

 0

SYSTEMS

 CONTENTS

 Definition of terms 1
 Help facilities 2
 The commands 3
 ARRAYS 5
 DETAIL
 ERASE 6
 EXCHANGE 7
 MEMORY 8
 PRESERVE
 RECLAIM
 ROLLDN 9
 ROLLUP 10
 RSORT 11
 SORT
 Appendix A Amount of memory used by arrays 18
 Appendix B Depth of cell in an array 19
 Appendix C Fitting instructions
 Appendix D Error messages 20

 1

DEFINITION OF TERMS
This section explains some of the terms used in this manual. Some of them (such as
‘array’) are in general use, but others (such as ‘sub-array’) have been coined
especially in order to describe the way in which Arraymate operates.

Arrays
An array is an arrangement of 'cells' each one of which can hold one piece of data.
This data can be integers, real numbers or strings, but any one array can only hold
one type of data.
Throughout this manual, the notation A$() is used to mean ‘the array named A$'.

Dimensions
In BBC Basic, an array may have any number of dimensions from one upwards. A
one-dimensional array is like a list; we can access the cell that we want simply by
quoting its position in the list. A two-dimensional array is like a table; we have to
quote both the row and the column to define a particular cell. A three-dimensional
array can be likened to a solid block; here we need to quote the row, the column and
the layer.
It is more difficult to visualise arrays with more than three dimensions, but the
principle remains the same; to reference any cell, we have to specify its position in
each of the dimensions.
In BBC Basic, the size and type of all arrays must be declared, using the DIM
statement, before they may be used. For example, DIM A%(20,2,2) sets up a
three-dimensional integer array.

It is important to note that each dimension actually contains one more cell than the
number specified, as we start at zero rather than one. In the example given above, the
array will contain 21 x 3 x 3 = 189 cells.

Prime dimension
The first declared dimension of an array. For example, if an array is declared with
DIM
A$(50,4,2), then the prime dimension is 50.
If an array has only one dimension, then this is obviously the prime dimension.

Sub-arrays
Imagine that we have a list of 100 men, and for each of them we want to store the
following
6 pieces of data.
i) Name
ii) Occupation
iii) Place of work
iv) Wife’s name
v) Wife’s occupation
vi) Wife’s place of work

 2

We can hold this data in a three-dimenional string array, created using DIM
A$(99,1,2). (Remember that this gives us 100 x 2 x 3 cells.) The entries for the first
two men might appear as follows.

A$(0,0,0)= “Fred” (Name)
A$(0,0,l)= “Lawyer” (Occupation)
A$(0,0,2)= “London” (Place of work)
A$(0, 1,0) = “Margaret” (Wife’s name)
A$(0,l,l)= “Accountant” (Wife’s occupation)
A$(0,l,2)= “Oxford” (Wife’s place of work)

A$(l,0,0) = “Alan” (Name)
A$(1 ,0,l)= ”Mechanic” (Occupation)
A$(1 ,0,2)= “Birmingham’ (Place of work)
A$(l,l,0) = “Carol” (Wife’s name)
A$(l ,l ,l)= “Hairdresser” (Wife’s occupation)
A$(l,l,2)= “Coventry” (Wife’s place of work)

Each one of these ‘blocks’ of data hold the data relating to one man, and it is
convenient to think of it as a ‘sub-array’. In this example, A$O is made upof 100
sub-arrays, each one of which is two-dimensional.
More generally, any array whose dimensions are given by (A,B,C,D...) can be
considered to consist of A + 1 sub-arrays, each with dimensions (B,C,D...). A
sub-array will always have one fewer dimensions than its ‘parent’.
It is important to grasp the concept of the sub-array if you are to make full use of the
*ROLLDN, *ROLLUP, *RSORT and *SORT commands.

HELP FACILITIES
The * HELP command works at three levels, each one of which is explained below.
* HELP
This command, on its own, will list all the ROMs resident in your machine. Once
you have fitted Arraymate, when you issue this command you should see
‘Arraymate 1.0’ amongst the list,
* HELP MATE
This will list all the commands available in Arraymate, and give the syntax for each
one, as follows:

 3

*HELP MATE
Arraymate 1.0

ARRAYS
DETAIL <array>
ERASE <array>
EXCHANGE <array> <array>
MEMORY
PRESERVE
RECLAIM
ROLLDN <array>
ROLLUP <array>
RSORT <array> ((dims)) (<array>)
SORT <array> ((dims)) (<array>)

0S 1.20

* HELP <command>
Typing *HELP followed by any command will give you the syntax, and a reference
to a page in this manual where you can find a full explanation of the command. For
example:
* HELP SORT

Syntax: SORT <array> ((subs)) (<array>) Details in Arraymate manual, page 11
0S 1.20

THE COMMANDS
All the features of Arraymate are accessed using ‘star’ commands; that is, an asterisk
(*) followed by a command word. They may be issued from the keyboard in
command mode, or they may be incorporated into your BASIC programs. If a star
command is used within a program, it must either be the only statement on the line,
or the last statement in a multi-statement line.

Command list
This is a list of the commands available, and the page numbers where they are
explained,
*ARRAYS page 5
*DETAIL page 5
*ERASE page 6
*EXCHANGE page 7
*MEMORY page 8
*PRESERVE page 8
*RECLAIM page 8
*ROLLDN page 9
*ROLLUP page 10
*RSORT page 11
*SORT page 11

 4

Case
Commands are not case sensitive. You may use capitals or small letters, or if you
wish a mixture of the two. Thus *erase A$ will have exactly the same effect as *

ERASE A$ or
*eRaSe A$.
This does not apply, of course, to any array names which may be appended to a
command. q A$O and a$O are two different arrays, and the correct case must
always be used.

Abbreviations
All commands may be abbreviated, by using the first few letters followed by a full
stop. For example, *ARR. will work the same as *ARRAYS The minimum number
of letters you may use in an abbreviated command will vary, depending on the other
ROMs you have in your machine, and their relative positions; you need to use
enough letters to ensure that the command is not recognised by a ROM in a higher
priority socket than Arraymate. Experiment with your own machine, but if you are in
any doubt, use the unabbreviated command.

The ‘F’ prefix
If any of Arraymate’s commands should clash with another ROM that you have
fitted, you can ensure that the command is sent to Arraymate simply by prefixing it
with the letter 'F' For example, if the command * ERASE is also used by another of
your ROMs, then
*FERASE will make sure that is is trapped and executed by Arraymate.
The same rules about upper and lower case and abbreviations apply to prefixed
commands, so in the above example *fera. would have the same effect.

The examples
On the following pages, each command is described in detail, with an example.
String arrays have been used in most of the examples, as the use of words rather than
numbers usually makes it easier to see the effect of the commands. However, unless
it is explicitly stated to the contrary, commands have the same effect on arrays,
regardless of their type (string, integer or real number).
By the same token, most examples use one or two dimensional arrays, for clarity.
Again, unless it is explicitly stated to the contrary, commands work with arrays
having any number of dimensions,

 5

*ARRAYS

This command lists all currently defined arrays with their dimensions, and lists the
numbers of program lines which contain references to each array. If an array is
referred to more than once in a program line, the number of occurrences is also
given.
The program in question must be in memory, located at the current value of PAGE.
Note that arrays must be currently defined; if your arrays are dimensioned within a
program,
then you must run the program before using the *ARRAYS command.
Example
*ARRAYS cash (49)30,50,200
name$ (49,7,2)30,50,90,140
points0/o (49,7) 30,50x3
In the example, use of the *ARRAYS command tells us that three arrays are
currently defined, as follows,
Cash() is a one-dimensional real number array of 50 cells (0-49), which the program
refers to in lines 30,50 and 200.
name$() is a three-dimensional string array of 1200 cells (50 x 8 x 3), referred to in
lines 30,50,90 and 140 of the program.
points%() is a two-dimensional integer array of 400 cells (50 x 8), referred to once
in line 30 and three times in line 50

* DETAIL <array>
This command will give the dimensions of the array specified, and list the program
lines which contain references to it. The program in question must be in memory,
located at the current value of PAGE.
The array must be currently defined; if the array is dimensioned within the program,
then you must run the program before using the * DETAIL command.

Example
*DETAIL price%
price% (199,1)
 10 DIM price%(199,l), amount%(199)
 320 PRINT price% (i%,l)
1250 cost% = price%(i%,0)

In the example, using the command * DETAIL price% tells us that price%() is a
twodimensional integer array, having 400 cells (200 x 2). The three program lines
which refer to it (10,320 and 1250) are listed out in full.

 6

*ERASE <array>
This command will erase the specified array, thus making available more memory
for use by other variables or programs. (To make use of this extra memory for
programs, you will need to use the *PRESERVE and * RECLAIM commands.)
Once you have erased an array, you can never recover it, so use this command with
care. Only the array specified in the command is erased; all other arrays and
variables are unaffected.
When an integer or real number array is erased, all memory used by that array is
freed for subsequent use. Because of the way in which string arrays are structured,
only the string information blocks are erased, not the strings themselves. For this
reason, continual erasing and redimensioning of string arrays will eventually result
in a ‘No room’ or ‘DIM space’ error.
A method of calculating the amount of memory which will be made available by
erasing a particular array is given in Appendix A.

Example
*ARRAYS
cash (49) 30,50,200
name$(49,7,2) 30,50,90,140
points%(49,7) 30,50 x 3
*MEMORY
2758 bytes free
*ERASE name$
*ARRAYS
cash (49) 30,50,200
points% (49,7)30,50 x 3
*MEMORY
7573 bytes free

In the example, we have used the *ARRAYS command to list current arrays, and
* MEMORY to see how much memory is free. * ERASE name$ then erases
name$O. Using *ARRAYS again confirms that name$() has indeed gone, and *

MEMORY shows that we have regained 4815 bytes of memory.
The * MEMORY command is fully explained on page 8.

 7

* EXCHANGE <array> <array>
This command exchanges the contents of the first specified array with those of the
second. This allows you to simulate the passing of an array parameter to a procedure,
something which the BBC BASIC does not cater for.
The two arrays do not have to be of the same size, or even have the same number of
dimensions. If you exchange arrays of different sizes, you will have to be very
careful with your subscripts, if you are not to cause a ‘Subscript error'. If you lose
track of the sizes of your arrays, use the *ARRAYS command to list them.
There are two restrictions on the use of this command. Firstly, the two arrays must be
of the same type; that is string, integer or real number. Secondly, the two array
names must be the same length; thus you can exchange name1 $() with name2$(),
but not area$() with district$().
It does not matter in which order you specify the arrays to be exchanged; for
example
* EXCHANGE A$ B$ has an identical effect to * EXCHANGE B$ A$.

Example

100 *EXCHANGE name 1$ print$
110 PROCprint
120 *EXCHANGE namel$ print$
130 * EXCHANGE name2$ print$
140 PROCprint
150 *EXCHANGE name2$ print$

1000 DEEPROCprint
1010 FOR i%=0 TO 99
1020 PRINT print$(i%)
1030 NEXT i%

1040 ENDPROC

In the example, the procedure PROCprint prints out the 100 elements of print$().
Line 100 exchanges the contents of namel$ with those of print$(), so that when the
procedure is called (line 110), it is actually the contents of namel$() which are
printed. Note that after return from the procedure, the arrays should be swapped back
again (line 120). Lines 130-150 repeat this sequence for name2$(), the final result
being that we have used PROCprint to print the contents of two different arrays.

 8

* MEMORY
This command tells you how much free memory is available for you to use for
programs and variables.
When you run a program, the amount of free memory changes as variables are
defined, arrays dimensioned (or * ERASED) and so on. When a program jumps to a
procedure, it uses some memory to store parameters and LOCAL variables, and this
memory is freed again on return from the procedure.
* MEMORY always tells you the number of bytes free at the time that it is issued,
so by using it as a line in your program, you can precisely monitor memory
availability. This can be extremely useful if you are writing a program which will
come close to the memory limit.

Example
* MEMORY
9982 bytes free
DIM A%(200,5)
*MEMORY
5148 bytes free

In the example, * MEMORY tells us that there are 9982 bytes of memory free for
use. After dimensioning an array A%(), we can see that we have only 5148 bytes;
4834 bytes have been taken by the array.
See Appendix A for details of how to calculate the amount of memory taken by a
given array.

*PRESERVE and *RECLAIM
Under normal circumstances, when you edit a program in memory, any variables
which have been created are lost. The same is true if you CHAIN in a new program,
so you cannot create variables with one program, chain in a second program and
access the same variables.

The reason for this is that BASIC stores variables immediately above the program in
memory. Any changes to the program will result in corruption of the variables, so
they are lost. The *PRESERVE and *RECLAIM commands are designed to
overcome this problem.

The *PRESERVE command 'locks up' the block of memory which contains your
variables. Once this command has been issued, you may edit your program, merge in
another program from an ASCII file using * EXEC, or LOAD or CHAIN in a new
program. When you have finished editing, use the * RECLAIM command to
‘unlock’ the variables, so that you can access them again.

You should note that after a * PRESERVE command the values of your variables
are not accessible; if you try to access one, you will get the ‘No such variable’ error
message. Do not worry; the * RECLAIM command will free them for you.

 9

You may, if you wish, create new variables whilst your old ones are * PRESERVEd;
they may even have the same names as the old ones. However, the space available
for these new variables is very limited (about 256 bytes), and they will be destroyed
when you
* RECLAIM your original variables.
All the references here to ‘variables’ apply equally to string, integer and real number
variables, and to arrays of all types. There is, however, a special group called the
resident integer variables, which are treated rather differently by BASIC. These
variables (@% and A% through to Z%) are stored in a different area of memory, and
are never corrupted unless they are specifically overwritten with a new value. These
resident integer variables are not affected in any way by the * PRESERVE and *
RECLAIM commands.

Example

10 REM This is PART 1
20 DIM name$(99),addr$(99,2),age%(99)
“
“
“

1550 * PRESERVE
1560 CHAIN”PART2”

10 REM This is PART2
20 *RECLAIM
30 FOR i% =0 TO 99
40 PRINT name$(i%),addr$(i%,0),addr$(i%, 1),age%(i%)
50 NEXT i%
“
“

In the example, PART1 of the program declares the arrays, and lines 30-1540 might
well contain routines to enter data into them. Line 1550 * PRESERVEs all variables,
and line 1560 CHAINs PART2 of the program. In PART2, line 20 * RECLAIMs the
variables, which are then available to be printed out.

*ROLLDN <array>
This command ‘rotates’ the contents of an array one step in a downward direction. It
can be used on single or multi-dimensional arrays, of any type.
In a single dimensional array, the contents of the first cell are moved into the second
cell, the contents of the second cell are moved into the third, and so on; finally, the
contents of the last cell are moved into the first cell.
In the case of a multi-dimensional array, the data is considered as a series of
sub-arrays, which are moved in the same way as the single cells in the above
description. (See page 1 for an explanation of sub-arrays.)

 10

Example
FOR j% = 0 TO 4:PRINT a$(i%,0),a$(i%, 1):NEXT
Jonathan Rover
Stephen Jaguar
Colin Citroen
Andrew Toyota
Henry Ford
*ROLLDN a$
FOR i% = 0 TO 4:PRINT a$(i%,0),a$(i%,1):NEXT
Henry Ford
Jonathan Rover
Stephen Jaguar
Colin Citroen
Andrew Toyota
In the example, a$() isa two dimensional array holding the names of 5 men, and the
make of car they drive. The result of *ROLLDN can be seen by comparing the
listing of the array before and after the command.

* ROLLUP <array>
This command operates identically to the *ROLLDN command (see page 9), except
that the contents of the array are rotated in the opposite direction. The contents of the
first cell are moved into the last cell, the contents of the second cell move into the
first, the contents of the third into the second, and so on.
If the specified array is multi-dimensional, the sub-arrays are moved instead of
individual cells. A full explanation of sub-arrays is given on page 1.

Example
FOR i% 0 to 4:PRINT a$(i%,0),a$(i%, 1):NEXT
Henry Ford
Jonathan Rover
Stephen Jaguar
Colin Citroen
Andrew Toyota
*ROLLUP a$
FOR i% = 0 TO 4:PRINT a$(i%,0),a$(i%, 1):NEXT
Jonathan Rover
Stephen Jaguar
Colin Citroen
Andrew Toyota
Henry Ford
In the example, the array a$() which was modified by the *ROLLDN command
(page 9), is restored to its original condition using the * ROLLUP command.

 11

*RSORT <array> ((subs)) (<array>)
This command operates in the same way as the * SORT command, which is detailed
on page 11 ,except that the data in the array is sorted into descending order.
(RSORT means reverse sort). Numeric data is ordered with the largest numbers at
the start, and the smallest at the end; string data is arranged in reverse alphabetical
order.
In string arrays, ‘null’ strings (strings of length zero) are placed at the end of the
array. The four different forms of the * SORT command, that is simple sort, keyed
sort, follow sort and keyed follow sort, all apply equally to the *RSORT command.

Example of a simple reverse sort (one-dimensional array)

1000 DEFPROCIist
1010 PRINT: FOR i% =0 to 4
1020 PRINT a$(i%)

1030 NEXT j%
1040 ENDPROC

PROClist
Germany
Portugal
England
Italy
France
*RSORT
PROClist
Portugal
Italy
Germany
France
England
This example is identical to the one on page 12 for a simple sort (one-dimensional
array), except that we use the *RSORT command instead of *SORT Examining the
data shows that the countries have indeed been sorted into reverse alphabetical
order.
The examples given for the more complex forms of the * SORT command (page 13
onwards), also hold true for *RSORT

* SORT <array> ((subs)) (<array>)
Because of the options available within this command, there are four distinct forms;
simple sort, keyed sort, follow sort and keyed follow sort. Each of these has a
slightly different syntax, and each is discussed in detail in a separate section below.

 12

Simple sort Syntax: * SORT <array>
The simple sort will sort any array into ascending order. This has a slightly different
meaning, depending on whether the array is string or numeric, so let us consider
them separately.
A numeric array (this may be integer or real number) will be sorted such that the
smallest number will be placed at the beginning, and the largest at the end. The
numbers in the
array may be all positive, all negative or a combination of the two.
A string array will be sorted into alphabetical order. This simple statement would be
sufficient if strings could hold only letters, but in fact they can hold any character,
including numbers and mathematical symbols; how do we find the correct position
in a sorted array for the string “1 @£4” for example? The answer is that the
‘alphabet’ we use for this purpose is in fact the list of ASCII codes, which gives a
value to every character. It is these values which are used when sorting strings. The
ASCII codes for all characters are listed in your computer User Guide, but in general,
numbers come before letters, and uppercase letters come before lowercase. ‘Null’
strings, that is strings of length zern, are always sorted to the end of an array.
The discussion so far assumes that the array we specify for sorting has only one
dimension, but often we will want to sort multi-dimensional arrays. In this case,
instead of the individual cells, it is the sub-arrays which will be sorted into
ascending order. (See page 1 for a full explanation of sub-arrays.) But what do we
take as the value of a sub-array, which is made up of several cells, each one
containing a different number (or string)? The answer is that we take the value of the
first cell in the sub-array to represent that sub-array for the purposes of sorting; this
is known as the ‘key cell

Example of a simple sort (one-dimensional array)

1000 DEFPROCIist
1010 PRINT:FOR j% =0 to 4
1020 PRINT a$(io/o)
1030 NEXT j%
1040 ENDPROC PROClist

Germany
Portugal
England
Italy
France
*SORT a$
PROClist
England
France
Germany
Italy
Portugal

 13

In this example, a$() is a one-dimensional array, holding a list of 5 countries.
PROChist is a procedure which lists out the data in the array.
When PROClist is first used, the data is in random order. The command *SORTa$
is issued to sort the data, and it is then listed again. Now it can be seen that the
countries have been sorted into alphabetical order.

Example of a simple sort (multi-dimensional array)

1000 DEPPROClist
1010 PRINT:FOR i%=0 to 4:FORj%=0TO 2
1020 PRINT TAB (j%* 10) a$(i%,j%);
1030 NEXT j%:PRINT:NEXT i%
1040 ENDPROC

PROClist
Germany Bonn Rhine
Portugal Lisbon Tagus
England London Thames
Italy Rome Tiber
France Paris Seine

*SORT a$
PROClist
England London Thames
France Paris Seine
Germany Bonn Rhine
Italy Rome Tiber
Portugal Lisbon Tagus

This is similar to the previous example, except that this time a$() is a
two-dimensional array; as well as holding the list of countries, it also holds their
capital cities and major rivers. When we *SORT the array, it is once again arranged
in alphabetical order of country, but this time the capitals and rivers have also been
moved correspondingly. This is because each country, capital and river together
make up one sub-array, and it is these 5 sub-arrays which have been sorted. The
country has been used as the ‘key cell’ for sorting, as it is the first cell in each
sub-array.
Exactly the same principles apply if the array has three, four or more dimensions; it
isjust harder to visuahise and represent on paper!

Keyed sort Syntax: * SORT <array> (subs)
When we discussed the simple sort of a multi-dimensional array, we saw that the
first cell in each sub-array is the key cell (ie the cell which represents each sub-array).
We can, however, specify a different key cell if we wish, and this is known asa keyed
sort; obviously, keyed sorts are only applicable to multi-dimensional arrays.

 14

The way that we do this is by adding subscripts after the array name in the * SORT
command. These subscripts define the position of our ‘key cell’ within the sub-array,
in the normal manner of array subscripts. Remember that sub-arrays have one fewer
dimensions that their parent array; for example, if we are sorting a three-dimensional
array each of its sub-arrays will have two dimensions, so we must give two
subscripts to define our key cell. Obviously, each of the subscripts must not exceed
the dimension to which it refers; if it does, or if you specify the wrong number of
subscripts, you will get the ‘Bad subscript’ error message.
There are two restrictions on the use of subscripts in this way. The first is that each
subscript must fall in the range 0-9. Thus the command * SORT a$(10,2) is not
valid, and would produce the ‘Bad subscript’ error message.
The second restriction is that the specified key cell must be within 256 bytes of the
beginning of the sub-array; if it is not you will get the ‘Too deep’ error message.
This is likely to cause a problem only with very complex arrays; a method of
calculating the ‘depth’ of a cell is given in Appendix B.
Example of a keyed sort
1000 DEFPROCIist

 1010 FOR i%=0 to 4: FOR j%=0 TO l: FOR k%=0 T0 2
 1020 PRINT TAB (ko/o* 12) a$(i%,j%,k%);
 1030 NEXT k%:PRINT:NEXTj%:PRINT:NEXT i%
 1040 ENDPROC
PROClist
Fred Lawyer London
Margaret Accountant Oxford
Alan Mechanic Birmingham
Carol Hairdresser Coventry
Peter Architect Manchester
Elizabeth Secretary Chorley
Ian Plumber Glasgow
Christine Artist Motherwell
Michael Baker Swansea
Patricia Clerk Neath

In this example, a$() is a three-dimensional array, holding the names of 5 men, the
names of their wives, their occupation and places of work. The arrangement of the
data within the array should be apparent if you study the output from the first call of
PROClist Suppose we would now like to arrange the data in alphabetical order of
wife’s occupation.
First, we find the cell in the sub-array which contains this piece of data, and we see
that it has the subscript (1,1). Now we issue the command, and use PROClist to list
the data again.

 15

*SORTa$(1,1)
PROClist
Fred Lawyer London
Margaret Accountant Oxford
Ian Plumber Glasgow
Christine Artist Motherwell
Michael Baker Swansea
Patricia Clerk Neath
Alan Mechanic Birmingham
Carol Hairdresser Coventry
Peter Architect Manchester
Elizabeth Secretary Chorley
The data is now listed in order of wife’s occupation, with all other relevant data
being moved accordingly.
If we want to re-sort on, say, husband’s place of work, just issue the command with
the correct subscripts, and list again.
* SORT a$(0,2)
PROClist
Alan Mechanic Birmingham
Carol Hairdresser Coventry
Ian Plumber Glasgow
Christine Artist Motherwell
Fred Lawyer London
Margaret Accountant Oxford
Peter Architect Manchester
Elizabeth Secretary Chorley
Michael Baker Swansea
Patricia Clerk Neath

Follow sort Syntax: * SORT <array> <array>
Imagine that we want to store the names and ages of a numberof people. An array
cannot hold two different types of data, so we cannot put strings and integers in the
same array. (In fact, we can store numbers in a string array, by converting them into
strings using STR$, but this is inconvenient, and wasteful of memory.)
What we do is to set up two arrays, one string and one integer, (let us call them name
$0 and age%()), and store the data for one person in the same position in each array.
For example, if the name of a person was in name$(6), then his age would be in
age%(6). The problem here is that if we were to sort the names into alphabetical
order, using * SORT name$, they would no longer correspond with the correct ages
in age%(). The answer lies in the follow sort, which allows us to specify a second
array to ‘follow’ the array which is being sorted, The effect of this is to ‘hock
together’ the two arrays, so that any rearrangement of the first array is duplicated in
the second. In this instance, if we sort name $(), and specify age%() as the ‘follow’
array, then all each age will remain aligned with the correct name.

 16

It should be apparent that, for a follow sort to be possible, the two specified arrays
must be equal in their prime dimension (see page 1 for an explanation of prime
dimension). If they are not, you will get the ‘Incompatible arrays’ error message.
Apart from this, there are no restrictions, either of array type or number of
dimensions; for example, you may specify a three-dimensional integer array to
follow a one-dimensional string array, pmvided that they have the same prime
dimension.

Example of a follow sort

1000 DEFPROCIist
1010 PRINT”NAME Maths English Latin”
1020 FOR j% =0 TO 4:PRINT name$(i%);
1030 FOR j% 0 TO 2:PRINT results%(i%,j%);:NEXTj%
1040 PRINT:NEXT j%
1050 ENDPROC

PROClist
NAME Maths English Latin
Peter 28 63 34
David 46 52 28
Roger 39 35 75
Edgar 77 31 54
Barry 55 74 38

Here, name $() is a one-dimensional string array holding the names of five boys, and
result %() is a two-dimensional integer array holding their examination results in
various subjects. If we sort the boys into alphabetical order, we can ensure that they
keep their correct results by specifying result%() as the follow array.
* SORT name$ result%
PROClist
NAME Maths English Latin
Barry 55 74 38
David 46 52 28
Edgar 77 31 54
Peter 28 63 34
Roger 39 35 75

 17

Keyed follow sort Syntax: * SORT <array> (subs) <array>
We can combine the facilities of the keyed sort and the follow sort into the keyed
follow sort. This allows us to choose the key cell in the array which we are sorting,
and specify a second array to ‘follow’.

Example of a keyed follow sort
Continuing the previous example, suppose that we now want to sort the boys in order
of their Latin result. The array that we want to SORT is result%(), and the required
subscript is 2 (this is the position of the Latin result within the sub-array). This time,
name $() is the follow array.
* SORT result%(2)name$
PROClist
NAME Maths English Latin
David 46 52 28
Peter 28 63 34
Barry 55 74 38
Edgar 77 31 54
Roger 39 35 75
All the options which are available to * SORT also apply to *RSORT (see page II).
For
instance, in the last example, it would perhaps be more useful to list in order from
highest
to lowest. We would achieve this with:
*RSORT result%(2)name$
PROClist
NAME Maths English Latin
Roger 39 35 75
Edgar 77 31 54
Barry 55 74 38
Peter 28 63 34
David 46 52 28

Inserting data into a sorted array
Because of the way that the * SORT command works, it is very quick and easy to
insert a piece of data into its correct position in an already sorted array. Todo this,
simply place the data you wish to insert into the last cell in the array, and issue the
*SORT command. (This will actually work no matter which cell you placed the data
in, but placing it in the last cell ensures the fastest result.)
This method will work with multi-dimensional arrays (place the data in the last
sub-array), and with keyed and follow sorting.

 18

APPENDIX A
Amount of memory used by arrays

You can calculate the amount of memory occupied by any given array, using the
following formula:

F =(cells*size)+(dims*2)+name+4

F = no. of bytes used.
Cells = no. of cells. Calculate by adding 1 to each dimension and multiplying them

all together.
size = no. of bytes per cell. This is 4 for integer and string arrays, 5 for real

number arrays.
dims = number of dimensions.
name = length of array name, including any % or $ symbol.

Example
To calculate the amount of memory used by a real number array declared with
DIM data (50,3,2):
F= ((51 *4 *3) *5) + (3 *2) +4 +4 = 3074 bytes

Note:
String arrays are structured rather differently from numeric arrays. An ‘information
block’ holds the length of each string and its address, the strings themselves being
stored separately.
This formula will give only the memory occupied by the information block, which is
also the amount which will be freed by erasing a string array. The memory occupied
by the strings themselves is dependent on their length, and is not recoverable.

 19

APPENDIX B
How to calculate the ‘depth’ of a cell within a sub-array
If, when doing a keyed sort, you specify a key cell which is more than 256 bytes
from the start of the sub-array, you will get the 'Too deep' error message. It is
possible to calculate the ‘depth’ of a cell, using the method given below.

Where an array has dimensions (A,B,C….,Y,Z), and the key cell is specified
(b,c,...,y,z), then
depth = ((b* (C + l)* (D+ 1)*.. . (Z + 1))

+ (c* (D + l)*(E + l)*...* (Z + I))
…

+(y*(Z+ l))+z)*size
depth = depth of key cell within sub-array
size = no. of bytes per cell. This is 4 for integer and string arrays, 5 for real number

arrays.

Example
If an integer array is declared with DIM totals%(50,6,4,2), and a key sort was done
using the command * SORT totals%(4,3,1), then the depth of the key cell would be:
depth ((4*(4+ l)*(2+ I))

+(3*(2± l))+ l)*4=280 bytes
So in this instance, the specified key cell is too deep, and an error would occur.

APPENDIX C
Fitting Instructions

Make sure the computer is disconnected from the mains.
Take of the hid by removing the four fixing screws — two are underneath the front
edge of the computer,just behind the front feet, and the other two are at the top
corners of the black back-panel.
Remove the nuts and bolts holding the keyboard to the case — these are situated one
either side of the keyboard. You do not need to disconnect the keyboard connecting
cable; just fold the keyboard over, so it rests upside down on the micro.
At the bottom right corner of the circuit board you will seeS sockets; the leftmost
socket will contain the operating system ROM, and it should stay there. Arraymate
should be inserted into one of the remaining four sockets; it does not matter which
one. Place Arraymate in the socket, with the small notch in the chip facing towards
the rear of the computer, and push down with a firm, even pressure. Make sure that
each leg of the chip goes into a hole, and does not get bent underneath.
Replace the keyboard and lid, then plug in and turn on the computer. Type *HELP
<return> to list the ROMs, and Arraymate should appear in the list.

 20

APPENDIX D
Error messages

Bad array name
An attempt was made to * EXCHANGE array names of different lengths. Details
on
page 7-
Bad array type
An attempt was made to * EXCHANGE arrays of different types. Details on page 7.
Bad subscript
An invalid subscript was used to specify a key cell for sorting. This will occur if
subscript>9, if subscript>dimension to which it refers, or if correct format for
subscripts is not followed, Details on page 14.
Incompatible arrays
An attempt was made to perform a follow sort with two arrays having different
prime dimensions. Details on page 16.
Not BASIC
An attempt was made to access Arraymate from a language other than BASIC. Since

Arraymate operates on variables set up by BASIC, this is invalid.
Not enough room
There is insufficient room to * PRESERVE variables. A change to a lower
resolution screen mode may solve this problem.
Syntax
A command was issued with the wrong syntax. The correct syntax for the relevant
command is given. The most common reason is the omission of an array name from
a command which requires one.
Too deep
An attempt was made to specify as a key cell for sorting, a cell which is more than
256 bytes from the start of the sub-array. Details on page 14 - and in Appendix B.
Undeclared array
A non-existent array was specified in a command. The most common reason for this
is that an array is declared in a program, but the program has not been run.
Variables corrupted
Variables can not be * RECLAIMED, as they have been corrupted since they were
* PRESERVED. Possible causes of this are:
a) screen mode has been altered
b) a new program has been loaded which, together with variables, is too big for

memory available.

