIV400
640 IF Month%=1 GOTO 680
650 FOR m%=1 TO Month%-1
660 d%=d%+ FNmonthL(m%)
670 NEXT
680 =d%+ Day%
690 DEF PROCeaster
700 LOCALc%,n%,d%
710 Mstore%= Month%:Dstore%= Day%
720 Day%=1:Month%= 3: Deast%

= FNdayNo MOD7
730 n%= (Year%DIV100) — 16:c%

=3 + n%— (n%+1)DIV3
—n%DIV4

740 n%= (Year%+1)MOD19:d%=
(c%+ (n%*19))MOD30

750 IF n%>11 AND d%>27 d%=
d%-1 ELSE IF n%< =11 AND d%=29
d%=28

760 d%=d%+21:REPEAT d%=
d%+1:UNTIL (d%+ Deast%) MOD7 =1

770 IF d%<32 Meast%=3 ELSE
d%=d%-31:Meast%=4

780 Deast%=d%:Month%= Mstore%:
Day%=Dstore%

790 ENDPROC
800 DEF PROCscrM
810 LOCAL a,a$,t
820 PROCmydate:PROCprinter
830 FOR t =19 TO 24
840 PRINTTAB(0,t)CHR$132+CHR$

157+ CHR$135;:PRINTTAB(36,t)
CHR$156;

850 NEXT
860 VDU28,3,24,34,19

870 PRINTTAB(0,0)"Use Cursor arrows to alter
month"

880PRINT"< ESCAPE> to return to Menu"
890 PRINT'Type$(0);" 	";Type$(1)
900 PRINTType$(2);" 	";Ty p e$ (3);
910 VDU26,28,0,18,39,0
920 marker%=5
930 REPEAT
940 CLS:*FX15
950 PROCmyheader:PRINT:

PROCprintdays(1)
960 PRINT':PROCprintmonth(marker%,1)
970 P%=0:VDU3
980 a = FNget(CHR$136 + CHR$137 +

"FACH"+CHR$27)
990 IF a =1 Month%= Month%-1
1000 IF a =2 Month%= Month%+1
1010 IF Month%=13:Month%=1:Year

%=Year%+1:PROCeaster
1020 IF Month%=0:Month%=12:

Year%=Year%—l:PROCeaster
1030 IF a>2 AND a<7 marker%= a —3
1040 IF a<3 marker%=5
1050 UNTIL a=7
1060 ENDPROC
1070 DEF FNmenu
1080 LOCAL n
1090 FOR n=1 TO 2
1100 PRINTF$+"INPUT :111"+CHR$

135+ "Calendar & DiaryCl
❑ 117 " +CHR$156

1110 NEXT
1120 PRINT
1130 FOR n=1 TO 2

1140 PRINTSPC(9)F$ + "Menu ❑ ❑ 0 "
+CHR$156

1150 NEXT
1160 PRINT- 1" + CHR$131 + "Look at

Monthly Calendar"
1170 PRINT"2"+CHR$131+"Look at Year

Calendar"
1180 PRINT"3"+CHR$131 +"Look at Month

Diary"
1190 PRINT"4"+CHR$131 +"Review/

Edit Finance"
1200 PRINT"5"+ CHR$131 + "Review/

Edit Appointments"
1210 PRINT"6"+ CHR$131 + "Review/

Edit Celebrations"
1220 PRINT"7" + CHR$131 + "Review/

Edit Holidays"
1230 PRINT"8"+CHR$131 +

"Save the lists"
1240 PRINT"9"+ CHR$131 + "Leave the

program"
1250 PRINTTAB(18,18)"Please Choose ❑ ";
1260 = FNget("123456789")

10 CLS
20 CLEAR 5000
30 DIM LI$(3,150),TY$(3),CO(4)
40 DM$="3128313031303131

30313031"
50 MN$ = "JANUARY 	FEBRUARY ❑

MARCH E' 111 ❑ ❑ APRIL ❑ ❑ ❑ ❑ MAY
❑❑❑❑❑❑ JUNE ❑❑❑❑❑ JULY
DODO DAUGUST1111110

SEPTEMBER0CT0BER ❑ ❑ N0VEMBER ❑
DECEMBER 11"

60 DN$= "SUNM0NTUEWEDTHUFRISAT"
70 PA$ = "MNLYQRLYANLYSNGL"
80 TY$(0)="FINANCES":TY$(1)=

"APP0INTMENTS":TY$(2) =
"CELEBRATI0NS":TY$(3) = "H0LIDAYS"

90 DEF FNM(A)= INT((A/K2—INT(A/K2))*
K2+ 0.5)*SGN(A/K2)

100 SV= 0:P = 0:M0= 0:DA= 0
110 PRINT©256,"HAVE Y0U EXISTING LISTS

(Y/N)?"
120 REM
130 CLS:G0SUB 1030:CLS:P=
140 IF C=1 G0SUB 770
150 IF C=2 G0SUB 2010
160 IF C=3 G0SUB 2460
170 IF C>3 AND C<8 THEN KB=C-4:

G0SUB 1180:SV= 1
180 IF C=8 G0SUB 1730:SV= 0
190 IF C=9 AND SV =1 THEN PRINT:

PRINT"Y0U HAVE N0T SAVED ANY
CHANGES": PRINT"ARE Y0U SURE Y0U
WANT T0 QUIT": KB$ ="YN": G0SUB
1590:IF KB = 2 THEN C=0

200 IF C< >9 THEN 120
210 CLS:PRINT"GO0D-BYE"
220 END
230 'GET LENGTH 0F M0NTH
240 MX= 0:A2= 0
250 K2 = 4:IF FNM(YR)=0 THEN A2=1
260 K2 =100:IF FNM(YR)=0 THEN A2=0
270 K2 = 400:IF FNM(YR)=0 THEN A2=1
280 IF KB = 2 THEN MX =A2 + 28
290 IF KB< >2 THEN MX=VAL(MID$

(DM$,KB * 2 — 1 , 2))
300 KB= MX:RETURN
310 'GET MARKER CHARACTER
320 A3$= "":N3 = 0:F3=0:M3=0
330 IF P=2 THEN RS = 32:G0T0 460
340 IF KB = 5 AND M0 = ME AND DA= DE

THEN RS =191:G0T0 460
350 IF KB = 5 THEN RS =143:G0T0460
360 M3 = VAL(L1$(KB 4 0))
370 REM
380 N3= N3+1
390 A3$= LI$(KB,N3)
400 IF MID$(A3$,2,1)="" THEN D=0 ELSE

D =ASC(MID$(A3$,2,1))
410 IF D< > DA THEN 430
420 KB$=A3$:GOSUB 470:F3= K2
430 IF N0T(F3 =1 0R N3> M3) THEN 370
440 IF F3=0 THEN RS = 32:GOT0 460
450 N3 =159 + 16 * KB:RS = N3
460 KB= RS:RETURN
470 'CHECK FOR ITEM IN M0NTH
480 T4= 0:Y4=0:F4= 0
490 T4=ASC(MID$(KB$,1,1))
500 Y4 = ASC(MID$(KB$,3,1))
510 M4= (Y4 AND 15)
520 Y4 = (FIX(Y4/16) + 17)1 00 +

Is it easy to change the titles of
the categories for the diary
entries or add extra ones?
Changing the names is quite easy and
allows you to tailor the diary to suit your
specific needs. You'll have to alter every
occurence of the words and their initial
letters in the program.

For the Spectrum change Lines 130,
820, 830, 900 and 1050 to 1080; for the
Commodore, Lines 70, 80, 980 and
1040; for the Acorn, Lines 90, 980 and
1190 to 1220; and for the Dragon, Lines
80, 940 and 1100 to 1130.

Remember, though, that the program
is designed to allow regular entries
under the Finance and Celebrations
categories—whatever new names you call
them. So arrange your new diary with
this in mind.

Adding extra categories is more
difficult and would mean altering
many routines. It is not worth
attempting unless you are an
experienced programmer.

ASC(MID$(KB$,4,1))
530 IF Y4 > YR THEN K2= 0:RETURN
540 K2 = 3:IF (T4=1 AND M0> =M4) 0R

(T4=2 AND FNM(M4— M0) = 0) 0R
(T4=3 AND M4=M0) 0R (T4=4 AND
M4=M0 AND Y4 = YR) THEN F4=1

550 K2= F4:RETURN
560 'GET DAY N0.
570 YX= 0:D2= 0:M2= 0
580 Y2 =YR —1
590 D2 =Y2*365+ FIX(Y2/4) — FIX

(Y2/100) + FIX(Y2/400)
600 IF M0=1 THEN 640
610 F0R M2=1 T0 M0-1
620 KB = M2:G0SUB 230:D2= D2+ KB
630 NEXT
640 KB= D2 + DA:RETURN
650 'FIND EASTER DATE
660 N2= 0:C2= 0:D2=0
670 MS= M0:DS= DA
680 DA = 1:MO = 3:G0SUB560:K2 = 7:

DE= FNM(KB)
690 N2= FIX(YR/100) —16:C2 = 3 +

N2 — FIX((N2 +1)/3)— FIX(N2/4)
700 K2= 19:N2 = FNM(YR + 1):K2 = 30:

D2 = FNM(C2 + (N219))
710 IF N2>11 AND D2<27 THEN

D2= D2-1 ELSE IF N2 < =11 AND
D2=29 THEN D2=28

720 D2= D2+21

730 D2= D2+1:K2=7:IF
FNM(D2+ DE) < > 1THEN 730

740 IF D2<32 THEN ME= 3 ELSE
D2 = D2 — 31:ME = 4

750 DE= D2:M0 = MS:DA= DS
760 RETURN
770 'L00K AT M0N CAL
780 REM
790 G0SUB 2750:G0SUB 2720
800 CLS
810 PRINT,"UP/D0WN ARR0WS ALTER

M0NTH"
820 PRINT"USE clear T0 RETURN T0 MENU"
830 PRINT:PRINT CHR$(159);TY$(0),

CHR$(175);TY$(1)
840 PRINT:PRINT CHR$(191);TY$(2),

CHR$(207);TY$(3)
850 PRINT:PRINT"PRESS ANY KEY T0

C0NTINUE..."
855 IF INKEY$=`"'THEN 855
860 MK = 5
870 REM
880 CLS
890 G0SUB 2820:IF MK <4 THEN

PRINT©19,TY$(MK)
900 PRINT# —P:KB=1:G0SUB 2150
910 IF P=2 THEN PRINT# —P
920 PRINT# —P:T2=MK:S2=1:G0SUB 2240
930 P=0
940 KB$ = " T" + CHR$(10) + "FACH" +

CHR$(12):G0SUB 1590:A= KB
950 IF A=1 THEN M0 = M0 —1
960 IF A=2 THEN M0=M0 +1
970 IF M0=13 THEN M0 =1:YR =YR +1:

G0SUB 650
980 IF M0=0 THEN M0 =12:YR =YR-1:

G0SUB 650
990 IFA>2 AND A<7 THEN MK=A-3
1000 IF A<3 THEN MK=5
1010 IF A< >7 THEN 870
1020 RETURN
1030 'MENU RETURN CH0ICE IN KB
1040 PRINT" ❑ ❑ ❑ ❑ CALENDAR & DIARY

PR0GRAM El 	0111 111 ❑ Ill";
STRING$(24,131)

1050 PRINT TAB(13);"menu"
1060 PRINT
1070 PRINT"1: L00K AT M0NTHLY

CALENDAR"
1080 PRINT"2: L00K AT YEAR CALENDAR"
1090 PRINT"3: L00K AT M0NTH DIARY"
1100 PRINT"4: REVIEW/EDIT FINANCE"
1110 PRINT"5: REVIEW/EDIT

APP0INTMENTS"
1120 PRINT"6: REVIEW/EDIT CELEBRATIONS"
1130 PRINT"7: REVIEW/EDIT H0LIDAYS"
1140 PRINT"8: SAVE THE LISTS"
1150 PRINT"9: LEAVE THE PR0GRAM"
1160 PRINT:PRINTTAB(9);"PLEASE CHOOSE"
1170 KB$="123456789":G0SUB 1590:

C= KB:RETURN

CUMULATIVE INDEX

An interim index will be published each week. There will be a complete index in the last issue of INPUT.

A
Animation

of UDGs in cliffhanger 	992-997
using colour fill techniques

Acorn 	 955-959
using GCOL 3

Acorn 	 999-1000
Applications

calendar and diary program 	1010-1016
hobbies file, extra options 	947-952
text-editor program

852-856,878-883,914-920
Auto-repeat, Commodore 64 	976

B
BASIC

adding instructions to
Acorn, Dragon, Spectrum 	844-851

Basic programming
colour commands, Acorn 	953-959
Computer Aided Design 	998-1004
designing a new typeface 	838-843
drawing conic sections 857-863,889-895
mechanics, principles of 	933-939
multi-key control 	 974-979
musical chords and harmonies 985-991
programming function keys 	825-829
secret codes 	 960-965
speeding up BASIC programs 921-927

Binary search routine 	926-927

C
Calendar program

part 1 	 1010-1016
Chords, musical

definition 	 985-986
programs to play

Acorn, Commodore 64 	986-991
Ciphers

see codes, secret
Circles

drawing 	 858
uses of 	 863,893-894

Cliffhanger game
part 1—title page 	 904-913
part 2—adding instructions 	928-932
part 3—adding a tune 	966-973
part 4—graphics and merging 992-997

Codes, secret 960-965
Colour

filling in with
Acorn 	 953-959

routines for changing
Commodore 64 	 872-877

Computer Aided Design
rubber-banding and:picking

and dragging 	 998-1004
Conic sections 	857-863,889-895
Cryptography 	 960-965
Curves, drawing 	857-863,889-895

D
Diary program

part 1
	

1010-1016
Digital clock routine 	896-898

E
Ellipses

drawing 	 858-859
uses of 	863,890-891,894-895

Engineering
see Mechanics

Envelope, parameters of for sound
Acorn, Commodore 64 	968-971
in musical harmony programs 986-991

F
Filling in with colour

Acorn 	 953-959
Function keys, programming

Acorn, Commodore 64, Vic 20 	826-829

G
Games

cliffhanger
904-913,928-932,966-973,992-997

goldmine 	 830-837,864-871
multi-key control for 	974-979
othello 	 980-984,1005-1009
wordgame 	899-903,940-945

GCOL 3, Acorn
use of for animation 	999-1000

Goldmine game
part I —basic routines 	830-837
part 2—option subroutines 	864-871

Graphics
colour commands, Acorn 	953-959
effects using curves 	857-863,889-895
hi-res

for custom typeface 	838-843
setting up new commands

Commodore 64 	 872-877
in cliffhanger game 	992-997
in goldmine game 832-837,870-871
in othello game 	 982,984
picking and dragging 	1000-1004
rubber-banding 	998-1000

H
Harmonies, in music

programs for
Acorn, Commodore 64
	

986-991
Hobbies file, extra options for

	
947-952

Hyperbolas
drawing
	

860-861
uses of
	

863,894-895

Instructions, adding to BASIC
Acorn, Dragon, Spectrum 	844-851

K
Keyboard, matrix of
	

974-976
Keypresses

detecting
Acorn, Commodore 64, Vic 20 827-829
in cliffhanger game 	929-932

how they work 	 826,974
multiple, programming for 	974-979

L
Letter-generator program

	
838-843

Lines
drawing by rubber-banding

	
998-1000

M
Machine code

games programming
see cliffhanger

merging routines
	

992-997
routines for hi-res graphics

Commodore 64
	

872-877
routine to alter BASIC
	

844-849
timer routine
	

896-898
tune routine
	

966-973
Mathematical functions

in mechanics 	 935
speedy use of 	 923-924
to draw,curves 	857-863,889-895

Mechanics
programs to show principles 	933-939

Memory
saving vs speed 	 923
storing new keystrokes in

Acorn, Commodore 64, Vic 20 827-829
storing new typeface in 842

Merging machine code routines 992-997
MIDI interfaces 990
Multi-key control, programming for

974-979
Music

chords and harmonies 	985-991
machine code routine for 	966-973

0
Operating system software

Acorn, Commodore 64, Vic 20
	

826,828
Othello board game

part 1
	

980-984
part 2
	

1005-1009
Overwriting, avoiding
	

994-997

P
Parabolas

drawing
	

859-860
uses of
	

863,891-893
Peripherals

robotics
	

884-888
Picking and dragging
	

1000-1004
PLOT

new commands, Acorn
	

953-959
Polygons, drawing
	

893-894
PROCedures, Acorn

advantages of
	

922,924
use of to fill with colour
	

954-959

R
Robotics 	 884-888
Rubber-banding
	

998-1000

S
SAVEing

problems with when merging 	992-997
Scaling

custom typeface 	 841-843
parabolas and hyperbolas 859-861,863

Search routines
binary and serial 	 924-927
in text-editor program 	914-920

Serial search routine 	924-925
SID chip, Commodore 64 	 968

in music programming 	986-991
Sort routines

in hobbies file program 	947-952
in text-editor program 	914-920

Speeding up BASIC programs 921-927
Sprites, Commodore 64

in cliffhanger game 	 993-995

Text -editor program
part 1—basic routines 	852-856
part 2—editing facilities 	878-883
part 3—sorting, searching,

formatting and printout 	914-920
Three Blind Mice program

Acorn, Commodore 64 	990-991
Timer routine

for BASIC lines 	 922
machine code 	 896-898

Typeface. setting up new 	838-843

U
UDGs

in cliffhanger game
	 992-997

V
Variables

managing for program speed
	

923-925

Waveforms
use of for music

Commodore 64 	 986
When the Saints Go Marching In

program
Acorn, Commodore 64 	986-989

Wordgame
part 1—basic routines 	899-903
part 2—adding the options 	940-945

The publishers accept no responsibility for unsolicited material sent for publication in INPUT. All tapes and
written material should be accompanied by a stamped, self-addressed envelope.

Learn how to use PAGED GRAPHICS*
Related to cartoon films and 'flicker
books', it is a really useful technique to
add to your animation armoury

Delve further into the secret world of
codes* Learn about CODE BREAKING
and how to use more sophisticated
CODING TECHNIQUES

UMore and more electronic one-armed
bandits are infiltrating the arcades. Start
entering the FRUIT MACHINE
program* If you are addicted to push-
button gambling, this program could
save you a fortune!

U The stage is set for CLIFFHANGER*
Now is the time to push the title page
aside and bring on the cliff and the sky by
adding the SCROLL ROUTINES

Is your life a seething morass of
confusion? Don't worry, help is at hand
with part two of the CALENDAR and
DIARY program

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36

