
THE
HomE cam

CDURS
mASTERIHG YOUR HOmE COmPUTER

21 CAD *nd Gr-aphics
424 Th» Turing Kaohln©
426 Sound «nd Light
4SS debugging
438 COMMODORE PET
432 Buzzta»rds
434 CompAC-t Disc*
436 Basic Prbgr«Rvnir««
448 €r*c» Hopper

USA & Can $1.95

CONTENTS

Commodore PET 4032 The hardware of

this first personal computer has greatly

advanced since it was originally marketed

430

r8
oftware

Subversive Elements We suggest ways of

improving your de-bugging technique

Basic Programming

Finishing TouchesA facility for deleting

records is the final module to be added to our
address book program.

432

insights

Line Of Sight Graphics packages for the

home computer have profited ft'om advances
made in Computer Aided Design

Laser Show The next generation ofmass-
storage devices for home computers will use

laser technology

Passwords To Computing

Getting It Taped The Turing machine is a

theroretical computer that determines

whether a problem is computable

Newspeak Bit, byte, nybble and gulp are just

some of the computer terms that have
interesting origins

Pioneers in Computing

Grace Hopper The woman who first devised

the concept of a high level language

^ound And Liglit

Sound Ideas...Light Waves We conclude our
look at the BBC's sound commands and take

a first peek at the graphics on the Atari

models

421

434

•The QL (Quantum Leap) is the

latest in a long line of

outstanding technological

achievements from Sinclair

Research. Its CPU is as powerful

as some mainframe computers

•Machine code is itself a

quantum leap up from BASIC,

both in terms of speed of

operation and difficulty of

learning. We take an

introductory look at the subject

428

440

426

COVER PHOTOGRAPH: IAN McKINNELL

Editor R i chard Pawson; ConsultantEditorGareth Jefferson; ArtDlrectorOavid Whelan; ProductionEditorCatherineCardwell; StaffWriter Roger Ford; PIctureEditorClaudiaZeff; DesignerHazel Bennington; ArtAssistantLizDixon; Sub
Editors Robert Pickering, Keitfi Parish; Researcher Melanie Davis; Contributors Tim Heath, Henry Budgett, Brian Morris, Lisa Kelly, Steven Colwill, Richard King; Group Art Director Perry Neville; Managing Director Stephen
England: Published by Orbis Publishing Ltd: EditorialDirectorBrianlnnes; ProjectOevelopmentPeterBrookesmith; ExecutneEditorChris Cooper; ProductionCo-ordinatorlanPaton; Circulation Director David Breed; Marketing Director

Michael Joyce: DesignedandproducedbyBunchPartworfcsLtd;EditorialOffice85CharlotteStreet, London W1;©1984by0rbis^^
Ltd, Leicester

HOME COMPUTER COURSE - Price UK SOp IR £1.00 AUS $1.95 NZ $2.25 SA R1.95 SINGAPORE $4.50 USA and CANADA $1.95
How to obtain your copies of HOME COMPUTER COURSE - Copies are obtainable by placing a regular order at your newsagent.
Back Nuhibers UK and Bre - Back numbers are obtainable from your newsagent or from HOME COMPUTER COURSE. Back numbers, Orbis Publishing Limited, 20/22 Bedfordbury, LONDON WC2N 4BT at cover price. AUSTRALIA: Back
numbers are obtainable from HOME COMPUTER COURSE. Back numbers, Gordon & Gotch (Aus) Ltd, 114 William Street, PO Box 767G Melbourne, Vic 3001. SOUTH AFRICA, NEWZEALAND, EUROPE & MALTA: Back numbers are available at
cover price from your newsagent. In case of difficulty write to the address in your country given for binders. South African readers should add sales tax.

How to obtain binders for HOME COMPUTER COURSE - UK and Eire: Please send £3,95 per binder if you do not wish to take advantage of our special offer detailed in Issues 4, 5 and 6. EUROPE: Write with remittance of £5.00 per binder (incl.

p&p) payable to Orbis Publishing Limited, 20/22 Bedfordbury, LONDON WC2N 4BT. MALTA: Binders are obtainable through your local newsagent price £3.95. In case of difficulty write to HOME COMPUTER COURSE BINDERS, Miller (Malta)
Ltd, M. A. Vassalli Street, Valletta, Malta. AUSTRALIA: For details of how to obtain your binders see inserts in early issues or write to HOME COMPUTER COURSE BINDERS, First Post Pty Ltd, 23 Chandos Street, St. Leonards, NSW 2065. The
binders supplied are those illustrated in the magazine. NEW ZEALAND: Binders are available through your local newsagent or from HOME COMPUTER COURSE BINDERS, Gordon & Gotch (NZ) Ltd, PO Box 1595, Wellington. SOUTH AFRICA:
Bmders are available through any branch of Central Newsagency In case of difficulty write to HOME COMPUTER (jOURSE BINDERS, Intermag, PO Box 57394, Springfield 2137.
Note - Binders and back numbers are obtainable subject to availability of stocks. Whilst every attempt is made to keep the price of the issues and binders constant, the publishers reserve the right to increase the stated prices at any time when
circumstances dictate. Binders depicted in this publication are those produced for the UK market only and may not necessarily be identical to binders produced for sale outside the UK. Binders and issues may be subject to import duty and/or
local taxes, which are not included in the above prices unless stated.

Line CM Sight
Computer Aj^^ Design involves complex caicuiation and high-

quality graphical output. Some of the same principles are employed
in packages for home computers

The idea of applying computers to the process of

industrial design was first suggested in the early

sixties (at the Massachusetts Institute of

Technology). However, it was not until a decade

later that computer technology enabled the

designer to see and interact with a graphic

representation ofhis work, presented on amonitor

screen and accessible via a digitiser or light pen,

exactly as if he were at a drawing board. These

essential peripherals — the digitiser, light pen and

plotter — are the basic tools of the Computer
Aided Designer's art. With them it is possible to

create images in just the same way as an animator

does (see page 181), by 'drawing' on a digitising

tablet. The designer can modify that image,

perhaps using a light pen, incorporating pre-

drawn components and sub-assemblies, and then

produce a copy of the finished drawing on a

plotter. The computer becomes a drafting system

similar in principle to a word processor, but

working with images instead of text.

We have seen that the quality of the image

produced on a computer's monitor depends on

two things: the resolving ability of the monitor

(that is, the size ofan individual picture element or

pixel), and the power and memory size of the

computer driving that monitor. When we looked

at computer generated images, we saw much the

same requirement — a monitor that could resolve

to something like 1,000 X 1,200 pixels, and a

computer capable of processing these 1.2 million

picture elements in less than l/24th of a second.

It is useful to continue the analogy between the

Computer Aided Design package and the word
processor. Instead of moving paragraphs,

sentences or individual words around a piece of

text— amending, inserting or deleting these at will

— the CAD program can be used to move
elements of a drawing around the page. The effect

may be different, but the principle is exactly the

same.

The problem for the program is: how to store

this image in such a way as to allow it to be altered

and manipulated. If we were to make a physical

model of an object, we would use one oftwo basic

methods — additive or subtractive. The additive

method is rather like modelling in clay: building

up the object piece by piece until we arrive at the

final shape. The subtractive method is like that

used by tiie sculptor, who takes away material to

achieve the same result. The computer's analogy

for a solid block of material is a three-dimensional

Apple Blossom

No matter how sophisticated

the software, the most

important component of a

Computer Aided Design

package is the designer using it.

Versawriter, the results of

which are shown here, runs on

an Apple II and requires two disk

drives and a digitiser. The

flower took an experienced user

some considerable time to enter

into the machine

THE HOME COMPUTER COURSE 421

OU i t -^ -t

array. Consequently, the size and performance of

the computer involved becomes important. If the

array is large enough to enable one whole byte to

be allocated to the definition of each pixel or

element of the image, then the amount of

information that we can retain about the single

element is quite large (256 separate pieces when
using an eight-bit processor, a great deal more for

16- or 32-bit devices). But the problems of

creating this much storage space are practically

insoluble, and so we are forced into a compromise

Hot Dog

lo Research's Pluto system

brings high resolution image

generation to a wide range of

small microcomputers with the

addition of a fast processor and

extra memory. The basic

system costs only £500 and

gives eight fixed colours and a

resolving power of 670 x 576

pixels

— but one mat is generally quite acceptable.

Instead of allocating one whole byte to each

element, it is sufficient to allocate a single bit, if all

we want to do is indicate the presence or absence

of an element at this position on the model.

Computer Aided Design software shares many
attributes with Computer Generated Image

packages: curve smoothing, hidden element

removal, shading, block filling and re-colouring,

for example. It only requires the repeated solution

of a simple equation for a series ofvalues to form a

curve. If we specify the starting and finishing

points for a given line, and the maximum distance

Professional Touch

Not all graphics and CAD
software is expensive.

Psion's VU-3D for the 48

Kbyte Sinclair Spectrum

offers most of the facilities

found in professional

packages (though, of course,

to a much less refined

degree), and costs less than

£10

away from that straight line that the curve will

reach, then we have provided one solution to the

equation. We can work backwards from that

solution to deduce the equation itself, and then

proceed to solve it for the rest of the series of

values, thus forming the curve.

This ability to compose a drawing from

standard component parts is the real strength of

CAD systems. No longer is it necessary to re-draw

common individual components. When they have

been defined once, that definition can be recalled

as often as required and incorporated into new
drawings. One particularly good example of this is

422 THE HOME COMPUTER COURSE

the use ofcomputers to assist with the designing of

future generations of computers.

Printed circuit board design, for example, is

quite complex, involving optimising techniques in

order to arrange components and their

interconnection paths in the most economical way
possible (bearing in mind that connection paths

can never cross). The designer is often forced to

fall back on trial and error — and it is here that

CAD packages are particularly useful. All the

individual components are stored as pre-defined

images, and are called up as and when required. It

is a simple matter to try out a particular design on
the visual display unit to see if it meets all the

criteria before committing it to paper as part of a

working drawing. By this method it is possible to

assemble a design, and even test out the efficiency

of a variety of different solutions, in the time it

would otherwise take to complete a single draft.

Integrated circuits are designed in almost

exactly the same way, but due to the density of

components and connecting pathways, a further

software feature is necessary: the ability to

magnify a part of the drawing, work on it at the

enlarged scale and then place it in position again

within the overall design. This effect is now an

important part of the CAD repertoire, and has

added considerably to the efficiency ofthe system.

By its use, the specification of a complete object

can be held in just one drawing, and the scale can

be adjusted to meet the viewer's requirements.

And it's not only the scale that can be varied in

this way. If we take the case of a more complex
object — a car, for example — we are presented

with a variety of sub-systems that go together to

make up the whole: the electrical system, the

hydraulic system, the exhaust, the suspension, and

so on. WhUe the aesthetic designer will be

concerned with the overall package, individual

engineers are more likely to be interested in just

one sub-system. It is a simple matter to keep each

sub-system in a different colour, and then extract

the objects of just that one colour from the whole

drawing. That is not to say that the drawing must

always be a coloured mixture— the coding can be

suppressed at will when not required.

It is the ability to retain the complete

specification of an object (not just its form and

appearance, but also information on the material

ofwhich it is constructed, its weight, cost, etc.) that

is the real breakthrough. Retrieving information

about the shape and size of the object is only one
function of the system, which can be regarded as a

visually orientated database. By asking different

questions of that database it is possible to: place

orders to suppliers; schedule sub-assembly and
component manufacture; integrate production

lines to ensure that components arrive exactiy

where and when they are required; analyse costs;

monitor manufacturing efficiency: and much
more as well. It is tempting to speculate that the

next step will be a regular system of direct

computer control of manufacture, and with the

burgeoning use of robots in the industrial process,

that next step is not such a large one.

Most ofthe applications we have discussed here

require mainframe computers or else very

powerful minicomputers, but that is not to say that

even small microcomputers cannot play a useful

part in the design process. There is a wide variety

of CAD software available for machines running

under CP/M, for example, and most
manufacturers offer at least one package, even for

computers as relatively unsophisticated as the

Sinclair ZX81. As we noted, the size and speed of

the computer dictates the quality of the stored

image, but the home user's requirements are

unlikely to be as stringent as those of the

professional designer, so it is quite feasible to

achieve exciting results for a modest outlay.

Just Imagine...

The background to this shot

from the Lucasfilms production

'Road To Point Reyes' was

largely composed by fractals, a

new and ingenious CAD
technique. Fractals are

phenomena that increase in

complexity the more closely

they are viewed. The hills and

mountains in the background

started life as simple polygons,

described within the memory of

a computer. Each polygon was

then made successively more

complex by the addition of

its own shape to each

of its sides, and the process

repeated with a degree of

randomisation. The

development in shape of the

snowflake, shown below, from

a simple triangle, illustrates this

principle

Wired Up

The first stage in creating an

image or design in three

dimensions is known as 'wire

framing'. The image is defined

as a series of point co-

ordinates, appropriately joined

by straight lines. These lines

can be manipulated using the

curve smoothing algorithm,

hidden lines removed, and then

the planes filled in with colour

and shaded as necessary to

increase the illusion of depth

THE HOME COMPUTER COURSE 423

Getting It Taped
The Turing machine is a purely theoretical device, used for deciding

whether a problem is computable or not

So far in The Home Computer Course, we have

tended to emphasise practical subjects, and

things to do on your home computer. In this

article, however, we're going to take a look at the

theoretical side of computers: the field that is

called 'computer science'. This is to computing

what pure mathematics is to eiTgineering — a

highly theoretical subject, but one from which

the practical ideas ultimately derive.

The Turing machine, for example, is a purely

theoretical idea, developed by Alan Turing (see

page 200^ to assist in the study of algorithms and

computability. It is really the minimal possible

computer,, so that if it is possible to prove that a

particular problem could not be solved using a

Turing machine, then that problem could be said

to be 'non-computable'. Turing decided that

such a minimal computer would need three

facilities: an external storage for recording and

storing input and output information; a means
for reading from and writing to that storage; and

a control unit to determine the actions to be

undertaken.

A Turing machine is therefore usually defined

as having a tape (if it helps, think of it as a

magnetic tape), which is infinite in length (that is

to say: however much tape is needed to solve a

problem, there will always be enough! The tape

is divided up into squares, which will either be

blank or contain a symbol. A tape

head mechanism that can read or write the

symbols in the squares moves along the tape,

receiving its instructions from a control unit that

tells it what symbols to write and the direction in

which to move next.

The control unit contains an execution

program, and in this respect a Turing machine

can be considered to have been 'built'

specifically to perform one application, since

there is no provision in the specification for

loading or altering a program. We use the term

'built' advisedly, since the only Turing machines

that have ever been physically constructed have

been purely for educational purposes. However,
it is a relatively simple exercise to write a basic

program that will simulate the operation of a

Turing machine on a home computer.

The control program in a Turing machine is

made up of a collection of 'quintuples', or

statements that contain five elements. Which
quintuple is executed at any stage depends on
two factors: the symbol in the square currently

underneath the tape head, and the 'state' or

424 THE HOME COMPUTER COURSE

'condition' of the machine. This state is a purely

arbitrary quality: we can specify that the

machine starts off in state Sa, and when it

reaches the special state H then it halts, the

computation being finished. In between, the

state will change many times according to

instructions from the quintuples. The state

merely reflects what has happened in the

computation so far, and serves to select which

quintuple is executed next (again, if it helps,

think of it as a flag variable in basic

programming).
The five elements of each quintuple are:

1) The current state of the machine;

2) The symbol in the square of tape

underneath the head;

3) The symbol to be written in that square

(this is the same as 2 ifno change to the data is

required);

4) The state that the machine should now go

into; and

5) The direction in which the tape head

should move — left or right.

The quintuple (Sa,5,3,Sb,R), for example, will

be executed whenever the machine is in state Sa
and the tape head reads a 5. The 5 will then be

replaced by a 3, the machine changed from state

Sa to Sb, and the tape head moved one square to

the right.

Designing a theoretical Turing machine to

perform a particular task involves specifying the

format in which your input data will be presented

to the machine on tape, the format of the output

data on tape when the computation is finished

(i.e. the machine is in state H), and the set of

quintuples needed to execute the algorithm.

In our panel, we have designed a Turing

machine to perform the AN D function. We will set

up the two input bits (each a 1 or a 0) in adjacent

squares, followed by a question mark symbol,

which is to be replaced by the answer (again a 1

or a 0, depending on the two inputs). For

decorum, we have added an asterisk symbol at

either end of the data area, and will start the

machine going in state Sa on the left-most

asterisk, finishing on the right-hand one.

A total of ten quintuples are needed to specify

this machine, though as you can see from the

worked example (1 AND 1 =
1), only five are used

for any run. If you try the same machine out for,

say, 0 AND 1 ,
you will find that a different set of

quintuples will be selected from the ten.

PasswordsTo Computing

Turing Machine
This example shows the construction of a Turing

machine to perform the AND function. The two

input bits are set up in adjacent squares,

followed by a question mark, which will be

replaced by the result. Two asterisks are placed

at the ends of the data area to act as delimiters.

The ten quintuples below specify the operation of

the machine, though for any worked example (in

this case 1 AND 1), only five of the ten will be

used

c
vv

c
Oa pK

c nu C
Ob p

c
Oa 1

1

1

1

C
Oc p

s. 0 0 R

1 1 R

So 0 0 So R

So 1 1 R

So 9 0 R

9
1 R

s,

s •3f •3f s R =

The macf

positione

effect of t

to the rig

vyxvvv

line starts

d over the

hisquintL

ht

; off in sta

! leftmost

jpleistor

yvyvvv

te Sa with

asterisk. 1

nove the t

the head

rheonly

ape head

s. 1 1 Sc R
X̂

If the next square contains a 1, then this

quintuple will be selected, and the machine goes

into state Sc and is instructed to move right. If a

0 had been read, the outcome would be Sg

So 1 1 R

With the

square re

the mach

machine i

suits in Sj

ine would

<xyyyy

n state Sq,

:. For all 0

go into S

yyyyyx

a 1 in the

ther event

D

xyyyyy

second

ualities,

9
1

Wyyx>
R

Reading

machine,

oraOisv

way, the r

'xyxxvy

a questior

SfOrSo,

vritten in

nachine i*

yyyyy^

1 mark, it i

that deter

ts place a

3 put into

s the stat(

mines wh

s the resu

state Sp

fyx^yxi

3 of the

ether a 1

It. Either

* H R
^ y yyyyy y yyyyyy yyyyyy y x yyyyx x y

The machine now enters the halt state (H) over

the second asterisk. You can test out the
'

operation on paper for 1 AND 0, 0 AND 1, and

OANDO

T 1

IHBF

9
•

Sc

1

nr •A*

/

J 1

nr

Sp

*
1 1

9r ^ 1

H
^

i*
1 1 1

^ 1

THE HOME COMPUTER COURSE 425

Sound Ideas
Continuing our look at the BBC
l\/licro's sophisticated

ENVELOPE command

In the previous instalment ofthe SoundAnd Light

course we introduced the BBC Micro's ENVELOPE
command. This is one of the most powerful

commands available to the basic programmer
,when used with the SOUND command, discussed

on page 358. We now continue our explanation of
ENVELOPE by looking at 'volume envelope'.

In the following line of programming
parameters, N to NS3 are concerned with the pitch

envelope, and these were dealt with on page 408.

ENVELOPE N,T,PS1,PS2,PS3,NS1,NS2.NS3,AR,DR.

SR, RR,FAL.FDL

The remaining parameters are all concerned with

the volume envelope, between them setting peak
volumes and rate of change of volume over the

duration of the note set by the associated SOUND
command.

AR & DR (-127 to 127) FAL & FDL (0 to 126)

Light Waves
i's graphics set a trend that

other manufacturers have
followed

The Atari 400 and 800 home computers are well

known for their plug-in cartridge systems, but the

machines themselves also have fairly sophisticated

graphics facilities available in basic. These
facilities, common to both machines, support nine

levels of screen display. — three text modes
(offering different character sizes) and six graphics

modes. The maximum resolution obtainable is

320 X 192 dots.

There are 16 colours to choose from on the

Atari computers, but the maximum number that

can be displayed at any one time is five. The
standard ASCII upper and lower character sets

are available, as well as 37 special Atari graphics

characters. ITiese characters may be used in PRINT
statements to build up low resolution displays and
tables. The Ataris also allow cursor movement to

be controlled from a basic program. This is done

AR sets the Attack Rate of the note. Although the

software allows a negative value, in practical terms
the range is 1 to 127. This relates to the number of
volume changes per time step and continues to rise

until the Final Attack Level (FAL) of volimie is

reached, which indicates the beginning of the

decay phase. Decay Rate is controlled in a similar

manner by DR, usually a negative value, causing

volume to fall until it reaches the Final Decay
Level (FDL). Although software allows a range of0
to 126 for final volume levels, current hardware
only allows 0 to 16, so a FAL value of 50 would be
automatically scaled down and rounded off to a
volume of 6.

SR & RR (-127 to 0)

The Sustain Rate (SR) and Release Rate (RR) also

refer to volume changes per time step although
both must take negative values. Sustain continues

until the duration set by the SOUND command is

complete. This means that if the Attack time and
Decay time together are greater than or equal to

the set Duration time, there will be no Sustain

using cursor control characters within PRINT

statements to position the text that follows on the

screen. The cursor control characters allow up/
down or backwards/forwards movement of the

cursor.

One of the most attractive features ofthe Ataris

is their ability to use sprite-style graphics, known
as 'Player-Missile' (PM) graphics, which allow the

user to write fast-moving arcade games in basic.

There are, however, no special basic commands to

usePM graphics, and all the necessary work has to

be done by manipulating the memory locations in

RAM, using PEEK and POKE. Player-Missile

graphics will be discussed more fully in a later part

of the course.

Display Modes
Modes 0, 1 and 2 are for text display. When the

machine is switched on, the display is set tomode 0

and the screen is formatted into 24 rows, each
containing 40 character spaces. In this mode the

display characters are based on the standard eight

by eight ASCII format. Characters PRINTed in

mode 1 are twice the width of mode 0 characters,

but are still the same height; whilst mode 2

characters are twice the height and width of those

in mode 0.

With the exception of mode 0, all graphics

modes have a spUt screen, the bottom few lines

being reserved for miscellaneous data such as

error messages. To PRINT to the main body of the

screen in modes 1 and 2, a device number must be
specified. PRINT#6 allows text to be PRINTed to the

426 THE HOME COMPUTER COURSE

J

phase, even if it has been programmed in. Release

beginswhen Duration is complete. Volume falls to

zero at the set rate unless a new note is started on

the same oscillator, which means that Release is

cut off unless 'H' has been set to '1
' by means of a

new SOUND & command.

Volume Envelope

VOLUME

o

With reference to the above diagram, the values

required to give the piano-like envelope would be

as follows:

graphics part of the screen. Modes 3 to 8 are

graphics modes and allow points and lines to be

plotted on the screen with varying degrees of

resolution and a choice of colours. This table

shows the complete range of options available to

the user:

2SECS
DURATION

250

H

TIME IN

1/100 SECOND

T=6 AR=60 SR=0 FAL=120
DR—5 RR=-5 FDL=40

SOUND duration=40 (two seconds)

Resulting in:

ENVELOPE 1,6.0,0,0,0,0,0,60-5,0,-5,120,40
»

The following program employs all the sound

associated BBC basic commands to play a well

known sequence of notes with the piano volume

envelope, and a short triangular repeated pitch

envelope on the final chord.

10REM**COSMIC**

20 ENVELOPE 1,6,0,0,0,0,0,0,60,-5,0,-5,120,40

30 ENVELOPE 2,6,1,-1,1,1,2,1,60,-5,0,-5,120,40

40 FOR h1T04:READ N

50 SOUND 1,1,N,20:REM**PLAY A B G G**

60SOUND&1001,0,0,5:NEXTI

70 SOUND &201,2,77,40:REM**FINAL**

80 SOUND &202,2,89,40:REM**D MAJOR"
90 SOUND &203,2,109,40:REM**CHORD**

100 DATA 137,145,129,85:REM**A B G G

MODE TYPE ROWS COLS COLOURS

0 text 24 40 2

1 text 20 20 5

2 text 10 20 5

3 graphics 20 40 4

4 graphics 40 80 2

5 graphics 40 80 4

6 graphics 80 160 2

7 graphics 80 160 4

8 graphics 160 320 1

The choice of mode will depend on how much
memory there is available for screen display. Mode
5, for example, requires almost twice as much
memory to support four colours as mode 4 needs

to support two.

Basic Commands
There are a number ofcommands in Atari basic to

help with graphics. These commands also work in

modified form in the three text modes.

SETCOLORa,b,c

There are five colour registers to control the use of

colour on the screen, but not all ofthem are used in

every mode. SETCOLOR is used to select the colours

used by these five registers. In this command a is

the colour register number, 0-4; b is the colour

number to be used, 0-15; and c enables each

colour to be displayed in one of eight levels of

brightness, by choosing an even number between

0 and 14.

COLOR n

This command works in two ways, depending on
whether a text or a graphics mode has been

selected. In modes 0, 1, and 2, n is a number in the

range 0 to 255. In its binary form this number is

made up of eight bits: the first six bits relate to the

ASCII code of the character being PLOTted, and

the other two bits are reserved for the colour

information about the character.

In the graphics modes, n takes on a value

between 0 and 3, and is used to select a particular

colour control register when PLOTting a point.

PLOT x.y

The origin of the Atari screen is placed in the top

left-hand comer ofthe screen. PLOT illuminates the

graphics point with co-ordinates (x,y). Similarly,

the POSITION command:

POSITION x,y

places an invisible cursor at the point (x,y) on the

screen.

DRAWTOx.y

draws a straight (or as straight as is possible in the

lower resolution modes) line from the old cursor

position to the point (x,y). Finally the line:

X10 18,#6,0.0,"S:"

employs the Atari input/output command X10,

which allows the user to fill or paint a shape drawn

on the screen. It is rather complicated, but can

produce some good results if used carefully. Once
a closed shape has been drawn on the screen, then

the cursor should be set to the bottom left-hand

comer of the area that is to be coloured in. The
colouring will start from the top of the shape and

will fill it in, between the boundaries, until the

cursor position is reached at the bottom. The
colour is set by POKE 765,C where C is 1, 2, or 3, as

used in the COLOR command.

XL Size

Atari graphics can be quite

interesting but are not particularly

easy to use. Limited colour choice

and the lack of many of the

'standard' high resolution

commands, such as CIRCLE,

mean that the programmer has to

work fairly hard to achieve good

results. Atari does have the

advantage, however, of a large

range of text modes. The following

program demonstrates the use of

double size characters, in

conjunction with the POSITION

command, to PRINT a familiar

message on the screen:

10 REM* BIGLEHERS*

20 GRAPHICS 2+16

30 SETCOLOR0,3.6

40 FOR X-19T08 STEP-1

50 POSITION X,1

60 FORJ»1T0100:NEXTJ

70 PRINT#6; "HOME
"

80 NEXTX
90 FOR X=19T06 STEP-1

100 POSITION X,3

100 FORJ-1T0100:NEXTJ

120 PRINT#6;

"COMPUTER
"

130 NEXTX
140 FOR X-13T07 STEP-1

150 POSITION X.9

160 FORJ-1T0100:NEXTJ

170 PRINT#6; "COURSE
"

180 NEXTX
190 SETCOLOR 0,5,5

200 FOR Y-9T05 STEP-1

210 POSITION 7,Y

220 PRINT#6; "COURSE
"

230 NEXTY
240 GOT0240

Note that when a mode is

selected, the split screen effect

can be overridden by adding

16 to the mode number

THE HOME COMPUTER COURSE 427

Passwords To Computing

Newspeak
The world of computers has
generated some imaginative
language. These 'buzzwords'
often have interesting origins

Many of the terms that are used to describe

aspects of computing have rather obscure
origins. Every trade has its jargon (code words
and phrases that are especially used by the

people involved in that trade), and none more
so than the computer industry. In fact,

computer people even have a jargon word for

their jargon: they call them ^buzzwords\

The word BUZZWORD first surfaced in the

late 1960's, when someone in Honeywell's
publicity department developed a game called a

'Buzzword Generator'. The game was centred

on three columns of ten words each, numbered
0—9. The first column contained adjectives, and
the other columns consisted of nouns that could

stand in apposition. You simply thought of a
three figure number, looked up the appropriate
words, and there you had an utterly meaningless
phrase, such as 'interactive system module'. This

could then be used to pepper conversation with
your friends and colleagues, in order to baffle

and confuse them.

BOOT is a contraction of bootstrap: as in 'to pull

oneself up by one's bootstraps'. A bootstrap

loader is a routine that is automatically run
whenever a computer is powered-up (N.B. for

the dedicated computer user, it's not sufficient to

say 'switched on'). In machines that do not have
an operating system in ROM, the boot routine

must contain instructions to call in that operating

system from disk, or else the machine could not

be used.

V
0.

When it comes to people greeting their computer
system, perhaps for the first time, yet another
jargon word has evolved. Many commercial
organisations employ a firm of computer
consultants to install hardware and software so
that the client can take it over in working order.

This is known asTURNKEY operation, because
all the client has to do is turn the key and drive

away.

BIT is a buzzword in its own right. Though most
dictionaries declare it to be a contraction of
'Binary digiT', it seems equally likely that it is

just an extension of its common meaning: 'a

small piece of something'. It's worth bearing in

mind, though, that in American slang a bit is also

an eighth part of a dollar, and is always spoken of
in twos: 'two bits', for example, is a quarter— 25
cents.

Bit often appears as a prefix: as in 'bit-slicing',

a term used to explain how certain rather

sophisticated microprocesssors can bt
constructed out of two, four, or eight hit

'building blocks', resulting in devices w.*'^:

capacities as large as 32 bits. Computing wisdom
has it that programs left unused for a long tr -e

v^U develop additional and unsolvable bugs, a: .d

this imaginary phenomenon is referred to as 'bii

decay'.

\Xy '-\X

HARDWARE and SOFTWARE are m
themselves buzzwords ('hard' meaning tangible

and 'soft' the opposite), but there are two other

types of 'ware' as well. FIRMWARE meaning
software that is encapsulated in hardware (such
as in the ROM or EPROM), and LIVEWARE,
which refers to all those people fortunate enough
to work with and use computers!

BASIC itself is a buzzword, standing for

Beginners' All-purpose Symbolic Instruction

Code; though, as with so many acronyms, one
suspects that the word was thought of before the

phrase.

BAUD — the rate at which data is transmitted—
is named after Emile Baudot, the inventor of a

telegraphic code that initially rivalled the more
successful one devised by Samuel Morse. \

428 THE HOME COMPUTER COURSE

PasswordsTo Computing

BYTE is an often encountered computer term,

and though it is no more than 30 years old, its

origins are already lost in obscurity. Until the

eight-bit microprocessor appeared, a byte was
enough bits to encode a single character —
sometimes six, sometimes eight. At that time,

computers rarely used a word of less than 24 bits;

and some machines, chiefly those designed for

scientific applications, went as high as 64 bits.

The eccentric spelling of byte has led to the

coining of the term NYBBLE - half a byte!

Straining the analogy a little further, a GULP is a

small group of bytes.

The media are always very quick to latch on to

imaginative pieces ofjargon, and in recent years

they have taken to making up some of their own.

The subject of computer crime is particularly

fertile ground for buzzword generation: LOGIC
BOMBS andTROJAN HORSES are two ofthe

methods supposedly used for fraudulent

purposes. The former describes a piece of code

that is written into an applications program but

which remains dormant (has no effect) until the

program has been running for a sufficient length

of time for the fraud (moving money from one
account to another perhaps) to go undetected. A
Trojan Horse, we are led to believe, is a program
which is disguised as another program in order to

gain entry to the system.

A similar expression, but one referrring to an
authentic practice, is TIME BOMB. This

describes a particularly ingenious technique for

protecting business software against piracy. It is

a piece of code within the package, which would
normally be disabled when the system is installed

by the bona fide dealer. On a pirated copy,

however, the Time Bomb will wait until a certain

date is reached (often April 1), by which time

there is a good chance that the company will be
heavily dependent on the package. The day after

the bomb has 'exploded', not only will the user's

files have been turned into garbage, but the copy
of the program will also have been destroyed

(unless the disk was protected against being

overwritten).

GARBAGE is a word that occurs in several

phrases in a computer user's dictionary of

jargon. For example, the acronym GIGO stands

for 'Garbage In, Garbage Out', and this is really

just a reminder that computers are only

processing information, and therefore you can't

expect accurate results if you don't feed in

accurate data in the first place.

GARBAGE COLLECTION is the name given

to an internal process that may well be used in

your home computer, if it uses a version of basic

that permits dynamic strings (i.e. strings that can

change in length during a program). Every time a

string increases in length, a complete new copy
will be made in RAM. So if there are a lot of

statements of the form LET A$=A$+"*"

(particularly within loops) then it won't take long

for the memory to fill up completely. At this

point, the program execution will automatically

come to a temporary halt, and a routine inROM
called the 'garbage collector' will tidy up the

string area, and remove all the sections of strings

that have been left over from previous

manipulation. Though the program will resume
when the garbage collector has finished, the

process can take seconds or even minutes,

during which the computer will cease all

operations. .

^^^^^^^^

Many computing buzzwords derive from

analogy. When a business deal has been agreed,

for example, the participants may well shake

hands: so in computing terms a HANDSHAKE
is the name given to the electronic signal that

signifies that an exchange of data is complete.

0 . Integrated 0 . Database 0 . Network

1 . Interactive 1 .Situational 1 . Capabil ity

2 . Buffered 2 . Top-down 2 . System

3 . Digitised 3 . Diagnostic 3 . Algorithm

4 .Stochastic 4 . Addressing 4 . Processor

5 . Peripheral 5 . Linear 5. Array

6 . Heuristic 6 . Graphic 6. Module

7. Relational 7 . Alphanumeric 7 . Facil ity

8 . Customised 8 . Image 8 . Hierarchy

9 . Programmable 9. Schematic 9. Generator

Generator Hum
The term 'buzzword' was first used to describe a simple game tliat

could create meaningless but convincing technological jargon

phrases. You can devise your own 'buzzword generator' by thinking

up three columns often words each, as we have done here. Choosing

a three digit random number will 'generate' a resounding phrase

THE HOME COMPUTER COURSE 429

l3Hardware Focus

Commodore PET 4032
The Commodore PET was the
first personal computer. Since its

introduction, however, the

machine's hardware has
advanced considerably

In many ways the Commodore PET (an acronym

of Personal Electronic Transactor) was the

machine that started the whole microcomputer

boom. When it was released in 1977, it set such a

high standard that it's possible to regard some
more recent machines as retrograde steps ,

in

comparison. The original machine's metal casing

serves as an excellent example of its superiority.

Apart from the Memotech and the more
expensive business machines, the cases of most
recent computers are moulded from plastic, and

these range in quality from the barely adequate to

the shoddy. The PET's built-in power supply is

another detail that separates it from many of its

competitors in the home market.

PET Keyboard Aiid Monitor

The first PETs had a non-standard keyboard, the later ones more

closely approximate the style of a typewriter and feature the

graphic symbols on the front of the keys (except the business

models). All PETs feature built-in monitors: the later ones have

12" (30 cm) screens, with green on black displays and a choice

of 40 or 80 character columns

Although eight-bit, as well as 16-bit, machines

had been available for at least two years before the

PET was released, these were either kits or simple

'minimal systems' consisting only of chips on a

PCB. The PET was the first readily available

microcomputer that could truly be described as

'plug-in-and-go'. The very early versions of the

PET had a built-in tape recorder with motor

control, a built-in monitor, and ROM basic. All

that a new user had to do to start work was to plug

it in and turn it on, and almost immediately a

reassuring message:

1 COMMODORE BASIC VER. 1.0

7167 BYTES FREE

READY

430 THE HOME COMPUTER COURSE

CO

CO
CO

Timer Chip—
When a computer is switched

on, the circuits take a while to

stabilise. This timer waits for a

fraction of a second, after which

it resets the microprocessor to

the start of the BASIC interpreter

User Port

This interface contains a

number of useful lines,

including an eight-bit parallel

port, and connections for

interfacing an external monitor

It is particularly suitable for

interfacing home-designed

electronics projects

IEEE488 Port

The PET was the only one of the

early microcomputers to include

this parallel interface. Because

it could address up to 15

peripherals, it was used to drive

both disks and printers. The

IEEE488 is also the standard

used for interfacing scientific

laboratory equipment

6522

This Versatile Interface Adaptor

is similar to the 6520, but

contains a shift register for

converting between serial and

parallel data, as well as two

programmable timers that can

be used to control external

equipment

would appear. The user could then start typing,

and this work could be safely stored on cassette,

without the need to plug various components
together or load system programs from tape (or

worse, to have to enter them on a HEX keypad,

which wasn't uncommon in those days).

Commodore basic has been through several

revisions during its lifetime, and the latest version

(4), though based on the original, has been so

extended as to make it into a new dialect.

Another major and unique feature ofthePET is

the character set. Containing both the complete

ASCII set and a large variety of block graphics,

this has been put to some remarkably creative uses

by PET owners, despite the relatively low

resolution of the characters. However, a major

problem of the machine was that the codes

generated by the keyboard don't match the ASCII
set, nor are they arranged in any standard order.

The heavy use of these block graphics has been

reinforced by the availability of a range of printers

8520

These PIAs (Peripheral Interface

Adaptors) take care of most of

the interfacing, including the

cassettes and keyboard

6502

The PET was designed by

Commodore's Chuck Peddle, so

it is hardly surprising that it is

based on a 6502

microprocessor, which he also

designed. Though business

computers have opted for other

processors, the 6502 still

remains popular amongst home

computers

i

CassettB Port

A specially modified

Commodore cassette deck must

be used. When the PET was first

introduced, the Commodore

cassette deck gave a better

performance than a domestic

unit, but that situation has now

been reversed

COMMODORE PET

ROM
The PET first put the complete

BASIC and operating system in

ROM, and started a trend that

almost every home computer

has followed

Second Cassette Port

The original PETs had a built-in

cassette deck. Now this port can

be used to add a second unit,

and this allows data to be read

from one tape, modified, and

then written to another

Piezo-Electric Speaker

Later models incorporated this

device, which could, for

example, be programmed to

produce a 'warble' when the

user makes an erroneous entry

r

From about £300

480x440x300mm

6502

1
^HMililfiK. IHBIIMPMI

32 Kbytes RAM

20 Kbytes ROM

pfiiii
25 lines of 40 characters. Built-in

12' (30 cm) green phosphor

monitor. 256 displayable

characters and graphics symbols,

or low resolution (50x80) graphics

INTERFACES

IEEE488, 8-blt parallel user port,

cassette (2)

BASIC, Machine Language

Monitor

OTHER LANGUAGES AVAILA

PASCAL. COMAL. LISP

Instruction manual
1

lypewriter-style keyboard,

featuring 64 individual keys with

graphics symbols inscribed on

the front. A separate numeric

keypad includes calculator

function keys

DOCUMENTATION

Commodore have never been

acclaimed lor the quality of their

documentation, although this has

much improved since the early

days

1

KeytManl Connector

RAM
PETs come with anything from 8

Kbytes to 32 Kbytes as

standard. By means of a special

modification this can be

extended to 96 Kbytes

Character Generator

In addition to 64 alphanumeric

characters, the PET can

generate 64 graphics symbols.

Alternatively, text can be

displayed in upper and lower

case

that will reproduce them in hard copy without the

need for complex bit programming of the printer

head. Of course, this means that a limited number
of printers are suitable for use with the PET, and

most, if not all, are Commodore products.

As a result of these various idiosyncrasies, and

although there is a considerable amount of

software available for themachine, little of this has

been translated to other machines. Few programs

have been converted from other machines to the

PET as well, because they generally involve too

much effort to convert, and it is easier simply to

rewrite them. Consequently, the machine has

become somewhat 'isolated' in its own little world,

and is scarcely affected by changes in the industry

as a whole. Though the PET's days of glory are

now over, it still remains a popular machine in

schools, and home computer manufacturers

would do well not to forget the features ofthePET
that really triggered off the microcomputer

revolution.

THE HOME COMPUTER COURSE 431

Subversive Elements
With careful planning and a step-

by-step approach, the time taken
to de-bug a program can be
dramatically reduced

As you become more skilled at writing

programs, you will also tend to become more
accomplished at 'de-bugging' them. The
syntactical mistakes and errors in logic, which

even the most experienced computer
programmers can make, become less frequent

and less problematic as your experience

increases. Here are some hints to help you avoid

programming errors and become more efficient

at de-bugging your code.

The first place to begin is at the precise point

where a program begins — in your head! If the

concept of a program is badly thought out at the

beginning, then it is sure to be infested with bugs

when it is written.

It is a far better idea to begin writing a program
by first stating the problem as clearly as possible

to yourself or someone else. Then divide the

problem into logically complete parts — Input,

Output, Algorithms, Data Structures, Processes,

etc. — and consider each of those parts as a

separate problem. If necessary, break down each

of these problems into its component problems,

and so on, until the original problem is a

structured collection of sub-problems, each of

which is easy for you to program. A formal

approach, such as using a pseudo-language or a

flowchart, is essential in the design stage as a way
of keeping track of, and preserving, the program
structure as a whole. You must try to stay away
from the keyboard until you can honestly say

that you know how to program every part of the

problem This is called the top-down approach
to programming, and the method can

dramatically cut your de-bugging time.

Splitting problems into solvable tasks will lead

you to write programs that are really collections

of subroutines or procedures linked by a

skeleton main program. This makes finding bugs

easier, and it enables you to build a library of

bug-free subroutines for use in later programs.

The alternative is called 're-inventing the wheel'

:

every time you write a program that sorts data,

for example, you re-solve the problem ofhow to

write a sort routine, and probably rewrite the

same old bugs, as well! It is much easier to write

and debug it once, save it, and recall it whenever
you need it thereafter.

As far as basic allows, always try to use

appropriate variable names, even if they have to

be abbreviated. NET=GROSS-TAX, for example,

explains itself; and NT=GR—TX isn't a bad
substitute; but N=G—T is extremely ambiguous.

and gives no clue as to what variables are

involved. It's good practice to keep a variable

table, which shows you all the variables used in

the program and what they're for. This can lead

you to standardise your use of variables (such as,

always using certain single letter variables as

loop counters), and stops you using the same
variable for different purposes. Similarly, it's

good practice to store constant values in

Pest Control

These two lines are in the—

^

wrong order. Line 100

should have: GOT0 190

100 GOTO 200 : X*=" THAT S ALL FOLKS"

This statement will never

be executed, as the GOTO

command skips over it

120 I=i2:K=1984

140 FOR K=l TO LT

K is supposed to contain a

constant, but this

statement will eliminate it

Because the quotes are
—

missing from here, the

NEXT will not be executed 160 PR I NT "WHO NEEDS STRUCTURE ?;N*:NEXT

180 RESTORE This should read: RETURN

190 FOR L=l TO I

Syntax Error: the colon ':'

should be a semi-colon ';'

200 INPUT"ENTER YOUR NAME":N*

220 INPUT "ENTER YOUR AGE";LT

This will cause big trouble. ^ 240 gosub l OO

It should probably read:

GOSUB 140 Jf
The quotation marks are

missing

260 PRINT IF YOU' RE" ;LT; "NOW"

280 PRINT"YOU WERE BORN IN";K-LT

This will result in some

meaningless number,

because K has been

changed in value since

line 120

300 YR*=K-LT

The close bracket is

misplaced, causing the

calculation to fail. This

should read: INT (YR/4)M

Syntax Error: this should be

YR-K-LT

320 LY=INT<YR)/'4*4

There is no line 370!'

340 IF LY=YR THEN IF INT(LY/1 00 > *1 00=LY THEN GOTO 370

^ ~~
^ This should be

"

GOTO 420 means

380 PRINT YR WAS A LEAP YEAR":GOTO 420 jumping OUt Of the

FOR... NEXT loop

390 PRINT "YR WAS NOT A LEAP YEAR"

400 NEXT "This may need the name

of the loop variable: i.e.

NEXTL

4" 420 PRINT X*

X$ has not been initialised,

so this statement will do

nothing
440 STEP Syntax Error: this should be

a STOP

432 THE HOME COMPUTER COURSE

variables at the start of the program, and refer

back to these variables thereafter. This makes
the program faster and neater, and it means that

you can change these values without having to

hunt through the program for every occurrence.

Even with the sort of formal approach that we
have outlined here, it's difficult to eliminate bugs

entirely, so it's important to adopt a disciplined

method for finding and eradicating them. The
commonest bugs are syntax errors, and you can

usually correct them as soon as you encounter

them. But this is not always the case. Consider:

10 PRINT-BIG BUGS HAVE UHLE BUGS UPON"

20 PRINFTHEIR BACKS TO BITE THEM"

Such lines often cause an error message when
executed if they're not keyed in as two separate

lines. Line 10 contains 40 characters, so when
you type it on a 40-column screen, the cursor

finishes up at the start of the next screen line,

which can cause you to forget to hit RETURN on
line 10 before you start typing line 20. If so, then

what look like two perfect lines in your program
will actually be one line with a syntax error (the

number 20) in the middle of it. One way of

trapping these errors is to list suspect lines

individually rather than as part of a piece of

program.

Error messages, when they're not

incomprehensible, can be misleading. Take for

example:

25 DATA 10.2,34,56.9,0.008,15.6

30 FOR K=1 TO 5: READ N(K):NEXT K

This may fail to execute because of an alleged

syntax error in line 30; whereas the error is

actually in the data on line 25 (One of the zeros

has been mis-keyed as the letter 0).

Coding errors that don't result in syntax errors

are the commonest bugs, and usually also the

hardest to find. In this case, it is vital to be

methodical. Begin by trying to find out roughly

where the bug is in the program. This is

reasonably easy with well-structured modular

programs, and can be made easier by the TRACE

utility, which causes the current program line

number to be printed on the screen as it is

executed. If your machine doesn't allow this,

then you can create TRACE statements

periodically throughout the program (PRINT

"LINE 150" at the beginning of line 150, for

example). Similarly, you can use the STOP

command to halt program execution at

significant places in the program so that you can

examine the values of crucial variables. You can

do this in direct mode using PRINT, or you can

write a subroutine onto the end ofyour program:

1 1000 REM PRINT THE VARIABLES

11100 PRINrSCORE,SIZE,FLAGS"

11200 PRINT SC;SZ;F1;F2

11300 PRINT-BOARD ARRAY"
11400 FOR K=1 TO 10:PRINT BD$(K):NEXT K

Consequently, when the program comes across a

STOP command, you can type GOTO 11000, and

EariyBug
To new programmers, bugs

often seem to take on animate

characteristics, such as hiding

from the programmer and

deliberately undermining all

his efforts to find them.

However, the first bug (at least

the one from which the term is

derived) really was animate. In

trying to eliminate an error

from a program she was

developing on the Harvard

Mrk II in 1945, Captain Grace

Hopper discovered that a large

moth had got caught up in the

electromechanical working of

the computer and was causing

the fault. As a result of that

incident, the term 'de-

bugging' was coined

have the current state of the variables displayed.

You can even change them (by typing, say,

SZ=17 and pressing RETURN), and then restart

the program with the CONTinue command.

When you've found that the bug is lurking

within certain lines, or in a particular variable,

then you should be close to eliminating it, but

tread carefully! Try one remedy at a time so that

you can see what its exact effect on execution is.

It's very easy to make several changes between

runs, perhaps getting rid of one bug, but creating

one or more new ones, and then forgetting

exactly what it was you did!

Loops and branches, especially when they're

nested, are particularly fertile ground for bugs,

and require special care in both writing and de-

bugging. Consider this piece of code:

460 IF SM< 0 AND SC< >-1 THEN IFSOO OR
SM=SC-F9 THEN LT=500

470 FOR C1=1 TO LT:FOR C2=LTT0 CI STEP-1

480 SC=SM+SC*C2
490 NEXTC2:SM=0:NEXTC1

What does this all mean? Even ifyou know what
it's meant to do, would you know if it were

succeeding or failing? Putting statements inside

a loop when they should be outside is a sure way
to encourage bugs. And so is failing to cover all

possible conditions when writing IF . . .THEN

statements. A special case of this occurs when
you write multiple statements after IF . . .THEN.

For example:

655 IF A$="" THEN GOTO 980:A$=B$

660 PRINT AS

The statement A$=B$ will never be executed

because either A$="", in which case control

passes to line 980, or A$<> "

" , in which case the

rest of line 655 is ignored.

Experience is the best teacher of de-bugging,

but a step-by-step approach and a disciplined

method are invaluable aids. Take your time, and
- above all - DON'T PANIC!

THE HOME COMPUTER COURSE 433

luul Insights

Laser Show
Optical (laser) disc technology
opens up two major applications

for home computers: interactive

and mass storage

Whenever one overhears a conversation about

home computers, the first statistic quoted is

invariably that of memory size. Certainly, the

internal storage capacity of the computer is

important, but the capacity of its mass storage

system is likely to prove more critical in the long

term. After a couple of months, the enthusiastic

home computer user will have accumulated a

considerable number of cassettes, or several boxes

of disks. Yet most of these programs are never

modified, and they would be better stored in

ROM cartridges than on delicate magnetic media.

What would be very useful is some form of digital

storage system that was read-only like a cartridge,

but had a much greater capacity.

Such a system does exist— in the form of the

optical laser disc. Currently, though, this system is

used in the home only as an alternative to the video

cassette recorder for showing pre-recorded

material. Another use of the same technology is

the compact audio disc, which is replacing the

turntable and stylus format of hi-fi systems.

The difference between these two types of

systems (apart from the diameters of their discs) is

in their methods of operation. Whereas a video

disc is an analogue system, a compact audio disc

stores its information in digital form — i.e. as a

sequence of ones and zeros. This information is

turned back into the original audio signal by a

digital-to-analogue convertor, which is the

electronic opposite of the process that created the

information in the first place. Because there are so

many stray electric fields in the domestic

environment, it is impractical to use magnetic

media like floppy disks for video recording. In any

case, the amount of information on an optical disc

can run into millions of megabytes, and that is

much more than even a Winchester disk can hold.

There are several optical laser disc systems

available, but the most successful to date is that

introduced by Philips. This system uses a 14 inch

(35 cm) plastic disc, which is really only a

protective envelope. The information itself is

buried deep inside the plastic as a series of pits in a

sheet of metal foil. As on a floppy disk, the stored

information is catalogued on the video disc, so

that, given the right sort of disc player, it is possible

to move instantly to any single piece of

information. Once the read head is in the desired

location, the information is read back from the disc

by the laser beam. The light passes through the

plastic and falls on the surface of the metal foil. A
light sensitive cell then reads the information as the

434 THE HOME COMPUTER COURSE

light is reflected from the pits in the foil. The
information is recorded on a single spiral track,

with one frame of the video for every revolution.

This gives a total of 54,000 frames on each side of

the disc, or 36 minutes of playing time.

The main potential uses for optical discs in the

field ofcomputers fall into two areas. The first, and

already available, development is that of

'interactive video'. A transmitted television

programme is non-interactive— the viewer has no

control over the order in which the scenes are

presented. With interactive video, however,

textual and visual information is stored on a video

disc, which is connected to a computer. The disc

can then be used as a reference library, with the

displayed text superimposed pver the video

pictures on a conventional television screen. In

response to prompts from the computer, the user

can select specific 'tracks' or 'scenes' on the video

disc to be played. Alternatively, the disc can be

used as a training aid, with live action or stills being

displayed on a television and the trainee's answers

to relevant questions input to the computer, which

can monitor and report on the user's performance.

Interfaces between a domestic video disc and a

home computer are still not widely available,

though many enthusiasts have constructed their

own. Philips do, however, market a professional

model of their Laser\^ion, which can cope with

interactive video on its own, or can interface with a

computer by means of an IEEE488 or RS232
port.

The other area in which optical disc technology

is likely to be exploited is the provision of

computer software. Imagine, for example, the

advantages of supplying a computer with all its

systems software — word processor, database,

spreadsheet, and several dozen games — on a

single, incorruptible disk. This is likely to take the

format of the compact audio disc, but as yet no

compact disc player has been fitted with a

computer interface. With such a huge market

potential it is reasonable to expect domestic

compact disc players with such interfaces within a

very short time, as well as dedicated compact disc

players for personal computers. Sony and Philips

have already announced their intention to

produce a dedicated disc player for computers,

caUedCDROM.

Linear Motor %
The servo-mechanism fo^
moving the tracking arm across

the disc is simply a coil,

working against a light spring

The arrangement is very similar

to that found in moving-coil

meters, such as current or volt

meters

Tracking Arm ,

The arm is pivoted centrally,

and is both finely balanced and

freely pivoted ^he reading head

consequently traces an arc

across the disc

Motor

The rotation speed of the disc is

very accurately controlled using

feedback circuitry. As the arm

moves from the inside to the

outside of the disc, the speed

will change from 500 to 200

rpm to keep the recording

density constant

Disc

Information is encoded digitally

in the form of pits, etched

photographically onto foil. The

pits are only 0.5 micrometres

(0.0005mm) wide, by

0.1 micrometres

Digital Processing

The Philips/Sony system uses

16-bit data, yielding 65,536

sound levels. When a recording

is made, the sound is sampled

and digitised 44,100 times a

second
'Lens

The beam of light is accurately

focused onto the foil inside the

disk, so that any dust or dirt on

the surface will usually be out of

focus and therefore ignored

ocusing Coil

This miniature coil acts as a

servo-mechanism, keeping the

light beam in sharp focus

Prism

The light passes straight

through this prism from the

laser diode to the lens, but light

reflected back from the disc is

diverted by the prism onto the

photodiode

Photodiode

Pits scatter the light, whereas

the foil reflects it. This device

converts the light signal into an

electronic sequence of 1 s and

Os

Laser Diode

This device is similar to a

conventional LED, but emits

invisible infra-red light

User Controls

The controls are geared towards

selecting tracks and
.

programmes on a music disc.

However, dedicated computer

peripherals using CD (Compact

Disc) technology will be

available in the future

Error Correction Circuitry

A high level of 'redundancy' is

built into the recording, so that

any bit errors do not result in

corrupted sound. In theory, a

2mm hole could be drilled

anywhere in the disc without

affecting the sound

THE HOME COMPUTER COURSE 435

Basic Programming

Finishing Touches
By removing the anomalies caused by stringing together the

modules, and adding a few more facilities, our address book
program is now complete

In the last instalment of the course, readers were

left with the problem of working out why running

the address book program, then adding a record

(using *ADDREC*), then locating a record (using

FINDREC), and then exiting from the program

(using * EXPROG *) would result in the added record

not being saved. The problem arose through the

use of the variable RMOD as a flag to indicate that a

record had been modified (implying that the file

might be out of order). The *SRTREC* subroutine

would sort the file into alphabetical order, and

then set RM0D to 0 on the assumption that the file is

in order. Executing * EXPROG * checked to see if the

file was in order (RMOD = 0) and didn't bother to

save the file if it was in a sorted condition.

Adding a record (using *ADDREC*) would set

RMOD to 1 (since a record had been modified, i.e. a

new record had been added), but *SRTREC* would

set RMOD to 0, indicating that the file had been

sorted. What is really needed, however,

irrespective of whether the file has been sorted or

not, is a flag that signals that a record has been

modified and a separate flag to show if the file is in

a sorted condition or not. Then, subroutines that

need to know that the file is sorted can check the

'sorted' flag, and subroutines that need to know if

any record has been modified can check the

'modified' flag.

Suitable names for the two flags would be

RMOD, to show if a record has been modified, and

SRTD, to show if the file has been sorted.

When the program was presented on page 399,

line 1230 contained the statement LET SVED = 0.

The SVED variable has not been used so far, but

when the line was included, it was realised that

RMOD alone would not be enough. The variable

name SVED was chosen with the idea that certain

conditions would have to be true before a save (to

tape or disk) would be necessary.

A more appropriate name for this flag would be

SRTD (to indicate that the file is in a sorted

condition). The original line 1230 has been

changed to:

1230 LET SRTD - 1

There are now four possible states regarding the

condition of the data file. These are:

RMOD SRTD

0 0 Not modified, not sorted (illegal)

1 0 Modified, not sorted

0 1 Not modified, sorted

1 1 Modified, sorted

RMOD=0 and SRTD=0 is illegal because the program

ensures that the data file is always sorted before it

is saved. When the program is run, RMOD is set to 0

(line 1220) to indicate that no modifications have

taken place, and SRTD is set to 1 (line 1230) to

indicate that the file is sorted.

Any operation that modifies a record (such as

ADDREC, * DELREC* or *MODREC*) sets RMOD to 1

and this flag is not reset by any subsequent

operation. SRTD, which is initially set to 1 , is reset to

0 by any activity that might mean the data has

become out of order (such as in *MODREC* if the

name field is altered). Any activity that needs to

assume the data is sorted (such as *FINDREC*)

always checks SRTD and calls the sort routine if

SRTD = 0. By using these two flags, instead of just

RMOD, the program is able to terminate without

saving the data file if no modifications have taken

place during the current run of the program. It will

not be 'tricked into' terminating without saving ifa

sort takes place after a record modification.

The other variable not used so far is CURR. This

variable is used to save the 'current' position in the

array of a record after one has been located by the

search routine. CURR is not cleared after a value has

been assigned to it; it is used to carry information

about the target record to other routines in the

program. The end of the *FINDREC* (search)

routine has been modified in lines 3320 and 3330

to set the value of CURR: to 0 if the search failed to

find the target record; and to M I D if the search was

successful.

Line 13340 branches to the *NOTREC*

subroutine if CURR is 0. This displays a message

saying that the record has not been found and

displays the search key ,NAMFLD$(SIZE). *NOTREC*

returns to the main menu after the space bar has

been pressed. *NOTREC* could be modified quite

easily to give the user the opportunity to:

PRESS RETURN TO TRY AGAIN OR
SPACE BAR TO CONTINUE

It might appear that the easiest way to achieve this

would be to call *FINDREC* again if RETURN were

pressed. However, calling a subroutine from

within itself, whilst not illegal in basic, 'confuses'

the return address and will cause the subroutine to

be repeated again even when you don't want it to.

There are ways of getting round this problem, but

the programming starts to get a bit tricky!

An easier way would be to have used a flag

(such as NREC for not record) and reset it in

NOTREC, allow the subroutine to return in the

436 THE HOME COMPUTER COURSE

normal way, and force ajump back to * EXECUT* in

the main program, for example: 95 1 F N REC = 0 TH EN

80. This approach was tried, and worked. But the

coding started to look untidy. In accordance with

our principle of avoiding GOTOs, we decided to

keep things simple and just return to the main

menu if a record is not found by * FN DREC*.

A small addition to the line 10490 in

MODNAM should be noted. Numeric variable S

should also be reset (LET S=0). Failure to do so can,

under certain unusual circumstances, cause

MODNAM to malfunction.

The other routine implemented in this final

version of the program is *MOD REC*. This routine

first locates the record to be modified by calling

FNDREC (line 14120). This Une calls Une 13030,

not 13000, in order to suppress* FNDREC *'s clear

screen statement. If the record cannot be located,

the program will return to the main menu in the

usual way (in line 14130). If the record is located,

the target record is left displayed on the screen and

users are instructed to:

MODIFY NAME?
PRESS RETURN TO ENTER NEW NAME

OR SPACE BAR FOR NEXT FIELD

The routine that finds out which ofthe two options

is required can be found in lines 14190 to 14280.

Lines 14190 to 14220 constitute a simple loop

that terminates only if either the space bar or

RETURN is pressed. If A$ is NOT CHR$(13) (the

ASCII value for a carriage return) AND NOT a space

(you could also use CHR$ (32) instead of " ") I will

be reset and the loop will repeat. If the key pressed

was RETURN (i.e. the name field is to be changed)

the next few Imes wiU fill the NAMFLD$(CURR) with

the new name, set RMOD, reset SRTD, call

MODNAM and fill MODFLD$(CURR) with the

standardised name created by *MODNAM* and

located in MODFLD$(SIZE).

The rest of *MODNAM* works in exactly the

same way. Note, however, that modifying the

other fields does set RMOD but does not reset SRTD

(see line 14490, for example). The reason for this

is that only changing the name field implies that

the data file may be out of order, since the file is

ordered by name. Changing any other field merely

indicates that a record has been changed (RMOD =

1) and that the file must be saved when the

program is terminated.

The other routine implemented is *DELREC* —
to delete a record. This is very straightforward.

First it clears the screen (line 15020) and displays a

message explaining what's going on. It then calls

FINDREC to locate the record to be deleted. A
choice is then offered: to press RETURN to delete

the record or the SPACE BAR to return to the main

menu. A warning message is also displayed (line

15160). An even better approach might be to

respond with an ARE YOU SU RE? message if RETU RN

is pressed and then only delete the record if the Y

key is pressed (i.e. IF INKEYS = "Y" THEN ...).

* DELREC* does not reset die SRTD flag. Since the

file is already in alphabetical order by name,

deleting a complete record will not upset this

order. It does, however, mean that the file has been

modified and so RMOD is reset in line 15340 and

SIZE is reduced by one in line 13550 to take

account of the fact that the file now has one fewer

valid records. All the records are moved 'down

one' in Unes 15260 to 15320.

You may also have noticed that *FNDREC*

includes a conditional call to a subroutine called

LSTCUR to print out the CURRent record located

by * FND REC*. If you don't have a printer, simply

replace line 13540 with a REM for future

implementation and omit lines 13600 to 13690.

This completes the address book program. We
have carried out all the major options presented in

the main menu: finding a record, adding a record,

changing a record, deleting a record, and exiting

from the program. The purpose of the

computerised address book has been to illustrate

how a programmer should set about specifying,

designing and implementing a program. An
essential modification by anyone who intends the

program as a piece of application software will be

to check for— and trap — the problem that would

arise if SIZE were ever to equal 51. This would

happen as soon as there were 50 record s in the file.

In the next instalment of the Basic

Programming course we will discuss programming

style and cover a few of the more advanced aspects

of the BASIC language.

Basic Flavours
This command is not available on the

Commodore 64, Vic-20, BBC Micro, or Dragon

32.

On the BBC Micro with a parallel printer insert

the following lines:

13605 VDU 2

13680 VDU 3

These enable and disable the printer in turn.

Substitute PRINT for LPRINT in lines 13610 to

13670. For more information see the user

manual.

On the Commodores insert these lines:

13605 OPEN 4,4:CMD 4

13680 PRINT #4: CLOSE 4

These enable and disable the printer in turn.

Substitute PRINT for LPRINT in lines 13610 to

13670.

On the Dragon 32 insert these lines:

13605 0PEN"0",-2

13680 CLOSE -2

These enable and disable the printer in turn.

Substitute PRINT -2, (the comma here is part

of the command) tor LPRINT in lines 13610 to

13670.

The address book program will be published

in full in the next instalment of the Basic

Programming course.

THE HOME COMPUTER COURSE 437

Basic Programming

Address Book Program
10 REM 'MAINPG'
20 REM *INITIL*
30 GOSUB 1000
40 REM *GREETS*
50 GOSUB 3000
60 REM *CH00SE^-
70 GOSUB 3500
80 REM *EXECUT*
90 GOSUB 4000
100 IF CHOI <> 9 THEN 60
110 END
1000 REM *INITIL* SUBROUTINE
1010 GOSUB 1100
1020 GOSUB 1400
1030 GOSUB 1600

REM ^CREARR* (CREATE ARRAYS) SUBROUTINE
REM *RDINFL* (READ IN FILE) SUBROUTINE
REM *SETFLG* (SET FLAGS) SUBROUTINE

1040 REM
1050 REM
1060 REM
1070 REM
1080 REM
1090 RETURN
1100 REM *CREARR* (CREATE ARRAYS)
1 110 DIM NAMFLD$(50)
1 120 DIM MODFLD$(50)
1 130 DIM STRFLDK 50)
1 140 DIM TWNFLD$(50)
1150 DIM CNTFLD$(50)
1 160 DIM TELFLD$(50)
1 1 70 DIM NDXFLD$(50)
1180 REM
1 190 REM
1200 REM
1210 LET SIZE = 0
1220 LET RMOD = 0
1230 LET SRTD = 1

1240 LET CURR = 0
1250 REM
1260 REM
1270 REM
1280 REM
1290 REM
1300 RETURN
1400 REM *RDINFL* SUBROUTINE
1410 OPEN "I",#r,"ADBK.DAT"

REM CLOSE AND RETURN
1420 INPUT #1 , TESTS
1430 IF TEST$ = "@FIRST" THEN GOTO 1540:
1440 LET NAMFLD$(1) = TEST$
1450 INPUT #1 ,MODFLD$(1) ,STRFLD$(1) ,TWNFLD$(1) ,CNTFLD$(1) ,TELFLD$(1

)

1460 INPUT #1 ,NDXFLD$(1

)

1470 LET SIZE = 2

1480 FOR L = 2 TO 50
1490 INPUT #1 .NAMFLD$(L) ,M0DFLD$(L) ,STRFLD$(L) ,TWNFLD$(L) ,CNTFLD$(L)
1500 INPUT #1 ,TELFLD$(L) ,NDXFLD$(L)
1510 LET SIZE = SIZE + 1

1520 IF EOF(l) = -1 THEN LET L = 50
1530 NEXT L

1540 CLOSE #1
1550 RETURN
1600 REM *SETFLG* SUBROUTINE
1610 REM SETS FLAGS AFTER *RDINFL*
1620 REM
1630 REM
1640 IF TESTS = "@FIRST" THEN LET SIZE = 1

1650 REM
1660 REM
1670 REM
1680 REM
1690 RETURN
3000 RhM ^GREETS* SUBROUTINE
3010 PRINT CHR$(12):REM CLEAR SCREEN
3020 PRINT
3030 PRINT
3040 PRINT
3050 PRINT
3060 PRINT TAB(12) ;"*WELC0ME TO THE*"
3070 PRINT TAB(9) ; "*HOME COMPUTER COURSE*"
3080 PRINT TAB(6) ; "*COMPUTERISED ADDRESS BOOK*"
3090 PRINT
3100 PRINT TAB(5) ;"(PRESS SPACE-BAR TO CONTINUE)"
3110 FOR L = 1 TO 1

3120 IF INKEYS <> " " THEN L = 0
3130 NEXT L

3140 PRINT CHR$(12)
3150 RETURN
3500 REM *CHOOSE* SUBROUTINE
3510 REM
3520 IF TEST$ = "@FIRST" THEN GOSUB 3860:
3530 IF TEST$ = "@FIRST" THEN RETURN
3540 REM 'CHMENU'
3550 PRINT CHR$(12)
3560 PRINT "SELECT ONE OF THE FOLLOWING"
3570 PRINT
3580 PRINT
3590 PRINT
3600 PRINT "1.

3610 PRINT "2.
3620 PRINT "3.

3630 PRINT "4.

3640 PRINT "5.

3650 PRINT "6.

3660 PRINT "7.

3670 PRINT "8.

3680 PRINT "9. EXIT & SAVE"
3690 PRINT
3700 PRINT
3710 RE14 'INCHOI*
3720 REM
3730 LET L = 0
3740 LET 1=0
3750 FOR L = 1 TO 1

3760 PRINT "ENTER CHOICE (1
3770 FOR I = 1 TO 1

REM *FIRSTM* SUBROUTINE

FIND RECORD (FROM NAME)"
FIND NAMES (FROM INCOMPLETE NAME)"
FIND RECORDS (FROM TOWN)"
FIND RECORD (FROM INITIaL)"
LIST ALL RECORDS"
ADD NEW RECORD"
CHANGE RECORD"
DELETE RECORD"

-9)"

3780
3790
3800
3810
3820
3830
3840
3850
3860
3870
3880
3890
3900
3910
3920
3930
3940
3950
3960
3970
3980
3990
4000
4010
4020
4030
4040
4050
4060
4070
408a
4090
4100
4110
4120
4130
4140
10000
10010
10020
10030
10040
10050
10060
10070
10080
10090
10100
10110
10120
10130
10140
10150
10200
10210
10220
10230
10240
10250
10260
10270
10280
10290
10300
10310
10320
10330
10340
10350
10360
10370
10380
10390
10400
10410
10420
10430
10440
10450
10460
10470
10480
10490

10500
1 1000
11010
11020
1 1030
11040
1 1050
11060
1 1070
1 1080
11090
11100
11200
11210
11220
11230
11240
1 1250
11260
1 1270
11280
1 1290
1 1300
11310
1 1320
1 1330
11340
1 1350
1 1360
11370
1 1380

1 = 0

L =

"(PRESS SPACE-BAR TO CONTINUE)"
1

" " THEN B = 0

REM CLEAR SCREEN

LET A$ = INKEY$
IF A$ = "" THEN
NEXT I

LET CHOI = VAL(A$)
IF CHOI <1 THEN
IF CHOI >9 THEN L = 0
NEXT L

RETURN
REM *FIRSTM* SUBROUTINE (DISPLAY MESSAGE)
LET CHOI = 6

PRINT CHR$(12): REM CLEAR SCREEN
PRINT
PRINT TAB(8) ; "THERE ARE NO RECORDS IN"
PRINT TAB(8);"THE FILE. YOU WILL HAVE"
PRINT TAB(6);"T0 START BY ADDING A RECORD"
PRINT
PRINT TAB(5)
FOR B = 1 TO
IF INKEY$ <> "

NEXT B
PRINT CHR$(12)
RETURN
REM *EXECUT* SUBROUTINE
REM
REM
REM
IF CHOI = 1 THEN GOSUB
REM 2 IS *FNDNMS*
REM 3 IS *FNDTWN*
REM 4 IS *FNDINT*
REM 5 IS *LSTREC*
IF CHOI = 6 THEN GOSUB
IF CHOI = 7 THEN GOSUB
IF CHOI = 8 THEN GOSUB
IF CHOI = 9 THEN GOSUB
REM
RETURN
REM *ADDREC* SUBROUTINE
PRINT CHR$(12): REM CLEAR SCREEN
INPUT "ENTER NAME" ; NAMFLD$ (SIZE)
INPUT "ENTER STREET" ; STRFLD$ (S IZE

)

INPUT "ENTER TOWN "; TWNFLD$ (S IZE

)

INPUT "ENTER COUNTY" ; CNTFLD$(SIZE)
INPUT "ENTER TELEPHONE NUMBER" ; TELFLD$ (SIZE

)

LET RMOD = 1: LET SRTD = 0: REM MODIFIED & NOT SORTED
LET NDXFLD$(SIZE) = STR$(SIZE)
LET TESTS = ""

GOSUB 10200: REM
LET CHOI = 0
LET SIZE = SIZE +
REM
REM
RETURN
REM *MODNAM* ROUTINE

CONVERTS CONTENTS OF NAMFLDS TO UPPER CASE,
REMOVES RUBBISH, AND STORES IN THE ORDER:
SURNAME+SPACE+FORENAME IN MODFLDS

13000: REM *FNDREC*

10000: REM *ADDREC*
14000: REM *MODREC*
15000: REM *DELREC*
11000: REM *EXPROG*

MODNAM

1

REM
REM
REM
REM
LET N$
FOR

NAMFLD$(SIZE)
L = 1 TO LEN(N$)

L. 1)

32

S = L

CNAMS + MID$(N$,L, 1

)

LET TEMPS = MID$(N$
LET T = ASC(TEMP$)
IF T >= 97 THEN T =

LET TEMPS = CHR$(T)
LET PS = PS + TEMPS
NEXT L

LET N$ = PS
REM LOCATE LAST SPACE
FOR L = 1 TO LEN(N$)
IF MIDS(NS,L, 1) = " " THEN
NEXT L

REM REMOVE RUBBISH AND STORE FORENAME
REM IN CNAMS
FOR L = 1 TO S - 1

IF ASC(MIDS(NS,L, 1)) > 64 THEN CNAMS =

NEXT L

REM REMOVE RUBBISH AND STORE SURNAME
REM IN SNAMS
FOR L = S + 1 TO LEN(N$)
IF ASC(MIDS(NS ,L, 1)) > 64 THEN SNAMS = SNAM$ + MIDS(N$,L,1)
NEXT L

LET MODFLDS(SIZE) = SNAM$
LET PS = "": LET N$ = "":

LET S = 0

RETURN
REM *EXPROG* SUBROUTINE

SORTS AND SAVES FILE
IF ANY RECORD HAS BEEN
MODIFIED (RMOD = 1)
OR NOT SORTED (SRTD = 0)
RMOD = 0 AND SRTD = 0 IS ILLEGAL

+ " " + CNAMS
LET SNAMS = "" LET CNAMS =

REM
REM
REM
REM
REM
REM
IF RMOD = 0 AND SRTD = 1

IF RMOD = 1 AND SRTD = 0 THEN GOSUB 11200:
GOSUB 12000: REM *SAVREC*
RETURN
REM *SRTREC* SUBROUTINE

SORTS ALL RECORDS BY MODFLDS INTO
ALPHABETICAL ORDER AND UPDATES NDXFLD

=3
THEN RETURN

REM *SRTREC*

REM
REM
REM
REM
LET
FOR

S = 0
L = 1 TO SIZE -

IF MODFLDS(L) > MODFLDS(L + 1) THEN GOSUB 11350
NEXT L

IF S = 1 THEN 11250
REM
REM
LET SRTD = 1: REM SETS 'FILE SORTED' FLAG
REM
RETURN
REM *SWPREC* SUBROUTINE
LET TNAMFDS = NAMFLDS(L)
LET TMODFDS = MODFLDS(L)
LET TSTRFDS = STRFLD$(L)

438 THE HOME COMPUTER COURSE

Basic Programming

1 1 390 LET TTWNFD$ = TWNFLD$(L)
1 1 400 LET TCNTFD$ = CNTFLD$(L)
11410 Lh 1 lIbLrU$ = TELFLD$(L)
1 1 4/(J D I? UK hn
1 1 4 JU Lb I N AMr LL)$ (L ; NAMFLD$(L + i)

1 1 440 Lb 1 MUUr LU$ (, L ; M0DFLD$ (L + I)

I 1 4i)0 Lb 1
CTDITT n^^T ^t>lKrLU5>(,L; STRFLD$(L + 1 N

i)

11460 LET TWNFLD$(L) TWNFLD$(L + 1

;

11470 LET CNTFLD$(L) CNTFLD$(L + 1

)

1 1480 LET TELFLD$(L) = TELFLD$(L + 1

)

11490 LET NDXFLD$(L) STR$(L)
1 1500 REM
11510 LET NAMFLD$(L + 1) = TNAMFD$

11520 LET M0DFLD$(L + 1) = TM0DFD$
11530 LET STRFLD$(L + 1) = TSTRFD$
11540 LET TWNFLD$(L + 1) = TTWNFD$
11550 LET CNTFLD$(L + 1) = TCNTFD$
1 1560 LET TELFLD$(L + 1) = TTELFD$
11570 LET NDXFLD$(L + 1) = STR$(L f 1)

11580 LET S = 1

11590 REM
11600 RETURN
12000 REM *SAVREC* SUBROUTINE
12010 REM
12020 REM
12030 OPEN "0",#1 ."ADBK.DAT"
12040 REM
12050 FOR L = 1 TO SIZE - 1

12060 PRINT #1 .NAMFLD$(L) ;",";MODFLD$(L);",";STRFLD$(L);","TWNFLD$(L)
12070 PRINT #1,CNTFLD$(L);",";TELFLD$(L);","NDXFLD$(L)
12080 NEXT L

12090 REM
12100 REM
12110 REM
12120 REM
12130 CLOSE #1
12140 REM
12150 RETURN
13000 REM *FNDREC* (FIND RECORD) SUBROUTINE
13010 PRINT CHR$(12): REM CLEAR SCREEN
13020 REM
13030 IF SRTD = 0 THEN GOSUB 11200: REM *SRTREC*
13040 PRINT
13050 PRINT
13060 PRINT TAB(9) ;"SEARCHING FOR A RECORD"
13070 PRINT TAB(16);"BY NAME"
13080 PRINT
13090 PRINT TAB(9);"TYPE IN THE FULL NAME"
13100 PRINT TAB(7);"IN FIRSTNAME SURNAME ORDER"
13110 PRINT
13120 PRINT
13130 REM
13140 INPUT "NAME IS " ;NAMFLD$(SIZE)
13150 GOSUB 10200: REM *MODNAM* SUBROUTINE
13160 LET SCHKEY$ = MODFLD$(SIZE)
13170 REM
13180 REM
13190 REM
13200 REM
13210 REM
13220 LET BTM = 1

13230 LET TOP = SIZE - 1

13240 FOR L = 1 TO 1

13250 LET MID = INT<(BTM + T0P)/2)
13260 IF MODFLD$(MID) <> SCHKEY$ THEN L = 0

13270 IF MODFLD$(MID) < SCHKEY$ THEN BTM = MID + 1

13280 IF MODFLD$(MID) > SCHKEY$ THEN TOP = MID - 1

13290 IF BTM > TOP THEN L = 1

13300 NEXT L

13310 REM
13320 IF BTM > TOP THEN LET CURR = 0

13330 IF BTM <= TOP THEN LET CURR = MID
13340 IF CURR = 0 THEN GOSUB 13700: REM *NOTREC*

13350 IF CURR = 0 THEN RETURN
13360 REM
13370 REM
13380 PRINT CHR$(12)

13390 PRINT
13400 PRINT TAB(13) ;"*RECORD FOUND*"
13410 PRINT
13420 PRINT "NAME: " ,NAMFLD$(CURR)
13430 PRINT "STREET:", STRFLD$(CURR)
13440 PRINT "TOWN:",TWNFLD$(CURR)
13450 PRINT "COUNTY:", CNTFLD$(CURR)
13460 PRINT "PHONE:", TELFLD$(CURR)
13470 PRINT
13480 PRINT TAB(7) ;"PRESS ANY LETTER TO PRINT"

13490 PRINT TAB(7);"0R SPACE-BAR TO CONTINUE"
13500 FOR I = 1 TO 1

13510 LET A$ = INKEY$
13520 IF A$ = "" THEN I = 0

13530 NEXT I

13540 IF A$ <> " " THEN GOSUB 13600: REM *LSTCUR*

13550 RETURN
13600 REM *LSTCUR* (LIST CURRENT RECORD) SUBROUTINE

13610 LPRINT
13620 LPRINT "N AME :

" , NAMFLD$ (CURR

)

13630 LPRINT "STREET :", STRFLD$ (CURR

)

13640 LPRINT "TOWN :", TWNFLD$ (CURR

)

13650 LPRINT "COUNTY :", CNTFLDO (CURR

)

13660 LPRINT "PHONE :", TELFLD$ (CURR

)

13670 LPRINT
13680 LPRINT
13690 RETURN
13700 REM *N0TREC* (RECORD NOT FOUND) SUBROUTINE
13710 PRINT CHR$(12): REM CLEAR SCREEN
13720 PRINT TAB(1 1)

; "^RECORD NOT FOUND*"
13730 PRINT TAB(4);"*IN THE FORM: " ; N AMFLD$ (S IZE)

;

"
*"

13740 PRINT
13750 PRINT TAB(5) ;"(PRESS SPACE-BAR TO CONTINUE)"
13760 FOR I = 1 TO 1

13770 IF INKEY$ <> " " THEN 1=0
13780 NEXT I

13790 RETURN
14000 REM *MODREC* (MODIFY RECORD) SUBROUTINE

14010 REM
1A020 PRINT CHR$(12): REM CLEAR SCREEN
14030 PRINT
14040 PRINT
14050 PRINT
14060 PRINT
14070 PRINT TAB(10);"*T0 MODIFY A RECORD*"
14080 PRINT TAB(3) ;"*FIRST LOCATE THE DESIRED RECORD*"
14090 REM
14100 REM
14110 REM
14120 GOSUB 13030: REM *FNDREC* SUBROUTINE WITHOUT CLS
14130 IF CURR = 0 THEN RETURN: REM RECORD NOT FOUND
14140 PRINT
14150 PRINT TAB(14) ;"M0DIFY NAME?"
14160 PRINT
14170 PRINT TAB(5) ;"PRESS RETURN TO ENTER NEW NAME"
14180 PRINT TAB(6);"0R SPACE-BAR FOR NEXT FIELD"

14190 FOR I = 1 TO 1

14200 LET A$ = INKEY$
14210 IF A$ <> CHRi,(13) AND A$ <> " " THEN 1 = 0

14220 NEXT I

14230 IF A$ = CHR$(r3) THEN INPUT "NEW NAME" ; NAMFLD$ (CURR

)

14240 IF A$ = CHR$(13) THEN RMOD = 1

14250 IF A$ = CHR$(13) THEN SRTD = 0

14260 IF A$ = CHR$(13) THEN N AMFLD$ (S IZE) = N AMFLD$ (CURR

)

14270 IF A$ = CHR$(13) THEN GOSUB 10200: REM *MODNAM* SUBROUTINE
14280 IF A$ = CHR$(13) THEN LET MODFLD$ (CURR) = MODFLD$ (S IZE

)

14290 PRINT
14300 PRINT TAB(13)

; "MODIFY STREET?"
14310 PRINT
14320 PRINT TAB(5) ; "PRESS RETURN TO ENTER NEW STREET"
14330 PRINT TAB(6);"0R SPACE-BAR FOR NEXT FIELD"
14340 FOR I = 1 TO 1

14350 LET A$ = INKEY$
14360 IF A$ <> CHR$(13) AND A$ <> " " THEN I = 0

14370 NEXT I

14380 IF A$ = CHR$(13) THEN RMOD = 1

14390 IF A$ = CHR$(13) THEN INPUT "NEW STREET" ; STRFLD$ (CURR

)

14400 PRINT
14410 PRINT TAB(13) ;"MODIFY TOWN?"
14420 PRINT
14430 PRINT TAB(5) ; "PRESS RETURN TO ENTER NEW TOWN"
14440 PRINT TAB(6);"0R SPACE-BAR FOR NEXT FIELD"
14450 FOR I = 1 TO 1

14460 LET A$ = INKEY$
14470 IF A$ <> CHR$(13) AND A$ <> " " THEN 1=0
14480 NEXT I

14490 IF A$ = CHR$(13) THEN RMOD = 1

14500 IF A$ = CHR$(13) THEN INPUT "NEW TOWN" ; TWNFLD$ (CURR

)

14510 PRINT
14520 PRINT TAB(12) ;"MODIFY COUNTY?"
14530 PRINT
14540 PRINT TAB(4) ;"PRESS RETURN TO ENTER NEW COUNTY"
14550 PRINT TAB(6);"0R SPACE-BAR FOR NEXT FIELD"
14560 FOR I = 1 TO 1

14570 LET A$ = INKEY$
14580 IF A$ <> CHR$(13) AND A$ <> " " THEN 1=0
14590 NEXT I

14600 IF A$ = CHR$(13) THEN RMOD = 1

14610 IF A$ = CHR$(13) THEN INPUT "NEW COUNTY" ; CNTFLD$ (CURR

)

14620 PRINT
14630 PRINT TAB(8) ;"MODIFY TELEPHONE NUMBER?"
14640 PRINT
14650 PRINT "PRESS RETURN TO ENTER NEW TELEPHONE NUMBER"
14660 PRINT TAB(8);"0R SPACE-BAR TO CONTINUE"
14670 FOR I = 1 TO 1

14680 LET A$ = INKEY$
14690 IF A$ <> CHR$(13) AND A$ <> " " THEN I = 0

14700 NEXT I

14710 IF A$ = CHR$(13) THEN RMOD = 1

14720 IF A$ = CHR$(13) THEN INPUT "NEW NUMBER" ; TELFLD$ (CURR

)

14 730 REM
14740 REM
14750 RETURN
15000 REM *DELREC* (DELETE RECORD) SUBROUTINE
15010 REM
15020 PRINT CHR$(12): REM CLEAR SCREEN

15030 PRINT
15040 PRINT
15050 PRINT
15060 PRINT
15070 PRINT TAB(10);"*T0 DELETE A RECORD*"
15080 PRINT TAB(3) ;"*FIRST LOCATE THE DESIRED RECORD'C"

15090 REM
15100 REM
15110 REM
15120 GOSUB 13030: REM *FNDREC* SUBROUTINE WITHOUT CLS
15130 IF CURR = 0 THEN RETURN: REM RECORD NOT FOUND
15140 PRINT
15150 PRINT TAB(3);"D0 YOU WANT TO DELETE THIS RECORD?"
15160 PRINT TAB(5) ;"*WARNING* NO SECOND CHANCES"
15170 PRINT
15180 PRINT TAB(9) ; "PRESS RETURN TO DELETE"
15190 PRINT TAB(8);"0R SPACE-BAR TO CONTINUE"
15200 FOR I = 1 TO 1

15210 LET A$ = INKEY$
15220 IF A$ <> CHR$(13) AND A$ <> " " THEN 1=0
15230 NEXT I

15240 IF A$ = " " THEN RETURN
15250 FOR L = CURR TO SIZE - 2

15260 LET NAMFLDKL) = NAMFLD$(L + 1)

15270 LET MODFLD$(L) = MODFLD$(L + 1)

15280 LET STRFLD$(L) = STRFLD$(L + 1)

15290 LET TWNFLD$(L) = TWNFLD$(L + 1)

15300 LET CNTFLD$(L) = CNTFLD$(L + 1)

15310 LET TELFLD$(L) = TELFLD$(L + 1)

15320 LET NDXFLD$(L) = STR$(L)
15330 NEXT L

15340 LET RMOD = 1

15350 LET SIZE = SIZE - 1

15360 REM
15370 REM
15380 REM
15390 RETURN

THE HOME COMPUTER COURSE 439

Pioneers In Computing

Grace Hopper
Grace Hopperwas largely responsible for the development of high

level languages, and identifying the first bug!

COBOL

COBOL was one of the first

programming languages to be

written with the intention of

making it easily accessible to

non-mathematicians. The

language encourages the use

of generalised procedures

written in a narrative style of

English, rather than coded

routines peculiar to a

particular problem.

A program in COBOL is

built out of four units. The

name of the program, its

author, and other reference

information comprise the

Identification division.

Although COBOL programs

are intended to be portable

(capable of being used on

many machines), any details

describing the particular

computer for which the

program was originally

written are noted in the

Environment division. Since

the same data may be used in

many parts of the same

program, COBOL has a

separate Data division.

Finally, the procedures that

are to operate on the data are

listed in the Procedure

division

Computer science is generally regarded as a

strictly male preserve. But, increasingly, women
are taking their place alongside men, as equals, in

the development and application of computers. A
woman pioneer of computing was Grace Hopper,
whose most significant contributions were in the

field of software — she created the first compiler

and helped invent the language cobol. But she

was also the first person to isolate a 'bug' in a

computer, and successfully *de-bug' it.

Ajfter doing postgraduate work at Yale, Grace
Hopper returned to her original university, Vassar,

as a member of the mathematics faculty. Here she

remained until the age of 39, when she was called

up for war service with the Naval Ordinance

Computation Project. In 1945, she was ordered to

go to Harvard University to assist a physicist,

Howard Aiken, in the building of a computer.

Aiken had approached IBM in 1937 with the idea

of constructing a computer using adapted

tabulating equipment. His first computer,

although mechanical in design, was successful

enough to encourage IBM to invest in an

improved model that would use

electromechanical relays. The machine that was
subsequently developed was known as the

Harvard Mark II.

In these early days, machines had to be
programmed by rewiring them for each new task.

Thus, in the hot summer of 1945, Grace Hopper
found herself literally enmeshed in the wiring of

the computer. Ballistic computing facilities were

urgently needed for the war effort, and

Commander Aiken would often come into the

workshop and demand: 'Why aren't you making
numbers. Hopper?' After one troublesome

breakdovm of the computer, when the fault was

eventually found to be a moth that had flown in

through the open windows and been hammered to

death in a relay switch, Grace tersely replied: 'We
are debugging the machine!' This first recorded

'bug' was carefully removed from the relay with a

pair of tweezers and is preserved at the Naval

Museum in \lrginia in the log book ofthe Harvard

Mark II. It is glued beside the entry for 15.45 on 9

September 1945.

In the same year another computer, ENIAC
(see page 46), was being built by two engineers,

John Mauchly and Presper Eckert. After the war,

the two men set up their own business to

manufacture a commercial version of the

machine, and invited Grace tojoin their team. Her
main contribution to the development of this

computer, called UNIVAC (UNIVersal

Accounting machine), was in creating software

for it. And it was during her attempts to construct

programs for business use onUNIVAC that Grace

first sought out ways to short-cut the need for

rewriting certain subroutines that recurred over

and over again. By employing what was then

considered the remarkable idea that a computer

could write its own programs, Grace created the

first programming language, together with the

compiler needed to translate it into machine code.

This was given the name 'A-O'. When this

compiler was first presented it caused incredulity

amongst computer professionals who thought

their machines could only perform arithmetic or

manipulate symbols. They were amazed to see a

computer jump to a subroutine in its library store

on encountering an imperative verb at the

beginning of what was ahnost a normal English

sentence.

In May 1959, Captain Hopper was invited by

the Pentagon tojoin a working committee that was

to attempt to create and standardise a single

language for computers in commercial use. In less

than a year the committee produced the first

version of the COmmon Business Oriented

Language (cobol). Grace contributed a great deal

to the committee's attempt to distil the best aspects

of each of the existing languages and thus create a

language acceptable to the industry through its

sheer quality. It is a measure of the success of the

committee's work that cobol is still one ofthe most

widely used languages today.

440 THE HOME COMPUTER COURSE

HE HOJMIE
COMPUTER COURSE

BINDER

* Ifyou pratertobuythe binders
^p^i atelyplease send usyoureheque/pu

order for£3 .95 (including P8cP).We will send
youvolume 1 only Thenyoumayordervolume
2 in thesameway- when it suitsyou!

NEXT TOYOUR COMPUTER...YOURCOURSE MANUALS

indaii—

