

ADDCOMM

INTRODUCTION

 ADDCOMM is a new advanced in
upgrading the BBC Microcomputer
and Acorn Electron. The software
held within the EPROM has been
specially designed to simulate a
SUPER EXTENDED BASIC.

 This new advance eliminates the
untdy "star" commands necessary
with other upgrades and its
exceptional versatility allows
the use of any real number,
variable or expression within the
statements.

 ADDCOMM's commands have been
selected to give as great a value
for money as possible, being so
versatile they negate the need to
buy several separate chips and
offer a cross-section of
adaptable statements that have
not been provided in BBC BASIC.

Software written by:

 Richard P. D. Mallett

to whom any queries regarding the use of the ADDCOMM ROM
may be addressed:

 c/o Vine Micros
 Marshborough,
 Nr. Sandwich,
 Kent. CT13 0PQ
 (Tel. 0304 812276)

All rights reserved. No part of this publication, or the
ADDCOMM ROM referred to herein, may be reproduced, stored
in a retrevial system or transmitted, in any form, or by
any means, electronic, mechanical, photocopying,
recording or otherwise, without the prior written
permission of Vine Micros.

CONTENTS

 Subject Page

 Enhanced Graphics 1

 Logo Graphics 7

 Toolkit Commands 9

 Miscellaneous Statements 13

 Use of ADDCOMM's Statements 16

 Statement Descriptions in

 Alphabetical Order 17-60

 *HELP 61

 Notes on Compatibility and Memory Use 62

 Do's and Don'ts 63

 Error Meessages and Codes 64

 Defaults on BREAK 65

 Abbreviations 66

 Brief Summary of ADDCOMM

 Statements and Syntaxes 67

 Short Index 70

IMPORTANT

ADDCOMM is now suitable for use on the Acorn Electron
with ROM board.

Since being first released, ADDCOMM has been updated as
follows:

A new FX call has been incorporated to allow ADDCOMM to
be switched on and off more reliably than before.

*FX 163,0 (or just *FX 163) followed by BREAK will turn
ADDCOMM on.

*FX 163,128 (or more simply the statement ADDCOMM) will
turn ADDCOMM off. Note that neither a BREAK or CTRL-BREAK
will turn it back on again.

*FX 163,64 will allow user definition of the memory
workspace used by ADDCOMM. In use this will be 256 bytes
(one 'page' of memory). Simply follow this FX call by:=

 ?(&Df0+chip)=page

where 'chip' is the chip number of ADDCOMM 0 to 15 (i.e.
its situation on a ROM board or similar), and 'page' is
the page number to be used. Then press BREAK and ADDCOMM
will relocate itself. For example, to make ADDCOMM use
the RS423 buffer (from &900 to &9FF) use a page number of
9 (not &900).

These facilities are only available on versions 1.30 and
onwards.

Version 1.30 is the 'on' version (i.e. available from
switch-on).

Version 1.31 is the 'off' version (i.e. it must be
enabled using *FX 163,0 and then press BREAK).

A re-programming service is available to change an 'on'
version to an 'off' version or vice-versa, at a charge of
£1.00 (inclusive). The chip to be reprogrammed must be
sent to Vine Micros, Marshborough, Nr. Sandwich, Kent
CT13 0PG.

1. ENHANCED GRAPHICS

ADDCOMM greatly enhances the BBC Microcomputer's graphics
ability, with the addition of such routines as circle and
ellipse drawing and filling, turtle-like graphics, a
recursive fill routine with the option of shading,
polygon and arc drawind, rotating about any point and any
angle, and perhaps most useful of all a user-definable
scaled screen, allowing the user to create his or her own
co-ordinate system depending on the screen.

Try the following:

 MODE 4
 SCALE 0,100,0,100

The screen is now scaled such that there are 100 screen
units in the horizontal direction, and 100 in the
vertical direction. The SCALE statement has four
parameters, (try *HELP SCALE for a quick explanation),
which tell the computer the exact specifications of the
screen. The first is the value of the z-position that
refers to the far left border of the screen, and the
second refers to the far right. Thus in the example above
the far left border has x-position 0, and the far right
border has x-position 100. The third and fourth values
refer to the y-position of the bottom of the screen, and
the y-position of the top of the screen respectively.

To illustrate this using the SMOVE and SDRAW statements
(which operate in a similar way to the standard MOVE and
DRAW ones), try the following directly after typing the
above:

 SMOVE 0,0
 SDRAW 100,100

The computer will now drag a line from the bottom left of
the screen to the top right of the screen. To see why
look at the statements you have entered. The SMOVE
statement moves the graphics cursor to the point (0,0) on
the screen. Note that this is according to the scale set
up using the SCALE statement, so with the x-value equal
to zero, and the y-value equal to zero, the point is the
bottom left of the screen - which is one end of the line.
The SDRAW statement draws a line from the previous point
to the point (100,100), which, because of the scale in
use, corresponds to the top right of the screen.

Page 1

To clarify this enter the following:

 MOVE 4
 SCALE -100,200,-100,200
 SMOVE 0,0
 SDRAW 100,100

Note that although the SMOVE and SDRAW statements are the
same, the line drawn is now much shorter, because the
scale in use is much larger.

Try different scale values, but note than an illegal
scale will be rejected with the error message 'Accuracy
lost'.

To progress further it should be noted that any value can
be used in the graphic statements, i.e. integer, floating
point, negative integer, negative floating point, etc. So
the following is allowed:

 MODE 4
 SCALE -1,1,-1,1
 SMOVE 0,0
 SDRAW 0.5,-0.5

To realise the true potential of a user-definable scale
system, try the following version of a program to draw a
sine curve on the screen:

 10 MODE 4
 20 SCALE -P1,PI,-1,1
 30 FOR angle=-PI TO PI STEP 0.1
 40 Y=COS angle
 50 IF angel=-PI THEN SMOVE angle,Y ELSE SDRAW
angle,Y
 60 NEXT angle

To do the same thing using the normal MOVE and DRAW
statements would result in a program full of
multiplication and addition equations, which are
completely unnecessary using the scaled graphics
statements provided by ADDCOMM.

In the same way that SMOVE and SDRAW replace MOVE and
DRAW, SPLOT can be used instead of PLOT. For example:

 MODE 4
 SCALE 0,100,0,100
 SMOVE 0,0
 SMOVE 0,100
 SPLOT 85,100,100

Page 2

This will draw and fill a triangle in the usual PLOT 85
fashion.

To move on, a circle drawing statement is provided in
ADDCOMM:

 (MODE 4 : SCALE 0,100,0,100)
 CIRCLE 50,50,20

(It should be noted that the MODE and SCALE statements do
not need to be repeated before every graphic statement,
but are simply included here in brackets to show what
scale they use, so that the system is set up correctly.)

The above routine will draw a circle with its centre in
the centre of the screen, i.e. at the point (50,50).

Type *HELP CIRCLE and you will see that the CIRCLE
statement has a few more tricks up its sleeve, namely the
ability to draw arcs, dotted circles and arcs, solid
circles (i.e. circles filled with colour), and even
sectors ('slices' of solid circles). To access these
abilities the user needs to add four more parameters to
the statement, which are not explained in this section,
but are in the CIRCLE statement description.

Ellipses can be drawn using the ELLIPSE statement (What
else?):

 (MODE 4 : SCALE 0,100,0,100)
 ELLIPSE 50,50,20,40

An ellipse is drawn with its vertical height twice that
of its horizontal height, since the x-radius is 20 units
and the y-radius is twice that at 40 units. Try different
values for the two radii.

In the same way that CIRCLE can have extra parameters
added to it so can ELLIPSE - see its explanation.

The next two statements are used together, being CFILL
and FILL.

FILL will fill from the specified point until it meets a
boundary, and CFILL defines what it fills with.

In modes 0 and 4, the colour filled with is the current
foreground colour. In the other graphic modes the CFILL
should be followed by either 4 or 8 colour codes,
depending on what pattern/shading is required. The colour
codes refer to a grid which is drawn on the screen
instead of a set of points of the same colour.

Page 3

By setting the colours within the grid to various values,
shades of colours not normally possible on the BBC
Microcomputer can be obtained. For instance, the
following will produce a circle filled with an orangey
colour:

 10 MODE 1
 20 SCALE -1,1,-1,1
 30 CIRCLE 0,0,0.7
 40 CFILL 1,2,2,1
 50 FILL 0,0

The orange is obtained by mixing together red and yellow,
which are the colours in the CFILL statement. Try CFIL
1,3,3,1 in the above routine for a pink colour, or CFILL
1,2,1,2 for a different version of the same orange colour
as before. To fill in a solid colour simply set all the
CFILL values to the same value, e.g. CFILL 1,1,1,1 will
fill in colour 1 (which is red in Mode 1). The other 4
CFILL parameters extend the grid to a 2 by 4 one,
allowing further more complicated combinations.

Note that the FILL routine is an extremely useful routine
to have, and can handle screens of extraordinary
complexity. For an example of its ability, go into a
graphic mode, LIST a program, and then FILL around it.

Very complicated pictures may give the 'No room' error,
which is because the FILL routine uses a recursive
algorithm, and uses up spare memory while filling in. The
amount of memory used depends upon the complexity of the
screen picture, and thus some may not be finished. Always
allow for this extra memory as it is not possible to
restart the FILL routine once it has stopped.

The next two commands do not have any immediate effect,
but nevertheless allow greater flexibility with the
scaled screen, and are ROTATE and TRANS (translate).

ROTATE will rotate all subsequent scaled graphics (i.e.
ALL ADDCOMM routines, but not the standard MOVE, DRAW and
PLOT), above a specified point and through a specified
angle (in degrees for ease of use).

To illustrate this:

 10 MODE 4
 20 SCALE -10,10,-10,10
 30 FOR angle=0 TO 90 STEP 10
 40 ROTATE 0,0,angle
 50 ELLIPSE 0,0,3,6
 60 NEXT angle

Page 4

The program will draw 10 ellipses, one at 0 degrees to
the horizontal, one at 10 degrees to the horizontal, one
at 20 degrees, etc. up to 90 degrees to the horizontal.
This is because we are defining (in line 40) the axis of
rotation as (0,0) - which is the centre of the screen and
the centre of the ellipses - and the degree of rotation
as increasing by 10 degrees from 0 to 90. Note that all
angles in ADDCOMM are presumed to be in degrees, and are
measured anticlockwise from the 3 o'clock position. This,
to many, is a strange system, but is in fact accepted as
the standard method of measuring angles in mathematics.

TRANS again only affects subsequent scaled graphic
output, and translates the screen by a specified amount.
The main use is in moving a picture without having to
change all parameters in the statements SMOVE, SDRAW,
CIRCLE, etc. The statement is followed by two values
which give the vector shift of the scaled screen.

 10 MODE 4
 20 SCALE 0,10,0,10
 30 ROTATE 0,0,0 : REM reset so no rotating
 40 FOR trans=0 TO 9
 50 TRANS trans,trans
 60 CIRCLE 1,1,1
 70 NEXT trans

Each subsequent circle is translated by (1,1) from the
previous circle, since the TRANS parameters are
increasing by 1 each time. Note that if both ROTATE and
TRANS are in use, then graphic output is first rotated
and then translated.

The next and final graphic statement in this section is
mainly for use with the POINT(x,y) function in the
standard BASIC.

UNSCALE will convert scaled co-ordinates to non-scaled
co-ordinates, to provide greater compatibility between
the standard graphic scale and the user-defined one. To
use it, simply follow the statement with the scaled co-
ordinates and follow them with the two variables that you
require the result to be in:

 SCALE 0,100,0,100
 UNSCALE 50,50,X,Y
 PRINT X,Y

This will display the value of the unscaled co-ordinates
corresponding to the scaled co-ordinates (50,50), which
will be (if ROTATE and TRANS are not used) 639,511 (half
of 1279 is 639.5, and half of 1023 is 511.5).

Page 5

That concludes this section on enhanced graphics. For
further details on the graphics statements, either use
*HELP to access the syntax, or refer to the appropriate
section of this manual.

Page 6

2. LOGO/TURTLE GRAPHICS

Logo/Turtle graphics provide an interesting alternative
to the normal cartesian system (x,y co-ordinates), and
bear a slight relationship to polar co-ordinates, where
the angle and distance of a point are given relative to
the origin.

The Logo/Turtle graphic system (hereafter referred to as
just Logo) is such that an imaginary cursor (usually
called a turtle) is guided around the screen leaving a
trail. Its direction is changed using TURN, and is moved
in that direction using ADVANCE. Its initial position and
direction is set using the LMOVE and ANGLE statements
respectively, and the particular type of trail is
governed by PEN. As an example, try the following short
program:

 10 SCALE 0,10,0,10
 20 ROTATE 0,0,0
 30 TRANS 0,0
 40 MODE 4
 50 ANGLE 90
 60 LMOVE 5,5
 70 PEN 13
 80 FOR loop=1 TO 6
 90 ADVANCE 1
 100 TURN 60
 110 NEXT

Lines 10, 20 and 30 simply set up the screen scale (See
'Enhanced Graphics').

ANGLE 90 in line 50 will point the Logo cursor upwards
(remember that angles are measured in degrees
anticlockwise from the 3 o'clock position).

LMOVE 5,5 in line 60 will move the Logo cursor to the
centre of the screen, since the scale is set for values
from 0 to 10, and 5 is halfway between these two.

PEN 13 defines the plotting mode for Logo graphics as a
line with the last point omitted. (See page 319 in the
User Guide.)

The loop from lines 80 to 110 is repeated six times, and
during each of these iterations the Logo cursor is
advanced one unit, and turned by 60 degrees
(anticlockwise). Thus a hexagon is produced.

By changing the TURN value and the iterations performed,
other polygons can be created.

Page 7

Other Logo-related statements are LCIRCLE and LELLIPSE.

LCIRCLE is exactly the same as CIRCLE except that the
centre of the circle is the Logo-cursor position, and the
radius is specified by the value after the LCIRCLE
statement:

(Using the scale in the above program.)

 LMOVE 5,5
 LCIRCLE 3

LELLIPSE is, as one might expect, similar to ELLIPSE, but
again the centre of the ellipse is now the Logo-cursor
position, and the x-radius and y-radius are specified by
the values following the LELLIPSE statement:-

 LMOVE 5,5
 LELLIPSE 4,2

The full range of graphics that can be created by using
Logo is beyond the scope of this manual, but various
weird and wonderful results can be created using a
mixture of the graphics statements available with
ADDCOMM.

Don't forget that Logo graphics are affected by SCALE,
ROTATE and TRANS in exactly the same manner as the other
graphics statements.

Page 8

3. TOOLKIT COMMANDS

Toolkit commands are those that help not with the running
of programs, but with the actual writing of them, and
thus should not be used within a program.

The first one we shall look at is called MEM, and simply
displays a breakdown of the memory available for the
BASIC program. For instance, type in 'MEM'. (Note that
the ' mark should not be included.)

 MEM

The display will be something like:

 Program :0002 2
 Reserved:0000 0
 Spare :6CFE 27902

This indicates that 2 bytes are used up for a program,
none have been reserved (i.e. there are no variables in
memory, and no memory has been reserved using the DIM x
statement), and 27902 bytes are spare for any type of
use. Note that MEM gives the values in hexadecimal first,
and then decimal.

FKEYS will display the contents of the function keys, so
try defining them with a string of characters (e.g. *KEY3
CLS|M) and then type 'FKEYS'. ADDCOMM will then display
the function key contents in the same way that they were
entered. i.e. the function key 3 (if defined as above)
will be printed as:

 *KEY 3 CLS|M

As many will know, defining characters on the BBC
Microcomputer is made rather complicated by the fact that
each character needs to be first drawn on an eight by
eight grid, and then have the code for each row worked
out. Using a routine within the chip called via the
'CHAR' command this process is greatly simplified.

To illustrate how easy it is to use, type 'CHAR 224'. The
screen will clear and an eight by eight array of dots
will be printed, with eight numbers (in decimal) down the
righthand side. These numbers are the numbers that refer
to the value for each row of the character to be used in
the VDU 23 statement. You will also notice that the
cursor is at the top left of the array. Press the 'COPY'
key. You will see a white block appear above the cursor,
and you will probably have guessed that this corresponds
to a lit pixel in the character 224, which is the one
which you are defining.

Page 9

If you are in Mode 7 then you will also see the '-'
character below the array. Otherwise, if you are in any
other mode, the character that you are defining will be
displayed actual-size. You will also notice that one of
the numbers changed when you pressed the 'COPY' key. This
is simply because the values to be used in the VDU 23
statement have been updated. Pressing the 'DELETE' key
will clear the pixel that the cursor is positioned under,
and will again change the values for the VDU 23
statement.

To move the cursor around to set and reset various pixels
is (as you may have guessed) done using the cursor keys.
To exit, press the 'ESCAPE' key.

A further point worth mentioning is that the character
displayed on entering this routine is in fact the current
definition, and is not necessarily blank.

Progressing further takes us to the KILLREM command,
which, as its name implies, kills (or deletes) all REM
statements in a program. To try it out simply enter a
short program and type 'KILLREM' on its own. Re-list the
program and you will see that any REM statements will
have been deleted (as well as any preceding spaces or
colons). At times it may be necessary to delete REMs from
only part of the program, and this is done using
'KILLREM|' - see KILLREM's description, or type *HELP
KILLREM for further details.

'Bad program' is a sight not appreciated after having
worked on a program for a while, and 'GOODPROG' will in
most circumstances cure this, and thus allow a program to
be listed.

LVAR will list variables except the system integers (A%-
Z%). Simply entering 'LVAR' will list all variables.
Entering 'LVARS' (note no space between the 'R' and the
'S') will list variables whose name starts with 'S'
onwords in roughly alphabetical order. Similarly,
'LVARSg' will list variables whose names begin with 'S'
onwards to those beginning with 'g'. Note lower case
follows upper case in the lists of variables. To list all
variables beginning with, say the ltter 't' enter
'LVARtt'.

'VERIFY' will, as its name suggests, verify that a
program stored using cassette or disc is exactly the same
as the program in memory. Load a program, then try
'VERIFY "<filename>" '. If you verify the program that
you have just loaded, then no error message will be
given. If however they are not the same, then the address

Page 10

of the error will be given, followed by a listing of the
line that contains the error, followed by the 'Not
verified' error message. Machine code programs can also
be verified - see VERIFY's description.

Perhaps the most useful and one of the more complicated
toolkit routines is the 'FIND' command, which is used to
search a program for a set of characters. Load a program,
then type 'FIND|PRINT'. Any line with the PRINT statement
in it will be listed. Note that the "|" character is
vital, as it allows statements followed it to be
tokenised. Try the following:

 FIND|A
 FIND|A|"
 FIND|A|100,1000
 FIND|A|"100,1000

Assuming your program is an average-length BASIC program,
then you may see that if you follow the FIND command with
' |" ' then the characters will be sought for within
quotation marks. Also, following with |100,1000 will
search lines 100 to 1000 inclusive. Following with
"|100,1000 will search lines 100 to 1000 inclusive within
quotation marks.

ADDCOMM provides two replacing commands, which are GREPL
and SREPL, short for global replace and selective
replace. Replacing commands are used to change, say one
variable name to another, or one text word to another, or
one of many uses that the user will soon find.

Both have the same format, i.e. first the search
characters, then the replace characters, and then any
special data - the latter being optional and detailed not
here but in the SREPL and GREPL sections.

For example type in the following short example:

 10 INPUT "What is your name ";A$
 20 PRINT "Your name is ";A$
 30 END

Then type in exactly:

 GREPL|A$|name$

This will replace all sets of characters 'A$' with
'name$'. Note that the lines in which anything is changed
are listen before changing them and the lines listed will
of course be 10 and 20. Now list the program. Then type:

 GREPL|name|A

Page 11

List the program. You will be surprised to see that only
the variable 'name$' has been changed back to 'A$'. Type
in:

 GREPL|A|name
 GREPL|name|address|"

Then list the program. The first command simply restores
the program with the variable 'name$'. The second command
is identical to a previous one, except that there are the
two characters - |" - which tell ADDCOMM only to change
those sets of characters that are within quotation marks,
e.g. in PRINT statements etc. As with FIND, line numbers
can also be added onto the end of the command with the
result that only sections of a program will be changed.

The above examples are for the GREPL command, although
they would all work with the SREPL command (the format of
the command being identical), with the difference that
SREPL will ask the user whether the line that has been
listed should be altered or not (simply key in either 'Y'
or 'N').

The last toolkit command is intended to be used only when
a program is completely debugged and finished. The
command is COMPACT, and is an intelligent line compacter.
COMPACT will add lines together whereever it can, making
sure not to add, say something onto the end of an
IF...THEN statement, nor to delete a line that is jumped
to elsewhere in the program, etc. The idea of COMPACT is
to provide a way of greatly decreasing the size of a
program, without affecting its running. The maximum
length of lines created plus start and end lines can also
be added - see COMPACT's description.

Page 12

4. MISCELLANEOUS STATEMENTS

Jumping out of FOR...NEXT loops, and REPEAT...UNTIL loops
is not taken as good programming, and jumping out of
subroutines is certainly not recommended, but ADDCOMM
comes to the rescue with three statements, that delete
the appropriate loop of subroutine that is being jumped
out of, being:

 POPFOR
 POPGOS
 POPREP

For instance, type in the following short program:

 10 GOSUB 20
 20 PRINT "ADDCOMM rules !"
 30 GOTO 10

RUN the program, and of course, the program will stop
with the error 'Too many GOSUBs'. Now add line 25:-

 25 POPGOS

Re-RUN the program and you will see that it will not stop
this time.

LLIST is simply a statement that lists a line of a
program. But isn't this the same as LIST you might ask?
The difference is that LIST cannot be used within a
program, but LLIST can, and more usefully that LLIST can
be used to split up lines into their component
statements.

For example:

 OPT 1,0
 LLIST 10

This will list line 10 in the split-up mode.

Changing 'OPT 1,0' to 'OPT 1,1' will disable this option
and list the line normally.

SETWIN and WIN are used to create multiple windows, where
each window has its own cursor. For instance, type in:

 MODE 1
 SETWIN 1,0,31,19,0
 SETWIN 2,20,31,39,0
 WIN 1
 CLS
 PRINT SQR(2)

Page 13

 WIN 2
 PRINT PI
 WIN 1

SETWIN will define the windows (up to a maximum of 7),
and WIN will select them. Note that the most important
feature is that the position of the cursor is
'remembered' when a window is re-selected.

LGOTO provides a way of jumping to a line using its name:
For instance:

 10 loop
 20 PRINT "Hi there!"
 30 LGOTO loop

This program will of course print out 'Hi there!' ad
infinitum, but it demonstrates how labels can make
programs very much easier to write - since there are no
line numbers to remember. Note that spaces are ignored
completely in labels, so 'LGOTO abc' is exactly the same
as 'LGOTO a b c'. Labelled lines (e.g. line 10 in the
program above) must have the label at the beginning of
the line, otherwise they will be ignored. Labels are not
allowed in immediate mode.

OPT provides a simple way of controlling some of
ADDCOMM's routines, for instance, whether the FILL
routine should fill using the shade set by CFILL, or the
current foreground colour. A list of options is given in
OPT's description.

SORT is a useful utility used to sort a single dimension
string array:

 DIM A$(4)
 A$(1)="SHEILA"
 A$(2)="FRED"
 A$(3)="JIM"
 A$(4)="BOB"
 SORT A$(1),A$(4)
 PRINT A$(1),'A$(2)'A$(3)'A$(4)

Surprise, surprise! The following will be printed:

 BOB
 FRED
 JIM
 SHEILA

See SORT's description for extra details.

Page 14

ADDCOMM (the command) is sued to switch off ADDCOMM, so
that games and the like can be played.

Page 15

Use of ADDCOMM's statements

Before the user starts to use ADDCOMM extensively he or
she should take note of the following:

1. That keywords placed directly after ADDCOMM's

statements will result in the 'No such variable'
error, beause the keyword will not have been
tokenised.

 e.g. ANGLEDEG1

2. That a variable array placed directly after one of

ADDCOMM's statements will cause the 'Array' error,
because BASIC tries to interpret ADDCOMM's statement
as an array.

 e.g. SMOVEX(1),Y(1)

3. That a left-parenthesis (bracket) placed directly

after one of ADDCOMM's statements will again cause
the 'Array' error, because BASIC is trying to
interpret the statement as an array.

 e.g. ANGLE(PI+1)*2

All of these problems are cured simply by inserting a
space after the statement word.

 i.e. ANGLEDEG1 becomes ANGLE DEG1
 SMOVEX(1),Y(1) becomes SMOVE X(1),Y(1)
 ANGLE(PI+1)*2 becomes ANGLE (PI+1)*2

This will rarely cause any problems, as it is good
programming practice to insert spaces anyway.

All angles on ADDCOMM are measured in degrees, and
according to the diagram below:-

 i.e. They are measured
 anti-clockwise from the
 3 o'clock position.

 The example in the
 diagram being 60 degrees.

 This is not a bug in
 ADDCOMM, but is the
 standard mathematical
 way of measuring angles.

Page 16

ADDCOMM

Description

 Many programmers currently on the market use the full

memory capacity of the BBC Microcomputer, especially
games. It may therefore be necessary to regain the
256 bytes reserved by ADDCOMM in order for these
programs to run correctly. The command 'ADDCOMM' will
turn ADDCOMM off, so that it will not respond to any
statement or command, and thus will not use any
memory. The error message "Off !" (number 50) is
generated by this command.

Syntax

 ADDCOMM

Comment

 It is advisable to press BREAK after using this

command so that PAGE will be set correctly.

 To turn ADDCOMM back on, use *FX 163 (See opposite

page 1).

 CTRL-BREAK will not turn it back on.

Page 17

ADVANCE

Description

 ADVANCE is used in LOGO graphics to move the logo

cursor in the direction it is pointing. Depending on
the value used in the PEN statement, ADVANCE can be
made to leave a trail of dots (PEN 69); lines (PEN
13); dotted lines (PEN 29); and even solid triangles
- see PEN. The resulting new position is relative to
the start position.

Syntax

 ADVANCE d

 where: d is the distance according to the screen

scale that the cursor turtle is to be
advanced.

Comment

 The value of 'd' can be negative, in which case the

logo cursor will move backwards.

Page 18

ANGLE

Description

 ANGLE is used to set the direction of the logo

cursor, and is normally used prior to use of the
other logo statements.

Syntax

 ANGLE n

 where: n is the angle in degrees measured

anticlockwise from the 3 o'clock position.

Comment

 The ANGLE statement is absolute, i.e. that the

previous direction of the logo cursor does not affect
the new direction.

Example

 ANGLE 90 will point the logo cursor upwards.
 ANGLE 180 will point the logo cursor westwards.

Page 19

CFILL

Description

 CFILL is used to set up the colour grid to be used in

the FILL statement. The grid can either be 2 by 2, or
2 by 4 (i.e. 2 pixels across and 4 pixels down). Each
pixel can be any colour other than the current
background colour.

Syntax

 CFILL c1,c2,c3,c4
or CFILL c1,c2,c3,c4,c5,c6,c7,c8

 where: c1 to c8 are the colours to be used, and none

of which is the background colour (See
diagram).

Comment

 To fill solely using the current foreground colour,

use OPT 6,1

 MODEs 0 and 4 have only one possible combination,

being the current foreground colour, which is
automatically selected during filling.

 See FILL.

Example

 CFILL 1,2,1,1

 will (in a 4 colour mode) set up a shade of orange

(red(1) + yellow(2) equals orange).

Page 20

CHAR

Description

 CHAR provides a simple way of designing user-

definable characters. In use, an 8 by 8 grid will be
displayed, with eight numbers down the righthand side
- these numbers are the values to be used in the VDU
23 routine.

Controls

 Cursor keys move the cursor around the grid.
 DELETE key clears a dot.
 COPY key sets a dot.
 C key clears the whole grid.
 ESCAPE exits the routine.

Syntax

 CHAR c

 where: c is character code to be defined.

Comment

 A value of c less than 32 results in 'Syntax error'.

 Character code 255 is used within this routine for

the solid white block, so make sure that character
255 is user-definable if this command is used, e.g.
don't set the definable characters to 32 to 63.

Example

 CHAR 224

Page 21

CIRCLE

Description

 CIRCLE is a general purpose statement that allows a

multitude of shapes to be drawn using a single
statement, including: any regular polygons, circles,
arcs, solid sectors, triangles, squares... all can be
drawn utilising any of the standard plot codes
available on the BBC Microcomputer.

Syntax

 CIRCLE x,y,r (,sa,ea,ia,p)

 where: x is the x-co-ordinate of the centre of the

circle
 y is the y co-ordinate of the centre of the

circle
 r is the radius of the circle
 sa is the start angle for drawing the circle
 ea is the end angle for drawing the circle
 ia is the increment angle for drawing the

circle
 p is the plot code to be used

Comment

 Note that the last four parameters are optional, but

if one is included then they all must be. If they are
omitted, they have default values of sa=0, ea=30,
ia=10, p=13.

 The start angle defines the angle of rotation at

which drawing starts, and the end angle defines the
angle of rotation at which drawing ends. The
increment angle defines the angle change per section
of the circle, and the plot code defines which plot
routine is used to draw the circle. (See page 319 in
the BBC User Guide.)

Page 22

Examples

 SCALE 0,10,0,10
 CIRCLE 5,5,3 draws a full circle
 CIRCLE 5,5,2,0,180,10,13 draws a half-circle
 CIRCLE 5,5,2,90,360,10,13 draws a three-quarters

circle
 CIRCLE 5,5,2,0,360,10,85 draws a solid circle
 CIRCLE 5,5,2,0,360,60,85 draws a solid hexagon

Page 23

COMPACT

Description

 COMPACT is an intelligent line compacter that will

add together lines wherever it can in a program, but
in such a way that program execution is not affected.
(A display of the line number currently being
COMPACTed is given.)

Syntax

 COMPACT (| s,e)

 where: s is a start line for compacting
 e is the end line for compacting

Comment

 Note that the start and end line numbers are optional

(the default being to compact the whole of the
program).

 The maximum length of line created is set using OPT

8,x where x is the appropriate value. On BREAK, this
is set to 150.

 Sometimes lines created may appear on listing to be

longer than the number of characters defined above.
This is because some words are tokenised so that they
occupy only one byte of memory space, and not the 4
or 5 that they appear to on listing.

 Note that ADDCOMM's statements and commands are not

tokenised.

Example

 COMPACT compacts the whole program.
 COMPACT|10,100 compacts lines 10 to 100 inclusive.

Page 24

ELLIPSE

Description

 ELLIPSE is a general purpose statement that allows a

multitude of shapes to be drawn using a single
statement, including: any regular polygons, circles,
ellipses, arcs, solid sectors, triangles, squares,
rectangles... All can be drawn utilising any of the
standard plot codes available on the BBC
Microcomputer.

Syntax

 ELLIPSE x,y,rx,ry (,sa,ea,ia,p)

 where: x is the x co-ordinate of the centre of the

ellipse
 y is the y co-ordinate of the centre of the

ellipse
 rx is the radius of the ellipse in the x

direction
 ry is the radius of the ellipse in the y

direction
 sa is the start angle for drawing the ellipse
 ea is the end angle for drawing the ellipse
 ia is the increment angle for drawing the

ellipse
 p is the plot code to be used

Comment

 Note that the last four parameters are optional, but

if one is included then they all must be. If they are
omitted, they have default values of sa=0, ea=360,
ia=10 and p=13.

 The start angle defines the angle of rotation at

which drawing starts, and the end angle defines the
angle of rotation at which drawing ends. The
increment angle defines the angle change per section
of the ellipse, and the plot code defines which plot
routine is used to draw the ellipse. (See page 319 in
the BBC User Guide).

Examples

 SCALE 0,10,0,10
 ELLIPSE 5,5,3,3 draws a full ellipse, which in

this case is a circle
 ELLIPSE 5,5,2,4 draws a full ellipse, with height

twice that of its width

Page 25

 ELLIPSE 5,5,2,4,0,180,10,13
 draws a half-ellipse
 ELLIPSE 5,5,2,4,90,360,10,13
 draws a three-quarters ellipse
 ELLIPSE 5,5,2,4,0,360,10,85
 draws a solid ellipse
 ELLIPSE 5,5,2,4,0,360,60,85
 draws a solid elongated hexagon

Page 26

FILL

Description

 FILL will fill from a defined point up to a boundary

drawn on the screen

Syntax

 FILL x,y

 where: x is the x co-ordinate of the fill point
 y is the y co-ordinate of the fill point

Comment

 FILL uses a recursive algorithm, which means that

spare memory space is used when filling in, thus for
very complicated shapes, the error 'No room' may be
given. Always allows for this memory usage, as the
FILL routine cannot be restarted once it has stopped.
In general, 7 bytes are used per one line drawn.

 FILL can be used to produce shading on the screen if

used in conjunction with CFILL. Note that if a colour
defined in CFILL is recognised as the current
background colour - which is not allowed - then the
error message 'Bad colour' (code 49) is given.

 If FILL is to be used solely with the current

foreground colour, then use OPT6,1 to turn CFILL
'off'.

Example

 MODE 1
 SCALE 0,10,0,10
 CFILL 1,2,2,1
 FILL 5,5

Page 27

FIND

Description

 FIND is used to search all or part of a program for a

specified set of characters. If found, the line is
listed with the relevant characters highlighted.

Syntax

 FIND|x(|(")s,e)

 where: x represents the search character(s)
 (") is an optional feature to search within

quotes, otherwise not
 s is the start line for searching
 e is the end line for searching

Comment

 A hash (#) within the search characters is used as a

wild character (i.e. any character).

 The optional " if missed out makes FIND search

everywhere except within quotation marks, otherwise
if included makes FIND search only within quotation
marks.

 Note that FIND displays the first match within a line

and ignores the rest of that line.

 Press ESCAPE to exit from FIND.

 See LLIST for listing options.

Example

 FIND|PRINT will display all PRINT statements
 FIND|A|" will display all A's within

quotes
 FIND|A|"10,100 will display all A's within

quotes from lines 10 to 100
inclusive

Page 28

FKEYS

Description

 FKEYS will display the contents of the function keys

in such a manner as to ease the editing of them.

Syntax

 FKEYS

Example

 *KEY0 CLS|M
 FKEYS

 will give:

 *KEY 0 CLS|M

Page 29

GOODPROG

Description

 GOODPROG will attempt to mend a 'bad' program, by

correfting the 'index-pointers' within the lines.

Syntax

 GOODPROG

Comments

 If GOODPROG does not appear to work at first, type

OLD, and then try.

 Note that TOP, LOMEM, etc are not reset.

Page 30

GREPL

Description

 GREPL will replace globally any set of characters

with any other set of characters within part or all
of a program, with all replacing operations being
listed and highlighted.

Syntax

 GREPL|x|y(|(")s,e)

 where: x represents the set of characters to be

replaced,
 y represents the set of characters which are

replacing the 'x' character
 (") is an optional feature (See below)
 s is the start line
 e is the end line

Comment

 A hash (#) within the search characters is used as a

wild character, (i.e. any character).

 The optional " if missed out makes GREPL only replace

outside of quotation marks. If included then
replacing takes place solely within quotation marks.

 Press ESCAPE to stop GREPL.

 If a line becomes longer than 242 bytes then the 'No

room' error is given.

 Variables are cleared if a program becomes longer or

shorter.

 To stop GREPL listing lines, use OPT 5,1.

 See LLIST for listing options.

Page 31

Examples

 GREPL|LET| will delete all LET statements
 GREPL|name|address|" will change the word name

to address inside quotation marks
 GREPL|A$|number|10,100 will change the variable A%

to number from lines 10 to 100
inclusive

Page 32

KILLREM

Description

 KILLREM will delete REM statements within all or part

of a program.

 It will also delete preceding spaces and colons, and

even the complete line if the REM statement is the
only thing on it.

Syntax

 KILL REM (|s,e)

 where: s is the start line for deleting
 e is the end line for deleting

Comment

 Try not to write programs where a jump is made to a

REM statement, as when this is deleted it will
usually cause a 'No such line' error.

 Variables are cleared if the program is changed.

Example

 KILLREM kills all REM statements
 KILLREM|10,100 kills REM statements from

lines 10 to 100 inclusive

Page 33

LCIRCLE

Description

 LCIRCLE draws a circle around the current logo cursor

position, and can be made to draw polygons, arcs,
sectors... etc as in the CIRCLE command.

 Syntax

 LCIRCLE r (,sa,ea,ia,p)

 where: r is the radius of the circle/polygon
 sa is the start angle for drawing the circle
 ea is the end angle for drawing the circle
 ia is the increment angle for drawing the

circle
 p is the plot code to be used

Comment

 Note that the last four parameters are optional, but

if one is included then they all must be. If they are
omitted, they have default values of sa=0, ea=360,
ia=10 and p=13.

Examples

 (SCALE 0,10,0,10:LMOVE 5,5)
 LCIRCLE 3
 LCIRCLE 3,0,180,10,13
 LCIRCLE 3,0,360,60,85

Page 34

LELLIPSE

Description

 LELLIPSE draws an ellipse around the current logo

cursor position, and can also be made to draw
polygons, arcs, sectors, etc...

Syntax

 LELLIPSE rx,ry (,sa,ea,ia,p)

 where: rx is the radius of the ellipse in the x

direction
 ry is the radius of the ellipse in the y

direction
 sa is the start angle for drawing the ellipse
 ea is the end angle for drawing the ellipse
 ia is the increment angle for drawing the

ellipse
 p is the plot code to be used

Comment

 Note that the last four parameters are optional, but

if one is included then they all must be. If they are
omitted, they have default values of sa=0, ea=360,
ia=10 and p=13.

 The start angle defines the angle of rotation at

which drawing starts, and the end angle defines the
angle of rotation at which drawing ends. The
increment angle defines the angle change per section
of the ellipse, and the plot code defines which plot
routine is used to draw the ellipse. (See page 319 in
the BBC User Guide.)

Examples

 (SCALE 0,10,0,10:LMOVE 5,5)
 LELLIPSE 3,3 draws a circle
 LELLIPSE 4,2 draws an ellipse, with its

width twice that of its height
 LELLIPSE 4,2,0,180,60,85 draws half a stretched

hexagon

Page 35

LGOTO

Description

 LGOTO provides a structured programming jump

statement, (structured programmers never use GOTO!)

Syntax

 LGOTO x

 where: x represents the label

Comment

 'x' like all labels must start with a lower case

letter, and cannot have a colon within it

 Any spaces within the label are ignored

 Labels on their own are ignored, and if entered in

immediate mode give the error message 'Label' (code
46).

 A labelled line must have the label at the start of

the line, although spaces are allowed in front of the
label.

Example program

 10 loop
 20 PRINT "ADDCOMM rules!"
 30 LGOTO loop

Page 36

LLIST

Description

 LLIST or 'line list' will list a single line within a

program. So what, you may ask! But LLIST can be used
within a program, can be programmed to split up lines
into their separate statements, and with the use of a
single FIND statement, all or part of a program can
be listed using LLIST's options.

Syntax

 LLIST x

 where: x is the line number to be listed

Comment

 FIND|#|s,e will list lines s to e inclusive, since #

is a 'wild' character.

 Various options control LLIST's features, which are

detailed below. These options also control FIND,
GREPL and SREPL's listing features.

Options

 OPT 1,0 gives split listing
 OPT 1,1 gives normal listing
 OPT 3,x prints x spaces after a line

number
 OPT 4,x prints x spaces before a colon

Examples

 (10 x=4:B=3:PRINT "HELLO")
 LLIST 10 will list line 10 (split up)
 OPT 2,1 will turn off highlighting, so:-
 FIND |#|10,10 will also list line 10 (split up)
 OPT 1,1 will cause normal listing, so:-
 FIND|#|10,10 will also list line 10 in the same

manner as LIST
 FIND|#|10,100 would list lines 10 to 100

inclusive using the options set

Page 37

LMOVE

Description

 LMOVE sets up the logo cursor position, and is

usually used prior to other logo statements.

Syntax

 LMOVE x,y

 where: x is the x co-ordinate of the new logo-cursor

position
 y is the y co-ordinate of the new logo-cursor

position

Comment

 The position of the logo-cursor can be found by using

LPOS.

Examples

 SCALE 0,2,0,2
 LMOVE 1,1

 would move the logo-cursor to the centre of the

screen.

Page 38

LPOS

Description

 LPOS is used to return the current position of the

logo-cursor.

Syntax

 LPOS x,y

 where: x is the variable into which the x co-

ordinate is to be put
 y is the variable into which the y co-

ordinate is to be put

Comment

 To work out the actual logo-cursor position (in the

standard scale), use a combination of LPOS and
UNSCALE.

 e.g.

 LPOS X,Y
 UNSCALE X,Y,X,Y

Example

 LMOVE 4,2
 LPOS X,Y
 PRINT X,Y

 will yield:

 4 2

Page 39

LVAR

Description

 LVAR will list semi-alphabetically all or some of the

variables currently in memory; the ones listed being
user-definable.

Syntax

 LVAR(s(e))

 where: s is a single character defining the start

variable for listing
 e is a single character defining the end

variable for listing

Comment

 Anything in brackets is optional.

 Do not insert spaces after LVAR if you are going to

define start and end variables.

 If s is omitted, then so must e be omitted.

 If e is omitted, then it will be a default of 'z'.

 £ is a variable!

Examples

 (A=1, B=2, c=3, d=4, j2=5, z=6)
 LVAR
 LVARA
 LVARc
 LCARcj
 LVARjj

Page 40

MEM

Description

 MEM gives a breakdown of memory available for BASIC

program development, namely program length, reserved
memory, and spare memory, first on hex and then
decimal.

Syntax

 MEM

Comment

 MEM will not return sensible values after GOODPROG is

used.

 The 'reserved' value given includes all variables

(except A% to Z%), array space, and machine code DIM
space.

Example

 MEM

 might give:

 Program : 0D0B 3339
 Reserved : 0000 0
 Spare : 51F5 20981

Page 41

OPT

Description

 OPT is used to allow user definition of some of

ADDCOMM's features.

Syntax

 OPT x,y

 where: x is the option number
 y is the new value of the option

Comment

 There are 9 options (0 to 8), 8 of which require a

value to be included.

Option list

 OPT 0 Copyright message
 OPT 1,0 Split listing in LLIST and FIND and REPLace

commands
 OPT 1,1 Normal listing
 OPT 2,0 Highlighting in FIND, SREPL and GREPL
 OPT 2,1 No highlighting
 OPT 3,x x spaces after line number in LLIST etc
 OPT 4,x x spaces before colon in split listing
 OPT 5,0 List lines in GREPL
 OPT 5,1 Don't list lines in GREPL
 OPT 6,0 CFILL on - use CFILL colours in FILL
 OPT 6,1 CFILL off - use foreground colour in FILL
 OPT 7,0 Move graphics cursor before plotting (in

ADVANCE)
 OPT 7,1 Don't move graphics cursor - used with PEN

85
 OPT 8,x Maximum of x character per line in COMPACT

 All have deault of 0 on BREAK, except OPT 4,4 and OPT

8,150.

Example

 OPT 8,40 defines COMPACT's maximum line length to be

40 characters (or bytes)

Page 42

PEN

Description

 PEN is used to define the plotting routine to be used

in the logo-graphics routines (including LCIRCLE and
LELLIPSE).

Syntax

 PEN p

 where: p is the plotting code to be used (See page

319 in the User Guide)

Comment

 PEN 85 (or similar) will not appear to work at first,

because with ADVANCEing ADDCOMM will first move to
the present logo-cursor position, and then draw the
next one, thus the three co-ordinates needed with the
plot-85 code will be corrupted. To remedy this use
OPT 7,1, which prevents the first 'move' from
occuring.

 PEN also affects LCIRCLE and LELLIPSE, in the same

way as the plot code option that can be used within
these two statements.

Example

 PEN 4 nothing seen on screen.
 PEN 13 draw lines.
 PEN 29 draw dotted lines.
 PEN 85 draw triangles (used with OPT 7,1).

Page 43

POPFOR

Description

 POPFOR is used to delete the FOR...NEXT loop in

present use from the stack, which allows such loops
to be jumped out of cleanly.

Syntax

 POPFOR

Example

 10 FOR X=1 TO 30
 20 IF X*X>100 THEN POPFOR:GOTO 50
 30 NEXT X
 40 END
 50

Page 44

POPGOS

Description

 POPGOS will delete the current subroutine return

address, so that a GOSUB subroutine can be jumped out
of 'cleanly'.

Syntax

 POPGOS

Comment

 10 GOSUB 20
 20 POPGOS
 30 GOTO 10

 (N.B. A silly example)

Page 45

POPREP

Description

 POPREP is used to jump out of a REPEAT ... UNTIL loop

cleanly, by deleting the current stack entry.

Syntax

 POPREP

Example

 10 REPEAT
 20 POPREP
 30 GOTO 10

 (N.B. A very silly example.)

Page 46

ROTATE

Description

 ROTATE is used to rotate all subsequent graphic

output from ADDCOMM by any angle and about any point.
ROTATE affects all graphic statements within ADDCOMM.

Syntax

 ROTATE x,y,a

 where: x is the x co-ordinate of the point about

which rotation occurs
 y is the y co-ordinate of the point about

which rotation occurs
 a is the angle of rotation in degrees

measured anti-clockwise

Comment

 ROTATE is set to its default value when a new SCALE

is set up. i.e.:

 ROTATE 0,0,0

Example

 SCALE 0,10,0,10
 ROTATE 5,5,45
 ELLIPSE 5,5,4,2

Page 47

SCALE

Description

 SCALE is used to set-up the user definable scaling of

the screen, thus providing a very flexible graphics
system.

Syntax

 SCALE x1,x2,y1,y2

 where: x1 is the minimum x co-ordinate that will

appear on the screen
 x2 is the maximum x co-ordinate that will

appear on the screen
 y1 is the minimum y co-ordinate that will

appear on the screen
 y2 is the maximum y co-ordinate that will

appear on the screen

Comment

 If x1 = x2 or y1 = y2 then the error message

'Accuracy lost' is given.

 A reflection of the screen can be produced by

swapping the x1 and x2 values and/or y1 and y2
values.

 SCALE automatically resets ROTATE and TRANS to their

default values, i.e. ROTATE 0,0,0 and TRANS 0,0.

 Changing the screen scale without altering co-

ordinates can be used to simulate zooming in and out.

Example

 SCALE 0,10,0,10

Page 48

SDRAW

Description

 SDRAW is similar to DRAW, but uses the scaled screen

co-ordinate system.

Syntax

 SDRAW x,y

 where: x is the x co-ordinate
 y is the y co-ordinate

Example

 SCALE 0,10,0,10
 SMOVE 0,0
 SDRAW 10,10

Page 49

SETWIN

Description

 SETWIN is used to set the multiple winddows available

with ADDCOMM. Up to seven such windows can be
defined, and are selected using the WIN statement.
Note that re-selected windows move the text cursor to
the correct position.

Syntax

 SETWIN w,x1,y1,x2,y2

 where :- w is the window number (1 to 7)
 x1 is the 'x' co-ordinate of the bottom left

of the window
 y1 is the 'y' co-ordinate of the bottom left

of the window
 x2 is the 'x' co-ordinate of the top right of

the window
 y2 is the 'y' co-ordinate of the top right of

the window

Comment

 x1,y1,x2,y2 are sent directly to the OS in that

order, so this format is the same as the VDU 28
routine.

Example

 SETWIN 1,0,20,10,5

Page 50

SMOVE

Description

 SMOVE is similar to MOVE, but uses the scaled screen

co-ordinate system.

Syntax

 SMOVE x,y

 where: x is the x co-ordinate
 y is the y co-ordinate

Example

 SCALE 0,10,0,10
 SMOVE 0,0
 SDRAW 10,10

Page 51

SORT

Description

 SORT is used to sort all of part of a string array

into alphabetical order.

Syntax

 SORT s,e

 where: s is the start string array for sorting
 e is the end string array for sorting

Comment

 As mentioned elsewhere, arrays can cause problems

when used in ADDCOMM's statements, to cure these just
insert a space between the word SORT and the start
string array element.

 Don't try to sort multi-dimension arrays. The results

are unpredictable.

 SORT only works with strings.

Example

 SORT A$(1),A$(5) will sort into alphabetical

order elements 1 to 5 of array A$.

Page 52

SPLOT

Description

 SPLOT is similar to PLOT, but uses the scaled screen

co-ordinate system.

Syntax

 SPLOT p,x,y

 where: p is the plot code (page 319 in the BBC User

Guide)
 x is the x co-ordinate of plotting
 y is the y co-ordinate of plotting

Example

 SCALE 0,10,0,10
 SPLOT 69,5,5

Page 53

SREPL

Description

 SREPL will replace selectively any set of characters

with any other set of characters within part or all
of a program, with all matches being listed and
highlighted, and the user specifying whether to
replace or not by keying either 'Y' or 'N'.

Syntax

 SREPL|x|y(|(")s,e)

 where: x represents the set of characters to be

replaced
 y represents the set of characters which are

replacing the 'x' characters
 (") is an option feature (See below)
 s is the start line
 e is the end line

Comment

 A hash (#) within the search characters is used as a

wild character (i.e. any character).

 The optional " if missed out makes SREPL only replace

outside of quotation marks. If included then
replacing takes place solely within quotation marks.

 Press ESCAPE to stop SREPL.

 If a line becomes longer than 242 bytes then the 'No

room' error is given.

 Variables are cleared if a program becomes longer or

shorter.

 See LLIST for listing options.

 Only 'Y' or 'y' will cause SREPL to replace. Anything

else is ignored.

Page 54

Examples

 SREPL|LET| will delete all LET statements
 SREPL|name|address|" will change the word name to

address inside quotation marks
 SREPL|A%|number|10,100 will change the variable A%

to number from lines 10 to 100
inclusive

Page 55

TRANS

Description

 TRANS is used to translate the scaled screen by a

vector displacement.

Syntax

 TRANS x,y

 where: x is the x-direction displacement
 y is the y-direction displacement

Comment

 TRANS is automatically set to its default value when

changing scale.

 All graphic output from ADDCOMM is rotated and then

translated.

Example

 SCALE 0,10,0,10
 TRANS 5,5
 CIRCLE 0,0,3

 will draw a circle in the centre of the screen.

Page 56

TURN

Description

 TURN is used to rotate the direction in which the

logo-cursor is pointing.

Syntax

 TURN a

 where: a is the angle in degrees by which the logo-

cursor is to be rotated

Comment

 A positive value of 'a' rotates the logo-cursor anti-

clockwise, a negative value clockwise.

Example

 TURN 180 reverses the direction of the logo-cursor.
 TURN -90 rotates clockwise by 90 degrees (quarter

turn).

Page 57

UNSCALE

Description

 UNSCALE is used to return the screen position in the

standard co-ordinate system (1280 by 1024) of a
scaled point. This is very useful for use with the
POINT function.

Syntax

 UNSCALE x,y,a,b

 where: x is the x co-ordinate
 y is the y co-ordinate
 a is a variable into which the unscaled x co-

ordinate is to be placed
 b is a variable into which the unscaled y co-

ordinate is to be placed

Example

 SCALE 0,10,0,10
 UNSCALE 5,5,X,Y

 will make X=639 and Y=511, which could then be used

in the POINT(X,Y) function.

Page 58

VERIFY

Description

 VERIFY is used to check that a BASIC or machine code

program on tape or disc exactly matches that in
memory. If not then the first error found is
pinpointed by a memory address and (if a BASIC
program) a listing of the line with the error
highlighed if possible.

Syntax

 VERIFY f(,a)

 where: f is a filename
 a is the start address of the program

(default = PAGE if omitted)

Comment

 An error produces the error message 'Not verified'

(Code 48).

 Any address displayed is first given in hexadecimal

and then decimal.

 An unfound filename causes the 'Channel' error

message.

Example

 VERIFY "PROGRAM"
 VERIFY "M-CODE",&1234
 (where &1234 is the start address of the

code)

Page 59

WIN

Description

 WIN is used to switch between user defined windows

(set using WIN)

Syntax

 WIN w

 where: w is the window number (1 to 7)

Comment

 Don't select a window that hasn't been defined.

 If you do, don't panic, but type MODE 7 (or similar).

 WIN will store the current text cursor position, and

move it to its old position in the re-selected
window.

Example

 WIN 1

 will select window 1.

Page 60

*HELP

 *HELP on its own gives:
 ADDCOMM 1.00
 ADDCOMM
 (:)<Statement>

 *HELP ADDCOMM will give a list of the syntax of all

of ADDCOMM's statements.

 *HELP x where x is a statement name will give

details of that statement's syntax.

 *HELP x y gives details of statement x then

statement y etc.

 for example:-
 *HELP SCALE

 gives:-
 ADDCOMM 1.00
 SCALE <x-min>,<x-max>,<y-min>,<y-max>

 Also:-
 *HELP LMOVE TURN

 gives:-
 ADDCOMM 1.00
 LMOVE <x-position>,<y-position>
 TURN <angle>

 Note:- Anything in brackets () is optional.

 *HELP statements can also be abbreviated e.g.

*HELP SCALE is equivalent to *HELP SC.

 If one of ADDCOMM's *HELP statements is the

same as another ROM's, then place a colon ":"
before the statement,

 e.g. *HELP :VERIFY

Page 61

Compatibility and Memory Use

 In use, ADDCOMM uses one page (256 bytes) of memory

to store its data. This is its 'private' memory area
- no shared workspace is used.

 ADDCOMM solely uses zero page space from &B0 to &BF

and various BASIC scratchspace when in use - none of
&70 to &8F is used.

 ADDCOMM uses &B0 - &BF sensibly and in such a way

that Disc Filing Systems, etc, can use it as well,
without crashing the system.

 To turn ADDCOMM off so that no memory space is used,

use the command "ADDCOMM" - See its description.

Page 62

Do's and Don'ts

Do

 Allow for memory used in FILL (7 bytes per line).

 Remember ADDCOMM's statements/commands are not

tokenised.

Don'ts

 Don't SORT A$(0),B$(0) or similar.

 Don't place keyword directly after ADDCOMM's

statements.

 Don't use COMPACT unless a program is completely

finished.

 Don't use KILLREM to kill REMs on lines jumped to.

 Don't use labels such as "number=9", since this will

be executed!

 Don't try to FILL using the current background

colour.

 Don't try to use an undefined window.

Page 63

Error Messages and Codes

 Code Message Reason

 46 Label A label was entered in immediate

mode or LGOTO was used with no
label

 47 Window An invalid window number was used

(1 to 7 only)

 48 Not verfied VERIFY produced an error

 49 Bad colour The current background colour was

used on CFILL and FILL

 50 Off! ADDCOMM was turned off

Page 64

Defaults on BREAK

 On BREAK (or CTRL-BREAK), ADDCOMM sets itself up

using:-

 SCALE 0,1279,0,1023
 ROTATE 0,0,0
 TRASNS 0,0
 SETWIN X,0,0,0,0 for all X (1 yo 7)
 PEN 13
 OPT X,0 for all X except:
 OPT 4,4
 OPT 8,150
 LMOVE 0,0
 ANGLE 0
 CFILL 0,0,0,0

 The only exception to this is when ADDCOMM has been

turned off, in which case none of the above occurs.

Page 65

Abbreviations

 Most of ADDCOMM's statements can be shortened in the

same way as BASIC's statements, but the difference is
that ADDCOMM's statements are not expanded when
listing.

Statement Abbreivation Statement Abbreviation

ADDCOMM ADD. LVAR LV.
ADVANCE ADVAN. MEM ME.
ANGLE ANG. OPT OPT
CFILL CF. PEN PE.
CHAR CHAR POPFOR POP.
CIRCLE CI. POPGOS POPG.
COMPACT COM. POPREP POPR.
ELLIPSE ELL. ROTATE RO.
FILL FI. SCALE SC.
FIND| FI. SDRAW SD.
FKEYS FK. SETWIN SE.
GOODPROG GOO. SMOVE SM.
GREPL| GR. SORT SOR.
KILLREM K. SPLOT SPL.
LCIRCLE LC. SREPL| SR.
LELLIPSE LEL. TRANS TRAN.
LGOTO LG. TURN TU.
LLIST LL. UNSCALE UNS.
LMOVE LM. VERIFY VE.
LPOS LP. WIN WIN

Note that FIN., GR. and SR. do not need the | character
after them.

Page 66

ADDCOMM Statement Summary

ADDCOMM
 Switches ADDCOMM off.

ADVANCE <length>
 Advances logo-cursor in the set direction.

ANGLE <angle>
 Sets the direction of logo-cursor.

CFILL <colour>,<colour>,<colour>,<colour>

(,<colour>,<colour>,
 <colour>,<colour>)
 Sets 'colour-fill' shade to be used in FILL.

CHAR <character code>
 A utility to design/alter user-definable characters.

CIRCLE <x-position>,<y-position>,<radius>(,<start

angle>,<end angle>, <increment angle>,<plot code>)
 Draws a circle (or polygon/arc/sector.....).

COMPACT (|<start line>,<end line>)
 Intelligently compacts a program.

ELLIPSE <x-position>,<y-position>,<x-radius>,<y-raadius>

(,<start
 angle>,<end angle>,<increment angle>,<plot code>)
 Draws an ellipse (or polygon/arc/circle/sector....).

FILL <x-position>,<y-position>
 Will fill from a defined point up to a boundary.

FIND| <search characters>(|(")<start line>,<end line>)
 Will find and highlight a set of characters.

FKEYS
 Lists the current function key definitions.

GOODPROG
 Tries to mend a 'Bad program'.

GREPL| <search characters>|<replace characters>(|(")

<start line>, <end line>)
 Globally replaces one set of characters with another

set of characters.

KILLREM (|<start line>,<end line>)
 Intelligently deletes REM statements.

LCIRCLE <radius>(,<start angle>,<end angle>,<increment

angle>,<plot code>)

Page 67

 Draws a circle around the logo-cursor.

LELLIPSE <x-radius>,<y-radius>(,<start angle>,<end

angle>,<increment angle>,<plot code>)
 Draws an ellipse around the logo-cursor.

LGOTO <label>
 Jumps to a labelled line.

LLIST <line>
 Lists a line using various options.

LMOVE <x-position>,<y-position>
 Moves the logo-cursor.

LPOS <variable>,<variable>
 Returns the logo-cursor position.

LVAR (<start character>(<end character>>)
 Lists the names of variables in memory.

MEM
 Gives a breakdown of memory use.

OPT <option>,<code>
 Sets various options.

PEN <plot code>
 Sets the plotting used in logo-graphics.

POPFOR
 Deletes the current FOR...NEXT loop.

POPGOS
 Deletes the current subroutine return data.

POPREP
 Deletes the current REPEAT...UNTIL loop.

ROTATE <x-position>,<y-position>,<angle>
 Rotates all subsequent ADDCOMM graphic output.

SCALE <x-min>,<x-max>,<y-min>,<y-max>
 Sets up the user-definable scale.

SDRAW <x-position>,<y-position>
 DRAWs using the user-definable scale.

SETWIN <window>,<x-position bottom left>,<y-position

bottom left>, <x-position top right>,<y-position top
right>

 Sets the multiple windows.

Page 68

SMOVE <x-position>,<y-position>
 MOVEs using the user-definable state.

SORT <start element>,<end element>
 Sorts a string array.

SPLOT <plot code>,<x-position>,<y-position>
 PLOTs using the user-definable scale.

SREPL| <search characters>|<replace characters>

(|(")<start line>,<end line>)
 Selectively replaces one set of characters with

another set of characters.

TRANS <x-position>,<y-position>
 Translates the scaled screenm by a vector

displacement.

TURN <angle>
 Changes the direction of the logo-cursor.

UNSCALE <x-position>,<y-position>,<variable>,variable
 Converts scaled to non-scaled co-ordinates.

VERIFY <file>,(,<start address>)
 Verifies that a saved program exactly matches that in

memory.

WIN <window>
 Changes the window (as set by SETWIN).

Page 69

INDEX

Abbreviate 61

Abbreviations 66

Accuracy lost 2, 48

ADDCOMM 15, 17, 62, 64

ADVANCE 7, 18, 42 43

ANGLE 7, 19, 65

Angles 16

Array 16

Arrays 52

Background colour 20

Bad colour 27, 64

Bracket 16

CFILL 3, 4, 14, 20, 27, 42, 64, 65

Channel 59

CHAR 9, 21

CIRCLE 3, 22

Colon 36, 42

CMPACT 12, 24, 42, 63

Compatibility 62

CTRL-BREAK 17, 65

Cursor 60

Defaults 65

ELLIPSE 3, 25

Enhanced graphics 1

Errors 64

FILL 3, 4, 14, 20, 27, 42, 63, 64

FIND 11, 28, 37, 42, 66

FKEYS 9, 29

GOODPROG 10, 30

GREPL 11, 31, 42, 66

Hash 28, 31, 37, 54

Page 70

*HELP 61

Highlighting 28, 31, 42, 54, 59

Keywords 16, 63

KILLREM 10, 33, 63

Label 36, 64

Labels 14, 36

LCIRCLE 8, 34, 43

LELLIPSE 8, 34, 43

LGOTO 14, 36, 64

Listing 24

LLIST 13, 37, 42

LMOVE 7, 38, 65

Logo graphics 7

Loops 13

LPOS 38, 39

LVAR 10, 40

MEM 9, 41

Memory 62

Miscellaneous Stat. 13

Multiple windows 50

No room 4, 27, 31, 54

No such variable 16

Not verified 59, 64

Off! 17, 64

OPT 13, 14, 20, 24, 27, 31, 37,
42, 43

PAGE 17

PEN 7, 18, 42, 43, 65

POINT 5, 58

POPFOR 13, 44

POPGOS 13, 45

POPREP 13, 46

Private memory 62

Page 71

Quotes 28, 31, 54

Reflecting 48

REM 63

ROTATE 4, 8, 47, 48, 65

Rotation 56

SCALE 1, 2, 8, 48, 65

SDRAW 1, 2, 49

SETWIN 13, 50, 60, 65

Shading 27

SMOVE 1, 2, 51

SORT 14, 52, 63

Spaces 16

Split listing 42

SPLOT 2, 53

SREPL 11, 42, 54, 66

String array 52

Tokens 24, 63

Toolkit commands 9

TRANS 4, 5, 8, 48, 56, 65

TURN 7, 57

Undefined Window 63

UNSCALE 39, 58

User-definable chrs 21

Variables 40, 41, 54

VDU 50

VERIFY 10, 59

WIN 13, 50, 60

Window 64

Windows 50

Zero Page 62

Zooming 48

Page 72

	ADDCOMM_USER_GUIDE.doc
	ADDCOMM_INSTALLATION.jpg

