
A MARSHALL CAVENDISH 34 COMPUTER COURSE IN WEEKLY PARTS

LEARN PROGRAMMING - FOR FUN AND THE FUTURE

Vol. 3 	 No 34

BASIC PROGRAMMING 71

THE MATHEMATICS OF GROWTH 	1049

From ants to elephants and seeds to beanstalks,
the computer models the way they develop

MACHINE CODE 35

ERRS AND PRIZE 	 1057

Program the graphics for the hazards and rewards
that meet Willie during the Cliffhanger game

APPLICATIONS 21

PLANNING FOR THE FUTURE 	 10641

Complete the diary/calendar program, and
start to fill in those important dates

BASIC PROGRAMMING 72 	 •

LETEXT SCREENS ON THE BBC 	1068,

Find out how this economical graphics
mode is programmed, and what it can do

GAMES PROGRAMMING 34

THE FRUITS OF YOUR LABOUR 	1074

Wind up the one-armed bandit and get down
to playing your Superfruit game

INDEX
The last part of INPUT, Part52, will contain a complete, cross-referenced index.
For easy access to your growing collection, a cumulative index to the contents
of each issue is contained on the inside back cover.

PICTURE CREDITS
Front cover, Dave King, Snakes by Mike Culling. Pages 1049, 1050, 1051, 1054,
1055, Ellis Nadler. Pages 1052, 1053, 1068, 1070, Peter Reilly. Pages 1057, 1058,
1060, 1061, 1062, Dave King, Snakes by Mike Culling. Page 1064, Kevin
O'Keefe. Pages 1068, 1070, Berry Fallon Design. Pages 1069, 1071, 1072, 1073,
Oracle. Pages 1074, 1077, 1078, Ann Axworthy.

© Marshall Cavendish Limited 1984/5/6
All worldwide rights reserved*

The contents of this publication including software, codes, listings,
graphics, illustrations and text are the exclusive property and copyright of
Marshall Cavendish Limited and may not be copied, reproduced,
transmitted, hired, lent, distributed, stored or modified in any form
whatsoever without the prior approval of the Copyright holder.

Published by Marshall Cavendish Partworks Ltd, 58 Old Compton Street, London W I V SPA.
England. Typeset by MS Filmsetting Limited, Frome, Somerset. Printed by Cooper Clegg
Web Offset Ltd, Gloucester and Howard Hunt Litho, London.

HOW TO ORDER
YOUR BINDERS
UK and Republic of Ireland:
Send £4.95 (inc p & p) (IR£5.95) for
each binder to the address below:

Marshall Cavendish Services Ltd,
Department 980, Newtown Road,
Hove, Sussex BN3 7DN

Australia: See inserts for details, or
write to INPUT, Times Consultants,
PO Box 213, Alexandria, NSW 2015

New Zealand: See inserts for details, or
write to INPUT, Gordon and Gotch
(NZ) Ltd, PO Box 1595, Wellington
Malta: Binders are available from local
newsagents.

There are Jour binders each holding 13 issues.

BACK NUMBERS
Back numbers are supplied at the regular cover price (subject to availability).

UK and Republic of Ireland:
INPUT, Dept AN, Marshall Cavendish Services,
Newtown Road, Hove BN3 7DN

Australia, New Zealand and Malta:
Back numbers are available through your local newsagent.

COPIES BY POST
Our Subscription Department can supply copies to any UK address regularly at £. 1.00 each.
For example the cost of 26 issues is £26.00; for any other quantity simply multiply the number
of issues required by £1.00. Send your order, with payment to:

Subscription Department, Marshall Cavendish Services Ltd,
Newtown Road, Hove, Sussex BN3 7DN

Please state the title of the publication and the part from which you wish to start.

HOW TO PAY: Readers in UK and Republic of Ireland: All cheques or postal orders
for binders, back numbers and copies by post should be made payable to:

Marshall Cavendish Partworks Ltd.

QUERIES: When writing in, please give the make and model of your computer, as
well as the Part No., page and line where the program is rejected or where it does
not work. We can only answer specific queries- and please do not telephone. Send
your queries to INPUT Queries, Marshall Cavendish Partworks Ltd, 58 Old
Compton Street, London W1V SPA.

INPUT IS SPECIALLY DESIGNED FOR:
The SINCLAIR ZX SPECTRUM (16K, 48K,128 and +),
COMMODORE 64 and 128, ACORN ELECTRON, BBC B
and B+,and the DRAGON 32 and 64.

In addition, many of the programs and explanations are also
suitable forthe SINCLAIR ZX81, COMMODORE VIC 20, and
TANDY COLOUR COMPUTER in 32K with extended BASIC.
Programs and text which are specifically for particular machines
are indicated by the following symbols:

SPECTRUM 16K,
 CwI 48K,128, and + 	I COMMODORE 64 and 128

El ACORN ELECTRON,
BBC B and 0+ DRAGON 32 and 64

TANDY TRS80
U81 IrCi- VIC 20 IT COLOUR COMPUTER

HOW THINGS GROW
SURFACE AREA AND VOLUME

STRUCTURAL PROBLEMS
RATE OF GROWTH

FIBONACCI NUMBERS

Computers are more often
associated with mathematics than
nature, but you'll find that they can
give important insights into the way
things grow and develop

Computers can be used to model all sorts of
real-life situations. Surprisingly, this does not
just apply to inanimate objects, and one field
where this is very useful is in exploring the
way living creatures behave in nature. It turns
out that nature is closely linked to
mathematics—often in unexpected ways—
and, as usual, whenever there is a mathemat-
ical connection computers can be called in to
study the process, do the calculations and
display the results.

This article looks at a few ways that
computers can be used to study the way
things grow. All forms of life are at some stage
capable of changes in size or number or
form—given suitable conditions. And all
these can be referred to as growth. Only the
first two will be covered here, along with a
few other interesting ways in which maths
explains nature, or nature follows maths.

HOW THINGS GROW
First of all, it is best to understand a little
more about the ways things do actually grow.
Growth—change in size that is—involves the
formation of new structural materials. Both
plants and animals find raw materials from
the environment and from respiration.
Overall growth of a creature is achieved in two
different ways, either as an increase in the
number of cells, by cell division, or an
increase in the size of individual cells by cell
growth.

MEASURING SIZE
Since growth occurs in such different ways it
is not immediately obvious how to measure it.
Is it best to measure the weight, as with
babies, or the height, as with growing chil-
dren? Or would volume be a more accurate
measurement, or surface area? As usual there
is no one answer, and different types of
measurements are suitable for different crea-
tures. But one of the most interesting studies

is to compare measurements taken in two
different ways as the creature grows.

The most revealing measurements for
animals are volume (or weight) and surface
area. As an animal gets larger these increase at
different rates and this has important conse-
quences for the creature itself because the size
and shape of an animal are closely related to
its way of life.

You can soon see why these increase at
different rates if you look back at the article on
pages 404 and 412 and recall that surface
area is a square measure and volume is a cubic
measure. The relationship is best understood
by an example of a simple, regular shape like a
cube—and the program below demonstrates
what happens to the volume and surface area
for different sized cubes. Enter the program
now and RUN it. You'll need a Simons' Basic
cartridge (or INPUT's own hi-res graphics
utility) for most of the Commodore programs
in this article:

10 GOSUB 180
20 LET X=45: LET Y=35
30 LET S=2
40 GOSUB 140
50 PRINT AT 18,S/5+X/8;S
60 LET SA = 6 * (S A 2): LET VO=S A 3: LET

A$=STR$ (SA/V0): IF LEN A$ > 3 THENA
LET A$ = A$ (TO 3)

70 PRINT AT 20,S/5+X/8-1;
PAPER 0; INK 7;A$;":1"

80 INPUT "ENTER SIZE OF
CUBE (MAX 20)";A: IF A<S
THEN GOSUB 180

90 LET S =A
100 IF S<1 OR S>20 THEN

GOTO 80
110 LET X=X+S*5*1.5+5
120 IF X+S*5*1.5>255 THEN

GOSUB 180:
LET X=45

130 GOTO 40
140 PLOT X,Y
150 LET D =S*5
160 DRAW 0,D: DRAW 0,0:

DRAW 0/3,D/3:DRAW,
—0,0:DRAW— D/3
—D/3:DRAW0, — D
DRAW 0,0: DRAW
D/3,D/3: DRAW
0,D: DRAW —
D/3,— D/3:
DRAW 0,—D

170 RETURN
180 BORDER 0:

PAPER 4: INK
0: CLS

190 FOR N=0 TO 8:

PRINT AT N,0; PAPER
1;" ❑❑❑❑❑❑❑❑❑❑❑❑❑❑

❑❑❑❑❑❑❑❑❑❑❑❑❑❑❑

LIDO": NEXT N
200 PRINT AT 18,0; INK 1;"SIDE:";AT 20,0;

"A/V :"
210 PRINT AT 0,4; PAPER 1; INK 7;

"A/V = RATIO OF AREA:V0LUME
220 RETURN

10 GOSUB 180
30 S=1
40 GOSUB 140

50 TEXT
X — 5,Y + 1,

STR$(S),1,1,8
60 SA=6 *

(ST2):VO = ST3
70 TEXT X — 5,Y +

10,LEFT$(STR$
(SA/V0),3)

+"1",1,1,8
75 POKE 198,0.

WAIT 198,1:
POKE 198,0

80 CSET(0):
INPUT "RENTER

SIZE IF CUBE(MAX
20)";A

100 IF A<1 OR A>
20 THEN 80

105 CSET(2):IF A<S
THEN GOSUB 180

110 S=A:X=X+S * 4*
1.5+15

120 IF X+S * 41.5+15>
319 THEN GOSUB 180

130 GOTO 40
140 XX= X:YY =Y
150 D =S*5
160 A= 0:B= D:GOSUB 300
161 A = D:B = 0:GOSUB 300
162 A= D/3:B = D/3:GOSUB 300
163 A= —D:B=0:GOSUB 300
164 A= —D/3:B= — 0/3:GOSUB 300
165 A=0:B= —D:GOSUB 300
166 A= D:B= 0:GOSUB 300
167 A= D/3:B = D/3:GOSUB 300
168 A= 0:B= D:GOSUB 300
169 A= — D/3:B =

— D/3:GOSUB 300
170 A=0:B= —D:GOSUB 300
175 RETURN
180 HIRES0,1:X= 40:Y =170
200 TEXT 0,170,"SIDE",1,1,8

210 TEXT 60,0,"A/V= RATIO
OF AREA: VOLUME",1,2,8

220 RETURN
300 LINE XX,YY,XX + A,YY — B,

1:XX = XX + A:YY = YY — B:RETURN

10 MODE1
20 PROCSCREEN
30 INPUT"ENTER SIZE OF CUBE",S:

S=INT(S):IF S<1 OR S>40 THEN 30
40 PRINT:PRINT
50 PROCCUBE:GOT030
100 DEF PROCCUBE
110 IF PX+S*20>1150 THEN PROCSCREEN
120 MOVEPX,PY+16*S:DRAWPX,PY:DRAW

PX + 16*S,PY:DRAWPX +16*S,PY + 16*S:
DRAWPX,PY+ 16*S:DRAWPX+4*S,PY+
20"S:DRAWPX+20*S,PY +20*S:DRAW
PX + 20*S,PY + CS:DRAWPX +16"S,PY

130 MOVEPX+ 16*S,PY+ 16*S:DRAWPX+
20*S,PY + 20*S

140 VDU5:MOVEPX + S*8— 32,PY — 32:
PRINT;S

150 SA = 6"S"S:VOL = S"S"S:R = INTO 0*SA/
VOL)/10:MOVEPX+S*8-64,124:PRINT;R
":1":VDU4

160 PX=PX+S*20+120
170 ENDPROC
180 DEF PROCSCREEN
190 VDU 26,12
200 PRINT"A:V THE RATIO OF SURFACE

AREA TO VOLUME"
210 COLOUR131:COLOUR0:PRINTTAB(0,28)

"A:V":COLOUR3:COLOUR128
220 PX=188:PY =188
230 VDU 28,0,31,39,29
240 ENDPROC

1M HI
10 GOSUB 180:CLS
20 X = 45:Y =156
30 S=2
40 GOSUB 140
60 SA =6*S*S:VO =S*S*S
70 PRINT" SIZE = ";S;TAB(11);"SA/VOL

RATIO =";:PRINTUSING"#•# #:1";
SA/VO: PRINT

80 INPUT"ENTER SIZE OF CUBE (1-20)";A:
IF A<S GOSUB180

90 S = A
100 IF A<1 OR S>20 THEN 80
110 X=X+S*7.5+5
120 IF X+ S*7.5 > 255 GOSUB180:X = 45
130 GOTO 40
140 SCREEN1,0

150 DRAW"BM"+STR$(1NT(X))+","+
STR$(1NT(Y))+"S"+STR$(INT(S*3))+
"C1 E2NR6U6C4R6G2L6NE2D6R6NU6E2U
6"

160 IF INKEY$< >"L1" THEN 160
170 RETURN
180 PMODE3:PCLS2
190 RETURN

The program lets you enter a number for the
dimensions of a cube. It then draws the cube
and prints out the ratio of surface area to
volume. Start off with a small cube, say with a
side of four units, then enter progressively
larger numbers to simulate growth. You'll see
that as size increases, the ratio of area to
volume decreases. In other words the volume
(or weight) increases at a much faster rate than
the surface area.

Most of the program is concerned with
formatting the screen and drawing the cubes
but the important part is contained in Line 60
or in Line 150 on the Acorn. S is the length of
one side of the cube, so the surface area of one
face of the cube is S*S and the surface area of
the whole cube (there are six faces) is VS*S.
The volume on the other hand is S cubed, or
S * S * S. The ratio is simply area divided by
volume, worked out later on in the same line
or in Line 70 on the Commodore and Vic. For
example, when S equals 2 the ratio is 6*2*2
over 2*2*2 which equals 3:1. If the size is
doubled the ratio is 6*4*4 over 4*4*4 which
is 3 : 2 or 1.5:1 showing that the area is
relatively much less.

Animals are not shaped like a cube, of
course, and you might like to adapt the
program to make it more realistic. For
example small, round animals like mice are
better represented as a sphere, while tall, thin
animals like humans are closer to a collection
of cylinders—one each for the body, arms and
legs. When you adapt the program you'll need
to know that the surface area of a sphere is
4*P I *radius2 and the volume is
4/3*PI*radius 3 . And for a cylinder the area is
2*PI*radius*height plus 2*PI*radius 2 and
the volume is PI*radius 2 Theight.

However the general principles are the
same and for any of the shapes you'll find that
the area increases at a slower rate than the
volume.

GROWTH AND LIFE
These mathematical relationships are very
important in the animal kingdom and affect
the habitats and activities of animals. A mouse
has a small volume and mass and so has a high
relative surface area. This means that it will
radiate heat rapidly from its body (depending
on its environment). In order to survive the

mouse must keep warm. It does this by
burning up food for energy. Due to its size the
mouse is forced to eat as much as one half of
its body weight in food every day, just to
survive.

In comparison, an elephant has a very large
mass and volume with a low relative surface
area. This means that it radiates proportio-
nately less heat than a mouse so it does not
require such a high proportion of its body
weight in food every day. Such size relations
explain why large animals are much better at
survival in cold Arctic conditions where food
is scarce.

BONES, MICE AND ELEPHANTS
Mass to area relations also help to explain why
animals and plants are limited to a maximum
physical size. Given the proportions of a
particular species there is a very definite limit
to the size it can reach. The ultimate size of an
animal is limited by the size of its supporting
bones.

If you double the size of an animal (that is
height, length and width) the weight increases
by eight times but the area of supporting bone
increases by only four times. To support the
increase in weight the bones would have to be
disproportionately thicker, for the size of the
animal, as the scale increases. Eventually the
animal would be so cumbersome it would be
unable to move on land.

So simple scaling up won't do. If a mouse
were enlarged to the size of an elephant,
keeping the same proportions, then its limbs
would be totally unable to support it. This is
why species of different sizes have such
different overall proportions.

A weight of ten tonnes is near the limit for
the largest land animal, the elephant. The
very largest dinosaurs weighed up to 80
tonnes but may have spent much of their time
standing partially immersed in water. Marine
animals have the advantage of support from
the surrounding water. This reduces the
limits to their growth; blue whales can weigh
more than 150 tonnes and reach 30 metres in
length. Obviously it would be virtually impo-
ssible for such an animal to have limbs that
could support its bulk out of water. Growth
limits to marine animals are mainly related to
heat losses.

RATE OF GROWTH
Apart from determining how large a creature
can grow, it is also interesting to find out how

Comparing volume and surface area How the growth rate of a plant changes

fast it grows. The next program shows how
the rate of growth changes as a plant grows
from a seedling to maturity. The plant grows
slowly at first then rapidly until growth limits
are reached. It then slows down again until it
stops and eventually dies. Enter and RUN the
program now:

10 DIM G(11)
20 DATA 2,9,22,35,58,92,104,112,115,117,118
30 FOR N=1 TO 11: READ G(N): NEXT N
40 BORDER 0: PAPER 0: INK 4: CLS
50 LET X=60: LET Y=0
60 DRAW 80,0
70 PLOT 30,0: DRAW INK 7;0,168
80 PRINT INK 2;AT 0,1;"HEIGHT"
90 FOR N=0 TO 138 STEP 12
100 PLOT INK 7;30,N
110 DRAW INK 7; - 5,0
120 NEXT N
130 PRINT AT 20,0;"2";AT 17,0;"6";AT

14,0;1 0";AT 11,0;"14' ;AT 8,0;"20";AT
5,0;"24"

140 PLOT 160,0: DRAW INK 7;0,168
150 PLOT 160,0: DRAW INK 7;95,0
160 PRINT AT 0,17; INK 6;"GROWTH";AT

1,18;"RATE"
170 LET C=1
180 LET GX =161
190 LET GY=1
200 FOR N=1 TO 117
210 IF G(C) < >N THEN GOTO 250
220 PLOT X,Y: DRAW 9,9,PI/2: DRAW

- 9, - 9,PI/2
230 DRAW -9,9,PI/2: DRAW 9,-9,P1/2
240 LET GX=GX+ 8: LET GY=1: LET

C=C+1
250 PLOT X,Y
260 FOR K= 0 TO 3
270 PLOT INK 5;GX,GY+ K: DRAW INK 5;8,0

280 NEXT K
290 LET GY=GY+4
300 LET Y =Y +1
310 NEXT N
320 FOR Y=117 TO 140
330 PLOT X,Y
340 NEXT Y
350 FOR R =1 TO 10 STEP .3
360 CIRCLE INK 6;X,Y,R
370 NEXT R
380 GOTO 380

10 DIM G(11)
20 DATA 2,9,22,35,58,92,104,112,115,

117,118
30 FOR N=1 TO 11:READ G(N):NEXT N
40 HIRES 0,1:MULTI 5,6,13:COLOUR 7,1
50 X = 60:Y = 0
60 LINE 0,199,159,199,2
70 LINE 30,198,30,40,2
80 TEXT 0,20,"HEIGHT",2,1,6
90 FOR N= 0 TO 138 STEP 12
100 LINE 30,187- N,27,187 - N,1
105 NU=NU+2
130 TEXT 0,184- N,STR$(NU),3,1,6:NEXT N
140 LINE 100,198,100,40,2
160 TEXT 90,20,"GROWTH RATE",1,1,6
170 C=1
180 GX=101
190 GY=1
200 FOR N=1 TO 117
210 IF G(C) < > N THEN 250
220 FOR Z=1 TO 5:LINE X,199 -Y,X + 15 -

Z,(199 - Y) - Z*(N/100),INT(RND M*2)*
2+1

230 LINE X,199 -Y,X -15 + Z,(199 -Y) -Z*
(N/100),1:NEXT Z

240 GX = GX + 5:GY =1:C = C + 1
250 PLOT X,199-Y,1
260 FOR K=0 TO 3

270 LINE GX,198-GY- K,GX+3,198 -
GY- K,RND(1)"2 +2

280 NEXT K
290 GY=GY+4
300 Y=Y+1
310 NEXT N
330 LINE X,199 - Y,X,169 - Y,1
345 LOW COL 7,2,8
350 XX = X:YY =169 -Y:FOR R=0 TO

2*n STEP .1
355 X1 =X+SIN(R)"(RND(1)10 +10):

Y1 = (169- Y)+ COS(R)*(RND(1)*
10+10)

360 LINE XX,YY,X1,Y1,3:XX= X1:YY = Y1
365 LINE X,169 -Y,X1,Y1,RND(1)"3 + 1
370 NEXT R
380 GOTO 380

F'
10 MODE1
20 PROCINIT
30 PROCGROW
100 GOTO 100
1000 DEF PROCLEAVES
1010 VDU 29,PX;PY;:MOVE0,0:DRAW

40
1020 DRAW -90,20:DRAW -45,80
1030 DRAW 0,0:DRAW 45,80
1040 DRAW 90,20:DRAW 50,40
1050 DRAW 0,0:VDU 29,0;0;
1060 ENDPROC
1070 DEF PROCFLOWER
1080 MOVEPX,G(11):DRAWPX,G(11) + 150
1090 GCOL0,2:FOR T=0 TO 2 * 13 1 STEP PI/15
1100 MOVEPX,G(11)+150:PLOT17,50*SINT,

50*COST:NEXT
1110 ENDPROC
1120 DEF PROCINIT
1130 PX = 350:GX= 800:GY =100
1140 VDU 19,1,2,0,0,0
1150 DIM G(11)

Finding a well-proportioned rectangle A population explosion of rabbits

1160 F0R T=0 T0 11:READ A:G(T)=A*S+
100:NEXT

1170 DATA 0,2,9,22,35,58,92,104,112,115,
117,118

1180 MOVE150,100:DRAW150,900
1190 VDU 5:FOR T=0 TO 12
1200 MOVE120,100+1- 64:DRAW150,

100 +1- 64
1210 MOVE20,116 + T* 64:PRINT;T*2:NEXT:

VDU4
1220 PRINTTAB(0,2)"HEIGHT ❑ ED III

DE] III El ❑ ail ❑ E GROWTH RATE"
1230 MOVEGX,GY +800:DRAWGX,GY:DRAW

GX+400,GY
1240 ENDPROC
1250 DEF PROCGROW
1260 FOR Y = 0 TO 10
1270 FOR T=G(Y) TO G(Y + 1)
1280 GCOL0,3:MOVEGX + Y*32,GY + (T— G

(Y)) * 4:DRAWGX + Y*32 + 31,GY + (T— G
(Y))*4

1290 GC0L0,1:PL0T69,PX,T
1300 NEXT
1310 PY=G(Y+1)
1320 PROCLEAVES
1330 NEXT
1340 PROCFLOWER
1350 ENDPROC

fig Ii
20 DATA 2,9,22,35,58,92,104,112,115,117,118
30 FOR N=0 TO 10:READ G(N):NEXT
40 PMODE3:PCLS:SCREEN1,1
50 X =60:Y =190
60 LINE(8,23) — (8,192),PSET:LINE — (80,

192),PSET
80 DRAW"BM20,6S24C7D2BRUNLUBR2LDN

RDRBRU2BR2LD2RUS8NLS24BED2BRUN
LUBRS16RND3RC8"

90 F0RN =47 TO 191 STEP 12
100 LINE(2,N) — (8,N),PSET

120 NEXT
140 LINE(158,23) — (158,191),PSET
150 LINE— (255,191),PSET
160 DRAW"BM176,6C6S24LD2RUS8NLS24BE

ND2RDLFBRNU2RU2LBR2D2EFU2BRS16R
ND3RS24BRD2BRUNLUBM182,24ND2RDL
FBRU2RDNLDS16BR2U3LR2S24BR2LDNR
DR"

170 GX=161:GY =190
190 COLOR6,7
200 FOR N =1 TO 117
210 IF G(C) > N THEN 250
220 CI RCLE(X,Y — 4),15,6,.4,0,.5
230 CI RCLE(X — 16,Y),16,6,.4,.75,1: CI RCLE

(X + 16,Y),16,6,.4,.5,.75
240 GX= GX+ 8:GY = 190:C = C + 1
250 PSET(X,Y,6)
260 FOR K=0 TO 3
270 LINE(GX,GY — K) — (GX + 8,GY — K),

PRESET
280 NEXT
290 GY = GY— 4
300 Y = Y —1
310 NEXT
320 F0R Y=75 TO 58 STEP-1
330 PSET(X,Y,6)
340 N EXT:POKE178,54
350 F0R R =1 TO 15
360 CIRCLE(X,Y),R,,.8
370 NEXT
380 GOTO 380

The programs show graphically what hap-
pens to the plant. The DATA in Line 20 (Line
1170 on the Acorns) gives the size of the plant
measured at regular intervals. This is used to
draw both the plant and the graph showing
the change in the rate of growth. The plant is
drawn by the routine at Lines 200 to 310 (or
PROCLEAVES and PROCGROW on the Acorns).
The axes for the graph and the scales are set

up by Lines 40 to 160 (PROCINIT on the
Acorns), and the bar chart itself is drawn by
Lines 260 to 280 (Line 1280 in PROCGROW
on the Acorns). Finally, the flower is drawn
by Lines 350 to 380 (or PROCFLOWER).

The graph shows clearly that the plant
grows slowly at first, speeds up and then
slows down when it has reached its maximum
size. The DATA is taken from a real experiment
which measured how the area of a cucumber
leaf changes as it grows. But the same figures
can be used to represent how a complete plant
grows.

GENERATIONS AND NUMBERS
As animals breed they multiply to form a
number of generations. Take the case of
rabbits. One pair of rabbits—the first
generation—produces another pair. These
form the second generation. The original pair
or rabbits then produces another pair and the
second generation contains two pairs.
Eventually a series of generation numbers are
built up as follows: 1, 1, 2, 3, 5, 8, 13, 21, and
so on. The next program shows graphically
how the numbers of rabbits increase over the
generations and you'll see that these numbers
are indeed built up:

10 BORDER 0: PAPER 1: INK 7: CLS
20 FOR N=0 TO 7: READ A: POKE USR

"a" + N,A: NEXT N
30 FOR N =0 TO 7: READ A: POKE USR

"b" + N,A: NEXT N
40 LET C$="111111111 	01111111111110

❑ ❑❑❑❑❑❑❑❑❑❑❑❑❑❑
❑❑❑❑❑❑❑❑❑❑❑❑❑❑❑
❑ ❑❑❑❑❑❑❑❑❑❑❑❑❑❑
❑❑❑❑❑❑❑❑ "

50 LET A$= CHR$ 144: LET B$= CHR$ 145

60 PAPER 0: CLS : PAPER 1
70 FOR N=1 TO 6: PRINT Cr: NEXT N
80 PRINT INK 5;AT 0,0;"GEN";'"0"""1"'"

90 FOR N=1 TO 20
100 IF N>1 THEN FOR P=1 TO 10: BEEP

.01,P: NEXT P
110 READ X,Y: PRINT AT Y,X;A$;A$;AT

Y+1,X;B$;B$
120 NEXT N
130 FOR N=1 TO 20
140 READ X,Y,XX,YY: PLOT X,Y: DRAW INK

4;XX,YY
150 NEXT N
160 PRINT AT 18,7; INVERSE 1; "RABBIT

FAMILY TREE"
170 INK 6: INVERSE 1: PRINT "'GENERATION

❑❑ 0 ❑ : ❑ 0 ❑❑ 1 ❑❑ 2 ❑❑ 3 ❑
❑ 4 ❑ ❑ 5"!"RABBIT PAIRS ❑ ❑ : ❑ 1
❑ ❑ 10020030050E8"

180 GOTO 180
190 DATA 144,80,48,28,52,62,62,24,60,126,

118,120,126,254,252,63
200 DATA 16,0,16,3,22,6,11,6,16,9,6,9,11,12,

25,9,22,12,3,12,6,15,14,15,16,12,28,12,26,
15,2,15,10,15,18,15,22,15,30,15

210 DATA 136,159,0, -7,144,159,32, -31,
128,135,-34,-7,136,135,0,-31,184,
112,0,-31,192,112,8,-8,88,111,-25,
- 7,96,111,0,-31

220 DATA 48,87,-10,-7,56,87,0,-31,24,
63,-5,-7,90,63,-8,-7,128,87,-8,
- 8,120,79,0,-23,136,87,0,-7

230 DATA 144,63,7,-7,184,63,0, -7,208,88,
0,-31,216,88,7,-7,240,63,7,-7

1 PRINT "Ogg"SPC(9)"annENN
SPC(9)"1"

2 PRINT SPC(10)1:0"
3 PRINT "HEIBBEIBEIBBBai

ISIBEIBEIEIBBEIB"
4 PRINT SPC(10)"mpjs"
5 PRINT "1"SPC(8)"nnIPJ 1119"SPC(6)

"1"
6 PRINT SPC(9)"2:1 0] pi pm is"
7 PRINT "oBBBBEIBBoBal

EIBBBEBBBEIB"
8 PRINT SPC(7)10D ❑ [1:1"SPC(4)" ❑ "
9 PRINT "2"SPC(4)"ljnirPni co pi

PkirISIPJPIPJPJ2"
10 PRINT spcorizi pi N mai pi pi

WPM"
11 PRINT "piBBEIBizimEIBB

0:11313130:11E1BEOBBB"
12 PRINT "3PnilinirIBPJ Kinn

PJPJMIBP-UurPJPJ 3"
13 PRINT spcoria pi Ellpj pi pm pi

PJNIIIIPJ1161"
14 PRINT spc(4)"E pH] pi pi pm pi

PJPMEIPJ PJPJISI"

15 PRINT "pieBEIBBEIBBB

16 PRINT "4P.JmnIninnljklin
nigninitPJNInn5gfigg"

19 PRINT - NBEIBE1138131319
EI8BEI8EI8IE1131313"
20 PRINT "gm ❑ RABBIT FAMILY
TREED"

22 GOTO 22

11
10 MODE1:VDU 23;8202;0;0;0;
20 DIM G(21),P(20),PAR(20)
30 FOR T=1 TO 20:READ G(T):NEXT:G

(21)=0
40 FOR T=1 TO 20:READ P(T):NEXT
50 FOR T=1 TO 20:READ PAR(T):NEXT
60 VDU 23,224,144,80,48,28,52,62,62,24,23,

225,60,126,118,120,126,254,252,63
70 PRINTTAB(11,1)"RABBIT FAMILY TREE"'

"GEN"
80 FOR T=0 TO 5:PRINTTAB(1,T*4+4);T:

NEXT
90 RN =1:REPEAT
100 IF RN=1 THEN 130
110 D=INKEY(150)
120 MOVEP(RN)*64 + 192,1024 - (G

(RN)128+112):DRAW P(PAR(RN))*64+
192,1024- (G(PAR(RN)) * 128 +208)

130 VDU 31,P(RN)*2+5,G(RN)*4+ 4,224,
224,8,8,10,225,225

140 RN=RN+1:IF G(RN)=G(RN-1)
THEN 120

150 UNTIL RN >20
160 PRINTTAB(0,28)"GENERATION ❑ ❑ ❑

❑❑❑❑ D: ❑ 00 ❑ 1 ❑❑ 2 ❑❑ 30
❑ 4 ❑ ❑ 5"

170 PRINTTAB(0,30)"NEW RABBIT PAIRS ❑
D:010010 02DO3D05008"

180 G =GET:MODE1
190 DATA 0,1,2,2,3,3,3,4,4,4,4,4,5,5,5,5,5,5,

5,5
200 DATA 7,7,10,4,7,2,12,4,10,

0,8,14,2,6,12,0,4,8,10,14
210 DATA0,1,1,2,2,4,3,4,3,

6,5,7,6,5,7,10,8,
11,9,12

!HI
10 PMODE3:PCLS:

DIM R(9)
20 SS= PEEK

(186) * 256
+ PEEK
(187)

30 FOR K = SS TO SS + 480 STEP 32
40 READA,B:POKEK,A:POKEK +1,B
50 NEXT
60 GET(2,0)-(13,15),R,G
70 PUT(14,0) - (25,15),R,PSET:GET(2,0) -

(25,15),R,G
80 PCLS4:SCREEN1,0
90 COLOR3:FOR K=0 TO 5
100 LINE(0,32 * K) - (255,32*K + 24),

PSET,BF
110 NEXT
120 COLOR1:FOR N=1 TO 20
140 READ X,Y:PUT(X,Y) - (X + 23,Y +15),R,

PSET
150 IF N>1 THEN PLAY"01T0CCEFGAB"
160 READ X,Y,XX,YY:LINE(X,Y)
170 NEXT
180 GOTO 180
190 DATA 169,170,153,170,165,170,165,170,

169,90,165,154,165,86,165,90,169,106
200 DATA 169,106,165,90,165,154,165,106,

165,106,149,106,149,106,149,106,165,90
210 DATA 114,7,124,24,124,38,114,39,113,56,

69,70,59,71,138,23,178,68,171,71,57,89,
42,100,31,103

220 DATA 124,57,124,101,115,103,195,87,
208,101,199,103

230 DATA 29,120,12,133,3,135,68,89,68,133,
59,135,124,121,124,133,115,135

240 DATA 180,89,180,133,
171,135,222,120,234,
133,225,135,12,153,
12,165,
3,167

250 DATA 40,121,42,165,33,167,68,153,72,
165,63,167,113,120,98,165,93,167,124,
153,144,165,137,167

260 DATA 178,153,176,165,167,167,208,121,
206,165,197,167,234,153,234,165,225,167,
124,70,124,70

This time, the Commodore and Vic programs
work without Simons' Basic or a Super
Expander. They simply print the rabbits as n
signs and position the generations straight
from the strings in the program. The Spec-
trum, Dragon and Tandy programs start by
creating the rabbit UDGs from DATA in Lines
190 and 200. Lines 40 to 80 on the Spectrum
and 60 to 110 on the Dragon and Tandy print
up bars on the screen for each generation then
the next section up to Line 180 prints the
rabbits and the lines joining the generations.
The DATA for the lines and positions is READ
from Lines 210 to the end.

The Acorn program first sets up arrays for

the generation number G (T), the x coordinate
of the rabbits P(T) and the parent number of
each rabbit PAR (T). Line 60 creates the
UDGs and the next two lines print the bars
for each generation. The loop in Lines 90 to
150 draws each pair of rabbits and the lines
linking the generations.

As organisms multiply they also spread out
and colonise more areas. A good example of
this is the way bacteria divide and multiply.
Computers can also be used to represent this
and a well-known program is the game of
Life. Although this can be written in BASIC
it is impossibly slow. However, Spectrum
users will already have a good example on
their 'Horizons' introductory tape.

FIBONACCI NUMBERS
The series of numbers listed above have some
interesting properties and are observed
throughout nature and art. They are called
the Fabonacci numbers after the thirteenth

century Italian mathematician. Each number
can be calculated by adding together the
previous two numbers in the series.

One unusual property of these numbers is
seen in taking any three of them in succession.
Multiply the first and the last together and
compare this to the square of the middle one.
The results will always differ by one. For
example with numbers 5, 8 and 13, 5 times 13
is 65 and 8 squared is 64.

Dividing each number by its right-hand
neighbour results in a series of fractions or
ratios and these are also found in nature and
art. For example, it was discovered that not all
rectangular shapes are equally pleasing to
look at. Some are too narrow or too long or
too fat. It is easily shown that the best-
looking rectangle has a special ratio of width
to length known as the golden ratio. This ratio
was found to be equal to (SQR(5) — 1)/2,
which works out as 0 .6180 . If you work out
any of the Fibonacci fractions you'll find that
the larger numbers you use the nearer the
result gets to the golden section. For example

8/13 is 0.6154, 13/21 is 0.6190 and
21/34 is 0.6176. So as the Fibonacci

series progresses, its values
approach that of the

golden ratio.
Try out the next
program. It lets

you draw

different shaped rectangles so you can judge
for yourself which proportions look best:

10 DIM F(12): DIM D(14)
20 LET D(1)=1: LET D(2)=1
30 F0R N=3 T0 14
40 LET D(N)=D(N-1)+D(N-2)
50 NEXT N
60 F0R N=1 T0 12
70 LET F(N)=D(N)/D(N +1)
80 NEXT N
90 B0RDER 0: INK 7: PAPER 0: CLS
100 LET A=15: LET B=8
110 LET X=20: LET Y=170
120 G0SUB 310
130 PL0T 0,130: DRAW INK 2;255,0
140 PL0T 0,128: DRAW INK 2;255,0
150 PL0T 80,130: DRAW INK 2;0,45

.160 PL0T 82,130: DRAW INK 2;0,45
170 PRINT AT 2,1; INK 3;"B";AT 4,5;"A"
180 INPUT "ENTER LENGTH 0F SIDE A (MAX

70)";A
190 IF A<1 0R A>70 THEN G0T0 180
200 INPUT "ENTER LENGTH 0F SIDE B (MAX

40)";B
210 IF B<1 0R B>40 THEN GOT0 200
220 LET X= 128 - (A*3/2): LET Y=120
230 G0SUB 310
240 PRINT AT 0,11; INK 5;"SIDE

A=";A;"EISIDE B=";B
250 F0R N=1 T0 12
260 IF A/B=F(N) 0R B/A=F(N) THEN

PRINT AT 2,11;"FIB0NACCI RATI0"
270 NEXT N
280 PRINT AT 4,11; FLASH 1; INK 6;"ANY

KEY T0 C0NTINUE"
290 PAUSE 0
300 RUN
310 PL0T X,Y: DRAW 3*A,0: DRAW 0, - 313
320 DRAW -3*A,0: DRAW 0,313
330 RETURN

10 DIM F(12),D(14)
20 D(1) = 1:D(2)=1
30 F0R N=3 T0 14
40 D(N)=D(N-1)+D(N -2)
50 NEXT N
60 F0R N=1 T0 12
70 F(N) = D(N)/D(N +1)
80 NEXT N
90 HIRES 0,1:MULTI 2,4,5:C0L0UR 1,1
100 A=20:B=8
110 X = 20:Y=25
120 C=2:G0SUB 310
130 F0R Z=1 T0 3:LINE

0,70 +Z,159,70 +Z,Z:NEXT Z
170 TEXT 37,10,"A",3,1,8:TEXT

8,40,"B",3,1,8
175 P0KE 198,0:WAIT 198,1:P0KE 198,0

180 CSET(0):INPUT "CENTER LENGTH 0F
SIDE A (MAX 70)";A

190 IF A<1 0R A>70 THEN 180
200 INPUT "CENTER LENGTH 0F SIDE

B(MAX 30)";B
210 IF B<1 0R B>30 THEN 200
220 CSET (2):MULTI

2,4,5:X=80- (A*2)/2:Y = 80
230 C=1:G0SUB 310
240 TEXT 85,5,"SIDE A ="+STR$(A),3,1,6
245 TEXT 85,15,"SIDE B ="+STR$(B),3,1,6
250 F0R N=1 T0 12
260 IF A/B=F(N) 0R B/A=F(N) THEN TEXT

6,60,"FIB0NACCI RATI0",3,1,10
270 NEXT N
290 P0KE 198,0:WAIT 198,1:P0KE 198,0
300 RUN
310 BL0CK X,Y,X+A*2,Y+B*4,C:RETURN

10 M0DE 1: DIM F(12),D(14)
20 D(1)= 1:D(2) =1
30 F0R N=3 TO 14
40 D(N)=D(N-1)+D(N-2)
50 NEXT
60 F0R N=1 T0 12
70 F(N)=D(N)/D(N +1)
80 NEXT
90 A=220:13 =130:VDU29,64;850;
100 PR0CRECNDU26:PRINTTAB(0,3)"B"

TAB(5,6)"A"
160 GC0L,1:M0VE 0,760:DRAW 1280,760
170 M0VE 350,760:DRAW 350,1024
180 VDU28,0,31,39,30
190 INPUT"LENGTH 0F SIDE A (MAX

250)",A
200 IF A<1 0R A>250 THEN 190 ELSE

A = A*4
210 INPUT"LENGTH 0F SIDE B (MAX

150)",B
220 IF B<1 0R B>150 THEN 210 ELSE

B=13 * 4
230 VDU 12,29,640 -A/2;350 - B/2;:PR0CREC
240 VDU26:PRINTTAB(15,1)"SIDE A=";A/4;

TAB(26,1)"SIDEB =";B/4
250 F0R N=1 T0 12
260 IF A/B=F(N) 0R B/A=F(N) THEN

C0L0UR0:C0L0UR131:PRINTTAB(18,3)
"FIB0NACCI RATI0":C0L0UR128

270 NEXT
280 C0L0UR2:PRINTTAB(13,5)"PRESS ANY

KEY T0 C0NTINUE"
290 G =GET
300 RUN
310 DEF PR0CREC
320 GC0L0,3:M0VE 0,0:DRAW A,0
330 DRAW A,B:DRAW 0,B
340 DRAW 0,0:ENDPR0C

10 DIMF(11),D(13)

20 D(0)=1:D(1)=1
30 F0R N=2 T0 13
40 D(N)=D(N-1)+D(N-2)
50 NEXT
60 F0R N=0 T0 11
70 F(N)= D(N)/D(N +1)
80 NEXT
90 PM0DE3:PCLS:CLS
100 A=15:B=8
110 X = 20:Y =22
120 G0SUB 310
130 C0L0R4:LINE(0,62)-(255,62),PSET
140 LINE(0,64) - (255,64),PSET
150 LINE(80,62) - (80,17),PSET
160 LINE(82,62) - (82,17),PSET
170 DRAW"BM9,38C2S8U4R2FGNLFGL2BM

40,58U3EFDNLD2"
175 F0RK =170900:NEXT
180 INPUT "ENTER LENGTH 0F SIDE A (MAX

70) II ";A
190 IF A<1 0R A>70 THEN 180
200 INPUT"ENTER LENGTH 0F SIDE B (MAX

40) ❑ ";B
210 IF B<1 0R B>40 THEN 200
220 X =128 -A*3/2:Y =72
230 G0SUB 310
250 F0R N=0 T0 11
260 IF A/B=F(N) 0R B/A=F(N) THEN

DRAW"BM106,44C2S8NR2D2NRD2BR4U4
BR2ND4RFGNLEGLBR4NU4R2U4L2BR
4DND3F2NU3DBR2U3EFDNL2D2BR4L2
U4R2BR4L2D4R2BR2U4BR8ND4R2D2L2F2
BR2U3EFDNLD2BR3U4LR2BR2D4BR2R2U
4L2D4"

270 NEXT
280 IF INKEY$="" THEN 280
300 RUN
310 SCREEN1,0:C0L0UR3
320 LINE(X,Y) - (3*A + X,Y +3*B),PSET,BF
330 RETURN

The program asks you to enter the lengths of
the sides of a rectangle. If you enter two
adjacent numbers from the Fibonacci series
the program tells you it's a Fibonacci ratio.

The numbers in the series are worked out
by Lines 20 to 50 simply by starting with the
two ones and then adding each number to the
previous one. They are stored in an array in
Lines 60 to 80. An example rectangle is
drawn on the screen by Lines 90 to 170. The
INPUT routine comes next then a check to see
if the values entered are a Fibonacci ratio.

Examples of the Fibonacci fractions are
also found in nature too. For instance, a spiral
following leaves on a stem has gaps and turns
in Fibonacci ratio. Count the number of turns
the spiral makes starting with one leaf up to
another leaf in the same position. Then count
the number of gaps between these leaves. The
ratio will ususally be 5/3 or 8/5.

Of course you'll need rewards— '•
like cake and lemonade—for
doing all this programming. But
there are risks to be run too. Slimy
snakes are out to get you!

After the first screen has been put up, the
other screens are simply modifications to it.
In the second level, Willie has to contend with
potholes. These are simply created by
overwriting the slope on the first screen with
the background colour in the shape of the hole
you want to create. Then the snakes are added
by writing that background colour. The
routine that makes the snake move will be
added later.

a
The following program adds the holes, snakes
and rewards:

hlp 	Id b,4
hlq 	push bc

Id bc,15616
Id a,45
call print
Id de,32
add hl,de
pop bc
djnz hlq
ret

snp 	Id h1,457
call snq
Id h1,401
call snq
Id h1,314
call snq
ret

snq 	Id a,4
Id bc,57232

snr push af
Id a,43
call print
Id de,32
add hl,de
pop af
dec a
jr nz,snr
ret

print org 58217

REWARDING ROUTINES
The accumulator is loaded with the contents
of memory location 57344. This location is
going to be used to store what level you are
on. The HL is loaded with the address of the
beginning of the rewards in the data table.

The level number is then transferred from
the accumulator to the B register and the B
register is incremented. The number 8 is
loaded into the DE register and that is added
to the data pointer in HL.

The ad loop then continues to add 8 onto
the HL register until B has counted down to
0. The djnz operates on the B register remem-
ber, decrementing and jumping if the result is
not zero. This process moves the data pointer
along until it points at the beginning of the
right reward. Each appears in a single 4

 eight-by-eight character square, so its/
data uses eight bytes in the data table.

The result of this multiple addition is left
in the HL register.. But you want it in the BC
register when you call the print routine. And
the easiest way to transfer it is to push it on the
stack and pop it off into the other register.

Loading A with 58 sets the colour of the
reward and the print routine is called again.
This was the routine given in part one of
Cliffhanger that prints data on the screen.
Here it prints the reward on the screen in the
appropriate colour.

ON THE LEVEL
The contents of the location that carries the
level is loaded into the accumulator again.

The 'CLIFFHANGER' listings published in this
magazine and subsequent parts bear absolutely no
resemblance to, and are in no way associated with,
the computer game called 'CLIFF HANGER' re-
leased for the Commodore 64 and published by
New Generation Software Limited.

This is compared to 0 and if it
is 0 the jr z,ed jumps to the end
of the routine where it returns.

If the level is not zero, the
processor continues and preserves thq
level number by pushing it onto the
stack. The hls routine is then called
which prints the holes on the screen.

org 58455
elb 	Id a,(57344)

Id h1,57272
Id b,a
inc b
Id de,8

ab add hl,de
djnz ab
push hl
pop bc
Id h1,191
Id a,58
call print
Id a,(57344)
cp 0
jr z,ed
push af
call hls
pop af
cp 1
jr z,ed
call snp

ed 	ret
his 	Id h1,457

call hip
Id h1,401
call hlp
Id h1,314
call hlp
ret

The level is then recalled by popping it off
the stack and compared to 1* If you are on
level 1 there are potholes but no snakes* And
if 1 is in the accumulator cp 1 gives the result
zero and sets the zero flag, so jr z,ed jumps to
the end of the routine again and returns*

If not, the snp routine is called* This is the
one that prints the snakes* Then the program
returns. When the main driver program is
added later, the processor will return there.
But for now it will return to BASIC*

WHOLLY HOLES
The next subroutine is wholly devoted to
making holes* This begins with the label his
which is called by the main routine when
holes need to be dug*

It consists of three little modules each two
instructions long* Each module begins with a
id,h1 instruction* This loads the HL register
with the print position of the top of each hole.
Then the hip routine is called. This actually
prints the hole on the screen, over the slope
generated in the last part of Cliffhanger.

There are three modules because there are
three holes, each with its own print position,
which is loaded into HL afresh each time, but
each is created in exactly the same way by the
hip routine.

DIGGING THE HOLES
B is loaded with 4—the hole is to be four
character squares deep* This is stored by
pushing it onto the stack* The BC register
pair is then loaded with the location of an
empty space* This is, in fact, part of the data
to the top of the screen*

A is loaded with 45 to give the sky colour
and the print routine is called yet again* This
prints the first square of the sky colour over
the slope, effectively taking the first spadeful
of soil out of the hole.

Loading DE with 32 and adding it to HL,
moves the HL screen pointer down one line*
The pointer is then popped off the stack again
and the djnz decrements and jumps back if it
hasn't become zero* So the processor goes
round this loop four times, each time printing
one more square of sky, taking one more
spadeful of soil out of the hole*

THE SNAKE ADDER
The rest of the routine adds the snakes* The
first seven instructions are like those at the
beginning of the hole-printing routine* They
load the HL register with the print position of
the snake, then the subroutine that actually
prints the snake is called*

Again this is like the hole-print routine—
after all, the snakes fit in the holes*

This time the counter is kept in the

accumulator because you need to keep track of
the data pointer* Before, with the holes, the
data pointer was loaded up again each time
with the address of a space* But for the snake,
the data pointer has to count along the snake
data in the data table* The print routine
automatically updates the pointer, moving it
onto the next byte of data. And as the data
pointer is held in the BC register you don't
want to keep on having to store its value—on
the stack or elsewhere* Swapping between
them, especially when using the A register
only adds one extra instruction* The djnz
instruction in the hole-digging routine works
on the B register, so if you are using a counter
in A it must be replaced with dec a and jr
nz,snr.

TESTING
To test the routine POKE 57344 with the level
number 0 to 3 and call the routine each time
with a RANDOMIZE USR 58455 to check that
you are getting the holes on level 1, the snakes
on levels 2 and 3 and a different reward each
time*

The following routine determines which
sprites appear at which level and initializes the
start position of the man and the boulder* And
it sets up the sea.

ORG 	24576
JMP 	FF

GG 	LDA 	$C000
CMP 	# 1
BNE 	AA
LDA 	# 71
STA 	$D015
RTS

AA 	CMP 	#2
BNE 	BB
LDA 	#125
STA 	$D015

RET 	LDX 	# 3
LDY 	#0

LOOP 	LDA 	# 15
STA 	$D02A,Y
LDA 	# 236
STA 	$07FB,Y
INY
DEX
BNE L00P
RTS

BB 	CMP 	# 3
BNE 	CC
LDA 	# 127
STA 	$D015
JMP 	RET

CC 	CMP 	# 4
BNE 	DD

	

LDA 	#125
EE 	STA 	$D015

	

LDX 	#3

	

LDY 	# 0

	

L00PA LDA 	#5

	

STA 	$D02A,Y

	

LDA 	# 234

	

STA 	$07FB,Y
INY
DEX

	

BNE 	L00PA
RTS

DD 	LDA 	#127

	

JMP 	EE
FF 	LDA 	# 7

	

STA 	$000E

	

LDA 	#232

STA 	$000D
LDA 	$0002
STA 	$0002
STA 	$C000
LDA 	# 2
STA 	$0012
LDA 	# 33
STA 	$0011
LDA 	# 18
STA 	$D000
LDA 	# 161
STA 	$D001
LDA 	# 66
STA 	$D010
LDA 	# 74
STA 	$D00D
LDA 	# 64

STA 	$D00C
LDA 	$D01E
LDA 	$D01F
JMP 	GG

JUMP ABOUT
This routine starts with a jump to a label
halfway through the routine itself. And the
processor only jumps back to the beginning
again when it has completed the second half*
While this is not the best way to write
programs, it is a useful device to switch two
bits of programming round without rewriting
all the source code.

The first part of the program determines
which sprites are used at which level. The
second half deals with the sea*

WHICH SPRITE?
During the course of writing the game a table
of variables is constructed-. This starts at
49,152 and is used for temporary storage of
the parameters that change during the game*

The variable stored in 49,152 itself spec-
ifies the level that the player has reached and
thus determines which screen and which
sprites are required*

The contents of 49,152 are loaded into A
and compared with 1* If the game is not on
level one, the BNE instruction branches for-
ward over the next subroutine. If it is on level
one, A is loaded with the number 71 which is
stored in 53,269* This is the sprite display
enable location. The sprites are switched on
by a 1 in the bit pattern* So the sprites zero,
one, two and six are switched on* Then the
proceisor returns*

The next subroutine starts off in the same
way, only this time it checks to see if the game
is on level two* If it is, sprites three, four and
five are switched on, too, but sprite two—
which corresponds to the boulder—is
switched off*

Then X is loaded with 3 as a loop counter,
and Y is loaded with G as an offset which will
be incremented each time the processor goes
round the loop* So 15—the background
colour, is loaded into the colour locations for
sprites three, four and five* The correspond-
ing sprite pointers are then set* The subrout-
ine digs the holes.

The next subroutine checks for level three*
If the player is on level three, the boulder
sprite is switched back on—an extra two is
added and stored in the sprite enable location.
But the holes still have to be dug so the
processor jumps back to the RET routine
above*

On level three, the boulder sprite is turned
back off again and the new loop—LOO PA—is
performed* This is the same as the hole
digging routine above, only the colour is set to
5—the snake colour—and the sprite pointer is
directed by the snake data instead*

And on level five, the boulder sprite is
switched back on again and the snake-print
routine is called*

SEA SET
The variables in 49,165 and 49,166 determine
the state of the sea* The delay that determines
how quickly the sea rises is in 49,154—this
can be varied during the game to make
Willie's scramble more desperate and the
game harder*

The X and Y positions of the sprites which
make up the sea are then set and the sprite
collision flags are cleared.

SNAKES AND COUNTERS
The following routine sets up the snakes:

ORG 	24832
LDA 	#116
STA 	$D006
LDA 	#146
STA 	$D007
LDA 	#122
STA 	$D008
LDA 	#160
STA 	$D009
LDA 	#130
STA 	$D00A
LDX 	#3
LDY 	# 0
LDA 	#20

LOOP 	STA 	$C364,Y
SBC 	#5
INY
DEX
BNE LOOP
RTS

The X and Y coordinates of the three holes
and snakes are loaded into the accumulator
and stored in memory locations 53,254 to
53,259. These are the locations which control
the X and Y positions of sprites three, four
and five.

The loop staggers the tongues so that they
don't all flick out at the same time.

El
30 FORPASS = 0TO3STEP3
40 RESTORE
100 DATA4,16,9,13,16,11
110 FORA%= &1928T0&192D:READ?A%:

NEXT
160 DATA17,8,32,8,10,32,8,10,32,8,10,168,8,

10,169
170 FORA%= &192ET0&193C:READ?A%:

NEXT
220 P%= &193D
230 [OPTPASS
240 .Holes
250 LDY# 0
260 .Lb1
270 LDA # 31
280 JSR&FFEE
290 LDA&1928,Y
300 JSR&FFEE
310 LDA&1929,Y
320 JSR&FFEE
330 INY
340 INY

480 LDA # 4
490 JSR&FFEE
500 TXA
510 ASLA
520 ASLA
530 ASLA
540 ASLA
550 ASLA
560 JSR&FFEE
570 TXA
580 LSRA

590 LSRA
600 LSRA

610 JSR&FFEE
620 TYA
630 ASLA
640 ASLA
650 ASLA
660 ASLA
670 SEC
680 SBC #4
690 PHP
700 JSR&FFEE
710 TYA
720 LSRA
730 LSRA
740 LSRA
750 LSRA
760 PLP
770 SBC#0
780 JSR&FFEE
790 RTS
800
850 DATA5,18,0,4,141
860 DATA8,10,170,8,10
870 DATA171,8,10,172,8
880 DATA10,173,8,11,11
890 DATA11,18,0,2,174
900 DATA8,10,175,8,10
910 DATA176,8,10,177,4
920 FO RA% = &1996T0&19B8:READ?A%:

NEXT
970 P%= &19139
980 [OPTPASS
990 .Snakes
1000 JSRHoIes
1010 LDY#0
1020 .Lb3
1030 TYA
1040 PHA
1050 LDA&1928,Y
1060 ASLA
1070 TAX
1080 LDA # 32
1090 SEC
1100 SBC&1929,Y
1110 ASLA
1120 TAY
1130 JSRTab
1140 PLA

DIGGING THE DATA
The first block of DATA in Line 100 gives the
position of the holes and snakes. Line 110
reads this into a data table where the machine
code program can access it.

And the next section of DATA in Line 160
contains the details of the potholes
themselves.

PICK OF THE POTS
To print anything on the screen you have to
move the cursor into position first. This is
done by the instructions in Lines 270 to 320.
As before, loading the accumulator with 31
and jumping to the subroutine at FFEE gives
the equivalent of a VDU 31. That routine is
then primed to accept two more parameters—
the first it will take to be the X coordinate of
the proposed cursor position and the second
will be taken as the Y coordinate.

Indirect indexed addressing is used to
pick up the appropriate values of the coordi-
nates from the data table constructed by the
BASIC program in Lines 100 and 110. The
base addresses used are those of the first and
second byte of the data table. The offset Y is
set to 0 by Line 250 on the first pass. With the
loop, opened by the label .Lb1 in Line 260, it
is incremented by the two INYs in Lines 330
and 340 to pick up the next two coordinates
for the next hole.

IN THE HOLE
This time X is used as the index register and is
initialized to 0 in Line 350. Line 370 picks up
the bytes of the data table that refer to the
shape of the hole. These are output to the
screen by jumping to the subroutine which
starts at &1803. This is the UDG print
routine given in the last part of Cliffhanger—
the one that prints out a character from the
character set if its number is less than 128 and
a UDG if the number is greater than 127. X is
then incremented and compared to 15. The
processor branches back to output the next
byte of data, if the end of the hole data has not
been reached.

If you think that this is the only part of the
program that does not call &FFEE, you'd be
wrong. The subroutine at &1803 uses the
&FFEE routine to output to the screen once it
has decided whether an ASCII character or a
UDG is required. That said, it is clear that the
data in the hole data table is designed to drive
the &FFEE routine in the normal way.

The leading 17 gives a VDU 17—or
COLOUR—command when output through
&FFEE. So the 8 following it gives colour 8.
This has been redefined as logical colour 6 in
the last part of Cliffhanger. This gives fore-

350 LDX# 0
360 .Lb2
370 LDA&192E,X
380 JSR&1803
390 INX
400 CPX #15
410 BNELb2
420 CPY # 6
430 BNELb1
440 RTS
450 .Tab
460 LDA #25
470 JSR&FFEE

1150 TAY
1160 LDX# 0
1170 .Lb4
1180 LDA&1996,X
1190 JSR&1803,X
1200 INX
1210 CPX#35
1220 BNELb4
1230 INY
1240 INY
1250 CPY #6
1260 BNELb3
1270 RTS
1280]NEXT

130 DATA178,178,10
140 DATA8,8,179
150 DATA179,11,8
160 DATA8,18,0
170 DATA8,180,181
180 DATA10,8,8
190 DATA182,183,11
200 DATA8,8,18
210 DATA0,2,184
220 DATA185,10,8
230 DATA8,186,187
240 DATA255
280 DATA18,0,1
290 DATA188,188,10
300 DATA8,8,189
310 DATA190,11,8
320 DATA8,18,0
330 DATA3,191,192
340 DATA255
380 DATA18,0,3
390 DATA9,193,8
400 DATA10,194,8
410 DATA18,0,1
420 DATA195
430 DATA255
470 DATA18,0,4
480 DATA196,197,8
490 DATA8,18,0
500 DATA2,198,199
510 DATA8,10,200
520 DATA255
560 DATA18,0,4
570 DATA201,202,8
580 DATA8,10,203
590 DATA8,11,18
600 DATA0,1,204
610 DATA205,8,8
620 DATA10,206,207
630 DATA8,8,11
640 DATA18,0,8
650 DATA208,209,8
660 DATA8,10,210
670 DATA211
680 DATA255
720 FORA% = &1A86T0WAFE:READ

?A%:NEXT
780 FOR PASS = 0TO3STEP3
790 P% = &1AFF
800 [OPTPASS
810 .Fruit
820 LDA&83
830 ASLA
840 TAX
850 LDAMA7C,X
860 STA&73
870 LDA&1A7D,X

ground cyan—you are going to overwrite the
green slope foreground with the background
cyan colour.

The next byte is 32, ASCII for a space.
Then the 8 moves the cursor back onto the
space that has just ,been printed and the 10
moves it down to the character square below.
This is done three times to print three
squares* Then UDG 168 is printed out, the
cursor is moved back and down again, and
UDG 169 is printed. These two UDGs shape
the bottom of the hole.

MOVING
So far you have been shifting the text cursor
around the screen before you print. But in
some circumstances wou will need to move
the graphics cursor too. The routine to do this
is Lines 450 to 780*

This routine is almost exactly the same as
the DRAW routine given in part one of Cliff-
hanger* Here, though, after 25 has been
output to the routine at &FFEE to give a
PLOT, a 4 is output there too. This gives a
PLOT 4, or a MOVE. But the X and Y
coordinates are encoded into and decoded out
of a single data byte in exactly the same way
using repeated arithmetic shifts left and log-
ical shifts right.

The SBC#4 in Line 680 simply MOVEs
down one extra pixel* The PHP pushes the
process register—that is, the flags—onto the
stack, the register is restored after the high
byte of the coordinate has been decoded and
zero is subtracted using an SBC # 0. Notice
that this is a subtract with carry and the carry
flag is in the same condition as it was
immediately after the SBC#4 in Line 680.
This adjusts the high byte if subtracting the 4
has taken the low byte through zero.

SNAKE BYTES
Lines 850 to 910 carry the data for the snake
and Line 920 READS it into a data table.

The instruction in Line 1000 calls the
routine that prints the holes starting in Line
240 above. Then the index register Y is
initialized to 0, the value of Y is transferred

into A and A is pushed onto the stack to save
it.

The snake/hole position is then loaded up
from the data table constructed by Lines 100
and 110. The position in that data table are
encoded for the text screen, so they have to be
re-evaluated for the graphics screen* To give

the X coordinate, the byte from the data table
is arithmetically shifted left—to multiply it by
two—and transferred into the X register.

Then the next data byte is subtracted from
32, multiplied by two by an arithmetic shift
left and transferred into the Y register* The
tab routine is then called. This is the routine
given above which MOVEs the graphics cursor
into the appropriate position*

The loop counter is then pulled back off
the stack and put into the Y register and X is
initialized to 0 before the next loop is entered.
Then the appropriate byte of the snake table
is loaded up and the UDG print routine at
&1803 is called. X is incremented and com-
pared to 35, and the processor branches back
until all 35 bytes of snake have been output.

Y is incremented twice to move the routine
along to the next two bytes of the snake/hole
position data table. It is then compared to 6
and the processor branches back until all 6
bytes of position data have been used and the
three snakes have been printed in the three
holes*

At the moment these snakes do not move.
You will get them wiggling in a later part*

TESTING
As routine given in former parts of Cliffhan-
ger are called from the routines given here,
you must have them in memory before you
CALL any part of this program. Then key in
the following:

PAGE = &2000
NEW
M0DE2:CALL&182D:CALL&1855:CALLM 894:

CALL&19B9

THE GOODIES
The following program prints up the items of
Willies picnic on the screen. Don't forget to
type PAGE = &3000 and NEW before you key
it in:

30 DATA134,26
40 DATA171,26
50 DATA190,26
60 DATA204,26
70 DATA220,26
80 FORA% = &1A7CTO&1A

85:READ?A%:NEXT
120 DATA18,0,4

970 JSR&1803
980 INY
990 LDA(&73),Y
1000 CMP # &FF
1010 BNELb1
1020 LDA # 4
1030 JSR&FFEE
1040 RTS
1050]NEXT

To run it, you'll need the other programs
given so far in memory, then key in:

PAGE = &2000
NEW
MODE2:CALL&182D:CALL&1855:CALL&1894:

CALM 9B9

Then POKE in the level number using ?&83 =
followed by a number between 0 and 4. Then:

CALM AFF

PICNIC DATA

The DATA in Lines 30 to 70 contain the
pointers to blocks of data which define each of
Willie's missing picnic goodies. The DATA for
the sandwich is in Lines 120 to 230. The
DATA for the apple is in Lines 380 to 330. The
DATA for the lemonade is in Lines 380 to 420.
The DATA for the ice-cream is in Lines 470 to
510. And the DATA for the cake is in Lines 560
to 670. Each block of data ends with 255, so
that the processor can recognise the end.

Each of these goodies appears. on a differ-
ent screen. The sandwich appears on screen
one, the apple on screen two, the lemonade on
screen three, the ice-cream on screen four and
the cake on screen five.

SCREENING THE GOODIES
Zero-page memory location &83 is used to
store the number of the level the game has
reached, and thus the screen that is required.
The LDA&83 in Line 820 loads the level
number into the accumulator and the ASLA in
Line 830 multiplies it by two—the DATA
pointers take up two bytes, so you have to
count along the data pointer table two at a
time.

This number is then used as an index, so it
is transferred into the X register and used as
an offset in the indexed instructions that load
up the data pointers in Lines 850 and 870.
The two bytes of the appropriate data pointer
are stored in &73 and &74.

The X and Y coordinates of the position
the goodies are going to be printed in are
loaded into the X and Y registers. Then the
processor jumps to the tab subroutine given
in the first program in this part of Cliffhanger
which positions the graphics cursor.

Five is loaded into the accumulator and the
&FFEE routine is called. This directs all
printing to the graphics cursor instead of the
text cursor.

The Y index register is set to 0 and the first
byte of data for the appropriate goody is
loaded up by using the indirect indexed
instruction LDA(&73),Y. The pointer in &73
and &74 points to the beginning of the block
of data for the appropriate goody, remember.
Then the processor jumps to the UDG print
routine at &1803 to print out the first part of
the goody on the screen.

The Y index is then incremented and the
next byte is loaded up. This is compared to
&FF—or 255—to see if the end of that block
of data has been reached. If it hasn't the
processor branches back and prints out the
next byte. If it has, the processor drops out of
the loop and proceeds to the next instruction.

The accumulator is loaded with 4 and the
&FFEE routine is called again. This directs
any subsequent screen output to the text
cursor.

1M la
The following prints the holes and the snakes
on the screen for the Dragon and the Tandy
when you have progressed to the appropriate
level:

ORG 	19289
ELB 	LDA 	18238

LDB 	#16
MUL
ADDD 	# 18142
TFR 	D,U
LDX 	# 2782
JSR 	CHARPR
LDA 	18238
BEQ 	ED
PSHS 	A
JSR 	HOLES
PULS 	A
CMPA #1
BEQ 	ED
JSR 	SNAKE

ED 	RTS
HOLES 	LDX 	# 5095

LDU 	# 3071
JSR 	HOLPR
LDX 	# 4591
LDU 	# 3071
JSR 	HOLPR
LDX 	# 3833
LDU 	# 3071
JSR 	HOLPR
RTS

SNAKE 	LDX 	# 5095
LDU 	# 18078
JSR 	HOLPR

880 STA&74
890 LDX # 36
900 LDY # 60
910 JSR&1964
920 LDA # 5
930 JSR&FFEE
940 LDY # 0
950 .Lb1
960 LDA(&73),Y

LDX 	# 4591
LDU 	# 18078
JSR 	HOLPR
LDX 	# 3833
LDU 	# 18078
JSR 	HOLPR
RTS

HOLPR 	LDB 	#4
HOLPRI 	PSHS 	U,X,B

JSR 	CHARPR
PULS 	B,X,U
LEAX 	256,X
LEAU 	16,U
DECB
BNE 	HOLPRI
RTS

CHARPR 	LDB 	#2
CHARI 	PSHS 	B,X

LDB 	#8
CHARZ 	PULU 	A

STA 	,X
LEAX 	32,X
DECB
BNE 	CHARZ
PULS 	X,B
LEAX 	1,X
DECB
BNE 	CHARI
RTS

TO TEST THIS PROGRAM
As this program adds graphics to the scenery
you've already got you'll need the rest of the
game in memory before you execute it. Then
RUN the following BASIC program to test it.

5 PCLEAR4: CLEAR 200,16999
10 EXEC 19000: EXEC19109
20 POKE 18238,0
30 EXEC 19289
40 GOTO 40

Line 10 executes the bit of the game you've
keyed in from previous issues of Cliffhanger*
Line 20 sets the level to 0 and Line 30
executes the new part of Cliffhanger given
above* Line 40 is just an infinite loop to hold
the display on the screen.

To make sure this new part of the program
is working properly, you'll have to BREAK this
program and edit Line 20, POKEing new levels
into memory location 18,238. The 0 here will
just give you the slope—the obstacle on level
one of Cliffhanger, the boulders, is given
later* A one will give you the potholes* A two
will give you the holes and the snakes. Level
three also features boulders for extra dif-
ficulty, but not yet.

Try testing all four levels, though, to make

sure that you have got all Willie's picnic
things drawn properly.

ON THE LEVEL
Memory location 18,238 is going to be used to
store the level of difficulty you're on. Thus its
contents are loaded into the accumulator* 16
is put into the B register and the instruction
MUL multiplies the contents of those two
registers together* The result is put in D*

Each reward is made up of 16 bytes of data,
so to count along the data table to the start of
the appropriate reward for the level attained,
you have to multiply the level number by 16.

The number 18,142 is added to the result
in the D register, so that its contents now
point to the start address of the data you want.
This pointer is then transferred into U, the
user stack pointer. This effectively turns the
appropriate section of data into the user stack.

The X register is then loaded with 2,814,
which is the screen position where you want
the reward printed* And the processor jumps
to CHARPR which prints the reward*

LDA 18238 loads the level number into the
accumulator again. The processor then bran-
ches to the label ED, which marks the RTS at
the end of the program, then the contents of
18238 are zero. On level one—or level 0 in
computer parlance—you needn't go any fur-
ther with this routine.

If you're on level two, though, the pro-
cessor pushes the level number onto the
hardware stack to preserve it. Then it jumps
to the subroutine which digs the holes*

The level number is pulled back off the
hardware stack into the accumulator and
compared with one. If it is one—and you're
on level two—the JSR SNAKE instruction,
which is the routine that prints the snakes, is
skipped and the processor returns*

HOLES AND SNAKES
The hole routine and the snake routine work
exactly the same* They each have three cycles
of three instructions.

In each cycle the X register is loaded with
the screen position of the top of the hole and
the U register is loaded with the address of the
beginning of the appropriate data. Then the
processor jumps to the HOLPR subroutine.

Obviously all the holes are the same, so the
data pointer is always initialized at 3,071* And
all the snakes—though the graphic printed is
actually a snake in a hole—are one snake in the
data table and start at 18,078*

And obviously the snakes in their holes
have to be printed at the same place at the
holes they replace. The top of first
hole/snake-hole is at 5,095, the second is at
4,591 and the third is at 3,071*

Both snakes and snake-holes are printed
over the original slope drawn in an earlier part
of Cliffhanger. This means that the rest of the
screen can be left as it is.

DIGGING IT
Both the HOLES and the SNAKES routines call
the HOLPR routine. And it is this routine that
digs out the potholes and the snake-pits,
spadeful by spadeful from the top.

B is loaded with four—the holes are going
to be four character squares deep* U, X and B
are pushed onto the stack to preserve them
while the processor jumps to the CHAR PR
subroutine. This is the most basic routine of
all. It just prints the character pointed to by
the data pointer onto the screen in the
appropriate place.

So if you are on level two and are printing
holes, the data pointer in U will point to the
empty hole data and the routine will print a
block of the background colour at the screen
position in X. If you are at level three or four,
U points to the snake-pit data and this is
printed as a block at the screen position in X*

Once the character block has been printed
B, X and U are pulled off the stack again, then
X is loaded with X + 256 which moves it onto
the beginning of the next character block and
U is loaded with U + 16, which moves the data
pointer onto the graphic* Then B, the spade-
ful counter, is decremented and the processor
loops back if B hasn't counted down to zero.
If it has and all three spadefuls have been dug
out, the processor returns.

Each character block that is printed on the
screen is 16 bits—that is, two bytes wide—
and eight bytes deep* So the B counter is
loaded with 2 to count across the hole. This is
saved by pushing it onto the hardware stack
along with the print position in X. B is then
reloaded with eight to count down the hole*

The data is then retrieved by pulling it off
the user stack into the accumulator. And this
is stored at the position pointed to by the X
register* This actually prints the hole or
snake-pit data on the screen.

X is then reloaded with X + 32, to move the
screen pointer down one line of pixels on the
screen* The B counter is then decremented
and the processor branches back to print the
next byte of data on the screen until the B
counter has counted down from eight to zero.

X and B are then pulled of the stack again*
Xis loaded with X + 1 which moves the screen
pointer onto the next character square to the
right and B is decremented* If it hasn't
counted down from two to zero, it branches
back to dig out the next column of the hole or
snake-pit. And when both columns have been
dug, the processor returns.

Here is the final part of the calendar
and diary program* It adds the
printout routines and lets you SAVE
and LOAD the diary lists either to
tape or to disk

If you SAVEd the last two parts of the program
LOAD them back in now and enter the remain-
ing lines given here. You'll then have a
complete program and can start to use it to
keep track of future appointments and events.

The instructions for using the program
were given with the last two parts so look back
at them to see what to do. Extra instructions
for SAVEing and LOADing the data are given
below.

The program is actually very straightfor-
ward to use. The main menu lets you choose
exactly what you want the program to do, and
each option is well-prompted so you know
what to enter. The entries are error-trapped
so you needn't worry if you accidentally type
in the wrong type of data—the program will
simply ask you to enter it again.

SAVING THE LISTS
When you've entered all of the data you
should save the lists using option 4 on the
Commodore or option 8 on the others. The
program is designed to save the lists to tape.
Changes to the program to allow it to work
with a disk drive are given separately after the
main program.

Next time you use the program answer Y to
the question 'have you any existing lists' and
the data will be loaded back in again. It can
then be altered, deleted and updated, viewed
or printed out, and then the new list saved.
The data is saved in a file called 'DIARY' so
save the main program under a different
ffi CALENDAR, say.

1760 LET M4= 0: LET A4=0
1770 INPUT "YEAR:";YR: IF YR <1753 OR

YR >29999 THEN GOTO 1770
1780 GOSUB 640
1790 GOSUB 2480
1800 CLS
1810 POKE 23692,255
1820 PRINT # P;"YEARIII";YR
1830 PRINT # P: LET KB= 0: GOSUB 1920:

PRINT # P
1840 GOSUB 2460

1850 FOR z= 1 to 12
1860 LET MO = z
1870 PRINT # P;M$(MO*9 —8 TO MO*9)
1880 LET T2=5: LET S2=0: GOSUB 2020
1890 IF P=2 THEN IF INKEY$="" THEN

GOTO 1890
1900 NEXT z
1910 RETURN
1920 LET X2=0: LET C2=0: LET D2=0
1940 IF P=3 THEN LET KB= KB +1
1950 PRINT # P;Z$(TO X2);
1960 FOR d =1 TO 7
1970 INK 4: IF d=1 THEN INK 2
1980 PRINT # P;Z$(TO KB);s$((d —1)

*3+1 TO (d-1) * 3 +3);
1990 NEXT d
2000 INK 7
2010 RETURN
2020 PRINT
2030 IF P=3 THEN PRINT AT 10,4; FLASH

1;"OUTPUT GOING TO PRINTER"
2040 LET M5=0: LET XP= 0: LET X2=0:

LET W2 = 0: LET A$='"': LET D$=""
2050 IF S2=1 THEN LET A$=" ❑ ": LET

W2 = 4
2060 IF S2=0 THEN LET X2=7: LET W2=3
2080 LET DA=1
2090 LET KB= MO: GOSUB 270: LET

M5= KB
2100 GOSUB 560: LET K2=7: LET XP= FN

M(KB)
2110 PRINT # P;Z$(TO XP*W2);
2120 LET DA= 0
2130 PRINT # P;Z$(TO X2);
2140 LET DA= DA +1: LET D$ =A$ + (STR$

(DA)) +"(II": IF LEN D$ <W2 THEN LET
D$=D$+Z$(TO W2— LEN D$)

2150 IF A$="" THEN PRINT # P;D$;: GOTO
2170

2160 LET KB =T2: GOSUB 350: PRINT #P;
INK KB;D$;

2170 LET XP=XP +1
2180 IF NOT (XP > 6 OR DA= M5) THEN

GOTO 2140
2190 LET XP= 0: PRINT #P: IF S2=1 THEN

PRINT # P
2200 IF DA< >M5 THEN GOTO 2130
2210 IF MO= ME THEN PRINT # P;: PRINT

P;"Easter Sunday D";M$(ME"9 —8
TO ME*9);DE

2220 IF P=3 THEN PRINT AT 10,0;z$: PRINT

AT 10,13;"READY"
2230 RETURN
2240 GOSUB 2510
2250 LET T2=0: LET MX=0: LET N2=-0:

LET A$=`"': LET CL= 0: LET M9= MO:

USING THE PROGRAM
SAVEING THE DIARY LISTS

TO TAPE
LOADING BACK THE DATA

UPDATING THE INFORMATION

ADDING THE PRINTOUT ROUTINE
MAKING THE CHANGES FOR

DISK DRIVES
CHANGING THE PROGRAM FOR

THE ELECTRON

LET Y9 =YR
2260 GOSUB 2480: CLS
2270 GOSUB 2570: PRINT # P
2280 PRINT # P;"DAY11111111111111IENTRY"

PRINT AT 0,18;"Any key for"'TAB 18;"

next entry"
2290 PRINT # P
2300 GOSUB 2460
2310 IF MO = ME THEN PRINT # P;INK 5;

DE;" ❑ ❑ Easter Sunday"

2320 PRINT#P
2330 FOR t =1 TO 4
2340 LET MX = Q(t)
2350 IF MX=0 THEN GOTO 2410
2360 FOR N=1 TO MX

2370 LET K$= L$(t, N)
2380 LET KB =t
2390 LET K2=3: G0SUB 470: IF K2=1

THEN PRINT # P;INKZ(t); K$(2 T0 3);
"El El El E El"; K$(10 T0)

2400 NEXT N
2410 IF INKEY$="" THEN G0T0 2410
2420 NEXT t
2430 F0R 1=1 T0 100: NEXT I
2440 IF INKEY$="" THEN G0TO 2440
2450 LET M0 = M9: LET YR =Y9: RETURN
2460 IF INKEY$="" THEN G0T0 2460
2470 RETURN
2480 PRINT : PRINT "W0ULD YOU LIKE A

PRINT0UT (YIN)?": LET K$="yn":
G0SUB 1480

2490 LET P=2: IF KB =1 THEN LET P=3
2500 RETURN
2510 INPUT "M0NTH ?";M0
25201F M0 <1 0R M0>12 THEN G0T0

2510
2530 INPUT "YEAR ?";YR
2540 IF YR <1735 OR YR >29999 THEN

GOT0 2530
2550 G0SUB 640
2560 RETURN
2570 PRINT #P; PAPER 1; INK 7;

M$(M0*9-8 T0 M0*9);" ❑ ";YR
2580 RETURN

1740 FL=0
1750 F0R N1 =1 T0 4:CD(N1)=ASC

(MID$(DL$(C,LX),N1,1))
1760 NEXT N1:CD(4)=CD(4)+(ASC

(MID$(D14(C,LX),5,1))*256)
1770 IF CD(4)>YY THEN FL=0: RETURN
1780 IF CD(1)=1 AND M> =CD(3) THEN

FL = 1:RETURN
1790 IF CD(1)=2 AND M> =CD(3) AND

M — CD(3) — INT((M — CD(3))/3)
*3=0 THEN FL=1:RETURN

1800 IF CD(1) =3 AND CD(3)=M THEN
FL=1:RETURN

1810 IF CD(1)=4 AND CD(3)=M AND
CD(4)=YY THEN FL =1

1820 RETURN
1830 IF K=6 THEN M=M-1:RETURN
1840 IF K=5 THEN M=M+1:RETURN
1850 IF Z=1 THEN Z=0:RETURN
1860 IF Z=0 THEN Z=1:RETURN
1870 IF PP= 0 THEN PRINT"0T
1880 PRINT" D DIARY FOR ❑ ";

MID$(MN$,M*9 — 8,9):PRINT
1885 IF M< > EM THEN 1910
1890 PRINT" ❑ DATE

❑ [11:";STMED)
1900 PRINT" ❑ EVENTE :El EASTER

SUNDAYgg
1910 ML=VAL(MIDCM4,2*M-1,2)):

IF M=2 THEN ML=ML+LY

1920 C=CP:IFC>3THENC= 0
1930 PRINTTAB(20 — (LEN(ST$(C))

*.5))"a"CHR$(CL(C));ST$(C)
1940 MX=VAL(DL$(C,0))
1950 IF MX=0 GOT0 1990
1960 FOR CD =1 TO ML:FOR LX =1 TO

MX:CD(2) =ASC(MID$(DL$(C,LX),
2,1))

1970 IF CD =CD(2) THEN GOSUB 2010
1980 NEXT LX,CD
1990 RETURN
2010 GOSUB1740
2020 IF FL=0 THEN RETURN
2030 A$=STR$(CD):IF LEN(A$) <2 THEN

A$= A$ + "El"
2040 B$= DL$(C,LX)
2050 PRINTA$;CHR$(CL(C));

RIGHT$(B$,LEN(B$) =4)
2060 RETURN
2070 PRINT"MnIpIggak

HAVE Y0U A DIARY LIST SAVED (Y/N)?

KO"
2080 PRINT"pipnila 	El

❑❑❑❑❑❑❑❑❑❑❑❑❑❑
❑❑❑❑❑❑❑❑❑❑❑❑
❑❑❑❑ N"

2090 GET A$:IF A$="" GOT0 2090
2100 IF A$="N" THEN RETURN
2110 IF A$="Y" G0T0 2130
2120 GOTO 2090
2130 G0SUB 3000:0PEN1,DV,0,NM$
2140 F0R C=0 TO 3:INPUT#1,

D14(C,0):MX=VAL(D4(C,0)):
IF MX=0 G0T0 2160

2150 F0R N=1 T0 MX:INPUT
#1,DL$(C,N):NEXT N

2160 NEXT C:CLOSE1:RETURN
2170 PRINT"amE E UPDATED DIARY

LIST T0 BE SAVED (Y/N)? ❑ "
2180 GET A$:IF A$="" GOT0 2180
2190 IF A$="N" THEN RETURN
2200 IF A$‹ >"Y" G0T0 2180
2210 G0SUB 3000:OPEN1,DV,1,NM$
2220 F0R C=0 TO 3
2230 MX = VAL(DL$(C,0))
2240 F0R N =0 TO MX
2250 PRINT #1,CHR$(34)+ DL$(C,N)+

CH R$(34)
2260 NEXT N,C:CLOSE 1:RETURN
2270 PP =1:0PEN 1,4:CMD1:RETURN
2280 IF PP =1 THEN PRINT# 1,

"I71":CLOSE 1
2290 PP= 0:RETURN
3000 NM$="": INPUT "FILE NAME";

,,NM$:IFNM$="" THEN 3000
3010 DV =1:INPUT "-(D)ISK OR (T)APE";

DV$:IF DV$="D" THEN DV =8
3020 PRINTTAB(13)"gggaPRESS ANY

KEY":P0KE 198,0:WAIT 198,1:
POKE 198,0

3030 PRINT "LT:RETURN

2260 DEF PR0Cprintdays(s%)
2270 LOCALd,c%,x%
2280 IF s%= 0 x%=7
2290 PRINTSPC(x%);
2300 FOR d= 0 TO 6
2310 IF d=0 c%=129 ELSE c%=134
2320 IF P%= 2 c%= 32
2330 PRINTCHR$c%+STRING$(s%,

"E") + MID$(DayName$,d*3 + 1,3);
2340 NEXT
2350 ENDPR0C
2360 DEF PR0Cprintmonth(type%,s%)
2370 L0CALmax%,xpos%,x%,w%,

a$,d$
2380 IF s%=1 a$=" ❑ ":w%=4
2390 IF s%= 0 x%= 7:w%= 3
2400 Day%=1
2410 max%= FNmonthL(Month%)
2420 xpos%=FNdayNo M0D7
2430 PRINTSPC(xpos%*(w%+ 1));
2440 Day%= 0
2450 REPEAT
2460 PRINTSPC(x%);
2470 REPEAT
2480 Day%= Day%+1:d$=a$+STR$

(Day:Xi) +"111":IF LENd$ < w%
d$=d$+" ❑ "
2490 PRINTCHR$(FNmarker

(type%));d$;
2500 xpos%= xpos%+ 1
2510 UNTIL xpos%> 6 0R Day%=max%
2520 xpos%=0:PRINT:IFs%=1 PRINT
2530 UNTIL Day%=max%
2540 IF Month%=Meast%:PRINT'

CHR$131;"Easter Sunday El ";
MID$(MonthName$,Meast%*
9 — 8,9);Deast%

2550 ENDPR0C
2560 DEF PR0Cdiary
2570 LOCALt%,max%,n%,a$,col%,

month%,year%
2580 VDU 14
2590 PROCmydate:PR0Cprinter:CLS
2600 PROCmyheader:PRINT
2610 PRINT"DAY";CHR$134;

SPC(5)"ENTRY"
2620 PROCspacebar
2630 IF Month%=Meast% PRINT;

Deast%;CHR$134;"Easter Sunday":
PRINT

2640 FOR t%= 0 T0 3
2650 col%=129+t%:IF t%=3 col%=133
2660 IF t%=2 THEN col%=132
2670 IF P%= 2 col%=32
2680 max%=VAL(List$(t%,0))
2690 IF max%= 0 GOT02740
2700 FOR n%=1 T0 max%
2710 a$ = List$(t%,n%)
2720 IF FNcheck(a$) =1 PRINTSTR$

(ASC(M13(a$,2,1)));"111111";
CHR$col%;RIGHT$(a$,LENa$— 4)

2730 NEXT
2740 PRINT:IF P%=0 a$=GET$
2750 NEXT
2760 VDU3:a$= GET$
2770 VDU 15
2780 ENDPROC
2790 DEF PROCspacebar
2800 VDU3,31,4,24,132,157,135:

PRINT"Any Key to continue
❑ ";:VDU156,28,0,23,39,5,P%

2810 ENDPROC
2820 DEF PROCprinter
2830 PRINT"Vould you like a printout

(Y/N)?":IF FNget("YN") =1 P%=2 ELSE
P%=0

2840 ENDPROC
2850 DEF PROCmydate
2860 Month%= FNnoln(1,12,"Month:")
2870 Year%= FNnoln(1753,3299,

"DYear")
2880 PROCeaster
2890 ENDPROC
2900 DEF PROCmyheader
2910 PRINTF$;MID$(MonthName$,

Month%*9 — 8,9);" ❑ ";Year%;
TAB(30)CHR$156

2920 VDUP%:PRINTF$;MID$(Month
Name$,Month%*9 — 8,9);"111";
Year%;TAB (30)CH R$156

2930 ENDPROC

M
2240 'PRINTMONTH —T2 —S2
2250 M5 =0:XP = 0:X2= 0:W2= 0:

A2$=":D2$=""
2260 IF S2=1 THEN A2$ = "0":W2 = 4
2270 IF S2=0 THEN X2 =7:W2= 3
2280 IF P=2 THEN A2$=A2$+" ❑ ":

W2 = W2 + 1
2290 DA =1
2300 KB= MO:GOSUB 230:M5=KB
2310 GOSUB 560:K2 =7:XP= FNM(KB)
2320 PRINT # — P,STRINGVXP*(W2),32);
2330 DA =0
2340 REM
2350 PRINT # — P,STRING$(X2,"0");
2360 REM
2370 DA= DA + 1:D2$ = A2$ MID$

(STR$(DA),2)+" ❑ ":IF LEN (D2$) <W2
THEN D2$= D2$ + "D"

2380 IF A2$ = "" THEN PRINT# —P,D2$;:
GOTO 2400

2390 KB =T2:GOSUB 310:MID$
(D2$,1,1)=CHR$(KB):PRINT# — P,D2$;

2400 XP= XP+1
2410 IF NOT (XP > 6 OR DA= M5) THEN

2360
2420 XP=0:PRINT# —P:IF S2=1 THEN

PRINT# —P

2430 IF DA< > M5 THEN 2340
2440 IF MO= ME THEN PRINT# —P:PRINT

—P,"EASTER SUNDAY ❑ ";MID$(MN$,
8,9);DE

2450 RETURN
2460 'DIARY ROUTINE
2470 T2 =0:MX= 0:N2= 0:A$ = "":

CL =0:M9 = MO:Y9 = YR
2480 GOSUB 2750:GOSUB 2720:CLS
2490 GOSUB 2820:PRINT# —P
2500 PRINT# —P,"DAYD ❑ D ❑ D

ENTRY"
2510 GOSUB 2660
2520 IF MO= ME THEN PRINT# —P,DE;

"EASTER SUNDAY":PRINT# —P
2530 FOR T2=0 TO 3
2540 CL =159 + 1672
2550 IF P=2 THEN CL = 32
2560 MX = VAL(L3(T2,0))
2570 IF MX=0 THEN 2620
2580 FOR N2=1 TO MX
2590 A$= LI$(T2,N2)
2600 KB$=A$:GOSUB 470: IF K2=1 THEN

PRINT # — P,MID$(STR$(ASC(MID$
(A$,2,1))),2);TAB(3);CHR$(CL);RIGHT$
(A$,LEN(A$) — 4)

2610 NEXT: PRINT # —1
2620 IF P=0 ANDINKEY$=""THEN 2620
2630 NEXT
2640 IF INKEY$=""THEN 2640
2650 MO = M9:YR=Y9:RETURN
2660 'WAIT FOR KEY
2670 P1 = PEEK(136):P2 = PEEK(137)
2680 PRINT@480,"ANY KEY TO CONTINUE";
2690 IF INKEY$="" THEN 2690
2700 PRINT@480,STRING$(30,32);:

POKE 136,P1:POKE 137,P2
2710 RETURN
2720 'OFFER PRINTOUT
2730 PRINT:PRINT"WOULD YOU LIKE A

PRINTOUT (Y/N)":KB$="YN":
GOSUB 1590:IF KB =1 THEN P=2

2740 RETURN
2750 'MY DATE ROUTINE
2760 INPUT "MONTH:";MO
2770 IF MO <1 OR MO >12 THEN 2760
2780 INPUT "111YEAR:";YR
2790 IF YR <1753 OR YR > 29999 THEN 2780
2800 GOSUB 650
2810 RETURN
2820 'MY HEADER ROUTINE
2830 PRINTMID$(MN$,M0 * 9-8,9);" ❑ ";YR
2840 IF P=2 THEN PRINT # —2,MID$

(MN$,MO*9 — 8,9);" ❑ ❑ ";YR
2850 RETURN

CHANGES FOR DISK
Here are the changes to make to the main
program to use it with a disk drive, (the
Commodore program can already be used
with disk or tape):

a
1610 CLS : INPUT "Which drive ? ";dry
1620 INPUT "Enter today's date ";b$
1625 SAVE *"M";1;"C."+ B$ DATA QO
1630 OPEN #4;"m";1;"D."+ b$
1660 FOR M=1 TO Q(N): PRINT

#4;L$(N,M): NEXT M
1675 CLOSE #4
1690 CLS : INPUT "Which drive ?";dry
1700 CAT drv: INPUT "Enter name of file

counter (pre-fixed C.) ";b$
1705 LOAD * "m";drv;b$ DATA 00
1707 INPUT "Enter name of file required

(prefixed D.) ";b$: OPEN #4;"m";drv;b$
1730 FOR M=1 TO Q(N): INPUT

#4;L$(N,M);: NEXT M
1745 CLOSE #4

Simply delete Line 22

M Ii
Delete Line 1890 then add:

1750 CREATE"DIARY"
1780 FWRITE"DIARY";LI$(N,0)
1810 FOR J=1 TO 4:FWRITE"DIARY";STR$

(ASC(MID$(L1$(N,P),J,1))):NEXTJ
1820 FWRITE"DIARY";MID$(LI$(N,P),5)
1850 CLOSE
1910 FLREAD"DIARY";LI$(N,0)
1950 FORJ =1 T04:FREAD"DIARY";NN$:

PRINTNN$:LI$(N,P) = LI$(N,P) +CHR$
(VAL(NN$)):NEXTJ

1960 FLREAD"DIARY";NN$:L3(N,P)=LI$
(N,P)+ NN$

1990 CLOSE

CHANGES FOR THE ELECTRON
As the program for the BBC is written in
Mode 7, and uses teletext control codes for
colour and double-height characters you'll
need to make a few changes before it will RUN
on the Electron. You'll need to delete Lines
1080, 1090, 1110 and 1130 and alter the
following:

10 MODE6
140 MODE6:C%= FNmenu:MODE6
1120 PRINT:PRINT
1150 PRINT
1440 PRINT F$+Type$(t%)
2150 PRINT
2485 JM%= FNmarker(type%):IF

JM%< >135 FOR type%< >5
THEN COLOUR0:COLOUR129 ELSE
COLOUR1:COLOUR128

2490 PRINTCHR$(JM%);d$;
2535 COLOUR1:COLOUR128
2910 PRINT

Find out how to make the most of
the Teletext mode on the BBC and
how to put together the graphics
shapes to create a complete and
colourful screen picture

The real advantage of using the Teletext
mode on the BBC is that it uses so little
memory* Computers that have good graphics
facilities usually need a lot of memory for the
screen display* In the case of the BBC this
varies from 8K to 20K* But the Teletext
mode—mode 7—takes only 1K! In fact it uses
exactly 1000 bytes because the screen is
divided into 25 lines of 40 characters and the
characters, whether text or graphics, take up
only one byte each* The graphics are quite
`chunky', but with a little skill you can create
quite complex and detailed pictures.

The reason the characters take up so little
memory is because they are generated by a
special Teletext chip. So all the information
about the way the character is drawn on the
screen is stored in this chip rather than in the
computer's RAM. All the RAM needs to do is
to store the character's ASCII code which is
then sent on to the Teletext chip*

The Teletext letters, numbers, punctu-
ation and most of the symbols have the same
ASCII codes as characters in the other modes.
But whereas the other modes leave 128 ASCII
codes undefined (so they can be used for
UDGs), the Teletext mode uses some of these
codes for graphics characters such as the
shape and others as extra control codes to
change colour. In fact it uses the set of 256
possible ASCII codes very efficiently to form
a combined coloured text and graphics system
used on television's Ceefax, 4-Tel and Oracle
as well as electronic networks.

GRAPHICS AND ASCII CODES
The first program prints out all the graphics
characters along with their ASCII codes, so
you can see what's available:

10 MODE7
20 @%=3
30 PRINT"`ASCII Code followed by graphics

shape"
40 PRINT
50 FOR N =0 TO 15
60 FOR NN =0 TO 5
70 C=160+N*6+NN
80 PR1NTCHR$134,C,CHR$147+CHR$C;
90 NEXT
100 PRINT
110 NEXT
120 @%=&90A
130 END

Line 20 sets the field width to three columns
so all the codes and graphics fit closely
together on the screen. Lines 50 to 70 step
through the relevant codes* The calculation is
arranged to print out 16 rows of 6 columns.
The codes go from 160 to 255.

If you look at Line 80 you'll see there are
four items being printed* The first is a control
code (134) to print out cyan coloured text, the
second prints out the code number, the third
sets it in yellow graphics (code 147) and the
last prints the graphics or text character
corresponding to the code number* Here are
the essentials of a Teletext mode line* It is
multi-coloured with mixed text and graphics,
plus control codes (that print as spaces) and
yet it uses only a few bytes of memory.

COLOUR CODES
In the last program the control codes 134 and
147 produced the colours in the display.

There are separate codes to colour text and
graphics and the whole list of these codes is
shown below:

Colour 	Graphics 	Text
red 	145 	129
green 	146 	130
yellow 	147 	131
blue 	148 	132
magenta 	149 	133
cyan 	150 	134
white 	151 	135

Try substituting different codes in the
program, replacing the numbers 134 and 147
with any of the numbers above and see what
effect they have.

GRAPHICS SHAPES
If you have a close look at the graphics shapes
you'll see they are based on a 2 by 3 grid. This
gives an overall graphics resolution of 2 pixels
by 40 columns (80 across) and 3 pixels by 25
lines (75 deep). These 'chunky' graphics are
suitable for nearly all applications except for
line drawings.

As there are 64 different combinations of
pixels on a 2 by 3 grid it can be rather difficult
to find out the code of a particular shape from
the list in the manual* Fortunately, it is simple
to calculate the code for any symbol. It is
simply a matter of using the master grid
pattern where each cell of the grid represents a
number. Just compare the shape to the grid
and add up the numbers, plus a final 160*
Have a look at the diagram below to see what
the numbers are, and how to add them up.

PICTURES IN A STRING
To print a shape on the screen just type PRINT
CHR$ followed by its number. However,
you'll usually want a picture to extend over

1* The diagram, right, shows how to
work out the code number for any de-
sired shape* The screen above shows the
entire range of shapes and codes

1 	2

4 	8 	@ 	Code: 1+4+8+64+160 = 237

16 	64

pixel grid 	desired shape

ASCII CODES AND TELETEXT
CONTROL CODES

GRAPHICS SHAPES
CREATING A PICTURE

ADDING COLOUR

SPECIAL EFFECTS
DIRECT ENTRY GRAPHICS

PICTURES FROM DATA
STATEMENTS

DIRECT ENTRY CODES

several lines on the screen and there is a bit of
skill involved in positioning the characters in
the correct place. Type in and RUN the next
program to see one way in which this can be
done:

10 MODE7
20 PRINTCHR$145+CHR$160+CHR$240+

CHR$252+CHR$252+CHR$180
30 PRINTCHR$145+CHR$232+CHR$255+

CHR$255+CHR$241+CHR$255
40 PRINTCHR$145+CHR$234+CHR$255+

CHR$255+CHR$239+CHR$239
50 PRINTCHR$145 + CHR$170+ CHR$255 +

CHR$255+CHR$240+CHR$252+CHR$
172 + CHR$247 + CHR$243

60 PRINTCHR$145 + CHR$160 + CHR$163 +
CHR$175 + CH R$167 + CHR$163

In this program each line is printed out
separately, one underneath the other. How-
ever, this is not a very useful way of storing a
picture. It is far better to join it into a single
string as shown in the next few lines:

70 A$ = CHR$145 +CHR$160+CHR$240+
CH R$252 + CH R$252 + CH R$180

80 B$=CHR$145+CHR$232+CHR$255+
CHR$255+CHR$241+CHR$255

90 C$=CHR$145+CHR$234+CHR$255+
CHR$255+CHR$239+CHR$239

100 D$= CHR$145 + CHR$170+ CHR$
255 + CHR$255 + CHR$240+ CHR$252 +
CHR$172 + CH R$247 + CH R$243

110 E$=CHR$145+CHR$160+CHR$
163 +CHR$175+ CHR$167 + CHR$163

120 NL$=CHR$10+STRING$(6,CHR$8)
130 X$=A$+NL$+B$+NL$+C$+

NL$+D$+ NL$+STRING$(3,CHR$8)+
E$

140 PRINTTAB(10,15)X$
150 PRINTTAB(25,7)X$

This time each line is assigned to a single
string and these are all added together in Line
130. Notice that ordinary control codes are
used in this line to move the cursor down one
line (CHR$ 10) and backspace (CHR$ 8). The
whole picture can then be printed anywhere
on the screen using PRINTTAB as shown in
Lines 140 and 150.

BACKGROUND COLOUR
Now have a look at altering the background
colour. The control code to do this is 157, and
you have to precede it with the colour you
would like. For example, the two codes
CH R$131 + CHR$157 would make the rest of
the line it is printed on have a yellow
background. You need to print the codes at
the start of every line you want to change but
this can easily be carried out using a FOR ...
NEXT loop. Add the next few lines to the
program to create a yellow area between rows
12 to 20 and columns 12 to the end of the line:

160 CLS
170 FOR Y=12 T020
180 PRINTTAB(12,Y)CHR$131 + CHR$157

190 NEXT

This can be repeated anywhere on the screen,
including colouring the whole screen as
shown by Lines 200 to 220:

200 FOR Y=0 TO 24
210 PRINTTAB(0,Y)CHR$130+CHR$157
220 NEXT
230 FOR Y=3 TO 8
240 PRINTTAB(8,Y)CHR$132 + CHR$157
250 PRINTTAB(25,Y)CHR$130+CHR$157
260 NEXT

Lines 230 to 260 print codes for blue and
background in positions 8 and 9 of each line,
followed by codes for green and background

at positions 25 and 26. This causes a blue box
to be printed inside the green background.
The cursor ends up on a line underneath the
blue box.

SCREEN LAYOUT
Now that there are a few things on the screen,
have a close look at just one line. Line 5 (the
sixth line on the screen because the initial line
is 0) is 40 columns long, numbered from 0 to
39. Fig. 2 shows the codes that are on the
screen. The first appears as a space, and the
other five are hidden in the line. In fact one of
the things to be careful about when using
Teletext is not to alter or remove any codes
inadvertently, such as might happen if you
print any text on the screen. The default
colours are always white text on a black
background.

SPECIAL EFFECTS
There are a series of other control codes in
addition to the colour codes, that control

2. The diagram shows all the control
codes in line 5 of the screen picture
above. Only the first one appears as a
gap, the other five are hidden

some of the special effects. They are listed
below:

Code Effect
136 	Makes rest of line flash (foreground

only)
137 	Turns flash off
140 	Gives normal height text or

graphics
141 	Gives double height text or

graphics
152 	Hides rest of line until colour

change
153 	Joins graphics pixels
154 	Separates graphics pixels
156 	Turns background to black
157 	Turns background coloured
158 	Holds graphics
159 	Releases graphics

There are other code numbers between 128
and 159 but they have no effect.

HOLD GRAPHICS
The next few program lines demonstrate the
difference between hold graphics and release
graphics. Key in Line 270 first, adding it to
the program already in memory:

270 PRINTTAB(12,3)X$

This prints the graphics picture created ear-
lier. To liven it up a little it could perhaps
have a white tongue, easily managed by
putting CHR$151 for white graphics in the
correct position.

The next line does this for you:

280 PRINTTAB(15,6)CHR$151

But the control character leaves a hole in the
picture. This is where the hold graphics code
158 comes in. If this code is present at some
earlier position on the line (and not cancelled
by a following release graphics code) then,
whenever there would normally be a hole, the
previous character is copied into the hole. See
it in action in the next line:

290 PRINTTAB(11,6)CHR$158

A picture can often look more effective if
separated graphics are used, causing each
individual pixel to be surrounded by back-
ground colour. The next few lines show how

the little alien looks when printed in separated
graphics:

300 PRINTTAB(18,12)X$
310 FOR Y=12 TO 18:PRINTTAB(17,Y)CHR$

154: N EXT

The effect can be turned off on any line by
using code 153.

HIDDEN TEXT
Another special effect is the ability to hide
something printed on the screen. An appa-
rently blank screen could thus be full of
information! Try the next section of program,
as before, add it to the program already in the
computer:

320 PRINTTAB(26,13)CHR$132 + " ❑ Hello"
330 PRINTTAB(27,13)CHR$152

In Line 330, code 152 is put on the screen just
before the message and it will cause invisible
printing until the end of the line or a colour
change. To counteract it, some other code has
to be inserted—such as a code that does
nothing, like 155:

340 PRINTTAB(27,13)CHR$155

DOUBLE HEIGHT
Double height printing is particularly useful
for headings. The code to use is 141, but the
point to note is that the code along with the
text has to be repeated twice, one on each of
the two lines needed for the double height.
Lines 350 and 360 print the word 'Title' in
double height characters, and in the colour
magenta:

350 PRINTTAB(4,1)CHR$133 + CHR$141 +
"Title"

360 PRINTTAB(4,2)CHR$133 + CHR$141 +
"Title"

FLASHING
A final effect is the flash code 136. Putting this
code in front of either text or graphics causes
it to flash on and off until cancelled by code
137. Add these last three lines to the program:

370 PRINTTAB(3,1)CHR$136
380 PRINTTAB (3,2)CH R$136
390 PRINTTAB(4,23)

A TELETEXT PAGE
Now that the basic theory has been
covered have a look at preparing a Tele-
text page either as a title page for a game
or program, or for transmission along a
telephone line to another computer.

DIRECT ENTRY GRAPHICS
There are several methods of entering
graphics symbols other than using CHR$
for each character. One is to use the
keyboard keys direct. Try this:

PRINT CHR$149+"abc"

You will notice that instead of the letters
"abc" you get graphics characters. What is
happening is that the control code 149 puts
the whole of the line into magenta graphics
mode, so that the computer assumes that
graphics characters are following. It does not
test it. Consequently, because the difference
between the ordinary ASCII letters and the
Teletext graphics is 128, instead of printing
"a" which has ASCII value 64 it actually
prints the Teletext character 64 + 128. So you
can fool the computer into accepting ordinary
keyboard input which it turns into a picture
for you. This method does not always succeed
since one character does not perform this
trick: the #, but it can be entered using
CHR$. Type in the following lines to see how
the method works, it prints the word INPUT
in large letters at the top of the screen.

10 MODE7
20 A$=CHR$132+CHR$157+ CHR$151
30 PRINTA$+"„$„$171 ❑ („(„„ 	„$(„(,

3533

40 PRINTA$ + "cs!cscp ❑ — `s3""s3fcq
"s3b3csEs"

50 PRINTA$+"(,0(,E,$171,$171,$171111,$(,
0111,$111 ❑ GO Ill"

60 PRINTA$+"bsIllbs111 —s0s1111sqprf ❑ bs
111111s1111111bs0

70 PRINTA$+"(,C1(,111111(„$111„,E ❑
❑ C ❑❑ ,$ ❑❑ (, ❑❑ "

80 PRINTA$ + "rs0rs0 ❑ OW" + CHR$
224 +"sq1111110 ❑ Elcqr3E111111Irs0
❑ >,

90 PRINTA$+"„$„$1111110,$(„
❑ ❑❑❑❑❑ „ ❑❑❑❑ „$"

The listing looks quite strange but is
actually simple. What is happening is 	_
that Line 20 is a string to make the back-
ground colour blue, and set the rest of the line
to white graphics. It is put in front of each of
the strings that follow (Lines 30 to 90) so that
the letters are translated as graphics charac-
ters. Occasionally, because of the awkward

character, the full version of the character has
to be input with CH R$ as shown in Line 80.
Also, a double quote mark has to be entered
twice for the program to recognize it.

If you do not get a nice recognizable blue
and white picture when you RUN this it is
because you have mis-typed the rather incom-
prehensible strings, which is very easy to do.

DATA STATEMENT PICTURES
A surer method of entering graphics charac-
ters is to use the totals obtained by adding up
the pixel numbers, as explained earlier and
putting the numbers into DATA statements.
You then let the computer add on the 160 and
form the strings itself. Type in and RUN the
next section:

100 DIM C$(10)
110 FOR N = 1 TO 5
120 COL=145+N
130 B$=CHR$10+STRING$(4,CHR$8)+

CHR$(COL)
140 C$(N)=CHR$(COL)
150 FOR L=1 TO 4
160 FOR P=1 TO 3
170 READ C
180 C$(N)= C$(N) +CHR$(C +160)
190 NEXT
200 IF L<4 C$(N)=C$(N)+B$
210 NEXT
220 C$(N)=C$(N)+CHR$11+CHR$11

230 NEXT
240 PRINT"` 111"+ C$(1);C$(2);C$(4);C$(2);

C$(5);C$(2);C$(3);C$(5)
250 DATA 88,92,92,0,95,0,0,95,0,0,11,4
260 DATA 0,0,0,88,92,92,95,12,15,11,12,12
270 DATA 0,0,0,84,0,88,66,79,17,7,0,11
280 DATA 80,16,0,74,21,0,74,21,0,2,13,0
290 DATA 64,0,0,78,31,0,74,21,0,2,13,0

These lines print the word 'teletext' at an
angle on the screen. The word is made up of
five sections, each made of four rows of three
columns plus a graphics control character at
the start of each row. The shape of the
graphics really needs to be planned out on
graph paper or on a grid to make up the shape
of the letters.

The actual strings for each section are
stored in the string array by Line 100. Lines
120 to 220 read the DATA for each section and
convert it into a string. B$ helps by control-
ling the position of the cursor, taking it down
one line and back-spacing four places, and
then adding on the graphics colour control
code COL. COL is altered for each section so
the letters are printed in different colours.
This is repeated for each picture by the loop
in Lines 110 and 230.

All that remains is to print out the sections
in the right order. Line 220 adds two cursor-
up controls—CH R$ 11— to the end of each
string. The Line 240 prints out each of the
strings. An initial space is put in for a control
code to be added later (see below). All in all,
this is a rather complicated procedure—but it

does save a lot of work in turning the pixel
patterns into a string.

The next three lines add the extra control
code at the start of each line to complete this
part of the picture:

300 FOR Y=8 TO 20
310 PRINTTAB(0,Y)CHR$154
320 NEXT

HIDDEN MESSAGES
First add these lines to the program. They
print the word 'Message' in double height
characters on a coloured background:

330 PRINTTAB(0,21)CHR$129 + CHR$157 +
CHR$135+ CHR$141 + "Message:"

340 PRINTCHR$132+CHR$157+CHR$
135+ CHR$141 + "Message:" + CHR$11;

The last part of the Teletext screen layout
shows yet another method of putting the
codes on the screen using the VDU command.
Again, the actual codes are contained in the
DATA statement:

350 FOR P=1 TO 25
360 READ C
370 VDU C,10,8,C,11
380 NEXT
390 PRINT'
400 DATA 145,158,232,233,161,146,247,229,

236,236,147,228,239,238,229,174,149,152,
201,207,213,177,135,136,63

The code C is READ and then put on the screen
twice, one above the other. It prints out a
secret message. See if you can decode it*

TRANSMISSION OF TELETEXT
Now that you have a teletext page, all that is
needed is a modem, a telephone, a small
amount of software and something at the
other end of the line to receive it* This multi-
coloured complex picture could then be sent
in just 1000 bytes of information; a re-
markable achievement for such a simple code.

DIRECT ENTRY CONTROL CODES
The final part of this article shows a shorter
method of putting the control codes onto the
screen. So far you've used CHR$ and VDU for
the codes and direct keyboard entry for the
actual characters themselves. But the control
codes 128 to 159 can also be entered directly.
One minor problem is that all you can see
after their entry is another space on the
screen! It is only the effect upon the following
characters on the line that will show if you
have chosen the correct keyboard sequence.

The method is to use the red function keys
in combination with the !SHIFT! and CTRL
keys* The function keys produce a value that
is added to 128 if the 'SHIFT! key is pressed at
the same time; added to 140 with the !CTRL
key and added to 150 if both !SHIFT! and 'CTRL
keys are pressed simultaneously. Thus if f6
and !CTRL! are pressed together, then code
140 + 6 is sent to the screen which is Teletext

code green graphics. There is one minor snag!
These work perfectly well until both 'SHIFT!
and !CTRL! are used together, when nothing
will happen* This particular combination
needs setting up each time the computer is
turned on or after !BREAK! has been pressed.
The relevant command is to type in
*FX228,150 and * FX227,140. This sets the base

Direct entry control codes

Function 	 SHIF150*
Key No. 	 'SHIFT 	 CTRL 	 ICTRL
MI 	 Nothing 	 Norm

below*

phics
Height 	 Cyan

fl 	 Text 	 Double 	 Graphics
Red 	 Height 	 White

f2 	 Text 	 Nothing 	 Conceal
Green 	 Display

f3 	 Text 	 Nothing 	Joined
Yellow 	 Pixels

f4 	 Text 	 Nothing 	Separated
Blue 	 Pixels

f5 	 Text 	 Graphics 	Nothing
Magenta 	Red

f6 	 Text 	 Graphics 	Bla

No*

Cyan 	 Green 	 Background

f7 	 Text 	 Graphics 	New
White 	 Yellow 	 Background

f8 	 Flash 	 Graphics 	Hold
Blue 	 Graphics

f9 	 Steady 	 Graphics 	Release
Magenta 	 Graphics

number for the !SHIFT! !CTRL! option to 150.
The entire list of possibilities is shown below.

Now try creating a picture by typing in
both the control codes and graphics charac-
ters in direct mode. It is a difficult thing to do
unless you plan it out very carefully first.

Release the hold on your Fruit
Machine and try to hit the jackpot
with the second half of the program.
The payout's 20 times as much as
your stake!

In this second part of the Fruit Machine
article, you'll complete the program, and the
machine will be ready to play.

a
HOLD ON TO YOUR HATS

190 LET HOLD = 0
200 LET TOTAL =TOTAL-10: GOSUB 750:

IF TOTAL < 0 THEN GOTO 770: LET
NUDGE = 0: PRINT AT 13,26; INK
2 :" ■■•ii"

210 IF HFLAG = 0 THEN LET HOLD = 0
220 FOR 1=1 TO 3: FOR J=1 TO 12: BEEP

.001,60
230 IF HOLD = 0 THEN PRINT AT7,10;4(J);

AT 7,15;B$(J);AT 7,20;C$(J);AT 10,10;A$
(J +1);AT 10,15;B$(J +1);AT 10,20;C$
(J + 1);AT 13,10;A$(J +2);AT 13,15;B$
(J + 2);AT 13,20;C$(+2): NEXT J: NEXT I

240 IF HOLD =1 THEN PRINT AT 7,15;B$(J);
AT 7,20;C$(J);AT 10,15;B$(J +1);AT 10,
20;C$(J +1);AT 13,15;B$(J+2);AT
13,20;C$(.1+2):NEXTJ: NEXTI

250 IF HOLD =4 THEN PRINT AT 7,20; A$
(J); AT 10,20; B$(J); AT 13,20; C$(J):
NEXT J: NEXT I

260IF HOLD =6 THEN PRINT AT 7,15;B$0);
AT 10,15;B$(J +1);AT 13,15;B$P + 2):
NEXT J: NEXT I

270IF HOLD =2 THEN PRINT AT 7,10;4(J);
AT 7,20;C$(J);AT 10,10;A$(J+1);AT 10,
20;C$(J +1);AT 13,10;4(J + 2);AT
13,20;C$P + 2): NEXTJ: NEXT I

280 IF HOLD = 5 THEN PRINT AT 7,10;A$
(J);AT 10,10;4(J +1);AT 13,10;
A$(J + 2): NEXT J: NEXT I

290IF HOLD =3 THEN PRINT AT 7,10;4());
AT 7,15;B$(J);AT 10,10;4(J + 1);AT 10,
15;B$(J +1);AT 13,10;4(J +2);AT 13,
15;B$P +2): NEXT J: NEXT I

300 IF HOLD< >1 AND HOLD< >4 AND

HOLD< >6 THEN LET M=INT (RND*12):
IF M=0 THEN LET M=1

310 IF HOLD< >2 AND HOLD< >5 AND
HOLD< >4 THEN LET K= INT (RND*12):
IF K=0 THEN LET K=1

320 IF HOLD< >3 AND HOLD< >5 AND
HOLD< >6 THEN LET L=INT (RND*12):
IF L=0 THEN LET L=1

330 LET HOLD = 0
340 PRINT AT 7,10;A$(M);AT 7,15;B$(K);AT

7,20;C$(1-);AT 10,10;A$(M +1);AT 10,15;
B$(K+1);AT 10,20;ML +1);AT
13,10;A$(M +2);AT 13,15;B$(K+2);AT
13,20;C$(L +2)

Line 190 sets the HOLD variable to zero. The
routine looks for the value of HOLD-
determined by the key pressed by the
player-and spins the free reels.

After the reels have been spun, HOLD is
reset to zero in Line 330-the hold buttons
are cleared-and the reels are PRINTed in their
stopped position in Line 340.

REEL FRUIT

350 GOSUB 600
600 LET T$=A$(M)+13$(K)+ C$(L)
610 LET M$=A$(M+1)+B$(K+1)+

C$(L+1)
620 LET L$=A$(M + 2) + B$(K + 2) + C$(L +
630 IF M$ (TO 4) = C$(1) AND M$ (TO 4)

= M$ (5 TO 8) AND M$ (TO 4) = M$
(9 TO) THEN LET TOTAL =TOTAL +100:
GOSUB 750: GOSUB 760: GOTO 380

640 IF M$ (TO 4) = C$ (3) AND M$ (TO 4)
= M$ (5 TO 8) AND M$ (TO 4) = M$
(9 TO) THEN LET TOTAL= TOTAL + 100:
GOSUB 750: GOSUB 760: GOTO 380

650 IF M$ (TO 4) =C$ (9) AND M$ (TO
4) = M$ (5 TO 8) AND M$ (TO 4) = M$
(9 TO) THEN LET TOTAL = TOTAL + 50:

GOSUB 750: GOSUB 760: GOTO 380
660 IF M$ (TO 4) = C$(2) AND M$ (TO

4) = M$ (5 TO 8) AND M$ (TO 4) = M$
(9 TO) THEN LET TOTAL= TOTAL + 50:
GOSUB 760: GOSUB 750: GOTO 380

670 IF M$ (TO 4) = C$ (6) AND M$(TO
4) = M$ (5 TO 8) AND M$ (TO 4) = M$
(9 TO) THEN LET TOTAL =TOTAL +50:
GOSUB 750: GOSUB 760: GOTO 380

680 IF M$ (TO 4) = C$(5) AND M$ (TO
4) = M$ (5 TO 8) AND M$ (TO 4) = M$
(9 TO) THEN LET TOTAL = TOTAL + 50:
GOSUB 750: GOSUB 760: GOTO 380

690 IF M$ (TO 4) = C$ (4) AND M$ (TO
4) = M$ (5 TO 8) AND M$ (TO 4) = M$
(9 TO) THEN LET TOTAL= TOTAL + 500:
GOTO 820

700 IF M$ (TO 4) =C$ (5) AND M$ (T0
4) = M$ (5 TO 8) AND M$ (9 TO)
< >C$ (5) THEN LET

TOTAL= TOTAL + 20: GOSUB 750:
GOSUB 760: GOTO 380

710 IF M$ (T0 4) = C$(5) AND M$(5 TO
8) < > C$(5) THEN LET
TOTAL = TOTAL +10: GOSUB 750:
GOSUB 760: GOTO 380

720 IF M$ (TO 4) = C$(4) AND M$ (TO
4) = M$(5 TO 8) AND M$(TO
4) < > M$(9 TO) THEN GOSUB 760:
GOTO 380

730 IF M$ (TO 4) = C$(4) AND M$ (TO
4) < > M$(5 TO 8) THEN GOSUB 760:

) GOTO 380
740 IF M$(5 TO 8) = C$(4) AND M$(5 TO

8) < > M$(9 TO) THEN GOSUB 760:
GOTO 380

750 LET DD = INT (TOTAL/100): LET
CC= TOTAL - (DD*100): PRINT INK 2;
PAPER 6; AT 17,0; "f El"; AT 180; "PEI";
PAPER 7; BRIGHT 1; AT 17,1; "El";
DD;AT 18,1;" ❑ "; CC: RETURN

760 LET HFLAG=0: LET HOLD = 0: LET
NUDGE = 0: FOR 1=9 TO 19 STEP 5:
PRINT AT 16,1) INK 2; "MENU":

COMPLETE YOUR FRUIT
MACHINE

THE MAIN LOOP
SPINNING THE REELS

CHECKING FOR WINNING LINES

ADJUSTING THE CREDIT
FLASHING HOLDS, NUDGES

AND GAMBLES
PRESSING THE BUTTONS

SOUND EFFECTS

NEXT I: PRINT AT 13,26; INK 2;
".11/..": RETURN

Line 350 jumps to the subroutine starting at
Line 600, which puts the three rows that are
being displayed on the reels into three
strings—T$, M$ and L$. The middle string,
M$, is the line from which the score is

calculated in the subroutine starting at Line
630. The routine checks if there are any
winning lines, and adds the winnings to the
player's total.

GIVING IT THE NUDGE
360 IF M<7 OR K=L OR L>2 THEN LET

NUDGE =1: PRINT BRIGHT 1; PAPER 7;

INK 2;AT 13,26;"NUDGE"
370 LET HFLAG = INT (RND +.5): IF

HFLAG =1 THEN FOR 1=9 TO 19 STEP 5:
PRINT AT 16,1; INK 6; BRIGHT 1;"HOLD":
NEXT I

380 LET 1$ =1NKEY$: IF 1$ ="" THEN GOTO
380

390 IF 1$ ="0" THEN FOR 1=9T0 19
STEP 5: PRINT INK 2;AT 16,1;
"M. N.": NEXT I: GOTO 200

400 IF 1$ ="E" AND NUDGE=1 THEN
GOSUB 520: LET NUDGE=0: PRINT AT
13,26; INK 2; ".1111/1111111": BEEP .1,
30: GOSUB 600: LET RN = INT (RND*10):
IF INT (RN/2) = RN/2 AND HFLAG < >1
THEN LET NUDGE=1: PRINT AT 13,26;
IN7; BRIGHT 1; "NUDGE": GOTO 380

410 IF 1$="Q" AND NUDGE=1 THEN
GOSUB 480: LET NUDGE=0: PRINT AT
13,26; INK 2; "MEM/ M": BEEP .1,
30: GOSUB 600: LET RN=INT (RND*10):
IF INT (RN/2) = RN/2 AND RN <3 THEN
LET NUDGE=1: PRINT AT 13,26; INK 7;
BRIGHT 1;"NUDGE": GOTO 380

420 IF 1$ ="W" AND NUDGE=1 THEN
GOSUB 500: LET NUDGE=0: PRINT AT
13,26; INK 2; "MEMINNI": BEEP .1,
30: GOSUB 600: G0T0 380

430 IF 1$ ="D" AND NUDGE=1 THEN
GOSUB 540. LET NUDGE =0: PRINT AT
13,26; INK 2; "../11/": BEEP .1,
30: GOSUB 600 LET RN=INT (RND*10):
IF INT (RN/2) < >RN/2 THEN LET
NUDGE=1: PRINT AT 13,26; INK 7;
BRIGHT 1;"NUDGE": GOTO 380

440 IF 1$ ="S" AND NUDGE=1 THEN
GOSUB 580: LET NUDGE=0: PRINT AT
13,26; INK 2;11/...": BEEP .1,
30: GOSUB 600: LET RN=INT (RND*10):
IF INT (RN/2) = RN/2 THEN LET
NUDGE=1: PRINT AT 13,26; INK 7;
BRIGHT 1;"NUDGE": GOTO 380

450 IF 1$ ="A" AND NUDGE=1 THEN

GOSUB 560: LET NUDGE = 0: PRINT AT
13,26; INK 2; "EMMEN": BEEP .1,
30: GOSUB 600: LET RN = INT (RND*10):
IF INT (RN/2)< >RN/2 AND RN >6
THEN LET NUDGE = 1: PRINT AT 13,26;
INK 7; BRIGHT 1;"NUDGE": GOTO 380

460 IF HFLAG =1 AND I$="1" OR 1$ ="2"
OR 1$ = "3" OR 1$ ="4" OR 1$ ="5" OR
1$ = "6" THEN LET HOLD =VAL 1$: FOR
1=9 TO 19 STEP 5: PRINT AT 16,1; INK 2;
"...EN": NEXT I: GOTO 200

470 GOTO 380
480 LET M=M +1: IF M>12 THEN LET

M=M -12
490 PRINT AT 7,10;A$(M);AT

10,10;A$(M + 1);AT 13,10;A$(M + 2):
RETURN

500 LET K=K+1: IF K>12 THEN LET
K = K-12

510 PRINT AT 7,15;B$(K);AT
10,15;B$(K+1);AT 13,15;B$(K+2):
RETURN

520 LET L=L+1: IF L>12 THEN LET
L= L-12

530 PRINT AT 7,20;C$(L);AT
10,20;C$(L + 1);AT 13,20;C$(L+2):
RETURN

540 LET L= L-1: IF L<1 THEN LET
L=L+12

550 PRINT AT 7,20;C$(L);AT
10,20;C$(L+1);AT 13,20;C$(L + 2):
RETURN

560 LET M=M -1: IF M<1 THEN LET
M=M+12

570 PRINT AT 7,10;A$(M);AT
10,10;A$(M +1);AT 13,10;A$(M +2):
RETURN

580 LET K = K -1: IF K<1 THEN LET
K=K+12

590 PRINT AT 7,15;B$(K);AT
10,15;B$(K+1);AT 13,15;B$(K+ 2):
RETURN

The nudge routine is very similar to the hold
routine. Reels are moved up or down accord-
ing to the keyboard input from the player.*
The instructions as to which keys to press are
displayed on the screen. On each nudge, a
random number is generated to determine if
another nudge is to be offered.

THE JACKPOT
770 CLS : PRINT AT 10,0;" ❑❑❑❑❑❑

❑❑❑❑❑ GAME OVER ❑❑❑❑❑❑
CIELIDOE1111YOU HAVE LOST ALL
YOUR MONEY": BEEP 1,-20

780 PRINT "'Ill LIDO YOU WANT ANOTHER
GAME ? PRESS "Y"" OR ""N"""

790 IF INKEY$="" THEN GOTO 790
800 LET 1$ =INKEY$: IF 1$ = "Y" OR

1$="y" THEN RUN

810 STOP
820 CLS : PRINT AT 10,0;" ❑❑❑❑❑❑

1=1 ECONGRATULATIONS1710 El
DO ❑ ❑ YOU HAVE JUST WON THE
JACKPOT": PRINT "1110D171171YOU
ARE RICHER BY £50": FOR J =1 TO 3:
FOR 1=1 TO 10: BEEP .01,5*I: NEXT I:
NEXT J

830 GOTO 780

These routines are very simple. The 'another
go?' routine—Lines 770 to 810—is called
when the player runs out of money.

The Jackpot routine—Lines 820 and
830—tells the player the good news and adds
£50 to the money total, before ending the
game—the bank is bust. The player is now
given the opportunity of another go.

THE MAIN LOOP
310 GOSUB1000:GOSUB2000:GOSUB3000:

IFM>0THEN310
315 GOSUB4000:GOT070
4000 POKE53270,PEEK(53270)AND239:POKE

53280,2:POKE53281,8:POKE53272,21
4005PRINT"0 gg.";CHR$(14),"PJ DIN

PI ❑ H ❑ MAD ❑ DUCK!"
4010 PRINT"gMHIMMINI

[IOU HAVE RUN OUT OF.MONEY!"
4015 PRINT"g ❑ RESS THE Egi PACE-BAR

FOR ANOTHER GAME..."
4020 GETA$:IFA$ < >CHR$(32)THEN4020
4025 XX =1:GOT070

Line 310 calls subroutines which spin the
reels, check for winning lines, and check the
player's key presses. The loop is repeated
until the player runs out of money.

If the player does run out of money, Line
315 calls the subroutine at Line 4000 which
announces the unwelcome news, and gives the
option of another go.

SPINNING THE REELS
1000 PRINT"Egg]goggigggiggggig

ggggigggOPJPJPIPHIPJPIII
❑ tEMOPJPI ❑ 8EE19
pipiDtErrieg";:m=m -10

1005 GOSUB9500
1010 T1$= "000000":DM = 0:DR =100:IF

NOTH%THEN1035
1015 IFH%THENGOSUB5500
1020 IFI%THENGOSUB6500
1025 IFJ%THENGOSUB7500
1030 IFT1$ <"000002"ANDH%THENFOR

Z =1T050:NEXTZ:GOT01015
1035 T1$="000000":IFNOTI%THEN1055
1040 IFI%THENGOSUB6500
1045 IFJ%THENGOSUB7500

1050 IFT1$ <"000002"ANDI%THENFOR
Z = 1T0100:NEXTZ:GOT01040

1055 T1$="000000":IFNOTJ%THEN1075
1060 IFJ%THENGOSUB7500
1065 IFT1$ <"000002"ANDJ%THENFOR

 Zr 1T0150:NEXTZ:GOT01060
1075 H%= -1:1%= 	-1:RETURN

Lines 1000 to 1075 spin the reels which the
player has chosen not to hold. H5, 15 and J%
are the hold flags for the three reels.

NO HOLDS BARRED
1500 IFD%=0THENRETURN
1505 FORY=10TOD%STEP10:M=M +10
1510 GOSUB9500
1515 DR =40:DM =40:GOSUB8000:FOR

T = 1T0100:NEXTT,Y: RETURN
2000 D%= 9:A = PEEK(1313):B= PEEK

(1320):C = PEEK(1327):IFA = BAND B = C
AN DC = 11TH EN D% = 0

2005 IFA=BANDB=CANDC=17THEN
D%=1

2010 IFA=BANDB=CANDC=23THEN
D%=2

2015 IFA= BANDB=CANDC=29THEN
D%=3

2020 IFA= BANDB=CANDC=37THEN
D%=4

2025 IFA=BANDB=CANDC=43THEN
D%=5:GOT02035

2030 IFA= BANDB = 43THEND%= 6
2035 IFA=BANDB=CANDC=59THEN

D%=6:GOT02050
2040 IFA=BANDB=59THEND%=7:GOTO

2050
2045 IFA = 59THEND%= 8
2050 IFD%= 9ORD%= 0THEND%= W%

(D%):GOSUB1500:RETURN
2055 FORA =1172 + (D%*40)T01176+

(D%*40):POKEA+54272,14:NEXTA:
LL= INT(RND(1)*2)

2060 FORA =1132 + (LL*80) + (D%*40)TO
1136+ (LIA0) + (D% * 40):POKE
A+ 54272,12:NEXTA:CL =12

2065 GETA$:IFA$=CHR$(13)THEND%=W%
(D%):GOSUB1500:GOSUB9000:RETURN

2070 IFA$=CHR$(32)THEN2090
2075 FORA =1212 - (LI280) + (D% * 40)TO

1216- (LI280) + (D%*40):POKEA+
54272,CL:NEXTA

2080CL = 27 — CL: FO RA = 1132 + (L1280) +
(0% * 40)T01136 + (LL*80) + (D%*40):
POKEA +54272,CL

2085 NEXTA:GOT02065
2090 FORA =1172 + (D%*40)T01176 +

(D% * 40):POKEA+54272,15:NEXTA
2095 IF(CL=15ANDLL=0)0R(CL=12AND

LL=1)THEND%=W%(D%+1):GOSUB
1500:GOSUB9000:RETURN

2100 D%= D% - 1:IFD%= 0THEND%= 200:

GOSUB1500:GOSUB9000:RETURN
2105 GOSUB9000:GOT02055

Lines 1500 to 1515 are the
credit routine, which
increments the 	--
M% according .
to the amount
the player
has won.

Line 2000
to 2105 check '
for winning
lines once the
reels have stoppea
spinning. If a winning line has been found,
the routine at Line 1500 is called.

Lines 2055 to 2085 control the display to
the right of the reels which shows the amount
the player stands to win.

HOLD, NUDGES AND GAMBLES
3000 IFRND(1)<.25THENGOSUB4500
3005 IFRND(1)<.4THENCL$="0[1":

SS =1:H%= —1:I%= —1:J%= —1:
G0T03020

3010 GETA$:IFA$ < > CHR$(32)THEN3010
3015 RETURN
3020 PRINT"gigiggggAggggEllgrigg

gg 	PJ PJ 1 PJ PJ II" ;
MID$(CL$,SS,1);:IFH%TH ENPRINT"D
EEL OP] IV

3025 IFI%THENPRINT"@gggg gg go gg gg
gg 	gg " "PJPJPJ PJ
❑❑ DE9PJP.1";

3030 IFJ%THENPRINT"Igigggjgggigi
gggEggigggigggigg",,"PI❑ t
0[11012";

3035 GETA$:IFA$=CHR$(32)THENRETURN
3040 IFA$<"1"ORA$>"4"THEN

SS = 3 — SS:GOT03020
3045 0NVAL(A$)G0T03065,3050,3055,3060
3050 H%= 0:PRINT"el gig] g gig Ag

giligggiggggiggPIPJPJPJP1
pj pj [It El[1] El";:G0T03020

3055 I%=0:PRINT"g 	gig gg
gg gg gg gig gg " " PJ PJ PJ
at Ej 	El";:G0T03020

3060 J%=0:PRINT"gigggiggAggigg
gg " " PJ 2171

t 0 	g";:GOT03020
3065 H%= — 1:1% = — 1:J% = —1:GOTO

3020
4500 FORA --= 1760T01772STEP3: FO R B = ATO

A +1:POKEB +54272,9:NEXTB
4505 GETA$:IFA$=CHR$(32)THEN

N%= (A — 1757)/3:GOT04515
4510 FORB = AT0A+1:POKEB +54272,10:

NEXTB,A:GOT04500
4515 FORZ=N%T01STEP-1:KK=

((Z-1)"3) +1760:POKEKK + 54272,9:

POKEKK + 54273,9
4520 GETA$:IFA$>"9"OR(A$<"5"AND

A$ < >"0")THEN4520
4525 IFA$="0"THENA$ = "10"
4530 ONVAL(A$)-4G0SU B5000,6000,

7000,5500,6500,7500
4535 DR = 50:DM =40:GOSUB8000:GOSUB

2000:KK= ((Z —1)1) + 1760
4540 IFD%=0ANDZ=1THEN4550
4545 IFD%= 0THENPOKEKK + 54272,10:POKE

KK+54273,10:NEXTZ
4550 FORA =1760T01772STEP3:FORB = ATO

A + 1:POKEB + 54272,10:N EXTB,A:
RETURN

5000 PRINT"ggggg ppm
in pi pj Elpl";F$(131%(P%));
"ggg 111111";

5005 IFP%=15THENP%— —1
5010 P%= P%+ 1:PRINTF$

(R1%(P%));"gg
gg111111";A

5015 IFP%
=15THEN
PRINTF$
(R1%(0));:
RETURN

5020PRINTF$
(R1%(P%+1));`
RETURN

5500 IFP%<2THEN
PRINTiggg !minima]
pip1pj";Fs(R1%(14+ P%));
"gg 111111";:
GOT05510

5505 PRINT"giggiggggpipipipm
IJjJ P1";F$(Rl%(P% -2));"1ggII
1111";

5510 IFP%= 0THENP%=16
5515 P%= P%-1:PRINTF$(R1%(P%));"gg

gIIIIIII";
5520 IFP%=15THENPRINTF$(R1%(0));:

RETURN
5525 PRINTF$(R1%(P%+1));:RETURN
6000 PRINT"gigmAggy,"pipipipi

Pi";F$(R 2%((1%));"Ag gill 11 11";
6005 IFQ%=15THENQ%= —1
6010 Q%=Q%+1:PRINTF$(R2%(Q%));"gg

111111";
6015 IFQ%=15THENPRINTF$(R2%(0));:

RETURN
6020 PRINTF$(R2%(Q%+1));:RETURN
6500 IFQ% < 2TH ENPRINT" gg gg

gg","1.1 pi pi H101";F$(R2%
(14 + Q%));" gg II II II";:GOT06510

6505 pRINT"ggoggg","pip_ipipi
1.1";F$(R2%(Q%-2));"1ggg 1111
II";

6510 IFQ%= 0THENQ%=16
6515 Q%—Q%-1:PRINTF$(R2%(Q%));"gg

6520 IFQ%=15THENPRINTF$(R2%(0));:

RETURN
6525 PRINTF$(R2%(Q%+1));:RETURN
7000 PRIN -riggggg"„"pipi";Fs

(133%(R%));" 1g gO 11 1111
7005 IFR%=15THENR%= —1
7010 R%= R%+ 1:PRINTF$(R3%(R%));

"gliggll II IV
7015 IFR%=15THENPRINTF$(R3%(0));:

RETURN
7020 PRINTF$(R3%(R%+1));:RETURN
7500 IFR%<2THENPRINT"Elggg

g"„"pi 11";F$(133%(14 + R%));"211
gIIIIII";:GOT07510

7505 PRINT"ggiNgigg"„"PjEl";F$
(R 3%(R% -2));"Ag gill 11 II";

7510 IFR%= 0THENR%=16
7515 R%=R%-1:PRINTF$(R3%(R%));"Ag

!HIM";
7520 IFR%=15THENPRINTF$(R3%(0));:

RETURN
7525 PRINTF$(R3%(R%+1));:RETURN

Line 3000 chooses a random number which
determines if the player is to be offered
nudges, while Line 3005 sets the hold flags if
the correct random number is chosen. Lines
3020 to 3065 flash the gamble and hold lights,
and read the player's input.

Lines 4500 to 4550 are the nudge
routine. The reel moving subroutines
are called according to the player's
choice(s). Lines 5000 to 5205 make
the first reel move up, while Lines
5500 to 5525 make
the first reel move
down. Lines
6000 to 6025,
and Lines 6500
to 6525 do the
same for the
second reel,
and Lines 7000
to 7025 and Lines
7500 to 7525
control the third reel

OTHERS
8000 S= 54272:POKES,150:POKES +1,

50+ DM:POKES + 5,0:POKES +6,240:
POKES + 24,15

8005 POKES + 4,17:FORDD =1TODR:NEXT
DD:POKES+ 24,0:DM =DM +10:
RETURN

9000 FORA =1172T01532STEP40:FORB
TOA + 4: POKEB +54272,15:NEXTB,A:
RETURN

9500 PRINT"giggggggggg
gggiggliggggigggggiggg",
"IIIIMPJNIPM1011111111
11 ©";:IN= INT(M/100)

9505 RM = M— (1N*100):PRINTMIDVSTR$

(IN),2);"171";MID$(STRVRM)+ "0",2,
2);:RETURN

Lines 8000 and 8005 are a sound effect used
when the reels stop—see page 232. Lines
9000 to 9505 clear the gamble display to the
right of the reels so that it is no longer lit,
ready for your next turn on Superfruit, the
game for the push-button gambler.

THE MAIN LOOP
360 REPEAT:PROCspin:PROCcheck:PROCkeys:

UNTILM%= 0:PROCend:RUN

Line 360 is the heart of the Fruit Machine,
and is REPEATed UNTIL the memory held

drops to zero. PROCspin, PROCcheck and
PROCkeys are called repeatedly.

SPINNING THE REELS
370 DEFPROCspin:VDU5:GCOL0,4:FQRA%= 0

702:MOVE192+ A%*320,384:PROChbox:
NEXT

380 VDU4,26:M%= M%-10:COLOUR130:
COLOUR6: PRI NTTAB(12,30);M%/100;

" ❑ ":COLOUR128:GCOL0,128
390 TIME = 0
400 REPEAT
410 IFH%PROCreel1
420 IFI%PROCreel2
430 IFJ%PROCreel3
440 UNTILTIME >100+ RND(50):IFH%

SOUND&11,1,50,2
450 REPEAT
460 IFI%PROCreel2
470 IFJ%PROCreel3
480 UNTILTIME> 200+ RND(50):IFI%

SOUND&11,1,70,2
490 REPEAT
500 IFJ%PROCreel3
510 UNTILTIME> 300+ RND(50):IFJ%

SOUNDM 1,1,90,2
520 H%= TRUE:I% = TRUE:J% = TRUE:

ENDPROC

Line 370 puts all the hold boxes in steady
blue, and Line 380 takes lop for a spin, and
PRINTS the credit remaining.

The reels are spun by Lines 390 to 510.
The duration of the spin varies according to
the number of reels that are being held. Line
520 resets the hold flags.

NO HOLDS BARRED
530 DEFPROCcred(D%):IFD% = 0EN DPROC:

ELSEVDU4,26:COLOUR130:COLOUR6:FOR
A%= 10TOD%STEP10:M%= M%+ 10:
PRINTTAB(12,30);M%/100

540 SOUND&11,1,150,1:FORB%= 0T01000:
NEXT:SOUNDM 1,0,0,1:N EXT:EN DPROC

550 DEFPROChbox:PLOT1,256,0:PLOT1,0,64:
PLOT1,-256,0:PLOT1,0,-64:PLOT0,8,
48:PRINT"HOLD":ENDPROC

560DEFPROCree11:VDU4,28,3,15,6,4,31,3,11,
10,10,10,5:P%= (P%+ 1) MOD16:MOVE
256,576:PRINTF$(R1%((P%+1)MOD16));
CHR$4:ENDPROC

570 DEFPROCree12:VDU4,28,8,15,11,4,31,3,
11,10,10,10,5:Q% = (Q% + 1)MOD16:-
MOVE576,576:PRINTF$(R2%((Q% + 1)
MOD16));CHR$4:ENDPROC

580 DEFPROCree13:VDU4,28,13,15,16,4,31,3,
11,10,10,10,5:R% = (R%+1)MOD16:
MOVE896,576:PRINTF$(R3%((R% + 1)
MOD16));CHR$4:ENDPROC

Lines 530 and 540 add money to the total and
make a blip each time a 'coin' is dropped in.

Line 550 is a PROCedure to draw a hold
box. PLOT1—draw relative—is used so the
same routine can be called for all three boxes.

PROCreel starts at Line 560, and starts by
defining a text window for the first reel. The
pointer, P%, is adjusted also. Lines 570 and
580 are similar lines for the second and third
reels.

WINNING
590 DEFFNA:IF(R1%(P%) = R2%(Q%))AND

(R2%(Q%) = R3%(R%)): = R1%(P%)
600 IFR1%(P%) = R2%(Q%)AND(R1%(P%) =

6 ORR1%(P%) =5): =1 + R1%(P%)
610 IFR1%(P%) =6: =8
620 : = 9
630 DEFPROCcheck
640 C%= FNA
650 IFC% = 9 ORC%=0PROCcred(W%(C%)):

ENDPROC
660 VDU28,11,26,19,23,4
670 COLOUR130:COLOUR13:PRINTTAB(0,0);

"f";W%(C% + 1)/100:COLOUR6:PRINTTAB
(2,1);"f";W%(C%)/100:COLOUR14:
PRI NTTAB (4,2);"f";W%(C% — 1)/100;

680 A% = G ET:IFA% = 13CLS:PROCcred(W%
(C%)):ENDPROC

690 IFA% < >32GOT0680
700 CLS:IFRN D(2) =1PROCcred(W%

(C%+1)):ENDPROC
710 C%= C%-1:IFC%= 0PROCcred(200):

ENDPROC
720 GOT0670

FNA in Lines 590 to 620 reads a winning line
and points to the amount won in W%. The
PROCedure in Lines 630 to 650 checks if the
payout is 0 or £2, and credits the player.

Line 660 defines a text window, and Line
670 displays the gamble choices. The follow-
ing lines check if RETURN I is pressed, clear the
text window, and increase the pointer to W% if
the gamble has been won.

NUDGES, HOLDS AND SPINS
730 DEFPROCkeys
740 IFRN D(4) =1PROCnudges
750 IFRN D(5) > 2REPEATUNTILGET = 32:

ENDPROC
760 GCOL0,15:VDU5:FORA%= 0T02:MOVE

192+ A%*320,384:PROChbox:NEXT:
H%= TRUE:I% = TRUE:J% = TRUE:*FX15,1

770 A% = GET:IFA% = 32VDU4:ENDPROC
780 A%= A% — 48:IFA% < 10RA% > 4GOTO

770
790 ONA%G0T0760,800,810,820
800 H%= FALSE:GCOL0,4:MOVE192,384:

PROChbox:GOT0770
810 I%= FALSE:GCOL0,4:MOVE512,384:

PROChbox:GOT0770
820 J% = FALSE = GCOL0,4 = MOVE832,384:

PROChbox:GOT0770
830 DEFPROCnudges:Z%= 8:GCOL0,128:

COLOUR128
840 VDU19,Z%,8;0;:SOUND&11,1,

20 + 162%0 :TIME = 0:REPEATUNTIL
TIME > 50RINKEY(— 99):IFINKEY(— 99)
N%= Z%— 7:GOT0870

850 VDU19,Z%,1;0;:Z%= Z%+ 1:IFZ% = 13

Z%=8
860 GOT0840
870 B%= GET — 52:IFB%= — 4B% = 6:ELSE

I FB% < 1 OR B% > 6GOT0870
880 ON B%G0T0890,900,910,920,930,940
890 PROCree11:GOT0950
900 PROCree12:GOT0950
910 PROCree13:GOT0950
920 PROCrd1:GOT0950
930 PROCrd2:GOT0950
940 PROCrd3:GOT0950
950 SOUND&11,1,20,2:VDU19,N% + 7,1;0;
960 IFFNA <9PROCcheck:N%=0:ENDPROC
970 I FN% = 1N% = 0: ENDPROC
980 N%= N% — 1:VDU19,N% + 7,8;0;:GOTO

870
990DEFPROCrd1:VDU4,28,3,15,6,4,30,11,11,

11,11,5:P%= (P%+ 15)MOD16:MOVE256,
864: PRINTF$(R1%((P% + 15)M0 D16));
CHR$4:ENDPROC

1000 DEFPROCrd2:VDU4,28,8,15,11,4,30,11,
11,11,11,5:Q%= (Q%+ 15)MOD16:MOVE
576,864: PRINTF$(R2%((Q% + 15) MOD
16));CHR$4:ENDPROC

1010DEFPROCrd3:VDU4,28,13,15,16,4,30,11,
11,11,11,5:R%= (R%+ 15)MOD16:MOVE
896,864:PRINTF$(R3%((R% + 15) MOD
16));CHR$4:ENDPROC

1020 DEFPROCend:COLOUR130:COLOUR3:
VDU26,12:PRINTTAB(0,8);"You ran out of
money"""""Press the space-bar' ❑ ❑ ❑

for another go"
1030 R EPEATUNTI LG ET = 32:EN DPROC

Line 740 gives a random chance of getting
nudges—PROCnudge looks after the nudges.
Similarly, Line 750 gives a random chance of
holds. Line 760 flashes the hold boxes and
resets the hold flags. The reels are spun by
Line 770 if 'SPACE' is pressed.

The hold flags are set in Lines 800 to 820,
and the appropriate hold box(es) drawn. Line
830 is the start of the nudge routine. Lines
840 to 860 flash the nudge lights until ISPACEI
is pressed. N% is set to the number of nudges.

If a win is possible, Line 960 goes into the
payout/gamble routine, and finish the nudge
routine. The nudge routine also finishes if
Line 970 finds that the nudges have been
exhausted. If nudges still remain, N% is
decremented, and the next light is flashed.

Line 990 defines a text window for reel
one, and scrolls it down three lines to move
the fruit off the bottom. The pointer is
decremented, and the next fruit is displayed
on the reel. The second and third reels are
spun by Lines 1000 and 1010.

If you have a disk drive, type *TAPE,
then FOR A% = 0 TO & 1800:? (&E00 +
A%) = ? (PAGE + A%): NEXT: PAGE = & E 00
RETURNS OLD RETURN before you run it.

LEI

THE MAIN LOOP
350 M=100:H= -1:1= -1:J= -1:

P=RND(16)-1:0=RND(16)-1:
R=RND(16)-1

360 SCREEN1:GOSUB1000:GOSUB2000:
GOSUB2500:IF M>0 THEN 360

370 CLS:PRINT@101,"YOU RAN OUT OF
MONEY"

380 PRINT@417,"PRESS SPACE FOR
ANOTHER GO"

390 IF INKEY$< > " Ill" THEN 390
ELSERUN

Line 350 sets the money held equal to $1, sets
the hold flags to -1, and chooses positions
for the three reels. Line 360 is the heart of the
program, calling subroutines which spin the
reels, PUT the fruit on screen, enable the
player to have the option to gamble or take the
win, or hold.

If the player's money drops below zero,
Line 370 displays YOU RAN OUT OF
MONEY.

PUTTING FRUIT ON SCREEN
500 ON CH +1 GOTO 540,530,560,550,570,

510,520
510 PUT(XX,YY) - (XX + 31,YY + 15),B,PSET:

RETURN
520 PUT(XX,YY) - (XX+ 31,YY + 15),C,PSET:

RETURN
530 PUT(XX,YY) - (XX + 31,YY + 15),A,PSET:

RETURN
540 PUT(XX,YY)- (XX + 31,YY + 15),BR,

PSET:RETURN
550 PUT(XX,YY)- (XX + 31,YY +15),S,PSET:

RETURN
560 PUT(XX,YY) - (XX + 31,YY + 15),PL,

PSET:RETURN
570 PUT(XX,YY) - (XX + 31,YY +15),P,PSET:

RETURN
1000 M = M -10:FORL =1 TO

RND(3) + RND(3)
1010 IF H GOSUB 1520
1020 IF I GOSUB 1530
1030 IF J GOSUB 1540
1040 NEXT:IF H THEN SOUND 100,1
1050 FOR L=1 TO RND(3)+RND(3)
1060 IF I GOSUB 1530
1070 IF J GOSUB 1540
1080 NEXT:IF I THEN SOUND 120,1
1090 FORL=1 TO RND(3)+RND(3)
1100 IF J GOSUB 1540
1110 NEXT:IF J THEN SOUND 140,1
1120 H= -1: I= -1: J= -1: RETURN
1500 CLS:IF D=0 THENRETURN ELSEPRINT

@166,USING"CREDIT ❑ = LIU # # #.
";M/100: FORA = 10TOD STEP10:

M = M +10:PRINT@166,USING"CREDIT
❑ = 111$$# # #.# #";M/100

1510 SOUND200,1:FORB = 0T0400:NEXT
B,A:RETURN

1520 P= (P -1)AND15:XX=48:YY =28:FOR
G= P -1T0P+ 1:CH = R1(15ANDG):
GOSUB500:YY = YY + 32:NEXT:RETURN

1530 Q= (Q-1)AND15:XX =112:YY = 28:
FORG =Q-1 TO Q+ 1:CH =R2(15AND
G):GOSUB500:YY =YY + 32:NEXT:
RETURN

1540 R = (R -1)AND15:XX =176:YY =28:
FORG = R -1 TO R +1:CH = R3(15AND
G):GOSUB500:YY = YY + 32:NEXT:
RETURN

1550 C=9:IF (R1(P)=R2(Q))AND
(R2(Q)= R3(R)) THEN C= R1(P):RETURN

1560 IF R1(P)= R2(Q) AND (R1(P) =6 OR
R1(P) =5) THEN C=1 + R1(P):RETURN

1570 IF R1(P)=6 THEN C=8
1580 RETURN

Lines 500 to 570 PUT the correct fruit on
screen. Lines 1000 to 1120 spin the reels that
are not being held. The reels are spun by
calling Lines 1520 to 1540. Lines 1550 to
1580 check if the reels end up displaying a
winning combination, and Line 1500 adds
the winnings to the money total.

GAMBLES, HOLDS AND NUDGES
2000 GOSUB1550
2010 IF C=9 OR C=0 THEND =W(C):

GOSUB1500:RETURN
2020 CLS9-C:PRINT@265,"gamble";:PRINT

@278,USING"$$# # # ❑ ";W(C)/100;
2030 PLAY"L4T20B":PRINT@212,USING"$$

. # # 111";W(C -1)/100;:PRINT@340,
STRING$(7,271 -C*16);

2040PLAY"T20C":PRINT@212,STRING$(7,
271 - C*16);:PRINT@340,USING"$$#
❑ ";W(C +1)/100;

2050 R$=INKEY$:IF R$ < > "El" AND
R$< >CHR$(13) THEN 2030

2060 IF R$=CHR$(13) THEN CLS:D=W(C):
GOSUB1500:RETURN

2070 IF RND(2) =1 THENCLS:D =W(C +1):
GOSUB1500:RETURN

2080 C= C -1:IF C=0 THEND =200:
GOSUB1500:RETURN

2090 GOT02020
2500 IFRND(4) =1 GOSUB3060:GOT02550
2510 IFRND(5) <3 THEN 2560
2520 FORK = 1T02000:NEXT:SCREEN1,0
2530 A$=INKEY$:IF A$< > "17" AND

A$ < >"C" THEN 2530
2540 IF A$ = " El" THEN RETURN
2550 CLS:PRINT@166,USING"CREDIT

❑ = El$$ # # # .# #";M/100:GOTO
2520

2560 SCREEN1,0:H= -1:1= -1:J= -1

2570 IF H THEN PUT(38,122)- (91,143),H,
NOT

2580 IF I THEN PUT(102,122)- (155,143),H,
NOT

2590 IF J THEN PUT(166,122)- (219,143),H,
NOT

2600 R$ =INKEY$:IF R$ =" LI" THENF0R
K = 0T02:PUT(38 + 64*K,122) -
(91 +64*K,143),H,PSET:NEXT:RETURN

3000 IF R$ < "1" OR R$ > "4" THEN 2570
3010 ON VAL(R$) GOTO 3020,3030,3040,

3050
3020 H = -1:1= -1:J = -1:GOT02570
3030 H =0:PUT(38,122)- (91,143),H,PSET:

GOT02570
3040 I-=0:PUT(102,122)- (155,143),H,PSET:

GOT02570
3050 J =0:PUT(166,122)- (219,143),H,

PSET:GOT02570
3060 SCREEN1,0:COLOR4,2:PUT(159,156)-

(224,170),H,NOT:PLAY"L40T10"
3070 K=1
3080 LINE(10+ K*16,158)- (21 + K * 16,169),

PRESET,BF
3090 IF INKEY$ = " El" THEN 3120
3100 K=K+1:PLAYSTR$(K*2):IF K<6

THEN 3080
3110 FORK=1T05:LINE(10 +06,158)-

(21+ K*16,169),PSET,BF:NEXT:GOT03070
3120 N =K:PUT(159,156)- (224,170),H,NOT
3130 R$= INKEY$:IF (R$<"5" OR R$>

"9") AND R$< > "0" THEN 3130
3140 IF R$ = "0" THEN R$ = "10"
3150 ON VAL(R$) -4 GOTO 3160,3170,3180,

3190,3200,3210
3160 P= P+2:GOSUB1520:GOT03220
3170 Q=Q+2:GOSUB1530:GOT03220
3180 R = R + 2:GOSUB1540:GOT03220
3190 GOSUB1520:GOT03220
3200 GOSUB1530:GOT03220
3210 GOSUB1540
3220 SOUND40,1:GOSUB1550:IF C<9

GOSUB2010:N =0:GOT03250
3230 IF N =1 THEN N =0:GOT03250
3240 LINE(10+ N*16,158)- (21 +N*16,169),

PSET,BF:N = N -1:GOT03130
3250 FORK =1T05:LINE(10+ K * 16,158) -

(21 + K*16,169),PSET,BF:NEXT:RETURN

Lines 2010 to 2050 are the gamble routine.
The player has the choice of collecting the
money or gambling it against a larger win.

The hold routine is to be found between
Lines 2530 to 3050, and is called from Line
2510. Flags are set in the hold routine
according to the player's key presses.

Lines 3060 to 3250 are the nudge routine.
The player is given nudges if the random
number chosen in Line 2500 is one. The
routine reads the player's keyboard input, and
moves the reels accordingly.

CUMULATIVE INDEX

An interim index will be published each week. There will be a complete index in the last issue of INPUT.

D A
Animals, measuring growth of 1049-1056
Animation

of UDGs in cliffhanger 	992-997
using colour fill techniques

Acorn 	 955-959
using GCOL 3

Acorn 	 999-1000
using paged graphics 	1022-1027

Applications
calendar and diary program

1010-1016,1017-1021,1064-1067
hobbies file, extra options 947-952
text-editor program

852-856,878-883,914-920
ASCII codes

of Teletext graphics
BBC 	 1068-1073

B
BASIC

adding instructions to
Acorn, Dragon, Spectrum 	844-851

Basic programming
animation with paged graphics 1022-1027
colour commands, Acorn 	953-959
Computer Aided Design 	998-1004
designing a new typeface 	838-843
drawing conic sections 857-863,889-895
mathematics of growth 	1049-1056
mechanics, principles of 	933-939
multi-key control 	 974-979
musical chords and harmonies 985-991
programming function keys 	825-829
secret codes 	960-965,1044-1048
speeding up BASIC programs 921-927

C
Calendar program

part 1 	 1010-1016
part 2 	 1017-1021
part 3 	 1064-1067

Chords, musical
definition 	 985-986
programs to play

Acorn, Commodore 64 	986-991
Cliffhanger game

part 1—title page 	 904-913
part 2—adding instructions 	928-932
part 3—adding a tune 	966-973
part 4—graphics and merging 992-997
part 5—setting the scene 	1034-1043
part 6—perils and rewards 	1057-1063

Codes, secret 	960-965,1044-1048
Colour

defining in machine code
1034-1043,1057-1063

filling in with
Acorn 	 953-959

routines for changing
Commodore 64 	 872-877

using in Teletext mode
BBC 	 1068-1073

Computer Aided Design
rubber-banding and picking

and dragging 	 998-1004
Conic sections 	857-863,889-895
Cryptography 	960-965,1044-1048

Instructions, adding to BASIC
Acorn, Dragon, Spectrum 	844-851

K
1073 	Keyboard, matrix of 	 974-976

Keypresses
detecting

Acorn, Commodore 64, Vic 20 827-829
in cliffhanger game 	929-932

for direct entry graphics
BBC 	 1073

how they work 	 826,974
multiple, programming for 	974-979

L
Letter-generator program

M
Machine code

games programming
see cliffhanger

merging routines
routines for hi-res graphics

Commodore 64
routine to alter BASIC
timer routine
tune routine

Mathematical functions
in mechanics 	 935
speedy use of 	 923-924
to draw curves 	857-863,889-895
to measure growth 	1049-1056

Mechanics
programs to show principles of 933-939

Memory
mapping, definition 	 1023
paged graphics in 	1023-1027
requirements of Teletext mode

BBC 	 1068
saving vs speed 	 923

Merging machine code routines 992-997
Multi-key control, programming for

974-979
Music

chords and harmonies 	985-991
machine code routine for 	966-973

N
Numbers

Fibonacci
generation program

O
Othello board game

part 1
	

980-984
part 2
	

1005-1009
Overwriting, avoiding
	

994-997

P
Paged graphics
Peripherals

robotics

Picking and dragging 	1000-1004
Plant growth program 	1052-1053
PLOT

new commands, Acorn 	953-959
PROCedures, Acorn

advantages of 	 922,924
use of to fill with colour 	954-959

R
Rectangles, program to draw 	1056
Robotics 	 884-888
Rubber-banding 	 998-1000

S

Teletext mode, BBC 	1068-1073
Text-editor program

part 1—basic routines 	852-856
part 2—editing facilities 	878-883
part 3—sorting, searching,

formatting and printout 	914-920
Timer routine

fTypeface*lines

	 922
machine code 	 896-898

Typeface. setting up new 	838-843

U

V
Variables

managing for program speed 	923-925
VDG chip, Dragon, Tandy 	1043

Diary program
part 1
part 2
part 3

Digital clock routine
Direct entry control codes,

table of, BBC

E
Engineering

see mechanics

H
Hobbies file, extra options for

	
947-952

1010-1016
1017-1021
1064-1067

896-898

F
Fibonacci numbers 	 1056
Filling in with colour

Acorn 	 953-959
Fruit machine game

part 1 	 1028-1033
part 2 	 1074-1080

Function keys, programming
Acorn, Commodore 64, Vic 20 	826-829

G
Games

cliffhanger 	904-913,928-932,
966-973,992-997,1034-1043,1057-1063
fruit machine 	1028-1033,1074-1080
goldmine 	 830-837,864-871
multi-key control for 	974-979
othello 	 980-984,1005-1009
wordgame 	899-903,940-945

Golden ratio 	 1056
Goldmine game

part 1—basic routines
	

830-837
part 2—option subroutines

	
864-871

Graphics
colour commands, Acorn
	

953-959
data statement, BBC
	

1072
direct entry, BBC
	

1071-1073
effects using curves

	
857-863,889-895

hi-res
for custom typeface
	

838-843
setting up new commands

Commodore 64
	

872-877
hold and release, BBC
	

1070
paged, for animation
	

1022-1027
picking and dragging
	

1000-1004
rubber-banding
	

998-1000
using Teletext mode, BBC

	
1068-1073

Graphs
in plant growth program

	
1052-1054

Grid
for Teletext graphics

BBC
	

1068

SAM chip, Dragon, Tandy 	1043
SAVEing

	

838-843 	problems with when merging 	992-997
Scaling

custom typeface 	 924-927
parabolas and hyperbolas 859-861,863

Search routines
binary and serial 	 924-927
in text-editor program 	914-920

Sort routines

	

992-997 	in hobbies file program 	947-953
in text-editor program 	914-920

	

872-877 	Speeding up BASIC programs 921-927

	

844-849 	Sprites, Commodore 64

	

896-898 	in cliffhanger game

	

966-973 	 993-995,1058-1060

UDGs
in cliffhanger game

992-997,1037-1038,1060-1062
in fruit machine game 	1028-1033

1056 	stock, storing 	 1040
1054-1055

	

1023-1027 	Wordgame
part 1—basic routines 	899-903

	

884-888 	part 2—adding the options 	940-945

The publishers accept no responsibility for unsolicited material sent for publication in INPUT. All tapes and
written material should be accompanied by a stamped, self-addressed envelope.

J You can almost hear the cogs grating
as you start teaching your computer to
think in the FOX and GEESE game

J Willie's getting impatient after all
these weeks of waiting, so start him off
on his picnic in CLIFFHANGER

.1 HOW BASIC PROGRAMS ARE
STORED reveals the inner workings of
microcomputers

..JINPUT's SOUND ANALYZER is an
excellent introduction to up-to-the-
minute digital recording

.1 Visit the shrink's and expand your ego
with the DRAWING AID program. Draw
or inspect fine detail on screen by simple
key presses

_1 Impatient astronauts can enter the
complete LUNAR LANDER game

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36

