
A 11,11ADCLIAll 	 46 e*nMPUTER rAIJRSE IN. WEEKLY PARTS

LEARN 	 E FUTURE

Vol. 4 	 No 46

APPLICATIONS 32

PLANNING THE BEST COURSE 	 1429

PERT provides a way to plan out complicated operations

BASIC PROGRAMMING 89

FORMS OF THE NATURAL WORLD 	1 434

Surprises from fractals: mountains and snowflakes

MACHINE CODE 48

CLIFFHANGER: A SAD DEMISE 	1440

Willie's off to that great video game in the sky

MACHINE CODE 49
- --
MUSIC WHILE YOU WORK 	 1448

An audible background from interrupt-driven routines

GAMES PROGRAMMING 50

ESCAPE: BUILDING UP THE ADVENTURE 1450

More of the listings for your full-scale adventure

LANGUAGES 7

CONSTRUCTING A LISP PROGRAM 	1456

Complex functions and program structure

INDEX
The last part of INPUT, Port 52, will contain a complete, cross-referenced index.

For easy access to your growing collection, a cumulative index to the contents

of each issue is contained on the inside back cover.

PICTURE CREDITS
Front cover, Digital Arts. Pages 1429, 1430, 1432, Harry North. Page 1435,
Lorea Carpenter. Pages 1436, 1439, Peter Reilly. Pages 1440, 1443, 1444, 1446,
Paddy Mounter. Page 1449, Digital Arts. Pages 1450, 1452, 1454, 1455, Artist
Partners/Stuart Robertson. Pages 1456, 1459, 1460, Graeme Harris.

© Marshall Cavendish Limited 1984/5/6
All worldwide rights reserved*

The contents of this publication including software, codes, listings,
graphics, illustrations and text are the exclusive property and copyright of
Marshall Cavendish Limited and may not be copied, reproduced,
transmitted, hired, lent, distributed, stored or modified in any form
whatsoever without the prior approval of the Copyright holder.

Published by Marshall Cavendish Partworks Ltd, 58 Old Compton Street, London W1V SPA.
England. Typeset by MS Filmsetting Limited, Frome, Somerset. Printed by Cooper Clegg
Web Offset Ltd, Gloucester and Howard Hunt Litho, London.

HOW TO ORDER
YOUR BINDERS
UK and Republic of Ireland:
Send £4.95 (inc p & p) (IR£5.95) for
each binder to the address below:

Marshall Cavendish Services Ltd,
Department 980, Newtown Road,
Hove, Sussex BN3 7DN

Australia: See inserts for details, or
write to INPUT, Times Consultants,

PO Box 213, Alexandria, NSW 2015

New Zealand: See inserts for details, or
write to INPUT, Gordon and Gotch
(NZ) Ltd, PO Box 1595, Wellington
Malta: Binders are available from local
newsagents.

There are Jour binders each holding 13 issues.

BACK NUMBERS
Back numbers are supplied at the regular cover price (subject to availability).

UK and Republic of Ireland:
INPUT, Dept AN, Marshall Cavendish Services,
Newtown Road, Hove BN3 7DN

Australia, New Zealand and Malta:
Back numbers are available through your local newsagent.

COPIES BY POST
Our Subscription Department can supply copies to any UK address regularly at £1.00 each.
For example the cost of 26 issues is £26.00; for any other quantity simply multiply the number
of issues required by £1.00. Send your order, with payment to:

Subscription Department, Marshall Cavendish Services Ltd,
Newtown Road, Hove, Sussex BN3 7DN

Please state the title of the publication and the part from which you wish to start.

HOW TO PAY: Readers in UK and Republic of Ireland: All cheques or postal orders
for binders, back numbers and copies by post should be made payable to:

Marshall Cavendish Partworks Ltd.

QUERIES: When writing in, please give the make and model of your computer,as
well as the Part No., page and line where the program is rejected or where it does
not work. We can only answer specific queries —and please do not telephone. Send
your queries to INPUT Queries, Marshall Cavendish Partworks Ltd, 58 Old
Compton Street, London W1V SPA.

INPUT IS SPECIALLY DESIGNED FOR:
The SINCLAIR ZX SPECTRUM (16K, 48K,128 and +),
COMMODORE 64 and 128, ACORN ELECTRON, BBC B
and B +, and the DRAGON 32 and 64.

In addition, many of the programs and explanations are also
suitable for the SINCLAIR ZX81, COMMODORE VIC 20, and
TANDY COLOUR COMPUTER in 32K with extended BASIC.
Programs and text which are specifically for particular machines
are indicated by the following symbols:

SPECTRUM 16K,
48K,128, and + I •ek COMMODORE 64 and 128

El 	UF ACORN ELECTRON, '
BBC B and B+ 	DRAGON 32 and 64

TANDY TRS80
TX81Ct VIC 20 	COLOUR COMPUTER

PLANNING A PROJECT
A CRITICAL PATH

EFFICIENCY
PERT CHARTS
SAVING TIME

If you are trying to organise any sort
of project—from servicing your car
to buying a house—then this
program can help you plan it out,
and save you time as well
Have you ever found yourself half-way
through a project such as decorating your
living room and suddenly realised that if only
you had planned the job properly you
wouldn't now be sitting around waiting for
the filler to dry before getting on with the
painting? Or when you're fixing the car,
found that if you'd planned it out properly
you would have made sure that you replaced
the stoplight switch before putting back the
brake cylinder so that you now don't have to
take it apart once again.

Any complex activity needs a certain
amount of planning but sometimes there seem
to be so many things you need to do, all taking
differing lengths of time, and all depending
on the successful completion of earlier activ-
ities that it is almost impossible to work out
when to do what. Most activities usually also
have a very clearly defined time when they
must be finished.

A CRITICAL PATH
If you work out the time taken by all the
activities you will always find that there is one

particular chain of events that determines the
total time taken by the whole project. This is
known as the critical path, and any delay or
speeding up of this sequence of events will
alter the time for the whole project. Other
activities may possibly be delayed but this
won't affect the overall time.

Working this out is no easy matter if you
are limited to plotting the critical path by
hand. But using your computer and the
program given here, analysing the best po-
ssible situation becomes much simpler. The
program lets you build up a database of all the
activities required for a particular project
along with the times they take (or estimates if
they're not known) and the order they should
be carried out. It then calculates the critical
path and tells you how much slack time you
have for the non-critical tasks—so you know
which ones you have some leeway with and
how long you can put off doing them without
extending the whole project.

The program is given in two parts. The
first part that accompanies this article sets up
a database of all your activities while the
second half, given next time, calculates the
critical path so you can work out the quickest
and most efficient way of carrying out your
project.

TIME SAVING
Because it works out a critical path, the
programming technique is often known as
Critical Path Method (CPM) or Critical Path
Analysis (CPA). Its other name is Program
Evaluation and Review Technique or PERT,
which refers to the method of planning using
networks. These techniques first became
fashionable in the early 1960s when they were
used for the NASA space programme. One
well quoted example were the savings made
during the Polaris missile programme where
the time taken for a given output was de-
creased by a factor of five! PERT programs
are now used extensively in business and
industry to increase efficiency in almost all
projects. So if you own a small business (or
even a large business) this program is ideal.

PLANNING A PROJECT
But its use is not limited to businesses—any
project, however small, can be evaluated with
the program. The program really becomes
useful, though, when you are doing some-
thing more complicated than decorating a
room or repairing a car. One project many
people undertake is buying or selling a house,
and this involves coordinating many different

things—often within a very strict deadline.
The diagram shows how you might draw a
PERT chart for a house purchase. The circles
enclose what are known as events. These are
instances between activities that take up no
time of their own. They simply mark the
beginning or end of an activity. The activities
are written along the lines joining the events,
along with an estimate of the time needed.

At this stage many activities are uncertain
and you'll find that a lot of the lines cross over
one another. So although the information is
all there, it is rather difficult to see exactly
which are the important things to do
quickly—or whether the whole thing can be
done at all in the time allowed. Also as you
progress with the purchase, other factors may
appear which may alter the whole outlook (a
rich aunt may leave you some money) so the
chart would need to be updated. The advan-
tages of using this program are enormous.
You'll be able to create a neat printout of all
the activities—and it can be updated in an
instant. You'll be able to find the critical path
through the mass of information so you can
monitor this path more closely, taking im-
mediate action if any delays appear. Or you
may discover you need to replan some of the
activities to make the project feasible in the
first place.

Next time you'll see how to enter the
information in the program. Meanwhile type
in the first part of the program and save it
ready to add the second part next time.

5 BORDER 0: PAPER 4: INK 0: CLS
7 POKE 23658,8: POKE 23609,20
10 CLS : LET false=0: LET ma =100: LET

me=100: LET mh =212: LET se= —1:
LET fe= —1 : GOSUB 12: LET ck =false:
LET as = 0: LET ee = 0: GOTO 50

12 LET zz = 9999: LET true =1: LET
p$="please inputE": LET
a$ = "Illactivity"

14 DIM w$(85,32): LET w$(1) = "NO" +
A$+" = PRECEDES event": LET w$(2)
= "YOU CAN'T USE THIS MANY"

16 LET w$(3) = "YOU CAN'T USE THIS
NUMBER CI": LET w$(4) =p$+"text for
this ❑ "

18 LET w$(5) =a$+" REFERS UNDEFINED
EVENT "

22 DEF FN a(x)= x"(x <0): DEF FN
z(x) = x * (x >0)

26 DIM a(ma): DIM g(ma)
30 DIM w(ma): DEF FN w(x) =ABS

x*(x<1)+ABS (2—x)*(x >1):
DEF FN x(x) = x*(2.37572 + 0(* (15.9402
—ex*(184.744—ex*688.472)))/1.20667

34 DEF FN 1$(x)= (STR$ (x) + "DODO
❑ ")(TO 6)

36 DEF FN b(x) = x— INT (x/256)*256
38 DEF FN p$(x)="— —"(TO INT

((6 — x)/2)): DEF FN q$(x) =" ❑❑ "(TO
INT ((6 — x)/2))

40 DIM e(me)
42 DIM x(8)

44 DIM s(mh): DIM f(mh): DIM u(mh): DIM
t(mh): DIM n(mh): DIM u$(mh,20): DIM y
(mh): DIM z(mh)

46 DIM p(mh): DIM q(mh)
48 DEF FN u(x)=u(ABS x+ (x=0))*(x >0):

RETURN
50 CLS : PRINT "1 =define ❑ ";a$'2=

delete 111";a$: PRINT "3 = define event'
"4 = delete event"

60 PRINT "5=save to tape""6 = load
tape""7 = check tape""8=show details"

62 PRINT "9 = QUIT'""10 =check and sort
network"

64 PRINT "11 =calc with average durations"
66 PRINT "12 =calc with uncertainties": PRINT
70 INPUT t: PRINT t: IF t = 9 THEN STOP
72 IF t<1 OR t>12 THEN PRINT

"t=";t;"El NOT UNDERSTOOD": GOTO 114
74 IF t>10 AND NOT ck THEN PRINT

"PLEASE RUN DATA CHECK FIRST":
GOTO 114

76 IF aa=0 AND (t>7 OR t=5) THEN
PRINT "CAN'T DO — NO";a$;
"El INPUT": GOTO 114

80 IF t>7 THEN GOTO 100
82 IF t = 6 THEN CLEAR : LET t = 6
84 IF t>4 THEN PRINT "please input file

name:";: INPUT f$: PRINT f$: GOTO 100
86 LET f$ = a$: IF t > 2 THEN LET

f$= "event"
88 PRINT p$;f$;" ❑ number": PRINT "or

zero to quit ❑ ";
90 INPUT u: PRINT u: LET u=INT u: IF u=0

THEN GOTO 50

92 IF u <1 OR u>zz THEN PRINT w$(3):
GOTO 88

94 IF t>2 THEN LET u= —u
96 GOSUB 450: LET ck =false
98 IF (t = 2 OR t=4) AND (0 = u(x) OR

zz < u(x)) THEN PRINT "YOU NEVER USED
THIS NUMBER": GOTO 114

100 GOSUB 20*(1=1)+100*t+900"
(t —10)*(t >10)

112 GOTO 50
114 FOR t =1 TO 500: NEXT t: GOTO 50
120 IF 0 < u(x) AND zz> =u(x) THEN

GOSUB 942: GOSUB 932: GOTO 130
122 IF -aa =ma THEN PRINT w$(2);f$:

RETURN
124 LET aa=aa +1: LET a(aa)=x: LET

u(x)=u
130 PRINT w$(4);f$;":";: INPUT u$(x):

PRINT u$(x): LET xa=x
140 PRINT p$;"start event, finish event ❑ ";:

INPUT s,f: PRINT s;" ❑ ";f: LET s= INT s:
LET f =INT f

142 IF s<1 OR s>zz OR f<1 OR f>zz
THEN PRINT w$(3): GOTO 140

150 LET u= —s: GOSUB 450: IF u(x) <0
THEN GOTO 156

152 IF ee=me THEN PRINT w$(2);"events":
GOTO 140

154 GOSUB 350

156 LET s(xa)=x
160 LET u= —f: GOSUB 450: IF u(x) <0

THEN GOTO 166
162 IF ee=me THEN PRINT w$(2);"events":

GOTO 140
164 GOSUB 350
166 LET f(xa)=x
170 PRINT p$;"probable time to do ❑ ";:

INPUT t(xa): PRINT t(xa)
172 IF t(xa) <0 THEN PRINT "YOU CAN'T DO

IT THIS FAST": GOTO 170
180 PRINT "input time you are 90% certain":

PRINT "it can be done in 	INPUT
n(xa): PRINT n(xa)

182 IF n(xa) <t(xa) THEN PRINT "THIS
DISAGREES WITH PROBABLE TIME":
GOTO 170

190 RETURN
200 FOR b=1 TO aa: IF x=a(b) THEN LET

a = b
220 NEXT b: LET a(a) =a(aa): LET

u(x)=zz+1: LET aa =aa —1: RETURN
300 IF u(x) <0 THEN GOSUB 946: GOSUB

933: GOTO 330
310 IF ee=me THEN PRINT w$(2);f$:

RETURN
312 GOSUB 350

5 POKE 53280,12:POKE 53281,12
10 FA= 0:MH =212:GOSUB12:

CK= FA:GOTO 50

12 CLS$ = "LT:CM$ = ",":ZZ = 32766:
MA=100:ME=100:QT$ =CHR$(34):TR
= —1:PRINTCLS$

14 P$="PLEASE INPUT ❑ ":A$="ACTIVITY"
16 DIMW$(5):W$(1) = "NOE" + A$ +

PRECEDES EVENT":W$(2) = "YOU CANT
USE THIS MANY "

18 W$(3)="YOU CAN'T USE THIS NUMBER"
:W$(4)= P$ + "TEXT FOR THIS El"

20 W$(5) =A$ +"III REFERS TO UNDEFINED
EVENT"

22 DEFFNA(X) = —V(X<0):DEFFNZ(X)
= —V(X> 0)

28 DIMA%(MA),G%(MA)
30 DIMW(MA):DEFFNW(X) = —ABS(X)*(X

< =1) — ABS(2 — X)*(X > 1)
32 DEFFNX(X)=X*(2.37572+VX"(15.9402

—X * X*(184.744—X*X*688.472)))/1.20667
40 DIM E%(ME)
44 DIM S%(MH),F%(MH),U%(MH),T(MH),

N(MH),UVMH),Y(MH),Z(MH)
46 DIM P(MH),Q(MH)
48 DEFFNU(XX)=TR*U%(ABS(XX)

— (XX =0))*(XX > 0):RETURN
50 PRINTCLS$TAB(10)".ggnmAIN

MENugggg 0"
53 PRINT"Pr =DEFINEWA$:PRINT"PJ2

=DELETEWA$
55 PRINT"PJ3= DEFINE EVENT":PRINT"PJ4

= DELETE EVENT"
60 PRINT"PJ5 = SAVE DATA":PRINT"PJ

6= LOAD DATA"

61 PRINT"PJ7= DELETE FILE FR0M
DISK":PRINT"PJ8 = SH0W DETAILS"

62 PRINT"119= (RESTART)"
63 PRINT"10 =CHECK AND S0RT

NETW0RK"
64 PRINT"11 =CALC WITH AVERAGE

DURATI0NS"
65 PRINT"12=CALC WITH UNCERTAINTIES

":PRINT"13 = 0UTPUT T0 ❑ ";
66 IF KK$="Y" THEN PRINT"a

PRINTER•/SCREEN"
67 IF KK$< >"Y" THEN PRINT"PRINTER/

aSCREEN"
68 PRINT"14= (QUIT)"
69 T=0:INPUT"ginMJENTER

0PTI0N";T
70 IFT=14THENINPUT"ARE Y0U SURE

(Y/N)";AN$:IFAN$="Y"THENSYS58648:
END

71 IF T=13 0R T=14 THEN 100
72 IF T=9 THEN 900
73 IFT<10RT>13THEN PRINT"INPJga

C0DE" ❑ ;T;" N0T UNDERST00D":G0T0
114

74 IFT>10ANDN0T(CK)THEN PRINT
"Km aPLEASE RUN DATA CHECK
FIRST":G0T0114

76 IFAA = 0AND(T> 70RT = 5)THENPRINT
"ffplgaCAN'T D0 - N0 ❑ "+
A$ + " ❑ INPUT":G0T0114

80 IFT>7THEN100
82 IFT =6THENCLR:T =6

84 IFT>4THENPRINT"0"P$;"11 FILE
NAME":1NPUTF$:G0T0100

86 F$ = A$:1 FT > 2THENF$ = "EVENT"
88 PRINTCL$"PLEASE INPUTPJ";F$;

"PINUMBER":PRINT"0R ZER0 T0
QUIT"

90 INPUTU:U = INT(U):IFU = OTHEN50
92 IFU <10Fkli > ZZ)THENPRINTW$(3):

F0RDE=1T0999:NEXTDE:G0T088
94 IFT>2THENU= -U
96 G0SUB450:CK= FA
98 IF(T=20RT=4)AND(0 =U%(X)0RZZ

<U%(X))THENPRINT"NUMBER N0T
USED":G0T0114

100 IF KK$="Y" AND (T> 7 AND
T<12)THEN 0PEN 4,4:CMD4

101 PRINTCL$:0NTG0SUB120,200,300,400,
500,600,700,800,900,1000,2000,3000,
960

105 IF KK$="Y" AND(T>7 AND T<13)
THEN PRINT # 4:CLOSE4

110 IFT<5THEN86
112 G0T050
114 F0RT = 1T01000:NEXTT:G0T050
120 IF0<U%(X)ANDZZ> =U%(X)THEN

G0SUB942:G0SUB932:G0T0130
122 IF(AA=MA)THENPRINTW$(2);F$:

RETURN
124 AA = AA +1:A%(AA) = X:U%(X) = U
130 PRINTW$(4);F$:INPUTU$(X):XA = X
140 PRINTP$;"START EVENT, FINISH

EVENT":INPUT S,F:S=INT(S):F=INT(F)
142 IFS<10RS>ZZ0RF<10RF>ZZ

THENPRINTW$(3):G0T0140
150 U= -S:G0SUB450:1FU%(X)

<0THEN 156
152 IFEE=ME

THENPRINTW$
(2);"EVENTS"

:G0T0140
154 G0SUB350

156 S%(XA) = X
160 U= -F:

G0SUB450:IFU%
(X) <0THEN166

162 IFEE=ME
THENPRINTW$
(2);"EVENTS"

:G0T0140
164 G0SUB350

166 F%(XA) = X
170 PRINTP$;"PR0BABLE TIME T0 D0":

INPUTT(XA)
172 IFT(XA)<0THENPRINT"Y0U CANT D0 IT

THIS FAST":G0T0170
180 PRINTP$;"TIME Y0U ARE 90%

CERTAIN":PRINT"IT CAN BE D0NE
IN":INPUTN(XA)

182 IFN(XA) <T(XA)THENPRINT"THIS
DISAGREES WITH PR0BABLE
TIME":G0T0170

190 RETURN
200 F0RB=1T0AA:IFA%(B)=XTHENA=B
220 NEXTB:XX=A%(AA):U%(X) =ZZ +1:

A%(A) =XX:AA=AA-1:RETURN
300 IFU%(X)<0THENPRINT"aEVENTS":

XP= U%(X):G0SUB950:PRINTU$(X):
G0T0330

310 IF(EE=ME)THENPRINTW$(2);F$: RETURN
312 G0SUB350
330 PRINTW$(4);F$:INPUTU$(X):S%(X) =0:

RETURN
350 EE= EE+1:E%(EE)= X:S%(X)= -1:F%

(X) = 0:U%(X) = U
360 T(X) = 0:N(X)= 0:U$(X)="":RETURN
400 F0RF =1T0EE:IFE%(F) = XTHENE= F
420 NEXTF:XX= E%(EE)::U%(X) = ZZ +1

:E%(E) = XX:EE = EE - 1:RETURN
450 Z=U-INT((U-1)/MH)'MH:Y=2:X= 0
460 IFX=0THENIF0 = U%(Z)0RZZ + 1 =U%

(Z)THENX=Z
470 IFU=U%(Z)THENX=Z:RETURN
480 IFY =10R0 = U%(Z)THENRETURN
490 Z=Z+Y-MH * INT((Z+Y-1)/MH):

Y=Y+Y-MH*INT((Y+Y-1)/
MH):G0T0460

500 0PEN1,8,8,"0:"+F$+",S,W":
PRINT # 1,MA;CM$;ME;CM$;MH;CM$;AA;
CM$;EE;CM$;CK

510 IFCKTHENPRINT#1,SE;CM$;FE
520 F0RA=1T0AA:X=A%(A):PRINT#1,X;

CM$U%(X)CM$S%(X)CM$F%(X)CM$T(X)
CM$N(X)CM$;

530 PRINT# 1,G%(A)CMQTU$(X)QT$:
NEXTA

540 F0RE= 1T0EE:X = E%(E):PRINT# 1,
X;CM$U%(X)CM$S%(X)CM$F%(X)CM$T
(X)CM$N(X)

550 PRINT#1,QTU(X)QT$:NEXTE
560 F0RX =1T0MH:IFU%(X) = ZZ+ 1THEN

PRINT# 1,X
570 NEXTX:PRINT#1,0
580 CL0SE1:RETURN

El
1 M0DE6
10 MH = 101:MA = 50:ME = 50:G0SUB20:

CK= FALSE:AA= 0:EE= 0:G0T0110
20 UU= 0:ZZ= 9999
30 A$=" ❑ ACTIVITY"
40 DIMW$(5):W$(1)="N0 ❑ "+A$

+" ❑ PRECEDES EVENT ❑ ":W$(2)
="Y0U CANT USE THIS MANY ❑ "

50 W$(3)="Y0U CANT USE THIS
NUMBER":W$(4) = "INPUT TEXT F0R
THIS ❑ "

60 W$(5)=A$ + "E REFERS T0 UNDEFINED
EVENT ❑ "

70 DIMA ❑ MA,G ❑ MA,E ❑ ME,S ❑ MH,F ❑ MH
80 DIMW(MA)
90 DIMU%(MH),T(MH),N(MH),U$(MH)

,Y(MH),Z(MH),P(MH),Q(MH)
100 RETURN
110 CLS:PRINT"" ❑ 1 =DEFINE,

2 = DELETE";A$"` ❑ 3 = DEFINE,
4= DELETE EVENT"

120 PRINT"E5 = SAVE INF0RMATI0N,
6= L0AD INF0RMATI0N"'" O 7 =SH0W
DETAILS"

130 PRINT" ❑ 8=CALC WITH AVERAGE
DURATI0NS'"" ❑ 9 = CALC WITH
UNCERTAINTIES' ❑ 13 = QUIT"

140 INPUTT:IFT=13THENEND
150 IFT>100RT<ITHENPRINT"C0DEL";

T;"E N0T UNDERST00D":G0T0280
160 IFT>6THEN260
170 IFT = 6THENCLEAR:T = 6
180 IFT=50RT=6THENINPUT"PLEASE

INPUT FILE NAME",F$:G0T0260
190 F$=A$:IFT>2THENF$="EVENT"
200 PRINTF$;" ❑ NUMBER'""0R ZER0 T0

QUIT"
210 INPUTU:U = INT(U):IFU =0THEN110
220 IFU <10R(U > ZZ)THENPRINT'W$(3):

G0T0200
230 IFT>2THENU= -U
240 G0SUB580:CK= FALSE
250 IF(T=20R T=4)AND(0 =U%(X)0R

ZZ<U%(X))THENPRINT "Y0U HAVEN'T
USED THIS NUMBER":G0T0280

260 0N(T)G0SUB290,480,500,560,630,700,
760,1360,1480

270 IFT<5THEN190
280 G0SUB840:G0T0110
290 JM=3:IFU%(X)>0ANDZZ> = U%(X)

THENCLS:G0SUB850:GOSUB830:G0TO
320

300 IF(AA= MA)THENPRINTW$(2);F$:
RETURN

310 AA= AA + 1:A?AA = X:U%(X) = U
320 PRINTW$(4);F$:INPUTU$(X):XA = X
330 PRINT"START EVENT,FINISH EVENT":

INPUTS%,F%
340 IFS% = F%0RS%<10R(S%>ZZ)0R

F%<10R(F%>ZZ)THENPRINTW$(3):
G0T0330

350 U= -S%:G0SUB580:IFU%(X)<0THEN
380

360 IF(EE=ME)THENPRINTW$(2);"EVENTS":
G0T0330

370 G0SUB540
380 S?XA= X

390 U= -F%:G0SUB580:IFU%(X)<0THEN
420

400 IF(EE=ME)THENPRINTW$(2);"EVENTS"
:G0T0330

410 G0SUB540
420 F?XA = X
430 PRINT"PR0BABLE TIME T0 D0":INPUTT

(XA)
440 IFT(XA) <0THENPRINT"Y0U CAN'T D0

IT THIS FAST":G0T0430
450 INPUT"TIME Y0U ARE 90%

CERTAIN'""1T CAN BE D0NE IN",N(XA)
460 IFN(XA) <T(XA)THENPRINT"THIS

DISAGREES WITH PR0BABLE TIME":
G0T0430

470 RETURN
480 F0RB = 1T0AA:IF(X = A?B)THENA%= B
490 NEXTB:A?A%=A?AA:U%(X) = ZZ +1:

AA=AA-1:RETURN

1V11 !HI
10 PCLEAR1:CLEAR2000:MH =212:ME=

100:MA=100:FA= 0:G0SUB20:CK= FA:
G0T0140

20 ZZ =9999:TR = -1:P$= "INPUTO":
A$= "LACTIVITY":E$ = CHR$(13)

30 DIMW$(5):W$(1) = "N0" + A$+
"D PRECEDES EVENT":W$(2) = "Y0U
CAN'T USE THIS MANY ❑ "

40 W$(3) = "Y0U CAN'T USE THIS
NUMBER":W$(4) = P$+ "TEXT F0R
THIS ❑ "

50 W$(5) = "REFERS T0 UNDEFINED EVENT"
60 DEFFNA(X)= -X * (X<0):DEFFNZ(X)=

-X* (X> 0)
70 DIMA(MA),G(MA)
80 DIMW(MA):DEFFNW(X)= -ABS(X)*

(X< =1) - ABS(2 - X)*(X> 1)
90 DEFFNX(X)=X*(2.37572+ X*X*(15.9402

-X*X*(184.744-X*X*688.472)))/1.20667
100 DIME(ME)
110 DIMS(MH),F(MH),U(MH),T(MH),N(MH),

U$(MH),Y(MH),Z(MH)
120 DIMP(MH),Q(MH)
130 DEFFNU(X)= -U(ABS(X)- (X=0)) *

 (X> 0): RETURN
140 CLS:PR=0:PRINT@11,"MAIN MENU":

PRINT" 1 = DEFINE";A$;" E 0R EVENT":
PRINT" 2 = DELETE";A$;"D0R EVENT"

150 PRINT" 3 = SAVE DATA":PRINT
" 4 = L0AD DATA":PRINT" 5= PRINT
DETAILS":PRINT" 6-QUIT"

160 PRINT" 7= CHECK AND S0RT
NETW0RK"

170 PRINT" 8= CALC WITH AVERAGE
DURATI0NS"

180 PRINT" 9 = CALC WITH
UNCERTAINTIES":PRINT" ?";

190 T$=INKEY$:IFT$ <"1"0RT$ > "9"
THEN190

200 T=VAL(T$):PRINTT

210 IFT>7ANDN0T(CK)THENPRINT" RUN
DATA CHECK (7) FIRST":G0T0380

220 IFAA=0AND(T>40RT=3)THENPRINT
"CAN'T D0 - N0";AS;" ❑ INPUT":G0T0
380

230 IFT>4THEN350
240 I FT = 4TH ENCLEAR2000:T = 4
250 IFT> 2THENPRINT"PLEASE INPUT FILE

NAME":1NPUTF$:G0T0350
260 CLS:PRINTA$;" ❑ 0R EVENT (A/E) ? ";
270 T$ = INKEY$:IFT$ < >"A"ANDT$ < >

"E"THEN270
280 PRINTT$:IFT$="A"THENF$=A$ELSE

F$ = " ❑ EVENT"
290 PRINT:PRINTP$;F$;" ❑ NUMBER":PRINT

"0R ZER0 T0 QUIT"
300 INPUTU:U=INT(U):IFU=0THEN140
310 IFU<10RU>ZZ THENPRINTW$(3):

G0T0280
320 IFT$="E"THENU= -U
330 G0SUB700:CK = FA
340 IF(T=20RT=4)AND(0 = U(X)0RZZ <U

(X))THENPRINT"Y0U NEVER USED THIS
NUMBER":G0T0380

350 0NT G0SUB390,590,750,830,890,960,
1070,1550,1660

360 IFT<3THEN290
370 G0T0140
380 F0RT =1T01000:NEXTT:G0T0140
390 IFF$ < >A$THEN620
400 IFO<U(X)ANDZZ> =U(X)G0SUB1030:

G0SUB1000:G0T0430
410 IFAA= MA THENPRINTW$(2);F$:

RETURN
420 AA = AA + 1:A(AA) =X:U(X) = U
430 PRINTW$(4);F$:INPUTU$(X):XA = X
440 PRINTP$;"START EVENT, FINISH

EVENT":INPUTS,F:S=INT(S):F=INT(F)
450 IFS<10RS>ZZ 0RF<10RF>ZZ THEN

PRINTW$(3):G0T0440
460 U= -S:G0SUB700:IFU(X) <OTHEN490
470 IFEE= ME THENPRINTW$(2);"EVENTS":

G0T0440
480 G0SUB660
490 S(XA) = X
500 U= -F:G0SUB700:IFU(X)<OTHEN530
510 IFEE= ME THENPRINTW$(2);"EVENTS":

GOT0440
520 G0SUB660
530 F(XA)= X
540 PRINTP$;"PR0BABLE TIME T0 D0":

INPUTT(XA)
550 IFT(XA) <0THENPRINT"Y0U CAN'T D0

IT THIS FAST":G0T0540
560 PRINT"INPUT TIME Y0U ARE 90%

CERTAIN":PRINT"IT CAN BE D0NE IN":
INPUTN(XA)

570 IFN(XA)<T(XA)THENPRINT"THIS
DISAGREES WITH PR0BABLE TIME":
G0T0540

580 RETURN

Move on from the idealized shapes
of mathematically generated fractals
to forms which are capable of
modelling the natural world with
convincing reality

In the first article on fractals, you saw how
simple recursive programs can be used to
generate fascinating shapes by the repeated
application of a single operation. These math-
ematically generated patterns display order
and symmetry, but although they also share
many features with the irregular forms found
in nature, they still seem like little more than
interesting curiosities.

Although fractals like these come much
closer to modelling the natural world than is
possible using the perfect shapes of tra-
ditional science, so far, they still fall a long
way short of realism. This article shows how
fractals can model forms found in nature.

The first program draws one of the natural
world's most symmetrical forms—the six
sided shape of a snowflake.

10 BORDER 0:PAPER 0:INK 5:BRIGHT 1:CLS
20 LET AN =2*ATN (1)/3:LET S2 = 2/SQR (3)
30 LET XC =127: LET YC =90:LET

S =120:LET C=2
50 GOSUB 1000
60 STOP
1000 LET S = S/3:IF S<1 THEN LET

S=S*3:RETURN
1020 PLOT INVERSE 1;OVER 1;INT

(XC + STS*SIN (— AN)),(YC — S2*S*COS
(—AN)):FOR K=0 TO 8*ATN (1)—AN
STEP 2*AN

1030 DRAW XC+2*S*SIN (K) — PEEK
23677,YC-2*S*COS (K) — PEEK 23678

1040 DRAW XC+S2*S*SIN (K + AN) — PEEK
23677,YC—S2*S*COS (K +AN) — PEEK
23678

1050 NEXT K
1060 LET C=C-1:GOSUB 1000
1070 LET YC=YC-1.36*S:GOSUB 1000
1080 LET YC=YC+.68*S:LET

XC= XC +1.19*S: GOSUB 1000
1090 LET YC=YC+1.36*S:GOSUB 1000
1100 LET YC=YC+.68*S:LET

XC = XC-1.19*S:GOSUB 1000
1110 LET YC =YC — .68*S:LET

XC = XC —1.19*S:GOSUB 1000
1120 LET YC=YC-1.36*S:GOSUB 1000
1130 LET YC =YC+ .68*S: LET

XC = XC +1.19*S:LET S = SI:LET
C=C+1:RETURN

TIK
10 HIRES 0,1:MULTI 0,1,7: COLOUR 5,5
20 AN =2*ATN(1)/3:52=2/SQR(3)
30 XC =80:YC =99:S =99:C=4
50 GOSUB 1000:FOR D=1 TO 5000:NEXT

D:COLOUR 0,0
60 MULTI RND(1)*16,RND(1)*16,RND(1)*16:

GOTO 60
1000 S = S/3:IF S<1 THEN S= S*3:RETURN
1010 CL=CL+1:IF CL>3 THEN CL=1
1020 XX= INT(XC + S2*S*SIN(—AN)):YY=

INT(YC—S2*S*COS(—AN))
1025 FOR K=0 TO 8*ATN(1) —AN STEP 2*AN
1030 LINE XX,YY,XC + 2*S*SIN(K),YC — 2*S*

COS(K),CL
1040 LINE XC+2*S*SIN(K),YC-2*S*COS(K),

XC+S2*S*SIN(K+AN),YC—S2*S*COS
(K+AN),CL

1045 XX= XC+STS*SIN(K + AN):YY= YC-
S2*S*COS(K + AN)

1050 NEXT K
1060 C=C-1:GOSUB 1000
1070 YC=YC-1.36*S:GOSUB 1000
1080 YC=YC+.68*S:XC= XC +1.19*S:

GOSUB 1000
1090 YC=YC+1.36*S:GOSUB 1000
1100 YC= YC + .68*S:XC = XC —1.18*S:

GOSUB 1000
1110 YC = YC — .68*S:XC = XC —1.19*S:

GOSUB 1000
1120 YC=YC-1.36*S:GOSUB 1000
1130 YC=YC+.68*S:XC=XC+1.19*S:S-

S*3:C= C+1:RETURN

The listing is as for the Commodore 64,
except for the following lines:

10 GRAPHIC 2:COLOR 0,0,1,1
20 AN =ATN(1)/3:SX=2/SQR(3)
30 XC =512:YC =512:S =700
50 GOSUB 1000
60 GOTO 60
1000 S=S/3:IF S<10 THEN S=S*3:

RETURN
1010 CL=CL+1:IF CL>7 THEN CL=1
1020 POINT 0,INT(XC + STS*SIN(—AN)),

INT(YC—S2*S*COS(—AN)):REGION (CL)
1030 DRAW 1 TO XC+2*S*SIN(K),YC— TS*

COS(K)

1040 DRAW 1 TO XC+S2*S*SIN(K +AN),
YC—S2*S*COS(K +AN)

10 MODE1
20 VDU23;8202;0;0;0;19,1,4;0;19,2,6;0;
30 PROCSTAR(640,512,500,0)
40 END
50 DEFPROCSTAR(X,Y,S,C)
60 LOCAL I
70 IF S<16 THEN ENDPROC
80 IF C=4 THEN C=1
90 GCOL0,C
100 VDU29,X;Y;
110 XL = S*COS(PI/6):YL = S/2
120 MOVE0,S:MOVEXL, —YL:PLOT85, —XL,

—YL
130 MOVED, — S: MOVEXL,YL: PLOT85, — XL,

YL
140 PROCSTAR(X,Y,S/3,C +1)
150 FORI = 0T02*PI — PI/3STEPPI/3
160 PROCSTAR(X+S*SIN(1) * .68,Y+S*COS

(1) * .68,S/3,C + 2)
170 NEXT
180 ENDPROC

1M 'HI
10 PMODE3,1:PCLS:SCREEN1,0
20 AN =2*ATN(1)/3:S2=2/SQR(3)
30 XC =127:YC=95:S =135:C =4
50 GOSUB1000
60 GOT060
1000 S=S/3:IF S<1 THEN S= S*3:

RETURN
1010 IF C=2 THEN COLOR4 ELSEIFC =1

THENCOLOR2 ELSECOLORC
1020 DRAW"BM"+STR$(1NT(XC+S2*S*SIN

(—AN))) +"," + STRUNT(YC— S2*S*
COS(—AN))):FORK =0T08*ATN(1) —AN
STEP 2*AN

1030 LINE — (XC +2*S*SIN(K),YC-2*S*COS
(K)),PSET

1040 LINE — (XC + S2*S*SIN (K + AN),YC —
S2*S*COS(K+AN)),PSET

1050 NEXT:PAINT(XC,YC)
1060 C = C-1:GOSUB1000
1070 YC=YC-1.36*S:GOSUB1000
1080 YC=YC+.68*S:XC= XC +1.19*S:

GOSUB1000
1090 YC =YC +1.36*S:GOSUB1000
1100 YC = YC + .68*S:XC = XC —1.19*S:

MODELS OF SYMMETRY
SNOWFLAKE PROGRAM

MODELS OF UNCERTAINTY
COMPUTER MOUNTAIN

SHAPE GENF7ATOR PROGRAM

Advanced fractal techniques are respo-
nsible for some of the most convincing
images yet generated using computer
graphics* The large mountainscape
shown here exists only in the memory of
a computer, but could easily pass for the
real thing*

An image of this complexity takes
masses of processing time on huge, spec-
ialized computers, but similar techni-
ques can be applied on home micros as
shown by the Spectrum mountain
image*

GOSUB1000
1110 YC =VC— .68*S:XC = XC-1.19"S:

GOSU B1000
1120 YC=YC-1.36*S:GOSUB1000
1130 YC=YC + .68*S:XC= XC +1.19*S:S=

S*3:C=C+1:RETURN

This program is based on the snowflake curve
originally drawn by von Koch. It can be
regarded as either an infinitely crinkled snow-
flake or an island of infinite coastline. The
program specifies (Line 20) an equilateral
triangle (in which all three angles are 60° and
all sides are equal), with a size factor set to S2.
Line 30 sets up X and Y coordinates for the
centre, a scale factor for the size of each
triangle and a variable to vary the colour* Line
50 calls a recursive subroutine, which draws a
six-sided star-shaped figure.

SYMMETRY AND CHAOS
Despite the outline's irregularity, much of the
symmetry of the star-shape remains. Symme-
try is necessary for modelling shapes like the
snowflake, which combine order and chaos,
and such shapes are common in Nature. But
many natural structures that can best be
understood as fractals are totally lacking in
symmetry. Examples of these are the bends of
the Mississippi River, the surface of a soap-
flake, the holes in a Swiss cheese, the craters of
the Moon, the veins and arteries of the body
and the shapes of mountains. What distingu-
ishes these from the symmetrical, mathemati-
cally generated shapes is that they also contain
a degree of randomness. But it is possible to
generate this, too, by using the computer's
own random number generator. Here, for
example, is a program to model a mountain:

a
10 BORDER 0:PAPER 0:INK 7:BRIGHT 1 :CLS
15 PRINT AT 6,2;INVERSE 1;

"0 FRACTAL MOUNTAIN GENERATOR ❑ "

20 DIM C(200,2,2):LET F =1:LET G =2:LET
C(1,1,2) =25:LET C(1,1,1)=0

22 INPUT "ENTER 'RESOLUTION' 0F
MOUNTAIN [16-100] ? ❑ ";S

23 IF S<16 OR S>100 THEN GOT0 22
24 INPUT "ENTER DEGREE OF

'RUGGEDNESS' YOU REQUIRE [1 T0
5] ?11I";RG

25 IF RG <1 OR RG >5 THEN GOTO 24
26 DEF FN R(X)= RG — ((RND*X)*(2*FiG))
27 PAPER 1:CLS
30 LET L=230/S:LET H =L/(SQR 3)
40 FOR K=2 TO S + 1:LET C(K,1,1)=C

(1,1,1) + UK— FN R(1):LET C(K,1,2) =
C(K —1,1,2) — FN R(1):NEXT K

50 FOR J=1 TO S:FOR K=1 TO S—J +1
60 LET C(K,G,1)= FN R(1) + (C(K,F,1)+ C

(K+ 1,F,1))/2
70 LET C(K,G,2) = FN R(1) + H + (C(K,F,2) +

C(K +1,F,2))/2
80 PL0T C(K,F,1),C(K,F,2):DRAW C(K +1,F,

1)— PEEK 23677,C(K +1,F,2)— PEEK
23678

90 DRAW C(K,G,1)— PEEK 23677,C(K,G,2) —
PEEK 23678:DRAW C(K,F,1)— PEEK 23677,
C(K,F,2)— PEEK 23678

100 NEXT K:LET F =3— F:LET G =3— F:
NEXT J

110 F0R y=40 T0 0 STEP —.75
120 PL0T 0,y
130 F0R n =1 T0 100
140 LET a = RND * 10
150 LET b= 5 —RND * 10
160 IF a + PEEK 23677 > 255 THEN LET

n =100:DRAW 255 — PEEK 23677,b:G0TO
190

170 IF (PEEK 23678) + b < 0 THEN G0T0 150
180 DRAW a,b
190 NEXT n
200 NEXT y
210 F0R m = USR "a" TO USR "a" +7:READ

a:P0KE m,a:NEXT m
220 DATA 16,56,84,16,56,84,146,16
230 F0R n =1 TO 80
240 PRINT AT 17 + INT (RND*4),RND*31;

BRIGHT 1;PAPER 4;INVERSE 1;CHR$ 144;
250 NEXT n
260 PRINT #1;INVERSE 1;AT 0,4;

❑ RES'=";S;"E ❑ ❑
RUGGEDNESS =";RG;" ❑ "

270 G0T0 270

10 HIRES 0,1:MULTI 5,13,0:C0L0UR 6,14:
X=1

15 BL0CK 0,100,159,199,3:F0R Z=1 T0 80:
PL0T RND(1) * 160,RND(1) * 100,2:NEXT Z

16 F0R Z=1 T0 20:LINE 0,100 + XX,159,
100 + XX,9:X = X + .4:XX = XX + X:NEXT Z

20 DIM C(200,1,1):F= 0:G =1:C(0,0,1) =
150:C(0,0,0) =10

30 S=50:L=140/S:H = L/SQR(2)
40 F0R K=1 T0 S:C(K,0,0) = C(0,0,0)

K-3 + RND(1)*6
45 C(K,0,1) =C(K-1,0,1) —3 + RND(1) * 6:

NEXT K
50 F0R J=1 T0 S:FOR K = 0 TO S —J
60 C(K,G,0) =3 — RND(1)*6 + (C(K,F,0) +C

(K+1,F,0))/2
70 C(K,G,1) =3— RND(1) * 6— H + (C(K,F,

1)+C(K+1,F,1))/2
80 LINE C(K,F,0),C(K,F,1),C(K+1,F,0),C

(K+1,F,1),1
90 LINE C(K+1,F,0),C(K+1,F,1),C(K,G,0),C

(K,G,1),2
95 LINE C(K,G,0),C(K,G,1),C(K,F,0),C(K,F,1),3
100 NEXT K:F = 1 — F:G =1 — F:NEXT J
110 G0T0 110

10 GRAPHIC 1:C0L0R 1,1,5,6
15 DRAW 2,0,700 T0 1023,700:

PAINT 3,0,800
20 DIM C(100,1,1):F = 0:G =1:C(0,0,1) =

850:C(0,0,0) = 28

30 S=20:L=800/S:H= L/SQR(1)
40 F0R K=1 T0 S:C(K,0,0) = C(0,0,0) + L *

 K-10+ RND(1)*20
45 C(K,0,1)=C(K-1,0,1)-10+RND(1) *

 20:NEXT K
50 F0R J=1 TO S:F0R K=0 T0 S—J
60 C(K,G,0)=20—RND(1)*40 + (C(K,F,0) +

C(K+1,F,0))/2
70 C(K,G,1) = 20— RND(1)*40 — H + (C(K,F,

1)+C(K+1,F,1))/2
75 CL= (RND(1) * 2) + 2
80 DRAW CL,C(K,F,0),C(K,F,1) T0 C(K +1,F,

0),C(K + 1,F,1)
90 DRAW CL TO C(K,G,0),C(K,G,1) T0 C(K,F,

0),C(K,F,1)
100 NEXT K:F =1 — F:G =1 — F:NEXT J

1E1
10 M0DE1
20 DIMC(200,1,1):F = 0:G = 1:C(0,0,1) =

150:C(0,0,0)=128
30 5=64:L=1024/S:H= L/SQR (2) Alwe'
40 F0RK = 1T0S:C(K,0,0) = C(0,0,0) +

—5+ RND(10):C(K,0,1) = C(K —1,0,1)
—5+ RND(10):NEXT

50 F0RJ =1T0S:F0RK = 0T0S —J
60 C(K,G,0) =20 — RND(40)+ (C(K,F,0)+C

(K+1,F,0))/2
70 C(K,G,1) = 20 — RND(40) + H+ (C(K,F,1)

+C(K+1,F,1))/2
80 M0VEC(K,F,0),C(K,F,1):DRAWC(K +1,F,

0),C(K+ 1,F,1)
90 DRAWC(K,G,0),C(K,G,1):DRAWC(K,F,0),

C(K,F,1)
100 NEXT:G= F:F =1 — F:NEXT

n
10 PMODE4,1:PCLS: SCREEN1,1
20 DIMC(200, 1, 1):F = 0: G=1: C(0,0,1)

=150: C (0, 0, 0)=10
30 S = 80:L = 230/S:H=L/ SQR (3):

DEFFNR (X) =3 — RND (0) * 6
40 F0R K =1T0 S: C(K, 0, 0)=C (0, 0,

0) + L*K— FNR (0): C(K,0,1)= C(K —1,
0, 1)—FNR (0): NEXT

50 F0RJ =1 T0 S: F0RK= 0 T0 S—J
60 C(K,G,0) = FNR (0) + (C(K,F,O)

+C(K+1, F, 0)) /2
70 C (K, G, 1)= FNR (0) —H+

(C(K,F,1)+C (K+1, F, 1))/2
80 LINE (C(K, F, 0), C(K, F, 1)) — (C(K +1,

F, 0), C(K+1, F, 1)), PSET
90 LINE—(C (K,G,0), C(K, G, 1)), PSET: LINE

— (C(K,F,0), C(K, F, 1)), PSET
100 NEXT:F=1 — F: G =1— F: NEXT
110 G0T0110

The program draws small, irregular triangles,
starting from the bottom left of the screen,
and builds up the image as plotting continues
across and up the screen.

Line 30 sets a size factor for the fractal tri-
angles and specifies the length of one side and
the height of the triangles. Line 40 loops 200
times, setting two array variables to the
starting coordinates for each fractal triangle.
Notice that there is a random factor, so the
values will vary within a small range each time
you RUN the program. Line 50 sets up two
loops—one to move across the screen and
draw triangles, and another to move up the
screen.

The vertex of each triangle is specified at
Lines 60 (the X coordinate) and 70 (the Y
coordinate). Line 80 moves the cursor to the
left-hand corner of the triangle, then draws
the base. In the Spectrum program, notice the
PEEKS subtracted from the coordinates to
specify absolute points on the screen—
without these, some points would lie off
screen, and so cause an error when the
computer tries to DRAW them. Line 90 DRAWS
to the vertex of the triangle, then to the left
corner—the start. Line 100 completes the
first loop—to draw triangles across the
screen—then sets variables to move the plott-
ing position up screen and begin the next row
of triangles. In the Spectrum version only, the
rest of the program fills in the foreground to
complete the picture.

MULTIPLE SHAPES
Changing the values of some of the variables
in the programs you have seen so far will give
different shapes. But the variation only affects
the size, position and detail of the image, not
its overall shape. The next program lets you
specify any of a range of fractal elements, then
see a fractal model built up from that parti-
cular shape. The large number of subroutines
in this listing limits the number of levels of
recursion and therefore the detail of the image
drawn by the Commodores, so an alternative
program which is suitable for the Commo-
dore 64 is given later.

10 P0KE 23658,8:LET F = 0:LET A$="":LET
CL =1

20 DIM X(100):DIM Y(100):DIM T(30):DIM
U(30):DIM V(60):DIM W(60):DIM J(100)

25 B0RDER 0:PAPER 7:INK 0:CLS
30 G0SUB 140
40 GOSUB 350
50 INPUT "No OF LEVELS 0F RECURSI0N —

171";NR:IF ABS (INT (NR)) <1 THEN
G0T0 50

60 LET F = 1:LET N = 0:CLS
70 PL0T INVERSE 1;0VER 1;INT(127+X(P)),

INT(85+Y(P))
80 G0SUB 500:IF P> =2 THEN G0T0 80
90 LET A$=INKEY$:IF A$="" THEN GOT0

90
100 PRINT # 1;"Q T0 QUIT, ANY 0THER T0

C0NTINUE"
110 LET A$=INKEY$:IF A$="" THEN G0T0

110
120 IF A$< >"Q" THEN G0T0 25
130 CLS :STOP
140 IF F=0 THEN G0T0 170
150 PRINT "SAME INITIAL SHAPE [Y/N]

? ❑ ";
160 LET A$=INKEY$:IF A$ < >"Y" AND

A$< >"N" THEN G0T0 160
165 PRINT A$
170 IF F=0 0R A$ = "N" THEN G0SUB 230
180 F0R K=2 T0 CV+1
190 LET P = K —1
200 LET X(P) =T(K):LET Y(P) = U(K)
210 NEXT K
220 RETURN
230 INPUT"N0 0F VERTICES IN INIT' ❑ ";VT
240 F0R L=2 T0 VT + 1
250 INPUT "VERTEX ";(L —1);" ="'X,Y
260 LET T(L) =X*85: LET U(L)=1/ * 85
270 IF L=2 THEN PL0T INT (127 +T(L)),INT

(85+ U(L))
275 IF L< >2 THEN DRAW

127 + T(L) — PEEK 23677,85+ U(L)— PEEK
23678

280 NEXT L
290 PRINT "CL0SED CURVE [Y/N] ?0";
300 LET A$=INKEY$: IF A$ < >"N" AND

A$< >"Y" THEN G0T0 300
305 PRINT A$
310 IF A$="N" THEN LET CV = VT:PAUSE

0:RETURN
320 LET CV = VT + 1:LET T(CV + 1) = T(2):

LET U(CV +1) = U(2)
330 DRAW 127 + T(CV) — PEEK 23677,85+U

(CV) — PEEK 23678
340 RETURN
350 CLS IF F=0 THEN G0T0 380
360 PRINT "SAME GENERAT0R [Y/N] ? ❑ ";
370 LET A$ = INKEY$:IF A$ < >"Y" AND

A$< >"N" THEN GOTO 370
375 PRINT A$
380 IF F= 0 0R A$="N" THEN GOSUB 400
390 RETURN
400 INPUT "NO OF VERTICES IN

GENERAT0R NOT INCLUDING ENDS
(0,0) AND (1,0) ❑ ";GN

420 PL0T INVERSE 1;0VER 1;85,85
430 F0R M =2 T0 GN +1
440 INPUT "GENERAT0R VERTEX ❑ ";

(M-1); " ='"X,Y
450 IF ABS(INT (X)) >1 0R ABS(INT (Y)) >1

THEN G0T0 440
460 LET V(M)=X:LET W(M) = Y:LETX = X

*85+85:LET Y =85 + Y*85:DRAW
X— PEEK 23677,Y— PEEK 23678

470 NEXT M
480 DRAW 175—PEEK 23677,85—PEEK

23678:PAUSE 0
490 RETURN
500 IF NR =N THEN GOSUB 520
505 IF NR < >N THEN GOSUB 570
510 RETURN
520 FOR W=1 TO GN+1
530 LET P = P -1
540 IF ABS X(P) >127 OR ABS Y(P) > 85 411

THEN GOTO 560
550 DRAW 127 + X(P) - PEEK 23677,

85 + Y(P) - PEEK 23678
560 NEXT W:RETURN
570 LET N=N +1
580 IF N=1 THEN LETJM=CV-119
585 IF N< >1 THEN LET JM =GN +1
590 FOR E =1 	JM
595 IF P=1 THEN LET E=JM:NEXT

E:RETURN
600 LET TX = X(P):LET TY = Y(P)
610 LET BX=X(P-1):LET BY=Y(P-1)
620 LET DX =TX - BX:LET DY =TY - BY
630 FOR F=2 TO GN+1
640 LET X(P)=DX*V(F)- DY*W(F)+BX
650 LET Y(P) = DY*V(F) + DX*W(F)+ BY
660 LET P= P +1
670 NEXT F
680 LET X(P) =TX:LET Y(P) =TY
690 LET J(CL)= E:LET CL=CL+1:GOSUB

500:LET CL=CL-1:LET E=J(CL)
700 NEXT E
710 LET N=N-1
720 RETURN

10 DIMX(50) ,Y(50) ,XT(10) ,YT(10) ,XG(20)
,YG(20) ,J(50)

15 F=0:A$="":CL= 0
20 MODE1:VDU28,0,2,39,0
30 GOSUB140
40 GOSUB350
50 INPUT"NO OF LEVELS OF

RECURSION ❑ ";NR%:IF NR%<1THEN50
60 F =1:N =0:CLG
70 MOVE 640+ X(P) ,480 + Y(P)
80 GOSUB500:IFP >0THEN80
90 VDU7
100 CLS:PRINT"Q TO QUIT, ANY OTHER KEY

TO CONTINUE"
110 A$=GET$
120 IF A$="Q" THEN CLS:END ELSE 20
140 IFF=0THENGOSUB230:GOT0180
150 INPUT"SAME INITIAL SHAPE (Y/N)?";A$
170 IF A$="N" THEN GOSUB230
180 FORK=1TOCV
190 P= K -1
200 X(P) =XT(K):Y(P) =YT(K)
210 NEXT
220 RETURN
230 INPUT"NO OF VERTICES IN INITIAL

SHAPEO";VT%:IFVT%<1THEN230
240 FORL=1TOVT%

250 PRINT"VERTEX ❑ ";LONPUT" ❑ - ❑ "

X,Y:IF ABS(X)>10RABS(Y)>1THEN250
260 XT(L) = X*512:YT(L) =Y*420
270 IFL=1THENMOVE640 +XT(L) ,480 +YT

(L)
280 DRAW640 +XT(L),480+YT(L):NEXT
290 INPUT"CLOSED CURVE (Y/N)?";A$
310 IFA$="N"THENCV= VT%:DEL-=

INKEY(200): RETURN
320 CV = VT%+1:XT(CV) = XT(1):YT(CV)

=YT(1)
330 DRAW640+XT(CV) ,480 +YT(CV)
340 RETURN
350 CLS: IFF= 0 THEN 380
360 INPUT"SAME GENERATOR (Y/N)?";A$
380 IF A$="N" OR F=0 THEN GOSUB 400
390 RETURN
400 PRINT"NO OF VERTICES IN

GENERATOR"
410 INPUT"NOT INCLUDING ENDS (0,0)

' AND (1,0)";GN%:IFGN%<1 THEN410
420 CLG:MOVE640,480
430 FORM =1TOGN%
440 PRINT"GENERATOR VERTEX ❑ ";M;:

INPUT" ❑ - ❑ "X,Y
450 IF ABS(X) >10R ABS(Y) >1 THEN 440
460 XG(M)=X:YG(M) =Y:X= X*512 +640:

Y= Y*420 +480:DRAWX,Y
470 NEXT
480 DRAW1152,480
490RETURN
500 IF(NR%=N)GOSUB520ELSE GOSUB 570
510 RETURN
520 FORL = 1TOGN%+ 1
530 P=P-1
550 DRAW640+X(P) ,480+Y(P)
560 NEXT:RETURN
570 N=N+1
580 IFN =1THENJM =CV-1 ELSE

JM=GN%+1
590 FORJ =1TOJM
600 TX= X(P):TY=Y(P)
610 BX=X(P-1):BY=Y(P-1)
620 DX = TX - BX:DY =TY - BY
630 FORE =1TOGN%
640 X(P) = DX*XG(E) - DY*YG(E) + BX
650 Y(P) = DrIG(E) + DX*YG(E) + BY
660 P = P + 1
670 NEXT
680 X(P) =TX:Y(P) =TY
690 J(CL) = J:CL = CL + 1:GOSUB500:

CL=CL-1:J=J(CL)
700 NEXT
710 N = N -1 di
720 RETURN

10 DIMX(50),Y(50),XT(10),YT(10),XG(20),
YG(20),J(50)

20 PMODE4,1:COLOR0,1:PCLS:CLS
30 GOSUB140

40 GOSUB350
50 INPUT"NO. OF LEVELS OF

RECURSION -";NR:NR=INT(NR):IF
NR <1 THEN 50

60 F =1:N =0:PCLS:SCREEN1,0
70 LINE- (127 + X(P),96 - Y(P)),PRESET
80 GOSUB500:IF P>0 THEN 80
90 A$=INKEY$:IF A$="" THEN 90
100 CLS:PRINT"Q TO QUIT, ANY OTHER

KEY TO ❑ 111 ❑ ❑ ❑ CONTINUE"
110 A$=INKEY$:IF A$="" THEN 110
120 IF A$< >"Q" THEN 20.0%
130 CLS:END
140 IF F=0 THEN 170 4'

150 PRINT"SAME INITIAL SHAPE (Y/N) ?";
160 A$=INKEY$:IF A$< >"Y" AND aa

A$< >"N" THEN 160 ELSEPRINTA$
170 IF F=0 OR A$="N" GOSUB 230 ;71
180 FORK=1TOCV
190 P= K-1
200 X(P)=XT(K):Y(P)=YT(K)
210 NEXT
220 RETURN
230 INPUT"NO. OF VERTICES IN INITIAL

SHAPE 0";VT:VT =INT(VT):IF VT <1
THEN 230

240 FORL =1 TO VT
250 PRINT"VERTEX ❑ ";L;:INPUT" ❑ - ❑ ";

X,Y:IF ABS(X) > 1 OR ABS(Y) >1 THEN
250

260 XT(L) = X*95:YT(L) =Y*95
270 IF L=1 THENLINE- (127+ XT(L),96-

YT(L)),PRESET ELSE LINE- (127 + XT(L),
96 - YT(L)),PSET

280 NEXT
290 PRINT"CLOSED CURVE (Y/N) ?";
300 A$=INKEY$:IF A$ < >"N" AND

A$< >"Y" THEN 300 ELSEPRINTA$
310 IF A$="N" THEN CV = VT:GOSUB730:

RETURN
320 CV = VT + 1:XT(CV) = XT(1):YT(CV) = YT

(1)
330 LINE- (127 + XT(CV),96 - YT(CV)),PSETA

GOSUB730
340 RETURN
350 PCLS:IF F=0 THEN 380
360 PRINT"SAME GENERATOR (Y/N) ?";
370 A$=INKEY$:IF A$ < >"Y" AND

A$< >"N" THEN 370 ELSEPRINTA$
380 IF F=0 OR A$="N" GOSUB 400
390 RETURN
400 PRINT"NO. OF VERTICES IN

GENERATOR"
410 INPUT"NOT INCLUDING ENDS (0,0)

AN D111 ❑ ❑ D (1,0) ❑ - ❑ ";GN:GN =
INT(GN):IF GN <1 THEN 410

420 DRAW"BM80,96"
430 FOR M=1 TO GN
440 PRINT"GENERATOR VERTEX";M;:INPUT

"0 - ❑ ";X,Y
450 IF ABS(X) >1 OR ABS(Y) >1 THEN 440

An example of the shape generator in action

460 XG(M) = X:YG(M) = Y:X = X*95 + 80:Y =
96 — Y*95:LINE — (X,Y),PSET

470 NEXT
480 LINE — (175,96),PSET:GOSU B730
490 RETURN
500 IF NR = N GOSUB520 ELSEGOSUB570
510 RETURN
520 FORL=1TOGN +1
530 P = P —1
540 IF ABS(X(P)) > 127 OR ABS(Y(P))> 95

THEN 560
550 LINE— (127 + X(P),96—Y(P)),PSET
560 NEXT:RETURN
570 N = N +1
580 IF N=1 THEN JM = CV —1 ELSE

JM=GN+1
590 FORJ =1TOJM
600 TX = X(P):TY =Y(P)
610 BX=X(P-1):BY=Y(P —1)
620 DX = TX — BX:DY = TY— BY
630 FORE = 1TOG N
640 X(P) = DX*XG(E) — DrYG(E) + BX
650 Y(P) = DY*XG(E) + DX*YG(E) + BY
660 P=P+1
670 NEXT
680 X(P) = TX:Y(P) = TY
690 J(CL)=J:CL= CL+1:GOSUB500:CL=

CL — 1:J = J (CL)
700 NEXT J
710 N = N —1
720 RETURN
730 A$= I NKEY$:SCREEN1,0:K =1000
740 K=K-1:IF K>0 AND INKEY$=`"'

THEN 740

750 RETURN

When you RUN the program, Line 230 asks
you how many corners (vertices) you want in
the shape that forms the starting point for the
fractal. It's best to draw the shape out first on
a sheet of paper. Mark two dots representing
the start and end of the line then link these
with a number of short straight lines. Count
up the number of corners and enter this into
the program. But remember that you will
then have to specify coordinates (Line 250)
for all the corners, so keep the number
small—three or four, say. The coordinates
should be given values between 0 and 1. The
loop between Lines 240 and 280 lets you
enter coordinates and draw the initial shape.
You can then choose whether the figure you
have specified should be closed or left with an
opening (Line 290).

The next input stage lets you specify the
shape with which each straight line will be
replaced—this shape is usually called the
generator. Draw this out and enter the in-
formation as you did for the initial shape—the
subroutine that inputs and draws the shape
lies between Lines 400 and 490. Now you are
asked to specify the number of levels of
recursion. When you have entered the value,
Line 80 calls a subroutine to determine
whether the program is being run for the first
time (in which case it branches to the main
routine—Lines 570 to 720—to draw the
fractals), or whether it should recycle and give

you the option to redefine the generator.

TESTING
As an example, enter a value of 3 for the
number of vertices in the initial shape* Then
enter coordinates — .5, — .2 for vertex 1; 0,
0.4 for vertex 2; 0.5, —0.2 for vertex 3* If
now you reply N to the prompt 'CLOSED
CURVE ?', a triangle without the base drawn
will appear on the screen* Similarly, if you
enter 3 for the number of vertices in the
generator, you could specify coordinates: 0.2,
0 for vertex 1; 0.4, 0.8 for vertex 2; 0.6, 0 for
vertex 3. This gives a shape of a base-less
triangle sitting on a line. Now enter about 5
for the level of recursion, and see what fractal
is drawn.

10 PRINT "Q"
20 CX =160:CY =100:1T = 0
30 X = .50001:Y = 0
40 GOSUB 330
50 HIRES 0,1
60 GOSUB 110
70 FOR I=1 TO 10:GOSUB 250:

NEXT I
80 GOSUB 380
90 GOSUB 250
100 GOTO 80
110 T = Y
120 S = SQR((n) + (rY))
130 Y =SQR((— X + S)/2)
140 X = SQR((X + S)/2)
150 IF T<0 THEN X= —X
160 RETURN
170 S. (AVAX) + (AY*AY)
180 AX=6*(AX/S)
190 AY = —6*(AY/S)
200 RETURN
210 TX = X: TY = Y
220 X = (TX*AX) — (TY*AY)
230 Y = (TX*AY) + (TY*AX)
240 RETURN
250 GOSUB 210
260 X =1 — X
270 GOSUB 110
280 IF RND(1)<.5 THEN X= —X
290 IF RND(1)<.5 THEN Y= —Y
300 X =1 — X
310 X = X/2:Y = Y/2
320 RETURN
330 PRINT "ENTER X & Y FACTORS":

INPUT AX,AY
340 PRINT "ENTER SCALE FACTOR":

INPUT OP
350 GOSUB 170
360 SC =2*CX/OP
370 RETURN
380 PLOT SC*(X — .5) + CX,CY — SC * Y,1
390 RETURN

Id de,258
call 58970
Id de,30
Id h1,878
Id a,r
Id I,a
call 949
Id hl,(57332)
Id de,704
sbc hl,de
jr c,dead
Id a,9

Id (60005),a
Id a,(57343)
dec a
Id (57343),a
jp nz,58606
Id h1,330
Id a,142
Id b,11
Id ix,57992
call 58155
call 58939
Id de,261

Death comes to all of us—but to
none more often than Willie* He
expires five times every game, but
he still lives to climb the cliff again
another day!

However good you are at playing games the
grim reaper is bound to get his hands on
Willie sooner or later. But don't be too upset.
He does have five lives—not as many as a cat
but a good many more than poor normal
mortals. When he is dead, you have to bury
him, reset all the variables and check whether
the game is over.

On the Commodore and Acorn computers
you are also getting some sound effects. The
sounds you can get from the Spectrum are
much simpler and are supplied in the
programs as you go along. And though the
Dragon and Tandy can produce fairly so-
phisticated sounds they have to be produced
using processor time. On the Commodore
and Acorn there are separate chips which can
produce sounds while the main processor is

doing something else—but on the Dragon and
Tandy the main processor has to be used, so
you cannot make a sound and play the game at
the same time.

The following routine kills off Willie and
checks to see whether he can be resurrected.

org 59652
die Id de,196

Id h1,1086
call 949
Id de,131
Id h1,1646
call 949

dead Id hl,(57332)
Id bc,15616
Id a,45
call 58217

Id de,32
add hl,de
Id (57332),hI
Id bc,57000
Id a,40

FOR WHOM THE BELL TOLLS
DROPPING DOWN THE SCREEN

DECREMENTING LIVES
PRINTING UP SCORE

ENDING THE GAME

The 'CLIFFHANGER' listings published in this
magazine and subsequent parts bear absolutely no
resemblance to, and are in no way associated with,
the computer game called 'CLIFF HANGER' re-
leased for the Commodore 64 and published by
New Generation Software Limited.

Id h1,1646
call 949
Id de,392
Id h1,1086
call 949
Id de,261

Once Willie has fallen down a hole, been
bitten by snakes, hit by a boulder or drowned
in the sea, the first thing that happens is that
his death knell is sounded. In fact, two bells
are tolled to give the correct sombre sound.
This is done by calling the BEEPER routine>

943 twice and feeding different parameters to
it each time through the HL and DE registers.
For details of how the pitch and duration of
the bell tolls are worked out see page 732.

DESCENT INTO THE INFERNO
When Willie is dead he descends to the
inferno that lies just off the bottom of the
screen. And to do that you start off by
blanking out his head—you don't want a
string of decapitated heads left down the
screen!

So Willie's screen position—which points
to the position of his head—is loaded up from
its storage location 57,332 into the HL regis-
ter. BC is loaded with the address of blank sky
at the top of the screen. A is set to cyan on
cyan. And the print routine at 58,217 is called
which prints a piece of sky over Willie's head.

Then 32 is added to the screen pointer in
HL, via the DE register. This moves it one
line down the screen. The result is stored back
in 57,332 to update that pointer, too.

BC is loaded up with the start address of
the picture of Willie with his legs together. A
is set to Willie's colours, blue on cyan. DE is
loaded with 258, specifying a block of one by
two—the width of the block is specified by the
contents of the D register and the depth is
specified by the contents of the E register
1 x 256 + 2 = 258. And the block print
routine, blk, at 58,970 is called. This prints a
picture of Willie with his legs together one
square down the screen from the position of
his last appearance.

And while Willie descends, a celestial siren
sounds. Again the DE and HL register pairs
are loaded with parameters to be passed into
the BEEPER routine when it is called at 949.
But this time, instead of a constant tone, the
program needs a sort of warbling sound. This
is done by loading the contents of the refresh
register, R, into the low byte of the HL
register which is just plain L. It's done via the
accumulator because there is no Id I,r
command.

The refresh register is used to refresh
dynamic memory. This is a hardware facility
that you needn't bother with here. The
important thing about the refresh register is
that it has a different value in it each time you
look at it. So each time this part of the routine
is performed it will produce a different pitch.

SIX FOOT UNDER
The position of Willie's head is loaded into
HL from 57,332 again and 704 is loaded into
DE and subtracted from the contents of HL.
704 is 32 x 22, so it marks the beginning of
the second to last line. As Willie is two
character squares high, this subtraction sets
the carry flag until Willie's feet have touched
the bottom of the screen.

Id h1,1646
call 949
Id a,50
Id (58734),a
jp 58576

While the carry flag is still set, jr c,dead
takes the processor back to the beginning of
the burial routine again. Willie will be buried
one character square deeper and more
celestial sirens will wail—at a different pitch.
But when Willie's feet touch the floor of the
upper world, he has been buried deep
enough. The carry flag will no longer be set
by the subtraction and the jump will no
longer be made. The processor will proceed
with the next instruction.

With Willie in Hades it's time to play a
happy little sound. So A is loaded with 9 and
the sound routine at 60,006 is called. This
plays a short version of the tune. For details of
how the music routine works see Cliffhanger
on page 966.

Then the number of lives have to be
updated—or rather, downdated. Willie has
lost a life. So the number of lives is loaded up
into the accumulator from 57,343, decremen-
ted and stored back in 57,343.

If there are still some lives left, the jp nz
instruction sends the processor back to the
initialization program at 58,606. If not, the
processor proceeds into the game-over
routine.

CHARNEL NUMBER FIVE
When Willie has been killed five times, the
game is over and you need to print 'GAME
OVER!!' This is done by calling the message,
or me, routine at 58,155. But as always
parameters have to be fed through to it in the
HL, A, B and IX registers.

The print position is carried in HL. The
colour is set in A. B carries the message length
and IX is used as the data pointer. The
message data is at 57,892.

The routine that prints up the score at
58,939 is then called to print up the final
score.

Next, the chimes that signal the end of the
game sound. These are produced by calling
the BEEPER routine at 949 three times with
different values in HL and DE each time to
produce different tones.

The initial delay value is then reset by
loading the accumulator with 50 and loading
it into memory location 58,732. Then the
processor jumps back into the game at 58,578
and sets it up for you to try again if that's what
you fancy.

On the Commodore, checking to see whether
Willie is dead is a relatively easy matter. You
simply have to check for sprite collisions.
This routine does that—and takes the appro-
priate action to bury poor Willie six foot
under.

ORG 25680
LDA $D01E
STA $035C
LDA $D01F
STA $035D
LDA $035C
AND # 64
BEQ AA
LDA #4
STA $0384
JSR $6850
INC $C000
LDA # 155
RTS

AA LDA $035C
AND #1

Memory location $D01E is the sprite-to-
sprite collision detection register. Each sprite
has a bit in this register and whenever a sprite
is in collision with another sprite the appro-
priate bit in this register is set.

And memory location $D01 F is the sprite-
to-UDG collision detection register. Whene-
ver a sprite is involved in a collision with a
UDG, the appropriate bit is set.

THINGS THAT GO BUMP
The contents of the sprite-to-sprite collision
detection register are loaded up into the ac-
cumulator and stored in $035C, which is a
convenient location in the cassette buffer for
temporary storage. Then the contents of the
sprite-to-UDG collision detection register
are loaded into the accumulator and stored in
$035D.

When these two registers are read by
loading their contents into a register, they are
automatically cleared, ready to detect the next
collision. So if a particular register has to be
referred to more than once, you have to store
the contents in a convenient location.

REWARDING COLLISION
Not all the collisions Willie makes are unplea-
sant. Sometimes he bumps into a reward.

The rewards are in sprite six. So the
contents of $035C are loaded into the ac-
cumulator and AN Ded with 64. This isolates
bit six. If it is not set—and Willie has not yet
reached his reward—the BEQ instruction
branches forward over the next part of the
routine.

But if bit six is set, the branch is not made
and the processor goes to the next instruc-
tion. The accumulator is loaded with 4 which
is then stored in memory location $0384.
This is the location that is used to pass
parameters into the sound effects routine at
$6850. You will see this listing in a moment.
A 4 in $0384 makes that routine play the

winning sound, and when the processor
jumps to the subroutine at $6850 it does just
that.

When it comes back it moves up a level by
incrementing the level number which is
stored in memory location $C000. Then the
accumulator is loaded with 155 and the
processor hits the RTS and returns.

This routine uses the accumulator to carry
parameters out of the routine. These depend
on the nature of the collision and tell other
routines what to do next.

COLLISION COURSES
The contents of $035C are loaded into the
accumulator again and AN Ded with 1. Willie
is on the zero sprite, so if he has collided with
any other sprite—a snake, a boulder, a cloud
or a gull—the zero bit of the register will be
set.

If it is not set, the BEQ branches forward.
But if it is, the processor performs the next
little routine.

A 3 is loaded into the accumulator and
stored in $0384, and the processor jumps to
the subroutine at $6850. This plays the losing
sound.

And when the processor returns the num-
ber of lives in $C001 are decremented. The
accumulator is then loaded with 254 which it
carries out of the routine when the processor
hits the RTS and returns.

DATA DETECTION
But Willie is not just killed off by accidents
with sprites. Bumping into a UDG—like the
sea or a hole—can be just as dangerous. So the
contents of memory location $0350 are
loaded up into the accumulator and AN Ded
with 1. Again, any collision involving Willie
will set bit zero of that register because Willie
is on sprite zero.

If this bit is not set either, Willie has
bumped into neither a sprite nor a UDG and
the BEQ instruction branches the processor
forward to the label CC. There, the ac-
cumulator is loaded with 0 before returning.

But if this bit is set, Willie has bumped into
something bad again and is dead. So 3 is
loaded into the accumulator and stored in
$0384 and the processor jumps to the routine
at $6850 again to play the losing sound. Then
the processor jumps back to DD, where it
decrements the number of lives and exits the
routine with 254 in the accumulator again.
Whatever bad thing Willie hits—be it sprite
or UDG—the result is the same.

NOISES OFF
The routine above called the sound effects
routine at $6850 several times. This is it:

BEQ BB
LDA # 3
STA $0384
JSR $6850

DD DEC $C001
LDA # 254
RTS

BB LDA $035D
AND # 1
BEQ CC
LDA # 3
STA $0384
JSR $6850
JMP DD

CC LDA #0
RTS

ORG 26704
LDA #15
STA $D418
LDA #30
STA $D401
LDA # 0
STA $D406
LDA $0384
CMP #1
BNE AA
LDA #1
STA $D405
JMP FF

AA LDA $0384
CMP #2
BNE BB
LDA #85
STA $D405

FF LDA # 0
STA $D404
LDA #33
STA $D404

RET RTS
BB LDX #30

LDA # 0
STA $D404

LDA #129
STA $D404
LDA #240
STA $D406

GG 	LDA $0384
CMP #3
BEQ CC
INX
CPX #50
BNE DD

EE 	LDA # 0
STA $D404
RTS

CC 	DEX
CPX #10
BEQ EE

DD 	STX $D401
LDA #90

LOOPA LDY #255
LOOP DEY

BNE LOOP
CLC
SBC #1
BNE LOOPA
JMP GG

Making a noise is not an easy job. First of all,
you have to decide how loud it is going to be,
what the pitch is and how long the sound goes
on. Then you have to define its shape—how
quickly it reaches its maximum volume, how
soon the peak is over, how long it is sustained
and how quickly it finally dies away.

These vital parameters of any sound are
called its envelope—see pages 1138-1144.

LICKING THE ENVELOPE
A is loaded with 15 which is stored in $D418.
This is the register on the SID chip that
selects the filters—bits four to seven—and
sets the volume—bits zero to three. A 15
selects the maximum volume and leaves the
filters alone.

The number 30 is then put into $D01
which controls the high byte of the frequency.
And 0 is put into D406, which is the envelope
generator that controls the sustain and
release.

The parameter that is going to tell the
routine what sound to make is then loaded up
from $0384. It is compared to 1.

If a 1 is not found, the BNE instruction
branches the processor forward to the label
AA. But if it is found, a 'blip' is required and
the process continues.

A 1 is put into $D405. This is the register
which controls the attack and decay of the
note. The attack is specified by bits four to
seven and is set to its minimum value 0. The
decay—in bits zero to three—is set to 1,

giving the characteristic 'blip' sound.
The processor then jumps forward to the

label FF where the sound is output.

BEEPING ABOUT
If no 'blip' is required the process skips to the
label AA where the contents of $0384 are
loaded into the accumulator again. They are
then compared to 2—a 2 means that a 'beep' is
required.

Again if it is not found the BNE instruction
branches the processor forward over the beep
routine. Otherwise, the processor continues.

A is loaded with 85, which is stored in
$D405. This sets both the attack and the
decay to 5.

SOUND OUT
Whether a blip or a bleep is required, the
processor then ends up at FF, where a 0 is
loaded into the accumulator and stored in
$D404. This is the byte that controls the
output of sound and setting it to 0 starts the
release—in other words, it turns the last
sound to be made off.

A 33 is then loaded up into the accumulator
and stored in $D404. This sets bit five—
which gives a sawtooth waveform—and bit
zero which switches on the attack and decay.
In other words, it switches the sound of the
next note on.

The blip or beep begins and the processor
hits an RTS and returns.

LOONY TUNES
The next part of the routine
plays the winning sound
or the losing sound.
They are in fact the
same sound, but
the winning
sound is

played with the pitch rising triumphantly and
the losing sound is played with the pitch
dropping dismally.

In both cases, the pitch starts off from the
same place and 30 is loaded into the index
register X to start the count.

A 0 is loaded into the accumulator and
stored in $D404 to turn the last note off
again. Then 129 is put into $D404 to turn on
white noise.

The number 240 is put into $D406 to set
the sustain to the maximum 15. Then the
routine looks to see which sound it should
play.

The contents of $0384 are loaded into the
accumulator and compared with 3. A 3 in
$0384 means that the losing sound is to be
played and the BEQ instruction branches the
processor forward.

But if the winning sound is to be played,
the branch is not made and the processor
proceeds to the next instruction. INX incre-
ments the contents of the X register and they
are compared to 50.

If the result is not 50, the BNE instruction
sends the processor forward. But if it is 50,
the processor loads its accumulator with 0
and stores it in $D404, turning the last
note off. It then returns.

If the losing sound is required,
the DEX instruction decrements

the contents of the X

register and they are compared to 10. If 10 is
found, the BEQ branches the processor back to
the label EE, where the note is turned off and
the routine is exited again.

If not, the processor continues. The result-
ing contents of the X register are stored in
$D401—the high byte of the pitch—whether
X has been incremented or decremented.

PROLONGING THE AGONY
A is loaded with 90 and Y is loaded with 255.
These numbers are going to be used as the
parameters for two nested loops which are
here simply to slow the game down at this
point to give each note time to be heard.

The contents of the Y register are de-
cremented and the BNE sends the processor
round and around that LOOP until Y has
counted down to zero. Then the carry flag is
set and 1 is subtracted from the accumulator.

Remember, you normally set the carry flag
before a subtraction to prevent an extra
borrow being taken into account. So here, 2 is
really subtracted from the contents of the
accumulator.

And if A has not counted down to zero the
BNE instruction sends the processor back
round LOOPA to load Y up with 255 and start
decrementing that all over again.

When A has finally counted down to zero,
the processor jumps back to give the next
`note'.

The following routine does the rest of the
sound effects for the BBC version of Cliffhan-
ger and makes the necessary funeral arrange-
ments if Willie is dead.

Don't forget to set the computer up as
usual before you key it in.

30 FORPASS=0TO3STEP3
40 RESTORE
80 DATA1,0,4,0,140,0,20,0
90FORA%= &14DETO&14E5:READ?A%:NEXT
100 P%= &14E7
110 [OPTPASS
120 .Bell
130 JSR&152B
140 LDA#8
150 LDX # &91
160 LDY#&14
170 JSR&FFF1
180 LDA#7
190 LDX# &DE
200 LDY # &14
210 JSR&FFF1
220 RTS
230]
270 DATA1,2,255,0,0,255,0,0,126,255,255,

255,126,126

280 FORA%=&14FDTO&150A:READ?A%:
NEXT

290 DATA1,0,1,0,210,0,55,0
300 FORA% = &150CTOM 513: READ?A%:

NEXT
310 P%=&1515
320 [OPTPASS
330 .Cry
340 JSR&15213
350 LDA # 8
360 LDX # &FD
370 LDY # &14
380 JSR&FFF1
390 LDA # 7
400 LDX# &C
410 LDY# &15
420 JSR&FFF1
430 RTS
440]
480 DATA 1,0,241,255,10,0,1,0
490 FORA%= &1 BC0TO&1 BC7:READ?A%:

NEXT
500 P%= &1BC8
510 [OPTPASS
520 .Plod
530 JSR&152B
540 LDA # 7
550 LDX # &C0
560 LDY # 8t1B
570 JSR&FFF1
580 RTS
590]
630 DATA 1,129,1,0,-1,20,10,20,126,0,0,

—126,126,126
640 FORA% = &1BD5TO8r1BE2:READ?A%:

NEXT
650 DATA17,0,1,0,128,0,10,0
660 FORA% = 	E3TOM B EA: R EAD?A%:

NEXT
670 P%= &1BEB
680 [OPTPASS
690 .Jump
700 JSR&1528
710 LDA#8
720 LDX# &D5
730 LDY # &113
740 JSR&FFF1
750 LDA # 7
760 LDX# &E3
770 LDY# 8(1 B
780 JSR&FFF1
790 RTS
800]
810 $&20D6=CHR17+CHR$131 +CHR$

17+ CHR$4+CHR$31 +CHR$5+CHR$
20+" ❑❑❑❑❑❑❑❑❑❑❑ "

820 $&20E9=CHR$31 +CHR$5+
CH R$21 + " El Game Over "

830 $&20F8=CHR$31 +CHR$5+
CHR$22+" ❑❑ I11 ❑❑❑❑❑❑❑

850 P%=&2107
860 [OPTPASS
870 .Dead
880 LDA&7B
890 BEQLb1
900 RTS
910 .Lb1
920 DEC&89
930 LDA&7D
940 ORA#&80
950 STA&7D
960 LDA #15
970 LDX# 0
980 JSR&FFF4

FOUR SOUNDS
The first part of this program is made up of
four modules that work in exactly the same
way. Each starts off with a block of DATA
which defines the sound effect in question.
This is READ into a data table in memory so
that the machine code program can access it.

Then, when the processor passes into the
assembly language program it jumps to the
subroutine at &152B. This is the one that
allows you to turn the sound effects off (see
page 1243). Next, the A register is loaded with
8, and the X and Y registers are loaded with
the low and high bytes of the appropriate
piece of envelope data. The processor then
jumps to the subroutine at &FFF1. This is an
OSWORD call and the 8 in A means that it
defines a sound envelope with the data pro-
vided in the fourteen memory locations from
the address given in X and Y onwards. Next,
A is loaded with 7. This means that the sound
itself will be output when the OSWORD call is
made. Again, X and Y are used to carry the
low and high bytes of the base address of the
data for the sound which is given here. The
sound itself only requires eight bytes to define
it. Then &FFF1 which actually makes the
sound is called. When the sound has been
made, the processor returns.

The sounds here are a bell, a cry, Willie's
walking sound and Willie's jumping sound.
You'll notice that the data for the envelope for
the cry and the jump are given within the
program here. The envelope for the bell is the
same as the one used for the crunch which was
defined before on page 1243. And Willie's
walking sound does not need to have its
envelope defined because a simple plodding
sound does not need an envelope. The com-
puter is told that it does not need an envelope
by the second and third byte of the sound
data. These are the equivalent of the second
parameter of a BASIC sound command—the
two bytes of data are the low byte and high
byte of the parameter respectively.

With the basic SOUND command (see page

990 LDA&89
1000 BEQLb2
1010 RTS
1020 .Lb2
1030 LDX#0
1040 .Lb3
1050 LDA&20D6,X
1060 JSR&FFEE
1070 INX
1080 CPX# &49
1090 BNELb3
1100 RTS
1110]NEXT

233), a positive number in the second para-
meter position is the number of the envelope
the sound is to use. And a negative number is
a volume as no envelope is to be used. Here
the 241, 255 in DATA are the equivalent of
—15.

TO DIE, TO SLEEP
The routine that deals with the death of Willie
starts in Line 810. The first three lines POKE
string data into a data table to print up 'Game
Over' if it is required. The CH R$17s are the
equivalent of a COLOUR command, so the first
four CHR$ commands define a foreground
and a background colour. The CH R$31 moves
the cursor to the X and Y positions following.
So three lines on the screen-20, 21 and 22—
have spaces, the words 'Game Over' and more
spaces are printed up starting at X position 5.
The spaces are printed to give a background
panel around the words.

The assembly language program begins
with LDA&7B in Line 830. This loads the
accumulator with Willie's Y coordinate which
is stored in &7B. So far, if Willie has hit upon
a hazard that has killed him, he is precipitated
down to the bottom of the screen. If Y is zero
he has reached it and he is well and truly dead.

So the BEQ instruction in Line 890 bran-
ches the processor on into the main death
routine, if Willie's Y coordinate is zero. If it is

not, there is still a chance that Willie might be
alive, so the processor does not make the
branch and returns.

If Willie is definitely dead, the first thing to
be done is to decrement his number of lives.
The DEC&89 in Line 920 does that. The con-
trol byte in &7D is then loaded up into the
accumulator and 0 Red with &90. This sets bit
seven which is the flag that orders up the next
screen. The result is stored back in &7D.

A is loaded with 15, X is loaded with 0 and
the processor jumps to the subroutine at
&FFF4. This is equivalent to a *FX15,0 which
clears all sounds.

The number of lives in &89 is then loaded
up into the accumulator. If Willie has no lives
left, the BEQ instruction branches the pro-
cessor over the RTS, into the 'Game Over'
routine. But if Willie is still blessed with
another incarnation or two, the processor
returns to rewind his mortal coil.

THE GAME IS OVER
The number 0 is loaded into the X register
which is going to be used as an index to count
along a data table.

Then the appropriate byte of the data table
constructed in Lines 810 to 830 is loaded up
into A and output to the screen by the
subroutine at &FFEE. X is incremented and
compared with &49 to see if the end of the
table has been reached.

If it hasn't, the processor branches back to
pick up and output the next byte. If it has, the
processor proceeds, hits the RTS in Line 1100
and returns.

LEI
The following routine puts Willie in his
grave:

ORG 20560
DIE 	LDA #136

LDX #140
JSR SOUND
LDA #131
LDX #213
JSR SOUND

DI LDX 18249
LDU #1536
JSR CHARPR
LEAX 254,X
STX 18249
LDU #17774
JSR CHARPR
LEAX 254,X
JSR CHARPR
LDA #30
LDX #113
JSR SOUND
LDX 18249
CMPX #6912
BLO DI
DEC 18239
LBNE NLV

PB 	LDA #5
PAA LDX #65535

LEA)(—1,X
BNE PAA
DECA
BNE PB
JSR CLS
LDA $FF22
ANDA #15
STA $FF22
STA $FFC2
STA $FFC4
STA $FFC6
LDY # $50B
LDX # $701
STX ,Y+ +
LDX # $D05
STX ,Y+ +
LDX #$200F
STX ,Y + +
LDX # $1605
STX ,Y + +
LID/ # $1221

STX ,Y + +
LDA # 200
LDX # 255
JSR SOUND
LDA # 200
LDX # 200
JSR SOUND
LDA # 255
LDX # 255
JSR SOUND

LDA # 100
STA DLL + 1
LBRA GBIN
SOUND 	EQU $5133
CHAR PR EQU $4BCA
DLL 	EQU $51ED
GBIN 	EQU $4BE2
NLV 	EQU $4B F7
CLS 	EQU $4ACC

THE KNELL
The routine starts by sounding a two-note
death knell for dear departed Willie. But the
actual sounding is done by the SOUND routine
which will be given in the next part of
Cliffhanger.

Before you attempt to test this program,
don't forget to put an RTS at the start address
of SOUND, $5133. Otherwise, the program
will crash.

SOUND requires two parameters to be fed
into it to specify the pitch and duration of the
sound. These are taken into the routine by the
A and X registers. It is plain to see that the
two notes produced by the same SOUND
routine are going to be very different in this
case as the two parameters are so different
each time it's called.

GOING DOWN
As Willie drops down the screen into the
inferno below, the bits left behind have to be
overprinted with sky.

So X is loaded with the contents of 18,249,
which point to Willie's screen position. And
U is loaded with 1536, the address of the sky
at the top of the screen.

The CHAR PR routine is then called to print
a block of sky over Willie's top half.

X is loaded with X plus 254. And this is
stored back in 18,249 to move Willie's pointer
down the screen one character square.

U is then loaded with 17,774, which is the
start address of the data for the picture of
Willie with his legs together. So when the
processor jumps to the CHARPR subroutine, it
prints up the top half of Willie one character
square down the screen from where it was
printed last time.

X is incremented by 254 and CHARPR is
called again to print Willie's bottom half.

While Willie is going down the screen he
lets out a death cry. This is done by loading
up A and X again and jumping to SOUND.

When Willie dies he descends all the way to
the bottom of the screen. So you need to
check whether he has got there. This is done
by loading X with the contents of 18,249 and
comparing them with 6912, the start of the
28th line of the screen.

If Willie's screen position in X is lower
than 6912, the BLO instruction sends the
processor round to start the DI loop again and
moves Willie down one more character square.

But if Willie's screen position is not lower
than 6912, he has reached the bottom of the
screen and the processor continues.

In that case, the contents of 18,239—which
stores the number of lives Willie has left—is
decremented and the LBNE NLV sends the
processor back to the routine that gives Willie
a new life and sets the last screen up again. A
long branch is used here because the N LV
routine was given several parts of Cliffhanger
ago and is certainly more than 128 bytes away.

GAME OVER
But if the contents of 18,239 have been
decremented to zero, Willie has no more lives
left, the game is over and the processor
continues.

A is loaded with 5 and X is loaded with
c65,535. X is then decremented and the pro-
Icessor loops back to decrement it again, unless

lit has counted down to zero. If it has, A is
decremented and the processor jumps back to
load X up again with 65,535. The process is
then repeated until A has counted down to
zero as well.

The processor goes around this loop
5 x 65,535 times. This gives the player pause
for thought over Willie's final, tragic demise.

When the processor finally drops out of the
delay loop, it jumps off to the CLS subroutine.
This clears the screen.

Next the contents of $FF22 are loaded up
and AN Ded with 15. The result is stored in
$FF22, $FFC2, $FFC4 and $FFC6.

This tells the VDG (video display gen-
erator) and SAM (synchronous address mul-
tiplexer) chips that you are going back into
text mode and is the reverse of what you did
when you changed into graphics mode earlier
in the program (see page 1042).

Y is loaded with $50B—this is the position
you are going to print 'GAME OVER!' in.

X is loaded with $701, the screen codes for
the letters GA. These are stored on the screen
in the position pointed to by Y, and Y is
incremented twice.

Then X is loaded with the screen codes for
ME and those are stored in the new position
pointed to by Y, two places to the right of the
start of GA. Then CIO, VE and R! are loaded
up and printed in the subsequent places
across the screen.

Next the 'game over' sounds are played. It
is three notes. So A and X are loaded up and
the SOUND routine is called three times.

Then the number 100 is loaded into the
accumulator and stored in memory location
$51 EE. This sets the delay back to its starting
value, so next time the game is played it will
start at the same initial speed.

Finally, the processor makes a long branch
back to the beginning of the program at GBIN.

Most of the best games you can buy have
impressive sound effects or music for added
entertainment. Here is a program to let your
micro soothe you with music while you type
in a program or develop one of your own.

Most games programs have a musical
introduction or a short refrain to mark certain
events, such as when you score points or lose a
life in a game* If, however, you have played
some of the popular games that have tunes on
the Commodore 64 or the Acorn computers
the most impressive effect is that the tunes are
played not just momentarily, but throughout
the game. The reason these micros can run a
program and play music at the same time is
that they have a sound-generating circuit that
works independently of the central processor,
unlike other micros, such as the Spectrum,
Dragon and Tandy, which use the central
processor to process sound.

There are a few games available for the
Spectrum which manage to play music const-
antly throughout the program. But this is
done by very careful timing so that the two
things appear to happen simultaneously. This
is not practical in a general-purpose program
like those given here, so only Commodore and
Acorn versions are listed.

The programs work by interrupts, so at
regular intervals a certain event is detected,
causing the program to branch to a routine to
play the tune. But in case you want a
moment's quiet—for example, when the tele-
phone rings—Acorn users can disable the
interrupts by a single keypress, then turn
them on again by pressing another key. On
the Commodore 64 where it is not possible to
do this, it is a simple matter to turn down the
volume control on the TV set.

Enter the program now, but notice that it
contains a section of machine code (given in
DATA statements), so save a copy to disk or
tape before you RUN.

1000 S = 0:FOR N=49152 TO 49407:
READ A:POKE N,A:S=S+A:NEXT N

1050 IF S< >5666 THEN 1400
1100 S =0:FOR N =24576 TO 24631:

READ A:POKE N,A:S=S+A:NEXT N
1150 IF S< >6270 THEN 1500

1200 S =0:FOR N =28672 TO 28778:
READ A:POKE N,A:S=S+A:NEXT N

1250 IF S< >12659 THEN 1600
1300 PRINT "Er:SYS 24576:END
1400 PRINT "CHECK LINES 2000—

2060":END
1500 PRINT "CHECK LINES 2100—

3020":END
1800 PRINT "CHECK LINES 4000—

4050":END
2000 DATA 37,17,37,3,37,17,27,3,47,16,7,3,

37,17,7,3,63,19,62,8
2010 DATA 37,17,7,3,63,19,17,3,37,17,7,3
2020 DATA 63,19,7,3,37,17,17,3,47,16,7,3,

110,15,72,8
2030 DATA 63,19,37,3,63,19,27,3,42,18,7,3
2040 DATA 63,19,7,3,154,21,62,8
2050 DATA 63,19,7,3,154,21,17,3,63,19,7,3
2060 DATA 154,21,7,3,63,19,17,3,42,18,7,3,

37,17,72,8
2100 DATA 37,17,37,3,37,17,27,3,47,16,7,3,

37,17,7,3,63,19,62,8
2110 DATA 37,17,7,3,63,19,17,3,37,17,7,3
2120 DATA 63,19,7,3,37,17,17,3,114,11,7,3,

63,19,72,8
2130 DATA 216,12,7,3,107,14,7,3,70,15,7,3,

37,17,7,3
2140 DATA 154,21,27,3,63,19,7,3,63,19,7,3,

37,17,42,8
2150 DATA 47,16,7,3,37,17,7,3,63,19,37,3,

154,21,37,3,227,22,72,8
2160 DATA 0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1
2170 DATA 0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1
2180 DATA 0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1
2190 DATA 0,0,1,1,0,0,1,1,0,0,1,1
3000 DATA 169,0,162,25,157,0,212,202,208,

250,169,15,141,24,212,169,1,141
3010 DATA 1,195,169,0,141,2,195,141,4,195,

169,32,141,3,195,169,246,141
3020 DATA 5,195,169,64,141,5,212,120,169,

0,141,20,3,169,112,141,21,3,88,96
4000 DATA 174,4,195,173,13,220,41,1,240,3,

32,16,112,76,49,234,173,2,195
4010 DATA 240,17,206,0,195,208,11,169,0,

141,2,195,173,3,195,141,4,212
4020 DATA 96,206,1,195,240,13,169,1,205,1,

195,208,5,169,0,141,6,212,96
4030 DATA 189,0,192,141,0,212,232,189,0,

192,141,1,212,232,189,0,192,141
4040 DATA 0,195,232,189,0,192,141,1,195,

232,142,4,195,173,5,195,141,6,212

1050 DATA 172,3,195,200,140,4,212,169,1,
141,2,195,96,0

When you RUN the BASIC program, it sums
the numbers in the DATA statements, and if
you have made an error a prompt will direct
you to the lines you should check.

The data is read and checked as three
blocks, so it is important that you enter it as
listed, otherwise the check fails* The tune is
planned so that it repeats in a loop without
overlaps or gaps. This requires careful timing
of the notes, in relation to the interrupt cycle.
Furthermore, the data for the tune is encoded,
so it no longer looks like the usual values you
would enter to play a tune. All this means that
there is little scope for you to change the tune,
unless you are familiar with the techniques of
programming by interrupts.

Once the program has been RUN, the
machine code is called automatically to start
the music. You can then NEW to get rid of the
BASIC and the tune will be unaffected. To
stop the tune, press I RUN/STOP1 and IRESTOREI,
and to restart it type SYS 24576.

10 M%= &900
11 !M%= &FFF80002
12 M%!4 = &00040000
13 M%!8=0
20 X%= —1
30 REPEAT
40 READ W%
50 X%=X%+1
60 ?(X%+ M% + 10) =W%
70 UNTIL W%=255
80 FOR PA%=0 TO 3 STEP 3
90 P%=M%+X%+11
100 [OPT PA%
1401% INC M%+9
150 LDA M%+9
160 CM P #10
170 BNE E%
180 LDA #0
190 STA M%+9
200 LDY M%+8
210 LDA M%+ 10,Y
220 STA M%+4
230 LDA #7
240 LDX # M% MOD 256

If you enjoy the soothing strains of
background music while you work,
you will like this simple, interrupt-
driven machine-code music program
which won't exhaust the memory

SIMULTANEOUS PLAYING
AND PROCESSING

MACHINE CODE PROGRAMMING
USING THE INTERRUPTS
THE SOUND CIRCUITRY

250 LDY #M% DIV 256
260 JSR &FFF1
270 INC M%+8
280 LDY M% + 8
290 LDA M%+10,Y
300 CMP #255
310 BNE E%
320 LDA #
330 STA M% + 8
340 .E% RTS
350]
360 NEXT PA%
370 CALL L%
380 *KEY 8 ?&220 = L% M0D 256:

?&221 = L% DIV 256:*FX14,4IM
390 *KEY 9 *FX13,4IM
400 DATA 165,161,165,161,165,145,157,149,

137,69,89,101,117,137
410 DATA 145,69,85,117,133,145,149,69,89,

117,165,161
420 DATA 165;161,165,145,157,149,137,69,

89,101,117,137
430 DATA 145,69,85,117,149,145,137,69,89
440 DATA 145,149,157,165,81,101,129,169,

165,157,81,97,121,165,157
450 DATA 149,69,89,117,157,149,145,96,117,

117,165,117
460 DATA 165,165,213,161,165,161,165
470 DATA 161,165,161,165,145,157,149,137,

69,89,101,117,137
480 DATA 145,69,85,117,133,145,149,69,89,

117,165,161
490 DATA 165,161,165,145,157,149,137,69,

89,101,117,137
500 DATA 145,69,85,117,149,145,137,69,89, 255

When you RUN the program, it gives a listing
of the assembly code. If you don't wish the
listing to appear, change the two 3s in Line 80
to 2s. To start the tune, press f8 , then you can
NEW and use the micro in the usual way, with
the tune playing. You can stop the tune by
pressing either f9 or I BREAKI—in either case,
f8 restarts it.

Lines 380 and 390 set the key definitions to
start and stop the tune. If you wish to set these
functions to any of the other user-defined
keys, then merely substitute the numbers at
these lines. After you've saved the listing, you
might wish to play about with the data to see
the effect, but notice that timing is crucial.

These program lines are part two of Escape,
following on directly from part one. Don't
forget to SAVE this ready for part three.

20 PRINT "LOADING TEXT AND DECODER":
LOAD 'CODE

30 LET S$="El EICIDE1111111111": LET
Z$=': FOR Z=1 TO 32: LET
Z$=Z$+S$: NEXT Z

40 LOAD "" DATA AO: LOAD "" DATA Z()
180 LET PP =0: LET BB=1: LET V=10: LET

DW=1: LET D$=': LET M$="": LET
J$="": LET U$="": LET X=0: LET Q
=0: LET JK=0: LET QQ=0: LET OP =0

190 LET SS =1: LET C=0: LET M=0: LET
XX=0: LET J = INT (RND * 18) +1: LET
G = INT (RND*18) + 1: LET TT=1: LET
11=1: LET VV=0: LET F=0: LET
KK= INT (RND*21) +1: LET NN=70:
GOSUB 4500: DIM M$(17): LET M$=S$

820 IF L=10 AND N$="W" AND OP=1
THEN GOSUB 3810: GOTO 270

830 IF L=10 AND N$="W" AND OP> 0
THEN LET NN = 60: GOSUB 3960: PAUSE
200: GOTO 270

840 IF L=3 AND N$="D" AND D=1 THEN
GOSUB 1760

850 IF L=10 AND N$="W" THEN LET
OP=1: GOSUB 3810: GOTO 270

860 IF N$="N" AND N=1 THEN LET
L= L-3: GOTO 270

870 IF N$="S" AND S=1 THEN LET
L= L + 3: GOTO 270

880 IF N$="E" AND E=1 THEN LET
L= L +1: GOTO 270

890 IF N$="W" AND W=1 THEN LET
L= L-1: GOTO 270

900 IF N$="U" AND U=1 THEN LET
L= L-6: GOTO 270

910 IF N$ = "D" AND D=1 THEN LET
L= L +6: GOTO 270

920 IF L=16 AND N$="D" AND
K(7) < > —1 THEN LET NN =29: GOSUB
3960

930 PRINT "YOU CAN'T DO THAT HERE—"'
"THINK AGAIN!": PAUSE 100: GOTO 270

940 LET N=0: LET S=0: LET E= 0: LET
W=1: LET U=0: LET D=0

950 CLS : LET NN =2: GOSUB 3960
960 IF BB=1 THEN LET NN =3: GOSUB

3960: PRINT' FLASH 1;" PRESS ANY KEY
TO BEGIN ": PAUSE 0: LET BB =0

970 RETURN
980 CLS : LET NN =4: GOSUB 3960: LET

N=0: LET S=0: LET E =0: LET W=1:
LET U=0: LET D=0: RETURN

990 IF INT (RND * 18) =6 THEN GOSUB 2550
1000 IF INT (RND*18)=12 AND DW=1

THEN GOSUB 2740: RETURN
1010 CLS : LET NN = 5: GOSUB 3960: LET

N=1: LET S=0: LET E=0: LET W=0
LET U=0: LET D= 0: RETURN

1020 IF INT (RND*18)=10 AND DW=1
THEN GOSUB 2740: RETURN

1030 IF INT (RND*18) =1 THEN CLS :
GOSUB 2550

1040 CLS : LET NN = 6: GOSUB 3960: LET
N=0: LET S=1: LET E=1 LET W=1:
LET U=1: LET D=1: IF OP=1 THEN LET
NN =62: GOSUB 3960

1050 RETURN
1060 IF INT (RND*18)=17 AND DW=1

THEN GOSUB 2740: RETURN
1070 CLS : LET NN =7: GOSUB 3960: LET

N=0: LET S=1: LET E=0: LET W=1:
LET U=1: LET D=0: RETURN

1080 CLS : LET NN =8: GOSUB 3960: LET
N=0: LET S=1: LET E =1: LET W=1:
LET F=0: LET U=0: LET D=0

1090 IF E$(L,1)< > CHR$ 32 THEN LET
NN =9: GOSUB 3960: PAUSE 50

1100 IF E$(L,1)< >CHR$ 32 AND J<8
THEN LET NN =10: GOSUB 3960

1110 IF E$(L,1)< >CHR$ 32 AND J>7
THEN LET NN =11: GOSUB 3960: LET
F=1: LET QQ= QQ+ 1: GOTO 1420

1120 RETURN
1130 IF INT (RND*18)=16 THEN GOSUB

2550
1140 CLS : LET NN = 28: GOSUB 3960: LET

N=1: LET S=0: LET E=1: LET W=0:
LET U=0: LET D=0: RETURN

1150 LET NN =13: GOSUB 3960: LET N=1:
LET S=0: LET E =1: LET W=0: LET
U=0: LET D=0: RETURN

1160 IF INT (RND * 18)=14 AND DW=1
THEN GOSUB 2740: RETURN

1170 CLS : LET NN =14: GOSUB 3960:
PAUSE 150: LET NN =15: GOSUB 3960:
LET N=0: LET S=1: LET E=1: LET
W=0: LET U=0: LET D=0: RETURN

1180 IF INT (RND*18) =17 THEN GOSUB
2550

1190 LET N=1: LET S=0: LET E =1: LET
W=1: LET F=0: LET U=0: LET D=0

1200 IF G < =4 THEN LET E$(L) = ""
1210 CLS : LET NN =16: GOSUB 3960
1220 IF E$(L,1)< >CHR$ 32 THEN PRINT

"'HE STIRS": LET F=1
1230 RETURN
1240 IF INT (RND*18) = 5 THEN GOSUB 2550
1250 CLS
1260 LET N=1: LET S=0: LET E= 0: LET

Continue entering Escape, INPUT's
new adventure game. LOAD in the
existing program and add these
lines. The program cannot be RUN
until it is completed

ESCAPE: PART TWO
SPECTRUM ADDITIONS

COMMODORE ADDITIONS
ACORN ADDITIONS

DRAGONS AND TANDY ADDITIONS

W=1: LET U=0: LET D=0
1270 LET NN =17: G0SUB 3960
1280 RETURN
1290 LET N=1: LET S=0: LET W=1: LET

E =1: LET F=0: LET U=0: LET D=0
1300 LET NN =18: G0SUB 3960
1310 IF K(19) = -1 THEN LET F= 0: LET

NN =19: G0SUB 3960
1320 RETURN
1330 IF INT (RND*18)=1 AND DW=1 THEN

G0SUB 2740: RETURN
1340 CLS

1350 LET N=0: LET S=1: LET E =1: LET
W=0: LET U=0: LET D=0

1360 LET NN =20: G0SUB 3960
1370 RETURN
1380 CLS
1390 LET N=0: LET S=1: LET E =1: LET

W=1: LET U=0: LET D=0
1400 LET NN =21: G0SUB 3960
1410 IF E$(L,1)< > CHR$ 32 THEN LET

NN = 22: G0SUB 3960: LET F=1: LET
QQ=QQ+1

1420 IF QQ>4 THEN PRINT "SHE

SCREAMS.": PAUSE 100: PRINT "TW0
GUARDS APPEAR.": PAUSE 100: PRINT
"Y0U SURRENDER.": PAUSE 100: ST0P

1430 RETURN
1440 LET N=1: LET S=0: LET E = 0: LET

W=1: LET F=0: LET U=0: LET D=0
1450 LET NN = 23: G0SUB 3960
1460 LET NN = 24: G0SUB 3960: LET F=1
1470 IF INT (RND*18) <3 THEN LET F=0:

LET NN =63: G0SUB 3960
1480 RETURN
1490 IF INT (RND*18) =3 AND DW=1 THEN

G0SUB 2740: RETURN
1500 CLS
1510 LET N=0: LET S=1: LET E= 0: LET

W=1: LET U=0: LET D=0
1520 LET NN =25: G0SUB 3960
1530 IF K(17) = -1 THEN LET NN = 26:

G0SUB 3960: LET D=1
1540 RETURN
1550 CLS
1560 LET N=1: LET S=0: LET E =1: LET

W=0: LET U=0: LET D=0
1570 LET NN = 27: G0SUB 3960
1580 RETURN
1590 CLS
1600 LET N=0: LET S=1: LET E= 0: LET

W=0: LET U=1: LET D=0
1610 LET NN =12: G0SUB 3960
1620 IF K(7) = -1 THEN LET NN = 64:

G0SUB 3960: LET D=1
1630 RETURN

1640 IF INT (RND*18) =1 THEN G0SUB 2550
1650 CLS : LET N=1: LET S=1: LET E =1:

LET W=0: LET U=0: LET D=1
1660 LET NN =30: G0SUB 3960
1670 RETURN
1680 IF INT (RND*18)=1 AND DW=1 THEN

G0SUB 2740: RETURN
1690 CLS : LET N=1: LET S=1: LET E =1:

LET W=1: LET F=0
1700 LET NN =31: G0SUB 3960
1710 IF E$(L,1)< > CHR$ 32 THEN PRINT

"THERE IS A ❑ ";E$(0;" ❑ PASSING.":
LET F=1

1720 RETURN
1730 CLS : LET N=1: LET S=1: LET E= 0:

LET W=1: LET U=0: LET D=1
1740 LET NN =32: G0SUB 3960
1750 RETURN
4100 DATA 1330,1380,1490,1640,1680,1730,

1550,1240,990,1020

4110 DATA 1080,1060,1150,1290,1440,1590,
1160,940,1130,1180,980,1890

780 IF I<1 THEN PRINTLWEJD0N'T
KNOW H0W T0PTI$:G0T0 610

790 IF E$(L) < >""ANDI < >9ANDI < >10
AND1< >5ANDI < >12ANDI < >BAND
F=1 THEN 810

800 G0T0 820
810 PRINT LG$- I HEIVE$(L)"PIW0N'T

LET Y0U.":G0SUB20000:G0T0 340
820 IF 1=1 THEN N$= LEFT$(V$,1)
830 IF 1=2 THEN G0SUB 2190:G0T0 340
840 IF 1=3 THEN G0SUB 3940:G0T0 340
850 IF 1=4 AND L=3 THEN G0SUB 1970
860 IF 1=5 THEN G0SUB 3160:G0T0 340
870 IF 1=6 THEN G0SUB 4060:G0T0 340
880 IF 1=7 THEN G0SUB 4110:G0T0 340
890 IF 1=8 THEN G0SUB 4250:G0T0 340
900 IF 1=9 THEN G0SUB 2760:G0T0 340
910 IF 1=10 THEN G0SUB 2330:G0T0 340
920 IF 1=11 THEN G0SUB 4210:G0T0 340
930 IF 1=12 THEN G0SUB 4440:G0T0 340
940 IF L=10 AND N$ ="W" AND 0P= 1

THEN G0SUB 4590:G0T0 340
950 1FL=10ANDN$="W"AND PP> 0THEN

TX =60:G0SUB9900:G0SUB2000:G0T0
340

960 IF L=3 AND N$="D" AND D=1 THEN
G0SUB 1970

970 IF L=10 AND N$="W" THEN
0P =1:G0SUB 4590:G0T0 340

980 IF N$="N" AND N=1 THEN
L=L-3:G0T0 340

990 IF N$="S" AND S=1 THEN
L=L+3:G0T0 340

1000 IF N$="E" AND E=1 THEN
L = L +1:G0T0 340

1010 IF N$="W" AND W=1 THEN
L=L-1:G0T0 340

1020 IF N$="U" AND U=1 THEN
L=L-6:G0T0 340

1030 IF N$="D" AND D=1 THEN
L=L+6:G0T0 340

1040 IF L=16 AND N$="D"AND
K(7) < > -1 THENTX = 29: G0SUB
9900:G0SUB 20000:GOT0340

1050 PRINTLG$"A0U CAN'T D0 THAT -
THINK AGAIN!":G0SUB 20000:G0T0 340

1060 N = 0:S = 0:E = 0:W =1:U = 0:D = 0
1070 PRINT "Ej gr:Tx =2:G0SUB 9900
1079 IF BB< >1 THEN RETURN
1080 PRINT:TX = 3:G0SUB 9900:PRINT

LG$TAB(13)"71RESS ANY KEY"
1090 PRINT TAB(8)"T0 BEGIN Y0UR

ADVENTURE"
1100 GET D$:IF D$="" THEN 1100
1105 BB = 0:RETURN
1140 PRINT"Q":TX=4:G0SUB 9900:

N = 0:S = 0:E = 0:W =1:U = 0:D = 0:

RETURN
1150 IF INT(RND(1)18) + 1 =6 THEN

GOSUB 2860
1160 IF INT(RND(1)18) + 1 =12 AND

DW=1 THEN 3100
1170 PRINT "0":PRINT
1180 TX= 5:GOSUB 9900:N =1:S= 0:E= 0:

W=0:U=0:D=0:RETURN
1190 IF INT(RND(1)*18)+1 =10 AND

DW=1 THEN 3100
1200 IF INT(RND(1)18) +I =1 THEN PRINT

"0":GOSUB 2860
1210 PRINT "0":PRINT
1220 TX=6:GOSUB 9900:N = 0:S =I:E =1:

W=1:U=1:D=1:IF OP=1 THEN
TX=62:GOSUB 9900

1230 RETURN
1240 IF INT(RND(1)18) +I =17 AND

DW=1 THEN 3100
1250 PRINT "0":PRINT:TX=7:GOSUB

9900:N = 0:S =1:E = 0:W = 1:U = 1:
D=0:RETURN

1260 PRINT "0":PRINT:TX=8:GOSUB
9900:N= 0:S =1:E =1:W=1:F = 0:U = 0:
D=0

1270 IF E$(L) < >"" THEN TX= 9:GOSUB
9900:GOSUB 20000

1280 IF E$(L) < >"" AND J <8 THEN
TX=10:GOSUB 9900

1290 IF E$(L) < >"" AND J>7 THEN
TX= 11:GOSUB 9900:F=1:00=00+1:
GOTO 1600

1300 RETURN
1310 IF INT(RND(1)18) +1 =16 THEN

GOSUB 2860
1320 PRINT "0":TX=28:GOSUB 9900:

N =1:S= 0:E =1:W= 0:U = 0:D= 0:
RETURN

1330 TX=13:GOSUB 9900:N=1:S= 0:E =1:
W=0:U=0:D=0:RETURN

1340 IF INT(RND(1)*18) + 1 =14 AND
DW=1 THEN 3100

1350 PRINT "0":PRINT:TX=14:GOSUB
9900

1355 GOSUB20000::TX=15:GOSUB9900:
N = 0:S = 1:E = 1:W = 0:U = 0:D = 0:
RETURN

1360 IF INT(RND(1)*18)+1 =17 THEN
GOSUB 2860

1370 N=1:S=0:E=1:W=1:F=0:U=0:
D=0

1380 IF G< =4 THEN E$(L)=""
1390 PRINT"0":PRINT:TX=16:GOSUB

9900
1400 IF E$(L) < >"" THEN PRINT:PRINT

"LiE STIRS.":F=1
1410 RETURN
1420 IF INT(RND(1)18) +I =5 THEN

GOSUB 2860
1430 PRINT "0"
1440 N =1:S = 0:E = 0:W=1:U = 0:D = 0

1450 PRINT:TX=17:GOSUB 9900
1460 RETURN
1470 N=1:S=0:W=1:E=1:F=0:U=0:

D=0
1480 PRINT:TX =18:GOSUB 9900
1490 IF K(19) = —I THEN F= 0:TX =19:

GOSUB 9900
1500 RETURN
1510 IF INT(RND(1)18) +1 =1 AND

DW=1 THEN 3100
1520 PRINT "0"
1530 N = 0:S =1:E =1:W= 0:U = 0:D = 0
1540 PRINT:TX= 20:GOSUB 9900
1550 RETURN
1560 PRINT "0"
1570 N=0:S=1:E=1:W=1:U=0:D=0
1580 PRINT:TX= 21:GOSUB 9900
1590 IF E$(L) < >`"' THEN TX= 22:GOSUB

9900:F =1:QQ= QQ+ 1
1600 IF QQ>4 THEN PRINT "fflHE

SCREAMS!":GOSUB 20000
1610 IF QQ>4 THEN PRINT"LEWO

GUARDS APPEAR.":GOSUB 20000
1620 IF QQ>4 THEN PRINT" ❑ OU

SURRENDER.":GOSUB 20000:GOTO
10000

1630 RETURN
1640 N =1:S = 0:E= 0:W=1:F=0:U= 0:

D=0
1650 TX= 23:GOSUB 9900
1660 TX= 24:GOSUB 9900:F=1

Fl
540 IF 1$ =t$ AND t = 0 OR 1$ = i$ AND

1=0 THEN PROCI:GOTO 270
550 I = INSTR(1$," El")
570 V$=LEFT$(1$,1-1)
580 T$=MID$(1$,1+1)
590 IF V$ = "go" THEN V$ = T$
600 asc$="":FORc=1TOLEN(T$):asc=ASC

(MID$(T$,c,1))
610 IFasc < 91 ANDasc < >32 THEN

asc = asc + 32
620 asc$=asc$+CHR$(asc)
630 NEXT:T$= asc$
640 I = 0
650 FOR H=1 TO 32
660 IFINSTR(R$(H),V$)=1THENI =R(H)
670 NEXT
680 IF I <1 THEN PRINT"I don't know how

to ❑ "1$:GOTO 530
690 IF E$(L) < >"" AND I< >9 AND

I< >10 AND I< >5 AND I < >12 AND
I < >8 AND F=1 THEN
PRINT"Theill"E$(L)" El won't let you":
D=INKEY(250):GOTO 270

700 IF 1=1 THEN N$=LEFT$(V$,1)
710 IF 1=2 THEN PROCC:GOTO 270
720 IF 1=3 THEN PROCJ:GOTO 270
730 IF 1=4 AND L=3 THEN PROCA
740 IF 1=5 THEN PROCH:GOTO 270

750 IF 1=6 THEN PROCK:GOTO 270
760 IF 1=7 THEN PROCL:GOTO 270
770 IF 1=8 THEN PROCN:G0T0270
780 IF 1=9 THEN PROCE:GOTO 270
790 IF 1=10 THEN PROCD:GOTO 270
800 IF 1=11 THEN PROCM:GOTO 270
810 IF 1=12 THEN PROCO:GOTO 270
820 IFL =10ANDN$ "w"ANDOP = I THEN

PROCP:G0T0270
830 IFL=10ANDN$="w"AND p> 0THEN

PRINTFNW(60):D=INKEY(400):G0T0270
840 IFL=3ANDN$="d"ANDD=1PROCA
850 IFL=10ANDN$="w"THENOP = I:

PROCP:G0T0270
860 IF N$="n" AND N=1 THEN

L=L-3:GOTO 270
870 IF N$="s" AND S=1 THEN

L=L+3:GOTO 270
880 IF N$="e" AND E=1 THEN

L= L+1:GOTO 270
890 IF N$="w" AND W=1 THEN

L = L —1:GOTO 270
900 IF N$="u" AND U=1 THEN

L=L-6:GOTO 270
910 IF N$="d" AND D=1 THEN

L=L+6:GOTO 270
920 IFL=16ANDN$="d"ANDK(7)< > —1

THENPRINTFNW(29)
930 PRINT"You can't do that here think

againr:VDU7:D=INKEY(250):GOTO 270
940 N = 0:S= 0:E = 0:W=1:U = 0:D= 0
950 CLS:PRINT"FNW(2).
960 IF b=1 THEN PRINT'FNW(3)'CHR$(129)

"PRESS ANY KEY TO BEGIN YOUR
ADVENTURE":D$ = GET$:b = 0

970 RETURN
980 CLS:PRINT"FNW(4):N= 0:S= 0:E = 0:

W =1:U = 0:D = 0:RETURN
990 IF RND(I8) =6 THEN PROCF
1000 IF RND(18)=12 AND dw=1 THEN

PROCG:RETURN
1010 CLS:PRINT'FNW(5):N =1:S= 0:E= 0:

W = 0:U = 0:D = 0:RETURN
1020 IF RND(18) =10 AND dw=1 THEN

PROCG:RETURN
1030 IF RND(I8) =1 THEN CLS:PROCF
1040 CLS:PRINT"FNW(6):N = 0:S =1:E =1:

W=1:U=1:D=1:IFOP=1THEN PRINT
FNW(62)

1050 RETURN
1060 IFRND(18) =17 AND dw=1 THEN

PROCG:RETURN
1070 CLS:PRINT"FNW(7):N = 0:S =1:E = 0:

W=1:U=1:D=0:RETURN
1080 CLS:PRINT"FNW(8):N = 0:S =1:E =1:

W=1:F=0:U=0:D=0
1090 IF E$(L) < >""THEN PRINTFNW(9):

D=INKEY(100)
1100 IF E$(L) < >"" AND J <8 THEN

PRINTFNW(10)
1110 IF MO < >"" AND J>7 THEN

PRINT FNW(11): F=1: qq=qq+1:
GOT01420

1120 RETURN
1130 IF RND(18) =16 THEN PROCF
1140 CLS:PRINT'FNW(28):N =1:S =0:E = 1:

W= 0:U= 0:D= 0:RETURN
1150 PRINT'FNW(13):N =1:S =0:E =1:

W=0:U=0:D=0:RETURN
1160 IFRND(18) =14 AND dw=1 THEN

PROCG:RETURN
1170 CLS:PRINT"FNW(14):D=INKEY(300):

PRINT'FNW(15):N = 0:S = 1:E = 1:W = 0:
U =0:D =0:RETURN

1180 IF RND(18) =17 THEN PROCF
1190 N=1:S=0:E=1:W=1:F=0:

U=0:D=0
1200 IF G< =4 THEN E$(L) =""
1210 CLS:PRINT"FNW(16)
1220 IF E$(L) < >""THEN PRINT'"He

stirs":F =1
1230 RETURN
1240 IF RND(18)= 5 THEN PROCF
1250 CLS
1260 N =1:S= 0:E = 0:W=1: U =0:D = 0
1270 PRINT"FNW(17)
1280 RETURN
1290 N=1:S=0:W=1:E=1:F=0:

U =0:D = 0
1300 PRINT"FNW(18)
1310 IFK(19)= —1THEN F=0: PRINT

FNW(19)
1320 RETURN
1330 IF RND(18) =1 AND dw=1 THEN

PROCG:RETURN
1340 CLS
1350 N =0:S = 1:E = 1:W = 0:U = 0:

D=0
1360 PRINT'FNW(20)
1370 RETURN
1380 CLS
1390 N= 0:S =1:E =1:W=1:U =0:

D=0
1400 PRINT"FNW(21)
1410 IF E$(L) < >"" THEN PRINTFNW(22):

F=1:qq=qq+1
1420 IFqq>4THENPRINT"She screams.":D =

INKEY(100):PRINT"Two guards appear.":
D =INKEY(100):PRINT"You surrender.":
D = INKEY(100):END

1430 RETURN
1440 N =1:S =0:E =0:W =1:F =0:

U =0:D = 0
1450 PRINTFNW(23)
1460 PRINTFNW(24):F =1
1470 IFRND(18) < 4THENF =0:

PRINTFNW(63)
1480 RETURN
1490 IF RND(18)= 3 AND dw=1 THEN

PROCG:RETURN
1500 CLS
1510 N=0:S=1:E=0:W=1:U=0:D=0

1520 PRINT"FNW(25)
1530 IF K(17) = —1 THEN PRINTFNW(26):

D=1
1540 RETURN
1550 CLS
1560 N =1:S= 0:E =1:W=0:U = 0:D= 0
1570 PRINT"FNW(27)
1580 RETURN
1590 CLS
1600 N =0:S =1:E =0:W =0:U =1:D=0
1610 PRINT"FNW(12)
1620 IFK(7)= —1THENPRINTFNW (64):D =1
1630 RETURN
1640 IF RND(18) =1 THEN PROCF
1650 CLS:N =1:S =1:E = 1:W =0:U = 0:D=1

Tandy owners should take care to change
Line 960. EXEC41194 should be altered to
EXEC36038.

510 IF K(C7)=L AND C7< >L AND C7< >7
THEN PRINT"THE ❑ ";0$(C7);" ❑ 1S HERE"

520 NEXT
530 INPUT "WHAT NOW";I$
540 IF 1$ =T7$ AND T7=0 OR I$=17$ AND

17=0 THEN GOSUB 3040:G0T0270
550 I= INSTR(I$," ❑ ")
560 IF 1=0 THEN V$ =1$:GOTO 580
570 IF(I —1) <1THENV$=""ELSE V$=

LEFT$(1$,1-1)
580 T$= MID$(3,1+ 1)
590 IF V$="G0" THEN V$=T$
600 REM
640 I = 0
650 FOR H =1 TO 32
660 IF INSTR(R$(H),V$) =1 THEN 1= R(H)
670 NEXT
680 IF 1 <1 THEN PRINT"I DON'T KNOW

HOW TO ❑ "4:GOT0530
690 IF E$(L) < >"" AND 1< >9 AND

I< >10 AND I< >5 AND I< >12 AND
I < >8 AND F=1 THEN
PRINT"THE ❑ ";E$(L); "EWON'T LET
YOU":GOSUB5500:G0T0270

700 IF 1=1 THEN N$=LEFT$(V$,1)
710 IF 1=2 THEN GOSUB 1970:GOT0270
720 IF 1=3 THEN GOSUB 3300:G0T0270
730 IF 1=4 AND L=3 THEN GOSUB 1760
740 IF 1=5 THEN GOSUB 2800:G0T0270
750 IF 1=6 THEN GOSUB 3390:G0T0270
760 IF 1=7 THEN GOSUB 3440:GOT0270
770 IF 1=8 THEN GOSUB 3560:G0T0270
780 IF 1=9 THEN GOSUB 2450:G0T0270
790 IF 1=10 THEN GOSUB 2090:G0T0270
800 IF 1=11 THEN GOSUB 3520:G0T0270
810 IF 1=12 THEN GOSUB 3730:G0T0270
820 IF L=10 AND N$="W" AND OP =1

THEN GOSUB 3810:G0T0270
830 IF L=10 AND N$="W" AND P7>0

THEN WN=60:GOSUB5100:
GOSUB5500:G0T0270

840 IF L=3 AND N$="D" AND D=1 THEN
GOSUB 1760

850 IF L=10 AND N$="W" THEN
OP = 1:GOSUB 3810:GOTO 270

860 IF N$="N" AND N=1 THEN
L=L-3:GOTO 270

870 IF N$="S" AND S=1 THEN
L=L+3:GOT0270

880 IF N$="E" AND E=1 THEN
L=L+1:GOT0270

890 IF N$="W" AND W=1 THEN
L= L —1:GOT0270

900 IF N$="U" AND U=1 THEN
L= L-6:G0T0270

910 IF N$="D" AND D=1 THEN
L=L+6:GOT0270

920 IF L=16 AND N$="D" AND
K(7) < > —1 THEN WN=29:GOSUB
5100:GOSUB5500:G0T0270

930 PRINT"YOU CAN'T DO THAT HERE!":
SOUND1,1:GOSUB5500:G0T0270

940 N = 0:S = 0:E =0:W =1:U = 0: D = 0
950 CLS:WN =2:GOSUB5100
960 IF B7=1 THEN WN=3:GOSUB5100:

PRINT"PRESS ANY KEY TO BEGIN YOUR

111 ❑ ❑ ❑ ❑ ADVENTURE":EXEC41194:
B7=0

970 RETURN
980 CLS:WN =4:GOSUB5100:N = 0:S= 0:

E= 0:W=1:U = 0:D = 0:RETURN
990 IF RND(18) = 6 THEN GOSUB 2550
1000 IF RND(18) =12 AND DW=1 THEN

GOSUB 2740:RETURN
1010 CLS:WN =5:GOSUB5100:N =1:S= 0:

E= 0:W= 0:U= 0:D= 0:RETURN
1020 IF RND(18) =10 AND DW=1 THEN

GOSUB 2740:RETURN
1030 IF RND(18) =1 THEN CLS:GOSUB 2550
1040 CLS:WN =6:GOSUB5100:N = 0:S=1:

E=1:W=1:U=1:D=1:IF OP=1 THEN
WN=62:GOSUB5100

1050 RETURN
1060 IF RND(18)=17 AND DW=1 THEN

GOSUB 2740:RETURN
1070 CLS:WN =7:GOSUB5100:N = 0:S=1:

E=0:W=1:U=1:D=0:RETURN
1080 CLS:WN =8:GOSUB5100:N = 0:S=1:

E=1:W=1:F=0:U=0:D=0
1090 IF E$(L) < >"" THEN WN=9:GOSUB

5100:GOSUB5500
1100 IF E$(L) < >"" AND J<8 THEN

WN=10:GOSUB5100
1110 IF E$(L) < >"" AND J>7 THEN

WN =11:GOSUB5100:F =1:
QQ=QQ +1:GOT01420

1120 RETURN
1130 IF RND(18) =16 THEN GOSUB 2550
1140 CLS:WN=28:GOSUB5100:N =1:S= 0:

E =1:W= 0:U = 0:0 = 0:RETURN
1150 WN =13:GOSUB5100:N =1:S= 0:

E =1:W= 0:U = 0:D= 0:RETURN
1160 IF RND(18)=14 AND DW=1 THEN

GOSUB 2740:RETURN
1170 CLS:WN=14:GOSUB5100:GOSUB5500:

WN =15:GOSUB5100:N = 0:S=1:E= I:
W= 0:U = 0:0 = 0:RETURN

1180 IF RND(18) =17 THEN GOSUB 2550
1190 N=1:S=0:E=1:W=1:F=0:

U=0:0=0
1200 IF G< =4 THEN E$(L)=""
1210 CLS:WN=16:GOSUB5100
1220 IF E$(L) < >"" THEN PRINT"HE

STIRS":F=1
1230 RETURN
1240 IF RND(18) = 5 THEN GOSUB 2550
1250 CLS
1260 N =1:S = 0:E = 0:W=1:U = 0:D = 0
1270 WN=17:GOSUB 5100
1280 RETURN
1290 N=1:S=0:W=1:E=1:F=0:

U = 0:D= 0
1300 WN=18:GOSUB5100
1310 IF K(19) = —1 THEN F= 0:WN =19:

GOSUB 5100
1320 RETURN
1330 IF RND(18) =1 AND DW=1 THEN

GOSUB 2740:RETURN
1340 CLS
1350 N = 0:S =I:E =I:W= 0:U =0:D= 0
1360 WN=20:GOSUB5100
1370 RETURN
1380 CLS
1390 N=0:S=1:E=1:W=1:U=0:D=0
1400 WN=21:GOSUB 5100
1410 IF E$(L) < >"" THEN WN=22:GOSUB

5100:F =1:QQ= QQ+ 1
1420 IF QQ> 4 THEN PRINT"SHESCREAMS.":

GOSUB 5500:PRINT"TWO GUARDS
APPEAR.":GOSUB5500:PRINT "YOU
SURRENDER.":GOSUB 5500:GOTO 6500

1430 RETURN
1440 N =I:S = 0:E= 0:W=1:F= 0:

U =0:D= 0
1450 WN=23:GOSUB 5100
1460 WN = 24:GOSUB5100:F =1
1470 IF RND(18) <4 THEN

F=0:WN=63:GOSUB5100
1480 RETURN
1490 IF RND(18) = 3 AND DW=1 THEN

GOSUB 2740:RETURN
1500 CLS
1510 N=0:S=1:E=0:W=1:U=0:D=0
1520 WN=25:GOSUB5100
1530 IF K(17) = —1 THEN WN =26:

GOSUB5100:D =1
1540 RETURN
1550 CLS
1560 N =I:S= 0:E =I:W= 0:U = 0:D= 0
1570 WN=27:GOSUB5100
1580 RETURN
1590 CLS
1600 N= 0:S=1:E= 0:W= 0:U=1:D= 0
1610 WN =12:GOSUB5100
1620 IF K(7) = —1 THEN WN =64:

GOSUB5100:D =1
1630 RETURN
1640 IF RND(18) = 1 THEN GOSUB 2550
1650 CLS:N =1:S =1:E =1:W= 0:U= 0:0=1
1660 WN=30:GOSUB5100
1670 RETURN
1680 IF RND(18)=1 AND DW=1 THEN

GOSUB 2740:RETURN
1690 CLS:N = 1 :S =1:E =1:W=1:F= 0
1700 WN =31:GOSUB5100
1710 IF E$(L) < > `"' THEN PRINT"THERE

IS A ";E$(L);" PASSING":F =1
1720 RETURN
1730 CLS:N = 1:S = 1:E = 0:W= 1:U = 0: D = 1
1740 WN =32:GOSUB5100
1750 RETURN
1760 REM *** Proc a
1770 CLS

Constructing and manipulating lists
is the heart of LISP* But before you
can put together a program, find out
how to structure the process around
the available functions

As you will have discovered from the first
article on LISP (pages 1410 to 1415), every-
thing in this language is done by functions.
And for the programmer who is used to
working in BASIC, getting used to this is the
hardest part of becoming fluent in LISP.

You have already seen examples of quite a
number of LISP's standard functions. But in
order to write proper LISP programs, you
need to define your own functions in addition
to those already built into the LISP system.
This is similar to the way in which you saw
LOGO used in the first articles in this
series—where LOGO'S primitives were used
as the basis of new procedures, which could
then be built up into even more complex
programs. But the process is rather different.

DEFINING A FUNCTION
Just like everything else in LISP, defining a
function requires the use of a function—this is
called DEFUN. If, for instance, you want to
define a function called PLUS1 which adds 1 to
whatever you feed it, in LISP, this means that
your function has to take a single atom in its
definition and add one to its value. Using
DE FUN this could be done by giving the
following s-expression to LISP:

(DEFUN PLUS1 (A) (PLUS 1 A)).

DEFUN has three arguments (lists on which it
has to work), which it does not evaluate. The
first argument is the name of the function, in
this case PLUS1. The next argument is a LISP
list of the function's arguments—in this
example, there is only one, the atom A. The
last argument of DEFUN is a LISP s-
expression to be evaluated. The result of the
function is the value of this s-expression.

When it evaluates the s-expression, LISP
substitutes in it the values given to the
function's arguments. So (PLUS1 2) gives 3
because LISP substitutes 2 for the atom A and
then evaluates the s-expression. In most
implementations of LISP, any number of
LISP s-expressions can follow the argument
list and the value of the function is given by
the value of the last one.

These functions are quite similar to those
used in BASIC. For instance, in BASIC you
could define a function to do the above job by:

DEFFNPLUS 1(A) = A +1

However, as usual, LISP functions are more
powerful—a LISP function can take lists as
its arguments and can return a list as its value.
The arguments of this type of user-defined
function are evaluated before being sub-
stituted in the function's definition, so (PLUS1
(PLUS1 1)) evaluates to 3. The inner call of
PLUS1 gives 2 and this is then fed to the outer
PLUS1, giving the value of 3. It is also possible
to define LISP functions that do not evaluate
their arguments and functions that can have
an arbitary number of arguments.

Usually, the value of DE FUN is the name of
the function defined. Thus the interaction
with LISP when you define a function looks
like this:

Evaluate: (DEFUN PLUS1 (A) (PLUS 1 A))
Value is: PLUS1

Suppose you now type the name of the
function in response to the Evaluate prompt:

Evaluate: PLUS1
Value is: (LAMBDA (A) (PLUS 1 A))

As you can see, LISP replies with the defi-
nition of the function, which is now the value
of the atom that is the function's name. The
word LAMBDA is a special atom used by LISP
to denote the fact that the s-expression is a
function definition. Its effect above is to cause
a substitution for the value of A in the
following s-expression. It is important to
understand the difference between evaluating
the name of the function like this and actually
using the function. When you want to call the
function it is surrounded by a pair of brackets:

Evaluate: (PLUS1 0)
Value is: 1

It is possible to find the definitions of some of
the functions built into the LISP system in a
similar way, although, because most of them
are written in machine code, their definitions
cannot be displayed.

Another example of a user-defined func-
tion is (DEFUN SECOND (LI) (CAR (CDR LI))).
This function takes a list as its argument and
returns the second element in it. Thus the
value of (SECOND `(tea sugar milk)) is sugar. As

STRUCTURING A PROGRAM
TOP-DOWN DESIGN
EQUALITY TESTING

TAIL RECURSION
COMPLEX FUNCTIONS

DATA STRUCTURES
WORKING MEMORY

THE FREE LIST
GARBAGE COLLECTION
DEFINING A FUNCTION

you may remember, exactly the same effect
could be achieved by using the built-in
function CADR. In this example, the atom LI is
used as the name of the arguments, but you
can use any name you like for the arguments.

STRUCTURING A PROGRAM
From the examples so far, you might decide
that a LISP computer is no more than a
sophisticated desk calculator, simply replying
with the values of expressions* This is quite
different to the behaviour expected from a
computer where you want a program to go on
continuously until you tell it to stop*

To write a LISP program a top-down style
of programming is used* You have already
seen this principle applied in Pascal
programs, which have to be written this way,
and the process is similar in LISP* The task
that the program is to do is split up into
further simpler tasks which are in turn split
up* This process is repeated until each sub-
task is so simple that it can be done by a single
LISP function. Each of these subtasks is
called by another function representing the
task which was split up to obtain them.

ventually, the entire program is repre-
sented by a single function which calls all the
others. To set the program off (the equivalent
of RUN in BASIC) you get LISP to evaluate
this master function*

An advantage of this style of programming
is that it is very easy to test each of the
functions as they are written, by typing them
in directly from the keyboard along with any
necessary data. Doing this makes finding
errors in programs much easier*

REPETITION

The final ingredient which you need to write
complete programs is a method of repeating
tasks a number of times* Technically spea-
king, there are two ways of doing this—
iteration and recursion* Iteration is very
familiar to users of BASIC, the classic
example being the FOR***NEXT loop. And if
you have read the article on pages 1289 to
1295, you will have seen how recursion can be
applied in BASIC programs* To demonstrate
the techniques used in LISP, an example of a
program to calculate factorials is going to be
used* The factorial of an integer is calculated
by multiplying together all the integers be-
tween that number and one, so 5 factorial is 5
x4 x3 x 2x1= 120* If you wanted to

calculate the factorials of some numbers in
BASIC, you would probably define the fol-
lowing function:

DEFFNFACT(N)
F = 1

FOR I=1 TON
F = F*I
NEXT
=F

As you can see, FNFACT(5) equals 120 as it
should do* The point here is that the factorial
is calculated by iteration—the function keeps
going through the loop, modifying F until it
reaches the desired answer* Most languages,
including BASIC, rely on iterative constructs
like the FOR..*NEXT and REPEAT**.UNTIL
loops when it is necessary to do a task several
times* However, LISP is different* Instead of
iteration, LISP's main way of repeating
things is recursion.

RECURSION
You are probably already familiar with re-
cursive procedures in BASIC* But as recur-
sion is so important in LISP, it is worth a
quick recap on the fundamental principles.

Recursion means that the solution of a
problem is defined in terms of itself* This may
seem a bit paradoxical, because if the solution
is defined in terms of itself, then it seems as if
a solution will never be reached, and instead
there will just be an infinite spiral of solutions
each of which refers to another. Actually, the
problem is that this definition is not rigorous
enough* A proper recursive definition con-
sists of two parts:
(a) An exceptional case for which the so-

lution is known*
(b) A definition of the solution of the pro-

blem in terms of the solution of a simpler
version of the problem*

Here (a) is the crucial part, for without this, a
recursive definition would indeed go on for
ever and be of no use*

Using this definition and going back to the
example of the factorial program, you could
write a recursive definition of N factorial as:
(a) 1 factorial is 1.
(b) N factorial is given by N times N —1

factorial*
This definition can now be turned into a
LISP function which can be written as:
(DEFUN FACT (N) (COND ((EQ N 1) 1)
(T (TIMES (FACT (DIFFERENCE N 1)) N))))
After typing in this definition (FACT 5) will be
evaluated to 120 by LISP. This definition
uses the COND function described in the first
article on LISP* The first s-expression of the
first clause checks to see if N is one. If it is, the
value of the COND is given by the second
s-expression; in this case 1* Otherwise LISP
carries on to the second clause and since the
first s-expression is T, it finds that the value of
the C0ND is the expression:
(TIMES (FACT (DIFFERENCE N 1)) N)

which in English is N times N —1 factorial*
When LISP calculates 5 factorial, the

function FACT calls itself 4 times with a
different value for the argument N each time.
The way in which LISP substitutes the value
of the function's argument into the function's
definition is cleverly arranged so that there is
no confusion between these different calls of
the FACT function, despite the fact that there
is more than one version of it active at a time.

Recursive definitions require a different
way of thinking to that which you may usually
use when writing BASIC programs* How-
ever, recursion is a very useful technique and
it allows programs to be written simply that
would be very complex to write using itera-
tive ideas* Although BASIC is not really very
suited to recursive programming, this is why
even some versions of BASIC now use it* For
instance, in BBC BASIC you could define the
factorial function using recursion:

DEFFNFACT(N)
IF N=1 THEN =1 ELSE = N *FNFACT(N —1)

Obviously, this is very similar to the LISP*
Although recursion is a very useful con-

cept, it is not always convenient, and many
programmers prefer the iterative way of cal-
culating factorials to the recursive method* In
`pure' LISP, recursion is the only available
technique* However, over the years since
LISP was invented, people have tried to graft
onto it the iterative ideas of other languages.
As time has gone by, some of these have been
dropped* This makes it difficult to describe
the iterative constructs any particular version
of LISP may have. For instance, some mod-
ern versions have REPEAT** *UNTIL and
REPEAT.*.WHILE. Older ones may have forms
of FOR***NEXT or even GOTO* However the
kind of sophisticated list processing problems
for which LISP was designed are usually best
solved by recursive techniques*

EQUALITY TESTING
An example of a more complex LISP function
definition is provided by the function EQUAL*
You have already seen the function EQ that
tests for the equality of two atoms. The
function EQUAL tests to see if two s-
expressions are the same* If they are, it
returns the value T—otherwise it has the value
NIL* Some LISP implementations have this
function built in—if yours does not you must
define it yourself* Obviously, defining this
function is a difficult problem because it has
to take into account the complex structures
that the two lists to be compared might have*
In English, you can define the function as:
(al) If EQ applied to the arguments has the

value T then EQUAL has the value T.

(a2) If either argument is an atom and (al)
was not satisfied when EQUAL has the
value NIL.

(b) If the value of EQUAL applied to the
CARs of the original arguments is T and
if the value of EQUAL applied to CD Rs of
the original arguments is T then EQUAL
has the value T otherwise it has the value
NIL.

In Lisp the definition of EQUAL is:

(DEFUN EQUAL (L1 L2) (COND ((EQ L1
L2) T)

((OR (ATOM L1) (ATOM L2)) NIL)
((EQUAL (CAR L1)(CAR L2))(EQUAL (CDR

L1)(CDR L2)))))

The function is given two s-expressions Ll
and L2 to compare. If L1 and L2 are the same
atom then (EQ Ll L2) will be T and the COND
function will terminate with the value T. Now
if either L1 or L2 is an atom and the EQ did not
have the value T then L1 and L2 cannot be the
same and EQUAL must have the value NIL. In
the second clause of the COND the ATOM and
OR functions are used implement this
condition.

If L1 and L2 pass through the first two tests
then they must be lists. In order to compare
them, they must be split up and then EQUAL
can be used on their constituent parts. The
natural way of doing this is, of course, with
the functions CAR and CDR. Here a trick is
used in the last line of the COND. First the two
CARs are compared and if they are the same,
EQUAL will return T and LISP will move onto
the second s-expression where EQUAL is ap-
plied to the two CDRs. The value of the
function is then the value of this EQUAL.

This is correct if the first EQUAL had the
value T. If the first EQUAL has the value NIL
then LISP tries to move on to the next clause,
and finding there isn't one it automatically
gives the COND the value NIL.

A rather clearer but less concise way of
doing things would be to make the last two
clauses of the COND into:

((AND (EQUAL (CAR L1)(CAR L2))(EQUAL
(CDR L1)(CDR L2))) T) (T NIL)

You may wonder why the last line of the
COND was not written as:

(T (EQUAL L1 L2))

This would be a very bad recursive definition
because it goes on forever. The point about
the original definition is that as the function
recurses, the use of the CAR and CDR func-
tions makes the lists which are the arguments
of EQUAL get simpler. Eventually, they
become atoms and then the first two 'excep-
tional cases' in the COND terminate the recur-

sion. Using this new definition L1 and L2
never become any simpler and so the function
goes on calling itself for ever.

TAIL RECURSION
In the factorial function, after the function
has called itself and got an answer back, it
must multiply this by N before passing the
result back to the level above. In a tail
recursive definition, a function passes back the
results of any deeper levels of recursion
without change. This uses the computer more
efficiently. The following is a tail recursive
definition of the factorial function:

(DEFUN FACT (N) (FACTX N 1))
(DEFUN FACTX (N F) (COND ((EQ N 1) F)
(T (FACTX (DIFFERENCE N 1)(TIMES F N)))))

This requires two functions and is quite
similar in spirit to the original iterative
definition of the factorial function:

COMPLEX FUNCTIONS
In addition to the basic functions like CAR and
CDR built-in to the LISP system, there are
some rather more advanced ones. A good
example is the MAPCAR function. This has
two arguments—the first is a function and the
second a list. MAPCAR applies the function to

each element in the list and returns a list of the
results. So for instance, the result of evaluat-
ing (MAPCAR `PLUS1'(1 2 3 4 5)) is (2 3 4 5 6).

The last function to look at is perhaps the
most important function in LISP. It is called
EVAL and when you type something in at the
keyboard of a LISP system it is evaluated
using this function. However, it is possible for
a LISP function to generate a valid LISP s-
expression and then evaluate it using EVAL.
For instance, (PLUS 1 1) evaluates to 2 and the
expression `(PLUS 1 1) will evaluate to (PLUS 1
1). But (EVAL `(PLUS 1 1)) evaluates to 2. So in
a sense EVAL is the opposite of the single
quote. EVAL then contains all the power of
LISP, but surprisingly enough it is quite easy
to write down its definition in LISP.

DATA STRUCTURES
Although defining functions is essential to
writing programs, in LISP data structures are
almost as important—as in any language.

In BASIC, there are really only two data
structures—the string and the array. When
you write a BASIC program, you must decide
how to represent the data it will manipulate in
terms of these two structures, and choosing
the best way to represent the data in a
problem can often make the solution of the

Fig 1. A LISP list is stored in memory
as a linked list of cells, each consisting

of four bytes. The CAR contains the
address at which each atom is stored,
and the CDR contains the address of

the next cell

problem itself much easier.
In LISP, the concept of lists allows the

construction of an unlimited number of types
of data structure—it is up to the LISP
programmer to use this freedom to maximum
advantage. To give a simple example of how
rapidly LISP data structures become more
complex than in BASIC, a list of atoms may
be considered as similar to an array. However,
it is possible to have a list each of whose
elements is a list of atoms—in other words an
array of arrays.

An important LISP data structure is the
property list. As the previous article showed,
a LISP atom can have a value. However, in
addition to its value, an atom can also have
`properties'. For instance, suppose you have
the atom FRED and that this represents a
person's name. This atom can have properties
corresponding to all the information you
know about the person. For example (PUT
`FRED 'AGE 32), will give the value 32 to the
property AGE of the atom FRED. Next you
might want to add details of the person's
height: this could be done with (PUT 'FRED
'HEIGHT 200). The values of the properties
can be returned with the GET function, so
(GET 'FRED 'AGE) has the value 32.

The uses of properties are only limited by
the imagination of the LISP user. A possible
use is as tags. Suppose you have two lists—
one called LEFT contains the colours of all
your left socks (red green blue yellow) the other,
called RIGHT, contains the colours of all your
right socks (pink orange black green). The
problem is to find if you have any matching
pairs. One way of tackling it would be to take
one sock from LEFT and compare it with every
sock in the list RIGHT and then repeat this for
all the other socks in LEFT. For very large lists
this would be a very slow process. Instead,
you can use property lists. First go through
RIG HT attaching the property SEEn with the
value NIL to each sock e.g. (PUT 'pink 'SEEN
NIL). Now go through the list LEFT and put the
property SEEN with the value T on each sock.
Last, again go through the list RIGHT and look
at the value of the property SEEN on each sock
e.g. (GET 'pink 'SEEN); those which have the
value of T must have a matching sock in the
list LEFT. The search this way is much faster.

WORKING MEMORY
You can make even more use of properties
thanks to functions which allow LISP to
manipulate them independently. REMPROP
REMoves a PR 0 Perty from an atom, as in
(REMPROP 'FRED 'AGE). In addition, there is
often a function PLIST which has as its value
the Property LIST for an atom. For instance
(PLIST 'FRED) would have the value ((AGE .

32) (HEIGHT . 200)). Each item in this list is a
dotted pair (briefly referred to in the previous
article). To understand this idea, you must
understand what is going on behind the
scenes in a LISP computer.

Obviously, when a LISP system is wor-
king, lists are being manipulated all the time.
But most computers have no special instruc-
tion for doing this. This means that the lists
must be represented in terms of the usual
contents of a computer. For instance, the
typical home computer has about 64,000
memory locations each of which can hold a
single 8 bit number. Actually holding the
address of a memory location requires a 16 bit
number.

In a typical LISP system, all the memory
locations in the computer (to be used for
storing lists) would be split up into cells. Each
cell consists of four bytes—two 16 bit words
which can each hold the address of another
cell. The first two bytes of a cell can be called
its CAR and the second two bytes, its CDR. A
LISP list is stored as a linked list of such cells.
Consider the list (tea milk sugar). Each item in
the list is represented by a cell. The CAR of the
cell contains the address at which the appro-
priate atom is stored and the CDR contains the
address of the next cell in the list. Fig 1.
should make this clear.

The question arises what happens at the
end of the list? Where does the last CDR of the
linked list point to? Usually, it points to the
special atom NIL as shown in the diagram. A
dotted pair is a representation of one cell in
the linked list. This means that a list with one
item (FRED), say, can be written in LISP as
(FRED . NIL). So dotted pairs are LISP's way
of displaying how lists are stored. Suppose
you typed (CONS 'FRED 'SMITH). LISP would

Fig 2. A structure stored in memory
like this is displayed by LISP as a
dotted pair

reply with (FRED . SMITH). In memory you
would have created the structure in Fig 2.

The CAR, CDR and CONS operators can also
be applied to dotted pairs. For example, (CAR
`(FRED . SMITH)) is FRED. These dotted pairs
can be useful, but it is possible to write LISP
programs without worrying about them.

THE FREE LIST
When you begin a programming session on a
LISP computer, all the free memory is div-
ided up into cells and these are all linked
together in one big list—the free list. As you
create new lists, cells are taken from the free
list and used. For example, if you typed (SETQ
SHOPS `(tea milk sugar)) some cells would be
taken from the free list and used. However, if
you then changed your mind and typed (SETO
SHOPS `(biscuits socks)) LISP would use up
more memory locations to store the new list.
The problem is that the cells used to store the
original list still exist linked together and have
not been returned to the free list. Obviously,
if this process continued, you would soon run
out of memory.

Most LISP systems handle this problem
by going on using up memory until the free
list is empty. At this stage, a complicated
program called the 'Garbage Collector' is
brought into operation. This looks at all the
cells in the computer's memory and discovers
if they are still being used by the atoms and
functions in the object list. Any cells no
longer needed are then returned to the free
list. After all the unused cells have been
collected, normal processing resumes.

This can produce strange behaviour—your
LISP program may be running and then
suddenly stop for a few seconds, possibly in
the middle of an important task, as the
garbage collector does its work. Clearly, if the
LISP program were in control of some highly
interactive process, like the movement of a
robot or flying plane, this would not be
acceptable. In fact other methods of solving
this problem will have to be developed for this
type of situation. Some versions of BASIC
use a similar garbage collection scheme to
handle the storage of strings. Often there is a
command with which you can force BASIC to
do the garbage collection and some LISP
systems have a function which does this.

MOVING ON
From the language of list processing to a
language whose speed approaches that of
machine code—the next language in the series
is FORTH. Originally developed for scient-
ific applications, these days FORTH is a
powerful language with a wide range of
applications.

CUMULATIVE INDEX

An interim index will be published each week. There will be a complete index in the last issue of INPUT

A
Algorithms

in games 	1372-1373
use of in Pascal

1354,1389-1390
Animation

of sprites
Commodore 64 	1259-1263

with LOGO 	1317-1320
Applications

horoscope program 1245-1253
music composer program

1333-1337,1392-1396,
1416-1423

PERT program 1429-1433
room planner program

1269-1275,1308-1313
Artificial intelligence1264,1294

in Cavendish Field game
1372-1377

using LISP 	1410-1411

B
Basic programming

file handling 	1358-1364
fractals

1397-1401,1434-1439
moving colour sprites

Commodore 64 	1258-1263
operating system 	1322-1327
recursion 	1289-1295
screen dump programs

1365-1371

C
Cavendish Field game

part 1—design rules and
UDGs 	1254-1257

part 2—map and troop arrays
1282-1288

part 3—issuing orders
1301-1307

part 4—combat and morale
routines 	1346-1351

part 5—strengthening the
computer 	1372-1377

Cliffhanger
part 12—adding weather

1240-1244
part 13—rolling boulders 1

1276-1281
part 14—rolling boulders 2

1328-1332
part 15—walking Willie

1338-1345
part 16—jumping Willie 1

1378-1385
part 17—jumping Willie 2

1402-1409

part 18—death, sound and
end routines 	1440-1447

Colour
code guessing game 1356-1357
of sprites

Commodore 64 	1262
representing in tonal screen

dump 	1369-1371

D
Data, separate storage of

1358-1364
Desperate decorator game

1314-1316
Dotted pairs, in LISP 	1460

E
Editing

with LOGO
	

1296
with Pascal
	

1355,1391
Equality testing,

with LISP
	

1458-1459
Escape adventure game

part 1
	

1424-1428
part 2
	

1450-1455

F
Factorials, calculating

BASIC program for 1291-1293
in LISP 	1458-1459

Files, handling 	1358-1364
Fractals 1397-1401,1434-1439

G
Games

Cavendish Field 	1254-1257,
1282-1288,1301-1307,
1346-1351,1372-1377

cliffhanger
1240-1244,1276-1281,
1328-1332,1338-1345,
1378-1385,1402-1409,

1440-1447
desperate decorator 1314-1316
escape 1424-1428,1450-1455
horoscope program 1245-1253
life 	 1237-1239
`match that' 	1356-1357

Graphics
displays, programs for dumping

1365-1371
moving and storing sprites

Commodore 64 	1258-1263
using fractals

1398-1401,1434-1439
using LOGO

1296-1300,1317-1320

H
Heuristics, use in Cavendish Field

1373-1377
Horoscope program 1245-1253

L
Languages

LISP 	1410-1415,1456-1460
LOGO 1264-1268,1296-1300,

1317-1321,1352-1355,1386-1391
Pascal 	1352-1355,1386-1391

Life game 	1237-1239
LISP

part 1—introduction
1410-1415

part 2—defining functions
1456-1460

LOGO 	 1264-1268,
1296-1300,1317-1321

M
Machine code

games programming
see cliffhanger; life game

program to play background
music
Acorn, Commodore 64

1448-1449
tonal screen dump 1369-1371

`Match that' colour code
guessing game 	1356-1357

Mathematical functions
in fractal geometry

1397-1401,1434-1439
with LISP 	 1415
with LOGO 	 1320

Memory
advantages of Pascal in 	1353
banks, range of

	

Commodore 64 	1258-1259
checking with LOGO 	1299
locations of VIC-II chip

	

Commodore 64 	1262
managing by OS 	1323-1327
storing LISP in 	1459-1460
storing sprites in

	

Commodore 64 	1258-1260
Music

background, program to play
Acorn, Commodore 64

1448-1449
composer program 1333-1337,

1392-1396,1416-1423

0

	

Operating system 	1322-1327

P
Pascal

part 1—algorithms 1352-1355
part 2—commands 1386-1391

PERT program
part 1—the database

1429-1433
Pointers, sprite

Commodore 64 	1260-1261
Procedures,

in LOGO 	1268,1296-1300
Punctuation,

when handling files 1360-1363
with LISP 	 1412
with LOGO 	1320-1321
with Pascal 	1354-1355,1391

Q
Quicksort program, recursive

1293-1294

R
Recursion

in BASIC 	1289-1295
in fractal programs 1398-1401,

1434-1439
in LISP 	1458-1459
in LOGO 	1299-1300

Room planner program
part 1 	 1269-1275
part 2 	 1308-1313

S
Screen dumping, of graphics

1365-1371
Snowflake

curve 	 1398
program to draw 	1434-1436

Sprites, Commodore 64
moving and storing 1258-1263

Sprites, LOGO 	1317-1320

T
Towers of Hanoi program

1294-1295

	

Turtle, use of 	1266-1268

	

for graphics 	1296-1300

U
User-defined functions,

in LISP 	1456-1459

V
VIC-II chip

Commodore 64
	

1258

Wargames
see Cavendish Field

The publishers accept no responsibility for unsolicited material sent for publication in INPUT. All tapes and
written material should be accompanied by a stamped, self-addressed envelope.

—/ There are some ideas for giving depth
to your GRAPHICS—GETTING
THINGS IN PERSPECTIVE. Learn how
to master vanishing points and
foreshortening, and how to use shading
to give solidity to your screen display.

JCheck out your TV or monitor with a
simple TEST-CARD ROUTINE

JMove on to looking at a new, high-
speed language with the first of a three-
part examination of FORTH

JComplete your CRITICAL-PATH
ANALYSIS PROGRAM and find out how
to run it through a typical problem

-J In CLIFFHANGER, the next routine
handles CALCULATING THE SCORE

Plus the next stage in ESCAPE, the
BASIC adventure game program

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36

