

W W WwWwWwWwwwwwwww W w

noMBERLBERPePRPRSREEAARARS

Lf

w w w

- User Guide

Beebug

Contents

L

Section1 Introduction

ted

p
EI
E-
&
k
& ; Section 2 Getting Started
I Installing the ROMs
E 1 3 Copying the library disc
| Entering command mode
g s Beebug C commands
I Entering C commands
¢ Command parameters
I Command qualifiers
. L E H 3 Compiling and running a C program
Copyright © Beebug Limited 1987 y | Automatic compilation
All ightterreserved Ei 3 Section 3 Compiling C Source Text
i g C ili text
This implementation of C was designed and written by David Allison. E: = ngglalt?ognsg}l;%?e ftxcod e
This user guide was written by John Wallace and David Allison. & ! 3 Compilation listing
. E
No part of this product may be reproduced in whole or part by any means I Wrgggggss;egszzges
without written permission of the publisher. Unauthorised hiring, renting, E = The DEBUG qualifier
loaning, public performance or broadcasting of this product or its constituent | Dot Faeros
parts is prohibited. E i E Setting igiteral space
‘ P R
While every care is taken, the publisher cannot be held responsible for any E ' o rogram optimisation
errors in this product, or for the loss of any data or consequential effects from . e 1s :
the use of this package. E ‘. 3 Section 4 Llnklng'Ob)ect Code
Linking object code
FIRST EDITION 1987 & | Qestination of egecutable code
| Library of functions
Published by Beebug Limited, Dolphin Place, Holywell Hill, E I 3 The DEBUG qualifier
St. Albans, Herts. AL1 1EX, England. Telephone (0727) 40303 ' Setting the origin
& I 3 Producing stand-alone code
_&;3

LlJL‘.}

Introduction to C

Becbug C features

Beebug C techinical summary
How to use this manual
Conventions used in this manual
Beebug C compatibility

NSy U1 U1

10
11
12
12
13
13
15

17
17
18
18
19
20
22
22
23
24

25
25
26
27
28
28
28

Section 5

Section 6

Section 7

Running C Programs
Running a C program

Passing arguments to C
Debugging with TRACEBACK
Redirecting the standard streams

Header Files & Library Routines

Header files

hstdio Standard Input/Output routines
h.stdlib Standard operating system routines
h.string Standard string and memory routines
h.ctype Character handling routines
h.assert Diagnostics

h.setjmp Non-local jumps

h.stdarg Variable arguments

h.stddef Standard definitions

h.call Machine code call routines

h.math Mathematics

hlimits Integer arithmetic limits

h.float Floating-point arithmetic limits

Beebug C Library Facility

Introduction

Library facility commands
Creating library modules
Compiling the library facility

Appendices

Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Appendix F
Appendix G

Beebug C Command Summary
Beebug C Extensions

Beebug C Limitations
Summary Of Library Functions
Error Messages

Technical Information
Example Programs

29
29
30
31
32

35

35
36
49
57
63
66
67
68
70
72
78
79

81

84

84
85
87
88

89
91
94
96
103
113
121

PP RRRRERRRRRRRNRDNN

AL

- e N N e\ Sy

e - —— —— —— N RN e e S B M W S S e = e e S

mmwwmmwmmmwwwwwmwwwwwwwm

1. Introduction

Introduction To C

C is a general purpose high level language which gives the programmer
control over the low level workings of the computer. It is a fast and relatively
compact language and has therefore become generally known as a systems
programming language. In actual fact, its modern data structures,
comprehensive set of operators and its general absence of restrictions make it
suitable for almost any task.

C was written for the UNIX operating system by D. Ritchie, and the book
The C Programming Language by Kernighan and Ritchie (Prentice-Hall 1978)
describes the language in detail. Although Kernighan and Ritchie is not a
formal national or international standard, it is generally accepted as
'standard’ C. An ISO standard for C is currently under preparation, and
features many improvements and extensions to the Kernighan and Ritchie
standard. Some of these extensions are included in this implementation, and
are detailed in Appendix B.

Beebug C features

Beebug C is an implementation of the language C based on the version
described in the book The C Programming Language by Kernighan and Ritchie.
The major features of this implementation are:

* Full Kernighan and Ritchie standard plus ISO extensions including:
* new data types
e function prototypes
¢ initialisation of unions
* new preprocessor control lines
¢ local structure and union members

* Runs on a standard 32K BBC computer as well as the B+ and Master
series.

e Works with both the DFS and ADFS, and only requires one disc drive.
* Full floating point mathematics, accurate to 7 significant figures.

* Extensive run-time library on disc, with some functions in ROM for
fast, efficient code.

» Full support for the Acorn operating system (Mode, Osbyte, Vdu etc.).

Introduction 5

o Libraries are searched only for those functions that are required in the I

program, thus producing compact code.
» Debugging facilities and helpful error messages.
» Compiler warning messages for non-portable features.
e Powerful command line interpreter.
¢ Full macro handling facilities.

A few minor differences exist between Beebug C and the Kernighan and
Ritchie 'standard’, and these are documented in Appendices B and C.

Beebug C technical summary

The following is a summary of the full specification.

Expressions: *, &, -, !, ~, ++, -, sizeof, ->, %, [/, %, +,-,>>,<<,<,>,<=,>=,&,

A, &&, L2

Assignments: =, +=, -=, *=, /=, %=, >>=, <<=, &=, A=, | =

Declarations: char (8bits), int (16 bits), short (8 bits), long (32 bits), float (32

bits), double (32 bits), unsigned, void, auto, static, extern, typedef, struct,

union (inc. bit fields)

Statements: if, while, do, for, switch, case, default, break, continue, return,
oto

Ig’reprocessors: #define, #undef, #redef, #include, #if, #ifdef, #ifndef, #else,

#endif, #line, #pragma

Library: over 90 library functions, plus 12 header files: h.stdio, h.stdlib,

h.string, h.ctype, h.stdarg, h.stddef, h.setjmp, h.assert, h.math, h.call, h.limits,

h.float

How to use this manual

This user guide is not intended to teach you the language C, but to explain
the Beebug C system and how to compile and run C programs using it. You
should have a basic knowledge of both the language C and the workings of
the Acorn operating system to write C programs. The chapters in this guide
deal with the following subjects:

Getting Started explains how to get the system up and running. It introduces
each Beebug C command and describes the steps required to compile and
run a simple C program.

Compiling C Source Text describes the compiler in detail, and explains the use
of the optional qualifiers. C conditional compilation, error handling and
debugging methods are also introduced.

6 Introduction

~

DWW W e ww e e e wwwwWww ww w

FRAMT MMM RRRERRRERERERSERRRRNRN

B S— . — e — o — .

Linking Object Code describes the linker and its optional qualifiers. This
section also introduces the run-time library and user libraries.

Running C Programs tells you how to run the executable code, and explains
how to use the optional qualifiers. The method for passing optional
arguments to a C program is described.

Header Files & Library Functions lists the header files and all the library
functions and macros, with a brief description and the syntax of each.

User Libraries describes how to use the library facility to produce user-
defined run-time libraries.

Command Summary lists all Beebug C commands with their qualifiers,
minimum abbreviations, and qualifier defaults. A summary of the library
facility commands is also given.

Beebug C Extensions details the ISO extensions to the Kernighan and Ritchie
standard.

Beebug C Limitations details the minor limitations of this implementation.
Summary of Library Functions lists all the functions and macros in alphabetical
order. The function type is given, together with the name of the header file
required to declare the function, and the page number on which a full

description may be found.

Error Messages lists and explains all the errors that may be generated by this
implementation.

Technical Information gives an insight into the workings of Beebug C, which
may prove useful to advanced programmers.

Example Programs describes some example programs that may be useful to
help you get started.

Conventions used in this manual

In this manual specific key presses such as the RETURN key are indicated
thus:

RETURN
C commands are also shown in the same typeface:

CLOSE

Introduction 7

If a word in the same typeface is shown in italics, it means the word is a
parameter and should not be typed literally. In the example below:

MODE mode number

you should type the command MODE followed by the actual mode number
you require, and not the words mode number.

Optional parameters are shown in square brackets thus:
COMPILE [qualifiers] filename
C program listings and screen output are shown as follows:

printf ("C program") ;

Beebug C compatibility

Beebug C is compatible with the BBC Micro model B, B+, Master 128 and
Master Compact. It may be used with the standard DFS (Disc Filing System)
or the Acorn ADFS (Advanced Disc Filing System). Beebug C is not fully
compatible with early versions of the DFS on the Master 128 (i.e. versions
before 2.29). This is not a fault of Beebug C, but is due to the fact that the DFS
does not close files correctly. The solution to this problem is to upgrade to
version 2.29 of the DFS, or use the ADFS instead.You may find a sideways
RAM version of the 2.29 DFS on your Master welcome disc. Alternatively,
contact your local Acorn dealer for details of the upgrade.

To use Beebug C with the 6502 second processor a special version of the
language ROM must be loaded into RAM. The new version is called CSP and
is supplied on the library disc. To load the new version, simply type:

*CSP
Once this file has been loaded Beebug C will operate as normal. Please note

that both Beebug C ROMs must be fitted in your computer for this to work
correctly.

W Wwwwwwadu wwww

aoW W w W W

VARV

8 Introduction

mmmMAmEREREReRERERAeRRERRRRRNRNRRE

2. Getting Started

This section describes how to install the C ROMs into your computer, and
how to enter the C language. Each C command is introduced, and the steps
required to compile and run a C program are described.

Installing the ROMs

Beebug C is supplied on two 16K ROMs and a dual-format disc containing
the library of standard functions. The ROMs are labelled lang and comp, and
both must be plugged into sideways ROM sockets for the software to
operate. If you are unfamiliar with installing sideways ROMs, please contact
us, or your local Acorn dealer for advice.

Warning: it is absolutely essential to insert the ROMs in the correct orientation.
Failure to do so will destroy them.

Once fitted, you can check that the ROMs are correctly installed by switching
on the computer and typing;:

*HELP

A list of all the sideways ROMs in your computer will be displayed, and
should include:

Beebug C 1.0

The number following the name is the version number, and may be different
to that shown above. Please make a note of the version number and always
refer to it in any correspondence about this product.

Copying the library disc

The library disc supplied with C contains the standard library of functions,
header files, and some example programs. Whenever you use the compiler or
linker the system looks for your C programs on the default drive, and the
header files and library functions in the default library. This means that
normally all these files should be on the same disc. By changing the library
drive (using *LIB), you can have a disc containing the header files and
library functions in one drive, whilst keeping the other drive free for
programs.

It is important that you make a backup of the library disc supplied with C
before using the system. Use the normal BACKUP command to do this, and
then store the original disc in a safe place and use the copy when compiling

DWW W

14

|

Getting Started 9

programs. To make a working copy of the library disc (i.e. a copy containing
only the essential files for using C), type the following;

COPY 0 1 $.%
COPY 0 1 H.

The above commands assume a dual disc drive is being used. To copy the
disc using a single disc drive, copy the files to drive 0, inserting the correct
source and destination discs when prompted.

You may use Beebug C with the ADFS by copying the contents of the
directories $, E, and H to an ADFS disc. It is worth noting that each C
program you write will require 3 files (source, object and executable), so you
are limited to about 10 C programs per DFS disc (although in practice this
number may be less since the standard library and header files may be stored
on the disc). On the ADFS you can have up to 47 files per directory, and an
almost unlimited number per disc!

Entering command mode
To enter C command mode, simply type:
*C
You should see the following message appear on the screen:

Beebug C
$

The symbol $ is the Beebug C prompt, and indicates that you may enter a
command. In C, only a small set of commands is required:

CLOSE
MODE

COMMAND COMPILE
REPORT RUN

LINK

A description of each command is given below.

If you would like your computer to power-up automatically in C, install the
ROM labelled lang in the highest priority ROM socket, or on a Master
computer simply use the command:

*CONFIGURE LANG n

where n is the socket number containing the ROM labelled lang.

10 Getting Started

ML

34

mm

mm -

L T

m - mmMmm

Mo E
MO W OW WOl W W R W W WwWw e wWw W w W w

v

3

Beebug C commands

The following commands, and their associated qualifiers are recognised by
the system. In the following list and throughout the manual, a string
enclosed in square brackets denotes an optional part.

CLOSE

This command closes all open files, and may be useful if BREAK is pressed
during compilation or linking. In these situations a file may be left open, and
will be inaccessible until properly closed.

COMMAND mode number
This tells the system what to do if an unrecognised command is entered. The
following modes are available:

mode 0 - print normal error message (default setting)
mode 1 - attempt to *RUN the file (passes it to OSCLI)
mode 2 - attempt to RUN the C program

You can also specify the mode on entry to C by issuing a number as a
parameter after the *C command. For example:

*C 2

will enter C and set the command mode to 2. This means that the system will
treat any unrecognised command as a C program, and will attempt to
execute it.

COMPILE [qualifiers] filename
Compile the C source text £ilename. This command has a number of
optional qualifiers which are described in detail in section 3 of this guide.

LINK [qualifiers] filename[,...]

Link the object £ilename to any other object files and to the standard library.
This command has a number of optional qualifiers which are described in
detail in section 4 of this guide.

MODE mode_number
Set screen mode.

REPORT
Displays the last error message that was reported (see page 32).

RUN [qualifiers] filenamelargl arg2 ... 1
Execute the C program filename. This command has a number of optional
qualifiers which are described in detail in section 5 of this guide.

Getting Started 11

In addition to the above commands, all the usual operating system star (*)
commands may be entered whenever the dollar prompt ($) is displayed.

Entering C commands

Each command may be typed in either upper or lower case, and may be
abbreviated in two ways: simply by typing enough characters to identify
uniquely the command, or with a dot (.) after the abbreviation. For example
the MODE command may be abbreviated to any of the following:

M
MO
MOD
M.
MO.
MOD.

If you type a command that cannot be uniquely identified, the system will

print an error message. A list of the minimum abbreviations allowed is given
in the command summary in Appendix A.

Command parameters

Most of the commands listed above require a certain number of parameters
which must be supplied (the exceptions are CLOSE and REPORT which have
no parameters). If the parameter is not supplied, the system will prompt for
the missing parameter. For example, if you enter the MODE command without
specifying a screen mode, the system would respond with a prompt asking
for the required screen mode to change to:

MODE
Mode:

Parameters are typed on the command line after the command name, and
each one must be separated by a space. Some commands allow a list of
values to be supplied for a single parameter, and in this case each item
should be separated by a comma (,). For example, the LINK command
allows the parameter to be a list of filenames that are to be linked together:

LINK filel, file2, file3

A parameter may be either a number or a string of characters. A string need
not be enclosed in quotes (") if it does not contain a separating character (i.e.
a space, comma or slash). Strings not enclosed in quotes are automatically
converted to upper case. A numeric parameter may be entered in either
decimal, or in hexadecimal if prefixed by an ampersand (&).

12 Getting Started

MMMITWN
Wl

m m

PN MMM PRI RM

W Wow

o oo W Wl Wl W W W W W W

FUBBI VRV VI

Command qualifiers

The commands COMPILE, LINK and RUN accept a number of optional
qualifiers. These are special keywords which modify the operation of the
command in some way. The qualifiers may be placed at any position on the
command line after the command itself, and are identified by their first
character which must be a slash (/). A qualifier may be typed in upper or
lower case, and may be abbreviated by supplying enough characters to
uniquely identify it. If the abbreviation does not specify a unique qualifier,
the first one the system matches will be used.

A qualifier may also require a value to be supplied with it. If it does, the
value should be preceded by an equals character (=). For example, the
COMPILE command accepts a qualifier called LSPACE which must take a
numeric value:

COMPILE/LSPACE=§500 filel

This example compiles the file filel and sets LSPACE (Literal Space) to
&3500. Certain qualifiers are boolean - that is they can be either true or false.
To specify that the qualifier should take a false value, precede the qualifier
by the word NO. For example, the RUN command allows a qualifier
TRACEBACK. This is a boolean qualifier and can be used as follows:

RUN/TRACEBACK
or
RUN/NOTRACEBACK

As with parameters, a qualifier may allow a list of values to be supplied. For
example, in the COMPILE command there is a qualifier DEFINE which takes
a list of string values:

COMPILE/DEFINE=DEBUG, LIST, VERSIONL filel

This command compiles the file filel and defines three macros DEBUG,
LIST and VERSIONI.

Compiling and running a C program

The rest of this section describes how to get a C program entered and
running. The example program is called welceme and is included on the
library disc to save you having to type it in. The source text for the sample
program c.welcame is:

Getting Started 13

/* Beebug C Welcome Program */ i

$includs <h,Sedies Notice tha@ we do not specify thg directory name since the .comp.ile'r always

searches directory ¢ for it. If all is well the compiler will print a listing of the
program on the screen as it compiles it. A new file will be produced called
o.welcome which is the object code suitable for linking in the next step of
the operation. When compilation is complete a confirmation message will be
displayed, and the usual prompt should re-appear.

Ly

e o — - e S

main ()

{
printf ("Welcome to Beebug C\n");

}
Linking the object o .welcome

This links any required library functions to the object code o.welcome. In
this example the function printfis required to be linked from the library. The
linker may also be used to link a number of user programs together to create
much larger programs. To link o.welcome type:

Alth_ough the' example program is very small, the steps taken to compile and
run it are basically the same for all C programs no matter how long or
complicated they may be. There are four stages in compiling and running a C
program:

1. Prepare the C source text using a word-processor or text editor. LINK welcome
Note again that we do not need to specify the directory o. During linking the
system will access the library and header files, and produce an executable
program called e . welcame. When linking is complete the usual $ prompt
will re-appear.

2. Compile the source text to object code.

W W w w Ww w w

3. Link the object code to other objects and to the library.

(]

4. Run the executable C program.
] Running the executable program e .welcome
Preparing the C source text To run the welcome program type:
The C source text should be entered using a word-processor or text editor,
and then saved to disc, normally in directory ¢. Most word-processors ancli
text editors may be used, but those allowing editing in 80 columns will be
more useful. It is important that you do not insert any special formatting
codes in your text (no justification, formatting etc.), and that when you save
it to disc you save it as a pure ASCII file. If you use View or InterWord you
may use TAB to indent loops to create a readable listing. InterWord operates
slightly differently to the other word-processors, but may be used
successfully by following these simple rules:

RUN welcome

W w

Note again that we do not need to specify the directory e. This command
will load the executable program e .welcome and, if all the previous steps
have been followed correctly, execute it. The program is very small, and
simply prints a message on the screen. To run the program again you will
have o enter the command RUN welcome again in full.

Automatic compilation

In the example above, it would have been much easier to use a single
command to compile, link and run the program welcome. A special utility
on the library disc called RUNC allows just this, by programming four
function keys with the following definitions:

1. Switch off paging
2. Move the left margin to the extreme left-hand edge of the screen
3. Save the text using the spool option number 8

Compiling the C program c.welcome

To compile the example program enter and save it as ¢.welcome (this file is
supplied on the library disc if you prefer not to type it in). Ensure that you
are in C command mode, and type:

£f0 COMPILE/NOLIST filename LINK filename RUN filename
f1 COMPILE/NOLIST filename

£f2 LINK filename

£f3 RUN filename

COMPILE welcome
To use this utility type:

*RUNC filename

VR VAU VARV VIRV VA VIRT VIt VIR VIt Viggi-y

14 Getting Started

Getting Started 15

P2 PP R RERERRERSR®N

[T Y I S ————————— e g

LV

where £ilename is the name of the C program you wish to compile. *RUNC
automatically enters the language C, so it may be called from Basic or most
other languages. To compile, link and run the example program welcome

type:

*RUNC welcome

and press function key £0. Note that the directory name is not specified. If
*RUNC is called without a filename, key £0 will not be defined, and the other
keys will prompt for a filename when pressed.

Please note that this utility is supplied on disc, and will only work as
described above if the file RUNC is in the currently selected library. The
function key definitions will normally remain active until they are re-defined
using *RUNC, or until CTRL BREAK is pressed.

16 Getting Started

YR TR T I R F ™

[CURBVVITY

La)

s MM MMM RERERRREAERRERESROMNON
1

o —————
La)

3. Compiling C Source Text

The last section described how to use the COMPILE command. This section
describes the compiler in more detail and explains how to use the optional
qualifiers. The COMPILE command has the following syntax:

COMPILE [qualifiers] filename

The optional qualifiers which modify the operation of the compiler, are:

/ [NO]OBJECT [=filename]

/ [NO]LIST [=filename]

/ [NO]WARNINGS

/ [NO] PORTABLE

/ [NO]DEBUG
/DEFINE=macro _namel[, ...]
/LSPACE=buffer size

/ [NO]OPTIMISE

Compiling source text

Once completed, a C program should be saved to disc, normally in directory
c. This file is called the source file. The compiler takes this source file and
compiles it to an intermediate code called object code. During compilation
any errors in the source code are identified, and only when all errors have
been corrected, will the object code be generated. The object code is then
linked to produce the final executable code (see sections 4 and 5 for further
details).

To compile a source file, type:
COMPILE filename

The compiler looks for the source file £ilename in sub-directory ¢ of the
current directory. For example, if the current directory is $ (which it normally
is) and you type:

COMPILE general

the compiler looks for the source file $.c.general. You may of course, enter
a specific pathname if required. For example, to compile the source file
f.general, simple type:

COMPILE f.general

Compiling C Source Text 17

|

R,
wi

If the compiler cannot find the source file, it will display an error message.
When compilation is complete, an appropriate message is displayed.

Error messages

If the compiler cannot understand the source code, an error message is
displayed followed by the offending line of source text. Object code is not
generated. In such a circumstance the compiler displays the appropriate
error message, followed by the offending line of source text. The compiler
then pauses allowing the user to press either ESCAPE to exit, or any other key
to continue compiling. If the user chooses to continue, the compiler continues
parsing the source text so that any other errors are located. Once one error
has been detected, other errors may be reported later as a direct consequence
of it. For example, if a vital character is omitted, the compiler may continue
parsing from an unsuitable position in the code thus reporting further errors.

o 4
ad

Destination of object code

The object code generated by the compiler is normally saved in sub-directory
o of the current directory. So, the command:

W

COMPILE general or COMPILE f.general

]

will generate the object code o.general. If you are using the ADFS, the
error message Not found will be generated if directory o does not exist. You
may specify a different object filename by using the optional qualifier

OBJECT. For example, the command: The following program contains two errors:

w W

COMPILE/OBJECT=d.oldgen general /* Error example */

w

will compile the source file c.general and produce the object file #include <h.stdio>

d.oldgen. For further details about the use of optional qualifiers, please

™

refer to section 2. main ()
Compilation listing 3 {
int ch;
During compilation the C source text is listed to the screen. The compiler) float ch;
automatically assigns a number to each line of the listing, so if an error while ((c = getchar()) != EOF);

L)

occurs, the line may be identified. Line numbers start with line 1 at the
beginning of the source text, and continue to the end of the text. To compile a
program without producing a listing, use:

printf("%d ", ch);
}

L

The following output will be displayed when it is compiled:
COMPILE/NOLIST filename

)

Beebug C Compiler V1.0

Alternatively, the listing may be directed to a file instead of the VDU. For
example:

i Wl

/* Error example */

#include <h.stdio>

COMPILE/LIST fil
/ ilename # pragma 1 /* list off */

laj

will compile filename and produce a file called 1. filename containing a

complete listing of the program, including line numbers and any associated . g T
error messages. Alternatively, the listing may be directed to any file q 6
specified. For example: i 7
1 8 int ch; |
COMPILE/LIST=debug filename 9 float ch;

la)

will compile £ilename, and produce a file called debug. ** Error - Multiply defined local symbol at line 9 in

C.ERREX
float ch;

CURBTY

nHTHAMATEA TR RERRERERERETTNERERRRRN

T

18 Compiling C Source Text Compiling C Source Text 19

e

ln)

[P ——

10 while ((c = getchar()) != EOF);

** Error - Undeclared identifier at line 10 in C.ERREX
while ((c = getchar()) != EOF);

11 printf("sd ",
12}

ch);

Compilation completed with 2 errors and 0 warnings

A complete list of all error messages is given in Appendix E.

Warning messages

Warnings simply notify the user that the program contains non-portable or
undesirable code. In such circumstances the compiler displays the
appropriate warning message, followed by the offending line of source text.
The compiler then pauses allowing the user to press either ESCAPE to exit, or
any other key to continue compiling. After such a situation, object code is
still generated. A complete list of all warning messages is given in Appendix
E. The following program is an example of a valid C program that will
produce a warning;:

/* Warning Example */

#include <h.stdio>

main ()

{

unsigned long this is a very long variable name;

}

The following output will be displayed when it is compiled (the display may
vary slightly on different systems):

Beebug C Compiler V1.0

1 /* Warning Example */

2

3 #include <h.stdio>

1 # pragma 1 /* list off */

4

5 main()

6

7 |

8 unsigned long this is_a very long_variable name;

20 Compiling C Source Text

LEEENENEERNENNENEERNE NN NENNNEE.

v

.

W

Ll W W d

w

W W la

W oW oW W W a W a kW

UUBBVVRRUY

** Warning - Symbol name truncated at line 8 in
C.WARNEX
int this is_a very long variable name;

9 1}
Compilation completed with 0 errors and 1 warning

Here the compiler is warning the user that it has truncated the long symbol
name in line 8 (symbol names are limited to 31 characters - see Appendix C).
In this instance the warning can be ignored and linking may continue as
normal. Warning messages may be switched off with the optional qualifier
WARNINGS. For example, try compiling the above program again using the
command:

COMPILE/NOWARNINGS warnex

The compiler may generate a special type of warning to indicate that code is
non-portable. Non-portable code contains extensions to C that are not part of
the Kernighan and Ritchie standard. Normally the compiler is in ‘non-
portable' mode, and does not generate these warnings. If you want to write
portable code that will run on other C systems, use the optional qualifier
PORTABLE. For example, try the above program again using the command:

COMPILE/PORTABLE warnex
The following is displayed:

Beebug C Compiler V1.0

1 /* Warning Example */

2

3 #include <h.stdio>

1 # pragma 1 /* list off */

4

5 main()

6

7 {

8 unsigned long this is a very long_variable name;

** Warning - Type specifier is non portable at line 8
in C.WARNEX
unsigned long this is a very long_variable name;

** Warning - Symbol name truncated at line 8 in
C.WARNEX

Compiling C Source Text 21

unsigned long this is a very long variable name;
9 1}
Compilation completed with 0 errors and 2 warnings

Notice that there is now another warning message at line 8. It warns the user
that the non-portable type specifier unsigned long has been identified.

The DEBUG qualifier

If a run-time error occurs, the line number, function and source file in which
the error occurred, are displayed. This is possible because during
compilation the compiler stores this debugging information within the
program. This information is used to great effect with the qualifier
TRACEBACK, explained in section 5. The optional qualifier DEBUG controls
the generation of the debugging information, allowing more compact code to
be produced. The length of the executable code for the welcome program
e.welcome is &66. Try compiling it again without debugging code:

COMPILE/NODEBUG welccome

After linking, the executable code is only &57 bytes long. This represents
quite a significant reduction in program length. The drawback of using
NODEBUG is that if a run-time error occurs, there is no line number, function
name or source file name in the error message. As you will see in section 4,
debugging code can also be removed during linking. This is a powerful
option allowing you to compile programs with debugging information
switched on, and when fully tested, link them with NODEBUG i.e. debugging
switched off. This is particularly useful for programs that consist of a lot of
parts to be linked, as to switch debugging on or off, it is only necessary to re-
link with LINK/DEBUG or LINK/NODEBUG.

Defining macros

The optional qualifier DEFINE allows a number of macro names to be
defined at compile time. The syntax of the qualifier is:

COMPILE/DEFINE=MACRO1l,MACRO2,MACRO3 filename

where MACRO1, MACRO2, and MACRO3 are the defined macros, and filename
is the file to be compiled. The main purpose of defining macros, is to control
conditional compilation i.e. which parts of the source text are to be compiled.
It is beyond the scope of this user guide to explain conditional compilation
fully, but the following example shows a common application:

22 Compiling C Source Text

HMMMMMMMMMMMMMMMMMMH\H‘NE

monnn

W W W W W

w W

YRR TTIR TR R PR Y

TR TR TINY

NV Y

LUV Y

/* Conditional compilation */

#include <h.stdio>

main ()

{
#ifdef SPECIAL

printf ("Special code\n");
telse

printf("Normal code\n"):
#endif

}

When compiled the condition at line 7 fails (because SPECIAL is not
defined), therefore the second expression after #else is compiled. When run,
the program prints the message:

Normal code

If the macro name SPECIAL is defined at compile time:
COMPILE/DEFINE=SPECIAL filename

the condition at line 5 is true, and the program prints:
Special code

Conditional compilation has many uses, but is especially useful in program

testing and debugging. All the standard Kernighan and Ritchie directives are
implemented i.e. #if, #ifdef, #ifndef, #else, and #endif.

Setting literal space

Beebug C sets aside &300 (768) bytes for storage of literals (literals are strings
enclosed in quotes). This should be quite sufficient for small to medium
applications, but if your program contains a lot of literals it may be changed
with the optional qualifier LSPACE. For example:

COMPILE/LSPACE=1000 filename

sets literal space to 1000 (decimal) bytes. Literal space may be specified in
hexadecimal by prefixing the number with an ampersand (&). For example:

COMPILE/LSPACE=&500 filename

sets literal space to &500 bytes. An error message is displayed if there is not
enough literal space.

Compiling C Source Text 23

P ——

y

mer TN

Program optimisation

Beebug C carries out limited program optimisation at compile time. If a
program contains expressions containing only constants, then they will be
evaluated at compile time, rather than run time. This leads to faster and more
compact code. In some specialist applications it may be necessary to switch
off optimisation. This is done with the optional qualifier OPTIMISE, as
follows:

4. Linking Object Code

This section describes the LINK command, and its optional qualifiers. The
syntax of LINK is:

LINK [qualifiers] filenamel[,...]

COMPILE/NOOPTIMISE filename The optional qualifiers which modify the operation of the linker, are:
/ [NO] EXECUTABLE [=filename]
/ [NO]LIBRARY [=filename[, ...]]
/ [NO]DEBUG
/ORIGIN=start address
/ [NO] STANDALONE

m
w W ow o w ow w ow W

Each qualifier will be described in detail in this section.

Linking object code

Once a C program has been compiled to object code, it must be linked to
produce executable code. The command to run the executable code is
described in the next section. The linker's main task is to scan the object code
for any unresolved functions, and load them in from the run-time library.
Unresolved functions are those functions not defined in the main source text
file, such as printf, mode, and malloc. To ensure that the final code is
compact, the linker loads only those functions required by the program, and
not the complete library. The linker is also used to link together a number of
object files, to produce a single executable file. Please note that all C
programs must be linked - even trivial programs that do not access library
functions!

TETTREM
W W W oW W W

m
T

To link an object file, type:

m
i

LINK filename

The linker looks for the object file £ilename in sub-directory o of the current
directory. For example, if the current directory is $ (which it normally is) and

you type:

m m m
UVRISUVIRRY VARRT VIRTY|

LINK applics

the linker looks for the object file $.0.applics. You may, of course, enter a
specific pathname if required. For example, to link the object file £.applics,

simply type:

)

nmmm
\\)

24 Compiling C Source Text Linking Object Code 25

»
T\

i

———

LINK f.applics

If any errors occur during linking, an appropriate error message is displayed,
and executable code is not produced.

The following example shows how the linker is used to link together a
number of object files:

LINK progl,prog2,prog3

This command links together the object files progl, prog2 and prog3. The
name of the executable file will be e.progl i.e. in sub-directory e using the
first name in the list. This facility is particularly useful in modular
programming. For example, progl could be the main program, with prog2
and progs3 files containing all of the detailed functions.

Destination of executable code

The executable code generated by the linker is normally saved in sub-
directory e of the current directory. So, the command:

LINK applics
or
LINK f.applics
will generate the executable code e.applics. If you are using the ADFS, the
error message Not found will be generated if directory e does not exist. You
may specify a different executable code filename by using the optional
qualifier EXECUTABLE. For example, the command:
LINK/EXECUTABLE=d.general applics
will link the object file o.applics and produce an executable file
d.general. The same qualifier can be used to prevent executable code from
being generated i.e. linking will take place as usual but the executable code is

not produced. For example:

LINK/NOEXECUTABLE game

26 Linking Object Code

|

wow o oW oo oo oW b W ow oW ow W w ow W

EENEENENEEEEEEENENENENENEN NN NN S N
W

)

Library of functions

During linking, Beebug C loads from disc any unresolved functions in the C
program. These functions are stored in the run-time library rtlib, and are
documented in section 6. Beebug C always searches the current library
directory for rt1ib. The library directory is normally :0.$ (drive 0, directory
$), but it may be changed with the command *LIB. For example, you may
wish to store the library in drive 1, leaving drive 0 free for C programs. To do
this, type:

*LIB :1.$

Please note that other Beebug C files such as RUNC (see section 2), and all the
header files (see section 6) should also be in the library directory. If you
change the library, be sure to transfer all of these files as well as rtlib.

The optional qualifier LIBRARY is provided to allow the user to specify other
run-time libraries in addition to rt1ib. These libraries are called User
Libraries, and can be created using the library facility described in section 7.
A user library is particularly useful for holding frequently used functions.
For example, if you regularly write programs involving statistics, you could
create a library of statistics functions (using the library facility described in
section 7). If this library was called stats, you could link the program
survey with:

LINK/LIBRARY=stats survey

This would search library stats for any unresolved functions in the
program survey. Please note that stats is a special file generated by the
library facility, and is not simply object code. A number of user libraries may
be linked, by listing their names separated by commas. For example:

LINK/LIBRARY=rtlib, statsl, stats2, stats3 survey

The advantage of using libraries in this way, is that only those functions that
are required are appended to the executable code. If you simply linked the
program survey to an object file funcs containing all the functions, then the
whole of this file would be appended. For example:

LINK survey, funcs

would produce a much longer executable file. The library facility allows the
run-time library to be extended, so if you wish, you can simply add new
functions to it, instead of creating a new library.

Linking Object Code 27

The DEBUG qualifier

The DEBUG qualifier removes debugging information from the object files
before generating the executable code. This has the effect of producing more
compact code, at the expense of detailed error messages. The qualifier is used
as follows:

LINK/NODEBUG game

For further details on the use and the effects of NODEBUG, please refer to
section 3.

Setting the origin

Beebug C executable code is not relocatable and is executed at a fixed
address - normally PAGE (OSHWM). The optional qualifier ORIGIN allows
the execute address to be specified. This is useful to produce code for
different systems which may have different PAGE settings. For example, if
you write a C program on a Master 128 (PAGE=&0E00) and would
eventually like to run it on a BBC B (PAGE=4&1900), ORIGIN must be set to
the highest PAGE value:

LINK/ORIGIN=&1900 utils

This will produce C code which loads and executes at &1900. The address is
specified in decimal, or in hexadecimal if prefixed with an ampersand (&).

Producing stand-alone code

Normally C programs must be executed from within C with the RUN
command (detailed in the next section). Using the STANDALONE qualifier you
may produce completely independent code. For example:

LINK/STANDALONE utils

will produce a stand-alone version of the program utils, that may be
executed at any time by typing:

*utils

The advantage of this type of file is that C programs will run on machines
not fitted with Beebug C.

Please note that for this option to work, a special file called rtsys must be
present in the current library. This file is not supplied as standard with
Beebug C and is available at an extra charge.

28 Linking Object Code

P M MMM ERNMAMAMMMONETNSN

Lo ld e b oW o W W oW W ow dl

o o o o o

a

5. Running C Programs

This section describes how to use the RUN command to execute the linked
code. The RUN command has the following syntax:

RUN [qualifiers] filename [argl arg2 ...]

The optional qualifiers are:

/ [NO] TRACEBACK
/INPUT=filename

/ [NO]OUTPUT [=filename]
/ [NOJERROR [=filename]

Please note that this RUN command is not the same as the Basic command
RUN, nor the operating system command *RUN. C programs can only be
executed on a computer fitted with Beebug C, and only from within C
command mode (unless the stand-alone option has been used - see page 28).

Running a C program
The full syntax of the RUN command is given above, but normally you will
only need to use the command in its simplest form:

RUN filename
This simply runs the program filename. For example:
RUN general

will run the program general. Note that the directory is not specified since
directory e is always used for executable code. So in the example above, the
command actually looks for the executable file $.e .general. You may of
course, specify a different directory if required. For example, to execute the
program q.general, simply type:

RUN g.general

If the command cannot find the executable file, or if the file specified is not
executable, an appropriate error message will be displayed. Please note that
to re-run a program it is necessary to enter the command again in full - you
cannot run a program again by simply typing RUN.

Running C Programs 29

P ——

Passing arguments to C

A number of string arguments may be passed to a C program by listing them
after the name of the executable code. For example:
RUN argtest argl arg2 arg3 argn

will pass the strings argl, arg2, arg3etc. to the C program argtest. The
following C program demonstrates how C interprets these arguments. The
integer argc contains the number of arguments, and the pointer *argv(]
points to an array containing the arguments. The first array element argv(0]
contains the program name argtest, argv!1] contains argl, argv[2] contains
arg2 etc.

/* Passing arguments to C */

#include <h.stdio>

main(argc, argv)

int argc;

char *argv[];

int arg;

printf ("There are %d arguments.\n", argc-1):;
for (arg = 1; arg < argc; ++arqg)

printf ("Argument %d = %s\n", arg, argvlargl):

}

Enter and save the above program, with the name argtest. Compile and
link it in the normal way, then run it as follows:

RUN argtest UK France Germany USA Italy Belgium
The program should output the following;:

There are 6 arguments.

Argument 1 = UK
Argument 2 = France
Argument 3 = Germany
Argument 4 = USA
Argument 5 = Italy
Argument 6 = Belgium

30 Running C Programs

:

rmmmmmomMomRmHAMTMmMATTErEM"TRE®EEERTERrEDOOONEQ
w

oW oo ol o e o b b ow W oW W W e wd

a

Debugging with TRACEBACK

TRACEBACK is an optional qualifier to the RUN command that causes more
detailed debugging information to be displayed when ESCAPE is pressed or
when errors occur during program execution. The following program may
be used to demonstrate its use. Enter the following C program and save it
with the name trdemo.

/* TRACEBACK Demonstration */
#include <h.stdio>

main ()

{

printf ("function = main\n");
funcl () ;

}

funcl ()

{

printf ("function = funcl\n");
func2 () ;

}

Furne2 i)

{

printf ("function = func2\n"):;
printf ("Now press ESCAPE") ;
for (::):

}

Now compile and link it in the usual way. Do not use the qualifier NODEBUG,
as this prevents debugging information from being displayed (see DEBUG in
sections 3 and 4). The program itself simply calls two functions, and then
goes into an infinite loop. Run the program as follows:

RUN trdemo

then press ESCAPE to exit from the infinite loop. The following information
should be displayed:

Escape at line 21
in function 'func2' in file 'C.TRDEMO'

This gives the line number that was being executed when ESCAPE was
pressed, the function containing that line, and the file containing that
function. Now try using the qualifier TRACEBACK:

Running C Programs 31

RUN/TRACEBACK trdemo

Again, press ESCAPE to exit from the infinite loop. The following information
should be displayed:

Escape at line 21
in function 'func2' in file 'C.TRDEMO’

A = 00000010 B = 03001F00 PC = 1F92
ASP = 00 FSP = 09 VSP = 7BF8
File Function Line
C.TRDEMO func2 21
C .TRDEMO finel 14
C .TRDEMO main 8

This displays the usual error message together with the values of the internal
C registers, and the active functions. These register values are only of interest
to advanced C users, and may have different values to those shown above (a
detailed description of these is given in Appendix F).

The active functions are those functions that have been called to reach the
current line. In this example the display shows that ESCAPE was pressed at
line 21 in function func2, which was called from function func1 at line 14.
This in turn was called from function main at line 8. In addition to this
information, the source file containing each function is displayed. This will
prove useful if a number of source files have been linked together.

The REPORT command can be used at any time to display the last error
message reported. The format will be the same as the original message.

Redirecting the standard streams

Three optional qualifiers are available to redirect the standard input, output
and error streams. These three streams are automatically declared in the
header h.stdio as stdin, stdout and stderr.

stdin is the standard input stream as set by the OS command *FX2. This is
normally the keyboard.

stdout is the standard output stream as set by the OS command *Fx3. This is
normally the VDU.

stderr is the standard error stream, to which user generated errors may be
sent. This is normally the VDU.

32 Running C Programs

mnmmmmmemmMmMPMMPPrRrTPEMEETTMPTOAMPTEOENNNESN
DN NN N W N NN Wl owww wowow w

Redirecting stdin
The standard input stream stdin may be redirected with the optional
qualifier INPUT. For example:

RUN/INPUT=data redir

will redirect the input stream to come from the file data. This means that
input will come from the file data and not the keyboard. The following
program may be used to demonstrate this. Enter the program and save it
with the name redir, then compile and link it in the usual manner.

/*Redirect Stream Example */
#include <h.stdio>

main ()

{

char inputl[]:

scanf ("%s", input):;
printf ("$s\n", input):

}

This program simply gets characters from the input stream and puts them to
the output stream. The normal input stream is connected to the keyboard,
and the output stream to the VDU. This program therefore, prints on the
screen anything that is typed at the keyboard. The program terminates when
RETURN is pressed. You can test this by entering:

RUN redir
and typing a few characters followed by RETURN. Now type the following:
RUN/INPUT=c.redir redir
This should print the following:
/*Redirect
The input stream has now been redirected to come from a file instead of the
keyboard. In this case the file is ¢. redir, which is the C source file for this
example. Notice that only the first word of the source file has been output.

This is simply because the input from scanf terminates at the first ‘'white
space' character it receives, which is at the end of the first word.

Running C Programs 33

Redirecting stdout

The standard output stream stdout may be disconnected or redirected with
the optional qualifier OUTPUT. Try the following examples with the file
redir from the last example:

RUN/NOOUTPUT redir

This will disconnect the output stream. Anything sent to stdout will not be
displayed. The following example is more useful:

RUN/OUTPUT=cutfile redir
This will redirect all output to the file out £ile. Now anything printed to the

VDU will not appear on the screen, but will be written to the file outfile in
the default directory.

Redirecting stderr

The standard error stream stderr may be disconnected or redirected with the
optional qualifier ERROR The standard error stream may be disconnected
with:

RUN/NOERROR redir
or redirected to a file:
RUN/ERROR=errfile redir

The following example shows how to send a string to the standard error
stream.

/* Standard Error Stream Example */
#include <h.stdio>

main ()

{

fprintf (stderr,
}

"This is an error!\n"):;

Please note that the standard error stream is for user-generated errors and
text. System run-time errors are always sent to the VDU.

34 Running C Programs

m
AW OW W W W W W w ool owowow wowoww W w

1]

m

TP ETEARD NN

\

u

——

6. Header Files & Library
Routines

Header files

Beebug C is supplied with 12 header files which declare the functions in the
standard library rtlib, and a number of macros. The header files are:

h.stdio hstdlib hstring h.ctype
hassert hsetjimp h.stdarg h.stddef
h.call h.math hlimits h.float

To use any functions or macros defined in these headers you should
#include the appropriate header file in the C source text. This may be done
in two ways:

$include <h.stdio>
or

#include "h.stdio"

In the first method the header name is enclosed in angle brackets (<>), and
causes the current library directory to be searched for the header file. This
method is generally used for the standard header files listed above.

In the second method the header name is enclosed in quotes ("), and causes
the current directory to be searched. If the header file cannot be found in the
current directory, the library directory is searched. This method is generally
used for user-defined header files.

The rest of this section describes in detail each function/macro. The
information given includes: the type of definition, a synopsis giving the
function/parameter types, a description, and in many cases a simple
example showing how the function or macro is used. They are grouped
according to the header file that declares them, and are in alphabetical order.
An alphabetic summary of all functions and macros is given in Appendix D.

Header Files & Library Routines 35

h.stdio - Standard Input/Output routines
The header h.stdio declares all the input/output functions and macros to

provide C programs with an interface to the VDU, keyboard, printer, disc
drives etc.

bget
Type :function
Synopsis :#include <h.stdio>

int bget (FILE *stream);
Description :The bget function obtains the next character from the input
stream. It is identical to the function £getc, but does not convert carriage
return characters (£getc converts the ASCII character 13 to ASCII 10 for
compatibility with other systems).

int c¢;
c = bget(strl);

bput
Type :function
Synopsis :#include <h.stdio>

int bput (FILE *stream, char c);:
Description :The bput function writes the character specified by ¢ to the
output stream. It is similar to the function £pute but does not convert
carriage return characters.

char c;
bput (strl, c):;

clearerr
Type ‘macro
Synopsis :#include <h.stdio>

#define clearerr (stream)
Description :This macro is not defined in this implementation, and has no
function. It has been included to ensure compatibility with other
implementations.

EOF
Type :macro
Synopsis :#include <h.stdio>

#define EOF (-1)
Description :The EOF macro expands to a negative integral constant that is
returned by several functions to indicate end-of-file.

36 Header Files & Library Routines

e

—_—— e —————_—_—— et = ——m &

P TmMmMmMmMMMAEM AR RQ

XX

ul

oW oW oW oW oW oW oW W oW oW oW W W b

fclose

Type
Synopsis

:function

:#include <h.stdio>

int fclose(FILE *stream);

Description :The fclose function causes the stream pointed to by stream
to be flushed and the associated file closed. Any buffered data for the stream
is written out. This function returns zero if the stream is successfully closed,
or nonzero if there are any errors, or if the stream was already closed.

fclose(strl);

feof
Type :function
Synopsis :#include <h.stdio>

int feof(FILE *stream);
Description :The feof function returns nonzero if end-of-file has been
detected for stream.

FILE *strml;

int c;

while (foef (strml) == 0)
c = getc(strml) ;

ferror
Type :macro
Synopsis :#include <h.stdio>

#define ferror(stream) 0
Description :The ferror macro expands to zero. It is has no function in this
implementation, and is included for compatibility with other systems.

fflush
Type :function
Synopsis :#include <h.stdio>

int fflush(FILE *stream);
Description :The ££1ush function causes any unwritten data for the
specified stream to be written to the file. The stream remains open. This
function returns zero if successful, otherwise nonzero if a write error occurs.

fflush(strl);

Header Files & Library Routines 37

fgetc
Type :function
Synopsis :#include <h.stdio>

int fgetc(FILE *stream);
Description :The f£getc function obtains the next character (if present) from
the input stream pointed to by stream, and advances the file pointer one
character. This function returns the next character, or EOF if the stream is at
end-of-file. In Beebug C £getc is identical to getc.

FILE
Type :macro
Synopsis :#include <h.stdio>
#define FILE short
Description :FILE is an object type capable of recording all the information
needed to control a stream.

fopen
Type :function
Synopsis :#include <h.stdio>

FILE *fopen(char *filename, char *mode) ;
Description :The fopen function opens the file whose name is the string
pointed to by £ilename, and associates a stream with it. The argument mode
points to a string that indicates the type of access for which the file is being
opened.

int c;
c = fgetc(strl);

fgetpos
Type :function
Synopsis :#include <h.stdio>

int fgetpos(FILE *stream, fpos t *pos);
Description :The fgetpos function stores the current value of the file
pointer for the stream pointed to by stream in the object pointed to by pos.
The value stored contains unspecified information usable only by the
fsetpos function for repositioning the file pointer. If successful, fgetpos
returns zero.

"r'" open file for reading

"w'" create file for writing, or truncate to zero length

"a" append; open file or create for writing at end-of-file.
"r+" open file for update (reading and writing)

"w+" create file for update, or truncate to zero length

"a+" append; open file or create for update, writing at end-of-file

int store, err;

err = fgetpos(strl, store); This function returns a pointer to the stream. If the open operation fails,

fopen returns a null pointer.

fgets
Type :function
Synopsis :#include <h.stdio>

char *fgets(char *s, int n, FILE stream);
Description :The fgets function reads up to n characters from the stream
pointed to by stream into the array pointed to by s. No additional
characters are read after a new-line character (which is retained) of after end-
of-file. A null character is written to s immediately after the last character.
This function returns s if successful. If end-of-file is encountered and no
characters have been read into the array, or if a read error occurs, the
contents of the array remain unchanged and a null pointer is returned.

FILE *strl;
strl = fopen("c.welcome”, "r");

fpos_t
Type ‘macro
Synopsis :#include <h.stdio>
#define fpos t long
Description :fpos_t is an object type capable of recording all the
information needed to specify uniquely every position within a file.

char buffer[255]; fprlnlf)

if (fgets(buffer, 32, strml) == NULL) Type] :function

printf ("Read error\n"); Synopsis :#include <h.stdio>

else int fprintf(FILE *stream, char *format, ...);:

Description :The fprint£ function writes output to the stream pointed to
by stream, under control of the string pointed to by format. The format
string specifies how subsequent arguments are converted for output. If there
are insufficient arguments for the format, the behaviour is undefined. If the
format is exhausted while arguments remain, the extra arguments are
evaluated but otherwise ignored.

printf ("$s\n", buffer);

T e e e e e e e e —— e e - . — . —— = — i — . W e S— Smm S —

A W W W W W WwWw W ow owowowowwwww w w u

38 Header Files & Library Routines Header Files & Library Routines 39

-
e
5
E
E
¥
¥
E
E
E
E
&
e
| 3
E
=
[]
§
=
=
=
b~
=
e

The format is a character string consisting of ordinary characters which are
sent unchanged to the output stream, and conversion specifications, each of
which results in fetching zero or more arguments. Each conversion
specification is introduced by the character %, followed by:

* a minus sign which specifies left justification of the converted
argument in its field

* an optional digit string specifying the minimum field width. If the
converted value has fewer characters than the field width, it will be
padded on the left (or right if the left justification flag is given) to make
up the field width. This string may be replaced by an asterisk * instead
of a digit string. In this case an argument supplies the field width.

The argument supplying the field width should appear before the
argument to be converted. The width can take values -255 to 255.

* a period, which separates the field from the next digit string

* an optional precision which specifies:

- the number of digits after the decimal point character for e, E and f
conversions

- the maximum number of significant digits for the g and G
conversions

- the maximum number of characters to be written from a string in s
conversion

The precision takes the form of a decimal integer, and if omitted, it is treated
as zero. This string may be replaced by an asterisk * instead of a digit string.
In this case an argument supplies the precision width. The argument
supplying the precision width shouid appear before the argument to be
converted. Precision can take values 0 to 255.

* anoptional 1 specifying that a following d, o, u, x, or X conversion
specifier applies to a long int or unsigned long int argument. An 1 before
any other conversion character is ignored

* acharacter that specifies the type of conversion to be applied:

d, b, o, u, x, X

The int argument is converted to signed decimal (d), binary (b), unsigned
octal (o), unsigned decimal (u), or unsigned hexadecimal notation (x or X);
the letters abcdef are used for x conversion and the letters ABCDEF are used
for X conversion. The precision specifies the minimum number of digits to
appeatr; if the value being converted can be represented in fewer digits, it will
be expanded with leading zeros. The default precision is 1. The result of
converting a zero value with a precision of zero is no characters.

40 Header Files & Library Routines

el <
W O W WO W W W W W W W OWw W oW W W W www wuw

(5 B
.-

m m m rm m 5 2l

N

£

The float or double argument is converted to decimal notation in the style

[-]1ddd.ddd, where the number of digits after the decimal point is equal to the
precision specified. If the precision is missing, it is taken as 6; if the precision

is explicitly zero, no decimal-point character is displayed.

e, E

TI:e float or double argument is converted in the style [-]d.ddde+dd,
where there is one non-zero digit before the decimal point character and the
number of digits after it is equal to the precision. If the precision is missing, it
is taken as 6; if the precision is explicitly zero, no decimal-point chara}cter is
displayed. The E conversion specifier will produce a number with E instead
of e introducing the exponent.

G
%:e float or double argument is converted in style f or e (or in style E in
the case of the G conversion specifier), with the precision specifying the
number of significant digits. The style depends on the value converted; style
e will be used only if the exponent resulting from the conversion is less than -
4 or greater than the precision. Trailing zeros are removed from the result.

(o]
The int argument is converted to an unsigned char, and the resulting
character is written.

S .

The argument should be a pointer to a string. Characters from the string are
written up to the terminating null character. if the precision is specified, no
more than that many characters are written. If precision is not used, strings
greater than 255 characters long can be printed.

%

A % is written. No argument is converted.

This function returns the number of characters transmitted, or a negative
value if an output error occurred

fprintf(strl, "%s, %s, %4, %.2d:%$.2d\n", weekday,
month, day, hour, min);

Header Files & Library Routines 41

fputc
Type :function
Synopsis :#include <h.stdio>

int fputc(int ¢, FILE *stream);
Description :The fpute function writes the characters specified by ¢ to the
output stream pointed to by stream, at the position indicated by the
associated file position indicator, and advances the indicator appropriately. If
the file position indicator is not defined, the character is appended to the
output stream. This function returns the character written. If a write error
occurs, it returns EOF.

int c¢;

fputc(c, strl);
fputs
Type :function
Synopsis :#include <h.stdio>

int fputs(char *s, FILE *stream);
Description :The fputs function writes the string pointed to by s to the
stream pointed to by stream. The terminating null character is not written.
This function returns non-zero if an error occurs.

fputs (word, str2);
fread
Type function
Synopsis :#include <h.stdio>

int fread(char *ptr, size t size, size t num, FILE
*stream) ;
Description :The £read function reads, into the array pointed to by ptr, up
to num members whose size is specified by size, from the stream pointed to
by stream. The file position indicator (if defined) is advanced by the number
of characters successfully read. This function returns the number of functions
successfully read.

int nr:;

nr = fread(array, 8, 100, strl);
freopen
Type :function
Synopsis :#include <h.stdio>

FILE *freopen(char *filename,char *mode,FILE *stream);
Description :The £reopen function opens the file whose name is pointed to
by f£ilename and associates the stream pointed to by stream with it. The
mode argument is used just as in the £open function. The freopen function
first attempts to close any file that may be associated with the specified
stream. This function returns the value of the stream, or null if it fails.

42 Header Files & Library Routines

E—

|

mmmnmmmMmmMmmMmmMmMMMAMSRARRERESRERSERESFSQ

"

o - Co e eeee o e s e s e Se— i —— i —— o — i — o — e e et o’ . (D S e i e st 8 il

|m m

AW W W W W oW W W W oWw W oW oW W Www ww w w

o

fscanf
Type :function
Synopsis :#include <h.stdio>

int fscanf(FILE *stream, char *format, ...)
Description :The £scanf function reads input from the stream pointed to by
stream, under control of the string pointed to by format that specifies the
admissible input sequences and how they are converted for assignment,
using subsequent arguments as pointers to the objects to receive the
converted input. If there are insufficient arguments for the format, the
behaviour is undefined. If the format is exhausted while arguments remain,
the excess arguments are evaluated but otherwise ignored.

The format is composed of zero or more directives: one or more white-space
characters; an ordinary character (not %); or a conversion specification. Each
conversion specification is introduced by the character %. After the %, the
following appear in sequence:

* an optional assignment-suppressing character *

* an optional decimal integer that specifies the maximum field length (1
to 255)

e an optional 1. The conversion characters d, o and x may be preceded by
1 to indicate that a pointer to long rather than int appears in the
argument list.

¢ a character that specifies the type of conversion to be applied. The valid
conversion specifiers are:

d

Matches an optionally signed decimal integer; the corresponding argument
shall be an integer pointer.

o
Matches an optionally signed octal integer; the corresponding argument shall
be an integer pointer.

b
Matches a binary integer.

X
Matches an optionally signed hexadecimal integer; the corresponding
argument shall be an integer pointer.

Header Files & Library Routines 43

i\

h

A short integer is expected in the input; the corresponding argument should
be a pointer to a short integer. This overrides option 1.

C

Matches a single character; the corresponding argument should be a
character pointer. The normal skip over white-space characters is
suppressed.

S

Matches a sequence of non-space characters. The corresponding argument
should be a pointer to the initial character of an array large enough to accept
the sequence and a terminating null character, which is added automatically.

e, £, g

Matches an optionally signed floating-point number, whose format is the
same as expected for the subject string of the strtod function. The
corresponding argument shall be a pointer to a £loat.

Non-space literal characters in the format string must be matched by non-
space characters in the input. White-space characters are ignored in the
format string. Note also that %% will match %, and % followed by a
character will match that character provided it is not a conversion character.
The £scanf function returns EOF if an input failure occurs before any
conversion. Otherwise, £scan€£ returns the number of input items assigned.

char input(50];
int n;

scanf ("%d %s", &n, name);
fseek
Type function
Synopsis :#include <h.stdio>

int fseek(FILE *stream, long offset, int whence);
Description :The £seek function sets the file position indicator for the
stream pointed to by stream. The new position is at the signed number of
characters specified by of£set away from the point specified by whence.
The specified point is the beginning of the file for SEEK_SET, the current
position in the file for SEEK_CUR, or the end-of-file for SEEK_END. This
function returns nonzero for an improper request.

44 Header Files & Library Routines

W OWw W oW oW W ow W ow owow W ow ow W ow oW W

fsetpos
Type :function
Synopsis :#include <h.stdio>

int fsetpos(FILE *stream, fpos t *pos);
Description :The fsetpos function sets the file position indicator ff)r the
stream pointed to by stream according to the value of the object pomted to
by pos, which should be a value returned by an earlier call to the £getpos
function on the same stream. If successful this function returns zero-

ftell
Type :function
Synopsis :#include <h.stdio>

fpos t ftell(FILE *stream) ; ‘ -
Description :The £tell function obtains the current value of the file position
indicator for the stream pointed to by stream. The value is the number of
characters from the beginning of the file. If successful this function returns
the current value of the file position indicator.

fwrite
Type function
Synopsis :#include <h.stdio>

size t size, size t nmemb,

int fwrite (char *ptr,

FILE stream);
Description :The fwrite function writes, from the array pointed to by ptz,
up to nmemb members whose size is specified by size, to the stream pointed
to by stream. The file position indicator is advanced (if defined) by the
number of characters successfully written. This function returns the r}umber
of members successfully written, which will be less than nmemb only if a
write error is encountered.

getc
Type ‘macro
Synopsis :#include <h.stdio>

#define getc(s) fgetc(s) '
Description :In Beebug C this macro is identical to the £getc function
described earlier.

getchar
Type :macro
Synopsis :#include <h.stdio>

#define getchar () fgetc(stdin)
Description :The getchar macro is equivalent to getc with the argument
stdin. It returns the next character from the input stream pointed to by
stdin. If the stream is at end-of-file, getchar returns ECF.

Header Files & Library Routines 45

gets l

Type :function
Synopsis :#include <h.stdio>

char *gets(char *s);
Description :The gets function reads characters from the input stream
pointed to by stdin, into the array pointed to by s, until end-of-file is
encountered or a new-line character is read. Any new-line character is
discarded, and a null character is written immediately after the last character
read into the array. This function returns s if successful. If an error occurs, a
null pointer is returned.

printf
Type :function
Synopsis :#include <h.stdio>

int printf(char *format, ...):
Description :The print£ function is equivalent to fprint £ with the
argument stdout interposed before the arguments to print£.

int value;
printf ("The value is %d\n", value):;

putc
Type :macro
Synopsis :#include <h.stdio>
#define putc(c, s) fputcl(c, s)
Description :In Beebug C this macro is identical to the £putc function
described earlier.

putchar
Type ‘macro
Synopsis :#include <h.stdio>

#define putchar(c) fputc((c), stdout)
Description :The putchar macro is equivalent to putc with the second
argument stdout.

puts
Type :function
Synopsis :#include <h.stdio>

w wwwwwwwwuwww w wuw

. —— N — . —— i — — . Wi— S — — Be— N E— —— . S— W — — . —

remove
Type function
Synopsis :#include <h.stdio>
int remove (char *filename);
Description :The remove function deletes the file whose name is pointed to
by £ilename. It returns zero if the operation is successful.

remove (oldfile) ;

rename
Type function
Synopsis :#include <h.stdio>
int rename (char *old, char *new);

Description :The rename function renames the file pointed to by old to the
name pointed to by new. It returns zero if the operation is successful.

rewind
Type function
Synopsis :#include <h.stdio>

void rewind (FILE *stream):;
Description :The rewind function sets the file position indicator for the
stream pointed to by stream to the beginning of the file. This function
returns no value.

rewind (strl);

scanf
Type :function
Synopsis :#include <h.stdio>

int scanf (char *format, ...);
Description :The scanf function is equivalent to £scanf with the argument
stdin interposed before the arguments to scanf. .

SEEK_CUR

Type :macro

Synopsis :#include <h.stdio>
#define SEEK CUR 1

Description :This macro expands to a constant suitable for use as the third
1 argument to the £seek function.

int puts(char *s);
Description :The puts function writes the string pointed to by s to the
stream pointed to by stdout, and appends a new-line character to the
output. The terminating null character is not written. This function returns
nonzero if an error occurs.

W

W

)

\\J

46 Header Files & Library Routines

P mmmMmmMmmMmmMmPRPRRRPPRERAFARERRRER RN DMREQ

I Header Files & Library Routines 47
i

SEEK_END
Type :macro
Synopsis :ffinclude <h.stdio>

#define SEEK END 2
Description :This macro expands to a constant suitable for use as the third
argument to the £seek function.

SEEK_SET
Type ‘macro
Synopsis :#include <h.stdio>

#define SEEK SET 0
Description :This macro expands to a constant suitable for use as the third
argument to the £seek function.

sprintf
Type :function
Synopsis :#include <h.stdio>

int sprintf(char *s, char *format, ...);
Description :This function is equivalent to £print£, except that the
argument s specifies an array into which the generated output is to be
written, rather than to a stream. A null character is written at the end, but is
not counted as part of the sum returned. This function returns the number of
characters written into the array.

sscanf
Type :function
Synopsis :#include <h.stdio>

int sscanf(char *s, char *format, ...):;
Description :The sscanf function is equivalent to £scan£, except that the
argument s specifies a string from which the input is to be obtained, rather
from a stream. This function returns the number of input items assigned, or
EOF if an input failure occurs.

ungetc
Type :function
Synopsis :#include <h.stdio>

int ungetc(int c, FILE *stream);
Description :The ungetc function pushes the character specified by ¢ back
onto the input stream pointed to by stream The character will be returned
by the next read on that stream. It returns the character pushed back after
conversion, or EOF if the operation fails.

1int &, &
f = ungetc(c, strl);

48 Header Files & Library Routines

mmMMm®ME®RERMDMDODEN

mmmmmmmmm

”

-

W Wl wlledldwdowouwwwwwwwwuw

h.stdlib - Standard operating system
routines

This header defines the standard library functions and macros. These
include a number of Acorn OS and Basic functions.

abort
Type :function
Synopsis :#include <h.stdlib>

void abort (void);
Description :The abort function causes abnurmal program termination.
This function does not return to its caller.

abs
Type ‘macro
Synopsis :#include <h.stdlib>

#define abs(3) 3 < 0 2 -7 : j
Description :The abs macro computes the absolute value of the integer 3.

adval
Type :macro
Synopsis :#include <h.stdlib>

#define adval (c) (osbyte (128, c, 0) &OxffffU)
Description :The adval macro reads the ADC channel or gets buffer status.
It is identical to the Acorn OSBYTE call 128.

atexit
Type :function
Synopsis :#include <h.stdlib>

int atexit(int (*func) (void)):
Description :The atexit function registers the function pointed to by func,
to be called without arguments at normal program termination. This
function returns zero if registration succeeds.

atof
Type :function
Synopsis :#include <h.stdlib>

double atof (char *nptr);
Description :The atof function converts the initial portion of the string
pointed to by nptr to double representation. It returns the converted value.

Header Files & Library Routines 49

atoi
Type :function
Synopsis :iinciude <h.stdlib>
int atoi(char *nptr):
Description :The atoi function converts the initial portion of the string
pointed to by nptr to int representation. It returns the converted value.

atol
Type :function
Synopsis :#include <h.stdlib>

long atol (char *str);
Description :The atol function converts the initial portion of the string
pointed to by nptr to long int representation. It returns the converted
value.

calloc
Type :function
Synopsis :#include <h.stdlib>

char *calloc(size t nmemb, size t size);
Description :The calloc function allocates space for an array of nmem
objects, each of whose size is size.The space is initialised to all bits zero.
This function returns a pointer to the start of the allocated space. If the space
cannot be allocated, this function returns a null pointer.

clg
Type ‘macro
Synopsis :#include <h.stdlib>

#define clg() vdu(le6)
Description :The e1g macro clears the current graphics window.

clg();
cls
Type :macro
Synopsis :#include <h.stdlib>

#define cls() vdu(l2)
Description :The c1s macro clears the current text window.

cls();
colour
Type :macro
Synopsis :#include <h.stdlib>

#define colour(x) vdu(l7, x)
Description :The colour macro defines the text colour.

50 Header Files & Library Routines

PO MMM AT ATA®EARETSSE® NN
W Wwwddwwwhwewwwuwwwwwuwuwwuwuwu

draw
Type ‘macro
Synopsis :#include <h.stdlib>

#define draw(x, y) plot(5, x, y)
Description :The draw macro draws a line to the x and y coordinates
specified by the arguments x and y.

draw (200, 300);

envelope
Type :function
Synopsis :#include <h.stdlib>

void envelope (short, short, short, short, short,
short, short, short, short, short, short, short,
short, short):;
Description :The envelope function requires the same arguments as the
BBC Basic ENVELOPE function.

exit
Type function
Synopsis :#include <h.stdlib>

void exit (int status):
Description :The exit function causes normal program termination to
occur. It cannot return to its caller.

free
Type function)
Synopsis :#include <h.stdlib>

void free(char *ptr);
Description :The £ree function causes the space pointed to by ptr to be
deallocated, i.e. made available for further allocation. This function returns
no value.

gcol
Type ‘macro
Synopsis :#include <h.stdlib>

#define gcol(a, b) vdu(l8, a, b)
Description :The gcol macro defines the graphics colour. Argument a is the
plotting mode, and argument b is the logical colour.

gcol(0, 5);

Header Files & Library Routines 51

himem

Type
Synopsis

‘macro
‘#include <h.stdlib>

#define himem() (osbyte (132, 0, 0) &O0xffffu)
Description :The himem macro returns the bottom of display RAM address
i.e. HIMEM.

long addr;

addr = himem() ;
inkey
Type :macro
Synopsis :#include <h.stdlib>

#define inkey (k) (osbyte (129,k, (k)>>8) &0xffffuU)
Description :The inkey macro reads if a key is pressed within the time limit
specified by the argument k.

labs
Type ‘mMacro
Synopsis :#include <h.stdlib>

#define labs(Jj) abs(J)
Description :In Beebug C this macro is identical to the function abs.

malloc
Type :function
Synopsis :#include <h.stdlib>

char *malloc(size t size);
Description :The malloc function allocates space for an object whose size is
specified by size. It returns a pointer to the start of the allocated space
(lowest byte address). If space cannot be allocated, it returns a null pointer.

mode
Type :function
Synopsis :#include <h.stdlib>

void mode (short num);
Description :The mode function selects the screen mode specified by the
argument num.

mode (3) ;
move
Type ‘macro
Synopsis :#include <h.stdlib>

#define move (x, y) plot(4, x, y)
Description :The move macro moves the graphics cursor, to coordinates x, y.

52 Header Files & Library Routines

|

e e ——————— e, e, e e ———— ——— —— —— . — — —

(T (O O (O (I I I I e (O (O (O (O oI A L S
WAl LWL WwwwwwWwwwwwwwwuw

|

)

osbyte
Type :function
Synopsis :#include <h.stdlib>

long osbyte(short A, short X, short Y);
Description :The osbyte function calls the OSBYTE routine at Oxfff4 passing
A, X and Y to the 6502 registers.

oscli
Type :function
Synopsis :#include <h.stdlib>

void oscli(char *str);
Description :The oscli function passes the string pointed to by str to the
Acorn Command Line Interpreter. This function does not return a value.

oscli (*ADF'S) ;

osword
Type function
Synopsis :#include <h.stdlib>

long osword{short A, char *para block);
Description :The osword function calls the Acorn OSWORD routine. The
argument A is passed to the 6502 accumulator, and the argument
para_block points to the parameter block containing the parameters.

page
Type ‘macro '
Synopsis :#include <h.stdlib>

#define page() (osbyte (131, 0, 0) &OxffffU)
Description :The page macro returns the top of operating system RAM
(OSHWM or PAGE).

plot
Type function
Synopsis :#include <h.stdlib>

void plot (short k, int x, int y):
Description :The plot function calls the general graphics plotting routine.
The plotting mode is determined by the value of the argument k. The
arguments x and y specify the screen coordinates.

plot (69,

400, 400):

Header Files & Library Routines 53

point
Type :function
Synopsis :#include <h.stdlib>

int point (int x, int y);
Description :The point function returns the colour of the screen pixel at the
coordinates specified by the arguments x and y.

int p:
p = point (250,350);

rand
Type :function
Synopsis :#include <h.stdlib>

int rand(void);
Description :The rand function returns a pseudo-random integer in the
range 0 to RAND MAX.

1nly &l
r = rand();

RAND_MAX
Type :macro
Synopsis :#include <h.stdlib>

#define RAND MAX 32767
Description :This macro expands to an integer constant which is the
maximum value returned by the rand function.

realloc
Type :function
Synopsis :#include <h.stdlib>

char *realloc(char *ptr, size t size);
Description :The realloc function changes the size of the object pointed to
by ptr to the size specified by size. It returns a pointer to the start (lowest
byte address) of the possibly moved object. If space cannot be allocated, this
function returns a null pointer.

settime
Type function
Synopsis :#include <h.stdlib>

void settime (long t);
Description :The settime function sets the internal timer to the value
specified by the argument t.

54 Header Files & Library Routines

-

R —————————— ey ey ey 3

mmMmmMMmMTMTPPRPRPRERRESRERSRESEREFEMAMDTMDME
WOW W W W W WWwWwWwWwwWwWwwwwuWwwuwuw

i/

T

sound
Type :function
Synopsis :#include <h.stdlib>

void sound(int, int, int, int);
Description :The sound function takes four parameters which are identical
in operation to the those in the Basic command SOUND.

srand
Type function
Synopsis :#include <h.stdlib>

void srand(unsigned seed):;
Description :The srand function uses the argument as a seed for a new
sequence of pseudo-random numbers to be returned by subsequent calls to
rand.

strtod
Type function
Synopsis :#include <h.stdlib>

double strtod(char *uptr, char **endptr):;
Description :The strtod function converts the initial portion of the string
pointed to by nptr to double representation. After successful conversion, a
pointer to the final string is stored in the object pointed to by endptx. This
function returns the converted value.

strtol
Type :function .
Synopsis :#include <h.stdlib>

long strtol (char *nptr, char **endptr, int base);
Description :The strtol function converts the initial portion of the string
pointed to by nptr to long int representation. If the value of base is zero,
the expected form of the subject sequence is that of an integer constant. If the
value of base is between 2 and 36, the expected form of the subject is a
sequence of letters and digits representing an integer with the radix specified
by base, optionally preceded by a plus or minus sign. The letters a (or A)
through z (or Z) are ascribed the values 10 to 35. If the value of base is 16,
the letters Ox or 0X may optionally precede the sequence of letters and digits.

After successful conversion, a pointer to the final string is stored in the object
pointed to by endptr. This function returns the converted value.

system
Type ‘macro
Synopsis :#include <h.stdlib>

#define system(s) oscli(s)
Description :This function is identical to the oscli function.

Header Files & Library Routines 55

tab
Type :macro
Synopsis :#include <h.stdlib>

#define tab(x, y) vdu(3l, x, vy)
Description :This macro moves the text cursor to the screen coordinates
specified by the arguments x and y.

time
Type :function
Synopsis :#include <h.stdlib>

long time (void);
Description :The time function returns the value of the internal timer.

long t;
t = time();
vdu
Type :function
Synopsis :#include <h.stdlib>

void vdu(variable argument 1ist);
Description :The vdu function sends the list of arguments specified to the
VDU driver.

vdu (31, 10, 6);

56 Header Files & Library Routines

ﬂ‘ﬁJ

m m

MM MMM MMM MMM MM® MM MM
BOW AW Wl W W W W W W WWwWwWwWwwwewwwuw

m

h.string - Standard string and memory
routines

The header h.string declares several functions useful for manipulating
memory and character arrays. If an array is written beyond the end of an
object, the behaviour is undefined. Please note that strings in these functions
are limited to 255 characters in length.

memchr
Type :function
Synopsis :#include <h.string>

char *memchr (char *s, int ¢, size t n);
Description :The memchr function locates the first occurrence of ¢ in the
initial n characters of the object pointed to by s. It returns a pointer to the
located character, or a null pointer if the character does not occur in the
object.

memcmp
Type function
Synopsis :#include <h.string>

int memcmp (char *sl, char *s2, size t n);
Description :The mememp function compares the first n characters of the
object pointed to by s2 to the object pointed to by s1. It returns an integer
greater than, equal to, or less than zero, depending on whether the object
pointed to by s1 is greater than, equal to, or less than the object pointed to by
s2.

memcpy
Type :function
Synopsis :#include <h.string>

char *memcpy(char *sl, char *s2, size_ t n);
Description :The memcpy function copies n characters from the object
pointed to by s2 into the object pointed to by s1. If overlapping objects are
copied, the behaviour is undefined. This function returns the value of s1.

memimove
Type :function
Synopsis :#include <h.string>

char memmove (char *sl, char *s2, size t n);
Description :The memmove function copies n characters from the object
pointed to by s2 into the object pointed to by s1. This function operates
correctly for objects that overlap. It returns the value of s1.

Header Files & Library Routines 57

memset
Type :function
Synopsis :#include <h.string>

char *memset (char *2, int c, size t n);
Description :This function writes the value of ¢ into the first n characters of
the object pointed to by s. It returns the value of s.

strcat
Type :function
Synopsis :#include <h.string>

char *strcat (char *sl, char *s2);
Description :The strcat function appends a copy of the string pointed to by
s2, to the end of the string pointed to by s1. The initial character of s2
overwrites the null character at the end of s1. This function returns the value
of s1.

char sl1(] = "abc";
char s2[] = "def";
printf("$s\n", strcat(sl, s2)):
strchr
Type :function
Synopsis :#include <h.string>
char *strchr(char *s, int c¢):

Description :This function finds the first occurrence of ¢ in the string pointed
to by s. The terminating null character is considered part of the string. It
returns a pointer to the located character, or a null pointer if the character
does not occur in the string.

char s[] = "abcdefg";
int pos:;
if ((pos = strchr(s, 'd')) != NULL)
printf ("Found at: %d\n", pos - s);
strcmp
Type :function
Synopsis :#include <h.string>

int strcmp(char *sl, char *s2);
Description :The function stxcmp compares the string pointed to by s1 to
the string pointed to by s2. It returns an integer greater than, equal to, or less
than zero, depending on whether the string pointed to by s1 is greater than,
equal to, or less than the string pointed to by s2.

char sl|

] = "abcdefg";
char s2[] =

"abcdefgh";

58 Header Files & Library Routines

mAMmMMAH/MMEH{AOAODOEON
VIR VR Bt VI VIt VIV VI VIRt VRt | Il VIRt VIV VAT VIV VIV VAT VIV VIV VRV VR VoV VRV VoV

|

printf("%s : %s = %d\n", sl, sl, strcmp(sl, sl));:
printf ("$s s = %d\n", s2, sl, strcmp(s2, sl));
printf ("$s %s = %d\n", sl, s2, strcmp(sl, s2));

strcpy

Type :function

Synopsis :#include <h.string>

char *strcpy(char *sl1, char *s2);
Description :The strcpy function copies the string pointed to by s2 into the
array pointed to by s1. If copying takes place between objects that overlap,
the behaviour is undefined. This function returns the value of s1.

char sl{] = "abcdefqg";
char s2[] = "1234567";
strcpy(sl, s2);
printf ("$s\n", sl):

strespn

Type :function

Synopsis :#include <h.string>

int strcspn(char *sl, char *s2);
Description :The strespn function calculates the length of the initial
segment of the string pointed to by s1 which consists entirely of characters
not from the string pointed to by s2. The terminating null character is not
considered part of s2. This function returns the length of the segment.

char sl[] = "abcdefg";
char s2[] = "pqvejnl";

printf ("$d\n", strcspn(sl, s2)):
strlen
Type :function
Synopsis :#include <h.string>

int strlen(char *s);
Description :The strlen function calculates the length of the string pointed

to by s. It returns the number of characters that precede the terminating null
character.

char s[] = "abcdefg";
printf ("$d\n", strlen(s));

Header Files & Library Routines 59

strncat
Type function
Synopsis :#include <h.string>

char *strncat (char *sl, char *s2, size t n);
Description :The strncat function appends not more than n characters of
the string pointed to by s2 (not including the terminating null character) to
the end of the string pointed to by s1. The initial character of 82 overwrites
the null character at the end of s1, and a terminating null character is always
appended to the result. This function returns the value of s1.

char sl1{] = "abcdefg";
char s2[] = "1234567";
strncat (sl, s2, 4);
printf ("$s\n", sl):;

strncmp

Type :function

Synopsis :#include <h.string>

int strncmp(char *sl, char *s2, size t n);
Description :The strncmp function compares not more than n characters
from the string pointed to by s1 to the string pointed to by s2. It returns an
integer greater than, equal to, or less than zero, depending on whether the
string pointed to by s1 is greater than, equal to, or less than the string
pointed to by s2.

char s1[] = "abcdefg";
char s2[] = "abcdegh";
printf ("$d\n", strncmp(sl, s2, 5)):
printf ("$d\n", strncmp(sl, s2, 6));
strncpy
Type :function
Synopsis :#include <h.string>

char *strncpy(char *sl, char *s2, size t n);
Description :The strncpy function copies not more than n characters from
the string pointed to by s2 to the array pointed to by s1. If copying takes
place between objects that overlap, the behaviour is undefined. If the string
pointed to by s2 is shorter than n characters, null characters are appended to
the copy in the array pointed to by s1, until n characters in all have been
written. This function returns the value of s1.

char sl[] = "abcdefg";
char s2[] = "1234567890";
strncpy(sl, s2, 8);
printf ("%$s\n", sl):;

60 Header Files & Library Routines

5 B S A O

mm

MmN mMmmMoMMAM MDA MMAM®

WO Wl WwWwWWwWwWwWwWwWwWwWwwWwWwWwwewuw

strpbrk
Type function
Synopsis :#include <h.string>

char *strpbrk(char *s1,

char *s2);

Description :The stxpbrk function locates the first occurrence in the string
pointed to by s1 of any character from the string pointed to by s2. It returns
a pointer to the character, or a null pointer if no character from s2 occurs in
sl.

char sl1[] = "abcdefg";

char s2[] = "pqgrfxyz";

printf ("$d\n", strpbrk(sl, s2) - sl);
strrchr
Type function
Synopsis :#include <h.string>

char *strrchr(char *s, int c);
Description :The strrchr function locates the last occurrence of ¢ in the
string pointed to by s. The terminating null character is considered to be part
of the string. It returns a pointer to the character, or a null pointer if ¢ does
not occur in the string.

char s[] = "abcdabcd";

printf ("%d\n", strrchr(s, 'c') - s);
strspn
Type function
Synopsis :#include <h.string>

int strspn(char *sl, char *s2);
Description :The strspn function calculates the length of the initial segment
of the string pointed to by s1 which consists entirely of characters from the
string pointed to by s2. It returns the length of the segment.

char sl[] = "abcdefg";
char s2[] = "xyaxybx";
printf ("$d\n", strspn(sl, s2));

strstr
Type function
Synopsis :#include <h.string>

char *strstr(char *sl, char *s2);
Description :The strstr function locates the first occurrence in the string
pointed to by s1 of the sequence of characters (excluding the terminating
null character) in the string pointed to by s2. It returns a pointer to the
located string, or a null pointer if the string is not found.

Header Files & Library Routines 61

—_— S —

char sl[] = "abcdefg";
char s2[] = "cde":

printf ("%d\n", strstr(sl, s2) - sl);
strtok
Type function
Synopsis :#include <h.string>

char *strtok(char *sl, char s2);
Description :The strtok function breaks the string pointed to by sl into a
sequence of tokens, each of which is delimited by a character from the string
pointed to by s2. The first call in the sequence has 1 as its first argument,
and is followed by calls with a null pointer as their first argument. The
separator string s2 may be different from call to call.

The first call in the sequence searches s1 for the first character that is not
contained in the current separator string s2. If no such character is found,
then there are no tokens in s1 and strtok returns a null pointer. If such a
character is found, it is the start of the first token.

The strtok function then searches from there for a character that is
contained in the current separator string. If no such character is found, the
current token extends to the end of the string pointed to by s1, and
subsequent searches for a token will fail. If such a character is found, it is
overwritten by a null character, which terminates the current token. The
strtok function saves a pointer to the following character, from which the
next search for a token will start. Each subsequent call with a null pointer as
the value of the first argument, starts searching from the saved pointer and
behaves as described above. This function returns a pointer to the first
character of a token, or a null pointer if there is no token.

char sl1[] = "The quick, brown fox.";
char s2[] =" .,™;

char *arg, *word;

for (arg = sl; word = strtok(arg,
arg = NULL)
printf ("%s\n",

s2)) != NULL;

word) ;

62 Header Files & Library Routines

T AN A

mmm

m

AN R LR WwWwWw W W WwWwWw W WwWwWw wuw

m m

mmmmMMMMMMMMM

m

h.ctype - Character handling routines

This header declares a number of functions for testing characters. In each
case the argument is an int, the value of which should be representable as an
unsigned char or shall equal the value of the macro EOF. If the argument has
any other value the behaviour is undefined.

isalnum
Type :function
Synopsis :#include <h.ctype>

int isalnum(int c);
Description :The isalnum function tests for any character for which
isalpha or isdigit is true. It returns nonzero (TRUE) if c is a letter or digit.

isalpha
Type function
Synopsis :#include <h.ctype>

int isalpha(int c);
Description :The isalpha function tests for any character for which
isupper or islower is true. It returns nonzero (TRUE) if c is a letter.

isascii
Type :macro
Synopsis :#include <h.ctype>

int isascii(int c);
Description :The isascii macro tests for any character in the normal 7-bit
ASCII range. It returns nonzero (TRUE) if ¢ <= 127. This is not a standard 1SO
function.

iscntrl
Type function
Synopsis :#include <h.ctype>

int iscntrl(int c):;
Description :The isentrl function returns nonzero (TRUE) if ¢ is an ASCII
control character.

isdigit
Type ‘function
Synopsis :#include <h.ctype>

int isdigit(int c);
Description :The isdigit function tests for any decimal digit character. It
returns nonzero (TRUE) if ¢ is a digit between 0 and 9 inclusive.

Header Files & Library Routines 63

isgraph
Type
Synopsis

function

#include <h.ctype>

int isgraph(int c¢);

Description :The isgraph function tests for any printing character except
space. It returns nonzero (TRUE) if ¢ is not a space, control or delete
character.

islower
Type :function
Synopsis :#include <h.ctype>

int islower (int c);
Description :The islower function tests for any lower-case letter. It returns
nonzero (TRUE) if ¢ is a lower-case letter.

isprint
Type :function
Synopsis :#include <h.ctype>

int isprint(int c);
Description :The isprint function tests for any printing character including
space. It returns nonzero (TRUE) if ¢ has an ASCII code between 32 and 126
inclusive.

ispunct
Type function
Synopsis :#include <h.ctype>

int ispunct(int c¢);
Description :The ispunct function tests for any printing character except
space or a character for which isalnum is true. It returns nonzero (TRUE) if ¢
is a punctuation character (neither a space nor alphanumeric).

isspace
Type :function
Synopsis :#include <h.ctype>

int isspace(int c¢):;
Description :The isspace function tests for the following white-space
characters: space, formfeed (\£), new line (\n), carriage return (\r),
horizontal tab (\t), or vertical tab (\v).

isupper
Type :function
Synopsis :#include <h.ctype>

int isupper{int c):
Description :The isupper function tests for any upper-case letter. It returns
nonzero (TRUE) if ¢ is an upper-case character.

64 Header Files & Library Routines

MM MmMNM

PN mmmMmmMmMmMMMMMMAMMAMMA MMM
A UREVVRBUURBU VR

w w uw w

w w w w W w w

U W W W

W oW W

isxdigit
Type :function
Synopsis :#include <h.ctype>

int isxdigit(int c);
Description :The isxdigit function tests for any hexadecimal digit. It
returns nonzero (TRUE) if c is in the range 0 t0 9, A to F (or a to f).

tolower
Type :function
Synopsis :#include <h.ctype>

int tolower (int c);
Description :If the argument is an upper-case letter, tolower returns the
corresponding lower-case letter; otherwise the argument is returned
unchanged.

toupper
Type function
Synopsis :#include <h.ctype>

int toupper(int c);
Description :If the argument is a lower-case letter, toupper returns the
corresponding upper-case letter; otherwise the argument is returned
unchanged.

Header Files & Library Routines 65

h.assert - Diagnostics

This header defines routines to put diagnostics into programs.

assert
Type ‘macro
Synopsis :#include <h.assert>

define assert (expression) _assert (expression)
Description :If the expression is FALSE, the following message is output:

Assertion failed at line LL
in function XXXX, in file YYYY

YYYY is the name of the source file, XXXX is the function, and LL is the
source line number of the assert statement. If the function is TRUE, the
assert macro returns no value.

This feature may be disabled by declaring the macro NDEBUG before
#include <h.assert>. ‘

_assert
Type :function
Synopsis :#include <h.assert>

void _assert (int);
Description :The function called by the macro assert.

NDEBUG
Type :macro
Synopsis :#include h.assert

Description :The macro NDEBUG allows the assert feature to be removed. It is
not defined by <h.assert>. If NDEBUG is defined as a macro name at the point
in the source file where <h.assert> is included, the assert macro is not
defined. Alternatively, NDEBUG may be defined at compile time:

COMPILE/DEFINE=NDERBUG filename

66 Header Files & Library Routines

n

mm M W

m
O W OW W W W W oW W W W W W Wwwww wwwwwu

)

)

]

!

H

vy

h.setjmp - Non-local jumps
This header declares two functions and one type, for bypassing the normal
function call and return discipline.

jump_buf
Type ‘type
Synopsis :#include <h.setjmp>

typedef char jmp buf[6];
Description :The jmp_buf function is an array type suitable for holding the
information needed to restore a calling environment.

longjmp
Type function
Synopsis :#include <h.setjmp>

void longjmp (jmp buf env, int val):
Description :The longjmp function restores the environment saved by the
most recent call to setjmp in the same invocation of the program, with the
corresponding jmp_buf argument. After longjmp is completed, program
execution continues as if the corresponding call to set jmp had just returned
the value specified by val.

setjmp
Type :function
Synopsis :#include <h.setJmp>

int setjmp (Jmpbuf env);
Description :The set jmp function saves its calling environment in the
jmp_buf argument for later use by the longjmp function. If the returnis a
from a direct invocation, set jmp returns zero (FALSE). If the return is from a
call to the longjmp function, set jmp returns nonzero (TRUE).

Header Files & Library Routines 67

h.stdarg - Variable arguments

This header declares a type and a function and defines two macros, for
advancing through a list of arguments whose number and types are not
known to the called function.

va_arg
Type ‘macro
Synopsis :#include <h.stdarg>

#define va arg(va list ap, type)

(mode) * ((mode*) ((list+=4)-4))
Description :The va_arg macro expands to an expression that has the type
and value of the next argument in the call. The parameter ap is the same as
the va_list ap initialised by va_start. The parameter type is a type name
such that the type of a pointer to an object that has the specified type can be
obtained simply by postfixing a * to type. The first invocation returns the
value of the argument after that specified by pn. Successive invocations
return the values of the remaining arguments.

va_count
Type function
Synopsis :#include <h.stdarg>

unsigned short va count (void);
Description :The va_count function returns the number of arguments
passed to the function.

va_end
Type :macro
Synopsis :#include <h.stdarg>

#define va end(list);
Description :The va_end macro facilitates a normal return from the function
whose variable argument list was referenced by the expansion of va_start
that initialised the va_list ap.

va_list
Type itype
Synopsis :#include <h.stdarg>

typedef char *va list;
Description :va_1list is an array type suitable for holding information
needed by the macro va_arg and the function va_end.

68 Header Files & Library Routines

mmomwmirm®m

mmmmmMmmmMmmMmmmMmmmMMmMm~PMpmmMmmmm

m

|
|
|
|
|
|
|
|
|
|
|
|

w wwwwwwwuu

"

w w

W w w

IV URBUVRERU URRUVERRT VARRT VARRT VRNNY VIR 1)

va_start
Type :macro
Synopsis :#include <h.stdarg>

#define va_start(list, pn) list = &pn
Description :The va_start macro should be executed before any access to
the unnamed arguments. The parameter ap points to an object that has type
list. The parameter pn is the identifier of the rightmost parameter in the
variable list in the function definition.

Header Files & Library Routines 69

h.stddef - Standard definitions

This declares some types and macros that are defined in several headers.

bool

Type itype

Synopsis :#include <h.stddef>
typedef int bool;

Description :bool is an integer boolean type.

byte
Type ‘type
Synopsis :#include <h.stddef>
typedef unsigned short int byte;
Description byte is an unsigned short int type representing a byte of
memory.

FALSE

Type ‘macro

Synopsis :#include <h.stddef> also <h.stdio>
#redef FALSE 0

Description :FALSE is a macro that expands to the constant 0.

NULL

Type :macro

Synopsis :#include <h.stddef> also <h.stdio>
#redef NULL 0

Description :NULL is a macro that expands to the constant 0.

offsetof

Type :macro

Synopsis :#include <h.stddef>
offsetof (type,identifier);

Description :offsetof expands to an integral constant expression that has
the type size_t, the value of which is the offset in bytes, from the beginning
of a structure designated by type, of the member designated by identifier.

ptrdiff_t
Type ‘type
Synopsis :#include <h.stddef>
typedef int ptrdiff t;
Description ;ptrdiff t is the signed integral type of the result of
subtracting two pointers.

70 Header Files & Library Routines

|

nmamEaEmumE L w o

m

H
W wwwwwww W w o w w w

m m m

mmmmimmMmm
U VRSN UBISU VAU VAT VIR VARV VIRY VIR ¥

m

size_t
Type itype
Synopsis :#include <h.stddef> also <h.stdio>, <h. stdlib>,
<h.string>
typedef int size t;
Description :size_t is the unsigned integral type of the result of the
sizeof operator.

TRUE

Type :macro

Synopsis :#include <h.stddef> also <h.stdio>
#redef TRUE 1

Description :TRUE is a macro that expands to the constant 1.

Header Files & Library Routines 71

h.call - Machine code call routines

This header defines a function and a type used for calling machine code
routines. It also defines a number of macros that expand to the addresses of
many standard operating system routines.

call
Type :function
Synopsis :#include <h.call>

long call (char *addr, call buf *regs,...);
Description :The call function calls a machine code sub-routine. It takes as
a first parameter addr, the address of the routine to call. The optional second
parameter is the address of the call_buf structure containing the 6502
register values to pass. The rest of the parameters are arguments to be
passed. This function returns a long integer (4 bytes) containing the contents
of the registers at the execution of the RTS. The order of the registers is:
APYX (hi to lo).

The header h.call defines the type call_buf which is used to set up the 6502
registers for a call. The type is a structure containing 4 members. The
members are all 8 bits, and are the A, P, Y and X register values (where P

is the Processor Status byte).

To set up the registers, first declare a variable of type 'call_buf".

call buf registers;

Then, assign to each of the members in the structure, the value to be supplied
to the appropriate register:

registers.A = 236;
registers.X = 2; /* 00000010 in binary */
registers.Y = 0xfd; /* 11111101 in binary */

If a value is not assigned to any of the members, the appropriate register will
not be set up on entry to the machine code routine (eg P in the
above example). Then call the machine code using the ecall function:

call (OSBYTE, ®isters);
supplying the address to call (in this case OSBYTE), and the address of
the structure containing the registers. The above example switches off the
VDU drivers and is equivalent to a call to the osbyte function with A=236,
X=2 and Y=&FD.

72 Header Files & Library Routines

m M

mmmomMmmMmmMmmMmMmMMmMMmMMmMMMMMMm m

m m m

m
oW N wWwN NN WWwWWw W W WwWwWwWwwu

m n

-

1

The called machine code routine can also be passed arguments from C. The
arguments to be passed are included after the address of the register
structure in the function call:

call (address,é®s,argl,arg2,arg3);

The address of the first argument is held in the zero page locations 86 and 87
(hex). These are the upper 2 bytes of the A internal C accumulator. Therefore
to access the first argument, which was, say, a character, the following code
may be used:

LDY #0
LDA (&86),Y

and A will contain the character passed. Each argument occupies 4
contiguous bytes of storage. Multi-byte numbers are stored low byte first.
Therefore, the second argument would be accessible at offset 4 from the
start of the arguments, the third at offset 8, etc.

The call function returns the values of the registers as its value. The registers
are stored in the order A,P,Y,X from high byte to low. Therefore, the
registers are accessible from a call as follows:

value = call (addr,é®s);

A = value >> 24;

P = (value >> 16) & 0Oxff;
Y = (value >> 8) & 0Oxff;
X =

(value & Oxff);

Sometimes it is useful to obtain a 2 byte value returned in the X and Y
registers from a call. For example, OSBYTE 130 (read machine high order
address) returns the address required in X and Y. Y contains the high
byte, and X the low byte. This value may be obtained by:

hi address = value & Oxffff ;

This is the main reason for the order of the registers in the value
returned by the 'call function. A few of the macros (eg page)
are defined in this way in h.stdlib.

The Beebug C system guarantees that the zero page addresses 00 to 2F (hex)
are free for user programs. The following addresses are those used by
Beebug C for internal use. The names used correspond to those in Appendix
F of this user guide.

Header Files & Library Routines 73

register address (hex) size (bits)
A 84 64
B 80 32
ASP 75 8
FSP 79 8
VSP 76 16
pPC TA 16
heap pointer 6E 16

Stack Address (hex) size (bytes)
AS 400 256
FS 500 256

The memory from the 'heap pointer' to VSP is free. However, during the
execution of a program, these addresses may change.

call_buf
Type ‘type
Synopsis :#include <h.call>

typedef struct

{

unsigned short A;

unsigned short P
unsigned short Y
unsigned short X
} call buf

Description :call_buf is a structure that holds the registers to pass to the

call function.

ATRRTER Y

GSINIT
Type :macro
Synopsis :#include <h.call>

#define GSINIT Oxffc2
Description :The GSINIT macro expands to the call address of the 'general
string input initialise’ routine.

GSREAD
Type :macro
Synopsis :#include <h.call>

#define GSREAD 0Oxffch
Description :The GSREAD macro expands to the call address of the ‘read
character from string input’ routine.

74 Header Files & Library Routines

mmmmmmmmmmmmmmmmmmmmm

N S S) S S R

S
3
3
3
3
3
C
L

PURUVERVURET VT VR VY VR YRR VRN VIRV TRV TR T TRV TRV ¥

a

NVRDCH
Type :macro
Synopsis :#include <h.call>

#define NVRDCH Oxffcb
Description :The NVRDCH macro expands to the call address of the non-
vectored OSRDCH routine.

NVWRCH
Type ‘macro
Synopsis :#include <h.call>

#define NVWRCH Oxffc8
Description :The NVWRCH macro expands to the call address of the non-
vectored OSWRCH routine.

OSARGS
Type :macro
Synopsis :#include <h.call>

#define OSARGS 0Oxffda
Description :The OSARGS macro expands to the call address of the 'adjust file
arguments' routine.

OSASCI
Type ‘macro
Synopsis :#include <h.call>

#define OSASCI Oxffe3
Description :The OSASCI macro expands to the call address of the 'write
character to output stream' routine.

OSBGET
Type ‘macro
Synopsis :#include <h.call>

#define OSBGET 0xffd7
Description :The OSBGET macro expands to the call address of the 'get one
byte from file' routine.

OSBPUT
Type ‘macro
Synopsis :#include <h.call>

#define OSBPUT Oxffd4
Description :The OSBPUT macro expands to the call address of the 'write a
single byte to file' routine.

Header Files & Library Routines 75

OSBYTE
Type :Macro
Synopsis :#include <h.call>
#define OSBYTE Oxfff4
Description :The OSBYTE macro expands to the call address of the 'operating
system call' routine.

OSCLI
Type ‘macro
Synopsis :#include <h.call>
#define OSCLI Oxfff7
Description :The OSCLI macro expands to the call address of the 'pass line of
text to CLI' routine.

OSEVEN

Type :macro
Synopsis :#include <h.call>
#define OSEVEN Oxffbf
Description :The OSEVEN macro expands to the call address of the 'generate
an event' routine.

OSFILE
Type :macro
Synopsis :#include <h.call>
#define OSFILE Oxffad
Description :The ODFILE macro expands to the call address of the
'read / write file' routine.

OSFIND

Type ‘macro
Synopsis :#include <h.call>
#define OSFIND Oxffce
Description :The OSFIND macro expands to the call address of the
‘open/close file' routine.

OSGBPB

Type ‘macro
Synopsis :#include <h.call>
#define OSGBPB Oxffdl
Description :The OSGBPB macro expands to the call address of the
‘read / write group of bytes' routine.

1

by}
Ww w w w w w uw

w

W

w w w w

OSNEWL
Type :macro
Synopsis :#include <h.call>
#define OSNEWL Oxffe7
Description :The OSNEWL macro expands to the call address of the 'write
newline to output stream' routine.

OSRDCH

Type ‘macro
Synopsis :#include <h.call>
‘ #define OSRDCH 0Oxffel
Description :The OSRDCH macro expands to the call address of the 'read
character from input stream' routine.

OSRDRM

Type ‘macro
Synopsis :#include <h.call>
#define OSRDRM Oxffb9
Description :The OSRDRM macro expands to the call address of the read byte
from paged ROM' routine.

OSRDSC

Type :macro
Synopsis :#include <h.call>
#define OSRDSC Oxffb9
Description :The OSRDSC macro expands to the call address of the 'read byte
from screen memory' routine.

OSWORD

Type :macro
Synopsis :#include <h.call>
#define OSWORD Oxfffl
Description :The OSWORD macro expands to the call address of the 'operating
system call' routine.

OSWRCH

Type :macro
Synopsis :#include <h.call>
#define OSWRCH Oxffee
Description :The OSWRCH macro expands to the call address of the 'write
character to output stream' routine.

mmnmnMHDMDmMHhMHm™TMM MR MEHEMMMAMEODMMMED N

m n

76 Header Files & Library Routines Header Files & Library Functions 77

U VRN VRV Bt VA VARV VAR VARV VT VAT VT VY 1|

|

[

OSWRSC
Type :macro
Synopsis :#include <h.call>
#define OSWRSC Oxffb3
Description :The OSWRSC macro expands to the call address of the ‘write
character to screen memory' routine.

E

h.limits - Integer arithmetic limits

The header h.limits defines a number of integer arithmetic limits.

i

CHAR_BIT
Type :macro
Synopsis :#include <h.limits>
#define CHAR BIT 8
Description :The maximum number of bits for the smallest object that is not

h.math - Mathematics

a bit-field (byte).
This header defines two mathematical constants.
CHAR_MAX
HUGE_VAL Type :macro
Type :macro Synopsis :#include <h.limits>

#define CHAR MAX 127

Synopsis :#include <h.math> |
Description :The maximum value for an object of type char.

#define HUGE VAL 1.7014118e38
Description :Expands to a positive double expression. This is the maximum

possible number in Beebug C. CHAR_MIN

Type :macro
PI Synopsis :#include <h.limits>
Type :macro #define CHAR MIN -127

Synopsis :#include <h.math> Description :The minimum value for an object of type char.

#define PI 3.141593
Description :Expands to the value of PL

Wwwwwwwwwwwu

INT_MAX
Type :macro
Synopsis :#include <h.limits>
#define INT MAX 32767
Description :The maximum value for an object of type int.

INT_MIN
Type :macro
Synopsis :#include <h.limits>
#define INT MIN -32767
Description :The minimum value for an object of type int.

LONG_MAX
Type ‘macro
Synopsis :#include <h.limits>
#define LONG MAX 2147483647
Description :The maximum value for an object of type long int.

m MMM mMAHmMHMEHMmMMMMMMMM MW

m m

m

78 Header Files & Library Routines

Header Files & Library Routines 79

U VIV VRN VY Vet VIt \ Rt VIt VRt VIt VI VRt |1

7 n

LONG_MIN
Type :macro
Synopsis :#include <h.limits>

#define LONG MIN -2147483647
Description :The minimum value for an object of type long int.

SCHAR_MAX
Type :macro
Synopsis :#include <h.limits>

#define SCHAR MAX 127
Description :The maximum value for an object of type signed char.

SCHAR_MIN
Type ‘macro
Synopsis :#include <h.limits>

#define SCHAR MIN -127
Description :The minimum value for an object of type signed char.

SHRT_MAX
Type :macro
Synopsis :#include <h.limits>

#define SHRT MAX 127
Description :The maximum value for an object of type short int.

SHRT_MIN
Type :macro
Synopsis :#include <h.limits>

#define SHRT MIN -127
Description :The minimum value for an object of type short int.

UCHAR_MAX
Type ‘macro
Synopsis :#include <h.limits>

#define UCHAR MAX 255U
Description :The maximum value for an object of type unsigned char.

UINT_MAX
Type :macro
Synopsis :#include <h.limits>

#define UINT MAX 655350
Description :The maximum value for an object of type unsigned int.

80 Header Files & Library Routines

m N mmmMmhmommommmMmmmmBPmMmmMomMMMMMMDMMMWM M W

Ww w www wu

w w w w w

W W W W wwwwwww

ULONG_MAX
Type ‘macro
Synopsis :#include <h.limits>

#define ULONG MAX 42949672950

Description :The maximum value for an object of type unsigned long int.

USHRT_MAX
Type macro
Synopsis :#include <h.limits>
#define USHRT MAX 255U
Description :The maximum value for an object of type unsigned short
int.

h.float - Floating point arithmetic limits

The header h.limits defines a number of floating-point arithmetic limits.

DBL_DIG
Type :macro
Synopsis :#include <h.float>

#define DBL DIG 7
Description :The number of decimal digits of precision.

DBL_EPSILON

Type ‘macro
Synopsis :#include <h.float>

#define DBL EPSILON 1.192093e-7
Description :The minimum positive floating-point number.

DBL_MANT_DIG

Type ‘macro
Synopsis :#include <h.float>
#define DBL MANT DIG 24
Description :The number of base FLT RADIX digits in the floating-point
mantissa.

DBL_MAX
Type ‘mMacro
Synopsis :#include <h.float>

#define DBL MAX 1.701412e38
Description :The maximum representable finite floating-point number.

Header Files & Library Routines 81

DBL_MAX_10_EXP

macro

:#include <h.float>

#define DBL MAX 10 EXP 38

Description :The maximum integer such that 10 raised to that power is in the
range of representable finite floating-point numbers.

Type
Synopsis

DBL_MIN
Type :macro
Synopsis :#include <h.float>

#define DBL MIN 1.469368e-39
Description :The minimum normalised positive floating-point number.

DBL_MIN_10_EXP
Type :macro
Synopsis :#include <h.float>
#define DBL MIN 10 EXP -39
Description :The minimum negative integer such that 10 raised to that
power is in the range of normalised floating-point numbers.

FLT_DIG
Type :macro
Synopsis :#include <h.float>

#define FLT DIG 7
Description :The number of decimal digits of precision.

FLT_EPSILON

Type :macro
Synopsis :#include <h.float>

#define FLT EPSILON 1.192093e-7
Description :The minimum positive floating-point number.

FLT_MANT_DIG

Type :macro
Synopsis :#include <h.float>
#define FLT MANT DIG 24
Description :The number of base FLT RADIX digits in the floating-point
mantissa.

FLT_MAX
Type :macro
Synopsis :#include <h.float>

#define FLT MAX 1.701412e38
Description :The maximum representable finite floating-point number.

82 Header Files & Library Routines

P /MmmnmmMmmMmmMmMmmmMmmmmmMmmmhMmMmmmmm W

[y S I = N

W ow wwwwwwwwwun

U U UV U VAU VIY VI V-1 VY VY VI 1

FLT_MAX_10_EXP
Type :macro
Synopsis :#include <h.float>
#define FLT MAX 10 EXP 38
Description :The maximum integer such that 10 raised to that power is in the
range of representable finite floating-point numbers.

FLT_MIN
Type :macro
Synopsis :#include <h.float>

#define FLT MIN 1.469368e-39
Description :The minimum normalised positive floating-point number.

FLT_MIN_10_EXP
Type :macro
Synopsis :#include <h.float>
#define FLT MIN 10 EXP -39
Description :The minimum negative integer such that 10 raised to that
power is in the range of normalised floating-point numbers.

FLT_RADIX
Type :macro
Synopsis :#include <h.float>

#define FLT RADIX 2
Description :The radix of exponent representation

FLT_ROUNDS
Type :macro
Synopsis :#include <h.float>

#define FLT ROUNDS
Description :The addition rounds.

Header Files & Library Routines 83

7. Beebug C Library Facility

Introduction

The Beebug C linker searches libraries for any unresolved function calls in a
program. The standard library rtlib is supplied with Beebug C, but other
libraries may be created using the library facility described in this section.
The library facility is a program written in Beebug C and is responsible for
the upkeep of libraries. It is supplied on the library disc as both source files
(see later) and an executable file. It may be run in the usual way by typing:

RUN library
The following prompt is then displayed:

LIBRARY>

When this prompt is visible, any of the following commands may be entered:

USE establish a working library
LIST list the contents of a library

INSERT insert a Beebug C object module into the library
DELETE delete a module from a library

EXTRACT extract a module into an object file

COMMIT commit all changes to a library

HELP list all commands available

CREATE create a new library

NEW clear memory for a new library

QUIT quit the facility, committing changes if required
EXIT

exit the facility, committing changes

If the command typed starts with an asterisk, the command is passed to the
Operating System. This enables the usual 'star’ commands to be used. When
a module is deleted or inserted, its entry in the library is only marked as

having been deleted or inserted as appropriate. No actual file operations are
carried out until the COMMIT command is used, or the session is terminated.

Please note that in the descriptions that follow, a module refers to the object
code of a function or number of functions.

84 Library Facility

S|

W W W W W W W W W W W W W W W

PO MM MMM MMM REN NN

AW W

4

Library facility commands

USE
This command establishes a working library. The facility will prompt for the

name of the library to use:

LIBRARY> USE
Name of library to use:

Type in the name of the library to be worked upon. The system will check
that the library is valid and if it isn't, an appropriate message will be
displayed.

When the library has been validated, the facility will display a copyrighF
message and the identification text for the library (if they have been defined).
They serve to identify the library to the user, and may contain any text, such
as version numbers, etc. The modules in the library are then read; the
number of each one being displayed as it is identified.

LIST
This command allows the contents of a library to be displayed. The listing
consists of two pieces of information:

1 - The module name
2 - The length of the module in bytes

If a module is currently deleted, or has just been inserted, the length
information will not be displayed, but instead the word Deleted or New .
will appear in its place. The module name is the field by which the module is
identified.

INSERT

This command allows a module to be inserted into the library. The facility
will prompt for the name of the module to insert. If a module of the name
supplied already exists in the library, an appropriate message is displayed.

Then the name of the object file of the module must be enterad. This must be
a valid object file.

The module is marked as New until a COMMIT is performed.

Library Facility 85

DELETE

This command allows a module to be deleted from the library. The actual
delete operation is not carried out until the COMMIT command is used, or the
session terminated.

EXTRACT

This allows a module to be extracted from the library into an object file. The
object file created will be suitable for linking with a users program by the
Linker.

COMMIT

This command commits all changes made to the library to disc. Once this has
been done, the library is permanently changed, and any module which has
been deleted cannot be recovered.

The command will ask if the identification text is to be changed. An answer
of 'yes' will cause the facility to ask for the new identification text. If
identification text is not changed, the old text will be used.

HELP
This will list all the library facility commands available.

CREATE
This allows a new library to be created on disc. It will then be used as the
working library.

NEW

This will inform the facility that all changes have been made to the working
library, and all memory should be freed. If any changes have been made to
the library, a chance to commit these to the disc is offered. A new library may
be USEd after a NEW command.

QUIT

This informs the facility that the current session is finished. If any changes
have been made to the working library, a chance to commit these will be
offered. The facility will then terminate.

EXIT

This informs the facility that the current session is finished. Any changes to
the working library will be committed and the session terminated.

86 Library Facility

—

m momomn

mmmmmmmmmmmmwwwwwwwwwwwu

Creating Library modules

There are certain rules which must be obeyed when using this facility to
create a new library, or add functions to an existing library. If these are not
followed, the program will not work, even if it links correctly.

1. The library only accepts Beebug C object modules, not executable
images.

2. A module may contain many functions, but must have one main
function.

3. The main function must have the same name as the module being
inserted.

4. The main function must be first in an object module. This means it
must be defined before any subsidiary functions.

5. The main function must be declared as 'static’. This avoids multiple
definition of a symbol in the linker.

6. It is preferable that the module is compiled with no debugging
information.

The following example shows a valid source for an object module called
'hello_world' to be inserted into a library.

static void hello world(void)
{

printf ("Hello world\n") ;

}

As will be seen later, the main function has the same name as the module to
be inserted. It is first in the file, and is declared as 'static’. The file in which
the module is saved does not have to have the same name as the module.

To insert the above module into a library called TESTLIB, the following
commands must be executed:

COMPILE/NODEBUG HELLO
RUN LIBRARY

Beebug C Library Facility
Version 1.0
(C) 1987 Beebug Ltd

LIBRARY> USE
Name of library to use: TESTLIB

Reading...10
LIBRARY> INSERT

Library Facility 87

i
2

Name of module to insert: hello world
Name of object file: O.HELLO
LIBRARY> EXIT

Change identification text ? no
Committing...11

The object module is now inserted into the library. Please note that the above
example assumes that a library called TESTLIB has been created, and that it
contains 10 modules.

Compiling the library facility

The library facility is supplied on the library disc in both source and
executable form. Advanced users may like to alter the program source files
to suit their own needs. The source files are library, dirops, and commit, and
they may be re-compiled and linked as follows:

compile library
compile dirops
compile commit

link/nodebug/origin=&2500 library,dirops, commit

Please note that these programs are fairly complex, and modifications should
only be made by experienced users.

88 Library Facility

m

mmimmmmmMomMmTmMmMMHMTErrPITMMMATEYSTMDMNMNDODMNEMWN

U VBRRU VRN VR VAU VARV VAR VIRV VIRV VIV VIR VIR VAT VARV VANRT VIRV VIV VRRT VIRV 7T VOV TRV TR TRV 1!

Appendix A

Beebug C Command Summary

Listed below are all the commands available in Beebug C. Each command is
followed by its minimum abbreviation, and a list of any optional qualifiers.

CLOSE CL
Close all open files

COMMAND mode number covmM

Set error handli;g for un-recognised command

mode 0 - print normal error message (default setting)
mode 1 - attempt to *RUN a file (passes it to OSCLI)
mode 2 - attempt to RUN a C program (defaults to directory E)

COMPILE [qualifiers] filename COMP

Compile the C source text £ilename

optional qualifiers abbrev. default setting
/ [NO]OBJECT [=filename] (o] object code put in dir 0
/ [NO]LIST [=filename] L list to screen
/ [NO]WARNINGS W warnings on
/ [NO] PORTABLE P no portable
/ [NO]DEBUG DEB debugging on
/DEFINE=macro_namel[, ...] D NoO Macros
/LSPACE=buffer size LS &300 (768 bytes)
/ [NO]JOPTIMISE oP optimise on

LINK [qualifiers] filenamel, ...] L

Link filename to other object files and to standard library

optional qualifiers abbrev. default setting

/ [NO]EXECUTABLE [=filename] E executable code in dir E

/ [NO]LIBRARY [=filename[,...]] L standard library rtlib

/ [NO]DEBUG D debugging on
/ORIGIN=start address 0 top of OS RAM (OSHWM)
/ [NO] STANDALONE s no standalone

Appendix A 89

MODE mode number M
Set screen mode

REPORT RE
Report last error encountered

RUN [qualifiers] filename [argl arg2 ...] RU
Execute the C program filename.

optional gqualifiers abbrev. default setting

/ [NO] TRACEBACK T no traceback
/INPUT=filename I input from keyboard
/ [NO]OUTPUT [=filename] (o] output to VDU

/ [NOJERROR [=filename] E errors to VDU

Library Facility Command Summary

COMMIT commit all changes to a library
CREATE create a new library

DELETE delete a module from a library

EXIT exit the facility, committing changes
EXTRACT extract a module into an object file
HELP list all commands available]

INSERT insert an object module into the library
LIST list the contents of a library

NEW clear memory for a new library
QUIT quit the facility, committing changes if required

90 Appendix A

E

m mmmmmmmmw (v

m m

m m m
I\ VN U VR VR VY VI VIT VIRV VIV VAT VAT VIV VI VT VY VIR VT VIR VI VIV VR 7 VR 7 7R /)

mn m m n

m

m m m

Appendix B

Beebug C Extensions

Beebug C is a full implementation of the Kernighan and Ritchie standard
with the following extensions:

* function prototypes

* §pragma preprocessor line

* jiredef preprocessor line

e data type void

* new data types

¢ initialisation of unions

* local structure and union members

If the compiler is switched to the portable mode (using the optional
qualifier PORTABLE), the use of these extensions will cause a warning to be
produced at compile time. This does not affect compilation.

1. Function prototypes

In standard C a function definition takes the following form:

int function(pl,p2,p3)
char pl;
short int *p2;
int p31{];

This format is also allowed by Beebug C. However, the proposed ISO
standard for C defines a new format for function definitions. Beebug C

allows this new format to be used, and indeed it is recommended that it is
used. The format is:

int function(char pl, short int *p2, int p3[]):

The use of this type of syntax allows the compiler to set up a function
prototype for the function. The compiler can then check the number and type
of the parameters against the arguments supplied in the prototype. In an
external declaration of a function, the argument types may be specified, and
a prototype built by supplying the argument types in the declaration:

extern int function(char, short int*, int []):

In this case the identifiers may also be included, but only for documentation
purposes.

Appendix B 91

A function taking a variable number of arguments may be defined as:
extern int printf(char *format,...);

The three dots '..." are known as an ellipsis.

2. The #pragma preprocessor line

This allows control over the compiler options from within the source code. It
is followed by a single letter which specifies whether the option is to be
switched on or off. If the letter is in upper case the option is switched on,
otherwise it is switched off.

The following options are implemented:

Dord -debugging
O or o -optimisation
W or w -warnings

P or p - portability
Lorl -listing

3. The #redef preprocessor line

The #define preprocessor line may not be used to redefine a macro. This
extension allows any macro to be redefined. Its syntax is the same as that for
#define.

4. Data type void
Beebug C allows the void data type. A function whose type is void may not
return a value. An error will be generated if this is attempted.

It may also be used to specify that a function may not take any parameters:

extern long time (void) ;

5. New data types

The following new data types may be used:

unsigned char
unsigned short
unsigned long

92 Appendix B

AN W W W WD N W W W W W W W wwwwu

mmmmmmmmmmmmmmmmmmmmmmmm_J

6. Initialisation of unions

Unions may be initialised as structures, but only the first member will be
initialised. Any attempt to initialise further members will result in the error

Too many initialisers.

7. Local structure and union members

Structure and union members are local and can therefore be duplicated in

different structures.

Appendix B 93

|

Pointer levels
There is a maximum of 255 pointer to pointer levels. This means that there
may be a maximum of 255 asterisks in the following:

Appendix C

Beebug C Limitations

Beebug C is a full implementation of the Kernighan & Ritchie standard, but it
does have a few limitations. Most of these are due to the method of

wr M

int *****************ptr;

e
impl i i i . (3 Block nesting
Vi ceentaton i memi A2 theyrwall.nak e wxeesded The 6502 stack limits the maximum level of nesting for blocks. This level has
Data type limits P not been calculated.
bi e Line lengths
type " Lines can be a maximum of 128 characters

char 8 i

short 8 Identifier lengths

int 16 Identifiers can be a maximum of 31 characters

long 32

float 32 Number of errors

double 32 There is a maximum of 255 errors in one compilation

Floating point arithmeticis to 7 significant ﬁgures. Forward references to structures

A structure tag cannot be forward referenced without being defined. It must
be declared as a character and casted when needed.

Nested #include files

A maximum of 3 #include files may be nested (DFS limitation)

Array declarations in type declarations

Only one array declaration may appear in a type declaration. This would
mean that the following is illegal:

int (*(*(*a)[]) () (]

The above declares a as a pointer to an array of pointers to functions,
returning a pointer to an array of ints! This is almost unintelligible and is bad
programming practice.

This limitation does not mean that multi-dimensional arrays are illegal, it
only means that the dimensions of an array may not be separated.

m MMM MmMMMMTMMTMEMMEM

The above declaration will work if the type is split up into separate typedefs,
as it should be.

Array dimensions
There is a maximum of 126 dimensions in any one array

94 Appendix C Appendix C 95

AW wwwwwwwu

m m mmm

.

|

A en d ix D E SN Function Type Header Description Page
p p ’ ~ | cls m hstdlib clear text screen 50
Summ ary Of lerary Functions = colour m hstdlib set text colour 50
Listed below is an alphabetical list of all functions and macros available in DBL_DIG m h.float decimal digits of precision 81
Beebug C Each function or macro is l@sted tog_et}}er with its file type, the E S DBL_EPSILON m h.float minimum floating-point number 81
header file which declares it, and a brief description. The page number on - o)
which a full description can be found is also given. The function/macro S DBL-MANT-DIG m h.float number of digits in the mantissa 81
types are: f=function, m=macro, t=type definition and e=expression. DBL_MAX m hfloat maximum finite floating point number 81
Functi T Head Descripti p E S DBL_MAX_10.EXP m h.float see full description 82
unction e Header escription age
YP . P & = DBL_MIN m h.float the minimum floating point number 82
abort f hstdlib cause abnormal program termination 49 - Exp - full deacrin %
DBL_MIN_10 m floa see escription
abs m hstdlib return absolute value of an integer 49 - = 3 T " ﬂtdl _ i 5 5
m h.stdli raw a line
adval m hstdlib read ADC channel or buffer status 49 raw ’) _
st m hassert terminate if assertion fails 66 - = envelope f hstdlib set pitch and amplitude envelope 52
' EOF m hstdio an integer indicating end-of-file (-1) 36
_assert f hassert assert function (for internal use) 66 == " ¢ R & 1 g) f f) .
exi stdli cause normal program termination
atexit f hstdlib call function at program termination 49 E = FALSE m hstddef constant0 (alsI:) ing; o) 70
atof f hstdlib convert ASCII to float 49 - h' - 1 ’ -
atoi f hstdlib convert ASCII to int 50 = = close f Stto - close astream
tol £ hstdlib ¢ ASCILto] - feof f hstdio test for end-of-file for a stream 37
ato stdli conver o lon
beet st o Bie 't 5 " E = ferror m hstdlib test stream error condition (returns 0) 37
e .stdio et a byte from stream
bg i]: hstdd i ; yt) 70 = = fflush f hstdio flush a stream's buffer 37
00. .stdde, oolean e int
b f hstdi f b B 36 E = fgetc f hstdio get character from a stream 38
ut stdio ut a byte to a stream
P P Y . . fgetpos f hstdio get file position in a stream 38
byte t hstddef byte type unsigned short int 70 E = o _ o 2
call f hecall call user machine code 72 i f stdio get string from a stream
' FILE t hstdio type for specifying stream information 39
call_buf t hcall structure for holding 6502 registers 74 ==
11— 1 stdlib 1 , 50 FLT_DIG m hfloat the number of decimal digits of precision 82
calloc stdli allocate space for an arra
CHAR BIT f Wlimi g ¥ 29 =4 FLT_EPSILON m h.float the minimum +ve floating point number 82
m dimits constant
CHAR_MAX . (107 79 = = FLT_ MANT DIG m h.float see full description 82
m hlimits constan
CHAR—MIN iy o7 79 2 FLT_MAX m hfloat the maximum floating point number 82
limits constant -
: - " i ”Zl i ol 2% = FLT MAX 10 EXP m h.float see full description 83
st ar e tors :
clearert " f s d;Ob cle rrorhm e %0 =~ - FLT_MIN m h.float the minimum +ve floating point number 83
1 stdli i
e ™ sldllb - clear graphics screen FLTMIN_10. EXP m h.float see full description 83
= ‘ -
&= ‘ 4
96 Appendix D Appendix D 97
£ =

i

Function Type Header
FLT_RADIX m h.float
FLT_ROUNDS m h.float
fopen f hstdio
fpos_t m h.stdio
fprintf f hstdio
fputc f hstdio
fputs f hstdio
fread f hstdio
free f stdlib
freopen f hstdio
fscanf f hstdio
fseek f hstdio
fsetpos f hstdio
ftell f hstdio
fwrite f hstdio
gcol m h.stdlib
getc m h.stdio
getchar m h.stdio
gets f hstdio
GSINIT m h.call
GSREAD m h.call
himem m h.stdlib
HUGE VAL m h.math
inkey m h.stdlib
INT MAX m hlimits
INT _MIN m h.limits
isalnum f h.ctype
isalpha f hctype
isascii m h.ctype

Description

the radix of exponent representation
the addition rounds

open a stream

type for specifying all positions in file
formatted print to a stream

put character to a stream

put string to a stream

read item from a stream

free previously allocated memory
close and re-open a stream
formatted input from a stream

set file position on a stream

set file position on a stream

read file position pointer of stream
write items to a stream

set graphics colour

get character from stream

get character from stdin

get string from stream

address of GSINIT routine

address of GSREAD routine

read bottom of display RAM (HIMEM)

max positive double (1.7014118E38)
read key with time limit

constant 32767

constant -32767

test if character is alphanumeric
test if character is alphabetic

test if character is 7 bit Ascii

Page

83
83
39
39
39
42
42
42
51
42
43
44
45
45
45
51
45
45
46
74
74

78
52
79
79
63
63
63

98 Appendix D

Wowoww W WwwwWwwwwu

MmN MM T MmMmMmTAMTTMITATAAIAANIAAINANOMN N NN

.

0

AW W W AN NN NN

Function

iscntrl
isdigit
isgraph
islower
isprint
ispunct
isspace
isupper
isxdigit
jmp_buf
labs
longjmp
LONG_MAX
LONG_MIN
malloc
memchr
memcmp
memcpy
memmove
memset
mode
move
NDEBUG
NULL
NVRDCH
NVWRCH
offsetof
OSARGS
OSASCI

B N e L N

N N T T N

§ 3 3§ 8 8 8 8 38

Type Header

h.ctype
h.ctype
h.ctype
h.ctype
h.ctype
h.ctype
h.ctype
h.ctype
h.ctype
h.setjmp
h.stdlib
h.setjmp
h.limits
h.limits
h.stdlib
h.string
h.string
h.string
h.string
h.string
h.stdlib
h.stdlib
h.assert
h.stddef
h.call
h.call
h.stddef
h.call
h.call

Description

test for control character

test if character is a decimal digit
test for printing character except space
test for any lower case character
test for any printing character

test for character not alpha or space
test for white space characters

test for any upper case character
test for hexadecimal digit

array type for non-local jump info
return absolute value as a long int
restore function environment
constant 2147483647

constant -2147483647

allocate space for an object

search memory for character
compare memory

copy memory

copy memory with overlap corrected
set block of memory to a character
set screen mode

move graphics cursor

switch off assertions (not defined)
null constant 0 (also in h.stdio)
address of non-vectored OSRDCH
address of non-vectored OSWRCH
offset from start of structure
address of OSARGS routine
address of OSASCI routine

Page

Appendix D 99

Function Type Header
OSBGET m h.call
OSBPUT m h.call
OSBYTE m h.call
osbyte f hstdlib
OSCLI m h.call
oscli [hstdlib
OSEVEN m h.call
OSFILE m h.call
OSFIND m h.call
OSGBPB m h.call
OSNEWL m h.call
OSRDCH m h.call
OSRDRM m h.call
OSRDSC m h.call
OSWORD m h.call
osword f h.stdlib
OSWRCH m h.call
OSWRSC m h.call
page m h.stdlib
PI m h.math
plot f hstdlib
point f hstdlib
printf f hstdio
ptrdiff_t t h.stddef
putc m h.stdio
putchar m h.stdio
puts m h.stdio
rand f hstdlib
RAND MAX m h.stdlib

Description

address of OSBGET routine
address of OSBPUT routine
address of OSBYTE routine
OSBYTE call

address of OSCLI routine

pass string to Command Line Interp.
address of OSEVEN routine
address of OSFILE routine
address of OSFIND routine
address of OSGBPB routine
address of OSNEWL routine
address of ODRDCH routine
address of OSRDRM routine
address of OSRDSC routine
address of OSWORD routine
OSWORD call

address of OSWRCH routine
address of OSWRSC routine
read top of OS RAM (OSWRCH)
constant PI (3.1415927)
multi-purpose graphics plotting
return colour at screen coordinate
formatted output to stdout

type for subtracting two pointers
put character to a stream

put character to stdout

put string to a stream

return a pseudo-random integer

max value returned by rand (32767)

Page

100 Appendix D

m T mmmmmMm MMM MMMmMMMM M

A VERUVIT VIU VRt VIt VI VRV VIR VAT VIRT VAT VIRV VIR T VIRV VIRV VR VIRV V7 VRV "7 a7 "R " " 7

Function

realloc
remove
rename
rewind
scanf
SCHAR_MAX
SCHAR_MIN
SEEK_CUR
SEEK_END
SEEK_SET
setjmp
settime
SHRT_MAX
SHRT_MIN
size t

sound
sprintf
srand

sscanf
stderr

stdin

stdout

strcat

strchr
strcmp
strcpy
strcspn
strlen
strncat

Type Header

F I3 F I I Iy

T T

I\

e N e T T Y

h.stdlib
h.stdio
h.stdio
h.stdio
h.stdio
h.limits
h.limits
h.stdio
h.stdio
h.stdio
h.setimp
h.stdlib
h.limits
h.limits
h.stddef
h.stdlib
h.stdio
h.stdlib
h.stdio
h.stdio
h.stdio
h.stdio
h.string
h.string
h.string
h.string
h.string
h.string
h.string

Description

changes the size of an object

delete a file

rename a file

set file pointer to start of file
formatted input from stdin

constant 127

constant -127

for use as a third argument to fseek
for use as a third argument to fseek
for use as a third argument to fseek
save function calling environment
set internal timer

constant 127

constant -127

type of the result of sizeof operator
generate sounds

formatted output to a character array
set seed for pseudo-random sequence
formatted input from a string
standard error stream stderr
standard input stream stdin
standard output stream stdout
append two strings

search string for character

compare two strings

copy a string

length not containing specified chars.
compute length of a string

concatenate part of a string

Page

Appendix D 101

Function Type Header
strncmp f hstring
strncpy f hstring
strpbrk f hstring
strrchr f hstring
strspn f hstring
strstr f hstring
strtod f hstdlib
strtok f h.string
strtol f h.stdlib
system m h.stdlib
tab m h.stdlib
time f hstdlib
tolower f h.ctype
toupper f hctype
TRUE m h.stdio
UCHAR MAX m hlimits
UINT_MAX m hlimits
ULONG MAX m hlimits
ungetc f hstdio
USHRT MAX m h.limits
va_arg m h.stdarg
va_count f hstdarg
va_end m h.stdarg
va_list t hstdarg
va_start m h.stdarg
vdu f hstdlib

Description

compare two part strings

copy part of a string

locate string within a string

locate last occurrence of char. in string
length consisting of specified characters
locate string within a string

string to float conversion

break string into a sequence of tokens
string to long conversion

pass string to Command Line Interp.
position cursor at specified position
read internal timer

convert upper case to lower case
convert lower case to upper case
constant 1 (also in h.stddef)

constant 255U

constant 65535U

constant 4294967295U

push character back onto input stream
constant 255U

type and value of next argument
count arguments

normal return from function

array type for va_arg & va_end info
used before access to unnamed args

send control code to VDU driver

Page

60
60
61
61
61
61
55
62
55
55
56
56
65
65
71
80
80
81
48
81
68
68
68
68
69
56

102 Appendix D

n w w

m

m T mmMmmMmmmMmMmmMmmMmMmMPMMMMMMMmMmMmm

AN OW W W W WWNW N W W W W ewwwewweww

Appendix E

Command mode errors

Ambiguous command
The command cannot be unambiguously identified.

Bad command
The command cannot be recognised. This message will only be issued when
command mode 0 has been set.

Bad list
The list of values supplied is terminated incorrectly.

Bad mode
The screen mode or command mode specified is invalid.

Bad negative
The specified qualifier cannot be prefixed by NO to specify a negative value.

Bad number
The numeric value supplied is invalid.

Bad qualifier.
The qualifier supplied is not recognised as being valid for the command.

Bad string
The string supplied is incorrectly terminated; i.e. the closing quote is missing.

Cant run
The program is not a valid executable file.

Escape
The ESCAPE key has been pressed.

List not allowed
A list of values is not allowed for the parameter or qualifier.

No command
No command has been supplied on the command line.

No qualifier name
A slash / has been found, but no qualifier was found following it.

Appendix E 103

No value allowed
A value is not allowed for the specified qualifier.

2

LR S I VY VI VI VRt VIRY VIR VIRY VIR VsV VIV VT VIR VAR VAR VIRV VR 7 "R” "R "R "R 7'

Bad typename
Inside a cast, or as the argument to the 'sizeof' function, the typename
specified is invalid.

-

Too many values
Too many values have been supplied for a parameter or qualifier. The
maximum allowed is 20.

5

Can't initialise auto aggregates
Cannot initialise an array, structure or union with automatic storage class.

Make the aggregate 'static’ in order to initialise it.
Value required.

A value is required for the specified qualifier. Can't return value

By

- An attempt has been made to return a value from a function which is defined
Compiler errors & as 'void.
These errors fall into thrge categories: pgn-fatal, fatal and warningg. After . 'char' array required
MBI S, SEeES o ueings T ampi e e = llosel o ot . An attempt has been made to initialise a non-char array with a character

compiling. After a fatal error the compilier will stop immediately. string.
Bad array size

. . case or default expected
An invalid array size has been found in an array declaration. B

A statement other than a 'case’ or 'default’ label was found inside a switch

statement.
Bad constant expression -

The constant expression supplied cannot be evaluated by the compiler. T Division by 0

The optimiser found an expression that caused an attempt to divide by zero.

Bad #include filename T Use the /NOOPTIMISE qualifier if this is required.

The syntax for the filename supplied to #include was not valid. It must be _

enclosed in either angle brackets or double quotes. L ECF in comment

End of file was found while processing a comment.
Bad initialisation 1

The initialisation attempted is illegal. EOF in #if

End of file was found before a #endif statement.
Bad line no.

The line number supplied to #line is invalid. It must be a positive integer i Error limit exceeded

constant . - The maximum number of errors allowed in a compilation is 255. This is a
2 fatal error.

Bad member -

An attempt has been made to declare an illegal member to a struct or union. Fields not allowed

Fields are only permitted within structs or unions.
Bad operation

The arithmetic operation attempted is illegal in this context. For example, =
adding a floating point value to a pointer.

-
-

Identifier or constant expected
An identifier or a constant was expected as the next lexical token. This is the

message that is printed if no sense at all can be made of the input.
Bad string

A closing quote for a string was not found before the end of the line. i Identifier expected

An identifier was expected as the next token in the line. An identifier is any
Bad subscript i string that is not a keyword.
An attempt has been made to subscript an object other than an array or a

Y M »
pointer. Low

(=
-e

104 Appendix E Appendix E 105

="
aw

#include file not found

The required #include file was not found on the disc. Check the *LIB library.

Int required
An integer constant expression is required in an array declaration.

Label required
The destination for a 'goto’ must be a label.

Lvalue required

An attempt has been made to take the address (eg for assignment) of an
object for which it is illegal to do so.

Macro needs parameters
The macro requires parameters and none have been supplied.

Multiple 'default'
More than one 'default’ statement was found in a single switch statement.

Multiply defined external symbol

It has been attempted to define an external symbol which has already been
defined.

Multiply defined label
An attempt has been made to define a label which has already been defined
in this function.

Multiply defined local symbol

An attempt has been made to define a local symbol which has already been
defined.

Multiply defined macro

An attempt has been made to define a macro that has already been defined.
Use #redef if this is required.

Must be int or unsigned
Type of bit field must be either int or unsigned int.

Must be ordinal type

A bitfield must be an ordinal type, i.e. and not an array or pointer. Arrays of
bitfields are not allowed.

Must be <=8 bits
The maximum size of bitfield allowed is 8 bits.

No active loops
A 'break’ or 'continue’ has been found outside a loop or switch statement.

106 Appendix E

m

A R RN E RN EE NN R R R R

m m m m m mm M

‘momomommomom

m

No literal space) . .
Insufficient space has been set aside for storage of literals during the

compilation. The literal space can be changed by use of the /LSPACE
qualifier. The initial buffer size is &300 bytes. This is a fatal error.

No room . .
There is insufficient memory available to complete the compilation. This can

occur if a function is too large. This is a fatal error.

No such member »]
The specified identifier is not a member of the specified struct or union.

Not struct or union .
An attempt has been made to use the .’ or '->" operator on an object other

than a struct or union.

Parameter already declared _
The specified parameter has already been declared in a function header. The
following would give this error:

Parameter name expected

In a function definition, a reserved word was found where an identifier
specifying a parameter name was expected. This can occur ifa r.nixture of
the 'function prototype' and normal types of definition is found in a function
header.

Preprocessed line too long
Expansion of macros in a line caused the line to overflow the allocated
buffer. Split the line up. This is a fatal error.

Size required
A size is required for the array declaration.

Stack Full ‘ »
The 6502 stack is full. This function is too complex and must be simplified.
This is a fatal error.

Static identifier required

In the initialisation expression for an external object, an attempt has been '
made to take the address of a non-static identifier, or the constant expression
supplied is invalid.

Tag already defined]
The struct or union tag specified has already been defined.

Too big
The floating point constant was too large to represent in the computer.

Appendix E 107

I

Too few function arguments

The number of arguments in the function prototype is more than the number
of arguments actually supplied to the function.

Too few macro arguments
Insufficient parameters have been supplied for the macro.

Too many function arguments
The number of arguments in the function prototype is less than the number
of arguments actually supplied to the function.

Too many #ifs
The maximum nesting allowed for #if is 16.

Too many initialisers
Too many initialisers were supplied for the object to be initialised. This may
also apply to character string initialisations.

Too many macro arguments
Too many parameters have been supplied for the macro.

Type of parameter already declared

The type of the parameter has already been declared in a function definition.
The following would give this error:

function (a,b)
int a ;
char b ;
int a ;

function (a,b,a)

Type spec required
A type specified was required.

Undeclared identifier
A reference was made to an identifier that has not been declared.

Undeclared label

At the end of a function, a 'goto’ was attempted to a label which is not
defined.

Undefined tag
A reference has been made to a struct or union tag that has not been defined.

Unexpected EOF
End of file was found before all blocks had been closed. This may occur due

A\

Ww W W wuwwuwewweu

mmMmmMmmMmmMmMmMmMmMmMmMMmMmMmMmMmMTmMmmmmm (¥

m

m

' VI ' VIR VI VRV VR VR VIRV VIRRY VRV ¥

108 Appendix E

.LT-—-—-—-——-—-—-—-—-—-—-—-—I—I_-—I—-—I—I—-—-—-—l

m T

to previous errors in the compilation preventing a closing brace } for a block
being found.

Unmatched #else ' .
A #else was found with no matching #if.

Unmatched #endif ‘ -
A #endif was found with no matching #if.

'while' expected
The 'while' at the end of a 'do’ statement was not found.

';' expected
A semicolon was expected following an expression.

' expected)

A quote character for a character constant was expected as the next lexical
token. This can occur if more than one character is found inside a character
constant.

':' expected N
A colon was expected as the next lexical token. This can occur in conditional
expressions and after 'case’ labels.

'(' expected
A '(' was expected as the next lexical token

')' expected
A")' was expected as the next lexical token.

'{' expected
A '{" was expected as the next lexical token.

'}' expected
A '} was expected as the next lexical token

'[' expected
A '[' was expected as the next lexical token.

']' expected
A '] was expected as the next lexical token.

') " for macro required
A close bracket for a macro invocation requiring parameters is require.

Appendix E 109

Warning messages

Function prototypes are non portable
This is flagged if the /PORTABLE qualifier is used. A function definition
containing a prototype has been found.

Input line truncated

Input lines longer than 128 characters are split over 2 lines. This may cause
further errors.

Struct parameter converted to pointer
A function definition specified that a struct or union be passed as a
parameter. This implementation converts these to pointers.

Symbol name truncated
Symbol names longer than 31 characters are truncated to 31.

Type specifier is non portable
The type specifier is allowed in this implementation, but is not standard.

Union initialisation is non portable
This implementation allows unions to be initialised. This is not portable nor
standard.

Linker Errors

Bad byte
An illegal byte has been found in the specified object file. In theory this error
should never occur. It is followed by the following information.

#<value> @<address>

where the <value> is the actual value found which is illegal, and the
<address> is the offset of the next byte in the file.

Bad library
The library file specified has an invalid format. Check the version numbers

of the library and the librarian by dumping the library file and checking the
header.

Bad object file
The specified object file is an invalid Beebug C object file.

Error limit exceeded
The maximum number of errors allowed in a linking operation is 255.

110 Appendix E

1 LI |

m

m T T™®OHDDTTHMHMMH MM

m 'no'nm
B W N W

m

m

N\

" VIR VIRV VARV VIR VIRV VIR VIRV VIR VR TR R VR BB B

File not found
The specified file could not be found by the linker.

Library not found
The specified library file could not be found.

Link aborted '
The linking operation has been aborted due to the previous error.

Multiply defined symbol .
The named symbol has been previously defined. Rename the required

symbol.

No main function
The program is not executable since no ‘'main’ function has been found.

No room o '
There is insufficient memory available for the linking operation.

RTSYS not found o
The run-time system file RTSYS has not been found on the disc. This will
only occur if the /STANDALONE qualifier has been specified.

Undefined symbol

The name symbol has not been found. This may occur if the storage class of
the symbol definition and a symbol reference do not match, that is, one is
external and one is static.

Run-time system errors

Assertion failed
The assertion stated in the program at the specified line has failed and the
program has been aborted.

Bad mode
The mode function has been called specifying an illegal screen mode.

Bad opcode

The run-time virtual machine has found an opcode which it did not
recognise in the program. Check the Program Counter PC in the register
dump for the address.

Division by zero
An attempt has been made to perform a division by a zero value.

Appendix E 111

Escape

The escape key has been pressed, thus stopping the program.

Illegal file access mode
The fopen function has been called specifying an illegal file access mode as
the second parameter.

No room

There is insufficient memory available to continue the execution of the

program.

Too complex

An expression has been calculated which caused the Arithmetic Stack to
overflow. Simplify the expression.

Too many nested functions
The Function Stack has overflowed. This is caused by nesting too many

function calls.

112 Appendix E

momn wm

m

mnmmn

TTHTTTHTHTH MM

m m
| Y VR VI VIRV VY VIRV VT V' Vi Vit ¥

m

n

m n

W

A\

Memory map

The following diagram shows the memory map for the Beebug C system.

Appendix F

Technical Information

Operating System

Beebug C (comp)

Beebug C (lang)

VDU

Variable Stack

C Program

OS Workspace

C Workspace

Input Buffer

Function Stack

Arithmetic Stack

OS Workspace

6502 Stack

Zero Page

Oxffff

0xc000

0x8000

HIMEM

VSP

Heap Pointer

Top of Program

OSHWM

0x0800
0x0700
0x0600
0x0500
0x0400
0x0200

0x0100
0x0000

Appendix F 113

Introduction

This section gives a description of the operation of the virtual machine used
to perform the run-time operations of Beebug C. It is intended to be read by
those who understand the complexity of run-time systems, or those who
wish to further their knowledge of the Beebug C system and get the best out
of the system's debugging facilities.

A knowledge of the workings of the virtual machine can enable the
programmer to write programs which run faster, and are more efficient.

Machine architecture

The Beebug C virtual machine is a program which implements, in software,
the workings of a real CPU. The machine's instruction set has been
specifically designed to the requirements of the code generated by the
compiler. The machine has a complex instruction set, one instruction
performing many functions.

The machine has 6 internal registers:
¢ Two 32 bit accumulators, called A and B.
¢ A 16 bit Program Counter, PC.
* An 8 bit Arithmetic Stack Pointer, ASP.
* An 8 bit Function Stack Pointer, FSP.

* A 16 bit Variable Stack Pointer, VSP.

The Accumulators.

The two 32 bit accumulators are used for all the calculations performed in the
C program. If the calculation can be performed using only one register, it
will be performed in A, and B will not be affected. It is not true, however,
that dyadic operations will always have one operand in A and the other in B.
B is used only when it is inefficient to use any other method.

When a function returns a value, it places this value in A. If the function
does not return a value, the contents of A when it returns are taken as the
value if read. This corresponds to the C definition that 'garbage is returned’
from a function that returns no value.

The A accumulator is actually 64 bits long, but it is only the bottom 32 bits
that are used by C, the upper 32 bits being used for calculation purposes,
such as multiplication of 32 bit numbers where the answer is 64 bits long,.

114 Appendix F

mT™mHhMomTMHMHDMHMMMHPMOMMOHDMODMHDMMDMMMMEMMN

M

m n
N

TR R R RERNRN

W W L W W

A A A A

' -

Where an indirection operation is to be performed, the contents of the
pointer will usually be placed in B. Thus by examining B, it is possible to see
whether a pointer contained the correct address. If B is zero, it usually
indicates a NULL pointer has been de-referenced, a very common cause of

€ITrors.

The Program Counter

The PC register contains the address of the instruction currently being
executed. It always points to the operator of the instruction, and not any of
the operands. When the instruction has been completed, PC is incremented
by the number of bytes required to make it point to the next instruction.

By examining PC, it is possible to find the reason for a 'Bad Opcode’ run-time
error. This error is usually obtained by a program overwriting itself with
data. This is common since static variables are allocated storage in the
program itself, and C does not check array bounds. Also, uninitialised
pointers can cause data to be written to the wrong place.

The Arithmetic Stack Pointer

The virtual machine uses a Reverse Polish Notation (RPN) method for
calculation of expressions. This method requires the use of a stack to hold
the operands and result of a calculation. This stack is known as the
Arithmetic Stack (AS).

When a calculation is to be performed, the operands required are pushed on
to the AS and the operation performed on the stack. The result of the
operation replaces the operands on the top of the stack.

For example, suppose the calculation:
a+b*c

is to be performed. The sequence of instructions required to perform such a
calculation would be:

LOAD a
LOADbD
LOADc
MULT
ADD
POP

The LOAD operation pushes the value of its operands on to the top of the
stack. The MULT and ADD operators take the top two elements on the stack
and replace them with their product and sum respectively. This leaves one

Appendix F 115

element on the stack, the result. The POP operation pops the top element on
the stack into the A accumulator.

The Arithmetic Stack Pointer gives the address of the top element on the
Arithmetic Stack. Before and after a calculation this should be the address of
the bottom of the stack. The AS is one page (256 bytes) long, so only the
bottom 8 bits of the address are required. The ASP can be regarded as being
the offset into the AS. '

When the run-time error 'Too complex' occurs, the AS has overflowed. This
will occur only when the ASP has the value zero, since the ASP is a
‘increment and store' stack pointer and the bottom element of the stack is
never used.

Each element on the AS is 4 bytes long, so a maximum of 63 push operations
can occur before a pop operation.

Care must be taken while using recursive functions to ensure that the AS
does not fill up unnecessarily. This can be done by ensuring that the
calculation involved in the recursion is performed before the value is
remembered.

The AS grows upwards in memory.

The Function Stack Pointer

When a function is called by the virtual machine, an activation record is kept
on the Function Stack (FS). This activation record consists of 3 bytes, which
are the number of parameters passed to the function, and the address of the
next instruction to be executed on return from the function.

On return from a function, the required number of parameters are popped
off the variable stack (see next section), and the PC is loaded with the return
address. The value returned from the function is in A.

The FSP gives the address where the next activation record will be placed.
Thus it is a 'store and increment' register, as opposed to the ASP which is
‘increment and store'.

When the run-time error 'Too mahy nested functions' occurs, the FS has
overflowed. Each record is 3 bytes, therefore a maximum of 85 push
operations can be performed without the pop operation.

As with the ASP, the FSP is 8 bits long, giving the offset into the FS as
opposed to the absolute address. The FS grows upwards in memory.

116 Appendix F

mmmmMnmMmonmmwmn

MmN T NN mMNnmTnmmnmhmhmmm

m

.

1

4 4

W WAL adasaa

& A A A A A AN AN W

a & &

The Variable Stack Pointer

There are two types of variables supported by the virtual machine. These are
static and automatic. Static variables are allocated static storage in the
program space itself, and automatic variables are allocated space on the
Variable Stack (VS).

The VS starts at HIMEM and grows downwards towards the heap. When a
collision occurs between the VSP and the heap pointer, a No room' error is

flagged.

The VSP gives the address of the current top of the VS. When an automatic
variable is declared in a function, an instruction is generated to decrement
the VSP by the number of bytes required by the variable.

For example, if the variable i is declared as an automatic int:
autointi;

the instruction 'decsp' is generated at this point in the code:
decsp 2

The operand to the instruction gives the number of bytes by which the VSP
should be decremented. When the block exits, all automatic variables which
have been declared in the block are de-allocated by incrementing the VSP by
the required number of bytes.

Function arguments are also pushed onto the VS. Each argument occupies 4
bytes regardless of its type. These are pushed on to the VS before the
function is called and the 'rts’ instruction pops the required number of
arguments back off the VS, thus maintaining the integrity of the VS. This is
the purpose of the first byte in the activation record on the Function Stack,
the number of arguments.

The Instruction Set

It is not within the scope of this manual to explain every instruction
implemented in the virtual machine in detail. This section gives a brief
overview of the instruction set.

The code produced by the Beebug C compiler is known as D-code. This has
been specifically designed for the virtual machine to be as efficient as
possible.

Each D-code instruction consists of a single byte opcode, perhaps fqllowed
by a number of operands. The operands provide the instruction with data,

Appendix F 117

such as addresses, offsets etc.

The instruction set can be divided into 5 logical types.
1. Arithmetic operations
2. Load and store operations
3. PC control operations
4. Function call and return operations

5. Stack control operations

Arithmetic Operations

These consist of instructions such as ADD and MULT, as well as more
complex instructions such as POSTINC (post increment operator). All of
these types of instructions use the Arithmetic Stack for their operation, as
discussed later.

Many of the instructions require operands.

Load And Store Operations

These operations control access to variables used within the program. There
are many types of load operation, but only one store operation.

A load operation can either load a value from static memory, an immediate
value (such as a constant), or load a value from the Variable Stack. They can
also load the address of a variable as well as its value.

They load the required value (or address) on to the top of the Arithmetic
Stack for use by arithmetic operations.

The store operation takes the value on the top of the AS and places it in the
address pointed to by the next value on the AS.

Many of the load and store operators need to know the size of the variable
they are dealing with. This is supplied as an operand to the instruction.

PC Control Operations

There are only three instructions of this type. They are JF, JT and JMP.
Which are jump false, jump true and jump respectively. They all take the
address to which they should jump as an operand.

118 Appendix F

|

mmpmmmmMmmMmMmMmMMMMAM

l

n

n

n

N|
N|
L |
L |
g
L |
<|
«|
o
o

o
C|
C |
C |
C]
o
o
o

Function Call and Return Operations
There are two function calling instructions available in D-code, and one

return instruction.

The function call instructions consist of a call absolute and a call indirect
instructions. Both take as their first operand, the number of arguments
passed to the function. The call absolute instruction also takes the address to
call, whereas the call indirect instruction calls the address currently in the A

accumulator.

The return instruction 'rts’ pops the required number of parameters off the
VS and pops the last activation record off the FS. It then sets up PC to the
return address.

Stack Control Operations

The stack control operations consist of instructions to control the VS and AS.
VS control instructions are used to allocate and de-allocate automatic
variables and function arguments.

AS instructions are used to push and pop values off the AS explicitly.

Linkable D-code

The Beebug C compiler does not produce executable D-code directly.
Instead it produces Linkable D-code. The Beebug C linker takes this linkable
code and produces the executable code. In order to enable it to do this, the
compiler produces, instead of explicit addressing, symbols which are
resolved by the linker to addresses.

To control this, Linkable D-code has built in symbols to control operations,
which are removed by the linker. These operations enable symbols to be
defined and de-referenced by the linker. In general, at any position in the
executable code, where an address is required, a symbol will be generated in
the linkable code.

Linkable D-code also contains static variable allocation instructions which
enables space to be reserved in the code, and explicit initialisations of statics
to be performed.

Appendix F 119

D-code Disassembler

On the utility disc supplied with Beebug C is a program called DASM. This
is a D-code disassembler written in C on the Beebug C compiler. Note that it
does not disassemble executable object code. This program is intended for
advanced users only, and a technical knowledge of the Beebug C virtual
machine is required to understand the disassembled code correctly.

To disassemble the object code for the welcome program given in section 2,
type:

‘run dasm o.welcome

If for some reason you wish to re-compile dasm, then the following steps
should be taken. First compile the two source files dasm and special:

compile dasm
compile special

Then link both object files together with:
link/nodebug/origin=&2500 dasm, special

The executable code can now be run.

120 Appendix F

0
A A A AAANAAMAAALAANMNAMALUAAMALG G QUL

1)

nm MMM DM ODmMmMDhmmmmm

[

n

'

B o

&

-~

Appendix G

Example Programs

This section contains three example programs which, for convenience, are
supplied as source files on the library disc. The files are called c¢.1ist,
¢.compare and c.campasc. For clarity, the lengths of the programs have
been kept to a minimum, and subsequently they include less error checking
than that normally required. However, in normal use they work very well,
and should prove to be quite useful.

Each program accepts a number of parameters, which must be typed after
the command name. We suggest that you use command mode 2, so that the
programs may be executed by simply typing their name followed by any
parameters. Remember that the executable code for each example should be
in sub-directory e of the current directory.

Appendix G 121

Example 1 - List utility

Although source files may be listed with line numbers using the command
*LIST, there is no facility to list a range of lines or individual lines. This
program provides these features. For example:

list c.dasm 20 50

will list lines 20 to 50 of the file ¢.dasm (which is the source file of the object
code disassembler). To list an individual line, say line 68, type:

list c.dasm 68 68

Please note that the last line of the file to be listed must terminate with a
carriage return, otherwise it will not be listed.

/* List Utility */

#include <h.stdioc>
#include <h.string>
#define MINLINE 1
#define MAXLINE 65535
#define MAXLEN 255

main (argc, argv)

int argcy

char *argv(];

{

unsigned int line = 0, start, end;
char string(MAXLEN] ;

FILE *instr;

start = (argc > 2) ? strtol(argv([2], NULL, 0) :
MINLINE;

end = (argc > 3) ? strtol(argv[3], NULL, 0)
MAXLINE;

if ((instr = fopen(argv{l], "r"™)) != NULL) {

while (fgets(string, MAXLEN, instr) != NULL && line <

end)
if (++line >= start)
printf ("%5d %s", line, string);

}

else
printf("File '%$s' not found\n", argv([1l]);

}

122 Appendix G

\]

1 LS YR VL U)
a A a

m

m M mmmmmmmmm

T
U

a

[

/!

4 a

A A A A A

A

|

A & & |

a & & A B

&

Example 2 - Compare utility

This program provides a simple way of comparing the contents of two files.
If the files are not the same, the address (in hex) of the first byte at which
they differ is displayed. For example type the following:

compare c.welcome c.dasm

This compares the file c.welcome with the file ¢ .dasm. It displays the
message Compare failed at 0 since the first byte in each file is different. If no
message is displayed then the files are identical. If the files are of different
length, but are otherwise identical, an appropriate message is displayed.

/* Compare Utility */

#include <h.stdio>
#include <h.string>

main (argc, argv)
char *argv(]:

{

int cl, c2;

FILE *filel, *file2;
unsigned long byte = 0;

filel = fopen(argv({1l], "r");
file2 = fopen(argv([2], "r"):

if (filel == NULL || file2 == NULL)
printf("File not found\n");

else {

do {

cl = fgetc(filel):;

c2 = fgetc(file2):;

++byte;

}

while(cl == c2 && cl != EOF);

if ((cl == EOF && c2 != EOF) || (cl != EOF && c2 ==
EOF))

printf("Files are different lengths\n"):;else

if (¢l != c2) printf("Compare failed at 0x%x\n", --
byte);

}

}

Appendix G 123

S

Example 3 - ASCII compare utility

The previous program is useful for checking if two files, of any type, are
identical. This example is written specifically for comparing ASCII files. It

scans through two files line by line, displaying any lines that are not

identical. It is particularly useful for locating differences between C source

files. For example:
compasc c.progla c.proglb
compares the ASCII file c.progla with the file c.proglb.
/* ASCII Compare Utility */
#define MAXLEN 255

#include <h.stdio>
#include <h.string>

main(argc, argv)
char *argv([];

{

int charnum;

FILE *filel, *file2;

char stringl [MAXLEN], string2[MAXLEN];
unsigned long linenum;

filel
file2

fopen (argv(1l}, "r"):;
fopen(argvi{2], "r"):

(Il

if (filel == NULL || file2 == NULL)
printf("File not found\n"):;

else {

for (linenum = 0; (fgets(stringl, MAXLEN, filel)
NULL) && (fgets(string2, MAXLEN, file2) != NULL):;
++1linenum)

if (strcmp(stringl, string2) != NULL) {

printf ("$10s %5d %s", argv(l], linenum, stringl);

printf("%10s %$5d %s\n\n", argv{2], linenum, string2) ;

}
}
}

124 Appendix G

1

fnfn!nmmmmmmmmmmmmmmmmmmun*

A A D AR AAAAATATATOA e e d@dddadd

n

i

NG)11

Beebug produces a wide range of high quality software
for the BBC Micro and Master Series. Our titles include:

Command Paintmaster
Discmaster Printwise
Dumpmaster Quickcalc
Exmon Romit

Help . Sleuth
Hershey Characters Spellcheck
lconmaster Studio Eight
Master Rom Toolkit Plus
Masterfile Wordease

Please write or telephone for further information.

Dolphin Place, Holywell Hill, St. Albans, Herts. AL1 1EX,
England
Telephone: (0727) 40303

