
A MARSHALL CAVENDISH 49 COMPUTER COURSE IN WEEKLY PARTS

LEARN PROGRAMMING - FOR FUN AND H_ U URE

Vol* 4 	 No 49

APPLICATIONS 36

SPECTRUM/COMMODORE TOOLKIT 	1525

A machine code routine that adds to the facilities
available for developing BASIC programs

LANGUAGES 10

THE FORTH DIMENSION 	 1532

Understand the set pieces which enable you to build up

complex program structures in FORTH

MACHINE CODE 52

CLIFFHANGER: SETTING IT OFF 	1537

The main action routine is the heart of the game, calling

all the other routines together to complete the program

GAMES PROGRAMMING 53

ESCAPE: THE CODED TEXT 	 1545

With the BASIC program complete, start to add the coded

messages that keep the action a secret until you start to play

PERIPHERALS

COMPUTERS IN CONTROL 	 1552Z

A look at how computers can be used to control all sorts of

mechanism—including the hardware and software you need

INDEX
The last part of INPUT, Part 52, will contain a complete, cross -referenced index.

For easy access to your growing collection, a cumulative index to the contents

of each issue is contained on the inside back cover.

PICTURE CREDITS
Front cover, Digital Arts. Pages 1525, 1526, 1528, 1530, Phil Dobson. Page
1530, Renumber routine, Commodore Computing International. Pages 1532,
1535, 1536, Digital Arts. Pages 1537, 1538, 1540, 1542, Gary Wing. Pages 1545,
1548, Graeme Harris/Chris Lyon. Pages 1553, 1555, 1556, Kevin O'Keefe. Page
1554, Rick Blakely, Stepper Motor, Impex, Richmond, Surrey.

© Marshall Cavendish Limited 1985/6/7
All worldwide rights reserved.

The contents of this publication including software, codes, listings,
graphics, illustrations and text are the exclusive property and copyright of
Marshall Cavendish Limited and may not be copied, reproduced,
transmitted, hired, lent, distributed, stored or modified in any form
whatsoever without the prior approval of the Copyright holder.

Published by Marshall Cavendish Partworks Ltd, 58 Old Compton Street, London WI V 5PA,
England. Typeset by MS Filmsetting Limited, Frome, Somerset. Printed by Cooper Clegg
Web Offset Ltd, Gloucester and Howard Hunt Litho, London.

HOW TO ORDER
YOUR BINDERS
UK and Republic of Ireland:
Send £4.95 (inc p & p) (IR£5.95) for
each binder to the address below.

Marshall Cavendish Services Ltd,
Department 980, Newtown Road,
Hove, Sussex BN3 7DN

Australia: See inserts for details, or
write to INPUT, Times Consultants;
PO Box 213, Alexandria, NSW 2015

New Zealand: See inserts for details, or
write to INPUT, Gordon and Gotch
(NZ) Ltd, PO Box 1595, Wellington
Malta: Binders are available from local
new sagents.

There are Jour binders each holding 13 issues.

BACK NUMBERS
Back numbers are supplied at the regular cover price (subject to availability).

UK and Republic of Ireland:
INPUT, Dept AN, Marshall Cavendish Services,
Newtown Road, Hove BN3 7DN

Australia, New Zealand and Malta:
'lack numbers are available through your local newsagent.

COPIES BY POST
Our Subscription Department can supply copies to any UK address regularly at £1.00 each.
For example the cost of 26 issues is £26.00; for any other quantity simply multiply the number
of issues required by £1.00. Send your order, with payment to:

Subscription Department, Marshall Cavendish Services Ltd,
Newtown Road, Hove, Sussex BN3 7DN

Please state the title of the publication and the part from which you wish to start.

HOW TO PAY: Readers in UK and Republic of Ireland: All cheques or postal orders
for binders, back numbers and copies by post should be made payable to:

Marshall Cavendish Partworks Ltd.

QUERIES: When writing in,please give the make and model of your computer,as
well as the Part No., page and line where the program is rejected or where it does
not work. We can only answer specific queries — and please do not telephone. Send
your queries to INPUT Queries, Marshall Cavendish Partworks Ltd, 58 Old
Compton Street, London WI V SPA.

INPUT IS SPECIALLY DESIGNED FOR:
The SINCLAIR ZX SPECTRUM (16K, 48K,128 and +),
COMMODORE 64 and 128, ACORN ELECTRON, BBC B
and B+, and the DRAGON 32 and 64.

In addition, many of the programs and explanations are also
suitable for the SINCLAIR ZX81, COMMODORE VIC 20, and
TANDY COLOUR COMPUTER in 32K with extended BASIC.
Programs and text which are specifically for particular machines
are indicated by the following symbols:

a SPECTRUM 16K,
4811,128, and + ‘11 COMMODORE 64 and 128

ACORN ELECTRON,
BBC B and B+ V; DRAGON 32 and 64

C
 um • VIC 20 mr TCOLODUYR COMPUTER

ADDING EXTRA COMMANDS
RENUMBER ROUTINE

AUTO LINE NUMBERING
BLOCK DELETE

OTHER COMMANDS

Make your life easier with this new
set of programming tools. This
machine code utility offers many
routines to help you sort out your
BASIC programs

Although all the computers covered in
INPUT use the same BASIC language, you'll
be well aware of the variations among the
different dialects* In fact, it is very rare to find
even a short program that will run on more
than one computer. Sometimes it is just a
matter of variations in the way the commands
are used but often you'll find that many
commands implemented on one computer do
not exist at all on another* Many of the
commands missed out are those which, while
not exactly essential to programming, do
make the programmer's life easier—including
facilities such as renumber or auto line num-
bering or hex to decimal conversions, and so
forth*

The toolkit program given here for the
Spectrum and Commodore adds these com-
mands and others, making it easier for you to
use and program your computer. The Acorn,
Dragon and Tandy do not need a toolkit such
as this as they already have these commands
in their standard BASIC*

The program is in machine code so it can
remain in your computer at the same time as a
BASIC program. The instructions for load-
ing, saving and using the programs are given
under the separate sections below*

The Spectrum toolkit offers eight new
routines—renumber, block delete, bytes free,
program length, auto line numbering, a tape
cataloguer and hex to dec or dec to hex
conversions* These are all called with
RANDOMIZE USR followed by a number as
described below. Once a routine is called, the
program will prompt you for the relevant
inputs such as the lines to be deleted, the
number to be converted or whatever.

The toolkit uses several of the routines
from the cross-referencer program so you will
need to join these two programs together* All
the instructions for doing this are contained

within the toolkit program. So simply type in
the program, RUN it and follow the prompts*
The program will tell you if you have made
any mistakes entering the DATA* These have
to be corrected before you can save the
machine code.

The program will save the combined tool-
kit and cross-referencer under the name
"TOOLKIT" CODE. To load it in at the start of a
programming session use:

CLEAR 63488
LOAD "TOOLKIT" CODE

The RENUMBER routine is called with
RANDOMIZE USR 63489* You'll be prompted
to enter the line increments—any number
between 1 and 255*

To find the length of your program type:

RANDOMIZE USR 63889

To find the number of bytes free type:

RANDOMIZE USR 63860.

AUTO line numbering is called with
RANDOMIZE USR 64154* The prompts ask you

for the start line (1 to 9900) and the line
increments (1 to 9900)* To cancel AUTO
enter two zeros after the line number appears.
The routine will then stop with a 'nonsense in
Basic' message, which you can ignore*

For BLOCK DELETE call RANDOMIZE
USR 64000* The prompts ask you for the start
and end line numbers of the section to be
deleted*

For the TAPE CATALOGUE call
RANDOMIZE USR 63919* The border will start
flashing. Position your tape at the start of a
program and press PLAY* Information from

the tape header is then displayed.
To convert from DEC to HEX type

RANDOMIZE USR 64394 and to convert from
HEX to DEC type RANDOMIZE USR 64453.
(For the last routine, there is no need to press

iENTER I after the hex number.)

The Commodore toolkit adds a total of 43
new commands that can be used in the same
way as the normal BASIC keywords.

Type in the program then RUN it to check
for any mistakes. If you've made an error in
the DATA lines the program will tell you in

which line it occurred.
When the program is correct save the

BASIC version using:

SAVE "TOOLKIT"

Then RUN it, type SYS 52480 as instructed to
create the machine code, then save the ma-
chine code with one of the new commands

you've created:

@MSAVE 49152,53247"MCTOOLKIT",1,1

It is the machine code version that you'll need
to load in when you want to use the program.
To load it type:

LOAD "MCTOOLKIT",1,1

Now for the commands. Because of the way
the program works, all of the new commands
consist of an existing BASIC word plus one or
two extra characters, and they all start with
@. The syntax of each command is given
followed by an explanation and an example
where necessary.

THE NEW COMMANDS
@PPOKE location, address. Eg @PPOKE
51,16384 pokes the low and high bytes of
16384 into locations 51 and 52.
@PPEEK location. Eg @PPEEK 51 prints the
value of PEEK(51) + PEEK(52)*256.
@POKER start address, number of items (0
to 255), list of items. Eg @POKER
49152,4,12,51,34,15,21 pokes the five data
items into memory starting at location 49152.
@POKES start address, end address, value to
be poked (0 to 255). This fills up a section of
memory with the value stated. You can erase a
section of memory by poking zeros, or you
can fill part of the screen with characters by
poking in the screen code for the character in
the screen memory.
@BNEW address. This moves the start of
BASIC to the address stated.
@GETNEW resets the start of BASIC to
normal. This is equivalent to an OLD com-
mand. These last two commands can be used
to store several programs in memory at the
same time. For example, you can load in one
program as usual, then move BASIC with,
say, @BNEW 16384, and load in another
program. @BNEW 2048:@G ETN EW then re-
turns you to the old program.
@NNEW performs a cold start, erasing all
programs in memory.
@GGOTO variable allows you to GOTO a
variable line number.
@LRESTORE line number lets you restore a
READ command to a specific line.
@MGOTO start address, end address, new
start moves the section of memory between
the start and end addresses to the new start
address.
@MREAD start address, end address prints
out the contents of the section of memory and
adds up the total of all the values. A typical
result might be 12, 32, 65, 22, # 131. This
can be used to create DATA lines of machine
code with checksums at the end of each line.
There's a short program to demonstrate this

at the end of the section.
@MSAVE start address, end address name of
machine code program, device number, 1
saves a section of memory as a machine code
program. As an example, see the command for
saving the toolkit program in the first place.
@MFRE tells you the total amount of free
memory available for BASIC.
@COST low byte, high byte. Eg @COST6,1
prints out the value of 6 + 1*256.
@POST number converts the number into its
low and high bytes.
@CCHR$ number of characters (0 to 255),
ASCII code to be printed. Eg @CCHR$ 6,65
prints out six letter As.
@D' decimal number converts to
hexadecimal.
@H'$ four digit hex number converts to
decimal.
@ONTO step of count (0 to 255) gives
automatic line numbering in the step stated.
The start line is whatever you type in first.
@ONTO 'RETURNS turns off the previous
@ONTO command. Press SHIFT plus 'RETURN
before using this command.
@RLIST, start line number, step. This is the
renumber command. Eg @RLIST,10,5 re-
numbers a program starting at line 10 in
steps of five. Note the first comma in the
command—you must put this in.
@WAITGET variable waits for a keypress, the
name of the variable is unimportant.
@WAIT' 711*number of seconds delays for
specified number of seconds. (The 711 is a
scale factor.)
@PRINT% ink(0 to 15), X (0 to 39), Y (0 to
24), text to be printed. This prints the text in
the ink colour at coordinates X,Y.
@COR ink (0 to 15), border colour (0 to 15),
paper colour (0 to 15) sets up colour scheme.
@CLR' number (0 to 24) clears line specified
on the screen.
@SCLR clears whole screen.
@SNEW resets screen.
@UP scrolls screen up one line.
@SYS1 turns screen off.
@SYS0 turns screen on.
@ASC1 forces lower case characters.
@ASC0 forces upper case characters.
@ON1 disables SHIFT!.
@ON0 enables 'SHIFT .
@DEF1 disables I RUN/STOP I.
@DEF0 enables IRUN/STOP
@FN1 turns on auto repeat.
@FN0 turns off auto repeat.
@KCLR clears keyboard buffer (equivalent to
POKE 198,0).
@TOP cursor home.
@SIF clears all sound chip registers.
@SON voice, volume, A/D, S/R, waveform,
high byte of note, low byte of note. This can

be used to set up the parameters for a note.

CREATING DATA LINES
As mentioned under @MREAD you can create
a BASIC program consisting of machine code
DATA by reading a section of memory. This
command was used to create the listing of the
toolkit itself. Assuming you've used an as-
sembler to create some machine code starting
at location 49152, the method is as follows.
First enter these lines then press RETURN I:

A = 0:X = 49152:@CCHR$79,32:?" ❑ ❑ 0"

0"DATAD";:@MREAD X + A*15,14 +
X + A*15

When you press 'RETURNS you'll see the first
DATA line printed on the screen. Run the
cursor over the line and press I RETURN to store
the line.

Then move the cursor to the A = 0 and
increment the 0 to a 1, press 'RETURN' and
continue the process with the next DATA line.
Keep incrementing A until all the DATA has
been entered. This routine gives a program
with line steps of 10. Change the figure 10
before the work "DATA " for different line
steps.

BLOCK DELETE
There is no block delete command but this
can be achieved using two other commands.
Turn on auto repeat with @FN1 then type
@ONTO with a suitable line step relating to
the step between the lines you want to delete,
and enter the first line number to be deleted.
Holding down RETURN I will effectively delete
all lines from that point onwards, only stopp-
ing when you take your finger off 'RETURNS.

a
5 CLEAR 63488: BORDER 0: PAPER 0: INK 6:

CLS
10 PRINT AT 0,10; INVERSE 1;" TOOLKIT "
12 PRINT AT 8,2;" ❑ Press any key to load

cross-El ❑ referencer machine code.":
PAUSE 0

14 LOAD "CREF"CODE
15 CLS : PRINT "Poking TOOLKIT machine

code.11111111111IPlease prepare a cassette for
saying."

20 LET L=100: RESTORE L: FOR N =63489
TO 64560 STEP 16

30 LET T=0: FOR D=0 TO 15
40 READ A: POKE (N+ D),A: LET T=T+ A:

NEXT D
50 READ A: IF A< >T THEN PRINT

"CHECKSUM ERROR IN LINE III";L: STOP
60 LET L=L+10
70 NEXT N
100 DATA 62,12,205,48,252,205,60,250,237,

67,155,248,42,83,92,1,2019
110 DATA 0,0,126,254,128,40,9,197,205,184,

25,193,3,235,24,242,1865
120 DATA 205,43,45,58,155,248,205,40,45,

239,4,56,205,162,45,33,1788
130 DATA 15,39,167,237,66,48,2,207,5,33,

145,248,126,60,40,32,1470
140 DATA 35,229,237,91,83,92,42,75,92,167,

237,82,68,77,235,237,2079
150 DATA 177,197,229,245,204,157,248,241,

225,193,234,80,248,225,24,220,3147
160 DATA 42,83,92,58,155,248,54,0,35,119,

205,40,45,239,49,192,1656
170 DATA 56,42,83,92,205,184,25,42,75,92,

43,167,237,82,216,235,1876
180 DATA 229,239,224,15,49,56,205,162,45,

225,112,35,113,43,24,228,2004
190 DATA 201,224,228,235,236,239,246,255,

0,0,10,0,229,6,4,35,2148
200 DATA 126,254,14,40,4,16,248,225,201,

197,35,35,35,78,35,70,1613
210 DATA 42,83,92,217,1,1,0,217,205,149,22,

43,235,167,237,66,1777
220 DATA 235,48,11,217,3,217,197,205,184,

25,193,235,24,234,217,197,2442
230DATA217,209,42,155,248,205,169,48,235,

42,104,92,35,35,115,35,1986
240 DATA 114,235,62,0,167,1,9,0,237,66,56,

17,60,1,90,0,1115
250 DATA 237,66,56,9,60,1,132,3,237,66,56,

1,60,209,225,229,1647
260 DATA 245,130,214,4,245,6,0,56,9,79,40,

12,205,85,22,35,1387
270 DATA 24,6,237,68,79,205,232,25,193,241,

197,79,6,0,9,65,1666
280 DATA 229,197,35,35,235,42,104,92,1,5,0,

237,176,193,225,229,2035
290 DATA 197,239,224,164,5,58,193,164,4,

224,1,3,225,192,2,56,1951
300 DATA 205,213,45,193,225,198,48,119,43,

16,228,229,42,104,92,35,2035
310 DATA 35,126,225,198,48,119,241,193,

245,42,83,92,167,229,237,66,2346
320 DATA 225,48,8,197,205,184,25,193,235,

24,242,235,35,35,193,126,2210
330 DATA 128,119,201,62,0,205,48,252,205,

26,31,33,0,0,62,0,1372
340 DATA 237,66,229,193,205,43,45,62,254,

205,1,22,205,227,45,201,2240
350 DATA 42,75,92,237,75,83,92,62,0,237,66,

229,62,1,205,48,1606
360 DATA 252,193,205,43,45,205,227,45,62,

2,205,48,252,201,221,33,2239
370 DATA 32,255,17,17,0,175,55,205,86,5,62,

3,205,48,252,221,1638
380 DATA 33,32,255,221,126,0,198,6,221,229,

205,48,252,62,13,215,2116
390 DATA 62,4,205,48,252,221,225,221,35,

221,126,0,254,255,40,10,2179
400 DATA 6,10,221,126,0,221,35,215,16,248,

62,13,215,62,5,205,1660

410 DATA 48,252,221,33,32,255,221,78,11,
221,70,12,195,163,249,205,2266

420 DATA 142,250,62,10,205,48,252,205,60,
250,205,110,25,229,62,13,2128

430 DATA 215,62,11,205,48,252,205,60,250,
205,110,25,193,32,16,229,2118

440 DATA 35,35,126,35,95,126,87,225,237,90,
17,4,0,237,90,229,1668

450 DATA 197,62,0,237,66,218,87,252,195,89,
252,6,0,197,205,95,2158

460 DATA 252,205,115,252,193,254,13,40,26,
254,58,48,240,214,48,56,2268

470 DATA 236,245,4,120,254,6,32,4,5,241,24,
225,241,245,198,48,2128

480 DATA 215,24,218,221,33,49,255,120,254,
0,40,207,33,0,0,221,1890

490 DATA 94,0,221,86,1,241,254,0,40,7,237,
90,56,13,61,32,1433

500 DATA 249,221,35,221,35,5,32,231,229,
193,201,207,5,42,75,92,2073

510 DATA 237,75,83,92,237,66,192,207,9,62,
10,205,48,252,205,60,2040

520 DATA 250,34,30,255,62,13,215,62,12,
205,48,252,205,60,250,34,1987

530 DATA 28,255,33,48,48,34,59,255,34,61,
255,237,75,30,255,205,1912

540 DATA 115,251,62,2,50,107,92,50,107,92,
205,149,23,205,176,22,1708

550 DATA 62,0,205,1,22,33,59,255,6,4,126,
229,197,205,129,15,1548

560 DATA 193,225,35,16,245,205,44,15,205,
23,27,221,33,58,92,221,1858

570 DATA 203,0,126,32,13,42,89,92,205,167,
17,62,255,50,58,92,1503

580 DATA 24,206,42,89,92,34,93,92,205,251,
25,120,177,32,10,223,1715

590 DATA 254,13,40,174,205,176,22,207,1,
237,67,73,92,42,93,92,1788

600 DATA 235,33,85,21,229,42,97,92,55,237,
82,229,96,105,205,110,1953

610 DATA 25,32,6,205,184,25,205,232,25,
193,121,61,176,40,47,197,1774

620 DATA 3,3,3,3,43,237,91,83,92,213,205,
85,22,225,34,83,1425

630 DATA 92,193,197,19,42,97,92,43,43,237,
184,42,73,92,235,193,1874

640 DATA 112,43,113,43,115,43,114,237,75,
28,255,205,115,251,241,195,2185

650 DATA 195,250,33,62,255,126,60,254,58,
40,8,119,11,121,128,176,1896

660 DATA 200,24,239,62,48,119,43,24,236,
62,14,205,48,252,205,60,1841

670 DATA 250,62,13,215,197,62,15,205,48,
252,193,46,2,96,124,203,1983

680 DATA 31,203,31,203,31,203,31,230,15,
205,189,251,215,124,230,15,2207

690 DATA 205,189,251,215,97,45,32,230,62,
13,215,201,198,48,254,58,2313

700 DATA 216,198,7,201,62,16,205,48,252,
17,85,255,6,4,213,197,1982

710 DATA 205,95,252,205,115,252,215,245,

241,193,209,18,19,16,239,62,2581
720 DATA 13,215,62,17,205,48,252,221,33,85,

255,17,0,16,33,0,1472
730 DATA 0,14,4,221,126,0,221,35,214,48,

218,87,252,254,10,56,1760
740 DATA 2,214,7,254,16,210,87,252,71,254,

0,40,3,25,16,253,1704
750 DATA 203,58,203,27,203,58,203,27,203,

58,203,27,203,58,203,27,1964
760 DATA 13,32,208,229,193,205,43,45,205,

227,45,62,13,215,201,203,2139
800 CLS : PRINT AT 5,5;" ❑

COMPILATION COM PLETE. ❑ "
810 PRINT AT 7,2;"PREPARE A CASSETTE

FOR SAVING."
820 PRINT AT 9,4;"FILENAME IS "

"TOOLKIT'"` ❑ CODE "
830 SAVE "TOOLKIT"CODE 63489,2000

100 DATA 32,158,183,142,134,2,32,253,174,
32,158,183,138,72,32, # 1725

101 DATA 253,174,32,158,183,104,168,24,32,
240,255,32,253,174,32, # 2114

102 DATA 164,170,96,32,158,183,142,134,2,
32,253,174,32,158,183, # 1913

103 DATA 142,32,208,32,253,174,32,158,183,
142,33,208,96,32,247, # 1972

104 DATA 183,32,253,174,32,235,183,142,19,
3,169,0,133,2,32, #1592

105 DATA 253,174,32,158,183,138,164,2,145,
20,204,19,3,240,5, # 1740

106 DATA 230,2,76,74,192,96,32,138,173,32,
247,183,165,20,133, # 1793

107 DATA 251,165,21,133,252,32,253,174,32,
138,173,32,247,183,32, # 2118

108 DATA 253,174,32,158,183,134,2,165,21,
197,252,144,35,208,6, # 1964

109 DATA 165,20,197,251,144,27,165,2,160,
0,145,251,165,251,197, # 2140

110 DATA 20,208,6,165,252,197,21,240,9,
230,251,208,234,230,252, #2523

111 DATA 76,141,192,96,32,138,173,32,247,
183,165,20,133,251,165, # 2044

112 DATA 21,133,252,32,253,174,32,138,173,
32,247,183,165,20,133, # 1988

113 DATA 253,165,21,133,254,32,253,174,32,
138,173,32,247,183,165, # 2255

114 DATA 254,197,252,144,41,208,6,165,253,
197,251,144,33,160,0, # 2305

115 DATA 177,251,145,20,165,251,197,253,
208,6,165,252,197,254,240, # 2781

116 DATA 15,230,251,208,2,230,252,230,20,
208,228,230,21,76,223, # 2424

117 DATA 192,96,32,138,173,32,247,183,165,
20,133,251,165,21,133, # 1981

118 DATA 252,32,253,174,32,138,173,32,247,
183,160,0,165,20,145, # 2006

119 DATA 251,165,21,200,145,251,96,32,158,
183,32,255,233,96,32, # 2150

120 DATA 138,173,32,247,183,160,0,177,20,

170,200,177,20,32,205, # 1934
121 DATA 189,96,32,138,173,32,247,183,165,

20,133,251,165,21,133, #1978
122 DATA 252,32,253,174,32,138,173,32,247,

183,165,21,197,252,144, # 2295
123 DATA 61,208,6,165,20,197,251,144,53,

169,0,133,253,133,254, # 2047
124 DATA 24,160,0,177,251,170,101,253,133,

253,165,254,105,0,133, # 2179
125 DATA 254,169,0,32,205,189,169,44,32,

210,255,165,251,197,20, # 2192
126 DATA 208,6,165,252,197,21,240,9,230,

251,208,214,230,252,76, # 2559
127 DATA 104,193,169,35,32,210,255,166,

253,165,254,76,205,189,32, # 2338
128 DATA 138,173,32,247,183,162,0,232,208,

253,198,20,169,255,197, # 2467
129 DATA 20,208,245,198,21,197,21,208,239,

96,32,158,183,160,0, #1986
130 DATA 224,1,208,2,160,7,224,2,208,2,

160,14,132,2,32, #1378
131 DATA 253,174,32,158,183,142,24,212,32,

253,174,32,158,183,138, # 2148
132 DATA 164,2,153,5,212,32,253,174,32,158,

183,138,164,2,153, #1825
133 DATA 6,212,32,253,174,32,158,183,138,

164,2,153,4,212,142, # 1865
134 DATA 19,3,32,253,174,32,158,183,138,

164,2,153,1,212,32, #1556
135 DATA 253,174,32,158,183,138,164,2,153,

0,212,206,19,3,173, # 1870
136 DATA 19,3,164,2,153,4,212,96,162,0,138,

157,0,212,232, # 1554
137 DATA 224,25,208,248,96,76,68,229,76,24,

229,76,234,232,169, # 2214
138 DATA 0,141,138,2,96,169,128,141,138,2,

96,169,0,133,198, #1551
139 DATA 96,169,237,141,40,3,96,169,251,

141,40,3,96,76,102, # 1660
140 DATA 229,169,27,141,17,208,96,169,11,

141,17,208,96,169,21, #1719
141 DATA 141,24,208,96,169,23,141,24,208,

96,169,9,76,210,255, #1849
142 DATA 169,8,76,210,255,32,138,173,32,

247,183,76,163,168,32, # 1962
143 DATA 138,173,32,247,183,169,0,168,145,

20,24,165,20,105,1, #1590
144 DATA 133,43,165,21,105,0,133,44,76,154,

227,169,62,32,210, # 1574
145 DATA 255,169,18,32,210,255,165,55,56,

229,45,170,165,56,229, # 2109
146 DATA 46,32,205,189,169,96,160,228,76,

30,171,169,0,133,198, # 1902
147 DATA 165,198,201,1,208,250,76,146,171,

169,8,160,1,145,43, #1942
148 DATA 32,51,165,24,165,34,105,2,133,45,

133,47,133,49,165, #1283
149 DATA 35,105,0,133,46,133,48,133,50,96,

32,138,173,32,247, # 1401
150 DATA 183,165,20,133,63,165,21,133,64,

32,19,166,56,165,95, # 1480

151 DATA 233,1,133,65,165,96,233,0,133,66,
96,162,0,181,43, #1607

152 DATA 149,251,232,224,4,208,247,32,138,
173,32,247,183,165,20, # 2305

153 DATA 133,43,165,21,133,44,32,253,174,
32,138,173,32,247,183, # 1803

154 DATA 165,20,133,45,165,21,133,46,32,86,
225,162,0,181,251, #1665

155 DATA 149,43,232,224,4,208,247,96,32,
158,183,134,2,32,253, # 1997

156 DATA 174,32,158,183,142,19,3,165,2,201,
0,240,11,173,19, # 1522

157 DATA 3,32,210,255,198,2,76,79,195,96,
76,154,227,32,138, # 1773

158 DATA 173,32,247,183,170,169,72,32,210,
255,169,39,32,210,255, # 2248

159 DATA 169,36,32,210,255,138,32,139,195,
138,32,144,195,152,32, # 1899

160 DATA 139,195,152,32,144,195,96,24,106,
106,106,106,41,15,24, # 1481

161 DATA 105,48,201,58,144,2,105,6,32,210,
255,96,169,68,32, #1531

162 DATA 210,255,169,39,32,210,255,32,186,
195,133,34,32,186,195, # 2163

163 DATA 170,165,34,32,205,189,76,228,167,
32,203,195,10,10,10, # 1726

164 DATA 10,133,35,32,203,195,101,35,133,
35,96,32,115,0,201, #1356

165 DATA 58,41,15,144,2,105,8,96,32,138,
173,32,247,183,169, #1443

166 DATA 91,32,210,255,169,0,166,20,32,
205,189,169,44,32,210, # 1824

167 DATA 255,169,0,166,21,32,205,189,169,
93,32,210,255,96,32, # 1924

168 DATA 158,183,134,2,32,253,174,32,158,
183,138,166,2,76,205, # 1896

169 DATA 189,5,0,0,32,121,0,208,6,169,0,
141,14,196,96, # 1177

170 DATA 169,1,141,14,196,169,53,141,4,3,
169,196,141,5,3, #1405

171 DATA 32,138,173,32,247,183,165,20,141,
12,196,165,21,141,13, # 1679

172 DATA 196,96,173,0,2,201,48,144,59,201,
58,176,55,173,14, #1596

173 DATA 196,240,50,32,124,165,132,2,173,
12,196,24,101,20,133, #1600

174 DATA 99,173,13,196,101,21,133,98,162,
144,56,32,73,188,32, # 1521

175 DATA 223,189,133,254,132,255,160,0,
177,254,240,6,153,119,2, # 2297

176 DATA 200,208,246,132,198,164,2,96,76,
124,165,0,0,0,0, #1611

177 PRINT"U":X=49152:C=76:
GOSUB 200

178 DATA 169,11,141,8,3,169,205,141,9,3,96,
32,115,0,201, #1303

179 DATA 64,240,3,76,231,167,160,1,177,122,
133,255,160,2,177, # 1968

180 DATA 122,133,2,162,0,189,128,206,197,
255,208,9,232,189,128, # 2160

181 DATA 206,197,2,240,16,202,201,0,240,6,

232,232,224,128,208, #2334
182 DATA 230,162,11,108,0,3,134,2,32,115,0,

32,115,0,32, # 976
183 DATA 115,0,166,2,189,255,205,133,252,

189,0,206,133,253,169, # 2267
184 DATA 76,133,251,32,251,0,76,174,167,96,

0,0,0,0,0, #1256
185 X= 52480:C = 6:GOSUB 200
186 DATA 0,192,33,192,64,192,96,192,169,

192,1,193,36,193,43, # 1788
187 DATA 193,61,193,163,193,189,193,36,194,

48,194,51,194,54,194, # 2150
188 DATA 57,194,63,194,69,194,74,194,80,

194,86,194,89,194,95, # 1971
189 DATA 194,101,194,107,194,113,194,118,

194,123,194,132,194,159,194, # 2405
190 DATA189,194,202,194,233,194,8,195,65,

195,97,195,100,195,159, # 2415
191 DATA 195,215,195,251,195,15,196,73,197,

0,0,0,0,0,0, # 1532
192 X=52736:C=5:GOSUB 200
193 DATA 153,37,67,176,151,82,151,83,77,

137,80,151,156,39,80, # 1620
194 DATA 194,77,135,146,39,83,145,83,139,

83,156,83,162,85,80, # 1690
195 DATA 165,48,165,49,75,156,150,48,150,

49,164,80,158,48,158, #1663
196 DATA 49,198,48,198,49,145,48,145,49,71,

137,66,162,77,184, # 1626
197 DATA 146,161,161,162,76,140,77,148,67,

199,78,162,68,39,72, # 1756
198 DATA 39,185,84,190,84,145,164,82,155,0,

0,0,0,0,0, # 1128
199 X= 52864:C =5:GOSUB 200:GOTO 205
200 FOR Z=0 TO C:T= 0:FOR ZZ= 0 TO

14:READ M:POKE X,M
201 PRINT"CLINE"PEEK(63)+ PEEK(64)*

256:T=T+M:X=X+1
202 NEXT ZZ:READ X$:IF VAL(RIGHT$(X$,

LEN(X$)-1))< >T THEN 204
203 NEXT Z:PRINT"OKAggr:RETURN
204 PRINT"ERROR IN LINE!":END
205 K =50505:T=0
206 READA:IFA= -1THEN209
207 POKEK,A:K = K +1
208 T=T+ A:GOT0206
209 IFT< >52549THENPRINT"gg

CHECKSUM ERROR":END
210 IFK< >50928 THENPRINT

"ggggNUMBER OF VALUES ERROR":END
211 PRINT"USE SYS 52480 TO EXECUTE

MACHINE CODE"
212 END
213 DATA 32,253,174,32,107,169,165
214 DATA 20,133,53,165,21,133,54
215 DATA 32,253,174,32,107,169,165
216 DATA 20,133,49,165,21,133,50
217 DATA 32,142,166,32,201,198,32
218 DATA 201,198,208,33,32,2,198
219 DATA 32,201,198,32,201,198,208
220 DATA 3,76,212,198,32,201,198

221 DATA 165,99,145,122,32,201,198
222 DATA 165,98,145,122,32,13,198
223 DATA 240,226,32,201,198,32,201
224 DATA 198,32,201,198,201,34,208
225 DATA 11,32,201,198,240,197,201
226 DATA 34,208,247,240,238,170,240
227 DATA 188,16,233,162,4,221,235
228 DATA 198,240,5,202,208,248,240
229 DATA 221,165,122,133,59,165,123
230 DATA 133,60,32,115,0,176,211
231 DATA 32,107,169,32,32,198,165
232 DATA 60,133,123,165,59,133,122
233 DATA 160,0,162,0,189,0,1
234 DATA 240,17,72,32,115,0,144
235 DATA 3,32,82,198,104,160,0
236 DATA 145,122,232,208,234,32,115
237 DATA 0,176,8,32,97,198,32
238 DATA 121,0,144,248,201,44,240
239 DATA 186,208,152,165,53,133,99
240 DATA 165,54,133,98,76,142,166
241 DATA 165,99,24,101,49,133,99
242 DATA 165,98,101,50,133,98,32
243 DATA 201,198,208,251,96,32,2
244 DATA 198,32,201,198,32,201,198
245 DATA 208,8,169,255,133,99,133

246 DATA 98,48,14,32,201,198,197
247 DATA 20,208,16,32,201,198,197
248 DATA 21,208,12,162,144,56,32
249 DATA 73,188,76,223,189,32,201
250 DATA 198,32,13,198,240,209,32
251 DATA 114,198,230,251,32,165,198
252 DATA 230,45,208,2,230,46,96
253 DATA 32,114,198,198,251,32,141
254 DATA 198,165,45,208,2,198,46
255 DATA 198,45,96,32,124,198,160
256 DATA 0, 132, 17, 132, 251, 96, 165
257 DATA 122, 133, 34, 165, 123, 133, 35
258 DATA 165,45,133,36,165,46,133
259 DATA 37,96,164,17,200,177,34
260 DATA 164,251,200,145,34,32,190
261 DATA 198,208,1,96,230,34,208
262 DATA 236,230,35,208,232,164,17
263 DATA 177,36,164,251,145,36,32
264 DATA 190,198,208,1,96,165,36
265 DATA 208,2,198,37,198,36,76

266 DATA 165,198,165,34,197,36,208
267 DATA 4,165,35,197,37,96,160
268 DATA 0,230,122,208,2,230,123
269 DATA 177,122,96,32,51,165,165
270 DATA 34,166,35,24,105,2,133
271 DATA 45,144,1,232,134,46,32
272 DATA 89,166,76,116,164,0,137
273 DATA 138,141,167, -1

36

So far, you have seen how to use
the basic words in FORTH and how
to store information* But in order to
build up a useful program, you need
to be able to build up structures***

In this final part of the series of articles on
FORTH, we take a look at some of the
operations you may need to use when writing
a FORTH program.

FORTH provides control switches which
enable conditional (comparison) and program
looping operations in much the same way as
in BASIC. Most of these structures use logic
tests, and comparisons.

COMPARISONS
Comparisons in a FORTH routine are made
by a familiar-looking set of logical operators
(similar to >, <, = and so on in BASIC)
which set up a logical value termed a flag.

Flags are used extensively in FORTH and
are actually numeric values placed on the
stack to show the outcome of a test. The flag
value is a zero (0) if the outcome of a
particular comparison is false, and a non-zero
value (usually, but not always, 1,) if it's true.

A typical FORTH routine can be made to
return a condition—true or false—to indicate
whether or not something has taken place or
whether a certain value has been reached,
perhaps within a specified range. The value of
the flag may itself be tested by program
branches and loops (see below), so regulating
the subsequent program flow.

Out-and-out comparisons are possible by
comparing the topmost (first) value on the
stack with, typically, the second value. The
comparison operators that test a relationship
between two stack items take the general
form:

< first value > < second value >
COMPARISON

So let's look at the comparison operations
possible. Alongside each word is the 'before
and after' stack notation, and below this the
name and description of the word, followed
by simple 'true' or 'false' examples:

WordIPurpose 	 BeforelAfter
Example

n1 n2 	f
less - than: leaves a true flag if 5 56 < . 1 OK
n1 is less than n2, 12 4 < . 0 OK
otherwise leaves a false flag

n1 n2 	f
greater-than: leaves a true 	12 4 > . 1 OK
flag if n1 is greater 	 9 9 > . 0 OK
then n2, otherwise leaves a
false flag

n1 n2 	f
equals: leaves a true flag if 	9 9 = . 1 OK
n1 equals n2, otherwise 	7 9 = . 0 OK
leaves a false flag

0< 	 n 	f
zero-less: leaves a true flag if — 5 0 < . 1 OK
the n is less than zero 64 0 < . 0 OK
(negative), otherwise leaves
a false flag

0= 	 n 	f
zero-equals: leaves a true flag if0 0= . 1 OK
n is equal to zero, else leaves a 1 0= . 0 OK
false flag. Can be used as a NOT
logical function

0> 	 n--- f
Leaves a true flag if n is 	37 0> . 1 OK
greater than zero. Some 	—45 0> . 0 OK
implementations require
you use the new
colon definition (word)
: 0> MINUS 0< :

ORDER OF ENTRY
Note that the operands and comparison
operators are entered in the same order as
they would be for a mathematical operation.
When a FORTH routine encounters the
words < = and > the top two values are
removed from the stack and the relevant
comparison operation is performed. Sub-
sequently a true or false flag is pushed onto
the stack and the two values are discarded.

The zero comparisons pull only the top-
most value off the stack and compare this with
zero, returning a 1 or 0 to the stack depending
on the outcome of the comparison. The words
< = > 0 < 0= and 0 > assume—and are
used for—signed single words for testing the
relationship between bigger signed and un-
signed double precision integers and these
include: D0= D< D = D > and DU < .

ORDER OF ENTRY
LOGICAL OPERATIONS

BRANCHES AND LOOPS
IF-ELSE-THEN

INDEFINITE LOOPS

BEGIN-WHILE-REPEAT
NESTING

DIALECTS
CHOOSING A SYSTEM

COMPARISONS

LOGICAL OPERATIONS
A full range of logical operations very similar
to those carried out in any other language are
also possible in FORTH. (See pages 284 to
288 for explanations of bitwise logical oper-
ations in BASIC.)

Some FORTH implementations do not
support NOT, which is identical to 0 =, so the
latter is usually used rather than wasting
dictionary space on an unnecessary definition.

Each of the other logical operators—AND,
OR, and XOR—pulls the top two values from
the stack before executing the logical oper-
ation. This is performed in a bit-by-bit
fashion, as normal (see page 288):

Word'Purpose 	 BeforelAfter
Example

AND 	 n1 n2 -- n3
Leaves the logical bitwise 	1 1 AND . 1 OK
AND result of n1 and n2 	1 0 AND . 0 OK

00 AND . 0 OK

OR 	 n1 n2 -- n3
Leaves the result of bitwise 	1 0 OR . 1 OK
OR between n1 and n2 	1 1 OR . 1 OK

0 0 OR . 0 OK

XOR 	 n1 n2 -- n3
Leaves the result of an 	1 0 XOR . 1 OK
exclusive—or of n1 and n2 1 1 XOR . 0 OK

0 0 XOR . 0 OK

As in BASIC (and others), the logical
operators may be used for masking operations
to switch bit values in memory selectively.

BRANCHES AND LOOPS
FORTH uses three important command se-
quences which amplify the structured nature
of this language.

One of the most powerful is the DO ---
LOOP which is similar to BASIC's FOR ...
NEXT loop and is used in any routine where a
sequence of steps is to be repeated a fixed
number of times.

A LOOP in FORTH is a series of commands
to be executed repetitively. The loop is set up
with a starting value, an end value and the
desired increment for each iteration or pass—
these all form what is called the body of the
loop definition. The value that changes upon
each iteration is called the index or the control
variable of the loop, and the ending value the
limit which, when reached, causes the routine
to terminate, or exit the loop.

A DO --- LOOP definition thus takes the
form:
: < routine name > < limit +1 > < start

value > DO < chosen code > LOOP ;

A value 1 greater than the desired loop limit is
pushed onto the stack, followed by the chosen
value, then the loop is entered. A value 1
greater has to be used because the index is
incremented before it is compared with the
specified limit.

Suppose, for example, you wanted to print
out the character set. The DO --- LOOP for
this takes the form:

: SET 90 65 DO I EMIT LOOP:

The code used between DO and LOOP here
makes use of the FORTH word I which
fetches the current index of the loop and
pushes this onto the stack. EMIT is an output
word covered in an earlier article (see page
1510).

By executing SET, upper case portions of
the ASCII code, starting at 65 (ASCII code
for A) and ending at 90 (ASCII code for Z)
are displayed.

The equivalent BASIC code for this DO
— LOOP is:

FOR I = 65 TO 90: PRINT CHR$(I): NEXT I

IF--ELSE--THEN
The main tool for conditional branching, as in
BASIC is the conditional IF— —ELSE--
THEN routine—often used in conjunction with
the DO ... LOOP. These three FORTH words
are used only in a specific colon definition in
the format:

< condition > 1 F < truepart > THEN
< continuation >

or

<condition > IF <truepart> ELSE
< falsepart > THEN < continuation >

When the word which defines this routine is
executed it first tests the condition (flag) left
on the top of the stack. IF takes the flag and
causes the routine to branch to the relevant
machine code. If the flag is true (that is, it is
non-zero), execution continues through the
true part of the definition—the code between

IF and ELSE in the original definition. If the
flag is false (0), execution skips to the false
part—between ELSE and THEN or just after the
THEN part. In both cases, execution continues
from this point onwards.

As in the versions of BASIC that support
it, ELSE is optional. If it is not present then a
pure IF -- THEN condition exists. In this
case the execution run skips over the con-
ditional routine if a false value is returned.

INDEFINITE LOOPS
Quite often you come across a situation in
which the number of iterations is not known
before execution of a loop routine. Special
looping facilities are provided for these inde-
finite loops, corresponding to the 'do while'
and 'repeat until' commands of languages that
support structured programming.

The simplest is BEGIN -- UNTIL which
takes the form:

BEGIN < loop conditions and code > < flag >
UNTIL

Here the flag is tested just before UNTIL (so
that the loop code is always executed at least
once). If the flag returns false, execution loops
back to just after the BEGIN part. If it returns
true, execution is directed to after the UNTIL
part.

A simple example which performs a key
test to see if Y has been pressed is:

: KTEST BEGIN 	(start loop)
GET 	(read keyboard)
89 = UNTIL ; (ASCII value

of Y = 89)

So until key Y is pressed, a false condition is
returned and the program effectively waits
until a true situation occurs.

BEGIN WHILE REPEAT
A variation, BEGIN -- WHILE --- REPEAT
forms a structure which loops indefinitely
until a specified condition is met, whereupon
the routine is exited. This takes the format:

BEGIN <first part> <flag > WHILE
< second part > REPEAT

The first part of the routine code is
executed—if it exists—as soon as this loop
structure is entered. If the flag returns a true
report the second part is executed and exe-
cution returns to just after the BEGIN. If a false
report results, the program leaves the loop
and execution continues with the code after
REPEAT.

The 'first part' is usually the conditional
part of the loop. WHILE actually tests the value
on top of the stack.

NESTING
As with FOR ... NEXT loops in BASIC, DO

— LOOP and IF -- ELSE -- THEN
routines can be nested. An example of the
format for a DO --- LOOP is:

: < routine name > < limit +1 > < start
value >

DO
< second limit +1 > < start value >

DO < chosen code >
LOOP

LOOP :

In normal circumstances, the index is in-
cremented on each pass through the loop, but
other values—including negatives to reverse
the direction—may be introduced using the
word + LOOP. This takes the top stack value
and adds that to the loop index. The latter is
compared against the limit.

The nesting of an IF -- ELSE--THEN
routine can be shown thus:

IF
< a >
< b >

I F 	< *********

< c > 	* (outer)
< d > 	* *

ELSE 	(inner)*
< e >
< f >

THEN 	< *********

ELSE 	 *
< g > 	 *
< h >

THEN < *************

You will often see screen source code for colon
definitions laid out in this form, with appro-

1111•■•111111MMINI

Do any of the versions of
FORTH now available have
graphics facilities?
There are versions available both for the
Commodore 64 and the Acorn which
support graphics facilities. However,
because FORTH is designed to deal
with text and numbers and also to be
totally transportable, any facility for
graphics will only be usable on the
machine for which the implement-
ation was designed and cannot
be used on any other micro.
These facilities are much
quicker than BASIC.

priate annotation in brackets, just so that the
level of nesting can be seen clearly.

The various looping and branching rout-
ines may themselves be nested in each other.
The allowable configurations include the
following:

BEGIN -- IF -- ELSE -- THEN --
UNTIL

DO -- BEGIN -- WHILE -- REPEAT -
- LOOP

IF -- DO -- BEGIN -- UNTIL--
LOOP--THEN

Whatever arrangement is used each structure
must be fully contained within another: the
standard 'rule' about nesting!

DIALECTS
There are several important FORTH subsets,
or dialects, the three most important being
standard fig-FORTH, polyFORTH and
FORTH-79. A new standard FORTH-83 has
been added to update the latter. There are also
many machine-specific implementations
based on these standards.

Because FORTH can be extended to suit
the user, the question of standards is much
less important than for other languages. It is
easy to adapt a program to another, simply by
using colon definitions to introduce the miss-
ing word routines to the CURRENT work
dictionary.

Here, for instance, is a selection of colon
definitions for transforming a fairly typical
fig-FORTH implementation into one that
will run FORTH-79 programs, in effect by
merging the two:

: FORTH-79 ;
: VARIABLE 	HERE VARIABLE ;
: 2VARIABLE 	VARIABLE 2 ALLOT ;
: CONVERT 	(NUMBER) ;
: >IN 	IN ;
: ?DU P 	— D U P ;
: CREATE 	VARIABLE —2 ALLOT;
: SAVE-BUFFERS FLUSH ;
: NEGATE 	MINUS ;
: DNEGATE 	DMINUS ;
:0> 	MINUS<0 ;
: FIND 	—FIND DUP IF 2DROP

CFA THEN;
: EXIT 	R> DROP ;
: DEPTH 	SP@ S0 @ SWAP — 2 / ,
: WORD 	WORD HERE ;
: MOVE 	2* CMOVE ;
: U/MOD 	U/ ;
: D< 	ROT 2DUP = IF ROT

ROT DMINUS
D+ 0< ELSE SWAP <
SWAP DROP
THEN SWAP DROP ;

Even in something as mundane as a sequence
of standard conversions you can see the real
power of a definition and of FORTH as a
whole. Take the word D < listed above if
you're in any doubt—a whole sequence of
conditional tests and operations summed up
by just two characters!

CHOOSING A SYSTEM
If the choice of dialect does not matter very
much, there are still other considerations you

ought to keep in mind to ensure that the
version you buy is usable. For obvious rea-
sons, FORTH is rather better suited to use in
conjunction with disks than with cassettes as a
certain amount of toing and froing between
dictionaries and screen inputs is necessary. It
is possible to save and reload work screens
from cassette but this can be tedious, detract-
ing greatly from the fluidity and general
freedom in programming that forms much of
FORTH'S appeal.

Another point to note is that because
FORTH gives you complete access to—and
thus control of—the computer down to ma-
chine level (unlike most other high level
languages), you can actually overwrite parts
of the FORTH system which cannot be
protected. System crashes are therefore quite
frequent when you first start experimenting—
and experiment you must to get a real 'feel' for
the power of FORTH. The simple solution is
to save your current work frequently!

The 'CLIFFHANGER' listings published in this
magazine and subsequent parts bear absolutely no
resemblance to, and are in no way associated with,
the computer game called 'CLIFF HANGER' re-
leased for the Commodore 64 and published by
New Generation Software Limited.

The scene is set, Willie is in position.
The snakes and the sea are waiting
in the wings* The boulders are piled
at the top of the cliff* This program
now cries: 'ACTION!'

And now the moment of truth has come. So
far you should have keyed in and tested all the
separate routines that make up Cliffhanger.
Now, this final routine calls them all in the
correct order and runs the whole game.

When you've keyed this routine in and run
it, the game should work. And all the effort
you've put into typing each part of Cliff-
hanger will be worthwhile!

If, however, it does not work properly,
there will be a special article on debugging
Cliffhanger in the next part of INPUT.

a
The following program is the main loop
which completes the game:

org 58702
alp call 59153

call 58993
call 59823
call 58882
call 58795
call 58751
Id a, (57336)
cp 1
jp z,59788
cp 2

jp z,59652
dll 	Id b,50
delb Id a,255
dela dec a

jr nz,253
djnz 251
Id a,254
in a,254
bit 0,a
jr nz,alp
ret

When you have this routine, and all the
others, in memory, start the game by keying
in the instruction:

LET L= USR 58576

As you will see, the call address is that of the
label gbin at the beginning of the initialization
routine on page 1101.

WILLIE, YOUR CALL
The routine calls, in turn, the
man-moving routine at 59,153,
the boulder routine at

58,993, the snake routine at 58,882, the sea
routine at 58,882, the cloud routine at 58,795
and the gull routine.

REWARD: DEAD OR ALIVE
Next the routine looks at the state of the so-
called die variable. It is loaded up from 57,336
and compared to 1.

If it is 1, the jrz instruction sends the
processor off to the reward routine at 59,788.
This increments the score and sets up
the next screen.

The contents of the accumulator are then
compared to 2* If they are 2, the processor is
sent off to the die routine at 59,652* This is
the one that lays Willie in his grave and
finishes the game off.

SLOW MOTION

If the processor was just allowed to run round
and round this routine, even though it calls all
the other routines in memory, the game
would be unplayably fast. So, to slow down
the motion, two nested loops are constructed
which delay the processor by around two-
thousandths of a second. That may not sound
long, but it mounts up because this routine is
called so often*

B is loaded with 50 and A is loaded with
255. Then the contents of A are decremented

and the jr nz instruction following it sends
Ithe processor round the dela loop 256 times

until the contents of A have been 1 decremented to zero.

F The djnz instruction then decrements the
contents of the B register and sends the
processor back to load A with 255 again until
B has been decremented to zero. So this outer
loop is executed 50 times and the inner loop is
executed 255 x 50 times.

But the B register only contains 50 when
the game starts out. When Willie reaches a
reward, a new number is poked into the
Idb, 50* In fact, if you look back to page 1475,
you'll see that the number in this location is
oaded up, decremented and loaded back each
ime Willie reaches a reward* So the processor

goes round this delay loop one less time—

Meeding the game by something like 90
icroseconds! . =

BREAK OUT
Finally, all good programs should have some
way of breaking out of them without having to
switch off the computer and losing everything
in memory. Here you check to see whether the
'BREAK I key has been pressed* This is done
using the in command in exactly the same way
as it was on page 731.

Then the jr nz,alp instruction loops the
processor round to the beginning of this main
loop again if the IBREAK I key has not been
pressed. If it has, the processor goes on to the
ret and returns to BASIC.

Before you key in the main loop you need a
little loop that will clear all the flags:

ORG 25600
LDA # $00
STA $D015
STA $C005
STA $C006
STA $C00C
STA $D01E

So 0 is loaded into A and stored in $D015, the
sprite enable byte—in other words, all the
existing sprites are turned off* Then the same
0 is stored in the $C005—the jump-right
flag; $C006—the jump up flag; and $C00C-
the sea counter. This makes sure that Willie
does not start off by jumping and that the sea
is started at the bottom of the screen*

The contents of memory locations $D01 E
and $D01F are loaded into the X register.
Nothing is going to be done with them there,
it is simply that these two locations are the
sprite collision detection registers and the act
of reading them by loading their contents up
into a register automatically clears them*

Next the contents of $D018 are loaded up.
This is the VIC control register. The most
significant nybble contains the screen base
address. You don't need to move the screen so
this is AN Ded with $F0.

The least significant nybble contains the
base address of the character set* This does
need to be changed as you are using a
redefined character set. So it is 0 Red with
$0C, which effectively POK Es $0C into the
lower nybble and shifts the pointer to the
character set beginning at 53,000.

The result of these operations is stored
back in $D018 and the processor returns.

MOVING OBJECTS
Next you need a little routine that deals with
moving the various sprites around:

ORG 26112
JSR $5900
JSR $5800
JSR $5700
JSR $5650
JSR $5600
RTS

STA $D01F
LDA $D018
AND #$F0
ORA # $0C
STA $D018
RTS

This jumps to the subroutine at $5900 which
moves the boulder; then the subroutine at
$5800 which moves the cloud; then the
subroutine at $5700 which moves the sea;
then the subroutine at $5650 which moves the
gulls; then the subroutine at $5600 which
flicks the snakes' tongues in and out.

When all that is done, the processor
returns.

STARTING OVER
Then you need a short routine that initializes
everything and puts them in their proper
place:

ORG 26368
JSR $6400
JSR $6300
JSR $5850
JSR $6150
JSR $6100
JSR $6000
RTS

This jumps to the subroutine at $6400 which
clears the flags; then the subroutine at $6300
which prints up the score; then the subroutine
at $5850 which puts the boulder at the top of
the slope; then the subroutine at $6510 which
puts the cloud in its starting position; then the
subroutine at $6100 which starts the snakes
off; then the subroutine at $6000 which puts
the sprites up on the screen.

With all that done, the processor returns.

MAIN LINE
And finally, you come out of the subroutine
sidings and onto the main loop routine which
runs the whole game. Its start address is the
one you call to run the game.

ORG 26448
JSR $4000
JSR $6500
JSR $6300
JSR $67A9

LDA # $00
STA $D015
LDA $D01E
LDA $D01F
LDA # $38
STA $D017
JSR $6700
JSR GETSCORE
LDA $D01E
LDA $D01F

LOOP JSR $6600
JSR $6200
LDX $C002

LOOPB 	LDY #$FF
LOOPA 	DEY

BNE LOOPA
DEX
BNE LOOPB
JSR $6450
BEQ LOOP
JSR PUTSCORE
LDA # $00
STA $D015
LDA $D01E
LDA $D01F
LDA $C001
BNE $675C
LDA # $15
STA $D018
J M P $6750

PUTSCORE LDX #$00
LDY # $06
LDA $047E,X
STA $C382,X
INX
DEY
BNE $67AD
RTS

GETSC0RE LDX #$00
LDY # $06
LDA $C382,X
STA $047E,X
I N X
DEY
BNE $67BC
R TS

This jumps to the subroutine at $4000 which
prints up the title page; then the subroutine at
$6500 which gives initial values to the lives,
levels and score, fixes the gulls' initial po-
sition and sets up the sprites; then the
subroutine at $6300 which prints up the
scenery; then the PUTSCORE subroutine
which puts the score into the variable area*

A is loaded with 0 which is stored in
$D015 which switches the sprites off. Then

to the subroutine at $6600 which moves the
objects around; then it jumps to the subrout-
ine at $6200 which moves Willie.

Already things are moving too fast, so the
action has to be slowed down a bit at this
point* The processor moves so fast that the
game would be unplayable if it was allowed to
continue at that rate. So a delay routine is
added at this point.

X is loaded with the contents of memory
location 49,154. This is the delay variable
which tells the game how fast to go—the
game is speeded up during play by decre-
menting this delay*

Y is loaded with 255* This is used as a
counter for the inner loop of the delay. Y is
decremented. If it has not been decremented
to zero the processor loops back to be de-
cremented again*

When the processor drops out of that loop,
the contents of the X register are decremen-
ted* The processor branches back if that

`register has not been counted down to zero
and loads Y up with 255 again.

When the processor has finally dropped
out of the outer loop, it jumps to the sub

routine at $6450 which checks to see
whether Willie is dead, or whether
he has reached a reward.

If he's alive and unrewarded, the ac-
cumulator contains 0 when the processor
leaves this subroutine and the BEG instruction
takes the processor back round to LOOP*

DEAD BUT NOT FORGOTTEN
If Willie is dead or has been rewarded, the
processor continues and jumps to the
PUTSCORE subroutine which prints the score
up on the screen*

A is then loaded with 0 which is stored in
$D015. This turns the sprites off again. And
the collision registers are cleared by loading
the contents of $D01E and $DO1F into the
accumulator.

The number of lives—which has now been
decremented—is loaded up from $C001 into
the accumulator* And if they are not zero, the
processor branches back to the label BB to
start on the next level* If not, the processor
continues.

Next, 21 is loaded into the accumulator and
stored in $D018. This sets the character set
back to normal so that the instruction can be
printed up*

The processor then jumps back to the label
START and starts all over again.

SETTLING THE SCORE
Two small subroutines are called
which deal

the two sprite collision
registers at $D01E and
$D01F are read, which clears
them*

The number 56 is loaded in-
to the accumulator and stored in
$D017* This location gives double
height sprites to those with the
appropriate bit set. 56 sets bits
three, four and five—the bits corre-
sponding to the snakes' sprites.

The processor then jumps to the sub-
routine at $6700 which initalizes the
level* Then it goes to the GETSCORE sub-
routine which gets the score from memory*

The contents of $D01E and $D01F are
loaded up into A to clear them again. Then
the processor goes into the main loop*

LOOPING THE LOOP
Once the game has been initialized, the
processor heads off into the action. It jumps

with the score. The first, PUTSCORE, copies
the score from the screen and stores it in some
free memory. It does this when Willie dies, to
save the score when the scene is changed.

The second, GETSCORE, copies the score
from free memory back onto the screen when
the new screen is printed up.

In PUTSCORE X is loaded with 0. This is
going to be used as an offset to move across
the digits. And Y is loaded with six. It is going
to be used as a counter—there are six digits in
the score.

The accumulator is loaded with the cont-
ents of $047E offset by X. This is one of the
digits. It is then stored in $C382, offset by X,
part of free memory. X is then incremented to
move the screen pointer onto the next byte,
and Y is decremented. If it has not counted
down to zero the BNE instruction branches the
processor back to deal with the next digit. If
not, the processor proceeds, hits the RTS and
returns.

GETSCORE works in exactly the same way,

except that LDA $047E,X and STA $C382,X
instructions are replaced by LDA $C382,X and
STA $047E,X. This simply reverses the direc-
tion of the transfer and copies the score for
memory onto the screen.

Now load all the parts of Cliffhanger into
memory and key in:

SYS 26448

to start off the game.

11
The following program ties all the separate
routines together and turns them into a games
program. After the game has been set up, each
routine is called in turn. But between each call
there is a delay.

Don't forget to set up the computer in the
usual way before you key in this program:

30 DATA1,3,1,2,1,1,1,5,1,5,1,1,1,1
40 FORA% = &21 F7T0&2204:READ?A%:NEXT
50 FOR PASS = 0TO3STEP3
60 P%= &2205
70 [OPTPASS
80 .Game
90 JSR&1B78
100 JSR&F5B
110 LDA#4
120 STA&80
130 .Lb1
140 JSR&1100

290 LDA #15
300 LDX# 0
310 JSR&FFF4
320 LDA# 0
330 STA&70
340 LDA# 2
350 LDX # &70
360 LDY # &0
370 JSR&FFF1
380 JSR8t1 E99
390 LDX&83
400 LDA&1 B2D,X
410 AND#&4
420 BEQLb3
430 JSR&1 DEE
440 .Lb3
450 DEC&21F9
460 BN ELb5
470 LDA&21 FA
480 STA&21F9
490 LDX&83
500 LOAM B2D,X
510 AND#&4
520 BEQLb5
530 JSRME1 D
540 .Lb5
550 DEC&21FB
560 BNELb6
570 LDA&21FC
580 STA&21FB
590 JSR&1CCB
600 .Lb6
610 DEC&21FD
620 BNELb7
630 LDA&21 FE
640 STA&21FD
650 JSR&1C08
660 .Lb7
670 DEC&21FF
680 BNELb8
690 LDA&2200
700 STA&21FF
710 JSR&1100
720 .Lb8
730 DEC&2201
740 BNELb9

750 LDA&2202
760 STA&2201
770 LDX&83
780 LDA&182D,X
790 AND # &2
800 BEQLb9
810 JSR&21A6
820 .Lb9
830 DEC&21F7
840 BNELb4
850 LDA&21 F8
860 STA&21F7
870 JSR&1FD5
880 JSR&2141
890 JSR&2107
900 .Lb4
910 DEC&2203
920 BNELb15
930 LDA&2204
940 STA&2203
950 LDA&7C
960 AND # &4
970 BNELb15
980 JSR&1EB6
990 .Lb15
1000 LDA# &81
1010 LDY# &FF
1020 LDX# &8F
1030 JSR&FFF4
1040 TXA
1050 BEQLb16
1060 JMPLb13
1070 .Lb16
1080 JSRPause
1090 LDA&7D
1100 AND # &80
1110 BNELb10
1120 JMPLb3
1130 .Lb10
1140 LDA# 255
1150 JSR&146E
1160 LDA # 255
1170 JSR&146E
1180 LDA&89
1190 BEQLb11
1200 JMPLb2
1210 .Lb11

150 LDA&80
160 BNELb1
170 .Lb13
180 JSR&13F8
190 LDA&80
200 PHA
210 JSR&1 D77
220 PLA
230 STA&80
240 .Lb2
250 JSR&1D9B
260 LDA&80
270 ORA # 4
280 STA&80

1360 CMP&84
1370 BCCLb14
1380 SEC
1390 SBC&84
1400 STA&70
1410 LDA#2
1420 LDX# &70
1430 LDY# &0
1440 JSR&FFF1
1450 RTS
1460]NEXT
1470 ?&1D92 =255
1480 ?&1D8F = 8
1490 ?&21 AC =1

1220 LDA# &81
1230 LDY# &FF
1240 LDX# &9D
1250 JSR&FFF4
1260 TXA
1270 BEQLb1 1
1280 JMPLb13
1290 .Pause
1300 .Lb14
1310 LDA#1
1320 LDX# &70
1330 LDY# atel
1340 JSR&FFF1
1350 LDA&70

1500 ?&15D9 = 4:?&15DA = 12:?&1B
6A = 3:?&10F1 = 2:?&10 F3 = 2:?&10F7 =
10:?&DF6 = 85

1510 DATA 4,1,0,0,0,0,0,0,2,253,-127,
—127,40,0

1520 FOR A%— &149F TO &14AC:READ
?A%:NEXT

1530 ?&14C5 =10
1540 ?&14CE=&9F

For the Electron make these changes:

1550 ?&1100 = 96: ?&1435 = 20:
?&2214 = &EA: ?&2215 = &EA:
?&2309 = 96

You'll need a short
BASIC program to
run the game
for you.

NEW first, then:

10 * KEY10 ?&D00 = 22:?&E00 = 120:
?&E01 = 86!MCALL&21C7IM

20 *TV255
30 PRINTTAB(15,12)"PLEASE WAIT"
40 VDU28,0,24,39,10
50 *RUN"CliffMC"

SAVE this routine to tape under the file
name 'Cliff', then load up all the machine
code and SAVE it using the instruction:

*SAVE"CliffMC" 0D 00 ❑ 2400 ❑ 2205

R EADY. . .
Lines 30 and 40 READ in more DATA
into a data table at &21F7 to &2204.
These locations carry the initial and
reset values of all the delays.

The instruction in Line 90 jumps the
processor to the subroutine at &1B78 which
sets the 'loud' envelope. Next it jumps to the
subroutine at &F5B which prints the title.

The number 4 is then loaded into the
accumulator and stored in &80, the location
that controls how long the tune is played. The
instruction in Line 140 then jumps to the

subroutine at
&1100 and plays the tune.

The tune routine automatically
decrements the contents of &80. So
after the processor has returned the
contents of &80 are loaded into the

accumulator and the BNE instruction in
Line 160 branches the processor back to play
more of the tune if the contents of this
location have not counted down to zero*

STEADY.. .
The processor then jumps to the subroutine
at &13F8 which prints up the instruction
page* The contents of &80 are then loaded up
into the accumulator and pushed onto the
stack, to save it temporarily while &80 is used
for other purposes*

The processor jumps to the subroutine at
&1D77, which initializes all the variables, and
the contents of the accumulator are pulled
back off the stack and stored back in &80*

The pushing and pulling of the contents of
&80 may seem unnecessary as they were
counted down to zero by the routine above.
But this is not the only time the routine is
called* When the game is over, the processor
jumps back to the instruction page again with
a different value in &80.

The next jump is to the subroutine at
&1D9B. This prints up the screen. Then the
contents of &80 are loaded into the acuumu-
lator, ORed with 4 and stored back into &80*
This sets the tune off again.

GO!
LA: is loaded with 15 and X is loaded with

Then the routine at &FFF4 is called.
his is the machine code equivalent

of a *FX15,0. This flushes
the sound buffer.

Next 0 is stored in &70 and the X and Y
registers. And 2 is loaded into A. So when
&FFF1 is called in Line 370 the least signifi-
cant byte of the time is set to zero. This zeros
the clock so that it can be used to time a delay
later*

The processor jumps to the subroutine at
&1E99 to print up Willie. Then the contents
of &83, the location that carries the level
number, is loaded into the X register. It is
then used as an offset in the LOAM B2D,X
instruction in Line 400 which loads the
accumulator with a number whose bits indi-
cate what is required in that screen.

Firstly, the contents of the accumulator are
AN Ded with 4 to see if a boulder is required,
the BEQ instruction will not operate and the
processor will jump to the subroutine at
&1DEE and print a boulder on the screen. If
not, the BEQ instruction branches the pro-
cessor over the subroutine call.

UP AND RUNNING
Now that everything is set up, the processor
moves into the main routine.

The delay counter in &21F9 is decremen-
ted and the BNE instruction in Line 460
branches the processor forward to the next
routine if it has not counted down to zero*

But if it has counted down to zero, the
processor continues and restores the counter
in &21F9 with the value from &21 FA. Then
X is loaded with the contents of &83, the level
number, again and the byte which tells the
program which items need to be printed on
the screen is loaded into the accumulator
again. This is ANDed with 4 again, to see if a
boulder is on the screen.

If one is, the BEQ instruction does not
operate and the processor jumps to the sub-
routine at &1 ED which moves it. If not, the
processor skips this instruction and moves to
the end of the routine.

SEA AND GULLS
Next the delay counter in &21FB is de-
cremented. If it hasn't counted down to zero,
the BNE instruction in Line 560 branches the
processor onto the next routine* But if it has
counted to zero, the counter in &21FB is
restored with the value of &21FC. Then the
processor jumps to the subroutine at &1CCB
which moves the sea.

The next little routine operates in exactly
the same way. It decrements the counter

in &21 FD and branches to the end of the
routine if the result is not zero.

If it is, the counter is restored
from &21FE and the routine at

&C108, which moves the sea-
gulls, is called.

MUSIC SHAKES THE SNAKES
The music delay counter in &21 FF is de-
cremented. If the result is zero the processor
branches on to the next routine.

If it is, the counter is restored from &2200
and the processor jumps to the routine that
plays the tune at &1100.

The instruction in Line 730 then decre-
ments the snake counter in &2207. And if it
has not been decremented to zero the BNE
instruction following branches*

If it has counted down to zero, the pro-
cessor continues and the counter is restored
from &2202. Then the level number is loaded
into X and the screen extras are loaded from
&1B2D by X again*

This is ANDed with 2 to see if there are any
snakes on this screen. If there are the pro-
cessor jumps to the subroutine at &21A6 and
moves them. If not the BEQ in Line 800
jumps over that instruction.

THEN THERE WAS WILLIE
The main routine counter in &21F7 is then
decremented, checked to see if it is zero and
restored from &21 FF if it is.

The routine at &1FD5 is called which
moves Willie, then the one at &2141 to sort
out the score, then the one at &2107 to check
if Willie has reached the end of a screen.

Next the delay counter for Willie's death
routine in &2203 is decremented. If it has
reached zero it is restored from &22O4. Then
the data on Willie's physical condition is
ANDed with 4* This checks to see whether he
is dead and calls the routine at &lEB6 to
finish him off.

ESCAPE FROM CLIFFHANGER
Pressing the 'ESCAPE I key while you are
playing Cliffhanger allows you to escape from
the game and start again. A is loaded with
&81. The OSBYTE routine at &FFF4 is going
to be called. This gives the same effect as an
OS BYTE &81 call and reads the keyboard in the
same way as explained on pages 1382 and
1383.

The &FF in Y and the &8F in X specify the
key to be scanned—in this case the !ESCAPE I
key* If it has been pressed a &FF is returned
in X, if not, a 0 is returned.

The result of the scan is transferred into
the accumulator and the BEQ in Line 1050
branches over the next instruction if the
ESCAPE I has not been pressed. But if it has
been pressed the processor hits the J MP
instruction and jumps back to the beginning
of the game to start all over again.

If the I ESCAPE I key has not been pressed, the
processor jumps to the subroutine Pause--

which begins in Line 1290—to give a pause
before going on with the game.

Then the accumulator is loaded with the
contents of &7D which stores Willie's con-
dition. AN Ding with the number &80 checks
to see whether a reward has been reached* If it
hasn't, the processor jumps back to Lb13 and
starts the main loop again. If it has, the
processor skips this instruction, loads A with
255 and jumps to the delay routine at &146E
twice* This is the delay routine which was
used to give you enough time to read the
instructions*

Next the contents of &89 are loaded into
the accumulator. This is the location that
carries the number of lives Willie has left* If
he has lives left the processor jumps to Lb2
and continues with the game* If not the
processor skips the jump instruction*

Next the OSBYTE &81 routine is used again
to check whether the space bar has been
pressed* The BEQ instruction in Line 1270
loops the processor back, so it goes round and
round this check until the space bar is
pressed. When it is, the processor jumps back
to Lb13 and starts the game again*

EASING THE PACE
The rest of the program is a delay to slow the
game down enough to make it playable* This
is done by reading—and resetting—the clock.
to do this an OSWORD call is made by jumping
to the subroutine at &FFF1*

When this is done with a 1 in the
accumulator—as in Line 1310—the clock is
read and its five-byte value is written into
memory starting at the address given in the X
and Y register* Here Y contains 0 and X
contains &70, so the time is recorded in zero-
page memory locations &70 to &74*

The low byte of the time in &70—the
hundredths of a second—are then compared
with the delay value in &84 by the instruc-
tions in Lines 1350 and 1360* The BCC in
Line 1370 jumps back to the beginning of the
pause routine to read the clock again* It goes
on jumping back and reading the clock again
until the number of hundredths of a second in
&70 is greater than the delay number in &84*
When this happens the compare—which is an
unrecorded subtraction, remember—sets the
carry flag so the Branch on Carry Clear does
not operate and the processor continues.

The clock then needs to be reset* But you
don't want it to start again from zero* Instead,
it is going to be reset to the value given by the
number of hundredths of a second in &70 and
the delay—in other words, the amount the
clock has been incremented past the delay.

So the carry flag is set by the SEC in Line
1380. The accumulator is still carrying the

contents of &70 picked up by the instruction
in Line 1350, so the SBC&84 in Line 1390
performs the subtraction and the result is
stored back in &70 by Line 1400.

The accumulator is then loaded with 2
which allows you to write to the clock when
the JSR&FFF1 in Line 1440 jumps to the
OSWORD routine* The data that is used to
reset the clock is in the five bytes starting at
the address given by the contents of X and Y.
Again this is zero-page locations &70 to &74*

MU'
The following program is the main action
loop which completes the game* Tandy
owners should change the JSR 32774 to JSR
41409*

DELA DECA
BNE DELA
DECB
BNE DEL
JSR 32774
CMPA #3
BNE BLP
RTS

MOVSUN EQU $4D0F
ELB 	EQU $4B59
MAN 	EQU $4DBE
SNK 	EQU $5178
SEA 	EQU $4CDE
RWD 	EQU $50F1
DIE 	EQU $5050
BAR 	EQU $4D45

Now LOAD in the rest of Cliffhanger and
assemble this short program on top of it*

0RG 19572
JMP ALP

ALP 	EQU $51 C4

Key in the instruction:

EXEC 19426

and Cliffhanger should now work!

READYING THE ROUTINE
A is loaded with 5 which is then stored in
18,258. This sets the sun delay*

Then memory location 18,261 is cleared*
This is the man-jump variable and it has to be
cleared to prevent Willie jumping at the
beginning of a screen.

The processor jumps to the ELB routine to
put up the extra bits and pieces needed for the
higher levels of the game on the screen* Next
it jumps to the MAN subroutine to deal with
moving Willie* Then it jumps to BAR to move
the boulder, then SNK to move the snake, then

SEA for the sea, then MOVSUN for the sun.
The contents of the die variable at 18,252

are loaded into the accumulator* This is
compared to 1 which means that Willie has
reached a reward. And if 1 is found the LBEQ
makes the processor take a long branch back
to the routine that gives Willie his reward*

If the die variable is not 1, the CM PA # 2
checks whether it is 2, the number signifying
that Willie is really dead* And if it is 2, the
processor makes a long branch off to the DIE
routine which buries him.

ROUTINE DELAY
B is loaded with 100 and is used as the counter
in the major delay loop* You will note that the
memory location occupied by the 100 when
the program is assembled—$51EE—is the
byte decremented in the score routine*

A is cleared and decremented, making its
contents 255* The BNE instruction then
checks to see whether it is zero and, if it is not,
goes back to decrement it again*

When A has been decremented down to
zero, the processor drops out of this loop*
Then it decrements B and branches back to
clear A and decrement it again if the contents
of B have not counted down to zero.

In other words, at first the processor goes
round the inner loop 256 x 100 times to slow
the game down* But when Willie has had
some success in reaching the rewards the
game is speeded up by sending the processor
round this loop only 256 x 99 times, or
256 x 98 times, or 256 x 97 times and so on to
slow it down slightly less.

BREAK DUNCE
Jumping to the subroutine at 32774 checks
the keyboard. And comparing the value re-
turned in the accumulator with 3 checks to see
if the 'BREAK' key has been pressed*

If it hasn't been pressed, the BNE insruc-
tion jumps back to continue the game* But if it
has been pressed, the processor continues,
hits the RTS and returns to BASIC*

CLOSING THE CIRCLE
One last little refinement has to be added to
the program* In the routine you originally
entered that scrolls on the appropriate screen
and sets the score, there were an RTS and two
NOP instructions*

These were used to leave enough space to
put in a jump instruction which would loop
when the game was first called.

It wasn't filled in then because at that time
the action routine hadn't been written. Now it
has* So a JMP ALP is assembled in that
address. This closes the circle, completing
Cliffhanger.

ORG 20932
ALP LDA #5

STA 18258
CLR 18261
JSR ELB

BLP JSR MAN
JSR BAR
JSR SNK
JSR SEA
JSR MOVSUN
LDA 18252
CMPA #1
LBEQ RWD
CMPA #2
LBEQ DIE

DLL LDB #100
DEL CLRA

Now you have the completed BASIC
control program, you can start
entering the text. How to escape,
though, remains a mystery, because
it's all in code and compressed

You're over half-way there. The text program
which builds up over the remaining parts of
Escape will generate the text file needed to
print out the game's messages. Do not RUN
the program until you have the complete

listing, or it will not work.

5 PRINT AT 10,5; "POKING DATA. PLEASE WAIT"

10 RESTORE 6000: DIM Z(1750): DIM A(204): LET

DI= PEEK 23627 + 256*PEEK 23628: LET L=6000:

LET DI = DI +3: FOR N=1 to 533

20 READ A$: LET TOT =0: FOR D=1 TO 32 STEP 2: LET

B$=A$(D TO D+1)

30 GO SUB 1000

40 LET TOT = TOT + B: POKE DI,B: LET DI = DI + 1:

NEXT D

45 LET B$ = A$(33 TO 34): GO SUB 1000: IF
B < > TOT - 256*INT (TOT/256) THEN PRINT "C

HECKSUM ERROR IN LINE ";L: STOP

57 LET L = L + 2

60 NEXT N
70 FOR N = 1 TO 204: READ A(N): NEXT N

80 PRINT : PRINT "READY. SAVING ARRAYS."

90 SAVE "DATAA" DATA A()
100 SAVE "DATAZ" DATA Z()

999 STOP
1000 LET B =16*(CODE (B$(1)) - 48 -7*(B$(1) >

"9")) + CODE (B$(2)) - 48 - 7*(8$(2) >
"9"): RETURN

6000 DATA "01D60600003F210038C965A33D E4B2F50E"

6002 DATA "90C8656CAD94B2DF2BE499C64B2D32A6B9"
6004 DATA "51C9656CBCB165267590CC650CB6CA791E"

6006 DATA "699532324CEB2E197CBD64B2B33E3259AB"
6008 DATA "1976C9651CBACB8CA795D95C864B2A65BB"

6010 DATA "E323218B2932991963213650CAB96AC5904"
6012 DATA "190C864658CAB95F2E724DB6432D72D383"

6014 DATA "2B6465362C8C96499EF2194C8CB195F27A"

6016 DATA "E72595B2E18B29652CBE1B6CF3953259D1"
6018 DATA "6ACE3259699519EB2595B2B650CBBC8C4A"

6020 DATA "D36572F2CE325968DB6D91CB4CB19632C6"

6022 DATA "BE499C6482D19BE55CAD9599D64320CF49"

6024 DATA "7919192CC6432EB2590C59498132865F1 DO"
6026 DATA "90CE3259699519B655CB197C3259262C48"

6028 DATA "8C867AC9656CAD9432EF232AE4335C96DE"

6030 DATA "54CA99572865DE46686038C965A3219546"

6032 DATA "32195C86419E3286465F1 98C8E4652C8FC"

6034 DATA "CAECC657CAD95B34D8B2323232195CA23C"
6036 DATA "CDF232595F2194CB4C8CB9CAB91976CF9B"

6038 DATA "194B2DF2E581323219BE4656CAD94590C2D"

6040 DATA "8C862C8C86632BE56CACCAE5165F2D729E"
6042 DATA "DB29E5C36DB2196D9432A653679CA9924E"

6044 DATA "CB567192CB4CA8CEB2325978C96465DBD3"
6046 DATA "23919532865BE698164643259195B2E15A"

6048 DATA "9E329652CA8CAE5162CA4C59190CDF2B0D"
6050 DATA "E51C8CD00O21979C8CAF90C596F9499E77"

6052 DATA "32865C651CFB5166F94B2A65F198CE32A3"

6054 DATA "5968CF792CBD6432D94B29651C965CE52D"

6056 DATA "7C9316464335CA595329E5OCA8CA64B2FB"
6058 DATA "D32321882321B67BCAB919779194597C24"

6060 DATA "B9CA59699779262CA4CF392CA99632BBAB"

6062 DATA "2596D92CB962C8C8678CA594B2A66860B7"
6064 DATA "2B95325919EABACA59699190CC646465AE"

6066 DATA "1C8CA2CB6413232BB1646436DB66F91956F"

6068 DATA "B2B65164B24C59195728B2992CA59613977"

6070 DATA "A6CB64B2EF2594D98C965AE4651CBCE58A"

6072 DATA "4C965AB20C8E5AE4B2B6566759432A6415"

6074 DATA "6499BE55C8C8CA596ECF79572EF24D90CD"

6076 DATA "CBACA597AC867192CB464323218B232351"
6078 DATA "232195CA2C964656CB864B232BB3C652136"

6080 DATA "CA595334D8B232AE5165728B1646433197"

6082 DATA "94328E4656C86DB6D8B2A64650CA39690D"

6084 DATA "9532E33FD64B232BB259262C8C8663234D"

6086 DATA "2328E4651657281364B2DB259739A18169D"
6088 DATA "464337C8CAD95B28B21953219E72BE510C"

6090 DATA "C8CA594B232BE499BE55C96436D92CAD29"

6092 DATA "978CC6532D32591970C8654CB5CA596937"

6094 DATA "9533FC661394B28E43259265724CAE51C31"

6096 DATA "B4C964B21364651CA39A6C591919190CA5B"

6098 DATA "E5164B2321365C3259195DB6D9E32965207"

6100 DATA "CA99A6C59195728 B2 B9458B232190CA9BA"
6102 DATA "96B94B2D32A65C668638C965A33DE4B2C3"

6104 DATA "F590CBE5CE4B2BE4646499067BCB4CBB11"

6106 DATA "C8CC6432AE54CB8CC6C8E4652C8CAECF8F"

6108 DATA "792CAD95B3D56F91970CDF2AE4B21910E6"
6110 DATA "8CA19572A6516D86CB64650CBC64B232F2"

6112 DATA "ED9A65B3219190CF194B2DF2E734D97CA3"

6114 DATA "B9CA59532D72965A649B37CA594B2F1 9AA"

6116 DATA "1972CF194B29654CA2CB64650CBC337C45"

6118 DATA "AF947233192CA99739432595DB3C652C4B"

6120 DATA "A595328B2394B2D329E43219190C833669"
6122 DATA "CAD9432AE433C652CA5951B6CBE5OCA3C8"

6124 DATA "919A18239699195B2597792CA6C86464A0"

6126 DATA "33CE54C8CA397B6432AE5464324CB6501B"

6128 DATA "CA3919C191CB7CAF95F29E7AA8E5AE4684"

6130 DATA "56CAD92C8CBB67BC8C8CBACA2C86464366'
6132 DATA "3CE56CA596F95F2328E50CA990C8656C2E"

6134 DATA "ACCA64B2D323219C64B2D334D9C64B2D73"

6136 DATA "190CA990CAE432196F9195B2B646499D80"

6138 DATA "E50CA9978C8CB9CFF5906472DB2AE54C62"
6140 DATA "A1959B6DB6D91C8CA19572A658CA194745"

6142 DATA "24C596F95728E465166996D96F919532F5"

6144 DATA "Fl 94590C8C86DB16464646432195321903"

6146 DATA "E329652CA994595C862C8C86472965A6CE"
6148 DATA "53C864323232DF2BE51C866F9195B2B6A3"

6150 DATA "51CD0C20CDF232A65AB2396B919582831C"
6152 DATA "25926759432F8C96465DB3BCA99195F2DE"

6154 DATA "9E516D9C64B2D1E7AB38C965A321953262"

6156 DATA "195C862C8C867C64132596323232E734DBB"

6158 DATA "13164654C8CAECF194B29654CA2C9641328E"

6160 DATA "F395F2197CBEB2AE4B28132394B2D329ED3"

6162 DATA "466365F28651 C864323219BE57CA391981"

6164 DATA "Al 8020CB650CA997790CB650CBC65C3267"
6166 DATA "B90C8337C9655C96576432DB2A64B21BC2"

6168 DATA "65B29652CBE328B34CB664324CE325960A"

6170 DATA "99A6C8E5EF2194C8CB192CBBCB9CAB97CC'

6172 DATA "E64651 CB8C965A66862397BC86779532EA"
6174 DATA "32B E53CA2CE325968C86516432192CADC2"

6176 DATA "978679CA99572BE5CE4669472F790CAE86"

6178 DATA "51679CA992CB567192CB4CA8CF592CAD73"

6180 DATA "95132865D E466862397BC862CA197C64666"

6182 DATA "5164194C8C967AAF794B29B36C8CBE32ED"

6184 DATA "3219E72A64B2D5B1646433CE55CA990C85"
6186 DATA "86464321978CBD650C8CB195F2813165238"

6188 DATA "CB7C8CA9978CA2DB38C965A335C8CB9C89'

6190 DATA "Al 9632AE465DE56CB8CD0C38C965A321C6"

6192 DATA "9532190C9316464339CA595329E432F905"
6194 DATA "7390C96498823219BE55C8CAF9EAB19593"

6196 DATA "F2B656CA195334D9066F9482965E323254"

6198 DATA "E591C8CA19572A6586A19472595B232839"

6200 DATA "65E328B34CB664323218B2323232195CC2"

6202 DATA "A2C836DB6DB1654CA196D9EABC652CA536'

6204 DATA "95195C862C8C8679CAD94B29654CD0C09F"

6206 DATA "16464337C8CAD95B28B259262C8CAB94EC"

6208 DATA "594C9652CB56432A6436DB6632597AC8C3"
6210 DATA "C8C8C9337CAB92C866328654CBD64649AF"

6212 DATA "92CA197C336CA19195F2B651CD325953FB"

6214 DATA "2E72864B2BB3C652CB4CBAC96433C652B0"

6216 DATA "CA595328B2596D92CB962CA4C59190CE8D"
6218 DATA "729654CA790C8646432B919472AE5E32BA"

6220 DATA "188232192CB6C965CB3C652CA595328BB4"

6222 DATA "CFDABE5OCA3919D595C8C965262C8C8697"

6224 DATA "75943232F9C8CAF94F25919779EABDE491"

6226 DATA "B2B6566432A643219532D72324CEF2D3D6"

6228 DATA "28654CBC651CD0CO2 B9265728B3C650C72"

6230 DATA "A997C32B90CF79191919A62C8C865325AD"
6232 DATA "94B2D5B6C8E5AE4656CAD94592C933ACEA"

6234 DATA "9652CA597864323219E72BE50CA99B21CC"
6236 DATA "9459C64B2D32A32F97195F28B21978CB74"

6238 DATA "EF232590C59498B232196C965DE4B29E48"

6240 DATA "5C64B2D191C965767ACA19532AE52CB417"

6242 DATA "C932B91947232A65A65AE465CE4B28B202"

6244 DATA "5926C594B2A653CB4CA99198C86432F9C3"
6246 DATA "6B96D94F2E19D654CA197E64B2BE432133"

6248 DATA "9190DB165BE52678CA594B2A651CC64716"

6250 DATA "2965A653C8643232197CA19472334316DF"

6252 DATA "4655CA2CAE5162C8C86779699432A65E95"

6254 DATA "33D5532594B2D734D91CAD969961396D97C"
6256 DATA "2C9650CB19532594728/31646431650CBCF"

6258 DATA "AC96432B90C59190CD72AE5E32F19582DB"

6269 DATA "1 B259262C8C86532594B2D595CA2C8337E"
6262 DATA "BCB4CA19532F19FEB3DE436DB6432DB205"

6264 DATA "DB259432A65162CA4CEB2190CA395B2352"

6266 DATA "2BE5B669B20CDB2596F94F2BE4335CB41D"

6268 DATA "CBB67BC96516759195F2E59F197394B223"

6270 DATA "C65F1919262CA4C59190DB6CF395B2964A"

6272 DATA "52CA99A6C591919190C8654C8678CA59FD"
6274 DATA "4 B2A65162CA4C59190D97CA194723319EE"

6276 DATA "BE57CA390C86464339CA595329E46686DB"

6278 DATA "2391953286465D E466336CB4C8CBBC8C1C"

6280 DATA "B9C932396B9195B2B651679CAB95B2B3DF"
6282 DATA "16464650CA B95334D90661394B2A653CA4 F"

6284 DATA "195190C8C866D92CA39195B2190C8C86A7"

6286 DATA " D9EB28654CA B94 B2D324C8E4652C8CA EFC"
6288 DATA "CEB29653CA795B2328B2D92C8CAEC59199"

6290 DATA "90D91CBDE4656CBD64651CD362C8CAB919"

6292 DATA "4595CA2C59190DB6DB6DB2196D9194F29C"
6294 DATA "3232C650CA99719F6A2CA64B2965AE6313"

6296 DATA "2B9267BC9651678CA594B2A651673941387"

6298 DATA "2A653C864323219BE57CA3919A1835C8B7"
6300 DATA "CB964323219BE52CB5C8CB96572198C94B"

6302 DATA "656CA59699532F3969959B6DB3192CA301"

6304 DATA "9196996B9194590CA990CBE50C964B23AE"
6306 DATA "2ED90C8C8678CA9957232F8C96465DE553"
6308 DATA "0C931650CBAC96465166D9572B646499CB"

6310 DATA "EF2AE5DE499BE55C96433CE4B2965E1BBB"

6312 DATA "219190CF19532AE465F19A6CE325968C11"

6314 DATA "8654C864324C59190CDF2BE51C865F2E20"
6316 DATA "72192C931646433ACA19197CE4657CA707"

6318 DATA "92C8CBBCF55EF2595B2B66913165262C898"

6320 DATA "C866F95F28E4321953219DE5A650CA992C"

6322 DATA "78C8C933C652CB4CBAC96436DB3C652C30"

6324 DATA "A595328B219190C591919190CAE5164147"

6326 DATA "91 CB5C9656CACCF19482965462CA4C592C"

6328 DATA "190CE729654CA7919A18319432A654CB8C"

6330 DATA "8CAB91976C59190CDF2AE465767BC965BA"

6332 DATA "1679C9652CAD919262C8C8CBBCB4CA19C9"
6334 DATA "532F1945E7AB1646465C33C652C8CFB507"

6336 DATA "36472595F2D58B2933DE4B2F59191919E1"

6338 DATA "63259779739572FCC8C9338C965A66863A"
6340 DATA "2190CBE56CA197594B2A650C9657CC6764"

6342 DATA "9C965A654CF55B64651C8CAF9OCEB232EF"

6344 DATA "4D B2392CAF96B9458B2933CE55CAD959AD"

6346 DATA "88232194C9652CB5CD362C8CAB94595C21"

6348 DATA "A3919190CF8C96465DE7DA8B3AC8C96565"

6350 DATA "4C9652CB5CD362C8C8C8C86432A6436291"

6352 DATA "CB7CA4CF1941329654CA398CB64650CBC8F"
6354 DATA "6413232ED97CA19472190C8C86DB66F955E"

6356 DATA "F28E466860164655CA2CA64B2965AB2382"

6358 DATA "9689195B2B651641324CB650CBD6465CE68"

6360 DATA "46464669B657218B23219AE55CBC65E317"

6362 DATA "2136432391943232328B2OCC650C8CA5983"

6364 DATA "6D9572BE499D646499BE55C96432F96B4F"
6366 DATA "975953259572F191919192678CA9943207"

6368 DATA "DB2594734DB62C8CAB94595CA2C591903E"

6370 DATA "CF9C8CAF95F2E73ED459D6464B2A64B226"
6372 DATA "965AE69B6C591 953232BB3C652CA595331"

6374 DATA "28B3BCA4CBE5OCA39198CDF2BE51C864BD"

6376 DATA "32321B6472965A653C8CD0CO259195D926"

6378 DATA "2C931646433E7232BE57CB9CFB5165B21F"

6380 DATA "865E32595F28B2B90DB66F919572592CB0"
6382 DATA "8CBB65728B3195325963232329E4B23294"

6384 DATA "ED91C9650C9657C932590C832D94B2DDD8"
6386 DATA "91C8CA594B2B669B219459C64B2D197CD4"

6388 DATA "B9C9657C86472F790D9F79196896D94535"
6390 DATA "882933DE46433CE57CAF94F34338C965CA"

6392 DATA "A3219532190C931646432F94328E432FD7"

6394 DATA "97390C96498B2321B3ACA19197CE46571D"

6396 DATA "CA792C8CBBCF55EF259513213669820CEBFD"

6398 DATA "29650CA8CAE516DB6532594328E464B237"

6400 DATA "32ED92C864191CB6CA89264B2F59190C69"

6402 DATA "59190DB6CF39572A64669816464646434E"
6404 DATA "2B945906472D72595B2B33C652CA5951A2"

6406 DATA "8B29316464339CA595329E4668603DE4B5"

6408 DATA "B2B65E590678CA597E6465C83BCB4CA1C5"
6410 DATA "9532F194590CA990CB650CB4CBBC96554C"

6412 DATA "C8CBBCA19190CF19532AE465F192C8CBD5"

6414 DATA "B64324C831650CBAC964339CAF9432A355"

6416 DATA "6D9C64B2D334D8B23232E196CA594B2F28"
6418 DATA "866996CC865167192C8466D94328E51C33"

6420 DATA "D0CO38C965A3219532195C864191C8CAEO"

6422 DATA "59195D9DE50CA99532329E69B6DB1646F3"

6424 DATA "46464328945906759532865F992CAF9012"

6426 DATA "CEF2B652CB7CAB91976CAE436C59190C29"
6428 DATA "D72AE5E32F195B2192C931646433CE5638"

6430 DATA "CA594B2A3219190DB6C591953259699735"
6432 DATA "79264191 CB5C9656CACCDF2AE464652CFC"

6434 DATA "6767192CB4663286436472595D8B2321D3"
6436 DATA "9AE52CA192679CA19519D64656CA596F34"
6438 DATA "9A62C8CAB94595CA2C59190CE72AE5DE69"

6400 DATA "4B29E5DE5A650CA9978CFB516532594655"

6442 DATA "2D73195C933DE4B28B6C596F9499E32973"

6444 DATA "652CA9947319BE57CA390C864643239444"
6446 DATA "B2D329E4668616464337CAB919194B2D81"

6448 DATA "D95CA2CDF2AE5E32197CB9CA59699779BE"

6450 DATA "2679C96546D9C64B2D18B2932397CE4655"
6452 DATA "57CBF3218B232A64B2D32EF259A6CE3216"

6454 DATA "5968CF792CBD64653C8C86532596D92717"
6456 DATA "9A10862190CD3232592CBC65C32992CA00"

6458 DATA "596B98C59190CDB2B650CAB9ODB6DB3C24"

6460 DATA "E4B2D32A67AADB2328E4657C86759192AD"

6462 DATA "65728B2D92C9653CAF91919266F95725C9"

6464 DATA "91978C9651CB19432A65E32324CF79692C"

6466 DATA "9192C96465DB3195B29653C8C8CA39A62A"

6468 DATA "C59195728E55CA2C59190CE32596991904"

6470 DATA "76CDB2A655C8CB195F3ED4594C9652CB65"

6472 DATA "5CD36DB16464646432B94590678CA594C9"

6474 DATA "B2A3165262C8C867394B2A653C86432351"

6476 DATA "232833C652CA59518B2931646432F94325"

6478 DATA "28E46686164643219572A33DE46464327D"
6480 DATA "B94591C8CA195B2190C8C86DB6D9EB25E2"

6482 DATA "9195F2EF28654CB8CC67BCB4CBBC866FB7"

6484 DATA "94132965E3232E598CA19472F8CA2C865CF"

6486 DATA "4C8653286465DE464995C86532596F94D3"
6488 DATA "59E32965BE5CB16464337C8CAD95B28E1A"

6490 DATA "69B164655CA2CAE5162C8C866F9572328C"

6492 DATA "B E7AAC657CAD95628654CD362CA4C591 BC"

6494 DATA "91 97394B2A653C867192CB466328643232"

6496 DATA "392CAEC8323919432AE54CB194328E4948"
6498 DATA "B643232190678CA594B2A32596D92CB9C7"

6500 DATA "CA2C5949813232197CA19472192C9338C63"
6502 DATA "965A66861646431654CA196D9EABC65296"

6504 DATA "CA595195CA2CB652CB197C646413343385D"

6506 DATA "C965A3219532190C9316464337CAF94751"
6508 DATA "2197CB9C8641324C836D96CA591976CDB6B"

651 0 DATA "28651CA39432EF2334D8B2323232190C9D"

6512 DATA "A990CF194B29654CA2D90CAD94B232EDDF"
6514 DATA "9D652CA790C8E55CBC6465164323219020"

6516 DATA "651328654CBBC8CC6D91C8CA59195D91COB"

6518 DATA "8CA19572A658CA194724CB64650CBC6541"

6520 DATA "1678CA596F9739A18038C965A321953202"

6522 DATA "195C862C8C866B9572F1978CAD90C96429"

6524 DATA "98B2321B6CB652C8CBB66D94328E51CA30"
6526 DATA "1977919A6C591919190C8654C8678CA511"

6528 DATA "94B2A6516C96433ACA594F2191CAB978DB"

6530 DATA "C8CA39A18038C965A3219532190C9316AB"

6532 DATA "46432F94328E432F97390C9649906D B2E8"
6534 DATA "D94B232ED98650CA39472865DE4669B26A"

6536 DATA "0C8E5B655CA994321336DB6DB2391943250"

6538 DATA "AE54CB194328E499BE55C8C8CA2CF194EC"

6540 DATA "B2DF2E590C8C862C8C8C8C86C8654C868B"

6542 DATA "78CA594B2A651643213652C8CBB67594BDC"

6544 DATA "29E43239572F191947343038C965A321 05"

6546 DATA "9532195C862C8C8661394132864B34DB6DFE"

6548 DATA "B6DB66991979C9654CA796991943259588"

6550 DATA "F2B65C31646432196D9194F23232C65046"
6552 DATA "CA9970CF792CA39759195F2E597CBEB2C5"

6554 DATA "325919572D7232E72592C8CBB66F957229"
6556 DATA "590CD B232AE51CA59194590C8C867BC913"

6558 DATA "65166D919699532324CF791 96B958296EB"
6560 DATA "58CBE3319EF2AE516DB65F2FAC9654CAD7"

6562 DATA "196329B25926432D72591957259419AE01"

6564 DATA "5A64B2C650CA9957283219190CF79572D6"

6566 DATA "8B3AC8CAD95B2865E3296465CE506572E2"

6568 DATA "3259498B23219AE52CA192CD36CE3259DD"

6570 DATA "68C8654C8679CAF95F2B64B232ED9EB2B2"

6572 DATA "3232E191CAD9195F2DB2E3343038C9657D"
6574 DATA "A3239699532A6465CE464643219190C8E2"

6576 DATA "654C862CA197C6465CB3ACA19632F8CA8D"
6578 DATA "79499C64B2D32A33195F2B656CD0C016BE"

6580 DATA "4646464321953219CE5265F2E72BE5AE32"

6582 DATA "55CAF9459EF23232338366F92CA4CF191E"
6584 DATA "499C64B2D1813232AE465F0CE325968C866"

6586 DATA "654C8CC678CA590DB6DB3E7232AE5F5984"

6588 DATA "41329E57CF3183DE52CB76699197794323A"

6590 DATA "B656CA1919267192CB46432A646706C545"
6592 DATA "9190DB6CA65A656C8CA2C964998C8CABF0"

6594 DATA "97ACA195B2A65C33CE4B2A65D655CBC3C1"

6596 DATA "6DB6D9E72AE5DE4B29E4B232ED9AE4B229"

6598 DATA "AE5E3232E72813219190C86465C65BE4600"

6600 DATA "5C6636D91CBDE467DB1652CA4CEB232884"
6602 DATA "65A653C965E72D32B6701816464B24CDA8"

6604 DATA "F2328B39CA594D9067AC8C8CB866F95781"
6606 DATA "28E49B6DB6CF1919632AE51CAB941321E68"

6608 DATA "7AB164655CA2CF196F919532F2CAE51658"
6610 DATA "4B232BB6D8B2965A65DE499EF2965AE5BA"

6612 DATA "D654C8CE033DE432592CBCE57C8CA2CEB4"

6614 DATA "325968C59190C8E5B64B2B65664B24DBC7"

6616 DATA "6D95C8C8D64B28E55CBACAB95132592CB39"

6618 DATA "8CC66992C932B9262CA4CEF29316526D1F"
6620 DATA "90C8CB866D9432A653641324C59190CC67B"

6622 DATA "50CA391958219BE55C964652CB4CA6D988"

6624 DATA "D64655C8CBB678C8CA795F2C653CAF92AA"

6626 DATA "CD0C3DE432592CBCE57C8CA2CE325968BD"
6628 DATA "C59190C8E5B64B2B656641324DB6D95C89E"

6630 DATA "CBD6413232C655CBACAB95B2592CB879E38"

6632 DATA "ACAE499BE55CAD95990CAD95B2965BB601"
6634 DATA "CE325968C59499E3232F395F2864990CB1"

6636 DATA "8CB865F2E72BE5AE5C337CAB92C8CA5973"

6638 DATA "6994D9E72AE5DE4B29E4B232EF3430215A"

6640 DATA "95B2B33BCA59195F38367192CB4679CA95"

6642 DATA "F95F2B329919432F1970C5949B6C59435E"

6644 DATA "2F8C864B218B23219BE52CA995B2F19BA4"

6646 DATA "34CBBC96706C59192C933C64B2F1973971"
6648 DATA "F6A6C594328E465762CA4CEF29652CBC2F"

6650 DATA "33ACB4CA6CE325968CF395F2BE56663219"

0 DATA 87FF04FF58FF9100F3003500920101013D01
2 DATA 65018802B402F10250026F02B1031E037803

4 DATA EE041C046504BD05FA0541057805EA061706

6 DATA 7406D707E707290753079108080822084908

8 DATA 8709AD09E4091B0937095F09850AB1OAC80A

10 DATA E20A020A2E0A440A660A7F0A9A0BB90BD3OB

12 DATA EFOB05013270B3F0B560B800CA80CBEOCCFOC

14 DATA F40CFF00O50C190C280C3B0C4A0C530C680C

16 DATA 7B0C930DB6ODC6ODD5ODDDODEBOD040D1A0D
18 DATA 2BOD3D0D4F0D6COD780D9E0E560EBB0EC30E

20 DATA CCOED6OEE2OEECOEF7OEFDOE01 0 E0B0E1 50E

22 DATA 1 BOE200E290E310E3B0 E440E490E560E5BOE

24 DATA 630E6C0 E720 E880F930FAOOFCOOFD1OFDDOF
26 DATA EAOF F90 F060F21 OF250F2B0F2D0F310F3EOF

28 DATA 430F450F4A0F560F5B0F5D0F4F0F61 0 F630F

30 DATA 6D0 F720F740F780F7A0F7E0 F801086108810

32 DATA 8D108F1094109810A210A410A610A810B210
34 DATA B810BC1 0C410C610C810CC1OCE10D010D210

36 DATA D610D810DD10E710EB10ED1OF21 OF810FD10

38 DATA 011005100C1010101 41019101D102010241 0

40 DATA 29102D10311 0341 038103C104010441 04710

42 DATA 4C104F1 0541058105D105F1061106310651 0
44 DATA 671069106F107910841190118859BF6A50E0

46 DATA EB4AFBA642D1115572D31F4244351E93975B

48 DATA BBF9D666423AE7BFF30ABA8DD4EF8D4850C4
50 DATA 215CDA0683143F28435CAC4C21266C738170

52 DATA D5B7EA5178F2C5AA6168C7E8DACF6CCCB2BD

54 DATA DFOAC71CB18A5D3D968C3DEAEB3D07066C15

56 DATA E386C869CD42607BAD2776ADBE1Al2679FA1

58 DATA EB4231D4FAA9D2AF6CCC8C37DA37D0749C1E

60 DATA 081E998DA48A3C5D56CCBOFFB6DD6213769A0
62 DATA 4D4D5488EFCAC0F6AD673802CODAF8BC2CEA

64 DATA 977CF69E8E1AC292FE67357BAD277A160475
66 DATA 5B88C86E1A6187215C3E92943D61549987BC

68 DATA 62651B6EB6206413756F1FE2044726DEEAA7B

70 DATA E63D968E5AF3BB49D15B5D338F58D26F23A1
72 DATA 501987ED2763DDF8169C26A35BF1298A396B

74 DATA 39679F88CA9830AC919D3D4AC0778890 F644
76 DATA 5A06396AC5C8B455B45157334B2D54DD96A3

78 DATA DF99AD5B9C74D6B5E3E9949F1BDD212C5FB9

80 DATA 769B BA9621 EF346F867 F9D61645A07216FC3

82 DATA 254135310D8B9459FF883C80CD083F4A699F0
84 DATA 37216E4820778890 F58A16CA1CCF403F772C

86 DATA E8B7DO7DEF11D22D1EF4C3943C65BA670E1B

88 DATA A9AB34A5FF8ED943F24D29D5AF432C45B9A5

90 DATA A006D8B896E048BA7128D3334455AEB0E81B

92 DATA A9AB34A699A55B783037DA3EEBCF6FC93826
94 DATA 87EECECB4709538134711C5DAEFD9351325772

96 DATA 07BCDOE1C2B30BB08F076DE8337FB6DA712C

98 DATA 79CCB2FB4A99484377933C1B3F1115216C42

100 DATA 43DD71329894139813BF0A951AE3152620037
102 DATA BDAC8A8E44A4C6DAF783CCD7A3A0E5D91B7F

104 DATA BF33A3EC42B3F04D50881C189DEEF9E621370

106 DATA 548411 DA761CC5BF9F9ACB7A116F20 EOEB39

108 DATA AD00701334D3205A20506D1C06E59427C429D

110 DATA 8E727D6FEDB563B4E90AB88F2D3088A537AB

112 DATA C8BCB6DB27873802EDB380E0C1F714A89750

114 DATA 207016929C006F770D BC4B59B9A0001 F7728

116 DATA 2B8D25AB649ED0 F7C76E3A161C5E8B461EAE
118 DATA 05A20506D19FFF08E0384D30942D7C49D48A

120 DATA 12F2F1B56FF4D5169968133305E109C006F77
122 DATA 19A0001F6D09F93AC3C68EA203DCD55C4369

124 DATA Al D9D2F7OBD2E6DF1FOACCD2F1F5BA17DDF2

126 DATA DFC1AF842667E0226C7C50BB62F7DA37C5BF

128 DATA F2B607E515BEA66811F5BAC479A155EF34A2

130 DATA 74ACE875E685A3EB EA1 E845B9D041EB D6536
132 DATA 31 EF8FCC96AC83F2DA0D80E063D38C5DAD4A

134 DATA F29DA2F7DA506A728C536EDBE685B859B84F
136 DATA F04C83E5D4976FC7649987 BCCB E62B6E97 B4

138 DATA 2148531 F77933C1 B388F2D3088A6E21DA2F3
140 DATA 59BF99FFF58A035306CE44A4C750207DED28

142 DATA D333BO0FBDCADA2DC9A13173D2D4428242F3

144 DATA 827A550E90A62138C3E06D01768DE991272F
146 DATA D77DA5A6C87DA529C5B8ECB8EA4C83E5D497

148 DATA 600D246A60679CB5DCB57C49D48A4FDC6112

150 DATA BAB90A4C83E987C8F9A23CF476ACE6DBA837

152 DATA D350 BEF3053BC735AA9CE2FBC29E8EA27605

154 DATA E9879D1335705413422E31BE8CA5D9C0079BB

156 DATA A999982097C1528D7C5DAE1DBEC3B52501 D8

158 DATA F6A57859B8AA7A84AB2C93A89299EA7122E3

160 DATA 1A94A7A48CC681DEDDA6475307E138DF8D6E

162 DATA A7E1D2A3F31BE5A346FFF783CCCF4010D8B8

164 DATA 459FFDE88A774F59A96A1A63EDA53B236189

166 DATA A8C4340CC3A3BA8C83D53E3BD871CD022295

168 DATA 2EB0F0EEC852467E2FD761854A1301351FDOD
170 DATA 31 BOFDB2CC82596EBB9969DA76A17A2E4BF7

172 DATA 66577812D2679F9ACA534D30804103F0A951

174 DATA AD482076044847BC623783E5D4981A1 7A251

176 DATA 8765E3DAC3B214E2296AC5F82DAB5037D698

178 DATA 26406829CE13F0063288E1BF9FA7D2B15137

180 DATA 122D5B6E294DF6216C8A340DBECAFA221A61

182 DATA AB16D8B38DB7EC4BB109F19EF173D2D6B1D4

184 DATA BF69AFC325473E64C98D80F63C4B50BFB538

186 DATA F0063CB4B9749E1425A4BCE8E784934CC8B7

188 DATA D0760246EDFF7C5127C1BB6FCD4224446D5A

190 DATA 89FA2F6AFAA0795170DF8FC4AA7BE6984SD0
192 DATA 428202679EF6097DC723503D207131799BBCE

194 DATA DF6956CBED48207A5E2205065E8F2780BF11
196 DATA 53A3BF111521600C803945C04754EB3E9294

198 DATA 9A92C0F81525E6851310903891DB38F791770

200 DATA 545E152A899FFDE88A770E794C37FE23E7DB

202 DATA 5C547569CFD97439985C735E413D9698217F

204 DATA 00EEE874AA40DF307959D33CF621DC7C89C4

206 DATA DF5735257CD556679D1335CCB1140BABDA06

208 DATA 708D73EDADB55BE7D451573343FF61402DE3
210 DATA 7C49D48DE3B08F076DB6F843F0069968B333

212 DATA B010D8B9A96963A8EB44493AC3D948182653

214 DATA E81AEF5978F0E1C3004441E184852DD2684E

216 DATA FAA036DAF7D62A297800BF1306C9B9A5A2B0

218 DATA F58ACOFDCBDE1CFAOBE7D4515733444F3BF0

220 DATA A941AFB8BBC1A6625EF09C0038CAC9983090

222 DATA F723503E12F6673D62EC8F09710EDA986B B8
224 DATA D48D5D6171440099BB700056CE4203833770

226 DATA A52AE69888BD9696655BF1F5BFB2DDA1549E

228 DATA 307DEF786685138591384FF04C83BBA23A7238

230 DATA A68036DAEDBD207131799BBCEDF6956CCB20E

232 DATA 29410EB0F44F088D5C8688ECD4E4681987E5
234 DATA 3432CC3F8EB0F07055594DB662512351E81E

236 DATA B2A34CCF403C2B78F07DA5F7F2FA52137116

238 DATA 8A0 D50 D2355236FFEDBE94A8708D5C12034F

240 DATA 690 ElBC10F8426680837F6933E1D1B37C5EF

242 DATA 347AC2304D0B61676140546FF123DDF68A4F
244 DATA 1 E680800562D8DBD290E45707768EF523750

246 DATA 207957C60B0DC99FEDBEB69328DF8D13DA75

248 DATA 1C1 BF55533DD212C5FOAC7879156E81D3281
250 DATA FE60C7D0E96E1A61AB16D8B38DB579AEEA7C

252 DATA 6909F8CE38B9A96A18E91FB4968613F0A951

254 DATA B98C37BC6237838B34981A17903C6A115DD5

256 DATA AF79781C79951DA6655070B3EA4C371E1 2F6

258 DATA 7C19A8B36D6519C151FADE8501DOECB2C2OF

260 DATA 0420007F741171C22295398C83D950A77CAC
262 DATA A99D3B10AE357Al22C5C129C413C6A866146

264 DATA 90A6013EFA089DB60849E1185310D8B9459F
266 DATA FC2C8EDD54A8OBE65C5AEDDOCB513530F83AB

268 DATA DC1 E09490048297 B4A929C00383E92949A92
270 DATA C0EE8898217F9037D68E580D3170A160401E

272 DATA 245E38520CC66F4D4DE4AF06AF0F0FC3DC27

274 DATA BA3F6C4D23A15E2E44B6659F5CB42399E22A
276 DATA 9757340 EFA964F5BDED50532CDA8B40 E1951

278 DATA E3E0 E8F081C4DDC04484E987C53783827128

280 DATA D1613398AD2679DE091C8BE1519A0000FB547

282 DATA ED9D3E24AA3945D9D8F79667E037DA37D06F

284 DATA CD025EF09DF89C92031330EDAEDB634229875

286 DATA E697001BA83E9294A2E0E91C3EA4B1B55C6A

288 DATA 608A0037BB411 D980E230 BB710ACB1072761

290 DATA 9E22625A73999837DA37D0749A062D7BF8AF

292 DATA 649987689DB5586EE845B0EB4D308037DO7D
294 DATA A529C5C7FD49E38CFC104D3B5837DA37D06F

296 DATA CD023C21BBF1B92687689DB55B6EE845B0EB

298 DATA 4D318E3AD68F33888AD29089FBD3A2FBCB7D
300 DATA DB7FB3FF614078932916813476DF4A98D85EF

302 DATA C733B037DA37D0749A062C9F334B50F1293C
304 DATA 882A5B8501B7EC41313109FOFC28BDOBF16FF3

306 DATA A2B91CA3F6F62A1A58ABE444401E351631A4

308 DATA 84FC562E59AC258E0CC66EB0F7F9D485A6E3

310 DATA 1C34C5539EB9AC411582003EF58AEDBD0B59
312 DATA 9E23F306D14820794A0AB4CD968D941AEDB6

314 DATA 66F6323AFE82071A97DA07999085B859B8E8

316 DATA CAI BOODF8E139A8641CA6A177869CF84251D

318 DATA AF6AE685900205064C9C79BD35BBDFAFB382

320 DATA B751 FE237859B6D0 D3E070B3F0A018CE9218
322 DATA 72566A523E780C3C4B7621DBAD6789EF346F

324 DATA 219139880534A9171CDB57056542CCE1 El 54D

326 DATA 2BE079AEEA676DE92BDF662D8ODAF0375CE2
328 DATA B1C6599EF169D27C90D1EBCD16CD830F13DB

330 DATA OBE5D36FFE8207BCE29E03140D63BCF4E8AB
332 DATA FC6DD3CA2C5BOBB4AD3ACFDB35E9066F983C
334 DATA 0E4A4DC73E150D020EC956710EA62519755A
336 DATA A5C5E688BAA524FA1351 F037 FB411371CD02
338 DATA 4421D86C6F53CB483E891DBE84EE09DCE685
340 DATA BD8DCBCC480968C838D4AD5F24D27A3E28C
342 DATA D6C8F190354EFAD94E1534B6FC2C9A927078
344 DATA 3C1201C23F26578577A9A5A35F9976A50EF2
346 DATA C320EB3D645EB83205A2737A59CF078D9A92
348 DATA D0F79C8501EEAA5A466F98336D668620A7E0
350 DATA F8E6BEE55421DDF6A977FD68B7C151855F9A

352 DATA 5ECE8B5C2C4D76E050F2C23D4599980F13F5
354 DATA 23CDFDCC7890F6802A569F180E3D46DAEDB5
356 DATA 0A0FD7E5AD486215333F7BD194F09CDFBOOF
358 DATA BB4247186852BD76AA905BF522FB42D4B97D
360 DATA D51E884B471EE3DD361326652FEE980F7DA39

ri
10 DIM Z(31):FOR T=1 TO 31:READ

Z(T):Y =Y+Z(T):NEXT
20 IF Y< >1586 THEN PRINT"CHECKSUMS

WRONG":END

30 F = 0:Y = 0:H = OPENOUT("CODE")
40 FOR T=1 TO 204:PRINT # H,FNW(4):NEXT
50 FOR T=1 TO 1165:PRINT # H,FNW(8):NEXT
60 CLOSE # H
70 IF JM< >13 THEN PRINT"ERROR IN LINES

4100-4170"
80 END
100 DEF FNW(D)
110 IF F=0 THEN READA$:F =1

120 B = EVAL ("V + LEFT$ (A$,D)):
A$= M1D$

(A$,D + 1): IF LENA$ = 0 THEN F = 0

130 JM =ABS((JM + B)MOD 100):X =X + D:IF

X=320 THEN X= 0:Y =Y + 1:IF JM < >Z(Y)
THEN PRINT "ERROR IN LINES ❑ "; Y*100

+900; "EITO [1"; Y'100+ 1000: CLOSE # H:END

140 = B

990 DATA 1,17,80,67,79,6,43,58,38,96,63,68,38,80,

6,7,62,80,80,98,83,20,50,45,9,51,22,42,

54,75,68
1000 DATA 000C008AOODD0116017801 B802160285

1010 DATA 02C102E9030CO338037603D703F60438

1020 DATA 04A60500057705A505EF0649068706CE

1030 DATA 0705077807A30801086408740813608DF

1040 DATA 091 D099609B009D70A150A3C0A730AAA
1050 DATA OAC60AEFOB150134108580876013960BC2

1060 DATA OBD8OBFA0C130C2E0C4D0C670C830C98

1070 DATA OCBA0CD2OCE90D130D3BOD510D630D88
1080 DATA OD930D9DODB1ODCOODD30DE2ODEBODFF

1090 DATA 0E120E2A0E4E0E5E0E6D0E750E830E9C
1100 DATA OEB2OEC30ED50EE70F070F130F380F50

1110 DATA 0F550F5D0F660F700F7C0F860F910F97

1120 DATA OF9B0FA50FAF0FB50FBAOFC30FCBOFD5
1130 DATA OFDE0FE3OFFOOFF5OFFD1006100C1023

1140 DATA 102E103B1061106F107B1088109710A5
1150 DATA 10C310C710CD1OCF10D310E110E610E8

1160 DATA 10ED10F910FE11001102110411061110
1170 DATA 111511171118111D112111231129112B

1180 DATA 113011321137113B114511471149114B
1190 DATA 1155115B115F11671169116B116F1171

1200 DATA 11731175117911781180118A118E1190

1210 DATA 1195119811A011A411A811AF118311B7

1220 DATA 11BC11C011C311C711CC11D011D411D7
1230 DATA 11 DB11DF11E311 E711 EA11 EF11 F211 F7

1240 DATA 11 FB12001202120412061208120Al20C

1250 DATA 1212121C12271234

1260 DATA 6B3F5A384B6BE1D0D2C2A77BD4F25691

1270 DATA 36C4439F5C17949E6756FA3BA3643BC2
1280 DATA A8BB13D7D4004FE5155A0C9D3170A0D5

1290 DATA 359CF25812DAC4D21743C77EA5865BE5

1300 DATA 5A348F2F7E9416BECCOEAD95F0E52BD3

1310 DATA 18D371B468E1D3BDB3B6DEDBC17E70E8

1320 DATA 86743866073ED4A46A8FD2C226B9E1E3
1330 DATA B456FA81AA471D3BCCOE2BA55A38COD0

1340 DATA 1C755038191 F881 FBC8B248E31CDD65E

1350 DATA EEC53A001C9A8E2B96F8EDD4720FB4FC
1360 DATA 34808BD6DA8BB70DD777B10EB4E1 F069

1370 DATA 8BE637298FD2C2576D4778A1F98694B8
1380 DATA 2D7220A65129F1C3A0492DD69A89F766

1390 DATA B8E42118217EF2D6EFED73C43E667C2A

1400 DATA F4DA8F165C514A3B590F34DDA2A37052

1410 DATA EE071AD0F95D64A7A4A69D968BA9F2DB
1420 DATA 68896CB9994A891F442880A1D052AF67

1430 DATA 5D24021EEE8176914D72D15AB5148D15

1440 DATA B5CB32CD17A9853707578BE698AD551D

1450 DATA 262885FA774BA8F70EA7BDEE2D7CE8A5

1460 DATA 07A00110E116895829F1B8C856C43453

1470 DATA 1 E68812E54C31221C6291D21BBC8AD7F

1480 DATA 021 E6892E5625D243034E7B25AC63D10
1490 DATA 9B1 F142EA78B94C46FE550BD239A8E19

1500 DATA 2D6B0A87D6EB9F29AA931C512BD18875

1510 DATA 88698E11452ED601FC2E728831CD544A

• The text used in Escape has been run
through INPUT's text compressor. The
resulting hex code has been put into DATA
statements. Unfortunately, you can never
be sure you have entered coded text
correctly, simply because you cannot read
it. The programs have been written to
incorporate checksums which will indicate
if there are any errors in the data. If, when
you RUN the completed DATA program, a
checksum error is reported, simply look
through the indicated line or lines for a
typing mistake.

1520 DATA 5AAC8B152D6B0A076068C6296B3F5A38

1530 DATA B8CAEFD04EEF0727D3OAC7CC4512C78C

1540 DATA B5DA6FDB8773D7B342E250BDOFB188 B4

1550 DATA B3E9EDO8F1DB368032CDF92DCB9ACAFC

1560 DATA BC94F7449512BF1CC343EC22C64CBC37
1570 DATA AE604EE588544AFC38262D23D0DA8303

1580 DATA 544AFCA8115EB 66 DAl234333809B DA65

1590 DATA ED23343F4E70B4C2199C89D0 E779EF1D

160 0 DATA B5D471AB1DF6DB919B1FC04570917B4B

161 0 DATA 3A6BE1A0A685032D1C2D9C690F8E3A28

1620 DATA EE13D6729F73F014876D83EB5948A81D

1630 DATA 886985C462BD3545E586E9451 BC0453C

1640 DATA 0A07A06D48A5C40F23038DBA0338262D
1650 DATA DE46BC37D01CADE529F72000ACA58EAB

1660 DATA F8509FE4178A6F47470B5F9CA385AF9E

1670 DATA A051 07853960 097F2E1431CD8B544AFC
1680 DATA B771 F392B2A8AA7F6366D2320 08E082F

1690 DATA 3413EFCDOAED2030C7433876DD83A30E
1700 DATA 6AC35D55F852DA21E066D38BD34C0B9F

171 0 DATA 3074EC2384BF E6BBDO4C0 B5F7DEC23C0

1720 DATA F8E2BCD0C045385AE687137726926BF95

1730 DATA C53AF691 FOD5A2F9AD F4A3B486667668
1740 DATA 1 F6AEC23051D5C0437E58 E9ECDOF FO B1

1750 DATA F303AD16E1 0 0 0 E5A5E0CD4E39E724B2D

1760 DATA 3D5AF8229D8A614EC0D08CDB50385A38
1770 DATA 39034D70F2382695EF812639DBEAF952

1780 DATA 5368EDC5E53DC834242E072F29424C2B
1790 DATA BD8887D880 067036D5E0621DF87AB621

1800 DATA 34EAA8942AA5CD0F3D1 08666492E5ACB

181 0 DATA 5274B1 A2C283C2D5D57 B02F4A1A7100F

1820 DATA EDE14339698EF6025730A79248A7257E

1830 DATA 452A257E6AB96CB99539034DA9033826
1840 DATA 071AF81ABF2D972DF32295129908AFF6

1850 DATA 6852D4D54B3E501FAFE71DCDE1366 B B5
1860 DATA 899AC241E229A4F72A80A13942FC629D

1870 DATA F6A30 E9F1D886906D471 B5149BE4A2B5

1880 DATA 1C5E4AE929BCF9011721189AFC8ED2C2

1890 DATA 3E1E2E5E812635C4F8A676D9FAAB385A

190 0 DATA 132D2B856A9Al2A99AE4A2720CA52795

191 0 DATA 5DDFO1C78754C7A70DE0B8E252E2276F

1920 DATA 191973A419CO31690CCD4478C5BA5811

1930 DATA 0AE97DA0295ACF786D649A6BE124138A6

1940 DATA B4C5288A3AA4430DBED6038D4D72583C

1950 DATA AE96A20348EF70 BlAF7FC653CAB6E1 D8
1960 DATA 7D528 B147DB111 0 ED9834CB3E99A3B6F

1970 DATA FAA2F6DBE6F8CB2F5213F8584A9B1F68

1980 DATA 0 031,CD5429F18342A0492D523113E165

1990 DATA 8023DE9B6652993352226068DB636607
2000 DATA E394 B343F9456BA938DOACAD41A69956

201 0 DATA 144E2AEB89820770A81FC06138D1 B252

2020 DATA 6FDB2E9222764EA90E848BEC237ACB3E
2030 DATA 17213629A8800B4580A314C6C74719F71

2040 DATA D531D752C42F6A3F9913348A50 06E6352
2050 DATA 3613EFCD077039357539B5BCA5A5151E

2060 DATA 8567E93CB8484D134782775052FC006E
2070 DATA 7038C2A745A4434DFB095BEDA17A6BAF

2080 DATA EO F052F97C2AC5OFD1C29966688283C2
2090 DATA 5FE2BD190F34C991E6251FA8DAD7F38E

2100 DATA 524CB3B5E2BD1968E97D5038F113780A

211 0 DATA F1433A2D002E52295CACO3D0 B356751C

2120 DATA A95129F154E60C3431189A999D8A530A

2130 DATA 977A0FB4955FD47E7DA0092B8E780AE9
2140 DATA 7E38CC7ADCDC67244F6AF555183AF4DA

2150 DATA Cl 5FF35DA199163EDA3B208057904A1D

2160 DATA 94567ECC97885DCF5771421FBF492DD6
2170 DATA 079AB5354C732D4516E86245EF089F81

2180 DATA 6DDBE23E2D4585BE0 E404C734FDE1A14

2190 DATA E648A5C48EF0103811E165DB691919C0

220 0 DATA 113034336A29BA58456BA9E3D1433BC9

221 0 DATA 54A619C85A6F1B68C461F1 F8E2C14580
2220 DATA D3AD8604A17A4FE8D777DBB601F82AAA

2230 DATA CA86143FB122A639CF408 B753EE7F792

2240 DATA 1415FAE21431CDB5544AFC2EBC4CEE8B

2250 DATA 7B336622C80670C4A19949CBC95D2480

2260 DATA 2FF90C342EEE737E1CAFFODOBB9EA9F5

2270 DATA D6ED48950958142F0515B7A33838E474
2280 DATA 521277488 B906986557E69E1FB631FC7

2290 DATA 492DDA35F7E607FB3860689E7050385A

230 0 DATA 082F034D498EFC8EDBB66DA0251FA86F
231 0 DATA D7F38EE64CB3B5DAA350EA8322145DAC

2320 DATA C221 B7237A39553BADF981 060310D30C

2330 DATA 751 C5CACF86DB3569AD4A8944C2A7306

2340 DATA AB3DOCCD257E7079D2FB72F80A17F114
2350 DATA B5D3D0 0 E6D0 0 B753F0A914BF8313DC8E

2360 DATA 9B0FE950A6858FC2763888699B1 EBE94

2370 DATA B4F04538CD3142713385A380C1C1C7550

2380 DATA C27D1749629A2794838 B750 OF143AA6F
2390 DATA 5BDA7D5C68D4EDD4E2F1 851E1 86892C3

240 0 DATA 2AA5CD6F164503381D07A79DA8F7AC55

241 0 DATA D1C2774BDA5504E29FA0AC075AF45198
2420 DATA 8A98E65B 032DD6C5DA6BBE6D9E427A9F

2430 DATA 8A2EEE33A73AE65AE4AD45ED8E544AFC

2440 DATA DE9B6D6332328023606866D212EA3D1 0
2450 DATA 7A2FD6DD96F91DF851E5A79D4D6AB4F0

2460 DATA F7921 FB7B4281AFCC29966ED865EFBD1

2470 DATA 836CD18120861 04270BC043D63AEA5E8
2480 DATA 2AB4F640674A2B3 F8D48C4AE17 EB84B E

2490 DATA 4F70A76451F8A17A4FE029C46D4782DE

250 0 DATA 4798D2E22E56C4340 B1 F68814A6D B643

251 0 DATA C57DBE988514DDB63A0 031CD94F8C1C5

2520 DATA 069AD4A8704C2A734AFCE006034D6A54

2530 DATA Al 99082F56381 080 810ED88FC0612171

2540 DATA B85FA41FEFC78C532FE5CD4E8F102F07

2550 DATA 3A285CC4A34EEC40C42FDEA2DCA0E5B7
2560 DATA 629AA3B5B458172BCF977A0F85D65E5C

2570 DATA 68524C33269539161 08F163E1CDC551C

2580 DATA 849856483F388053CB1 6951281268598

14%
10 PCLEAR5:CLS

20 FORK = OT0359:READAS:T = 0: FORJ =0T012

30 V = VAL(" &H" + MID$(A$,J*2 + 1 , 2))
40 T = T + V:POKE3074 + K*1 3 + J,V

50 NEXT:READC:IF T< >C THEN PRINT"CHECKSUM

ERROR IN LINE";1 0 0 0 + K*1 0:END
60 NEXT

1000 DATA 0 0 0 0 0 0 E25A3F70 F4385AD2DD27,1351

1 010 DATA C4B4A455BCB52700 F1ODA7A50 4,1831
1020 DATA FAE1DFD56CFE2A76F16943C6AE,2218

1 030 DATA A3953CO352743168575681C0C5,1417

1 040 DATA 6FCCDB6E1AE9626D1 04FD8E862,1751

1050 DATA FCCEDC35297C36DF9A2D5F12D2,1695
1 060 DATA 8FD56D6876669D7CBE25A36DB6,1751

1 070 DATA E3A6317BA7C4847BD6D67D0E1D,1827
1 080 DATA 586A4D43E0 E25A51ED5C7C3926,1507

1090 DATA 81 FAADADOEC751 B6DEAA94AC3B,1972

1100 DATA 3343E25A3850751 C1 F8853E1 C4,1386
111 0 DATA 91778BDAD9A6DA0 0758BDC571D,1814

1120 DATA 3439A9DBF12DF9681EE5AD170 0,1591

1130 DATA 681 E2F6B3AC5DF5DA7C36DB86D,1623

1140 DATA 0A4DF9A2D5F12D28FA178A9DB8,1789

1150 DATA 9486F9A6D03916E1F894A8EB16,2030

1160 DATA A4003DD44CD0C08792E35BC9F8,2169
1170 DATA 8719F717BCA9F198F8968FDC3D,2002

1180 DATA 0DDA528AE6E9A07ACA93851D16,1729

1190 DATA 80 D036FDA3B22EFCAD3B F6D49F,2131

1200 DATA 99531772D972D03F12953343AD,1433
121 0 DATA 119EBD4B407808917645DA07B9,1373

1220 DATA 6B4649A145D14B5CD3B2EFDCDE,1926

1230 DATA 16A45F9A2D5C23AAB59F50A504,1366
1240 DATA F7A84877ED77EDC3A97A1BE25A,2031

1250 DATA 380340 0 EB1722DC39177E252A6,1406

1260 DATA 69A145D62D03C422586A8423A5,1353

1270 DATA 38CFF5C8BC9340F01122EB172D,1701
1280 DATA 9739A18040F72D68138507E6F12,1476

1290 DATA 522E9EF54395BC66534470E14D,1602

1300 DATA 65A533FD7ACA2392754DB6DBD1,1879

131 0 DATA 2B118E69A0 0758B916E1C8BBF1,1622

1320 DATA 2953353145D62D 0385359694E3,1268

1330 DATA 3430 E25A3F70 F43BF331382707E,1564
1340 DATA F4ECCC7OAD386DC49177EE16136,2036

1350 DATA 7AEE70F7AA1C4856916DB6EC43,1814

1360 DATA C54EDE9B3803F12DF9CD3BF2A9,1921

1370 DATA ACB44DBDE52F072FC4A548BB1 0,1584
1380 DATA F0F751331CA9CC15DBF129522E,1670

1390 DATA 32D263803DAD0A8FC4A548B6D8,1708

1400 DATA BC2266868E85977EE6E00FCD08,1692

141 0 DATA F870AD1C13B42267071DD5E79E,1538
1420 DATA B1 D4B591 DBF61D45C01F9B4B74,1847

1430 DATA 46141C2D670A2D01F1 2D334F89,875
1440 DATA 68E141D470DCB584FB853C10E7,1 954

1450 DATA FAE0E3B5690 836DB6DB890AD31,1930

1460 DATA 08A6B7AC48BD36DCA788B8036D,1663

1470 DATA A0070A0 FC4A548BA8D 038CB498,1427

1480 DATA E01BA88F72D68E686083DCA6AE,1923

1490 DATA 3A96B3927D43E2A76FBA179C5B,1685

1500 DATA 7C4B479EAF8968E141 D4681 FC5,1678

151 0 DATA 56039CD36D142EFC4A548B92F3,1569
1520 DATA 71 DFEAAA2E32D266637784470 0,1569

1530 DATA 7BA899A1808313429D8ED0F1C3A,1639
1540 DATA 8E0 F7F695DC36A21 B7694BE22F,1452

1550 DATA 4D9C13E25A669C7D8E86177CD7,1589

1560 DATA F088E25A66868FB1F742F38BE2,2172

1570 DATA 5A3845C072 B787E695BF266A3E,1615

1580 DATA C758BF345ABE25A51FAADAD0EC,1875
1590 DATA CDOC8FB1A87C117074167AFB94,1617

160 0 DATA DEC7CO3F345AB681F9541C01C3,1686

161 0 DATA C7A818BC5A96E53C45B7C4B47A,1858

1620 DATA 9CC3153B5C6686E25A3850704D,140 0
1630 DATA 03E5526313F2392681EF52F9EB8,1553

1640 DATA BDADOA669C1EF29783971215A6,1540

1650 DATA 2114EC43C45E9B380340 0E8170,1227
1660 DATA 6DB6DB6A9ODB3D7C4A54751A07,1472

1670 DATA E6D295334340F72D68B9268517,1546

1680 DATA 452D5C2836DB785E804F7AA1E2,1449

1690 DATA 14F427287C3DA05ED1CD395398,1488

1700 DATA 2BBF12D3AB0FC4A548B96C1396A,1666
171 0 DATA 4D03E55263803A91AF81A072D9,1616

1720 DATA 72FC4A548BCFDDE1133ABA9393,1873
1730 DATA 40FA81F25E734779EBEE16B428,1801

1740 DATA 3853513EF4853C473430AA75813,1316

1750 DATA F1 0A7C3ABFDB19A6B1D14B56DB,1701

1760 DATA 8EA5AD1724FAB4A5E1C01F9BC2,1931

1770 DATA 99A180845F12D28EFC5E2E1E3E,1 523

1780 DATA C4352681 D977EE7C4B471:577EA,1634

1790 DATA 14ACB44EA44A69A9CCE2E49852,1857
1800 DATA A4F4A198E03BEBB4F87D521 F95,2054

181 0 DATA B8E0ODB5BC9F894A91CC719693,1919
1820 DATA 1C01DE113343428BAC5A07DE90,1226

1830 DATA A787452D734E36D35D9270C514,1442

1840 DATA 62D0350EAC3A8D03D6BE3C586E,1409
1850 DATA 49A07452D5D62E0FBD214F19FE,1499

1860 DATA BF636DB70DB650A45A93E8708D,1743

1870 DATA 8BED9A707B2DE771BD74EDFB84,2079

1880 DATA 5F45F97F1CAC7C09A9340DB6FC,1541
1890 DATA DA52A669A0 070A0FC4A54813526,1415

1900 DATA 81 B77844CC7BA88E0 OF954999A,1777

191 0 DATA 1889481 D998F6D0ECE66E3A96B,1492

1920 DATA 45F95683410AD334E0F595270A,1588

1930 DATA 3803D944BOEOODB7EA14ACB44E,1624

1940 DATA 248B8EA539D88BB22ED0371 F65,1561

1950 DATA BD11CD3428BAC5A06DB6DB6DB8,1849
1960 DATA 6C4C31 0A719F717452D731D53F,1366

1970 DATA 708BF129522F95498E0 0 F75133,1405
1980 DATA 43D4E5C01EF2D4E5D478569694,2129

1990 DATA F3A59B6DBC289A6A45C283BC12,1760

2000 DATA 3B70 07E2953E2A7704D43AB117,1250

2010 DATA B56C27ED77EDEF543F329786E0,1866

2020 DATA 0FC52A7C669F12D1 C28382681 E,1455
2030 DATA EA2377E4724D03EA07C979CD1D,1607

2040 DATA E7AFB85AD9A6A4DO3DD4470A0F,1804

2050 DATA BD214F027E25A756166DF894A9,1420

2060 DATA 170 06801 D62 E0E3AAB59F894A8,1284
2070 DATA D49A07CAA4CCDOCOC4294E2A76,1818

2080 DATA D03DEA5DFB845F994AC2683BD2,1868

2090 DATA 14F1179EADO7OFC48CFB9B8ABE,1707
210 0 DATA AD49FB87A030BBE6BF827C4B4C,1853
211 0 DATA D00080 EF68752A415F31 F99694,1786

2120 DATA CF5D88971F426DC55F58 B527E5,1622

2130 DATA 5ACD03A296B9A6851758B40FE2,1626
2140 DATA A779F717 DOA8A5AE69A0 070A0 D,1568

2150 DATA B5BC9F894A91CC7621E2A76EF0,1982

2160 DATA 88E00DB6E32D266686428BA296,1618

2170 DATA AE3A96845C93B43D1C90A669B7,1668

2180 DATA 51 A07AD7C78B0E24022E0F1 016,1067
2190 DATA D5BA7D09EF543BEBD5157C0 09F,1667

2200 DATA 8A43651CD36DA145D62D03F92F,1442
221 0 DATA 7E73EE2FA1514B5CD36DA285DF,1773

2220 DATA 894A917DC9DE11331EEA238036,1453

2230 DATA E32D266686917724D03F92F7E7,1741
2240 DATA 3EE2ED0 F15BC5D46DBDCAA476E,1702

2250 DATA B178A2C04D1 DB8A82BA721 C1 DA,1763

2260 DATA 5BB89295B34E117C48477E6771,1456

2270 DATA C7D8DBFB35DA2D49FB07E6F79E,2167

2280 DATA 6860 E25A3850704D03BC223BF2,1367
2290 DATA 392681BEA07C979A36CF5F70135,1657

230 0 DATA B34E0 FA9428EB16DB6E8A1111 D,1556

231 0 DATA B90 E0E3B55397A0681 B6DF9543,1292

2320 DATA 34D0 03AC5C1C7556B3F12951A9,1469

2330 DATA 3681 F2A9333430 F70 B79707E25,1399
2340 DATA F872FBD214F1170A0 EDOD3BF68,1845

2350 DATA EE0OFC52A7C54EDC138350EAC3,1893

2360 DATA E6F0A36DF12D334D070ED297C3,1733

2370 DATA D36708BE25A3DA118E6860E25A,1605

2380 DATA 3850751C1C49177DC294279A6D,1174

2390 DATA B6D0 03AC5C1F5487E56E3ED4B7,1703

240 0 DATA A9DBA8DB40F5AF8F161C9340FC,1915

241 0 DATA DA52A38036DB45169DFB7071 D5,1801
2420 DATA 5ACF7A84B77C4B47880DC55DA0,1603

2430 DATA 7ACA09F9851F45A5BE69A145D6,1719

2440 DATA 2D03E6BDFB9F7A429E33EE2E8A,1696

2450 DATA 5AE63AA7EE116DADE4FC4A548E,1862

2460 DATA 63DD4470 07196933343040F7A8,1267
2470 DATA 4137758BDEBE077E569DFB7E654,21 03

2480 DATA 6DF12D1A938FC97BFE0D145A77,1531

2490 DATA EF34F8968FDC3D130745B2CD08,1599

250 0 DATA 4380 F426BC70 E8A5AE6340 F6B4,1937
251 0 DATA 2A36DB6FCCB4A67AEC44B8FA13,1855

2520 DATA AC5D929DC13DEA8F158E214F02,1476

2530 DATA 7EF4268EDE2D2984734D0A2EB1,1415
2540 DATA 681 F1 2DOEDED4A98BE7DC5D1413,1857

2550 DATA 5CD36DB40 0 EB1707E252A35268,1514

2560 DATA 1F2A931CO20FC4A546A4D03BC2,1321

2570 DATA 26686040E15A3F603AC5C48587,1495

2580 DATA 0 06DB6DFAA97EE14E331FBD3B1,20 08
2590 DATA EF29783978847E22E141 C29481,1630

2600 DATA D89D4745BC5F896FCB40F72D68,1707
261 0 DATA E64C51758B40F7A97CF5C5ED68,2030

2620 DATA 5334D49A07CAA4C7C4B47880E2,1923
2630 DATA AEE0 E242B4C4229B70 0707E252,1689

264 0 DATA A396CB98 B52681DE111C93E25A,1746

2650 DATA 668640D521 B67AF894A8EB1769,1777

2660 DATA 63E059A180E25A3850704D03DD,1566
2670 DATA 4477E4724E0DB7691DBDA118C3,1506

2680 DATA B334D0 038507E252A4513701348E,1579

2690 DATA DF5298E35F045C01C1DA14ECCC,1747

A look at how your computer can
receive information from the outside
world, process it and use the data to
operate control devices for a variety
of systems

Microelectronics have revolutionized the
control of all sorts of domestic and industrial
machines and manufacturing processes* In
place of the dozens of relays and motor driven
timeclocks that used to control equipment
like domestic washing machines there is now a
single neat package of microelectronic com-
ponents. And in industry, computers have
made robots into a practical reality for all
sorts of applications.

Microelectronic control systems come in
four main guises: wired logic, custom in-
tegrated circuits, semi-custom integrated cir-
cuits and microprocessors* Of these, the
biggest revolution has been the micropro-
cessor, which has widened the scope and
lowered the cost of microelectronic systems
by introducing the idea of software control* A
single microprocessor circuit can be used for a
number of different applications simply by
reprogramming it, unlike the other three
types whose function can't be changed with-
out changing their circuitry*

Microprocessors are built into many pieces
of equipment and given suitable software for
the job in hand. Of course, even in this sort of
application, the microprocessor can't be used
on its own, it has to have all the other chips
which virtually turn it into a microcomputer
before it can be used to do anything* So every
owner of a personal computer has the heart of
a potentially versatile control system at their
fingertips and now there is a range of special
interfaces and construction kits available for
the hobbyist—anybody can control the real
world with their micro.

The hobbyist has a terrific advantage over
the professional system designers—plenty of
time, the most valuable asset* There are lots of
commercial examples of computer based con-
trol systems and for each one a whole series of
new applications has yet to be tried*

POSSIBILITIES
Although your computer has the capability to
direct a sophisticated control system, it can-
not do this without the addition of several
other parts*

A typical application requires an input and
an output, both of which are outside the terms
of the normal working of the computer—in

which input is via the keyboard and output is
to the screen or loudspeaker* A typical mech-
anical control system, for example, may need
to be triggered when a component has reached
a particular temperature, in which case it
moves the component itself. So the input is
fed via a sensor, whose signal is processed by
the computer, which then outputs a signal to
an actuator*

You have already seen examples of a
computer operating in just such a way, in the
article on robots (pages 884 to 888)* Kits like
those described there are just one specialized
example of a control system* This article looks
at the general aspects of using your computer
to control external devices* This breaks down
into three areas—sensors, actuators and their
connection to the computer* But first, let's
look at the possibilities*

Four areas worth exploring are:
• Timing and sequence control.
• Regulatory control*
• Data reduction*
• People/machine interfaces.

TIMING AND SEQUENCE
Timing and sequence controls are the systems
used in everyday things like washing ma-
chines, sewing machines and central heating
controls* The computer built into these is
much more compact and reliable than the
mechanical systems it has replaced. It can
cope with much more complex operating
sequences, its timing control is more precise
and covers a much wider range, and the
timing and sequence control can be altered
simply by changing the software.

Of course, you would not want to bury
your computer in the bowels of a washing
machine, but a popular and practical area of
application might be in a simple, but slightly
more intelligent than normal, burglar alarm*
At its simplest a burglar alarm consists of a
loop of wire connected to switches on all of
the exterior doors and windows. When these
are closed the circuit is complete and an
electric current can flow* If the circuit is
broken by opening a window or door then an
alarm bell sounds. The trouble is that with so
many*mechanical switches the likelihood of a
bad contact or failed switch causing a false

alarm is high* This is where a computer can
make a valuable contribution* If a second
circuit is added to all the interior doors and
both the circuits are connected to a micro the
software can make a few checks before sound-
ing the alarm. The logic goes like this:

`If a burglar breaks in, then shortly after
the exterior circuit is broken an interior door
is likely to be opened, breaking the interior
circuit. In this case both circuits are broken in
the correct sequence and so the alarm is
activated* If, on the other hand, either the
exterior or interior circuits are broken on
their own then there is likely to be a fault
rather than an intruder so don't sound the
alarm but report a fault.'

With suitable communication systems
which are already available, the micro could
even ring either the police to report a break-
in, or the maintenance people to report a fault.

A lot of people without burglar alarms use
simple time-switches to turn a light on and off
to deter burglars. But sometimes the regular-
ity of the light signals an empty house* A
micro can be used to control a number of
lights and other things like televisions and
radios in a complex pattern, different for
every day over a period of up to a month, say,
and sequence could even be triggered by the
dawn and dusk*

Another prime candidate for micro control
is the control of a model railway layout with
the software checking on the interlocking of
points and signals* A further possibility is to
control a number of slide projectors* Two or
more slide projectors can be linked so as to
produce interesting effects on the screen* The
micro could control the brightness of all the
lamps, creating fades up or down the mixes
from one slide to another* It could control all
the slide positions and report the number of
the slides in each projector—or even synch-
ronize the changes of slides to music.

REGULATORY CONTROL
Regulatory control is used in any application
where an action has to be taken based on
comparing readings taken by the micro with
desired readings prescribed in the software*
In a central heating controller the micro can,
for example, monitor the temperature of

DETECTION
ACTUATION

CONNECTIONS
MECHANICAL SYSTEMS

SOFTWARE

MICROELECTRONIC CONTROLS
POSSIBILITIES

TIMING AND SEQUENCE
REGULATORY CONTROL

DATA REDUCTION

different rooms, the boiler and the hot water
tank and operate water valves and control the
boiler accordingly. The entire system is an
example of a servo-mechanism control, rely-
ing on closed-loop control.

Looking at exactly what the term closed-
loop means will also demonstrate why the
micro is so versatile* Consider this problem—
you want to regulate the intensity of an
electric lamp so that the level of light is
constant, taking into account changes in the
daylight coming through a window. The
computer is connected to an interface that
controls the intensity of the lamp and a light
sensor which supplies it (feeds back)
information about the room's intensity. A
closed-loop feedback system could then be set
up in software something like this:

SET TARGET LEVEL

READ LIGHT LEVEL

CALCULATE
DIFFERENCE

ALTER OUTPUT BY
THE DIFFERENCE

When this program is run, the brightness of
the light will oscillate wildly, first getting
brighter, then darker than the target level*
This is caused by thermal lag in the lamp,
which can't respond as quickly as the com-
puter. When the voltage fed to the lamp is
changed it takes a little while for its filament
to cool down or heat up, but in the meantime
the computer has taken another reading of the
light level and, noting that there is still an
error, it increases the correction. Eventually,
when the lamp catches up, the correction is
too big and the process reverses. To avoid this
some more simple rules have to be added:

SET
TARGET LEVEL

READ
LIGHT LEVEL

CALCULATE
DIFFERENCE

IGNORE
DIFFERENCES OF

LESS THAN 1%

ALTER OUTPUT
BY 5% OF THE
DIFFERENCE

This time, the system will gradually adjust
the light to the target level and keep it there.
Rules can be added to cope with abrupt or
transitory changes in external illumination*

DATA REDUCTION, INTERFACES
Data reduction and people/machine inter-
faces form an important part of any control
system—but are also interesting on their own
count. In many control applications, the
micro receives information from lots of
sources like sensors and converts it to a more
intelligible or usable form—as in the light
example above. The software checks for
values falling within set limits, performs unit
conversions, filters data and checks for logical
inconsistencies.

Two examples of applications for data
reduction techniques would be to produce a
good colour analyser for amateur phot-
ographers or perhaps an automotive analyser
for people wishing to tune their car engines—
and there are already commercial machines to
do this* In the latter example, suitable sensors
connected to the computer could monitor the
carbon dioxide level in the exhaust fumes,

timing of the ignition, dwell angle of the
points, condition of the plugs and adjustment
of the tappets, ready for remedial action to be
calculated by the software. Such a system
could be interactive, with the micro giving
instructions as to the direction and amount
adjusting screws have to be turned and giving
a warning when the correct adjustment is
made.

People/machine interfaces are the areas in
which the possibilities for development are
enormous* Even at the simple level of display-
ing information this can range far beyond a
numeric readout on a visual display unit or
liquid crystal display, to full colour graphics.
For example, a model railway control system
could incorporate a module to let the user
design the track layout on the screen and then
carry out all of the control functions like
changing points, selecting trains and control-
ling speed by using a light pen and pointing at
the screen.

The micro has also opened up new possi-
bilities for designing machines and control
systems to help with all kinds of disabilities.
Software control means that a single switch
operation can start an extensive range of
complex operations, such as controlling the
selection of radio or television and then
tuning either of them, adjusting the heating
system, or turning room lights on and off and
altering their intensity. Interesting develop-
ments include wordprocessing without hav-
ing to use the whole keyboard. And the
technology of non-keyboard input and output
devices is coming to the point where voice
synthesis for the dumb, or voice and pattern
recognition for the blind, are almost a reality.

DETECTION
All four of the main areas of computer control
are interrelated, and have a number of com-
mon elements. One of the most important is
how computers get their information about
the outside world. They do it rather like we
do, through sensors*

All our five senses of touch, smell, hearing,
taste and sight are available to the micro,
although they are not yet at such a so-
phisticated level as the human equivalent.
The micro also has the potential for some
additional 'senses' like the ability to detect
magnetic fields, atomic radiation, radio waves
and other forms of electromagnetic radiation
well outside the limits of our own eyes.

In order to detect any of these, the com-
puter needs a suitable external sensor* Among
these suitable are ultrasonic detectors, tem-
perature probes, thermostats, gas sensors,
liquid flow sensors, proximity detectors, opt-
ical sensors and switches of all different types

and sizes. Common sources include Radio
Spares or Maplins, both of whose electronics
component catalogues list hosts of interesting
sensors*

Whatever the sensor senses, it produces
one of two types of electrical signal, either a
digital one coded as binary words (or, in the
case of a switch, volts or no volts) or an
analogue one in which the level of voltage
represents the quantity of whatever is being
sensed. The important difference between
these is that analogue signals can't be handled
directly by the computer but have to be
processed by an analogue-to-digital (A to D)
converter*

Some sensors have intelligence built into
them. For example, an ordinary thermistor (a
resistor whose electrical resistance varies with
temperature) does not give a linear change of
resistance with temperature change. For
every degree rise in temperature, a different
amount of change in resistance is produced.
This has to be accounted for in any software
using one of these devices. But there are also
some intelligent temperature probes which
work out the corrections and directly supply a
linear voltage output—obviously at greater
cost than a simple thermistor.

ACTUATION
To make things happen in the real world, the
micro needs actuators—mechanical output
devices* In most applications, the basic ac-
tuator is linked to a mechanical operating
system. Unlike the enormous range of sen-
sors, there are only five main types of
actuator:

1. Pneumatic
2. Hydraulic
3. AC and DC electric motors
4. Solenoids
5. Stepper motors

The pneumatic actuator is rather like a steam
engine. It consists of a cylinder containing a

piston connected to a driving rod. Com-
pressed air can be directed to either end of the
cylinder by an electrically operated valve, to
force the piston up or down* The hydraulic
actuator works on the same principle but uses
a liquid instead of air* It works with more
precision and can be more powerful.

Ordinary AC and DC electric motors are
widely available but are difficult to control
with a micro. If a precision positioning has to
be done, a sensor needs to be attached to the
motor's shaft—usually a device to count the
number of revolutions the shaft has made,
indicating its speed and position* Some en-
coders, as they are called, split each revolution
up into hundreds of bits allowing very accu-
rate control of the motor.

Because of such complications, the solen-
oid and stepper motor are the two actuators
most frequently used in micro systems. This
is because they only need to be switched on
and off, a simple thing for the computer to do.
A solenoid is an electromagnet which moves
an armature of some kind. When an electric
current passes through it the coil becomes
magnetized and moves the armature—which
can then be used as a control system*

The stepper motor uses a number of
solenoids to produce rotary movement like
that of an ordinary electric motor* But
although steppers are easy to use with a micro
they do have the disadvantage of not being

very powerful by comparison to similar-sized
AC and DC motors.

In order to understand how stepper motors
work, it is easiest to think of a four-pole
stepper motor with four electromagnets ar-
ranged at right angles surrounding the rotor,
an iron armature with two pole pieces which is
free to revolve on a shaft* If one of the
magnets is switched on, the rotor will be
attracted to it and revolve to face it* If that one
is switched off and a different one switched
on, then the rotor will turn to face this one. If
two adjacent coils are switched on, they will
attract the rotor equally and it will move to a
point mid-way between them.

Now, if the micro switches each of the coils
on in sequence, the rotor will revolve—the
faster the switching, the faster the rotation.
With the example of four coils, there are eight
divisions to one full rotation, the four actual
positions of the coils and the four positions
between each pair. Real stepper motors use a
great many coils, about two hundred in fact,
so the rotation is very smooth and the rotor
can be accurately positioned without the need
for feedback sensors indicating its position.

CONNECTIONS
Most of the sensors and actuators supply or
demand between five and twelve volts at quite
high currents. They can't be connected dir-
ectly to the input and output ports of a

computer because the micro only handles
very small currents and would be damaged
almost instantaneously. To solve this problem
you need to use an interface and there are a
number of commercial interfaces that enable
the sensors and activators to be connected
without even needing a soldering iron*

These interfaces offer high current relay
outputs, switch inputs, 8-bit output ports,
high speed analogue to digital and digital to
analogue convertors* Although A to D con-
vertors are built into some computers, extra
ones are often needed because the on-board
convertors do not have a very high sample
rate* For example, the BBC micro has one
that runs at 100 Hz and a lot of applications
require much higher sample rates* D to A
convertors produce continuously variable
analogue outputs from the computer's digital
signals, suitable for controlling the speed of
DC motors or low-voltage lamps*

Controlling mains equipment is even po-
ssible with 'intelligent plugs' that are sent
instructions through the mains itself* But you
must never connect a micro to the mains
without a proper interface*

MECHANICAL SYSTEMS
There are a number of answers to the problem
of linking the actuator to a mechanical
system—many of these make practical use of a
range of toy model systems. Meccano and
Technical Lego are both useful and Fis-
chertechnik construction kits offer real en-
gineering in miniature with all the compo-
nents you could possibly want*

Obviously, the greater the flexibility of the
kit, the better—because mechanical linkages
almost always need to be individually desig-
ned for each application* Typically, you may
need to gear the output of a motor up or
down, or connect it to a system of levers and
cranks in order to produce the correct motion.

SOFTWARE
Writing software for control systems is no
harder than writing for any other application*
The commercial interfaces make the control
of external devices quite straightforward* It
is, of course, very important to analyse the
control problem carefully and break the soft-
ware down into small parts or sub-sections

that can be written and tested individually as
procedures or subroutines*

One of the difficulties of getting really
interested in control projects is that it is
inconvenient to have your micro permanently
connected to your alarm or model railway
layout. To overcome this you can even use a
proper development system that connects to
the micro and enables you to produce a
dedicated single board computer specifically
designed for the job. It is unlikely that such an
application will need all of the facilities that
make a complete home computer expensive.

Development systems come with a range of
hardware so that the computer can be tailored
to the job* If the display is numeric then it
doesn't need a CRT and graphics display
controller, if the input requires only two
buttons then it doesn't need an entire
QWERTYUIOP keyboard. But if there are a
number of analogue sensors then extra A to D
convertors can be plugged in* Software
supplied with these systems help you develop
a program quickly and then enable it to be put
into an EPROM (Erasable Programmable
ROM) for permanent use*

CUMULATIVE INDEX

An interim index will be published each week. There will be a complete index in the last issue of INPUT

A
Algorithms

in games
	

1372-1373
use of in Pascal

1354,1389-1390
Animation

of sprites
Commodore 64 	1259-1263

with LOGO 	1317-1320
Applications

cross-referencer program
1512-1519

horoscope program 1245-1253
music composer program

1333-1337,1392-1396,
1416-1423

PERT program
1429-1433,1466-1473

room planner program
1269-1275,1308-1313

test card program 1474-1475
tool kit

Commodore 64, Spectrum
1525-1531

Artificial intelligence 	1264,1294

B
Basic programming

bluffing games 	1500-1507
file handling 	1358-1364
fractals 	1397-1401,1434-1439
moving colour sprites

Commodore 64 	1258-1263
operating system 	1322-1327
perspective drawing 	1461-1465
recursion 	 1289-1295
screen dump programs 1365-1371

C
Cavendish Field game

part 1-design rules and
UDGs 	 1254-1257

part 2-map and troop arrays
1282-1288

part 3-issuing orders
1301-1307

part 4-combat and morale
routines 	 1346-1351

part 5-strengthening the
computer 	1372-1377

Cliffhanger
part 12-adding weather

1240-1244
part 13-rolling boulders 1

1276-1281
part 14-rolling boulders 2

1328-1332
part 15-walking Willie

1338-1345
part 16-jumping Willie 1

1378-1385
part 17-jumping Willie 2

1402-1409
part 18-death, sound and

end routines 	1440-1447
part 19-Willie scores and

speeding up 	1476-1481
part 20-moving snakes 1520-1524
part 21-main loop 	1537-1544

Colour
code guessing game 	1356-1357
of sprites

Commodore 64 	 1262
representing in tonal screen

dump 	 1369-1371
shading effects 	1464-1465

Commands, adding to BASIC
Commodore 64, Spectrum 1525-1531

Constants, in FORTH 	1508-1510
Control systems 	1552- 1556
Cross-referencer utility 1512- 1519

D
Data, separate storage of 1358-1364
Desperate decorator game

1314-1316

E
Editing

with cross-referencer 	1512-1519
with LOGO
	

1296
with Pascal
	

1355,1391
Escape adventure game

part 1
	

1424-1428
part 2
	

1450-1455
part 3
	

1486-1492
part 4
	

1493-1499
part 5
	

1545-1551

F
Factorials, calculating

BASIC program for
	

1291-1293
in LISP
	

1458-1459
Fetching and storing,

in FORTH
	

1509-1510
Files, handling
	

1358-1364
FORTH

Part 1-terminology and stack
manipulation 	1482-1485

part 2-variables and new
definitions 	1508-1511

part 3-comparisons and
loops 	 1532-1536

Fractals 	1397-1401,1434-1439

G
Games

bluffing 	 1500-1507
Cavendish Field 	1254-1257,

1282-1288,1301-1307,
1346-1351,1372-1377

cliffhanger
1240-1244,1276-1281,
1328-1332,1338-1345,
1378-1385,1402-1409,
1440-1447,1476-1481,
1520-1524,1537-1544

desperate decorator 	1314-1316
escape 	1424-1428,1450-1455

1486-1492,1493-1499
1545-1551

horoscope program 	1245-1253
life 	 1237-1239
`match that' 	1356-1357
scissors, paper, stone 	1502-1507

Graphics
displays, programs for dumping

1365-1371
moving and storing sprites

Commodore 64 	1258-1263

perspective drawing 	1461-1464
shading 	 1464-1465
using fractals

1398-1401,1434-1439
using LOGO

1296-1300,1317-1320

H
Horoscope program 	1245- 1253

L
Languages

FORTH 	1482-1485,1508-1511
1532-1536

LISP 	1410-1415,1456-1460
LOGO 	1264-1268,1296-1300,

1317-1321
Pascal 	1352-1355,1386-1391

Life game 	 1237-1239
LISP 	1410-1415,1456-1460
LOGO 	 1264-1268,

1296-1300,1317-1321
LOOPS, in FORTH 	1533-1535

M
Machine code

cross-referencer utility
1512-1519

games programming
see cliffhanger; life game

program to play background
music
Acorn, Commodore 64 1448-1449

tonal screen dump 	1369-1371
tool kit, to add to BASIC
Commodore 64, Spectrum 1525-1531

`Match that' colour code
guessing game 	1356- 1357

Mathematical functions
in fractal geometry

1397-1401,1434-1439
with FORTH 	 1485
with LISP 	 1415
with LOGO 	 1320

Memory
advantages of Pascal in 	1353
banks, range of

	

Commodore 64 	1258-1259
checking with LOGO 	1299
locations of VIC-II chip

	

Commodore 64 	 1262
managing by OS 	1323-1327
storing FORTH in 	1508-1510
storing LISP in 	1459-1460
storing sprites in

	

Commodore 64 	1258-1260
Music

background, program to play
Acorn, Commodore 64

1448-1449
composer program 	1333-1337,

1392-1396,1416-1423

0

	

Operating system 	1322- 1327

P
Pascal 	1352-1355,1386-1391

Peripherals, control of
by micro 	 1552- 1556

PERT program
1429-1433,1466- 1473

Pointers, sprite
Commodore 64 	1260- 1261

Punctuation,
when handling files 	1360-1363
with FORTH

1484-1485,1510-1511
with LISP 	 1412
with LOGO 	1320-1321
with Pascal 	1354-1355,1391

Q
Quicksort program, recursive

1293-1294

R
Recursion

in BASIC
	

1289-1295
in fractal programs
	1398-1401,

1434-1439
in LISP
	

1458-1459
in LOGO
	

1299-1300
Room planner program

1269-1275,1308-1313

S
Scissors, paper, stone games

1502- 1507
Screen dumping, of graphics

1365-1371
Screens, in FORTH 	1482,1510
Shading, with colour 	1464-1465
Sprites, Commodore 64

moving and storing 	1258-1263
Sprites, LOGO 	1317-1320
Stack, manipulation of

in FORTH 	 1484-1485

T
Test card program 	1474- 1475
Tool kit, to add commands

to BASIC
Commodore 64, Spectrum

1525-1531
Towers of Hanoi program

1294-1295
Turtle 	1266-1268,1296-1300

U
User-defined functions,

in FORTH
	

1484
in LISP
	

1456-1459

V
Variables, use of in FORTH

1508-1510
VIC-II chip

Commodore 64 	 1258
memory locations of 	1262

Vocabularies, in FORTH
1484,1510-1511

The publishers accept no responsibility for unsolicited material sent for publication in INPUT. All tapes and
written material should be accompanied by a stamped, self-addressed envelope.

Many popular forms of puzzle can be
solved by applying mathematical techni-
ques for dealing with complicated equ-
ations. Find out how your micro can help
with PUZZLE SOLVING, and look at some
more serious applications for the
techniques

The dungeon door has swung shut and
unknown terrors lie in wait. COMPLETE
THE ADVENTURE game program and
start to make your escape

Discover how you can TUNE IN TO
CODED MESSAGES and use your com-
puter to catch a satellite

Look beyond the limits of the home com-
puter to the wide world of ALTERNATIVE
LANGUAGES, and see what they might
have to offer the micro user of the future

Let your computer take control by find-
ing out how to CONTROL A STEPPER
MOTOR

Plus a HEX DUMP and guide to
CHECKING CLIFFHANGER

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36

