
HomE
3VAn

:DmPL
ED COURSE

mAKIHG THE mDSTOFYaUR miCRO

El'
»

!48K

CONTENTS

APPLICATION

FIT FOR THE FUTURE An overview of

the increasing relevance of computers to

our everyday lives

1

HARDWARE

BEST OPTION An introduction to disk

drives, and how they work

COMMODORE 64 We examine this

popular home computer and look at its

portable counterpart, the SX-64

4

10

ATTACKED BY ANTS A maze-chase

game universally acclaimed

COMPUTER SCIENCE

THE ALGEBRA OF DECISION
MAKING The first step towards

understanding program design

JARGON

FROM ACCESS TO ADA The first part

of a glossary of computing's terms

PROGRAMMING PROJECTS

THE SPECTRUM OF ZX BASIC A look

at the characteristics of this basic dialect

8

INTRODUCING FIRST CONCEPTS
Commencing a course of instruction in this

lowest common denominator of computer
programming

16

BILL GATES - SETTING THE
SIANDARD An insight into one of the

world's most prolific suppliers of software
20

NextWeek
• We continue our BASIC

conversion course for

Spectrum users,

concentrating on functions

and control structures.

• Widely acclaimed as the

best of the microcomputer-

based wordprocessing

packages, Micropro's

Wordstar can turn any CP/M

based machine Into a very

powerful text processor.

• Amongst the educational

uses of computers, one

application is particularly

attractive to the home user -

examination revision

software. We look at this fast-

expanding field.

You

will

Overseas readers: this special offer applies

to readers in the U.K., Eire and Australia only.

COVER PHOTOGRAPHY BY IAN McKINNELL i RINITRON COURTESY OF SONY SUPERROBOT 28 COURTESY OF HARRODS

Edllor Jonathan Hilton; ConsultantEditorsGareth Jefferson, Richard Pawson; ArtWreclor David Whelan; Deputy Mitor Roger Ford; Production Editor Catherine Cardwell; StaffWriter Brian Morris; Picture Editor Claudia Zeff; Destgner

Hazel Bennington; Sub Editors Robert Pickering, Keith Parish; Art Assistant Liz Dixon; Editorial Assistant Stephen Malone; Researdier Melanie Davis; Contributors Lisa Kelly, Steven Colwill, Martin Hayman; Group Ait Director Perry

Neville; Managing Director Stephen England; Published by Orbis Publishing Ltd: Editorial Director Brian Innes; Project Development Peter Brookesmith; Executive Editor Chris Cooper; Production Co-ordlnator Ian Paton; Circulation

Director David Breed; Marioting Director Michael Joyce; Designed and produced by Bunch Partworics Ltd; Editorial Office 85 Charlotte Street, London W1 ; © 1984 by Ori)is Publishing Ltd: Typeset by Universe; Reproduction by MuNIs Morgan

Ltd; Printed in Great Britrin by Artisan Press Ltd, Leicester

HOME COMPUTER ADVANCED COURSE - Price UK 80p IR £1.00 AUS $1.95 NZ $2.25 SA R1.95 SINGAPORE $4.50 USA and CANADA $1.95 ^
Howtoobtainyourcopiesof HOME COMPUTERADVANCED COURSE - Copies are obtainable by placing a regular order at your newsagent, or by taking out a subscription. Subscription rates: for six months (26 issues) £23.80; for one year (52

issues) £47.60. Send your order and remittance to Punch Subscription Services, Watling Street, Bletchley, Milton Keynes, Bucks MK2 2BW, being sure to state the number of the first issue required.

Back Numbeis UK and Eiro - Back numbers are obtainable from your newsagent or from HOME COMPUTER ADVANCED COURSE. Back numbers, Orbis Publishing Limited, 20/22 Bedfordbury, LONDON WC2N 4BT at cover price.

AUSTRALIA: Back numbers are obtainable from HOME COMPUTER ADVANCED COURSE. Back numbers, Gorjdon & Gotch (Aus) Ltd, 114 William Street, PO Box 767G Melbourne, Vic 3001. SOUTH AFRICA, NEW ZEALAND, EUROPE &

MALTA: Back numbers are available at cover price from your newsagent. In case of difficulty write to the address in your country given for binders. South African readers should add sales tax.

How to obtain binders for HOME COMPUTER ADVANCED COURSE - UK and Eire: Details of how to obtain your binders (and of our special offer) are in issue 5. EUROPE: Write with remittance of £5.00 per binder (incl. p&p) payable to Orbis

Publishing Limited, 20/22 Bedfordbury, LONDON WC2N 4BT. MALTA: Binders are obtainable through your local newsagent price £3.95. In case of difficulty write to HOME COMPUTER ADVANCED COURSE BINDERS, Miller (Malta) Ltd, M.A.

Vassalli Street, Valletta, Malta. AUSTRALIA: For details of how to obtain your binders see inserts in early issues or write to HOME COMPUTER ADVANCED COURSE BINDERS, First Post Pty Ltd, 23 Chandos Street, St. Leonards, NSW 2065.

The binders supplied are those illustrated in the magazine. NEW ZEALAND: Binders are available through your local newsagent or from HOME COMPUTER ADVANCED COURSE BINDERS, Gordon & Gotch (NZ) Ltd, PO Box 1595, Wellington.

SOUTH AFRICA: Binders are available through any branch of Central Newsagency. In case of difficulty write to HOME COMPUTER ADVANCED COURSE BINDERS, Intermag, PO Box 57394, Springfield 2137.

Note - Binders and back numbers are obtainable subject to availability of stocks. Whilst every attempt is made to keep the price of the issues and binders constant, the publishers reserve the right to increase the stated prices at any time when

circumstances dictate. Binders depicted in this publication are those produced for the UK market only and may not necessarily be identical to binders produced for sale outside the UK. Binders and issues may be subject to import duty and/or

local taxes, which are not included in the above prices unless stated.

d|9Lj ib8j6 B S! 9SjnooApnjs

9Luog aAisuagajdiuoo 'paoed

l|8M V fiuijunepajOLU u8A9

S! y\S2\ 9L|} J9UJ00M9U 9Ljj J0| jnq

'^10^19 9|qBJ9P!SUO0 B SpUBLU9p

UOjJBnilS 94UOlSB9JqB

6U!d99>j •9AISU9JX9 9J0LU pUB

9J0UJ 9UJ009q SJU9LUdO|9A9p

pUB SaBUBqO JB9A Aj9A9

puB — Ai9!00S jno ouqB^

9qi ;0 JJBd (BJ69JU! UB 9LU039q

SBq J9jndLuoo gqj '9pBoap

BUBqjSS9U0 9SJn03 9q}U|

pasiuBooay ag puy aoueApv

lOU 'ST II -9115118X01 B qjlAV M0pU9 Sn

JO AUBIU V2\\l 9ATSU9H0jduiOD OS - JBO pUB llOJOBJ

'9D^O '9UIOH - JU9UIUOJIAU9 XBpXj9A9 JTIO 0:^111

:iU9umoBOJou9 sjT puB ;sBj OS U99q s^q ASopunDOj
J9jnduiOD p 9DUBAPB XjBUOpnpASJ 9l|X

^>[jOM poqos Jiom ipiM lusqj dpq pire Xdbjqiii

js^ndiuoD j9:isoj oj sbm ju^uijssaut jo jmod

9HJ j^qj psj noX ji '^uibS 9uib§ X^id oj sjisop

jirejsuoo jT9qj q:iiM sdoD noX op Moq 'usjpiiqo

9ABq noX ji ^90ud m UMop omoo sj9juud

pougoj 9JOIU fijun jtbm noX pjnoqs jo 'mou

jQjuud B p99u Xpsj noX oq ^jusp^ns aq 9Aup
sdBj 9:i:|9SSBD b jjim jq 6^^PP ^STp b Xnq jssn 9qj

pinoqs (pdi3} uo surejSojd jo s9SpujJB3 ^Xsuoiu

joj onjBA jsoq 9qi jsgo s9SB5[DBd ^jbav^os qoiqAV

l^spddu s,J9sn 9qj o:^ oiq^oyiddB :|soui st 9uo qoTq^^^

•sSnnSirei SmmuiBjgojd 9uo ireqj 9Joui sj^jjo

uoTjsonb ui QinqoBui sqj sd^qj^j ^jxsu j^qM
'9§un|d 9qj U95[BJ SuiApq puy 'soiApB ^jq^n^J
jnoqjiAV ppoui JBpiDipBd is uo sppsp oj Jino^p
s^:^! 'Xireui OS die ^J^qx i-^^l^^^^^ SAisusdxsui

ire Xnq pun jno oq ^jsjg op oj v^^J^
^QDiApB pssBiqun

JOJ mni 'isoo uavo jiaqj puB 9uip uavo jpqj m
S9Apsui9qj dvsonp^ jsnui oqM sjsiXqqoq sqj pire

sjngjBuiB 9qj op sJsqAV *>[-IOav Xaqj qDiqAV qjiM

juouidmbs 9qj jo sjayiddns sqj puB sjoXoidius

jTsqj luo^ jjoddns psdxa ubo Sjdoad 9S9qj

jSB^i :inq 'gupnduioo in sjusuidopAsp isovs]

9qj q:iiAV dn ddo^ oi - sjsX|bub suisjsXs pire

sj9uiuiBJ§ojd 9qj 'sjojBJsdo sqj - sjBuoisssjojd

jsjnduioo 9qj joj q§nou9 j|no^Tp s^jj

^pdfqns aq) |o sai|K9idui03 aq;

qjiAi sdijS o) auioa Supnduioa jo p|ai| aq;

o) jauioaAiau aqi saop A^o^ *aauauadxa
luasaid jiaqi ui SuiqjXue o) uoi}e|aj

apiq sjeaq pa[qns |eqi jo ;daauoa ajpua
aq) uaqAi Xfiepadsa ^padsojd Supunep
e sa|dpinjd aiseq uioj] pafqns Aiau

e Suiujeai pui| aSe |ooqas jaAO a|doad)soi\[

gyninj am yod iid

© 0 O O © ; i

© © © 0 /I NOIX¥0ndd¥/N0IJL0na0HJLNI

APPUCiOTON/INTRODUCTION

BASIC

This is still the most popular

language for home

computing

LOGO

Though primarily intended as

a learning language for use

with young children, LOGO

is also very satisfying for the

advanced programmer

Interpreter

An interpreter is one method

for converting BASIC into

machine code line by line

InTH' COM
ADVANCED COURSE we shal

arning a whole variety of

jgramming languages

PASCAL

This is considered to be the

most professional of the

popular languages

FORTH

This language falls between

high level languages and

machine code, and is

therefore popular amongst

experienced programmers

hat can be used as

lives to BASIC. We
all also be looking at thej

rograms and utilities that

needed to get a program

unning on the CPU. Th^
advanced home computer

the language h6

irking In according to the

mature of the problem on

application being tackl^ff

Compiler

A compiler produces a

separate copy of a program in

machine code

Assembler

Machine code is usually

written in the form of

Assembly language, which

uses alphanumeric labels and

symbote instead of 'numbers

Machine Code

Though difficult to write,

machine code can be very

rewarding, as no time is

wasted on interpreting

ICO

easy to come to terms with a 'motive force' that is

invisible in action, unlike the satisfying spectacle

of, say, a car engine or a hydraulic pump in

operation.

True, more and more people are being trained

to operate computers and computer terminals.

But there is a huge difference between training

and education. Training implies learning a task by

rote. Education allows a leap beyond the bounds

of the mere task at hand into a broad

understanding of how the systems work, their

potential and limitations.

To many people working in the computer

industry and in schools and colleges the answer

seems to be a planned course of computer

education presented in such a way as to be

understandable to all from the outset. Individual

instruction manuals for specific machines cannot

provide a balanced overview that relates one type

of computer to another. Nor will they point out

the pitfalls inherent in the multiplicity of

machines available, or advise you fully on how to

make the most of your purchase. After all, what

sort of manufacturer is going to give free publicity

to his rivals' products?

Following a properly planned home study

course, perhaps backed up by a weekly session at

an Adult Evening Institute (many of which offer

introductory courses in computing and computer

programming), is a convenient and inexpensive

way to a sound education in computing.

The object of such a course should not simply

2 THE HOME COMPUTER ADVANCED COURSE

MMHilllilM
INTRODUCTION/APPUCATION

be to learn how to program and operate a home
computer, but to gain a wider appreciation of

how computers are used in everyday life. As well

as providing instruction in programming and
basic systems analysis, it should offer an overview

of all the computers in use at the moment rather

than concentrate on the machine one happens to

be using. It should introduce the peripherals and
extras available for all of them, with an

explanation of their operating principles. To
place the computer in context, one must examine

in depth the tasks to which it is now applied and

the software that makes those applications

possible. Finally, the course should include

elements of formal logic, number systems and
something of the history of computing and

computers. In short, a home study course should

cover all the topics that would be dealt with in a

conventional course in computer studies.

In The Home Computer Advanced Course
we have set out to provide the material for just

such a course. Building on the average home
computer user's knowledge of basic and some
machine-specific experience of computer

graphics and sound synthesis, we aim to take you
through the other high-level languages found in

microcomputers - pascal, forth, logo and c, for

example - and to provide grounding in machine

code programming, the key that unlocks the

power of the microprocessor.

A knowledge of machine code enables us to

examine the ways in which the higher level

languages are defined. Then, when we have

studied the way in which compilers and

interpreters work, we can amalgamate these two
branches of knowledge to start defining our own
language and writing a compiler for it.

We won't neglect basic, however. We'll look at

the refinements of the language and work
through projects that will result in the generation

of useful applications software and screen-based

and Adventure games.

In addition to the internal functions of the

computer, we'll explore file-handling methods,

both on tape and on floppy disk, using the

experience gained in defining data structures and
hierarchies within the computer's internal

memory. In this way we can expand the capacity

of even the smallest home computer into a serious

information processing system.

Bearing in mind that it's not enough to study a

subject in isolation, we will consider in depth the

wide choice of software packages now avaUable -

spreadsheets, word processors, database

managers and the like - with a view both to

understanding their operation and methods and
to learning more about professional

programming techniques, in order to include

these in our own programming.

Some attention will be given to basic

electronics, examining the function and design of

individual components and the ways in which

they are combined to make up computers and
their peripherals. We'll look at the machines

themselves, too: the popular microcomputers,

both for home and business use, and their

peripherals, examining their price and
specification, and assessing their impact on
computing in general. We won't neglect the

human side of the computer industry, however.

The people who design the software and build the

machines, and even the computer users who have

made a contribution to the field, will have space

in the course devoted to them.

If you are interested in learning about

computers with a view to increasing your

employment opportunities, then a home study

course can be an effective replacement for the

first module or two of a formal course in

computer studies. Because it allows the student to

proceed at his or her own pace, it is of equal value

to the fast learner, as well as those who perhaps

need a little more time to come to grips with what

is, after all, a complex subject.

Finally, if you simply wish to be better

informed about a technology that is set to change

society in the course of your lifetime, then The
Home Computer Advanced Course offers a

comprehensive guide. In addition to the

fundamentals of computer study, we shall be
examining the impact of the new technology on
society at large. How will the advent of computers

in our everyday lives change the way people

relate to each other? What political changes will

result from an 'information explosion' made
possible by the low-cost microprocessor? It is

difficult to obtain reasonable answers to these

questions. Newspaper articles and television

programmes tend to trivialise them, many
computer publications seem to make them more
complicated than they need be. The Home
Computer Advanced Course sets out to"give you
access to the essential information to answer

them for yourself.

A Leap Forward

Announced to the world's press

at the beginning of 1984, but not

scheduled for delivery until well

into the spring, Sinclair's

Quantum Leap broke that

company's long association

with the Z80 microprocessor.

Fitted instead with a version of

Motorola's 32 bit 68000, it has

128 Kbytes of RAM (with a

further 512 Kbytes available),

and two QL Microdrives built-in.

Also abandoned is Sinclair's

idiosyncratic single-key-entry

BASIC

THE HOME computer ADVANCED COURSE 3

BEST OPTION

not to put flopfiy

iWadon to anytliiiiQ that

mitiiiii 8 MOflMt. Evon

iMMCHOM» tho toiophom

(Ihoy IPO motf to ring tho

lol),aiNlailoiiiostichi-fi

fpoohoff hat Yftty pimftffi'^

B8C Disk Drive

Before disk drives of this type

can be used with the BBC Model

B, the DOS (Disk Operating

System) ROM must be installed

in the machine itself.

'Intelligent' disk drives, on the

other hand, come equipped with

a DOS chip already on-board

Unta recently, floppy disk drives and so-

called stringy floppies were beyond the

budget of most home users, but advances in

disk technology have reduced the relative

cost of purchase, while the advent of the

Sinclair Microdrive has bridged the gap. In

yie^ of the power of such devices it is wo|th

looking at them in some detail.

Microcomputers are highly versatile tools for

manipulating data. However, data manipulation is

of little use without a means of storing information

when a particular set of data is not required for the

moment or when the computer is switched off.

This can be achieved in a number ofways. Anyone

aware ofthe real potential ofhome computing will

have acknowledged the limitations of the ROM
cartridge and ordinary cassette tape as methods of

permanent storage and will wish to investigate the

more sophisticated facilities of magnetic disks.

But before discussing the merits of disks we will

consider the alternative systems.

CARTRIDGE
This method of storage is of little use to the

programmer. Most cartridges contain a type of

PROM (Programmable Read Only Memory) that

provides only a means of inputting data to the

computer, usually in the form of games written in

complex and lengthy machine code, or extra

facilities such as extensions to basic. It is possible,

however, for cartridges to contain Electrically

Erasable PROMs (EEPROMs) that can be

written to and read from in a similar manner to

internal RAM but which are 'non-volatile' in that

the information is retained when they are removed

from the computer or the computer is switched off.

Similarly, cartridges are available for some

computers containing low-power CMOS
(Complementary Metal Oxide Semiconductor)

RAM chips that retain stored information via a

battery contained within the cartridge.

The main argument against EEPROM and

CMOS RAM storage is that they are expensive—
collecting a modest library of such cartridges

would cost at least as much as an appropriate

floppy disk drive.

CASSETTE TAPE
Originally provided because disk drives were very

expensive, cassette tapes are still by far the most

popular storage media, mainly because they are

cheap, freely available and portable audio cassette

players and tape cassettes are familiar to most

people. Usually any cassette player of reasonable

quaUty will suffice, although some manufacturers

— notably Commodore and Atari — only allow

you to use their own specially designed units.

Programs and data are stored in binary form as

sequential files via the cassette unit's normal

record facility, using different tones to represent Os

and Is. Normally, identified information such as

the file name (and possibly the internal memory
address from which the file is copied) is recorded

first, followed by the file itself, one bit at a time in

one-byte blocks that are further formatted into

256-byte segments. Many computers incorporate

an error-checking facility in each segment known

as a 'checksum', which can be compared with

calculations made within the computer during

verification to ensure that there have been no

recording errors.

Typical commands are SAVE to record files and

LOAD to play back and retrieve them. Some
systems provide additional cassette commands for

various special functions, including a facility to

read a tape and produce a catalogue of the file

names stored, and command formats for storing

and retrieving different types of data.

The low cost and easily understood command
format of tape cassette storage is offset by a

number of major inconveniences:

1. In the majority of cases the user is required to

operate the cassette unit controls manually for

storage and retrieval and this often demands

careful timing of button pressing and accurate

volume setting.

2. As information is stored sequentially,

retrieval of a specific file (except in the case of the

software-controlled Hobbit cassette recorder and

the Epson HX-20's built-in micro cassette)

involves either careful monitoring of an accurate

tape counter (if one is supplied!) to enable fast

4

i

i

4 THE HOME COMPUTER ADVANCED COURSE

forward/rewind to a point just before the desired

file, or a search by the cx)mputer for the file name
from the beginning of the tape. Sequential storage

also means that it is impossible to store data

efficiently that needs to be read in small sections

fi*om any point in a file without processing the

whole fife. The type ofstorage that can achieve this

is known as 'random access' and is necessary for

any effective database filing system such as

address listings or stock control entries.

3. The above, in conjunction with the small

number of bits that are stored/retrieved per

second using cassette storage— typically between
300 and 1,200 bits — means that a cassette tape

system is excruciatingly slow in operation. Quite

small programs of, say, five Kbytes could take

between one and three minutes to load or save.

This also means that it is inconvenient to make
back-up copies ofprograms, although this is highly

recommended.
4. Even when it has been recorded correctly in

the first instance, data can be corrupted after an

unpredictable number of replays, owing to wear
by the tape head.

5. Because the characteristics ofcassette players

can vary fi-om manufacturer to manufacturer, data

recorded on one model may not play back on
another. In addition, cassette tape is frequently

damaged by the crude tape transport systems of

many portable cassette units and breaks easily.

FLOPPY DISK
Compared with the cassette and cartridge storage

systems, disk storage has few major drawbacks.

Floppy disk drives are complex and delicate ia
their construction, and expensive — fi-om £150
upwards. Hoppy disks themselves are also costly

at between £2.50 and £4 each. But the user gains a

reliable, flexible and fast means of storing large

amounts of data, operating at 50 to 200 times the

speed of tape storage and retrieval.

All disk drives have a form of Disk Operating
System (DOS), which contains a routine that

formats the distribution of information on a disk

into tracks. There are usually between 35 and 80
tracks per side, each track divided into a varying

number of arcs called sectors. There are fewer
sectors on the shorter tracks near the middle ofthe
disk than on the long outer tracks. Each sector

consists of a block of data, usually 256 bytes.

The DOS 'remembers' where all the

information contained on the disk is stored. This is

usually achieved by the creation of a Block
AvailabilityMap (BAM), either stored on the disk

or held in memory, and a catalogue or directory.

TheBAM holds a record of the blocks currently in

use and those fi-ee for new storage. The catalogue

is a list of the file names, file types and track and
sector locations for each file. It is usually held on
the central track and can be loaded into computer
memory for reference. The DOS positions the

read/write head after reference to the BAM, and
catalogues and manages the storage and retrieval

of data.

The layout of the information in tracks and
sectors and the accurate positioning of the read/

write head enables the DOS to offer random
access filing. Data can be recorded and extracted

in chunks as small as a byte at a time, ifrequired. In

broad terms, differences between disk drives are

confined to the amount of data that can be stored
— typically between 100 and 400 Kbytes; the

speed at which data can be transferred; and the

means by which the user can control storage and
retrieval using DOS.

InASpin

Floppy diskettes are composed

of Mylar, or a similar stretch and

tear resistant plastic sheet,

coated with a metallic oxide

capable of holding a magnetic

charge. Enclosed inside a

protective square plastic

envelope, the disk is spun from

the hub. The recording surface

is accessible to the read/write

head through the slot shown at

the bottom of thejHustration

There are three main methods of implementing
a DOS. The most efficient is to include it inROM
form within the disk drive, under the control ofthe
drive's own microprocessor with associatedRAM.
This is known as an 'intelligent' disk drive; on
receipt ofan instruction from the central processor
it can process complex disk-handling routines

independently, allowing the processor to continue
running a program. All current Commodore disk

drives are intelligent in this manner and use no
internal computer memory in operation.

A more popular system is the type that loads the

DOS from disk into computerRAM on command
or automatically when die computer is switched
on. The third method includes a form of DOS in

the computer's own operating system. Spectrums
have this facility and Acorn Computers supply a
DOS for the BBC Micro caUed the Disk Filing

System that provides limited disk control. Disk-

handling routines include SAVE and LOAD
commands, a CAT (or directory) command, a
command to format a disk (or tape cartridge) and
various random access and sequential file creating,

handling and deleting commands.

1 PROTECTIVE ENVELOPE

2 PROTECT/PERMIT SLOT

3SECT0R

4 REGISTRATION H01£

5TRACK

6ACCESS SLOT

THE HOME COMPUTER ADVANCED COURSE 5

ATTACKED BYANTS

1 My Hero!

On the first pass through the

game, the 'victim' is

conveniently placed adjacent

to the gateway to the city. A

quick hop over the protective

wall, and the protagonist —
male or female — is greeted

with a cry of 'My hero — take

me away from all this!'

2 Formi-dable Ant-iclimax

Sometimes, the fact that ants

can't climb stairs is very

useful indeed — though why

our hero has climbed quite so

high, one can only speculate.

Climbing obstacles like this

allows the protagonist to lob

grenades at the attacking ants

without fear of retribution, but

remember that you are

playing against the clock

The significance of QuicksUva's Ant

Atttack, a three-dimensional maze game

designed for the ZX Spectrum with 48

Kbytes of RAM, lies not in its obvious

graphic quality, but in the subtle application

of the algorithm that generates the fabric of

its maze-like playing ground.

Software writers and publishers have never been

satisfied with the protection accorded them by the

copyright laws - hence the many and various

attempts to safeguard programs from being

copied. The author of this game, Sandy White, has

attempted to prevent his work from being

plagiarised, by using another method - applying

for letters patent on the software technique that

produces the screen graphics. Since the 1977

Patents Act specifically denies protection of this

sort to computer programs (noting that they

cannot be considered to be inventions), one is led

to the conclusion that the patent in question covers

a mathematical formula or algorithm.

This in itself is interesting because one would

not normally require a complex algorithm for a

game of this sort. What is it about Ant Attack that

requires a radically new approach to software

protection?

Ant Attack is also unusual in that it is not

descended directly from any arcade game. Most

popular games for home computers have their

roots in the conceptions of Atari, Taito and the

other manufacturers of dedicated games

machines. Ant Attack was conceived by a

graduate from the Edinburgh College of Art who

protests his ignorance of the arcade games

tradition. Sandy White had never previously

written games software and his efforts at market

research were restricted to inquiring of friends

what it was they liked about such games.

His remarkably forward-looking package was,

surprisingly, rejected by Sinclair Research, who

could not evaluate the videotape of Ant Attack

that White sent them because, they said, they had

no video cassette recorder!

The first novel feature ofAnt Attack that a user

will encounter is that it allows the player to choose

the sex of the chief protagonist. And the first

oversight follows hard on its heels. Whether you

opt to be a girl or a boy, the opening frame of the

game, which sets the scene in 30 or so words,

explains how you hear a call of distress 'irresistable

(sic) to a hero like you'. One can forgive the

spelling mistake, but the program's inability to

substitute 'heroine' for 'hero' is evidence of a lack

of attention to detail. Further evidence is to come.

The protagonist, chased by monster ants, can

defend himself (or, of course, herself) by throwing

grenades. Unfortunately, there is no consistency in

the effect these grenades have on the ants. While

this might result from a deliberate randomising

factor, it is more likely to be the result of

indiscriminate programming. Moving the

protagonist anti-clockwise through 90 degrees is

achieved by pressing the Spectrum's M key, and

the Symbol Shift key next to it turns the figure the

other way. The Spectrum's moulded rubber

membrane keys do not give proper control over

this transformation, which .invariably results in

frustration for the player.

It would appear that Ant Attack was developed

in advance of the launch of Sinclair's Interface 2,

which accepts two Atari-standard joysticks. The

game would benefit greatly from being updated to

utilise these peripherals, though it would need two

joysticks to handle the command structure.

In addition to revolving the token, moving it

forward, making it jump or throw grenades (you

can also choose between four distances of throw),

the player can choose one offour points ofview

—

6 THE HOME COMPUTER ADVANCED COURSE

ANTATTACK/SOFTWARE

each centred on the token.

It is this section of the program's graphics

generation that sets it apart from most othergames
occupying less than 48 Kbytes. The
transformation is virtually instantaneous,

completely overshadowing the normal run of 3D
graphics generators available for Spectrum. The
abiUty to change points of view is essential to the

game. Without it a considerable portion of the

playing ground would often be hidden from view.

The author is understandably unwilling to

reveal too much about the working methods that

he and his collaborator Angela Sutherland have

adopted. He does imply, however, that the playing

ground is not, as one would expect, held as a 128 X
128 X 6 array. Evidence of this is apparent if,

rather than entering the city, the player token is

made to turn round and head off into the desert.

After a short walk, he or she comes to another city,

and then another, and so on.

And so to the object ofthe game itself. It is set in

the City of Antescher (named by the game's

authors in tribute to the Dutch artist and designer

M. C. Escher, who drew ingenious delusive

structures that were impossible to actually build).

Standing outside its gates, you hear the cries of a

person in distress. Youjump over the low wall into

the city and go off in search of the victim, jumping
onto obstacles or turning to avoid them as you go.

The city appears in isometric projection and no
attempt is made to keep faith with perspective.

Only a small portion of the city is in view at any

one time, the frame scrolling across as the figure

moves left, right, up or down. The scrolling action

is excellent, as is the animation of the figures. Full

marks, too, for a good sense of humour in the

treatment of the animation.
It soon becomes apparent that the dty is

populated by huge ants whose bite, though not
immediately fatal, will cause death if you suffer

enough ofthem. Ifan ant becomes aware ofyou, it

will follow you. You can shake it off if you are
skilled enough, otherwise you have to resort to the
rather unreliable grenade. Don't throw it at the
wall immediately in front of you, because you
could blow yourself up.

On the first pass through the game the figure to

be rescued is in full view opposite the gate. On
successive passes it gets harder to find, and harder
to reach. It is invariably located above ground
level. The rescuer mayjump up only one level at a
time, so ifthe victim is not directly accessible from
the ground - by a stairway, for instance - the
rescuer is in real trouble. The onlyway is to wait till

the ants attack at a suitable spot, paralyse one, and
jump onto its back, using it as the first step up.

TTie rescuer can also get a leg up' in this way
from the victim, should it be necessary - the ants

won't attack the victim. The pass finishes when
rescuer and victim are both outside the city.

Despite its few failings, Ant Attack is worthy of
the accolades that greeted it when it appeared on
the market just before Christmas 1983. It is a fine

example to all would-be software authors.

Master Minds

Ant Attack was a first attempt at

commercial software writing for

its author, Sandy White. Sandy,

just 23 years old when the

package first appeared in late

1983, had graduated from

Edinburgh College of Art with a

degree in sculpture when he

conceived the notion of creating

a games program for home
microcomputers. A friend,

Angela Sutherland, collaborated

in the design of the structures

that make up the city of

Antescher

Riddle Of The Sands
This plan of the entire city of

Antescher was constructed

after painstakingly

photographing the monitor

screen hundreds of times,

making a complicated

photomontage of the results,

and then commissioning an

artist's impression of the

scene. Authors White and

Sutherland have given names

to the chief structures, but

also note that a copyright

notice — © SW — appears in

the top left-hand corner!

1. THEWATCHTOWER
2. PHOSPHOR HENGE
3. THEQUAI
4. TABLE ANTCHAIR

5. THE FORUM
6. THEANTICHAMBER
7. SKAZYANDOR
8. THE PYRAMID

9. THE ANCIENT
10. OXYMINE

11. THE MONUMENT
12. ANT EDEN

13. ARGON'S LEAP

14. ARTANT'S VILLA

15. THE ANTIMATTER CUBE
16. DROXTRAP
17. ADRIANT'SWALL
18. BONZAIWALK
19. THESQUARENA
20. THE CRYPT

cc
t—o
LU
o.
CO
oc

o
>-
u.o
>-
CO

oo

LU

o
—i

>
LU

THE HOME COMPUTER ADVANCED COURSE 7

THE ALGEBRA OF
DECISION MAKING
Computers carry out their given functions

by passing a series of high or low voltages

around electronic circuits. These voltages

can be interpreted in terms of the binary

digits (or bits) 1 and 0. Some functions, such

as addition, require specially designed

circuits to produce specific outputs for any

given input. These are termed iogic' circuits.

Boolean algebra, the branch of mathematics

concerned with true/false logic, is the theoretical

basis from which computer architecture is

physically realised. The concepts and rules of

Boolean algebra are few and easily understood.

In the first instalments of this course, we will

study in detail the theoretical and practical aspects

of logic circuit design, together with examples of

the basic circuits at work inside your own home
computer. The rules of Boolean algebra are based

on three simple logical operations: AND, OR and

NOT. These three logical operations conform

closely to the way we use these words in everyday

English. Look at this statement:

If it is fine AND it is a Saturday, David will go

for a walk.

If David is to go walking or not depends on two

things: whether it is fine, and whether it is a

Saturday. In coming to a decision about going for a

walk, David is only concerned with whether the

statements 'it is fine' and 'it is a Saturday' are true

or false. There are four possible combinations and

only one will result in David taking a walk. A table

which shows all the possible combinations of a

series of statements is called a 'truth table'. Here is

IT IS FINE IT IS A SATURDAY DAVID WILL GO FOR A WALK

FALSE FALSE FALSE

FALSE TRUE FALSE

TRUE FALSE FALSE

TRUE TRUE TRUE

A similar process can be undertaken to illustrate

the function ofthe logical operation OR. Consider

this statement:

IfJackOR Jill can go, John will go to the match.

Once again there are two conditions that will

determine whether or not John goes to the match:

whether Jack can go, orwhether Jill can go. In the

same way as theAND statement, we can construct

a truth table for theOR statement. Since there are

two conditions, each ofwhich may be true or false,

there are again four possible combinations. The

truth table for the statement will look like this:

JACK CAN GO JILL CAN GO JOHN WIU GO TO THE MATCH

FALSE FALSE FALSE

FALSE TRUE TRUE

TRUE FALSE TRUE

TRUE TRUE TRUE

The third logical operation (NOT) performs a

very simple function. Consider this statement:

If it is NOT dark then I will go out.

This time the only condition to consider is whether

it is dark. This may be true or false; hence there are

only two possible conditions for our truth table.

IT IS DARK 1 WILL GO OUT

FALSE TRUE

TRUE FALSE

LOGIC GATES
The simple electronic devices that make up

computer logic circuits are called 'logic gates'. The

three simplest logic gates mimic the function ofthe

logical operations AND, OR and NOT These

gates function by representing aTRUE condition

by the binary digit 1, and the FALSE condition by

the binary digit 0. So, for each logic gate we can

construct a truth table showing all the input

combinations together with the resulting output.

Each gate has a circuit symbol associated with it

and can be written as a Boolean expression.

The truth table and diagram for the AND gate

with inputs A and B and output C is:

A B C THE AND GATE

0 0 0 A

^mj C0 1 0

1 0 0
B

1 1 1

The function of theAND gate can be described in

words as: 'the output will be 1 if both inputs are 1,

and 0 otherwise'. The Boolean notation for the

output from an AND gate is A.B.

The truth table and diagram for the OR gate is:

A B C THE OR GATE

0 0 0

0 1 1 ^^T^—

^

1 0 1

1 1 1

oX
o

8 THE HOME COMPUTER ADVANCED COURSE

The OR gate can be described by the following

statement: The output will be 1 if either or both of

the inputs are V. The Boolean expression for the

output from an OR gate is A+B.
Unlike AND and OR, the NOT gate has only

one input and one output. The truth table is the

simplest of the three:

A B
. THE NOT GATE

0 1 A— NOT^^X) B

1 0

In words, theNOT gate is expressed as: 'the output

will be the opposite of the input'. The Boolean

expression for the output from a NOT gate is A.

COMBINING LOGIC GATES
Just as several logical statements can be linked

together, we can link together logic gates to make
combinational and sequential logic circuits. These

are in turn combined to produce the computer

architecture. Any logic circuit can be represented

by a truth table that describes what output can be

expected for any possible combination of inputs.

Look at this simple logic circuit:

In this circuit there are two inputs, A and B, and

one output, C. To help to construct the truth table

for the circuit the output from the first gate has

been labelled X. As there are two inputs to the

circuit this means that there are four possible

combinations of input.

A B X C

0 0 0 1

0 1 0 1

1 0 0 1

1 1 1 0

The output from theAND gate, X, is put through

the NOT gate to produce the final output, C.

Here is a more complicated circuit and its truth

table. Notice that, as there are only two inputs, the

number ofpossible input combinations is still four.

The second half of this truth table (columns P, Q
and C) is a rearrangement of part of an OR gate

truth table.

A B P Q C

0 0 1 0 1

0 1 1 0 1

1 0 0 0 0

1 1 0 1 1

The use of truth tables is not limited to two input

and one output circuits but can be extended to any

circuit. Here is an example of a three input, two

output circuit.

As there are three inputs to this circuit we must

consider eight possible combinations:

X Y z M N S T

0 0 0 0 1 1 1

0 0 1 0 1 1 1

0 1 0 0 0 1 0

0 1 1 0 0 1 1

1 0 0 0 1 1 1

1 0 1 0 1 1 1

1 1 0 1 0 0 0

1 1 1 1 0 0 1

EXERCISE 1

1) Construct a truth table for the following situation:

'James nnay drive a car if he has passed his driving

test OR he is accompanied by a qualified driver'.

2) Constructatruthtableforthissituation:'Aprogram

can be loaded into a computer if there is a cassette

player OR a disk drive available AND the program is

NOT written to run on a different computer'.

3) Construct a truth table for this logic circuit:

/ THE HOME COMPUTER ADVANCED COURSE 9

HARDWARE/COMMODORE 64

COMMODORE
At £200, the Commodore 64 contains a lot

of hardware — 64 Kbytes of memory,

sophisticated sound and graphics facilities.

It is a very suitable machine for the serious

home computer enthusiast, and with the

addition of suitable peripherals, could be

used for small busmess applications ,too.

The design makes use of 'bank switchmg' to

squeeze the memory mto the space

available.

The physical similarity between the Commodore

64 and the Vic-20 is deceptive. Although there is a

measure of software compatibility between the

two, in hardware terms the 64 represents a

considerable advance. Let's begin by looking at

the 64 Kbyte of RAM from which the computer

derives its name. This feature is a considerable

advantage in selling terms since it was, until the

advent of the 16-bit microprocessor, as much

RAM as was available on any business

microcomputer. However, there is a certain

amount of difficulty associated with equipping a

home computer with this much memory. Though

an eight-bit microprocessor such as the widely-

used 6502 can address a total of 64 Kbytes, this

must include all the ROM and the input/output

chips for controlling keyboard, screen and

peripherals in addition to the RAM.
The answer lies in 'bank switching', a technique

whereby sections ofmemory are switched into and

out of the addressable memory map as they are

needed. There is no theoretical limit to the total

amount of memory that a computer can

incorporate using this method, but because the

microprocessor can still only address 64 Kbytes at

Box Off Tricks
The SX-64 is a self-contained portable version of the

Commodore 64, which can be purchased in a variety of different

configurations. The most popular version features one disk drive

(the space above can be used for storing diskettes) and a five

inch colour monitor. The SX-64 will run disk or cartridge based

software from the standard Commodore 64 without

modification.

In many respects it is one of the best designed luggable

computers - a phrase coined to distinguish them from truly

portable machines such as the Epson HX-20 and Tandy Model

100 The keyboard features fully sculptured keys with the

graphics legends inscribed on the front, and it is detachable

from the main unit. There is a slot in the top of the casing to take

ROM cartridges; when not occupied the opening is covered by a

flap to keep out dust.

The casing itself is both rugged and compact, resembling the

portable test equipment used-by service engineers, particularly

in the way that the carrying handle doubles up as a stand. The

handle is ridged to prevent it from slipping on the desk, though

this makes it slightly uncomfortable to carry. Overall, the

physical design is the best to have come from Commodore to

date, and is marred only by the fact that the mains cable and

plug cannot be stored anywhere inside the casing

10 THE HOME COMPUTER ADVANCED COURSE

COMMODORE 64/HARDWARE

any one time, the more memory there is, the more

switching of banks there will need to be, and that

will subsequently reduce efficiency.

What this amounts to on the Commodore 64 is

that if you want to run a program in basic, the

ROMs containing the basic interpreter will need

to be switched in, and this will reduce the amount

of available RAM to 40 Kbytes (and system

variables and screen RAM will still need to come

out of this allocation).

Though bank switching has been added to quite

a fewhome computers by way of a modification, it

is achieved on the Commodore 64 by using a

special microprocessor. The 6510 is very similar to

the 6502 that has proved so popular in home

computer design. The instruction set is identical,

and it features an eight-bit data bus, 16-bit address

bus, and various control signals. However, it also

sports an eight-bit programmable input/output

port. This means that there are eight additional

pins on the chip, each ofwhich can be set to 1 or 0,

or can be used to read values placed onto them by

an external device. Normally such ports are

implemented by means of a special chip (called a

PIO, PIA or VIA depending on the

manufacturer), and a typical home computer will

include several of these to handle the keyboard

and peripheral ports.

The port appears as the lowest two memory

locations in the map ($0000 and $0001). The

former is for reading and writing the individual

bits, while the latter location indicates whether

each bit is set as an input or an output. Having this

port built into the microprocessor means that the

6510 would be ideal for incorporation into

numerous domestic devices — from dishwashers

to programmable toys. On the Commodore 64, it

is used to select between the banks ofmemory (see

^ panel). You could do this with basic POKE

I statements, but there is a distinct possibility of

S 'crashing' the system, forcing you to reset the

5 computer. Most memory switches are therefore

Business Mileage
A large proportion of the Commodore 64 's software base can be

said to have been inherited from its predecessors, the PET and

Vic-20. The BASIC interpreter is more or less identical on all

three machines, and there is much common ground in the disk

operating systems, too. Because the business software

developed for the PET range could only be used on

Commodore's machines, it is hardly surprising that the software

developers were so quick to take advantage of the potential new

market opened up by the 64.

For business application, there is a wide choice of word

processing packages, several of which have spelling checkers.

Two of the most popular examples are EasyWrite/EasySpell from

Commodore, and VizaWrite/VizaSpell. Two other popular

packages, but without the spelling option, are Paperclip 64 and

Wordcraft 40. The latter is different from most word processors,

in that the screen displays the text in the format in which it will

finally be printed, whilst most others display 'embedded

controls' — single character symbols to signify a carriage return,

or that a heading is to be centred on the page.

Spreadsheets are available starting from just a few pounds.

One package, however, is worth special mention. At over £100

CalcResult is more expensive than most spreadsheets for low-

cost micros, but it works in full colour, includes a facility for

displaying barcharts of the figures in any column on the

spreadsheet, and works three dimensionally. That is to say,

several pages of memory can be held in memory at once; and it

is possible to add together figures from all these sheets

.

Magpie, too, is a fairly outstanding piece of software —
falling into the category of applications generators. An

application is defined by drawing the layouts for screen records

and printed forms on the screen, and then specifying the

relationships between the fields within those documents:

VAT=T0TAL*157o, for example

^ Gr««t« prices
priest i»t^ ^ .1
enter fi»t«IS^
sav« pas* auttt. I

prices „ ^
*^

tn<i of PrttC«dl«»iP'«

s*t pas* «tito.

s« For» 2
pricelist: «t

ent«r
save pas* a«to.„
pric*9
Ind of Proce^iur*

' e*t price;
set pas* at*to.
Kr»cf« ^Forw 2

ro<* of f»ror««lMr«

.,,4.41*1.--

COIVIIVIODORE 64

PRICE

Approx £200

DIMENSIONS

404x216x75mm

CPU

6510

MEMORY

64K RAM. of which 39Kis

available for BASIC programs.

20Kof ROM including the

character generator

SCREEN

25 rows of 40 columns. In low

resolution, 16 colours are

available from the keyboard for

characters, border and

background. Maximum high

resolution is 320x200 pixels. Up

to eight sprites can be defined and

used

INTERFACES

Joysticks (2) plus light pen,

RS232 (adaptor needed), 8-bit

parallel, cassette, serial (for disk

and printer), composite monitor,

audio input and output, TV,

cartridges

LANGUAGES AVAILABLE

BASIC, FORTH, LOGO, 6502

Assembly language

KEYBOARD

I

Typewriter-style, with cursor keys

and four programmable function

keys

DOCUMENTATION

The computer comes with an

adequate instruction manual, but

to take full advantage of the

functions, you should purchase

the Programmer's Reference

Guide, or one of the many

independently published guides

to the Commodore 64

STRENGTHS

Large standard memory. Sprite

graphics. Sophisticated soCind

control. Quality keyboard. Good

range of peripherals. More

business software available than

for most home computers

WEAKNESSES

Requires manufacturer's cassette

unit BASIC weak on useful

commands (unless you purchase

a cartridge add-on). Limited

choice of graphics modes and

resolutions. Disk unit slow

THE HOME COMPUTER ADVANCED COURSE 11

HARDWARE/COMMODORE 64

Cartridge Port

If a ROM cartridge (up to 16

Kbytes) is plugged in here, it

will effectively override any

other memory that occupies the

same locations. If the first nine

bytes of the ROM contain a

specified sequence of values

then the program will

'automatically start' when

switched on. This is how games

cartridges work

Socket

A composite video signal is

provided to drive a colour

monitor (though not an RGB

monitor), and there is a

separate audio output that can

connect with a hi-fi system.

There is also an audio input line

that allows you to mix recorded

music with synthesised sounds

Cassette Port

All Commodore computers

require the manufacturer's

cassette unit. When it was first

marketed, the Commodore

system was faster and more

reliable than a domestic unit.

Now the opposite is true

TV Output

Unlike the Vic-20, the

Commodore 64 contains a built-

in RF modulator, so that the

output can be connected

directly to a TV

Memory Map

The 64K of available memory

space is divided up into six

zones, three of which are

usually configured as RAM. The

other three contain ROMs for

the BASIC, the operating

system, and the I/O chips, but

for each one there is a 'shadow'

area of RAM that can be

switched in under software

control. This is only practicable,

however, when using machine

code and the ROM isn't needed

32KRAM

8KRAM

8K BASIC ROM

4KRAM

4K I/O RAM
T

MiMiyMiiMiiliiliitiaili

8KKERNALR0M

Serial Bus

This is a special interface

designed by Commodore to

drive several devices (including

their disks and printers)

simultaneously. The protocol is

similar to thelEEE48 standard,

except that there is just one

(serial) data line instead of eight

parallel ones

User Port

This port has two functions.

First, it can implement a full

RS232 serial interface, though

an add-on is needed to convert

the 64 's voltages to those used

on most serial devices. It can

also double up as a parallel port

that can be used for

experimentation

Zonel

Permanently contains 32K of

RAM

Zone 2

Normally 8K RAM. If an 8KR0M
cartridge is inserted this will

override the RAM

Zones

Normally 8K ROM, containing

the BASIC interpreter. It will be

overridden if a 1QK cartridge is

inserted. Alternatively, 8Kof

RAM can be switched in to

replace the ROM

Zone 4

Permanently 4K of RAM

Zones

Normally contains all the I/O

chips and some RAM. Under

software control, however, the

ROM-based character generator

can be switched in here

Zones

When the machine is switched

on, this contains 8K of ROM,

including the Kernal - a minimal

operating system designed to

be used on all future

Commodore hardware. When

using machine code it can be

replaced with 8K of RAM

performed in machine code.

Three other chips betweenthem account for the

rest of the 64's features. There is a 6526 CIA

(Complex Interface Adaptor), which is a more

sophisticated version of the PIAs and VIAs

previously mentioned. In addition to the usual

programmable input/output lines, it includes

timers and shift registers to convert between serial

and parallel data. There is also a 24-hour clock

with a progranmiable alarm, of which the basic

interpreter appears to make no use at all.

The graphics and video display are handled by

another chip, the 6566, which is a further

development of the Video Interface Chip, from

which the Conmiodore Vic-20 derives its name.

This delivers different modes for both textual and

high resolution graphics displays, and the sprite

graphics have been well documented. Though it

can handle only eight sprites at once (compared

with 32 on the Memotech MTX512, for example),

it is possible to simulate rather more. Sprites are

defined as a block of bytes in memory, and their

location is indicated by POKEing the address into

the Vic-II chip's registers. It is relatively easy to

switch the pointer rapidly and repeatedly between

different sets of values to simulate more than eight

units.

The 6581 chip is referred to as the SID, or

Sound Interface Device, and contains functions a

great deal more advanced than some of the early

purpose-designed music synthesisers. As well as

full ADSR control over the volume envelope of

each sound, the functions include filtering,

different waveforms and ring modulation —
modifying one sound with another.

12 TEiE HOME COMPUTER ADVANCED COURSE

ACCESS TIME
This refers to the time taken to locate a particular

item from within a whole collection of data. The
term is most commonly used when referring to the

length of time needed to locate any particular

record within a file — especially in database

applications. For many business applications, the

efficiency of a program will be far more strongly

determined by the average access time of the disk

than by the clock speed of the CPU.
The access time is quite different from the 'data

transfer rate' — which is the speed at which bits will

be transmitted from disk to computer once the

item has been found. On the Sinclair Microdrive,

for example, the average access time of a piece of

data is 3.5 seconds. The minimum is zero, if the

data is opposite the read-head mechanism when
the request is made; and the maximum is seven

seconds, if it has to wait for a complete circulation

of the tape loop. This is very slow when compared
with a floppy or hard disk unit, where the average

might be nearer to half a second. However, the

data transfer rate ofthe Microdrive (16 Kbytes per

second) is very fast, and is as good as any disk.

ACCUMULATOR
Inside a microprocessor or CPU there are several

registers. These are individual bytes of memory
that perform all the arithmetic and logical

functions of the processor. Probably the most

active and important of these is the accumulator,

which is linked directly into the Arithmetic Logic

Unit (ALU). The chief function of the

accumulator is its ability to accumulate values:

that is to say the contents of a byte can be simply

added into, or subtracted from, tliis register. To the

BASIC programmer, the accumulator is both

invisible and inaccessible (although it will be used

by the basic interpreter thousands of times every

second). To the machine code programmer,

however, the majority of instructions in every

program written will involve some manipulation

of the accumulator.

ACOUSTIC COUPLER
The transmission characteristics of a telephone

line are such that it can only be used to transmit

frequencies in the range 300 Hz to 3400 Hz— the

range required to transmit normal speech

intelligibly. This 'bandwidth' also determines the

maximum rate at which binary data can be
transmitted. Some system is needed, therefore, to

ensure that the signal to be sent always falls within

this range. This is called 'modulation'.

One system of modulation represents a binary

zero as a tone in one frequency (let's say 1000 Hz),

and a binary one is represented by another tone in

a different frequency (e.g. 2000 Hz). The device

for converting between binary data signals and

these audio frequencies is called a 'modem'

(MOdulator/DEModulator). For best results the

modem should be wired directly into the

telephone line, but this can only be done for a

permanent installation. For portable application's

(such as salesmen transmitting the day's figures

back to central office, or journalists sending copy

to their editors) an acoustic coupler is necessary.

An acoustic coupler is simply a modem witih

two rubber cups (one for the mouthpiece and one

for the earpiece) into which a telephone handset is

pushed. Were you to remove the handset during a

transmission, you would be able to hear the data

being transmitted in the form of tones. However,

by interrupting the flow of data, you would create

errors in the received data.

ACRONYM
BASIC is an acronym, so is PET, and FIFO, RAM,
EPROM and SNAFU. An acronym is a word
formed by taking the initial letter from each word
in a description or title. Acronyms seem to be very
popular in the computer industry, both for

buzzwords and for proprietary names for

products. One suspects, however, that often the

final acronym has been thought up first, and then

the component words have been fitted to that.

Who would really want to call a programming
language Beginner's All-purpose Symbolic

Instruction Code, or a new computer the Locally

Integrated Software Architecture?

ADA
In the late 1970s, C.I.I. Honeywell Bull in France
designed and specified a programming language
primarily for use by the U.S. Defense Department.
It was intended to replace all the other

programming languages they were using at the

time, and was therefore also intended to vary as

little as possible between machines. The language
is very highly structured — it is described by some
as a kind of super pascal, but by others as

'unwieldy'. It is named in honour of Countess Ada
Lovelace, who was a close fiiend and companion
of Charles Babbage and is credited with being the

first programmer.

r

THE HOME COMPUTER ADVANCED COURSE 13

PROGRAMMING PROJECTS/SPECTRUM BASIC

THE SPEC
ZX BASIC
Basic has become the standard language of

microcomputers, but almost every machine

has its own variation — or dialect. In this

series of articles we will be looking at some

of these variations and their functions, as

well as explaining how they can be

^translated' from one dialect to another.

This first article looks at the most widely

used dialect — Sinclair basic.

We begin with variable names — always a source

of confusion between basic dialects. In Sinclair

BASIC, string variable names must have only one

letter, and there is no distinction between upper

and lower case letters. This means that the

variables a$ and A$ refer to the same memory

location. String array names follow the same rules

as simple variables, and pre-empt them, so that

once you've DIMensioned the string array H$, all

further mentions of H$ in the program will be

taken as referring to the array H$. This follows

from the fact that Sinclair basic regards all string

variables as array^type variables, some of them

formally DIMensioned, and others not.

Numeric variable names are less constrained

than those of string variables: they must begin with

a letter, and they must consist of letters or digits,

but they may be any length. They may include

spaces, and they may be a mixture of upper and

lower case letters, but although these factors are

helpful to the programmer, they are of no

significance to the machine, which will ignore

them. Some valid numeric variable names are:

qwert, ub40, advanced computer course

and the following are exactly equivalent:

QWERT, UB 40, Advanced Computer Course

Numeric array names must be single letters, but

this does not preclude numeric variables of the

same name: the array variable v(8) is quite distinct

from the simple numerical variable v. Single-letter

non-array numerical variables such as v must be

used as the counters of FOR . . . NEXT loops, so FOR

V=1 to 9 ... NEXT V is legal, but FOR loop=1 TO 9 is

illegal.

The main differences between the Sinclair

dialect and other basics lie in the treatment of

string quantities. Let us start with the effect of the

DIM statement. In Sinclair basic, when the

statement DIM a$(12) is executed, 12 bytes of

memory are set aside exclusively for the use of the

variable a$, and these bytes are initialised with

spaces. Each of these bytes can be referred to as a

subscripted variable, or the whole 12 bytes can be

OF

referred to collectively as a$. The length of this

variable will always be 12, and assignments to it

will be padded with spaces or truncated on the

right as necessary to preserve this length. Suppose

we write:

DIMa$(12):LETa$="123456789''

then a$ will actually contain the characters

123456789' followed by three spaces, making 12

characters in all. If we write instead:

DIM a$(12):LET a$="ABCDEFGHIJKLMN"

then a$ will actually contain only the 12 characters

ABCDEFGHUKL' - the string quantity ABCD
EFGHUKLMN' has been truncated on the right

to fit into the DIMensioned length of a$. Ifwe now

write:

LET a$ (2 TO 5)=" 1234"

then a$ will contain A1234FGHUKL'. This shows

the power of Sinclair string handling — all strings

are treated as single-dimension string arrays, the

arrays can be subscripted or not, and individual

elements ofan array can be accessed— singly or as

part of a sub-string — by subscripts. It also shows

another major divergence from other versions of

BASIC. Elsewhere DIM a$(12) creates 12 separate

string variables caUed a$(1), a$(2), etc., each of

which has the length of the expression assigned to

it. If nothing has been assigned to a particular

string variable, then its length is 0, and it contains

only the null string, "".

In other basics this way of handling strings

requires the various string functions, LEF$,

RIGHTS, MIDS, and sometimes INSTR, to enable

sub-string manipulation and string-slicing in the

way demonstrated. But this is not so in Sinclair

BASIC. The Sinclair equivalents of these string

functions are:

LEF$(A$,N) = A$(TON)

(meaning the N leftmost characters of AS);

RIGHTS(AS,N) = AS(LEN AS-N+1 TO

)

(meaning the N rightmost characters of AS); and

MIDS(AS,P,N) = AS(PT0P+N-1)

(meaning the N characters from position P

onwards in AS).

LETSHNSTRtAS/teststring")

(meaning find the starting position in AS of the

substring "teststring") can be replaced by:

LET YS=AS:LET ZS^^teststring^GOSUB 9900:LET

S-POSN
9900 LET ZL=LEN ZSIET SL=LEN YS-ZL+1:LET

14 THE HOME COMPUTER ADVANCED COURSE

POSN=0
9910 FOR K=1 TO SL

9920IFY$(KTOK+ZL-1)=Z$ THEN LET POSN=K:LET

K=SL

9930 NEXT K:RETURN

Notice in this subroutine that the string variable Y$

is treated as a subscripted array-type variable, even

though it has not been DIMensioned. Since in

Sinclair basic all string variables are array-type

variables, a string variable that is not DIMensioned

is implicitly a variable-length single-dimension

array of single characters; if it is DIMensioned, its

element length is fixed by the last number in the

D IM statement. Whereas in other basics D IM x$ (8 , 7)

creates a two-dimension array, in Sinclair basic it

creates a single-dimension array of eight elements,

each of them fixed in length at seven characters.

The strict attention paid to the length of

DIMensioned string variables by Sinclair basic

means that seemingly simple statements can have

differing effects, depending upon whether a DIM

statement has been executed or not. If a$ is a

simple string variable, then LET a$="" makes the

contents of a$ equal to the null string ("") and the

length of a$ equal to zero. If DIM a$(7) has been

executed previously, however, then LET a$=""

makes the contents of a$ equal to seven spaces,

and the length of a$ equal to seven (which it will

always be, following the DIM statement).

Furthermore, in such a case, even though LET a$="

"

has been executed, a test such as:

IF a$="" THEN PRINT "null-string"

will fail, and nothing will be printed — a$ is equal

to seven spaces, not the null-string.

If you need to test string array elements in this

way, then it's probably best to set aside a string

variable for the purpose, Dl Mension it to the length

of the longest array variable used in the program,

and test your array variables against it, like this:

100 DIM a$(12,34)

120 DIM b$(7,56)

140 DIM N$(56)

150 REM N$ will be used as the empty string

580 IF b$(3)=N$(TO 56) THEN PRINT "empty"

590 IF a$(11)=N$(TO 34) THEN PRINT "empty"

Here N$ is used only as the empty string, and if it

wasn't used in this way then the tests in lines 580-

590 would have to use literals, thus:

580 IF b$(3)=" " THEN PRINT "empty"

585 REM 56 spaces between the quotes

This is inconvenient and prone to error. An
alternative to using N$ in this way is to D I Mension

all array variables with one more element than

they need, and use that last element as an empty

string for tests of that array, so that line 590 might

be:

590 IF a$(11)=a$(12) THEN PRINT "empty"

SPECTRUM BASIC/PROGRAMMING PROJECTS

SuperBASIC

While Sinclair's SuperBASIC has a considerably enhanced range

of commands over ZX BASIC, the most significant feature is its

abandonment of the single-key reserved word entry system

common to the ZX80, ZX81 and Spectrum. This was originally

introduced as an economy measure for users (it was felt that

pressing a single key rather than typing a whole word would

prove attractive). Thejsystem dictated that a variety of different

'modes' would be necessary to allow the entry of single

characters to be differentiated from the entry of key words. This

system was attractive to Sinclair users who had never previously

encountered a keyboard, but for those who had used a typewriter

it proved to be a source of frustration

assuming that a$(12) is never used and so contains

only spaces.

Notice lastly that, in Sinclair basic, the first

element in any array has the subscript one,

whereas in some other basics the first element in

an array has subscript zero. In the next instalment

of the course, we will conclude this look at

Spectrum basic.

Procrustean Strings

The mythical Greek character

Procrustes was an innkeeper

who kept only one size of

bed, and stretched or

truncated his guests to fit it

50 DIM A$(12) DIM A$(12) in Spectrum

BASIC creates a fixed-length({{{{{/{//{/ A String variable, A$, which

initially contains 12 spaces

100 LET A$= "ABCDEFGHIJKLMNOP"

8^9-^10^11-^12-

B H K

If you try to assign a string

quantity longer than 12

characters to A$, it will be

truncated at the right to fitL J truncati

150 LET A$ = + "

9 1 + E F G H 1 J K L

If you assign a shorter string

quantity to A$, it is stored

left-justified in A$. The

remaining characters of AS

are unaffected

200 LET A$= " "

3-^4^5^ 6 7 8^ 9^10^11-^1 2

Setting A$ equal to" ",the

null-string, should reduce its

length to 0, and its contents

to
"

"; instead, its length

remains at 12 characters, and

it is filled with spaces

CO
UJzo

>
LU

THE HOME COMPUTER ADVANCED COURSE 15

INTRODUCING
FIRSTCONCEPTS
Machine code programming is the key to the

real power of the microprocessor, allowing

the programmer direct control over all the

machine's functions. This first part of a

comprehensive course, covering both 6502

and Z80 operation codes, will lead to a full

understanding of the fundamentals of

computer programming.

Machine code is a programming language, and it

looks like this:

INSTK: SBC $D9FA,X ;Outport flag value

or like this:

DE23 FD FA D9

or like this:

11011110 00100011 11111101 11111010 11011001

Sometimes it looks like this:

1240 LET ACC=ACC-FLAG (X)

and sometimes like this:

PERFORM FLAG-ADJUST THROUGH L00P1

It's all code of a sort, and since it's destined for a

computing machine it's called machine code. To

the machine it doesn't actually look like anything

at all, being simply a pattern of voltage levels or a

current of electricity.

What we usually mean when we say machine

code is Assembly language, and the first example

we gave in this article is an instruction in 6502

Assembly language. The point of giving all the

other examples was to demonstrate that there is no

specific machine language as such, only a number

of different ways of representing a sequence of

electrical events, and representing them in ways

that we find more or less easy to understand. So

the fc-st thing to learn about machine code (or

Assembly language - we won't worry about the

distinction for the moment), is that it'sjust another

programming language. However, the

programming must always come before the

language: whether you write your programs in

IBM Assembler, Atari basic, or Venusian

PsychoBabble, you have to solve the

programming problem in your mind before you

touch a keyboard. The programming language in

which you then express your solution will

obviously influence the form of the final program.

Indeed you may choose among various possible

languages precisely to make the coding of your

program easier, or shorter, or more readable. But

the solution must always come first: content must

precede form.

In that case, why call it machine code, and why

bother to use it at all? We give the language this

name because its instruction set corresponds

exactly with the set of 'primitive' or fundamental

operations that a particular microprocessor can

perform. We use the machine code when it is

important to direct the operation of the

microprocessor exactly, step-by-step, rather than

allowing a program language interpreter to control

it in a more general way.

The commonest reason for wanting to use it is

speed: if your program addresses the processor

more or less directly, then you avoid the relatively

lengthy business of program translation. In other

words, by cutting out the middleman you save

time. Program execution time, that is. The actual

coding, testing, debugging, modification and

maintenance of a machine code program is likely

to take at least twice as long as the same operations

would on a high-level language program. The

unfriendliness and intractability of machine code

stimulated the development of languages such as

COBOL and basic.

If the set of machine code instructions is the set

of processor operations, then what are these

operations, and what does the processor do? In

the simplest terms the Central Processing Unit

(CPU) of a computer is a switch that controls the

flow of current in a computer system between and

among the components of that system. Those

components are the memory, the Arithmetic

Logic Unit (ALU), and the Input/Output

devices. When you press a key on the keyboard,

you are inputting some information; in the

machine, however, you are simply generating a

pattern of voltages in the keyboard unit. The CPU
switches that pattern from the keyboard to part of

the memory, then switches a corresponding

pattern from elsewhere in memory to the screen so

that a character pattern appears on the screen. To

you this process may seem like operating a

typewriter, but in a typewriter there is a

mechanical connection between hitting a key and

printing a character, whereas in a computer that

linkage exists only because the CPU switches the

right voltage patterns from place to place.

Sometimes pressing a key doesn't cause a single

character to appear on the screen: the keypress

may destroy an asteroid, or save a program, or

delete a disk file, or print a letter. The operation

depends on how and where the CPU switches the

electric current.

In this simplistic view the CPU is at the heart of

the system, and all information (or electrical

current) must pass through it from one component

THE HOME COMPUTER ADVANCED COURSE

to another. In fact, the CPU and the system are

more complicated than that, but it's not a

misleading view. You can think of the CPU as a

master controller that sets lesser switches

throughout the system to control the flow of

electricity, and thus controls the flow of

information indirectly, rathejr than routing all

information physically through itself.

The effects of the CPU's switching operations

can be classified for our purposes as: arithmetic

operations, logical operations, memory
operations, and control operations. These
operations are all the results of switching

information through different paths in the system

and in the CPU, and to the CPU they all seem like

the same sort of thing.

Arithmetic operations are really the most
important feature of the machine. The CPU can

add two numbers together, or subtract one fi-om

the other. Subtraction is achieved by representing

one of the numbers as a negative number and
adding that negative number to the other number;
7+5=12 really means:

(plus 7) added to (plus 5) equals (plus 12).

7—5=2 really means:

(plus 7) added to (minus 5) equals (plus 2).

Multiplication and division are regarded as

repeated additions or subtractions, so the CPU
can be programmed to simulate these processes as

well. If the CPU can cope with the four rules of

arithmetic, then it can cope with any
mathematical process. It is well to remember,
however, that all its mathematical potential relies

on the ability simply to add two numbers.

Logical operations for our present purposes

can be described as the ability to compare two
numbers: not merely in terms of relative size, but

also in terms of the pattern of their digits. It's easy

to see that seven is bigger than five because we can
take five away from seven and still have a positive

result. The CPU has the ability to do that sort of

comparison, and it can also compare 189 with 102
and recognise that both numbers have the same
digit in the hundreds column. It may not seem a

very useful ability as yet, but its use will become
more evident later.

The CPU can perform essentially two memory
operations: it can copy information from a
memory location into its own internal memory,
and it can copy information from its internal

memory to another memory location. By doing

these two things one after another it can therefore

copy information from any part ofmemory to any
other part of memory. For the memory to be any
use, the CPU must be able to do both these things,

and these two operations are all it needs for

complete management of the memory.
Control operations are really decisions about

the sequence in which the CPU performs the

other operations we have described here. It's not

important at the moment to understand them any
better than that: if you accept that the CPU can

make decisions about its own operation, then that

is sufficient at this stage.

So the CPU can do arithmetic, it can compare
numbers, it can move information around in

memory, and it can decide its own sequence of

operations. This is a simple list of procedures, and
yet it completely descibes or specifies an ideal

computing machine! If the CPU can do those four

things, then by doing them in the right sequences

it can perform any computable task. The right

sequence, of course, is the computer program for

the particular task, and that's where we as

programmers come in. If the CPU had the ability

to generate its own operation sequences, then

there would be no need for us.

You may not be convinced that the four types

of operation we have described are a sufficient

description of a conceptual computer, so let's

think about a basic program in terms of the

general operations performed. What are these

fundamental operations? In any program you
have variables, which are simply the names of

places in memory where information is stored.

Most programs perform some sort of arithmetic

upon some of these variables. Having done the

arithmetic, a program will often compare two
pieces of information and as a result will execute

one set of instructions or another. Information

usually comes into a program fi-om the user at the

keyboard, and goes out to the user via the screen.

Except for the sentence about input and
output, this description contains no more than the

four elemental CPU operations put into different

words. And, if you accept for the moment that to

the CPU all Input/Output devices are just special

areas of memory, then the picture of the ideal

computer executing actual programs is xx)mplete.

Consequently, the execution of a program can be
described as a directed flow of information into,

around, and out of the computer; you supply
some information via the keyboard, that

information is manipulated by your program, and
some information appears on the screen.

If the idealised computer is just a CPU and
some memory, then before going any further we
should investigate computer memory: what is it,

and how does it work?
Imagine a simple electrical circuit consisting of

a battery, a switch, and a light bulb: if the switch is

closed the light goes on, and stays on until the

battery runs down or until the switch is opened.
Then the condition of the light bulb — ON or

OFF — is a piece of information, and the whole
circuit is a memory device recording that

information. Suppose now that the switch is

placed at the entrance to a factory, and the light is

placed in the Manager's office. When the first

employee arrives at the factory, he or she closes

the switch at the entrance, and the Manager in the

office can see that the light is on and therefore

knows that someone has turned up for work. The
Manager doesn't have to be in the office when the

light goes on; he or she can look at the light bulb

at any time to find out whether someone has

THE HOME COMPUTER ADVANCED COURSE 17

arrived. The information that someone has turned

up for work is stored in the circuit.

That's almost exactly how information is stored

in computer memory: all information reduces to

the presence or absence of electricity in a circuit.

Naturally there's more to it than that, so let's

improve the management information system.

Suppose we have four separate switch/bulb

circuits (the four switches in a row at the door, and

the four bulbs in a corresponding row in the

office), so that closing the leftmost switch

illuminates the leftmost bulb, and so on. Now
imagine that every employee is told to close the

switches in a unique way, so that when Catherine

arrives she closes the first and second switches

and opens the third and fourth; Richard closes the

fourth switch and opens all the others; Bobby

closes the first and third and opens the second and

fourth; and so on for all the employees. The lights

in the office now show the Manager which of the

employees has turned up for work.

Suppose that the OFF position of each switch is

labelled 0, and the ON position is labelled 1:

therefore Catherine has to set the switches 1100

(first two switches ON, third and fourth OFF),

Richard has to make the pattern 0001 (fourth

switch ON, the others OFF) and Bobby has to set

1010 (first and third ON, the other two OFF). If

the Manager reads each light bulb as 1 if it's ON,

and 0 if it's OFF, then both the employees and the

Manager will be speaking the same identification

language. '0001' means 'Richard ' to both people.

How many unique patterns of switches are

there? Each switch can be in one of two positions,

and there are four switches, so there are

2X2X2X2=16 different patterns. Let's consider

all the possibilities:

0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111,

1000, 1001, 1010, 1011, 1100, 1101, 1110, nil

Try as you like, you can't make any more patterns

than these, and there are 16 of them.

Notice how quickly we've moved from the

concrete picture of light bulbs in a room, to the

abstract matter of patterns of I's and O's. If we can

abstract a little further we can turn these patterns

into numbers.

Think about counting and writing down as you

count. You can count from nought to nine very

easily because each of those numbers has a unique

name and a symbol to represent it. But what do

you write down after nine? You have a name, ten,

for that number, but no separate symbol to

represent it. Therefore you must re-use some of

the other symbols: 10, 11, 12, and so on untU 99,

when you run out of possibilities again, so the next

number has three columns (100). This seems

trivial, but you may remember how difficult it was

when you learned it at school: all that squared

paper with Hundreds Tens and Units written at

the top of each sum? You now know that the

number 152 means "1 in the Hundreds, 5 in the

Tens, 2 in the Units", or 100+50+2=152.

Counting works like this because we have ten

digits (0,1,2,3,... ,9) which we arrange to

represent all possible numbers.

How does counting work, however, if there are

only two digits: 0 and 1? We can count to 1 easily,

but how can we represent the next number? We
have run out of unique digits, so we must re-use

what we have (just as we did when counting with

ten digits), and write the next number as 10. Now
we know that the next number is called 'two', so in

this system 10 represents the number two. The

next number as we count is three, and we must

write that as 11. Then what? We've run out of two-

digit combinations, so the next number, four,

must be represented as 100; five must be 101, six

is 110, and seven is 111. Here, we are counting in

decimal numbers (nought, one, two, etc), but

we're writing these down in binary numbers

(0,1,10,11,100,101,...).

In the same way as a decimal number such as

152 means: (1X100)+(5X10)+(2X1), the binary

number 101 means: (1X4)+(0X2)+(1X1).

Instead of having hundreds, tens, and units

columns for our numbers, we must use columns

marked: fours, twos, and units. In a decimal

number the value of a digit is multiplied by ten for

every column it moves to the left; in a binary

number the value of a digit is multiplied by two

for every column it moves to the left.

So that's the binary system: just a different way

of representing numbers. If you know Roman
numerals you don't find it hard to accept that

there are VII dwarfs in Snow White ; so why not

write 111 dwarfs? The actual number of dwarfs is

not changed by the way we represent it, but it is a

good idea to say the binary number as 'binary one

one one', and to write it as ' 111 b' so that you don't

confuse it with a decimal representation.

Now we can return to our original analogy of

how the factory workers switch patterns, and

decide on a method of making these a little easier

to use. The most sensible thing to do is to treat

these patterns as four-digit binary numbers. This

means that Catherine's signal is 1100 binary,

which is 12 decimal. Richard's signal is 0001

binary (1 decimal), and Bobby's signal is 1010

binary (10 decimal). When the Manager looks at

a pattern of lights in the office, he or she can read

it as a binary number, convert it to its decimal

equivalent, and look down the list of employees to

see who that number corresponds to. Thus we can

say that information is stored in the current of

electricity, and the switches make it meaningful.

Our analogy has given a simple picture of how

information is represented in a computer: to the

computer it's just patterns of voltages (i.e. lights

are ON or OFF), but we humans find it easier to

consider those patterns as binary numbers. It's all

a matter of representation. If you now think of

1010 as the code meaning 'Bobby', then you may

start to see how all of this relates to machine code

itself. In the next instalment of the Machine Code

course, we will look at how binary numbers are

used to represent information inside your home

computer.

THE HOME COMPUTER ADVANCED COURSE

PART ONE/MACfflNE CODE

Speeding Ahead

These three short programs,

one for ZX Spectrum, one for

the BBC Micro and the other for

the Commodore 64,

demonstrate the difference in

speed of operation between

BASIC and Machine Code by

displaying either the entire

character set (Commodore and

BBC), or colour blocks

(Spectrum), on the screen

900 f^"^' .c; BASIC

1700 VCO 30

1800 NEXT B,i-

30010 K=1919.P- ^^_^3^p.256*HS:LF

l97,ll^.f^'V,ll5.208,1.9'=>'2
inl20 CftTft 1^ ' o 96,96,

Snectrum

n REM* DO NOT UIST LINE 1

r^^MJi. APTER RUNNING PROti

150 LET PTR=23635.Lt

200 BORDER 2
^ ^3,33,0,0,

350 DATA 1,0,3,17,'^,=> »

237,176,201
400 FOR X=0 TO H
500 READ MC

600 POKE SA+X,MC

700 NEXT X

1000 LET 0FFSET=0

1100 FOR X=0 TO 1 STEP 0

1200 POKE SA+7, OFFSET

13O0 LET DUMMY=USR SA

;00 LET 0FFSET=0FFSET.13

16O0 NEXT X

r^r. rE°.u--*-^^^^^^^

IIZIZI PROO BEFofE RUN*

64

^00

6O0

5*00

iOOo

•00

WHITE ^^'^^

=0cc=
M4;

(5)

CC

IP
.'T

CC,

."IF

To

255
OP. CL

30o
LP*

HIT

J5oo
J600

TO

i700

30150 «=^^%"4pstrt to pstRT^zz

30160 FOR 8^ ?(BY)=MC
30170 READ MC-.

30299 RE^*****;vE BEFORE RUN^l
^^^^^

--9

30- S-!!!!!!!^

'eoo
J 900
60000
600i

STOP

'Pop

•LS;

LP:

To 255

I Hp

CODE

LP

'^Oioo

60i
J65

LS*,

'53;

iO

^'2^0,
60i5Q

"^0170

25

129
S50 250

J,

2

?30
25 i

SS5
CH.

CS=

SC, cs CL*0
LP*'232; Hp*HS

0.

08,
25i

*3;

'52

'208^
25<?

208,

'230,
252.

230,

WC

250,

•208,

i33

To

0200
0299

'^C>300

'^03oj

'^^Tup^
By
N

2Z
By.

253

22

A/C

JT*

THE HOME COMPUTER ADVANCED COURSE 19

GUIDING PRINCIPLES |

In 1970, at the age of 28,

Shiina TakayoshI abandoned

a promising career in the

military and formed the Sord

Corporation (1982 sales: $40

million). He immediately

formulated 11 guiding

principles to help him govern

his new computing business.

These included:

*The company's foremost

obligation is to humanity.

*The company must do its

best to determine what

products and services are

best for society, and provide

these at a reasonable cost.

*There must be no division

between labour and

management. All persons in

the company must respect

one another and co-operate

for the benefit of all

BILL GATES-SEHING
THE STANDARD
Microsoft has become, in one short

decade, the world's most influential

supplier of microcomputer software. It was

courted by the world's biggest supplier of

computers, IBM, and effectively helped

shape the specification of the IBM PC, the

world's lai^est-selling personal computer.

The Microsoft company, now a multi-million

dollar operation, is a classic story of enthusiasts

made good. Bill Gates, at 28 the chairman of the

board, was in 1972 only a talented amateur.

At Seattle High School, where the parent-

teacher association had the foresight to equip the

students with a timesharing terminal attached to

the popular DEC PDP-11 minicomputer. Bill

learned about the workings of computers. He

went to Harvard University and on his

graduation went into business back in Bellevue

with schoolfriend Paul Allen. The firm they set

up was called Traff-O-Data, and their work was

to monitor traffic flow for the Seattle public

authorities. It was a momentous period in the

development of the microcomputer: the first

microprocessors were making an appearance and

those with imagination and enthusiasm saw a

great future for devices such as Intel's 4004 and,

later, 8008 chip. Bill was by now thoroughly

famiUar with the DEC PDP-11 and one of his

first jobs was to track down bugs in this

computer. It occurred to him that it would be a

good idea to adapt its basic for use on the 8080.

He had no development system, and the first

occasion on which the code and the machine

were mated was when Gates took the tapes down

to Altair in Albuquerque, New Mexico.

Incredibly, it ran first time. Thus was bom mbasic,

which has ever since been the standard to beat.

Microsoft was becoming known as a software

house with expertise at fitting new computers

with operating systems - filling the empty box, as

it were - and IBM contacted Gates to ask for his

advice on how to specify and equip a single-user

personal computer. Initially, Gates suggested that

Gary Kildall of Digital Research, riding high on

the burgeoning success of CP/M, was the man

for the job. But eventually IBM came back to

Microsoft. Microsoft rewrote pascal, Fortran

and mbasic for the 16-bit implementation, and

also came up with theGW (for 'gee-whizz') basic

with its extended music and graphics capabilities.

At the same time. Gates realised that an untidy

but powerful multi-user OS by Bell Laboratories

could be usefully adapted for the more powerful

micros based on the new 16/32-bit

microprocessors, and transformed Unix into

Xenix. Both Tandy and Apple adopted Xenix in

their own 16/32 bit models in 1983. It even

transpires that Microsoft did much of the work

for Apple's newest creation. Mackintosh.

Microsoft has a firm footing in the hobby

market, too. In 1981 it set up ASCII-Microsoft

with a keen young Japanese, Kay Nishu, to sell

their OS and basic to far Eastern manufacturers

of the new generation of lap-held micros like the

NEC PC 8201 and Tandy Model 100. Out of the

Japanese manufacturers' desire for a common

standard, not only in languages, but in interfaces

to desirable home peripherals such as colour

plotters and printers, lightpens, joysticks,

trackballs, robot arms, FM tuners and so forth,

came the common MSX standard. Now, it seems,

we shall soon have a standard common disk

format from Microsoft that will enable data to be

transferred among the three principal operating

environments - MSX, MS-DOS, and Xenix.

With its emphasis on software that is easy to use,

illustrated in such phenomenal advances as

screen windows and the mouse, Microsoft would

appear to have a bright future ahead of it.

Industry Standard
BASIC - Beginners' All-purpose Symbolic Instruction Code -

was developed in 1965 at Dartmouth College, US, by J Kemeny

and T Kurtz, and thus predates the microprocessor by at least

seven years. While many dialects of this language have been

formulated, MBASIC, Microsoft's own version, has come to be

recognised as the industry standard.

Microsoft established its reputation with the success of

MBASIC, and has continued to thrive by producing a serious

challenger to Digital Research's CP/M in MS-DOS, an operating

system designed to be applicable to a wide range of

microcomputers.

Following the lead given by Xerox's Star terminal system, and

developed by Apple with Lisa, Microsoft has now diversified

slightly and produced a package that combines software with a

hardware device necessary to its operation - MS-WINDOWS

and the mouse. Microsoft's mouse, like that of its two

competitors, uses a trackball-like arrangement coupled with two

selectors to move the cursor around the screen

20 THE HOME COMPUTER ADVANCED COURSE

The Home Computer Advanced
Course will take you far beyond the

novice stage, widening your

knowledge and making you a more
sophisticated user

To help you keep your copies

immaculate, we will be making a very

special free binder offer in Issue 5 - be

sure not to miss it!

Overseas readers: this special offer applies

to readers in the U.K., Eire and Australia only

Binders may be subject to import duty

and/or local tax.

1

THE 1

COmPUTER
:ed course

mAKinG THE maSTQFYOUR miCRO

