
R
0 0 ~ ~

0 0 ~

I � � I I

I -~ I � � I I
I

l. I I I

I I I

L~ r J
i

I I ~ I I ~ I

I ~ I p~ I g L-J
I I ~ I

I I I
I

l I I I l I

L-J L-J

FORTH
on the BBC Microcomputer

RICHARD DE GRANDIS-HARRISON

ACORN AFT

Acknowledgements
This manual and the associated implementation of FORTH
could not have been produced without the assistance and
advice of many people.

Firstly, I must thank David Johnson-Davies of Acornsoft
for the generous way he has offered both facilities and
information, greatly easing my task. He also provided
the factorial calculations of chapter 11. Jeremy
Bennett, Philippa Bush, and Simon Hughes of Acornsoft
were all involved in the preparation of this manual and
suggested a number of improvements to the final text.

Many of my fellow members of the FORTH Interest Group
UK helped with discussion, encouragement, and advice. I
would especially like to thank Ken King who tested the
provisional system, and Harry Dobson who provided the
machine code version of the Editor NATCH routine.

The greatest common divisor calculator of chapter 6 is
by R L Smith and the random number generator used in
chapter 8 is by J E Rickenbacker. They appeared in
Forth Dimensions Vol 2 pages 167 and 34 respectively.

Acornsoft FORTH owes much to the public domain
publications of the Forth Interest Group and in
particular to the work of Bill Ragsdale. Finally I
wish to express my gratitude to Charles Moore of Forth
Inc . without whose efforts the language would not
exist.

R. deG-H 17/1/83

Copyright c ! Acornsof t Limited 1983

All Rights Reserved

No part of this book may be reproduced by any means
without the prior permission of the copyright holder.
The only exceptions are as provided for by the
Copyright photocopying! Act or for the purposes of
review or for the software herein to be entered into a
computer for the sole use of the owner of this book.

FIRST EDITION

ISBN 0 907876 06 4

First Published by Acornsoft Limited, 4a Market Hill,
Cambridge, CB2 3NJ, England

Acornsoft FORTH on cassette, disk or ROM is available
from Acornsoft.

Page

3 Starting FORTH
3.1 Loading instructions
3.2 ESCAPE
3.3 BREAK

operations
arithmetic

and USER

6 Conditionals and loops
6.1 Introduction
6.2 Conditional branches
6.3 Definite loops
6.4 Indefinite loops

8 Mass storage and the Editor
8.1 Introduction
8.2 Mass storage
8.3 The Editor
8.4 Using the Editor with disks

Contents

1 About this manual

2 About FORTH

4 Stacks of arithmetic
4.1 Stacks
4.2 Arithmetic
4. 3 Single-precision
4.4 Higher-precision

5 FORTH definitions
5.1 Introduction
5.2 Colon-definitions
5.3 CONSTANT, VARIABLE
5.4 CREATE
5.5 VOCABULARY
5.6 The compilation of

7 The Ins and Outs of FORTH
7.1 Input
7.2 Number bases
7.3 Output

a colon-definition

10
10
13
14
22

26
26
29
30
34
39
42

48
48
48
52
59

62
62
71
72

79
79
80
83
93

10

127
127
132
134

Graphics and sound
12.1 Graphics
12.2 Sound

12 136
136
154

13 159
159
160

163
165

261
267
273
275
279

Index

What CREATE and DOES> does
9.1 Introduction
9.2 The action of CREATE and DOES>
9.3 The use of CREATE and DOES>
9.4 Arrays and tables
9.5 Strings
9.6 A CASE statement

The FORTH Assembler
10.1 Introduction
10.2 An example
10.3 Machine code labels
10.4 The registers
10.5 Opcode mnemonics
10.6 Accessing the stacks
10.7 Conditional structures
10.8 Use of ;CODE
10.9 Macro assembly
10.10 Errors

Execution vectors and recursion
11.1 Execution vectors
11.2 Recursion
11.3 Forward references

Errors
13.1 Error handling
13.2 Detected errors

Glossary
List of FORTH words

Appendices:
A The FORTH-79 Standard
B How FORTH works
C Memory allocation
D Two's-Complement arithmetic
E Further reading

96
96
97
98
99

103
104

107
107
108
110
112
114
117
120
121
123
125

ou is manua

Although this manual is written to explain the operation
of FORTH on the BBC Microcomputer, most of the contents
are applicable to any version of the FORTH language.
This implementation follows the FORTH-79 standard.

Individual addresses of, for example, registers and
subroutines and the details of the memory map will be
different on different machines, and the machine code
sections are necessarily concerned with the 6502
microprocessor. In the descriptions of FORTH code, only
the tape interface chapter 8! and the graphics
 chapter 12! are likely to be significantly different in
other versions.

In this manual all FORTH words are written in upper-case
letters, exactly as they are typed in and appear on the
display. Since FORTH may use any character that can be
typed on the keyboard, there may occasionally be
confusion between FORTH words and punctuation marks. In
any cases where such confusion may arise, FORTH words
are placed in angle brackets, e.g. <.> , <,> and

In examples which contain text, both typed at the
keyboard and produced by the computer, the underlined
sections represent the computer's output, for example:

2 3 +
5 OK

All keyboard input must be terminated by pressing the
RETURN key, and this will not normally be shown
explicitly.

All numbers appearing in the text will, unless otherwise
stated, be given in decimal base.

2 About FORTH
FORTH was invented around 1969 by Charles H Moore. It
was originally created as a convenient means of
controlling equipment by computer. Most high-level
languages that can be used on mini � and micro- computers
 for example BASIC ! are too slow for such control and
the only other alternative is to use machine code
routines. These, however, are very tedious to write and
enter.

FORTH solves many of these problems by allowing
fast-executing programs to be written in a high-level
language. It also has the great advantage on small
systems of using very little memory for program
storage . One further advantage, which will become
apparent as you use the language, is that FORTH
encourages the writing of well-structured programs.

The speed of FORTH is largely due to the fact that it is
a compiled language, so that the stored program is in a
form very close to machine code. Unlike most other
compiled languages, however, FORTH is interactive,
which means that each new word can be tested as soon as
it has been entered. If it does not do what you want, it
can be changed immediately until you are satisfied.

Perhaps the most powerful feature of FORTH is that it is
an extensible language. When you define a new word in
FORTH, it becomes an integral part of the language and
can be used to produce further definitions in exactly
the same way as the words resident in the basic system.
This allows the production of short, neat solutions to
complex problems.

You may be beginning to realise, from what has been said
so far, that writing programs in FORTH is very
different from writing in languages like BASIC. A FORTH

program consists of a series of definitions of actions,
~ ach represented by a 'word'. These words are then
combined in further definitions until the required
action of the whole program is represented by a single
word . The program can then be executed by typing this
single word at the keyboard.

The procedure for writing a program in FORTH begins with
a specification of the overall action of the program.
This is then broken down into a sequence of small tasks
and these, if necessary, are further divided into
simpler tasks. Eventually the tasks are reduced to the
point where each is very easy to write in FORTH code.
The program is then written, starting with these simple
routines and building back up to the full program.
Testing can be carried out at each stage, greatly
reducing the chance of errors in the final program.

As an example we can consider the task of controlling a
domestic washing machine. The whole program might be
represented by the word WASHING which could be defined
as:

WASH ING
WASH RINSE DRY

The words WASH, RINSE and DRY could themselves be
defined as:

WASH
VILL HEAT SOAP AGITATE SPIN

RINSE
VILL AGITATE SPIN

DRY
SP IN SPIN

At the next lower level the words FILL and HEAT, for
example, could be written:

FILL
TAP ON
BEGIN ?FULL UNTIL
TAP OFF

and

HEAT
HEATER ON
BEGIN ?TEMPERATURE UNTIL
HEATER OFF

Coding could then begin with the definitions of the
actions of the words TAP, HEATER> ON, OFF, ?FULL etc.
The action of each word would be checked, with a
simulation of the machinery and sensors of the washing
machine, until the program is completed by the
definition of WASHING.

This example illustrates that, in FORTH, the problem to
be solved at any stage is simple and well-defined. Note
also that many of the words appear several times; once
a word is defined it may be used in a number of
different situations, greatly easing the programming
load.

FORTH is an example of threaded code. The words in a
FORTH program can be imagined to be strung together
like beads on a thread. From one word the thread loops
to pass through all the words in its definition and, if
necessary, further loops include the words of lower
level definitions. Ultimately the thread returns to the
highest level word of the sequence.

FORTH is actually implemented as indirect threaded code,
where each 'bead' on the thread is not the routine
itself but the address of the routine. In the
dictionary, therefore, each word consists of a list of
the addresses of the words out of which it is built.

So far there have been many references to 'words ' in
FORTH, so it is about time to define what can be used
as a FORTH word.

A word is defined as any combination of characters,
separated by one or more spaces from another word. Any
character that can be typed on the keyboard, including
non-printing characters and control codes, is allowed.
The only characters that cannot be used in a FORTH word
are a space, which is reserved as a delimiter to
separate successive words, and a null ASCII zero!,
which is used to mark the end of input text. In
Acornsoft FORTH a word may be of any length up to a
maximum of 31 characters.

The following are examples of valid words:

FORTH

+I

EMPTY-BUFFERS

The following are not valid:

EMPTY BUFFERS includes a space!
THIS-MRD-CAN 'T-BE � USED-IN-FORTH 32 characters !

3 starting FORTH
3.1 Loading instructions

Acornsoft FORTH is supplied on disk, ROM, or cassette.

For the disk-based system refer to the pack for loading
instructions.

If using the ROM system the command *FORTH will put you
into the FORTH system.

To load and run the tape version, place the cassette in
the cassette recorder, fully rewound, type

CHAIN "FORTH"

and press RETURN!; the 'Searching ' message should
appear on the screen as you do this. Press the PLAY
button on the cassset te recorder and wait for the
program to load. Loading will take more than five
minutes; note that several files will be loaded, and
all are called FORTH. Then there will be a short pause
while FORTH re-locates.

When loading is complete a copyright message, and the
sign-on prompt

Acornsoft FORTH
OK

will be displayed on the screen.

The Editor, Assembler, and Graphics Demonstration are
loaded from within FORTH � loading instructions are
supplied with the casette, disk, or ROM pack.

In all but the ROM-based version of Acornsoft FORTH,
pressing the BREAK key will take you out of FORTH.

3.2 ESCAPE

In all versions of Acornsoft FORTH the ESCAPE key can
be used to leave the current task and return control to
the keyboard. It will terminate the execution of any
FORTH routine immediately and the word ESCAPE will be
displayed. The only exception is if an endless machine
code loop is being executed, in which case execution
may be terminated by pressing the BREAK key.

3. 3 BREAK

FORTH has its own operating system for saving to and
loading from cassette or disk, so monitor commands
will not be used again, unless you decide to use them.
The only exceptions are if your program crashes, or if
you press the BREAK key, when control will return to
the operating system. The following example
illustrates the procedure to verify your return to
FORTH .

Once FORTH is loaded and the sign-on prompt has
appeared type in the following:

STARS BEGIN 42 EMIT 2 SPACES AGAIN

After you press the RETURN key, FORTH will respond with
OK. This is the standard response to all correct
operations. If you do not get the OK response, check
that you have typed the example correctly � it is
important to leave at least one space between each
word.

You have caused a new definition named STARS to be
entered in the FORTH dictionary. This can be checked
by typing

VLIST

and then RETURN>. This will give a list of all the
words present in the dictionary. The listing may be
stopped at any time by pressing the TAB key. It may
then be restarted by pressing the Space Bar � any
other key will abort the listing and return control to
the keyboard.

The first word in the list will be STARS, showing that
it is now present in the dictionary.

When the message OK appears either after the listing
is complete or when you have aborted the listing by,
for example, pressing the TAB key twice! execute the
word by typing STARS don't forge< to press
RETURN! and the system will type an endless display of
stars. You will obtain no response from any key except
BREAK or ESCAPE! since an endless loop is being
executed.

Press the BREAK key to get the BASIC prompt '> ' and
then press function key 8 when the sign-on prompt will
again appear. Typing in

STARS

will give the same response as before, showing that
STARS is still present in the FORTH dictionary. This
is an example of a 'warm ' start, in which all current
dictionary entries are retained. Since FORTH is
relocated on loading the warm start entry point may
change, but function key 8 will always start at the
correct address.

Repeat the sequence of executing STARS and pressing the
BREAK key, but this time re-enter FORTH by pressing
function key 9.

The sign-on prompt will appear again but this time you
will find that a VLIST no longer includes the word
STARS, showing that it is not in the dictionary. An
attempt to execute STARS will give:

STARS ?

The question mark is displayed whenever a word is not
recognised by FORTH. Restarting FORTH with function
key 9 gives a 'cold' start which forgets everything
except the nucleus dictionary. A cold start can be
performed from within FORTH by typing the word COLD,
and a warm start by typing the word WARM.

When either a cold or warm start is executed the
sign � on prompt is printed. The copyright message is
only given in the case of a cold start. Initially,
FORTH will accept numbers in decimal and both stacks
 see chapter 4! are cleared. New definitions will be
added to the FORTH vocabulary.

ac so ari me ic

4.1 Stacks

Most high-level languages use one or more stacks for
their internal operations, for example for storing
intermediate values during the calculation of the
result of an arithmetical expression. Languages such as
FORTRAN and BASIC are designed so that the user needs no
knowledge of the internal structure of the computer, and
they therefore keep the stacks well out of sight.

A FORTH programmer has direct access to the stack with
full control of the values stored and their
manipulation. Most words in FORTH will place values on
the stack or expect to find values there. It is
essential, therefore, to understand the structure and
operation of stacks.

The type of stack used by FORTH is one known as a
last-in first out LIFO! stack where the value most
recently placed on the stack is the one that is most
accessible. The action is similar to the pop-up pile of
plates that is sometimes seen in restaurants. If a plate
is placed on the top of the pile it moves down until
the new plate is at counter level. When a plate is
removed the pile rises so that the plate which was
underneath becomes the new top of the pile. Because of
this similarity the structure is also known as a
push � down stack.

10

Here's an illustration of the action of a LIFO stack:

TOP -> 27
-3

19
4

TOP -> 15
27
-3

19
4

TOP-> -3

19
4

 c! b!

 a! is the initial state of the stack, b! is the state
after the value 15 has been 'pushed ' onto the top, and
 c! is the final state after the values 15 and then 27
have been 'popped' from the top of the stack.

This would be very slow in operation because of the need
to move the entire contents of the stack for each
addition or removal. A more efficient method is to
leave the contents in the same positions in memory and
then change the pointer to the top of the stack when
items are added or removed. In FORTH it is convenient
to make the stack grow downwards in memory so that the
'top' of the stack is at the lowest memory location
used by the stack contents.

The scheme now appears like this

4
19
� 3

27
TOP -> 15

4
19

TOP -> -3
19
-3

TOP-> 27

This is the conventional view of the LIFO stack, in
which the top of the stack is always found at the same
memory location. The contents of the stack are moved to
make room for a new top item, or to replace an item
that has been removed.

In this manual, unless otherwise stated, we use the
conventional wording in all descriptions, so that the
'top' stack item is always the one that is most

accessible.

In FORTH the top item of the stack is found at an
address given by the variable called SP stack
pointer!. Each single-precision item in the stack is
stored as a 16 bit number, using two bytes of memory.
Thus the top item on the stack is found at address SP,
the first item from the top is at SP+2, the second fry
the top at SF+4, etc. The address of the Nth item fran
the top of the stack is simply SP+2*N.

FORTH uses two stacks known as the 'computation stack'
 sometimes called the 'parameter stack'! and the
'return stack'. The programmer will generally use only
the computation stack. This stack is used for all
arithmetic operations and to transfer information from
one FORTH word to another in the execution of a
program. In this manual the computation stack will be
referred to as 'the stack' unless confusion is possible.

The return stack is mainly used by the system:

a! to store the address of the routine to which
control is returned after execution of the current
word

b ! to store the current loop index in a DO ... LOOP

In addition the return stack may be used by the
programmer, with caution, as a temporary store for
values from the computation stack. This is one possible
method of gaining access to a stack value which is not
at the top of the computation stack. In Acornsoft FORTF,
the computation stack can hold up to 36 single-precisior.
numbers, and the return stack up to 44 addresses or
single-precision numbers.

12

4.2 Arithaetic

Arithmetic in FORTH is performed on integers rather than
floating-point numbers. There is no reason why
floating-point arithmetic should not be used but this
would reduce the operating speed. The integer
operations in FORTH are designed to allow fast and
accurate arithmetic, without the need to use a
floating-point format. It has been said that if you
need to use floating-point arithmetic in FORTH, you do
not fully understand your application! This is rather an
extreme viewpoint but makes the point that there are
very few problems that cannot be solved by the use of
FORTH's integer operations.

All the arithmetic operators in FORTH expect to find
their values on the stack and replace them by their
result. A consequence of this is that the numeric values
must be placed on the stack before the operator is
used.

Thus to add the numbers 2 and 3, the following sequence
should be typed at the keyboard:

2 3 +

where 2 places the number 2 on the stack
3 places the number 3 on the stack
+ removes the top two items from the stack, adds

them and places the result on the stack.

The FORTH word <.! removes the top item from the stack
and prints it on the display so the following result
should be found:

2 3 +
5 OK

 Don 't forget to press RETURN after the <.!. !

Placing the operator after the numbers on which they act
is known as postfix, or reverse-Polish, notation and
will be familiar to anyone who has used a
Hewlett-Packard calculator. The normal method of

writing arithmetic operations is known as infix
notation. One advantage of using postfix notation is
that there is no need to use brackets to indicate the
order of evaluation as the order is completely
unambiguous .

4. 3 Single~recision operations

4.3.1 Single~recision numbers

In FORTH, single-precision numbers are of 16 bits
� bytes ! with the most-significant byte at the lower
address. Unsigned numbers are in the range 0 to 65535
inclusive. Signed numbers are stored in two's-
complement form and are in the range -32768 to +32767
inclusive see Appendix D!.

A number may be placed on the stack simply by typing it
at the keyboard and following it by <RETURN> . The top
stack item may be removed from the stack and printed on
the VDU by the use of the word <.> dot!. This word
interprets the number as a signed integer. To show the
action of <.> , try the following examples:

17
17 OK
~2
-21 OK
3~27
32767 OK
Y2 T68=.
-32768 OK

In single precision, numbers greater than 32767 are
interpreted by <.> as being negative.

Numbers greater than 32767 can be printed as unsigned
integers using the word <U.> as, for example:

32768 U.
32768 OK

14

4. 3.2 Single~recision arithmetic

The following list contains all the single-precision
arithmetic operators provided in FORTH . In the stack
action the notation is stack before ... stack after!
with the top of the stack to the right, and the items
separated by

Table I

Stack action DescriptionWORD

sum: nl+n2!
difference: nl-n2!
product: nl*n2!
quotient: nl/n2!
rema in der !
rem quot ient !

 n13n2
 nl1n2
 nlkn2
 nlkn2
 nlhn2
 nl1n2

Add
Subtract
Multiply
Divide integer !
Remainder of nl/n2
Leave quotient with remainder
beneath
Intermediate product nl*n2 is
stored in double precision
As */ but also leave remainder
beneath
Change sign
Absolute value
Leave, as n3, the value of nl
with the sign of n2
Add 1 to the top stack item
Subtract 1 from the top stack
item
Add 2 to the top stack item
Subtract 2 from the top stack
item
Fast multiply by 2
Fast divide by 2

/
MOD
/MOD

 nl n2~n3 ... nl*n2/n3!

 n13n2 nl ... remen l*n2/n3!*/MO D

 nl ... -n1 !
 nl .. Inl I!
 n13n2 ... n3!

NEGATE
ABS
+�

 nl ... n2!
 nl ... n2!

 nl ... n2!
 nl ... n2!

 nl ... n2!
 nl ... n2!

1+
1�

2+
2-

2*
2/

FORTH does not provide an exhaustive set of arithmetic
operators, since the needs of different applications
vary widely. There is, however, a sufficiently large
range of general -purpose operators so that any required
operation can be defined by the user.

The following list gives examples of the use of the
first four of these in postfix notation, compared with
the corresponding infix form:

PostfixInf ix

3 *

94/
2 3 5 *
2 3 + 5 * or 5 2 3 + *!

2 * 3
9/4
2 � � * 5!
� + 3! * 5

FORTH can be used to calculate a formula, such as the
value of the quadratic expression

3x"2 � 5x + 4

for various values of x. If, for example, x has the
value 2 the result could be found as follows:

* 3 m 2 5 4 � 4
6 OK

This involved typing 2 as the value of x in three
places. It can be improved upon by using the stack
operators described in the following section .

Try using the other words in the list. Use each one with
a range of numerical values, both large and small,
positive and negative, to become familiar with their
actions.

16

If you are not familiar with postfix notation you may
find it useful to try these examples at the keyboard,
using the <.> word to print the result. Try a few
examples of your own, using <.> to check if the result
is what you expected. If the operators run out of
numbers to work on, FORTH will give error message 1
 empty stack!, but there will be no indication if too
many numbers are left on the stack at the end. Once you
have completed a calculation keep using <.> until error
message 1 is given, to make sure that there are no
numbers unexpectedly remaining.

4. 3. 3 Single~recisioa stack operators

There are several words in FORTH which act directly on
the numbers on the stack:

Tab le 2

There are also two words which act on numbers further
down the stack:

PICK used as n PICK to make a copy, on the top of the
stack, of the nth number in the stack, for
examp le:

1 PICK is equivalent to DUP
and 2 PICK is equivalent to OVER

ROLL used as n ROLL to rotate the top n items on the
stack, bringing the nth item to the top, for
examp le:

2 ROLL is equiva lent to SWAP
and 3 ROLL is equivalent to ROT

These two words are useful to extract a needed number
that is some depth below the top of the stack, but are
relatively slow in their operation and should be used
s par ing ly .

17

A further three words act to transfer numbers between
the computation stack and the return stack see section
4.1!:

Rg Copy the top item of the return stack to the
computation stack the return stack is unchanged!

>R Transfer the top item of the computation stack to
the return stack

R> Transfer the top item of the return stack to the
computation stack

Since these last two words modify the contents of the
return stack, which is used for system control, they
should be used with caution. They should never be
executed directly from the keyboard, and, within a
definition, they should normally be used only as a pair.
This will ensure that the state of the return stack is
unchanged between entry and exit when the new definition
is later executed. The main use of >R and R> is as a
temporary store for the top value on the computation
stack when a calculation needs to use the number s!
below it.

The stack contents may be manipulated by the use of
several of the stack operators in succession. The
following list includes a number of useful stack
manipulations which require two words:

Stack before Stack After Words

18

1 2
1 2
I 2
1 2
1 2 3
1 2 3

1 1 2
2 1 2
2 1 I
1 2 1 1
2 1 3
3 2 1

OVER SWAP
SWAP OVER
SWAP DUP
OVER DUP
ROT SWAP
SWAP ROT

It is worthwhile understanding the solutions for this
list. If you are not sure about a solution, try it out
at the keyboard. Remember that <.> prints the top of
the stack first so that the correct response for the
first of these is:

1 2 OVER SWAP
2110K

If we now return to the earlier problem of calculating
the value of the quadratic function

3x"2 � 5x + 4

we can see that it is possible to perform the
calculation in such a way that the value of x needs to
be typed once only. The following example shows how
this can be done. It is broken down into several
sections so that the stack contents can be shown at
each stage remember that the top stack item is on the
right!. The stack contents can be shown at each stage by
use of <.S> which displays the stack without altering
its contents:

Stack contents

The advantage of this is that everything except the
value of x can be made into a definition see chapter
5!:

QUADRATIC
DUP DUP 3 * *
SWAP 5 * � 4 +

19

2
DUP DUP 3
X *

SWAP 5
iC

4
+

2
2 2 2 3
2 12

12 2 5
12 10

2 4
6

This can then be used with many values of x. It expects
to find the value of x as the top stack item and
replaces it by the value of

3x"2 � 5x + 4

4.3.4 Relational and logical operators

Most of the relational operators in FORTH apply a test
to the top one or two stack items, returning a true or
false value, depending on the result of the test. A
false result is indicated by zero and a true result by
a non-zero value being left on the stack. As usual the
words replace the arguments with the result, in this
case a true or false flag.

The relational operators provided in FORTH are listed
below; unless otherwise stated they all act on signed
numbers:

0= Leave true if the top stack item is zero, otherwise
false

0< Leave true if the top stack item is negative

0> Leave true if the top stack item is positive

Leave true if the top two stack numbers are equal

Leave true if the second stack item is less than
the top item, for example, 2 3 < leaves true

Leave true if the second stack item is greater than
the top item, for example, 3 2 > leaves true

U< As < , but the two numbers are treated as unsigned
integers

MAX Leave the larger of the top two numbers on the
stack

MIN Leave the smaller of the top two numbers on the
stack

20

Note the difference between < , which compares two
signed integers in the range -32768 to +32767, and U<.
They act identically on numbers in the range 0 to 32767
but will give different results outside this range.

U> is not supplied initially but can be defined as

U> SWAP U<

The logical operations in FORTH usually act on the top
two numbers on the stack and are:

AND Leaves a bit by bit logical AND of the top two
stack numbers

OR Leaves a bit by bit logical OR of the top two
stack numbers

XOR Leaves a bit-by-bit logical Exclusive-OR of the
top two stack numbers

TOGGLE Performs a bit-by-bit Exclusive-OR of the low
order byte of the top stack number with the byte
whose address is second on the stack; the result
is replaced at this address.

One application of XOR is to determine the sign of the
product of two numbers and is used in this way for many
of the multiplication words in FORTH. A negative number
has the most significant bit set to 1. The Exclusive-OR
of two numbers of the same sign i.e. whose most
significant bits are both 0 or both 1! will be a number
with a zero most significant bit, indicating a positive
result. With two numbers of opposite sign the
Exclusive-OR will leave a number with most significant
bit 1, showing the result to be negative. Note that the
value of the result has no meaning in this context . An
example of this use of XOR is the definition of MD* in
the next section.

The use of TOGGLE is illustrated in the definition of
SMUDGE def ined in hexadec ima1 base !:

SMUDGE LAST 20 TOGGLE

LAST returns the address of the name header of the most
recently defined word in the dictionary, and 20 TOGGLE
changes the 'smudge' bit in the header to allow or
prevent the word from being found in a dictionary
search.

4.4 Higher~recision arithmetic

In addition to single-precision, FORTH also supports
double-precision arithmetic. Double-precision numbers
are stored in 32 bits, using four successive bytes of
memory, with the least significant byte at the lowest
address. Again, two's-complement form is used, giving a
range of values from -2147483648 to +2147483647
inclusive.

Note that because of the way the LIFO stack is
implemented in FORTH a double-precision number on the
stack has its 2 high-order bytes 'above' the 2 low-order
bytes.

A double-precision number may be entered from the
keyboard by including a decimal point as the last
character of the number. Thus typing in

12.
5832478.

will place the numbers 12 or 5832478 on the stack, in
double � precision form.

There is one purely double-precision arithmetic word:

D+ Double-precision add

22

In addition there are six mixed-precision operators

 n13n2 ... nd!
Multiply two signed single-precision numbers to
give a signed double-precision product.

 uliu2 ... ud!
As M* , but all numbers are unsigned; this is
the multiplication primitive machine code!.

U*

 ud!ul ... u23u3!
Divide the double-precision number second on the
stack by the single-precision number on the top;
a single-precision quotient is left above a
single � precision remainder and all numbers are
unsigned. This is the division primitive no
error checks are made so this word should be used
when a fast division is essential!.

U/

 ud ul ... u23u3!
As U/ , except that an error message is given if
division by zero is attempted. All other division
operators use U/MOD and are therefore similarly
protected against division by zero.

U /MOD

 nd3nl ... n2!n3!
As U/MOD, except all numbers are signed.

M/

M/MOD udl jul ... u2 ud2!
As U/MOD, but leaving a double � prec is ion
quotient; all numbers are unsigned.

Change the sign of a double-precision numberDNEGATE

Leave the absolute valueDABS

23

There are also three sign-changing words for double�
precision numbers:

D+-

There are four stack operators in double � precision:

2DROP Remove the double � precision top stack item

2SWAP Exchange the top two double-precision items

Note that these words can also be used to act on the top
two single-precision numbers, i.e. 2DROP is equivalent
to DROP DROP and 2DUP is equivalent to OVER OVER.

Finally, there is one relational operation provided for
double-precision numbers:

D<

As an example of the use of some of the double precision
words cons ider the def inition of the word MD*, which
also illustrates the use of XOR to determine the sign
of a product, as discussed in section 4.3.4.

The word MD* performs a mixed-precision multiplication
which leaves the signed double-precision product nd2 of
the signed double-precision number ndl and the signed
single-precision number n:

24

2DUP

20VER

Apply the sign of the single-precision number
on the top of the stack to the double-precision
number beneath.

Duplicate the double-precision top stack item

Copy the second double-precision stack item
over the top doub le � precis ion item

Leave true if the second double � precision stack
item is less than the top double-precision
item, for example, l. 2. D< leaves true, else
leaves false.

This word is used in the factorial routine in chapter 11
to allow the calculation of the factorial of numbers up
to 12.

25

MD* ndl~n
2DUP XOR >R
ABS >R DABS R>
DUP ROT * >R
U* R> +
R> D+-

nd2

!
keep sign of product !
MOD of multiplicand & multiplier !
high order product !
low product, plus high product !
apply sign to product !

e niions

5.1 Introduction

Programs written in FORTH are usually, and more
accurately, known as applications. The idea of a
program implies the generation of a sequence of
actions, distinct from the set of instructions which
form the language in which the program is written. In
FORTH the distinction between the language and the
'program' is far less clear. The sequence of actions

are created as additional words in the FORTH
vocabulary, and can be used in exactly the same way as
the original words to produce a more complex process.
In effect the language is simply being extended.

Many people argue that FORTH should not be described
as a language since it contains no rules or structures
that cannot be changed by the user. Whether this is a
valid argument or not, the fact remains that the great
power of FORTH lies in its ability of extension to
cope with any situation that may arise.

There are several ways in which new words can be placed
in the dictionary. These use defining words, of which
the most common are:

 colon!
CONSTANT
VARIABLE
USER
CREATE
VOCABULARY

The exact formats of words created by each of the above
in Acornsoft FORTH are given in more detail in Appendix
B. It will, however, be useful to give here a general
description of the construction of a typical dictionary
entry.

26

The exact format of a dictionary entry is dependent on
the method of imp lementat ion and may we 1 1 be di f ferent
in different versions of FORTH. Although the method
used in Acornsoft FORTH is a common one, it should not
be assumed to apply to all other versions of FORTH.

All dictionary entries consist of two parts, the head
and the body. The head contains:

a! the name of the entry variable length!

b! a link pointer to the name of the previous entry

c ! a code pointer to the machine code used in the
execution of the entry.

The starting addresses of these fields are known as the
name field address, the link field address, and the
code field or execution! address respectively .

The body of the entry, also known as the parameter
field, contains the information which defines the
action of that particular entry. The nature of this
information differs according to the defining word
which was used in its creation. For a colon-definition,
for example, the parameter field contains a list of
the execution addresses of the words in the
definition, terminated by the execution address of EXIT
which causes an exit from the word.

27

The diagram below illustrates these points for a
dictionary entry created by a colon-definition:

Name Field Address

to previous
name field

Link Field Address

to machine code for
a colon-definition

Code Field Address

Parameter Field
Address

There are a number of words supplied which allow the
address of one of these fields to be converted into
the address of another. The initial address is
expected on the stack, and it is replaced by the new
address:

Nord Action

PFA Convert the name field address to the parameter
field address

CFA Convert the parameter field address to the code
field address

LFA Convert the parameter field address to the link
field address

NFA Convert the parameter field address to the name
field address

28

In this and all such diagrams in this manual, memory
addresses increase from top to bottom.

code field address link field address + 2
parameter field address = code field address + 2

5.2 Colon&efinitions

5.2.1 Form

The colon-definition is the most frequently used way of
defining a new action in FORTH and has been used in
several of the examples in earlier chapters. The form
of a colon-definition is:

NAME

The colon indicates the start of the definition of a
new dictionary entry for the word NAME. The NAME is
followed by a sequence of actions in terms of FORTH
words which have been previously defined, and the
definition is terminated by a semicolon ;! . Once
defined the word can be executed by typing its NAME at
the keyboard. Since colon � definitions are used
extensively throughout this manual, no specific
examples are given here.

When starting to write a new application it is useful
to first make a null definition such as:

TASK

This is a word which has no function except to mark the
start of the application � executing TASK will do

29

There are no words provided for the
code field or link field addres
normally a problem since any search
usually return either the parameter
the name field address. If such
required it is, however, very simple
since

5.2.2 Separating applications

conversion of the
ses . This is not

for a word wi I l
field address or
a conversion is

in Acornsoft FORTH

nothing. When the application is no longer required,
however, typing

FORGET TASK

will erase TASK and all subsequently defined words,
clearing the dictionary for a new application.

5.3 CONSTANT, VARIABLE and USER

5.3.1 CONSTANT

Numerical values may be compiled into a colon�
definition as literal values. An alternative is to
define them as constants. The sequence

10 CONSTANT LENGTH

will giveLENGTH
10 OK

There are two advantages in using constants rather than
literal values:

a! When used in a colon-definition LENGTH wi 11
compile its two-byte execution address, whereas
the literal value requires four bytes � two bytes
for the address of the literal handling routine
and two bytes for the value. If the value is used
many times there is a net saving in memory space,
despite the space needed for the definition of
LENGTH

b ! If it is necessary to change the value at some
later time it is simpler to change the definition

30

will create a dictionary entry for a constant with the
name LENGTH and value 10. The entry has the
single-precision value of the constant in its
parameter field, and the code field contains a pointer
to machine code which will copy the value from the
parameter field to the stack. Thus> when LENGTH is
later executed it will place the value 10 on the
stack, just as if the number 10 had itself been typed,
so that typing

of LENGTH, rather than every occurrence of the
literal value.

To change the value of a CONSTANT, the operators
 tick! and <!> store! are used. <'> followed by the
name of the CONSTANT leaves its parameter field
address on the stack. <! > uses two values from the
stack; a numeric value with an address above it. It
acts to store the numeric value in the two bytes
starting at the address. Thus

100 ' LENGTH !

changes the value of LENGTH to 100, leaving the stack
unchanged. Typing

LENGTH . will now give
100 OK

5. 3.2 VARMBLK

A dictionary entry for a variable may be created by
typing, for example

VARIABLE XLENGTH

This will create a variable with name XLENGTH and
initialised to zero. The dictionary entry will contain
the single-precision value of the variable in its
parameter field.

The difference between a CONSTANT and a VARIABLE is
that, on execution, the CONSTANT places its value on
the stack but the VARIABLE places on the stack the
address of the memory containing the value. The value
of the variable is returned by the <g> fetch!
operator. This takes the address from the stack,
replacing it with the two-byte value fetched from the
corresponding location. Hence

XLENGTH 8

puts the value of XLENGTH on the stack. This method is
chosen so that the storing of a new value in the
variable is made simple by, for example:

40 XLENGTH !

31

This replaces the old value of XLENGTH by the new
value, 40.

The value of a variable can be incremented using +!
for example:

1 XLENGTH +!

will increment the value of XLENGTH by 1. The increment
may be positive or negative, and of any magnitude
 within the valid range for single � precision numbers!.

The value of a variable can be printed by using ?!.
Its action is as one would expect from the definition:

? g

5. 3. 3 USER

This word is provided to allow system modifications,
and will not be used in most applications. A user
variable may be created by, for example, the sequence:

50 USER TERMINAL

In this case the value of the variable is not
initialised. The above sequence creates a new user
variable whose name, TERMINAL > is stored in the
dictionary, but the value of the variable will be
stored in a separate user variable area. The number
�0! is used as an offset in the user' area from the
value of the user variable pointer, UP . The above
sequence will therefore reserve two bytes of memory, 50
bytes above the start of the user area see the memory
map in Appendix C!.

The user area is reserved for system variables, many of
which are initialised on a cold start of FORTH, and
should not be used for variables in an ordinary
application . The user variable area provided has its
base at address 400 hex with a maximum offset of &C hex
�0 decimal!. The first unused offset is 32 hex
�0 decimal!, allowing up to five additional user
variables to be defined.

32

The user variables provided in the system are:

The start address of the computation stack

The start address of the return stack

SO

RO

The start address of the terminal input
buffer

TIB

The maximum width of a dictionary entry name,
normally 31

WI DTH

Error message control, normally 0 not used
by system words !

WARNING

Lower limit for FORGET

Dictionary pointer

FENCE

DP

If 0, input is from terminal, otherwise from
mass storage buffer

BLK

Current offset into the input buffer> IN

Number of characters output not used by
system words !

OUT

Current tape/disk screen numberSCR

OFFSET Screen offset for mass storage, normally

Vocabulary pointer for dictionary searches
 see section 5.5 !

CONTEXT

Vocabulary pointer for new definitions see
section 5.5!

CURRENT

Indicates the compilation state, non-zero when
compiling

STATE

Contains current numeric conversion base

Position of decimal point not used by system!

BASE

DPL

33

VOC-LINK Points to the most recent ly def ined vocabulary

Current stack pointer value � used in
compiler security

CSP

Pointer to the editing cursorRN

The address of the last converted character
during numeric output conversion.

HLD

5.4 CREATE

CREATE is a word that will produce a dictionary head
whose code field contains the address of the machine
code used by VARIABLE. Thus when a dictionary entry
formed by CREATE is later executed it will, like
VARIABLE, leave on the stack the address of the first
byte of its parameter area. Unlike VARIABLE, however,
no parameter space is allocated. If we

CREATE FRED

the dictionary entry will appear as shown in the
following diagram:

Assuming that FRED is the last word in the dictionary,
executing FRED will leave the address of the first free
byte in the dictionary the same address as returned by
HERE!. We could now ALLOT some space in the dictionary
for some values in FRED 's parameter area . Thus if,
after creating FRED, we then type

6 ALLOT

we shall reserve six bytes of memory. The address of
the first of these bytes is left on the stack whenever
FRED is executed. This is a useful way of defining a
simple form of array. The sequence

CREATE FRED 6 ALLOT

34

as used above produces the equivalent of an array to
hold three single-precision numbers. The addresses of
the first, second and third of these numbers are left
on the stack by

FRED
FRED 2+
FRED 4 +

respectively. Values may be placed at these three
addresses, by the use of <!>, or read back by the use
of <9>. The values are not initalised when space is
reserved by the use of ALLOT.

We may often want to intialise the values at the time
of allocating space in the parameter area. For
example, the word VARIABLE not only allocates a
two-byte parameter area, but it also initialises it to
contain zero. A definition of VARIABLE can be written
in terms of CREATE as follows:

VARIABLE CREATE 0

and has the same action as the version provided.

It is when CREATE executes, that it accepts the name of
the dictionary entry it is to make. This means that the
name should not be included in a colon-definition using
CREATE, since in this situation CREATE is being
compiled and does not execute. The name is required
when the definition including CREATE for example
VARIABLE! is executed. Thus, when we use VARIABLE as

VAR IABLE JIM

the dictionary head for JIM is formed by CREATE and two
bytes of parameter area are allocated and set to zero
by <0

As a further example we can form a new defining word,
2VARIABLE which will create a variable capable of
holding a double � precision value. The definition is
simply:

2VARIABLE CREATE 0 ! 0

35

When a double-precision variable is created by, for
example

2VARIABLE LOTS

the execution of CREATE produces the dictionary head
for LOTS and then four bytes of dictionary space are
reserved and set to zero.

The efficient use of double-precision variables
requires the further definitions of 28 and 2!, the
double-precision versions of P and ! respectively.
These are most effectively defined as machine code
routines and their definitions are given in
section 10.7 on the FORTH Assembler.

The word 2VARIABLE generates the name header and
reserves the first four bytes of the parameter area. A
single-byte form of variable is not so easy to define
in terms of VARIABLE but is simple in terms of CREATE.
It is, of course

CVARIABLE CREATE 0 C,

where only one byte of parameter area is allocated.
A single-byte variable can then be defined like this:

CVARIABLE TINY

If you use single � byte or double-precision variables it
is your responsibility to ensure that you use the
correct versions of the fetch and store operations.
Using !> on a single-byte variable, for example, will
alter part of the following dictionary entry. In the
best case it will mean that the following word cannot

36

Fetching and storing numbers in the case of
variables must not, of course, use 9 or !
work on two-byte numbers. The single � byte
C ~ and C! must be used instead. The value
be put on the stack by

TINY Cg

and a value placed in TINY by, for example

15 TINY C!

single-byte
since these
equivalents
in TINY can

be found; in the worst case it can result in a system
crash that will require the whole system to be
reloaded.

So far all the examples have used the fact that a word
defined using CREATE will leave the address of the
first byte of the parameter area on the stack. CREATE
becomes more useful if this action can be changed. In
fact all the defining words use CREATE to produce the
name headers but then change the contents of the code
field address of the new word so that it points to a
different machine code sequence. As an example of this
we can examine the definition of a word which will
allow short machine code routines to be written without
the use of an assembler.

The code field of a machine code primitive must contain
the address of the start of the machine code itself.
This code is normally placed in the parameter area of
the word. In Acornsoft FORTH this area starts with the
byte immediately following the code field. What is
needed, therefore, is to rewrite the contents of the
code field so that it contains the address of the
following byte. This can be done with the following
definition:

CODE CREATE HERE -2 ALLOT

When code is executed as for example,

CODE TEST

it generates a normal dictionary header for TEST as
described earlier. Then HERE returns the address of the
first free byte in the dictionary which will be the
first byte of the parameter area of TEST!. The words -2
ALLOT step back over the two bytes of the code field
and ,! then rewrites the code field to contain the
address returned by HERE. The structure of the entry
for TEST will, at this stage, be as shown in the
following diagram:

37

So far we have not supplied any machine code for TEST
to use. Executing TEST at this stage is liable to be
fatal for the sys tern.

Suppose, as a simple example, we want TEST to drop
three items from the stack. There is a section of
machine code within the system which will drop two
items. In our Assembler the start of this code is
labelled POPTWO and it is, as explained in chapter 10,
also a valid exit from a machine code routine. The
address of the start of POPTWO is also given there; it
is &1DD +ORIGIN.

The routine we wish to write need, therefore remove
only one item two bytes ! from the stack before jumping
to POPTWO. The address of the most accessible stack
item is held in the 6502 X-register, so to drop this
16-bit value we need to increment the X-register by
two. The code to increment the X � register is &E8. The
sequence in hex!

E8 C, E8 C,

will therefore compile the code to drop one stack item.

All that is now required to complete the entry is to
compile the jump to POPTWO. The code for a jump is &4C
followed by the address low byte first !. This is done
by the sequence again in hex!

4C C, &1DD +ORIGIN

Since ,! puts the low least significant ! byte into
the dictionary first, the two bytes of the address are
put in the correct order automatically.

The full sequence to generate this definition is

HEX
CODE TEST

E8 C, E8 C,
4C C,
1DD +ORIGIN

DEC IMAL

38

and produces code which, in conventional assembly
language, would be writ ten as

INX
INX
JMP POPTWO

The word TEST may now be executed provided the stack
has three numbers on it which can be dropped !.

This way of writing machine code requires a knowledge
of the machine language operation codes and of all
addresses used. It is also very tedious and does not
give very readable definitions! It is, however, very
useful when you want to include one or two short
machine code routines without first having to load the
Assembler. A further example is given in chapter 8
where a hand-assembled machine code version of the
Editor word MATCH is given. This is much faster than
the high-level versions provided in the Editor screens.
Before using this method to produce your own machine
code routines it would be advisable to read chapter 10
which gives essential information on the rules to be
obeyed when writing machine code in FORTH.

There is one further major use of CREATE which involves
the CREATE ... DOES! pair. This gives an extremely
powerful technique for generating new data structures
and is the entire subject of chapter 9.

5.5 VOCABULARY

A VOCABULARY is a subset of the dictionary, and the
VOCABULARY structure of FORTH is the means by which
the order of a dictionary search is controlled.
Normally, if an existing word is redefined, a
dictionary search will find only the latest
definition. The old word will still be used in earlier
definitions, but only the most recent version will be
available for new definitions. The following example
illustrates this:

QUOTE ." THIS IS A LITERAL STRING"
PRINT QUOTE CR !

Executing PRINT will type out the message of QUOTE. The

39

word CR performs a carriage return and line feed on
the display. If QUOTE is redefined as

QUOTE ." A DIFFERENT MESSAGE";

MSG 0 4 will be given, warning that QUOTE is already
in the dictionary. The new definition of QUOTE can then
be made and used in:

NEWPRINT QUOTE CR

Now, NEWPRINT will type out the new message. However,
PRINT will still respond with the original message.
Executing a VLIST will show that there are now two
entries for QUOTE

Typing FORGET QUOTE and then executing a VLIST will
show that the second QUOTE and NEWPRINT ! will have
disappeared from the dictionary but the earlier
definition of QUOTE will still remain. It is necessary
to type FORGET QUOTE a second time to remove both
versions from the dictionary. If the two versions of
QUOTE are defined in different vocabularies it is
possible, by changing the dictionary search order, to
select which version will be used in further
definitions.

The order of search and the determination of which
vocabulary a new def inition will be entered in is
controlled by the two user variables CONTEXT and
CURRENT, each of which points to the most recently
defined word in a vocabulary. CONTEXT points to the
VOCABULARY that is first searched by a dictionary
search, in either a VLIST or a search for a word to
compile into a colon-definition. CURRENT points to the
VOCABULARY into which new definitions are placed. These
two are usually, but not necessarily, the same.

A new vocabulary is created by, for example:

VOCABULARY TEST-VOC IMMEDIATE

This creates a new vocabulary with the name TEST VOC
 by convention all VOCABULARY words are IMMEDIATE !.
This vocabulary can be made the CONTEXT vocabulary by
executing TEST-VOC . The CURRENT vocabulary remains as
that from which the new vocabulary was created this

40

would norma 1 ly be the FORTH vocabulary ! . Thus, a f ter
creating and then executing TEST � VOC, a dictionary
search will start in TEST-VOC, but new definitions
will still be entered into the old vocabulary. The
process of making a new definition automatically sets
CONTEXT to be equal to CURRENT so that after the
sequence assuming the initial vocabulary to be
FORTH !:

VOCABULARY TEST-VOC IMMEDIATE create TEST � VOC !
TEST-VOC set CONTEXT to TEST VOC !

NAME def ine NAME !

the word NAME will be in the FORTH vocabulary, which
will now also be the CONTEXT vocabulary.

The word DEFINITIONS sets the CURRENT vocabulary to be
the same as the CONTEXT vocabulary, so the sequence

VOCABULARY TEST-VOC IMMEDIATE
TE ST -VOC DEF IN IT IONS

NAME

will place the definition of NAME in the TEST � VOC
vocabulary which will then be the CURRENT and
CONTEXT ! vocabulary. Note that TEST-VOC itself is
created in the FORTH vocabulary. Typing

FORGET TEST-VOC

will still work correctly since the vocabulary TEST-VOC
links to FORTH. Each vocabulary eventually links back
into the 'parent' vocabulary the CURRENT vocabulary
at the time of its creation !. It is normal to ensure
that each new VOCABULARY links directly into the FORTH
vocabulary, because, although it is possible to chain
vocabularies, this can result in a complicated and
confusing search sequence and is therefore not
recommended.

In addition to separating the words of one application
from those of another, one of the main uses of the
VOCABULARY structure, is to allow the use of the same
word to represent several different actions and still
be able to find earlier definitions.

If we use the earlier example and type the following:

41

FORTH DEFINITIONS make FORTH the current vocabulary!
QUOTE ." THIS IS A LITERAL STRING

VOCABULARY TEST-VOC IMMEDIATE
TE ST � VOC DEF IN IT IONS

QUOTE ." A DIFFERENT MESSAGE

the warning of a duplicate entry will still be given
but now the first version is in the FORTH vocabulary
and the second version is in the TEST � VOC vocabulary.
Typing

FORTH QUOTE will give
THIS IS A LITERAL STRING OK

whereas

TEST-VOC QUOTE will give
A DIFFERENT MESSAGE OK

At this point VLIST will start in the vocabulary
TEST-VOC

The ability to use the same word for two different
actions is used in the EDITOR vocabulary where, for
example, the word I is used to insert a line of edited
text. In the FORTH vocabulary the word I is used to
return the loop index from within a DO ... LOOP see
section 6.3!.

5.6 The compilation of a colon&efinition

5.6.1 Normal action

When a FORTH word is typed at the keyboard it is
usually executed as soon as the RETURN key is pressed.
In the compilation mode, during the creation of a
colon-definition, the response is quite different. The
word is not executed but its execution address is added
to the list of addresses in the dictionary entry being
constructed. This continues until the terminating semi-
colon is found, whereupon normal execution is resumed.

42

5. 6. 2 IMMEDIATE words

It is often necessary to define a word that will
execute even in the compilation mode. Examples include
the conditional words IF, ELSE, THEN, which must
execute in order to calculate the of fsets for their
branches, and the vocabulary words e.g. FORTH
EDITOR, which allow the changing of the CONTEXT
vocabulary to include words from other vocabularies in
the current definition.

The response to these words is identical in both
execution and compilation modes � they are always
executed. They are classed as IMMEDIATE words and are
made so by including the word IMMEDIATE at the end of
their def init iona, for example

DO-IT-NOW CR ." I AM EXECUTING" CR; IMMEDIATE

If this is now used in another definition, for example

TEST
CR ." I HAVE BEEN COMPILED" CR
DO-IT -NOW

the message I AM EXECUTING wi 1 1 appear as soon as the
RETURN key is pressed after typing in DO-IT-NOW.
Executing TEST will produce the message I HAVE BEEN
COMPILED, but not the message of DO-IT-NOW, since this
was executed and not compiled. Note that any type of
word, not just colon-definitions, may be made
IMMEDIATE .

5.6. 3 Making a normal word IMMKDMTK

It may be necessary, during the formation of a
colon-definition, to execute one or more words which
would normally be compiled. This is useful, for
example, for the calculation of a numerical value, or
to change the numeric base, during the compilation of
a colon-definition, and is accomplished by the use of
the words [, which is itself IMMEDIATE, and] . The
action of [is to terminate compilation and enter the
execution mode, while] has the opposite effect. They
are usually, but not necessarily, used as a pair see
section 9.6.2!. Their use in a colon-definition is:

43

these words are compiled as usual
these words are executed ...]
compilation continues

NAME

[

The use of [and] can clarify the meaning of source
code, for example,

[NBUF 8 BUFSZ *] LITERAL

conveys more meaning than

2056

though both compile identically.

5.6.4 Compiler security

It is also important to realise that the words IF
ELSE , DO , BEGIN leave a number on the stack, to be
checked and removed by the corresponding THEN , LOOP
UNTIL etc. If these numbers are changed or removed by
any IMMEDIATE action the compiler security system will
again give an error message and the definition will be
incorrectly terminated.

5.6.5 Forcing the compilation of IMMEDIATE words

It may occasionally be necessary to compile a word that
is marked as IMMEDIATE . You may wish, for example, to
delay a change of CONTEXT vocabulary until a word is
executed rather than the change taking place during
the definition of the word, as normal. Each IMMEDIATE
word can be forced to compile by preceeding it with the
word [COMPILE]

44

It is important to ensure that the sequence of words
involving [and], or any IMMEDIATE word, does not
change the number of items on the computation stack.
In the above example the number fBUF g BUFSZ *
 i.e. 2056! is added to the stack and then removed by
LITERAL. Part of the compiler security system is to
check that the number of items on the stack is
unchanged across a colon-definition. If the actions
involving [and] have the net effect of adding or
removing stack items, an error message will be given
when ;! is reached and the definition will be left in
an incomplete form.

As an example, we can compi le the IMMEDIATE def init ion
DO-IT-NOW of section 5.6.2:

DO-IT -LATER
[COMP ILE] DO-IT-NOW

The message of DO-IT-NOW is no longer displayed during
the definition and will only appear when DO � IT-LATER
is executed.

[COMPILE] [COMPILE]

5.6.6 Compiling into another word

The word COMPILE without square brackets ! is not an
IMMEDIATE word and will therefore be compiled as
normal into a colon � definition. It is used in the
form:

NAME ... COMP I LE WORD

In th i s sequence COMP ILE and WORD are both compi led
into the dict ionary entry for NAME . When NAME is
executed, COMPILE will act to place the execution
address of WORD into the next free dictionary space
i.e. to compile it. WORD is not executed during the
execution of NAME

5.6.7 An excuaple

A useful example of the use of IMMEDIATE words,
[COMPILE] and COMPILE occurs in the literal numeric

handler of FORTH.

The word LITERAL is used by the keyboard interpreter to
compile a literal numeric value into a colon�
definition:

45

The word [COMPILE] is,
brackets, an IMMEDIATE
Its only act ion is to
f o 1 lowing word� . You may
its compilation by:

as indicated by the square
word and not itself compiled.

force compilation of the
however, if necessary, force

LITERAL
STATE g IF COMPILE LIT , THEN

IMMEDIATE

In the execution of LITERAL

returns a true value if compiling and a
false value if the keyboard input is being
executed

STATE Q

tests this value and skips to THEN on a
false result see chapter 6!, so LITERAL
has no action in execution mode

IF

COMPILE LIT if compiling a new colon-def init ion,
compiles the literal handler LIT into the
new definition

adds the numeric value from the top of the
stack into the definition

The new definition will now include the sequence

LIT value!

and when it is later executed, LIT will act to put the
following value onto the stack, as required.

DLITERAL
STATE

IF SWAP
[COMPILE] LITERAL low part!
[COMPILE] LITERAL high part!

THEN
IMMEDIATE

Like LITERAL , DLITERAL has no action in execution

46

Note that LITERAL has to be an IMMEDIATE word so that
it will execute whenever a numeric value is to be
included within a definition. The word DLITERAL is
used by the keyboard interpreter to compile a
double-precision numeric value into a definition, and
uses LITERAL twice. LITERAL must, however, be compiled
into the definition of DLITERAL by the use of
[COMP ILE]

mode. A double-precision value is stored on the stack
with its high-order part above the low-order part so
that on execution of DLITERAL in compilation mode,

SWAP places the low order part above the high order
part

LITERAL compi les the low-order part into the
definition

LITERAL then compiles the high-order part

The new definition will now contain the sequence:

LIT low part! LIT high part!

and when it is later executed the double-precision
number will be pushed onto the stack with its two
parts in the correct order.

47

on iion san oo s

6.1 Introduction

FORTH is a highly-structured language, in which all
transfers of control are accomplished without the use
of GOTO statements. This requires the writing of
applications in a modular style, where each module has
only one entry and one exit point. Although very
different from writing a BASIC program, it is not too
di f f icu lt since it is almost impossible to write a
FORTH application in any other way. Once you have
grasped the underlying ideas, writing structured
programs becomes natural and soon you begin to wonder
how you ever managed to do anything in an unstructured
language.

6.2 Conditional branches

The simplest conditional branch in FORTH uses

IF ... THEN

These words may look familiar, but in FORTH their
actions are somewhat unusual. In BASIC the action of a
statement such as

IF X=2 THEN GOTO 2137

is interpreted as:

IF this test is true THEN do this statement, otherwise
go on to the next line and just what does line number
2137 do, anyway?!.

Just like operators, the IF in FORTH is postfix, so the
value to be tested comes before the IF
The IF ... THEN structure in FORTH is interpreted as:

48

IF the result of the test was true, do this sequence,
otherwise skip it, and in either case THEN continue
with the following sequence.

Some FORTH systems attempt to make this clearer by
using IFTRUE to replace IF, and ENDIF to replace
THEN .

One restriction in FORTH is that the branch words, and
the loop words of the following sections, can only be
used inside a colon � definition and may not be directly
executed from the keyboard. The way in which they are
used is:

EXAMPLE
?TEST IF DO-THIS THEN CONTINUE

A FORTH definition with the same function as the BASIC
statement in the earlier example could appear as:

=2? 2 = IF ." VALUE WAS TWO " THEN

In the above example the value to be tested can be
entered directly from the keyboard, for example:

2 =2?
VALUE WAS TWO OK

OK

Note the use of the word WAS. The general rule in FORTH
is that words remove from the stack the numbers they
use. The word <=> will remove the 2, placed on the
stack by =2?, and the number being tested, leaving
only a true/false flag. The flag is removed by IF . If
the value being tested is needed again DUP must be
used before =2?

In many cases you may wish to execute one sequence if

49

Where has X gone? The sequence
number on the stack and leave a
if it were equal to 2 and a
otherwise. In FORTH it is often
an explicitly-named variab
appropriate value is placed on
time it doesn 't matter how it go

2 = will test the top
true non � zero! result
false zero ! result

not necessary to use
le; as long as the
the stack at the right

t there.

the test is true and a different sequence if the test
is false. The sequence

IF ... ELSE ... THEN

will, if the result of the test was true, execute the
-ords between IF and ELSE and skip to THEN . If the
result of the test was false it will skip to ELSE, and
execute the words between ELSE and THEN . The words
 if any! after THEN will be executed in either case.

To illustrate this we can

FORGET =2?
OK

and redef ine it as fo 1 lows:

=2?
2 = IF ." VALUE WAS TWO

ELSE . " VALUE WAS NOT TWO
THEN

 The layout is irrelevant � type it any way you like
as long as you do not press the RETURN key in the
middle of a word, or in the middle of ." ..." , all
will be well. The above layout looks good and makes the
structure clearer.!

Trying the new version gives, for example,

2 =2?
VALUE WAS TWO OK

=2.
VALUE WAS NOT TWO OK

Incidentally, the definition can be rewritten to use
less memory. FORGET the old definition and replace it
by:

=2?
VALUE WAS

2 � IF ." NOT " THEN
." TWO" .

50

This has exactly the same effect as the earlier,
longer, version remember that a true result may be
represented by any non-zero value ! .

Often, the number being tested for truth by IF may be
needed for a calculation in the IF ... THEN sequence,
but not needed otherwise. One way of doing this is:

DUP IF ... ELSE DROP THEN

DUP duplicates the number to be tested, and the copy is
discarded by DROP if it is false.

A neater solution is to use ?DUP, which will only
duplicate a number if it is non-zero. Thus the
sequence is equivalent to

?DUP IF ... THEN

If the number is zero it is not duplicated and there is
obviously no need then to DROP it, since the only copy
is removed by IF

The IF ... THEN and IF ... ELSE ... THEN forms may be
nested to any required depth, provided that the nested
structure lies completely within the outer structure.
The following are examples of valid nestings the
nested structure is underlined for clarity!:

IF ... IF ... ELSE ... THEN ... THEN
IF ... IF ... THEN ... EL E ... THEN

NESTED-IF
IF THEN

OUTER-IF
NESTED � IFIF

ELSE
THEN

51

Too many levels of nesting, however, make the
definition hard to understand and should be avoided.
It is much clearer if a long definition with many
levels of nesting is split up into a number of short
definitions. The nested structure of the second case
given above is much clearer if it is written as:

A general rule in FORTH is 'long definitions = bad
definitions ' � keep them short!

6.3 Definite loops

A loop whose number of repetitions is known before
entry will use the DO ... LOOP structure. DO takes two
values from the stack, the start index and the loop
limit. If we take as an example the definition:

TENCOUNT 10 0 DO I . LOOP

then executing TENCOUNT will give:

TENCOUNT
01234567890K

The word I, which should only be used within a loop,
places the current loop index on the stack. Note that
in this example, I is immediately followed by
which types and removes from the stack! the value
left by I

The loop index is post-incremented; in other words the
increment occurs in LOOP , after the body of the loop
is executed. The loop will terminate when the
 incremcnted! loop index equals or exceeds the loop
limit. This has two important consequences:

a! Regardless of the value of the loop limit and the
starting index, the body of the loop will be
executed at least once.

b! The last execution of the loop body will be with an
index which is one less than the loop limit.
Thus in the example, the loop was executed ten
times but the last execution was with a loop index
of 9.

Programming errors that cause a net change in the
number of items on the stack inside the body of the
loop can lead to a stack overflow resulting in a
system crash. One of the easiest ways of crashing the
system is to execute the following definition not
recommended!:

52

CRASH 100 0 DO I LOOP

Small stack overflows will result in error message 7
 stack full!. Larger overflows may cause message I
 stack empty! if the stack contents extend beyond the
bottom of page zero and 'wrap round' to the top. Even
large stack overflows, such as that in the above
example, will not cause the loss of the system.
Pressing the BREAK key and restarting at the warm
entry point as described in chapter 3, should cause a
successful recovery.

As long as there are two values on the stack
for DO ... LOOP , it does not matter how they got
there. In the examples so far the values have been
placed on the stack within the definition. They may,
however, be entered directly from the keyboard:

DELAYS 0 DO LOOP !

In this example, only the starting index zero! is put
on the stack within the definition. The loop limit may
be entered from the keyboard so that

10000 DELAYS
~ ause! QK

30000 DELAYS
 ion er ause! OK

can be used to give a variable length delay.

15500 DELAYS

will give approximately a one-second delay.

Of course both values may be entered from the keyboard.
The definition

COUNTER DO I . LOOP

'53

will allow the following:

8 0 COUNTER
012345670K

COU ER
47 48 49 50 51 OK

and so on.

It is awkward to have to remember to type the values in
reverse order and to have to add one to the last
required value. The routine can be made more 'user
friendly' by defining

COUNTS 1+ SWAP DO I . LOOP

This can then be used in a more sensible way:

1 7 COUNTS
12345670K

COUNTS
10 11 12 13 14 OK

It can even be used to count in hexadecimal:

10 16 HEX COUNTS
A B C D E F 10 OK

Remember to change the base back to DECIMAL

For increment values other than 1 the DO ... +LOOP
structure is used. +LOOP expects to find its
incremental value on the stack. This value can be
given in the definition as in the following example:

3-COUNT 1+ SWAP DO I . 3 +LOOP

0 15 3-COUNT
0 3 6 9 12 15 OK

The increment could, if you feel confident, be
calculated within the loop to give a variable
increment, for example:

54

SEQUENCE 1+ SWAP DO I DUP . 2* +LOOP

1 2 7 SEQUENCE
1 3 9 27 OK

By the use of a negative increment, the loop can count
backwards:

BACKWARDS DO I . -1 +LOOP

0 6 BACKWARDS
65432100K

Note that with a negative increment the loop terminates
when the incremented index passes the loop limit. This
is an exception to the usual termination of a loop and
is a requirement of the FORTH � 79 standard for
historical reasons.

Loops may be nested, provided that the inner loop is
completely enclosed by the outer one. This is
il lustrated by the following example, which is laid
out in such a way that the nested structure is made
clear:

100-COUNT
10 0 DO I 10 *

10 0 DO DUP I + . LOOP
DROP CR

LOOP

The word I is used twice, once in each loop. The first
I will therefore leave the outer loop index and the
second I will leave that of the inner loop.

The sequence I 10 * leaves on the stack the tens value
for the count . In the inner loop this is first
duplicated, so that it remains available for the next
time round the loop. The inner loop index the unit 's
value ! is then added to it and the resulting value is
printed. On leaving the inner loop the old tens value
is dropped, and a CR ensures that the final display is
'tidy'. Executing 100 � COUNT will then display 100
integers, from 0 to 99 inclusive.

There is no reason why loops and conditional branches
should not be nested, again provided that the inner

55

structure is completely enclosed by the outer
Definitions in which the structures overlap, such as

DO ... IF LOOP ... THEN

are not allowed.

In the following example it is assumed that the word
ALIST has been previously defined to leave on the
stack the starting address under the number of
single-precision �6-bit! items in a table of values
 the method of doing this is discussed in section
9. 4. 3. ! . The word LOOK-UP wi 1 1 search the table for a
particular value, initially on the stack, and will
leave either

a! the item offset within the table under a true flag,
if the item is found, or

b ! only a false flag if the item is not found in the
table .

It is used in the form:

n ALIST LOOK-UP

where n is the value to be found.

The definition may be tested without the need to define
ALIST since all it needs is three values on the stack.
It can be used to search any region of memory for a
particular �6-bit! word by giving it the value to
find, a starting address and the length, in words
�-byte units!, of the region to be searched.
F or examp le,

5678 0 +ORIGIN 4096 LOOK-UP

will search the first 8K of the dictionary for the
value 5678 and fail to find it!.

1234 0 500 LOOK � UP

should find the value with an offset of 3077.

 va15addr5count ... offset� ! found !
 va15addr3count ... 0 ! not found !

0 DO loop limit is count !
2DUP value under base addr !
I 2* + add byte of fset to addr !

 table item = val? !
IF equal !

I 0 LEAVE item of fset under 0, and exit loop !
THEN

LOOP top of stack is 0 if found, or !
 addr [assumed non-zero] if not !

IF not found !
DROP 0 DROP va 1 ue, le ave 0 !

ELSE found !
ROT ROT 2DROP 1 DROP val and addr, leave 1 !

THEN

LOOK-UP

An interesting variation on LOOK-UP is the
alternative definition. It has exactly
effect, but searches the region of memory
addresses to low. There is, however, one word
be executed in the loop for an unsuccessful
it is slightly faster:

fo 1 lowing
the same
from high

fewer to
match, so

 val~addr3count ... offset� ! found !
 va13addr3count ... 0 ! not found !

OVER >R save addr for later !
2* OVER + calculate endaddr in table !
0 ROT ROT put 0 under addr and endaddr !
DO
OVER I g = table item = val? !
IF found !

DROP DROP the 0 !
I table address [assumed non-zero] !
I NEGATE and its complement for +LOOP !

ELSE
� 2 increment for +LOOP !

THEN
+LOOP

LOOK � UP

57

The word LEAVE, when executed, causes an exit from the
loop. The exit is not immediate but wi 1 1 occur when
LOOP or +LOOP ! is next encountered. The action of
LEAVE is to change the loop limit to be equal to the
current value of the loop index, which is not changed.
The words, i f any, between LEAVE and LOOP wi 1 1 be
executed once before exiting the loop.

An unsuccessful search of 8192 bytes of memory, i.e.
4096 comparisons, takes about 2.5 seconds using the
first method and about 2.2 seconds by the second
method.

The method of leaving the loop on a successful match
does not use LEAVE. For an unsuccessful match the loop
index is decremented by -2, but on a successful match
the complement of the loop index is left for +LOOP.
This will guarantee that the increment will cause the
loop limit to be exceeded, thus terminating the loop.

It is a useful exercise to try to modify either or
both! of these routines to search for a particular
byte 8-bit ! in memory. Not too many alterations are
needed. A further useful modification would be to
change the input stack requirements from val!addr5count
to val addr$endaddr.

The word J can be used to leave, in an inner loop, the
loop index of the outer loop. Its action is
demonstrated by the following definition:

JTEST
CR ." J OUTER ! I INNER !"
CR 7 3 DO

30DOCRJ
10 SPACES I

LOOP CR
LOOP

Executing JTEST produces a table of the inner and outer
indices .

Since the loop index and limit are kept on the return
stack, which is also used to keep track of the level
of nesting of colon-definitions, I and J cannot be

58

SWAP DROP
R!
OVER
IF

-2/1
ELSE

DROP
THEN

 val !
 recover addr !
 copy of either 0 or table address !
 not the 0 !
 calculate table offset under 1 !

 DROP addr but leave the 0 !

used in a separate definition inside a DO ... LOOP. The
following sequence, for example, will not have the
required effect:

INNER 3 0 DO J . I . LOOP

OUTER CR 7 3 DO INNER CR LOOP

Executing OUTER will give the correct operation for I,
but the value of J will not be what was intended.

If DO ... LOOPs are nested to a depth of 3 then, from
the innermost loop:

I leaves the index of the inner loop

J leaves the index of the middle loop

K leaves the index of the outer loop

The word K is not provided in the nucleus dictionary.
Its definition is:

KRPg9+

The idea can be extended to further levels by defining
L, M, etc. For each extra level the definition is
similar to that of K, except that the number to be
added is increased by 4, for example:

L RPQ13+ 0

6.4 Indefinite loops

There are three forms of indefinite loop:

BEG IN ... AGAIN

BEGIN ... UNTIL

BEGIN ... WHILE ... REPEAT

In each case BEGIN marks the start of the sequence of
words to be repeated.

The word AGAIN causes a branch back to the

59

corresponding BEGIN so that the intervening words are
repeated endlessly. This form of loop was used in the
definition of STARS in chapter 3 to create an
application whose execution could only be terminated
by pressing the BREAK or ESCAPE key. A BEGIN ... AGAIN
loop is used only if it is to initiate a repetitive
sequence of actions which are to continue until the
machine is switched off. It is useful for turnkey
applications where the user is not expected to know,
or wish to alter, the method of operation.

In the FORTH system it is, for example, used for the
keyboard interpreter which interprets all input to the
computer. While FORTH is in action all operations are
at a more or less deep level of nesting from within
the keyboard interpreter, to which control must
ultimately return when OK is displayed !.

The remaining two forms may be terminated by the result
of a test made within the loop.

In the case of BEGIN ... UNTIL , the word UNTIL tests
the top item on the stack. If this value is false
 zero! a branch will occur to the corresponding
BEGIN . If the value is true {non-zero! the loop will
be left and the words following UNTIL will be executed.
Consider the following definition:

PAUSE
CR BEGIN ?TAB UNTIL

TAB KEY PRESSED" CR

This will loop until the TAB key is pressed since ?TAB
leaves a false value on the stack unless the TAB key
is pressed, - hen it leaves a true value.

If we define

0 CONSTANT HELL-FREEZES-OVER

then the definition

WAIT
BEGIN HELL-FREEZES-OVER UNTIL

will, on execution, wait until the condition is
satisfied!

60

On a slightly more useful level, the definitions

GCD nl!n2 ... gcd !
BEG IN

SWAP OVER MOD ?DUP 0=
UNT IL

G-C-D n13n2 ... !
GCD CR ." THE G-C-D IS

wi 11 calculate and display the greatest common divisor
of the numbers nl and n2. For example,

15 25 G-C -D

wi 11 respond:

THE G-C-D IS 5 OK

Note how in these definitions, the calculation of the
result and the display routines are placed in separate
words . This means that GCD can be used by it s e 1 f as
part of a longer calculation where the value is not
required to be printed, and we are saved the trouble of
rewriting its definition. When the value is to be
displayed, however, the word G C D can be used, as in
the above example.

The BEGIN ... WHILE ... REPEAT structure will terminate
as the result of a test which should be made
immediately before WHILE . This word expects a
true/false flag on the stack but in this case will
terminate the loop when the value is false. If the
value is true, execution will continue with the
following words up to REPEAT which, like AGAIN
causes an unconditional branch back to the
corresponding BEGIN . For a false value the words
between WHILE and REPEAT are skipped, the loop
terminates, and then the words after REPEAT are
executed. An example of the use of BEGIN ... WHILE
REPEAT is the INPUT routine in section 7.1.3.

Indefinite loops may, of course, be nested with any of
the other structures to any reasonable depth, provided
that the nested routine is totally enclosed within the
outer structure.

61

e nsan uso

This chapter deals with the methods of controlling
input and output in FORTH. So far we have met two
output operations, <.> and <. ">, which display a
number in the current numeric base! and a literal
character string respectively. All input, whether text
or numeric, has used the keyboard interpreter. The
following sections give specific methods of input and
output.

7.1 Input

7.1.1 Character input

A single character may be input by the use of KEY
This word waits for a key to be pressed and leaves the
corresponding ASCII code on the stack. The definition

SHOWASCII KEY

will accept a character from the keyboard and display
its ASCII code in the current numeric base.

The sequence

KE Y DROP

is a useful way of causing a wait until any key is
pressed.

7.1.2 Text input

The word QUERY will accept any sequence of characters
typed on the keyboard, up to a limit of 80 characters,
or until RETURN is pressed. The characters are stored
in the terminal input buffer, followed by one or more
zeroes.

62

Text may be trans ferred from the input bu f f er to the
word buffer, by the use of WORD . This expects to find
a delimiter character, usually a space ASCII code 32!
on the stack.

Leading delimiter characters are ignored, and text up
to the next delimiter is transferred to a 256-byte
buffer whose start address, given by WBFR, is left on
the stack. Those who have used other versions of FORTH
should note that the text is not trans ferred to HERE. !
The first byte of the buffer contains the length of the
following text string. The end-of-text delimiter found
in the input is stored at the end of the string but is
not included in the string length byte.

The text string may then be moved to another region of
memory or further manipulated, depending on what is
required. As an example, the definition

.STRING
QUERY 32 WORD COUNT -TRAILING TYPE

will accept text from the keyboard and type it on the
display. To use this definition, type in .STRING
and press <RETURN!. Any characters typed in after this
will be redisplayed after the next <RETURN>.

It is important to realise that the keyboard
interpreter itself uses WORD so that all keyboard
input is transferred, word by word, to the word
buffer, overwriting the previous contents. The
implication of this is that all uses should be from
within a definition so that its execution does not
involve the keyboard interpreter. Simply executing

QUERY 32 WORD COUNT -TRAILING TYPE

will not give the intended result.

The delimiter character need not always be a space. The
word <.">, for example, uses ASCII code 34 &22! which
is a double quote mark "! as its delimiter. Since
is a FORTH word it must be separated by a space from
the text on which it operates. The closing double
quote mark "! is not a FORTH word but only a delimiter
and so does not need a space separating it from the

63

text. If a space is left, however, it will be included
in the text string.

The word <."> is one of the most common ways of
entering literal text into a definition, for display
when the definition is executed. Outside a definition

will cause the immediate display of the input
text .

It is not possible to use <."> to enter text from a
running application. The reason is that it will not
wait for input to be entered from the keyboard but
assumes that the required text is already present in
the input bu f fer, immediately af ter <. ">. This is also
true of the word STRING which is used as, for example

39 STRING BEANS'

STRING expects to find a delimiter character in this
case the code for a single quote! on the stack. It
accepts text which must be in the input buffer as in
the above example, before STRING itself executes. The
text is up to the next occurrence of the delimiter
 which should not be a null ASCII 0! or a space! or
until the next <RETURN>. The text is not moved from the
input buffer but its start address and length are left
on the stack . I f the input bu f f er is exhausted when
STRING is executed for example by pressing RETURN
immediately after typing the word STRING! only a zero
is left on the stack. Strictly speaking this is an
error condition since it is wrong to use STRING except
when followed by text. It is possible to include STRING
in a definition, but the text should still be present
in the input buffer when STRING executes. It is, for
example, used in the definition of OS' which accepts
commands to be passed to the operating system, such as:

OS' TV 0,1'

This puts the display into a non-interlaced mode
 remember this will only come into effect at the next
MODE change by typing, say, 6 MODE ! . Note that the
string to be used must still be present in the input
bu f f er be fore OS ' and therefore STRING ! is executed.

Inputting a string from a running application requires
a technique such as that used in the .STRING example

64

earlier. For example, we could define

 c ... ad dr !
 give a prompt !
 accept text to word buffer !

$IN
CR u 7$
QUERY WORD

This expects a delimiter character on the stack and
waits for text to be typed at the keyboard. The text of
the string is placed in the WORD buffer with a starting
count byte whose address is left on the stack.

It may sometimes be convenient to accept string input
without it being transferred to the WORD buffer. For
this purpose we can replace WORD in the above
definition by WORD! . The action is similar to that of
WORD except that the text is not moved from the input
buffer, and that the address of the first byte of the
text and its length are left. A definition of such a
st r ing input word would be:

$INPUT c ... addr~count !
CR
QUERY WORD!

7.1.3 Numeric input

Most applications do not require special numeric input
routines. Since, in general, words expect to find
their numeric data on the stack, this can be placed
there by use of the keyboard interpreter before the
word is executed. This is illustrated by the way G-C-D
was used at the end of the last chapter.

Occasionally it may be necessary to wait for numeric
input during the execution of a word, and for this the
following definition may be used:

65

Don ' t forget with both of these words to make sure the
required delimiter is on the stack. This will not
normally be a space ASCII code 32 or &20! so that
spaces can be included in the string. Again, because of
the use of the input buffer and the word buffer by the
system, it is wise to use them from within a colon�
definition.

NUMIN
CR I I q I I

QUERY
32 WORD transfer

 give prompt !
 accept text to buffer !

characters to WBFR with space
� ASCII 32 � as delimiter !

 convert to double number !
 make single number !

NUMBER
DROP

This routine leaves a single-precision number on the
stack.

The disadvantage of this routine is that a standard
error message is given if a non-valid character is
present in the input. This causes execution to stop
and the stack is cleared � a rather drastic action for
a mistyped input!

Valid characters are:

a! an optional minus sign as the first character

b ! an optional decimal point as the last character

c ! all characters that may be interpreted as digits in
the current numeric base; in hex , for example,

valid characters are 0 to 9 and A to F inclusive.

It would be possible to define an alternative error-
handling routine and change the ABORT vector to use
this new routine see the section on vectored execution
in chapter 11!.

An alternative solution is to use the word CONVERT.

The following definition generates its own error
message and will not continue until a valid number is

66

There are two main differences between NUMBER and
CONVERT. Firstly, CONVERT does not generate an error
message on detecting a non-valid character, but simply
leaves the address of the first unconvertible
character in the input text. Secondly, it does not test
the first character of the input for the presence of a
minus sign. In addition, CONVERT requires a dummy
double number on the stack, into which the input value
is built.

entered. Note that the base is HEX so 20 WORD is the
same as the 32 WORD in NUMIN, which was def ined in
DEC I MAL ba s e .

HEX
INPUT

BEGIN CR
QUERY 20 WORD input text to WBFR!
DUP 1+ CQ 2D = first char is minus sign?!
DUP >R + save result & skip sign if there!
0 0 ROT CONVERT convert to double number !
CQ DUP BL = next char a space?!
OVER 2E = OR or a decimal point?!
OVER 0= OR 0= or a null i.e. end of line?!

WHILE if not!
R> 2DROP 2DROP clean up stack !

NOT VALID" report error !
REPEAT and try again !
R> IF recover sign !
>R DNEGATE R> THEN change sign if necessary !
2E � IF DROP THEN convert to single number!

 if no decimal point !
DEC IMAL

The input prompt and the error message may, of course,
be changed to whatever you prefer. The result of a
successful conversion is identical to that of the
keyboard interpreter.

7.1.4 Manipulating blocks of memory

The examples of the last two sections make frequent
use of WORD , which transfers a block of data from the
input buffer to the word buffer. At this point it is
worth examining the words which allow such transfers to
be made.

The usual way of transferring a block of bytes from one
region of memory to another is by the use of CMOVE
This word uses three values from the stack: the
starting address of the source block, the starting
address of the destination block and the number of
bytes to be moved. The stack action is therefore:

CMOVE from 3to 3count ... !

The byte with the lowest address is moved first and the

67

transfer proceeds in the order of increasing address.
There is never a problem if the destination address is
less than the source address, but a difficulty arises
if the destination address is higher than that of the
source and the two regions overlap. Consider, for
example, that the five bytes starting at FROM contain
the characters F 0 R T H and it is required to move
them one byte forwards in the memory. It might be
thought that the following sequence would do the job:

FROM DUP 1+ 5 CMOVE

This illustration shows what would happen:

FROM F F F F F
0 > F F F F
R R > F F F
T T T > F F
H H H H > F

Moves 0 1st 2nd 3rd 4th 5th

In each column the arrow head indicates the character
that will be moved to produce the next column. The
final result is that the whole region of memory is
filled with the first character � probably not the
required effect! In order to avoid this the word
<CMOVE can be defined. Its overall action is the same
as that of CMOVE except that the byte with the highest
address is moved first and the transfer proceeds in
order of decreasing address. A high � level definition
1s:

<CMOVE
1- 0 SWAP DO OVER I + C�

OVER I + C!
-1 +LOOP

The sequence

FROM DUP 1+ 5 <CMOVE

68

will produce the following result:

FROM

Moves 0 1st 2nd 3rd 4th 5th

If you don 't want to have to worry about which of the
two versions to use, you can define an 'intelligent'
version which will select the correct one for you:

CMOVE from3to3count ... !
>R 2DUP R> ROT ROT
IF CMOVE ELSE CMOVE THEN

In addition to the block transfers discussed above it
is often necessary to fill a region of memory with a
given character. This may be used, for example, to
initialise the contents of an array or to clear the
contents of a buffer. The words provided for this
purpose are:

FILL addr5n$b ...! Fill n bytes of memory starting
at addr with byte b

ERASE addr n ...! Fill n bytes of memory starting at
addr with ASCII null

BLANKS addrgn ...! Fill n bytes of memory starting at
addr with ASCII space

The definition of FILL is interesting as it uses the
overlaying feature of CMOVE that was eliminated by the
use of CMOVE . The definition is worth examination
and is given without comment:

FILL addrhnhb ... !
SNAP >R OVER C!
DUP 1+ R> 1 � CMOVE

69

F F F F > F
000>00
R R > R R 0
T > T T R R
H H T T T

H H H H

F F

0 R T
H

The definitions of ERASE and BLANKS are very simple:

ERASE 0 FILL !
BLANKS BL FILL

BL is a constant whose value is 32, the ASCII code for
a space or blank!.

7.1.5 Testing the keyboard

It is likely that, within many applications, you will
need to test the keyboard to see if a key is being
pressed. The basic way to do this is to use the word
?KEY which expects to find a number on the stack.

This number will be interpreted in one of two ways,
depending on whether it is positive or negative. If it
is positive i.e. in the range 0 to 32767 inclusive!
the system will wait for that number of hundredths of a
second, continuously testing the keyboard for a key
being pressed. If a key is pressed within the time
limit the ASCII code of the key is left on the stack.
If no key is pressed then a negative value is left. As
an example:

?KBD
CR ." PRESS A KEY BE QUICK!"
CR 50 ?KEY DUP 0
IF ." YOU WERE TOO SLOW"
ELSE ." YOU PRESSED A " EMIT
THEN CR

If the number is negative then ?KEY will test the
keyboard to see if a particular key is being pressed at
the instant that ?KEY is called. The value of the
number determines which key is tested see the table
given on page 275 of the BBC Microcomputer User
Guide!. A value of 1 will be left on the stack iE the
Key wes pressed, otherwise e zero is left. These
values may be regarded as true and false flags
respectively. This form is used by the word ?TAB which
tests if the TAB key is being pressed and is used, for
example, by VLIST to pause the listing.

During the execution of ?KEY the keyboard buf fer is
empt ied, and the auto-repeat is disabled, but re-
enabled on exit. To prevent the auto-repeat causing

70

characters to be fed to the input buffer between the
exit from ?KEY and removing your finger from the key,
you may want to use a definition such as:

TABTE ST
? TAB DUP
IF

BEGIN ?TAB NOT UNTIL
THEN

This will act exactly like ?TAB except that the routine
will not be left until your finger is removed from the
TAB key .

1.2 Number bases

All numeric input and output is converted according to
the current value of the user variable BASE . Any
value of BASE may be used, subject to the restriction
that it should lie in the range 2 to 255. A practical
upper limit is 36, to avoid the use of non alphanumeric
characters. The FORTH-79 standard specifies a range of
2 to 70 for BASE

The internal numeric handling of FORTH is always in
binary, irrespective of the value of BASE , so there
are no time overheads to working in any base you
choose.

The two numeric bases DECIMAL and HEX are provided with
the system. Any other base can be defined as follows:

BINARY 2 BASE !
OCTAL 8 BASE !
BASE-36 36 BASE !

etc.

On first entry to the system, or after executing COLD
or WARM , the base will always be DECIMAL

Many decimal-to-hex routines have been published in
BASIC, with a greater or lesser degree of complexity.
In FORTH such a routine is simply:

71

DECIMAL make sure you start in decimal !
D->H

HEX . DECIMAL

Here is an example of its use:

31 D->H
1F OK

The routine can be modified to translate between any
two bases.

7.3 Output

7.3.1 Character output

To output a single character, the word EMIT can be used
used. This will display the character whose ASCII code
is on the stack.

Examples:

65 EMIT
A OK
49 EMIT
1 OK

It can also be used to execute control codes see the
BBC Microcomputer User Guide, page 378! from within a

BELL 7 EMIT

A better method, however, is to use >VDU as described
in section 12.1.2.

7.3.2 Text output

Text strings in FORTH are stored with a preceding
length count byte, as mentioned in section 7.1.2.
Access to a string is usually via the address of this
byte.

The display of a string is performed by TYPE which
expects on the stack the address of the first
character, under a length count. The conversion to

72

this form from the address of the count byte is done by
the word COUNT. Thus

WBFR COUNT TYPE

will display the string starting with its count byte at
the address given by WBFR. The character count may
include a number of blank spaces at the end. These can
be removed by the use of -TRAILING, which deletes all
trailing spaces from the string, for example:

WBFR COUNT � TRAILING TYPE

Remember that the use of strings stored at WBFR should
only be from within a colon-definition to avoid their
being overwritten by the keyboard interpreter.

The FORTH system does not provide string handling
facilities but they are fairly easy to include if
required. For example the following definitions provide
mid �, left and right string extraction. They all
expect to find as addrl, the address of the count
byte of the string from wh ich characters are to be
extracted.

Both LEFT$ and RIGHT$ require one further value, the
number of characters to be extracted. MID$ requires
two values, the position in the string of the first
character to be copied, as nl, and the number of
characters.

The definition of MID$ contains a number of safeguards
so that the characters to be copied will not extend
beyond the limits of the original string. An error
message is generated if silly values are chosen 'so that
a negative character count results. In all cases the
selection of a range totally outside the limits of the
original string will normally leave a string of one
 first or last! character. The starting address and
length count of the extracted string are left on the
stack.

73

MID$ addr1 of fset number ... addr23count !
>R save number !
1 MAX not before first char !
2DUP
R> + las t char+1 !
SWAP C g 1+ max length available+1 !
MIN >R dont go past end !
OVER Cg MIN nor for starting char !
R> OVER how many to extract !
>R + R> get address of first char !
DUP 0< 5 ?ERROR negative count not allowed !

LEFT$ addr15nl ... addr2 n2 !
1 SWAP MID$; offset is 1 !

RIGHTS
OVER C d OVER � 1+ calculate offset !
SWAP MID$

All three of these leave the stack in a state ready to
TYPE the selected character string. This is illustrated
in the following example which uses the first version
of string input, $IN see section 7.1.2!:

Then execute STRINGS as follows:

<RETURN>
IS NOT A SHORT STRING' <RETURN>
NOT A SHORT STRING
A S RING

STRINGS
?$ THIS
THIS IS
THIS IS
OK

Further discussion of strings is deferred to
section 9.5.

74

STRINGS
39 $IN
DUP COUNT TYPE
DUP 7 LEFT$
CR TYPE
DUP 12 3 MID$
TYPE
6 RIGHT$
TYPE
CR

input string !
display it !
get first 7 chars !
display them !
get 3 middle chars !
display them !
get last 6 chars !
display them !

7.3.3 Numeric output

The numeric output operators provided in FORTH are:

 n ...! Display the signed number n followed
by one space

.R nl!n2 ...! Display the signed number nl at the
right of a field n2 characters wide;
no following space is printed

D. nd ...! Display the signed double number nd
in the format of

D.R nd~n ... ! Display the signed double number nd
to the right of a field n characters
wide; no following space is printed

U. un ... ! Display the unsigned number un in the
format of

H. n ...!

DEC. n ... !

Display in hexadecimal base in the
format of

Display in decimal base in the format
of

75

The words .R and D.R are useful for tabulating
information. Their use is illustrated in the following
routine which will dump 64 bytes of memory, given its
starting address. When the listing stops, pressing the
Space Bar will display a further block. Pressing any
other key will terminate the routine. The display is
in hex, regardless of the initial value of BASE
which is restored on exit from the routine:

 ad dr ... !
 save current base !

DUMP
BASE g SWAP
HEX
BEGIN

DUP 64 + SWAP
8 0 DO CR

DUP I 8 ~ +
DUP 0 4 D.R SPACE
8 0 DO

DUP I + Cg
3 .R
LOOP

 show address !

 get a byte !
 display it !

 restore base !

To illustrate the action of U. try the following:

30000
30000 OK
3GQOQ U.
30000 OK

This shows that U. and<. > give the same result for
positive signed numbers.

-30000
-30000 OK
=3W~U
35536 OK

The number -30000 is interpreted by<.> as a signed
integer in the range -32768 to +32767, but by U. as an
unsigned integer in the range 0 to 65535. Whether a
number is to be treated as signed or unsigned is a
matter of context.

The word U. is simply defined as < 0 D. > ; in other
words it prints the value as a double � precision number
with a high order part of zero.

DROP
LOOP

DROP CR
KEY BL

UNTIL
DROP
BASE !
CR

 set address of next block!

 wait for key press and test !
 i f space, repeat loop !

The sequence

0 4 D.R

in DUMP also uses this idea to display a 2 byte �
hexadecimal digits! address as an unsigned number.

7.3.4 Numeric output foraatting

The numeric output operations of the previous section
enable the use of two formats: the printing of a number
at the current cursor position using <.>! and the
placing of a number at the right of a field of
specified width using .R and D.R !.

Other formats may be produced by use of the special
numeric output formatting words:

Set up for numeric conversion

Terminate numeric conversion

Convert one digit

]IS Convert the remaining digits

SIGN Insert a minus sign in the converted string.

HOLD Insert the specified character in the converted
string

The words N , /AS , SIGN , HOLD may only be used between
<8 and 1h>, and all act on a double-precision number on
top of the stack. On completion of the conversion, the
word 0> leaves the number ready to be displayed by
TYPE

The first example will display a double-precision
number as pounds and pence. The original number is the
value in pence and the routine will handle amounts up
to 21474836.47, which should be enough for most
purposes!

77

 nd ... !
 keep high part, including sign !
 make positive !
 start conversion !
 convert 2 digits to pence !
 insert decimal point !
 convert remaining digits !
 insert sign if needed !
 insert $t !
 end conversion !
 display converted number !

-12345 ..POUNDS
f.-123.45 OK

example will display a double number with
point in the position indicated by the

in DPL. If DPL is zero or negative the
wi 11 be at the extreme right-hand side of

The fo 1 lowing
the decimal
value stored
decimal point
the number.

.REAL
DUP ROT ROT DABS
DPL g 0 MAX

?DUP IF
0 DO II LOOP

THEN
46 HOLD
/AS SIGN
TYPE SPACE

 i f non � zero !
 convert DPL digits !

Note that all numeric conversion starts with the least
significant digit and proceeds towards the more
significant digits. The conversion process produces the
string of output characters in a scratchpad area whose
start address is placed on the stack by the word PAD
Numeric strings are built up starting at PAD and
working towards the lower addresses. The characters in
the string are therefore in the correct order most�
significant digit first ! for display by the numeric
output words.

78

. POUNDS
DUP ROT ROT
DABS

/HE
46 HOLD
Its
SIGN
96 HOLD

TYPE SPACE

 make sure not less than 0 !

asss ora e an e i or

S.l Introduction

In most of the examples so far it has been assumed that
they would be typed in at the keyboard and executed
directly. You will probably by now have made at least
one mistake during the typing of a definition and will,
therefore, have discovered that the only way to correct
the mistake is to retype the definition. Provided the
original text is still displayed on the screen the
correct parts can be entered by means of the COPY and
cursor control keys. If the text of the definition has
disappeared from the screen it must all be typed again.

A program written in BASIC is stored in a form very
close to the way in which it was originally typed, and
so it is possible to list the program and edit lines
very simply. Since FORTH applications are compiled as
soon as the RETURN key is pressed, the original form of
the definition the source code! is lost and only the
compiled form the object code! is retained. One
solution to this problem would be to use an application
which can reconstruct the source code from the compiled
object code. The reconstructed text could be edited and
then recompi led.

A simpler approach is to keep a copy of the source text
in a reserved area of memory. If the definition does
not work correctly the text is readily available for
modification and recompilation. This is the main
purpose of. the Editor vocabulary provided as an
application with Acornsoft FORTH. Once the definitions
are working correctly they may be transferred to, say,
tape or disk for use on another occasion. They are
saved in source form directly from the reserved memory
which is, in fact, the mass storage buffer area.

79

8.2 Mass storage

Exactly where large amounts of data are stored will
depend on the filing system currently in use. It may
be on tape, disk, Econet files etc. To avoid having to
specify which system is in use we can refer to all of
them by the term 'mass storage '.

Mass storage is organised as a number of 'screens ' or
'blocks', each of which contains 1024 IK! bytes. A
screen is conventionally divided into 16 lines of 64
characters. Each screen is identified by a number which
ranges from zero to a maximum which will depend on the
particular filing system in use. The simplest way of
obtaining access to the contents of a screen is by use
of the word BLOCK . Thus

3 BLOCK

will bring the contents of screen 3 into the mass
storage buffer area and leave on the stack the address
of the first byte of the data area of the buffer.

In a tape-based system the tape must be positioned to
the start of the appropriate screen. Screen 3 is the
start of the Editor application and is stored on the
tape immediately after the end of FORTH. The normal
'Searching ' and 'Loading ' messages will be given, with
the file name being the screen number written as a
four-digit hexadecimal number.

The first line of screen 3 may be displayed by

3 BLOCK 64 TYPE

In this case, since screen 3 is already in the buf fer,
it will not be loaded again and the line of text will
be displayed immediately. The whole of screen 3 can be
displayed using the command

3 LIST

Again the screen will not be reloaded. If you now type

4 LIST

screen 4 will be read from mass storage into the buffer

80

area before being displayed. Screen 3 will still be
present in the buffer area, as can be seen by LISTing
it again. The buffers provided when Acornsoft FORTH is
first loaded will store two screens. This is the
absolute minimum to ensure their correct operation, but
the buffer area may be increased by the user.

Each buffer occupies 1028 &404! bytes of memory the
value is returned by the constant BUFSZ!. This odd
value is needed because two extra bytes are used both
before and after the 1024 bytes of data. The first pair
is used for holding the number of the screen whose data
is currently occupying the buffer. The contents of
these two bytes are regarded as a 16-bit number. If the
most significant bit is set the contents of the buffer
are marked as having been changed since they were read
in from mass storage i.e. UPDATEd!. In this case the
data will automatically be written back to storage
before the buffer is used for another screen of data.
The final two bytes always contain zero and are used to
ensure that interpretation of the screen will stop at
this point, even if the data completely fills the
buffer.

The contents of the buffers can be written to mass
storage by the use of SAVE-BUFFERS or FLUSH. These two
words will only write the buffer contents if they have
been marked as changed section 8.3.6 describes how
this is done!. For the moment you will find that typing
SAVE-BUFFERS will have no effect. FLUSH behaves
similarly to SAVE-BUFFERS except that in addition to
writing changed screens to mass storage it also marks
all the buffers as empty. If you experiment with FLUSH
you will have to read screens 3 and 4 back into the
buffers, by using either BLOCK or LIST, before
continuing.

8.2.1 Reconfiguring the mass-storage buffers

This section is concerned with changing the number and
location of the mass-storage buffers. You may like to
skip it on a first reading.

The number of buffers may be changed simply by altering
the separation between the addresses held in the
constants FIRST the first byte of the buffer area! and
LIMIT the first unused byte after the end of the

81

buffers!. The difference between these two addresses
must always be an exact multiple of BUFSZ.

Before making any change to the buffers it is wise to
execute either SAVE � BUFFERS or FLUSH so that there is
no danger of losing any data which has been changed
since the last read from mass storage.

Entering the following code will then make the system
use three buf fers:

FIRST BUFSZ � new address for FIRST !
FIRST ! store it !

There is, of course, a corresponding reduction in the
remaining memory available for the dictionary. It is
your responsibility to make sure that the gap between
the top of the dictionary the address left by HERE !
and the start of the buf fer area at FIRST! is
sufficient for your application. As a general rule,
2 � 3K should be enough for most purposes .

An easier method of increasing the number of buf fers is
to put the number of buf fers you require in the
variable]kBUF and then execute SETBUF ; for example:

5 ftBUF ! SETBUF

will give you five buffers. The contents of the
buffers are not initialised by SETBUF . To clear all
the buffers you must then type EMPTY-BUFFERS

The end of the buffer area is normally set to &5800 and
memory above this address is reserved for high-
resolution graphics modes 4 to 7 are available!. If
your application does not need to use the higher-
resolution modes you may change the value of LIMIT to
make some of this memory available to FORTH. The
relevant addresses are shown in the memory map in
Appendix C.

The original buffer area, containing two buffers, can
be restored at any time by use of INITBUF , which will
also mark the buffers as empty. It will not, however,
reset LIMIT to its original value, should you have
changed it .

82

8. 3 The Editor

8.3.1 Loading the Editor

You may have noticed from the listings of screens 3 and
4 that they contain the text of definitions exactly
similar to those you have so far been typing at the
keyboard. The contents of these screens may be
interpreted, as though from the keyboard, using LOAD
Each of the two screens you have listed ends with the
word --> which causes interpretation to continue with
the next screen. Thus, if we load screen 3 it will,
when interpreted, start the interpretation of screen 4,
and so on. Now load the Editor by typing

3 LOAD

 If you have listed screens 3 and 4, as described in
section 8.2, you will find that they will be LOADed
immediately, since they are still present in the
buffers; it is not until the loading of screen 5 begins
that more information is read from mass storage. ! The
process will continue without the need of any
intervention from the user until a screen does not
contain a -->. Don 't worry about the error message
'I MSG 8 4' that appears during the loading. This
is simply a warning that the FORTH word I has been
defined to have another meaning within the Editor
vocabulary.

Now that the Editor is loaded we can see how it is used
to produce your own applications. The following
description refers to the use of the Editor in a
tape-based system. There are a few small differences
for use with disks and these are described in
section 8.4. The differences are merely for the sake
of convenience and all commands described in this
chapter will work with any filing system.

8. 3.2 A sample editing session

The best way to learn the actions of the editing
facilities is, as with the rest of FORTH, by using
them. The following is an example of how the Editor
vocabulary can be used to write, modify and save an
application.

83

Before the Editor can be used a blank editing screen
must be set up and the Editor vocabulary declared. If
we attempt to list a blank screen by typing

30 LIST

It uses the Editor word P which puts a line of text
into the screen. The line number should be on the
stack and the command is normally used as

n P text for line n

Since P is a FORTH word it must be separated from the
text by a space . The text for each line i s terminated
by RETURN. It is good practice to leave a space after
P, even if you then just press RETURN for example to
clear a line of text! � otherwise an ASCII null may be
placed in the line and this will stop interpretation of
the screen at that point.

It is conventional for line 0 of every screen to
contain a comment giving the contents of that screen.
The FORTH word < > is used to start a comment and
causes all text up to a right parenthesis <!>, or to
the end of the current line, to be ignored. Since < >
is a FORTH word it must be separated by at least one
space from any following text. The right parenthesis is
simply a delimiter and so need not be separated by a
space from the end of the comment. It is usual,
however, to leave a space to improve the appearance of
the text. It should, of course, be separated by one or
more spaces from any following words.

This example illustrates the use of the Editor to
create and save a definition of RND, which generates a
random number. It is shown exactly as it would appear

84

the normal action will
screen 30 from mass st
been written it is un
will be very successf
word PROGRAM has b
application. This sh
system for writing a
consecutive screens.
number as shown in the

be, as seen earlier, to fetch
Qlf s r n 30 has not yet

earch of the tape
this problem the
in the editor

o initialise the
in one or more

a starting screen
g pie.

on the display, except for the underlining to indicate
the computer's output:

PROGRAM
1st screen number? 30
SCR & E

1

9
10
TT
T2
T3

T5
OK

0 P RANDOM NUMBER GENERATOR !
OK
2 P DECIMAL
OK
WP VARIABLE SEED
OK
WP: RND! ... rand !
OK
TP SEED Q 259*3+
OK

P 32767 AND DUP SEED !
OK
TV P: RND ran e ... random !
OK
TT P RND! 32767 */
OK

85

30 LIST
SCR 30 &1E

OM NUMBER GENERATOR !

2 DEC IMAL

VARIABLE SEED

 RND! ... rand !
7 SEED 2 9 * 3 +

2 AND DUP EED !

10 : RND ran e ... random !
11 RND 32767 *

2

15
OK

At this point, with the editing of the screen contents
complete, the application would normally be tested.
The following simple tests show that the application is
working as expected. In particular the stack action is
shown to be correct in that no items are left on the
stack and no extra stack values are used. Putting a
few values on the stack and using .S to check the stack
contents at various stages is a simple way of verifying
the stack action.

30 LOAD
OK

SEED ?
0 OK

1 2 3
OK

.S
12 30K

 RND!
3 OK

86

10 RND
0 OK

.S
1 2 30K

TEST CR DO DUP RND . LOOP DROP
OK

20 10 TEST
3 16 6 17 1 17 11 6 18 14 OK

.S
12 30K

3210K

When the screen is completed to your satisfaction it
can be saved to tape. This is done by typing the word

SAVE

The screen about to be saved to tape will be listed to
ensure that it is the one required. The message

OK?

will appear at the bottom of the listing, and if the
screen is correct you should press the 'Y' key.
Pressing any other key will abort the save.

Once the random number generator has been saved as
screen 30! it may be entered into the dictionary at a
later time in the same way as the Editor itself was
loaded, by typing

30 LOAD

Screens may be numbered from 0 to 32767 inclusive.

If an application extends to more than one screen the
word MORE can be used to save a screen and set up the
next blank screen ready for editing.

One problem with the storage of screens on tape is that
of modifying a previously written screen, which may be

87

in the middle of an application. In order to simplify
this process the word LOCATE has been provided. It
expects a screen number on the stack and will search
the tape for the screen immediately before the one
specified. It gives an audible signal when this screen
is found so that stopping the tape at this point will
leave it positioned just before the start of the
specified screen. The previous screen is not read into
the buffer area, so this provides a simple method of
rewriting a single screen in the middle of an
application .

8.3.3 The line editor comnands

So far the only word we have used from the line editor
is P , which puts text onto a given line. A complete
list of line editor commands appears below. Each
command expects to find the relevant line number on the
stack. Most of the commands make use of the scratchpad
area, whose starting address is given by PAD , where a
line of text can be stored. Text is stored starting at
PAD and working towards higher addresses, as opposed to
the use of PAD for numeric strings see section 7.3.4!.

Command

Put text onto line.

Delete the line, moving up the lower lines to
close the gap, but hold the deleted line at
PAD.

Erase the line, leaving it blank. The contents
of the line are not saved.

Hold the contents of the line at PAD. The line
also remains in the screen.

H

Insert the text from PAD at the specified
line. The lower lines are moved down to make
room for the insertion and line 15 is lost.

Replace the contents of the line with the text
from PAD.

 cont 'd !

88

Spread the text by inserting a blank line.
Line 15 is lost.

Type the contents of the line and also copy it
to PAD. The text remains in the screen.

In addition, the word TEXT will allow text to be put
directly into PAD. Like WORD it expects a delimiter
character on the stack. It accepts text from the
keyboard up to the first appearance of the delimiter,
or until 64 characters are typed, or RETURN is pressed.
It is usual to use a delimiter that would not normally
appear in the input from the keyboard so that the end
of text is marked by RETURN. TEXT is used by all the
Editor commands that put text at PAD with ASCII code 01
as a delimiter character, i.e. it is used as:

1 TEXT ... wait for text input !

It is worth setting up a dummy screen to practise using
the line editor commands. Once you are familiar with
each command, try to:

i! transfer a line to another position
ii! exchange two lines

Make sure that both of these work with line 15.

The following definition, as an example, will invert
the order of the lines in a screen:

! EDITO DEFINITIONS Make sure it is in the Editor !
NVERT 16 0 DO 15 ine o

FORTH I loop index !
EDITOR I insert from PAD !
LOOP L

It shows how a word can be defined to provide
arbitrarily complicated editing features. It also
illustrates the way in which the vocabulary structure
can be manipulated to use both definitions of the word
I . Note that since the vocabulary words are
IMMEDIATE they change the CONTEXT vocabulary for the
following word s! but do not themselves appear in the
compiled definition for which they are used.

89

8.3.4 The string editor comaands

The string editing facilities allow the location,
insertion and deletion of individual character strings
within a screen. This is accomplished with the aid of
an editing cursor displayed as ~~! whose byte offset,
from the start of the screen, is stored in the user
variable R7h . The cursor is set to the beginning of the
screen by the word TOP

The remaining string editing commands are given in the
lists below. They are divided into groups according to
the type of input they require.

The members of the first group need to be followed by
typed text, on which they act like the line editing
command P!. There must, of course, be one space
between the command and the text, but again like P!
any additional spaces are regarded as part of the text.

Command Insert the given text at the current cursor
position .

Find the given text and position the cursor
immediately after its first occurrence.

TILL Delete all text, from the current cursor
position to the end of the text given. This
command will only act on text within a single
line of the screen.

Find and delete the first occurrence of the
given text.

Each of the above commands will also leave the given
text at PAD . They give an error message if the text
is not found in the screen.

The following example shows their actions. It is

90

assumed that line 6 of the screen contains:

THIS IS A SILLY EXAMPLE

and the cursor has been reset by the use of TOP.

F IS A
THIS IS A I I SILLY EXAMPLE 6 OK
C N
THIS IS AN ~ ~ SILLY EXAMPLE 6 OK
TILL LY
THIS IS AN l I EXAMPLE 6 OK
X PLE
THIS IS AN EXAM l l 6 OK

The words of the following group require no additional
input, but expect to find their text at PAD

Command

Find the next occurrence of the text at PADN

Move the cursor back by the number of
characters in the text at PAD

Each command in the next group requires a character
count on the stack:

Command

DELETE count ... ! Delete count characters,
backwards from the current cursor position.

 count ...! Move the cursor by count
characters, either forwards or backwards
depending on the sign of count. The text
itself is unchanged � M is a simple way of
displaying the current cursor position! .

91

Finally we always save the best until last! ! there is
the word MATCH. This is the string~atching routine
used by all the words which search for text. In
the Editor it is written, for clarity, in high-level
FORTH. To increase the speed of this word it may be
replaced by a machine code primitive. The code for
such a definition is given in section 8.3.5.

The stack action of MATCH is, however, a bit
complicated; using 4 and leaving 2 stack values:

MATCH addr151ength3addr23count ... f3offset !

The routine attempts to match the string, whose
starting address is addr2 and whose length is count
bytes, to the contents of memory starting at addrl and
finishing at addrl + length. It leaves a flag, which
will be true non-zero! if the match succeeds and false
 zero! if it fails, beneath the offset, from addrl, to
the byte immediately following the matched string. Thus
 addrl + offset � count! will give the address of the
start of the matched string.

8. 3.5 A machine code NATCH

Like most machine code in FORTH, it is relocatable and
so may be copied into your own application if you
require a routine to search an area of memory for a
particular character string.

HEX
CREATE MATCH HERE -2 ALLOT

4A9 , 20 C, SA +ORIGIN
CACA , CACA

94 , 194
FFAO, C8 C,
60C4, 2CBO
62B1, 66D1, F5FO
66E6, 2DO
67E6, F6, 2DO

1F 6, 64A5, 2DO
65C6, 64C6, 64A5
60C5, 65A5, 61E5
D5BO

A9
64A4

48 C,
4C C,

DEC IMAL

295, 395
9818, 75

A9, 175
65 +OR IG IN

92

The listing of the machine code for MATCH is given
using the method described in chapter 5 to enter
machine code without the use of the assembler.

This code can be used to replace the entire contents of
screens 7 and 8 of the editor application .

8.3.6 A note on UPDATE

Since screens can only be accessed serially from tape
it is essential that they are saved in the correct
sequential order. In order to ensure that screens are
not saved out of sequence, screen 3 of the Editor
contains the command see section 11.1!:

AS S IGN UP DATE TO-DO NOOP

This disables the normal action of UPDATE

If you need, for some reason, to UPDATE a screen during
an editing session you may do so by use of the word
 UPDATE !. This word is also used by SAVE to allow the
screen to be written to tape, despite the disabling of
UPDATE

The normal action of UPDATE may be restored by:

ASSIGN UPDATE TO-DO UPDATE !

8.4 Using the Editor with di8ks

The use of the Editor with a disk-based system is very
similar to its use with tape storage. The major
difference is that the tape-oriented words, PROGRAM
SAVE , MORE and LOCATE are not necessary. It is also
unnecessary to modify the action of UPDATE . You may
use them if you wish, but it will probably be more
convenient to remove them from the editor application.
This can be done very simply by use of the Editor to
remove their definitions from screen 3. The most
convenient way is to insert the word --! at the

93

The word UPDATE marks
having been modified
storage. It does this
bit of the screen numbe
words which modify the
and the normal action
screen when its buffer
in screens being saved

the current editing screen as
since it was loaded from mass
by setting the most significant
r in the buffer to l. All Editor

buffer contents include UPDATE
in FORTH is to save any UPDATEd
is needed again. This can result
out of order.

beginning of line 3 of this screen as shown below make
sure there is a space between � � ! and ASSIGN on the
line !:

3 LOAD
3 LIST
EDITOR
3 T
C

SAVE
COLD
3 LOAD

Screen n may then be set up for editing with the
command

n LIST EDITOR

Screens may be edited in any order, each one being made
the current editing screen using 'LIST'. Any modified
screen will be saved to the disk automatically whenever
its buffer is needed for another screen. At the end of
the editing session or at any other time ! you should
use SAVE-BUFFERS or FLUSH to make sure that no modified
screens remain in the buffers.

The number of screens that can be used on a disk-based
system is dependent on the disk space reserved for
their storage. Space can be allocated by use of the
word CREATE-SCREENS. This word is designed to be used
only with mass storage on disks. Since it destroys
the contents of memory from &5800 to 6 7BFF inclusive,
it should not be used if this region of memory is being
used for any other purpose, such as a high-resolution
graphics display. To create screen storage, place a
formatted disk in the drive and type

CREATE-SCREENS

The system will respond with:

Are ou sure Y/N!?

Pressing Y will cause space to be reserved for 180
screens, numbered 0 to 179; any other key will abort
the process. The space is reserved as a number of named

94

files, each of which may hold several screens. The
number of files and the number of screens in each file
are determined by the constants MAXFILES and S/FILE
respectively. The default values of these constants are
20 and 9 respectively, giving screens numbered from
0 � 179 on double-density disk drives .

If you are using a single-density drive, the value of
MAXFILES should be reduced to 10 by typing:

10 ' MAXFILES !

In this case screens numbered 0 � 89 will be available.
You can use a smaller value if you wish, with a
corresponding reduction in the number of screens
available.

You may also change S/FILE if you wish, but it is not
recommended since you must then remember to change it
whenever you use Acornsoft FORTH with such non-
standard disks. In any case, the total length of a file
 B/BUF B/SCR S/FILE * *! should not exceed 9K bytes.

The screens created by CREATE-SCREENS cannot be
overwritten by other system files, and it is possible
to store both screens and other files on the same disk.
Any previous screens on a disk are, however, likely to
be destroyed by a second use of CREATE-SCREENS, which
should be regarded in the same way as the Operating
System *FORM40 or *FORM80 commands.

When in use, the file structure of the screens is not
apparent to the user but can be examined by using the
Operating System *CAT command. This may, of course, be
used from within FORTH by typing

OS' CAT'

95

a an % oe

9.1 Introduction

FORTH can be considered to operate at a number of
different levels. The lowest level is the execution of
a word from the dictionary and this can be termed a
level 0 operation. The next higher level, which we can
call level 1, is the use of a defining word, for
example VARIABLE or :>, to produce a dictionary entry
for later level 0! execution. All levels higher than
0 result in a new entry being made in the dictionary.
This chapter is concerned with the next higher level,
level 2, in which new defining words are formed. The
sequence of operations involved is:

a! generate a new defining word level 2!

b! use the defining word to produce a new dictionary
entry level 1!

c! execute the new entry level 0!

One higher level is possible: to produce alternative
ways of generating defining words. This level, which
is often termed 'meta-FORTH ', enables the writing of
totally new FORTH-like languages, and is beyond the
scope of this manual.

Each defining word in FORTH can be considered as a
mini-compiler, dedicated to compiling a particular type
of structure into the dictionary. If a new structure
is required, for exaqmple an array, a new word is
required to allow its compilation. Just as the
generation of a new word level 1! extends the FORTH
language, the generation of a new defining word
 level 2! extends the FORTH compiler.

The two words CREATE and DOES> are used for this
purpose.

96

9.2 The action of CRKATK and DOES>

The two words are used in a definition of the following
form level 2!:

FAMILY CREATE ... DOES>

where an optional list of words may follow each of the
two. This is, in one sense, an ordinary colon�
definition and all the words are compiled in the
normal way. The use of CREATE and DOES>, however,

akes it a level 2 definition.

The words following CREATE are concerned with building
the dictionary entry for the new word defined by
FAMILY . Those following DOES> determine the action of
the new word, and although they are compiled into the
definition of FAMILY , they are not executed until
the new word is used. It is important to remember that
the CREATE words come into effect at compilation time,
and the DOES> words at execution time.

The execution of FAMILY takes the form:

FAMILY MEMBER

and may expect one or more values on the stack,
depending on the definition of FAMILY . This is a
level 1 process and creates a dictionary entry for the
word MEMBER

When MEMBER is executed level 0! the address of its
parameter area is placed on the stack, and then the
words following DOES> in the definition of FAMILY are
executed. Execution of all words defined by FAMILY
begins with this code, so FAMILY produces a group of
words with related actions. CREATE and the words
following it 'customise' each new word by compiling
items unique to it for example values from the
stack, or further words! into the parameter area of its
dictionary entry. When the new word is used, the words
after DOES> use the address of the parameter area to
gain access to these

97

items, allowing each of the words created by the same
defining word to have its own function.

9.3 The use of GRKATK and DOES>

Some simple examples may clarify the use of these
words .

Let us first have a look at an alternative definition
of VARIABLE . This word appears in the nucleus
dictionary and its action has been described in section
5.3.2. It creates a dictionary entry with space for a
single variable, and initialises it to zero. The
following definition of VARIABLE is identical except
that the values of the variables it creates are not
initialised.

VARIABLE CREATE 2 ALLOT DOES>

When this is executed by typing:

VARIABLE SIZE

The definition of the VARIABLE in the nucleus
dictionary would be:

VARIABLE CREATE 0, DOES>

Instead of allotting space, the value of zero is
compiled into the parameter area by

The definition of CONSTANT is:

CONSTANT CREATE , DOES> 0

CREATE creates
ALLOT reserves
this case there
is executed it
parameter field
value, which is
<8> as normal.

the dictionary entry for SIZE and 2
two bytes in the parameter area. In
are no words after DOES! so when SIZE

just leaves the address of the
on the stack. This gives access to the
initally indeterminate, through <!> anc

The compilation stage is identical to that of VARIABLE
except that the value is taken from the stack, but when
the word defined by CONSTANT is used, P leaves the
value on the stack.

We may also create single byte variables and constants
by:

CVARIABLE CREATE 0 C, DOES>
used as CVARIABLE TINY

and

CCONSTANT CREATE C, DOES> C0
used as 10 CCONSTANT TIM

The value in both cases is, of course, restricted to
the range 0 to 255 inclusive.

9.4 Arrays and tables

The use of CREATE and DOES> to create new types of data
structure can be illustrated by the extension of FORTH
to handle arrays.

9.4.1 One&imensional arrays

A simple definition for a one-dimensional array is

ARRAY
CREATE 2* ALLOT
DOES> SWAP 2* +

A ten-element array of single-precision variables is
created by:

10 ARRAY VALUES

The words after CREATE reserve two bytes for each
element. When VALUES is executed, the index is taken
from the stack and multiplied by two to make it a byte
offset! and added to the address of the start of the
parameter field. It is therefore converted to the
address of the corresponding element. The contents of

99

the array VALUES are not initialised but it may be
f i 1 led by, for example:

5 0 VALUES !
10 1 VALUES !

which will put the numbers 5 and 10 into the first two
elements of VALUES . The contents of a particular
element may be placed on the stack by, for example,

1 VALUES

or typed on the display by

1 VALUES ?
10 OK

Many people replace SWAP 2+ + in ARRAY by the
equivalent OVER + + since, in some implementations it
is faster to execute. In Acornsoft FORTH there is not
much difference between the two execution times.

The array index must be on top of the stack be fore
executing VALUES . It must > for the above example, be
in the range 0 to 9 inclusive. No checks are made on
the range of the index so care must be taken not to
over � write other dictionary entries by using an
out-of-range index.

The following alternative definition of ARRAY will
check the range and give an error message, if needed:

100

ARRAY
CREATE DUP 1
2* ALLOT
DOES! 2DUP
8 OVER
SWAP 0< OR
5 ?ERROR
2+
SWAP 2* +

 store maximum index!
 reserve space !
 duplicate index & parameter addr!
 check if index too large!
 or if negative!
 issue error message if needed!
 otherwise step over max index value!
 and convert index to element address!

If a more specific error message is required, the words
5 ?ERROR may be replaced with, for example,

IF DROP CR
RANGE ERROR � ARRAY INDEX

QUIT
THEN

The inclusion of error checks, such as that given
above, has the disadvantage that it decreases the
speed of execution. A solution to this problem is to
develop an application using full error checks until
it is working correctly. When it is certain that no
errors can occur, the words containing error checks
can be replaced by simpler, faster versions. If an
application is developed by use of the editing
facilities described in chapter 8, it is a simple
matter to change these words as the remainder of the
application is unchanged.

9.4.2 Two&imensional arrays

The following definition allows the creation of two-
dimensional arrays. The elements are single-precision
variables and the array contents are not initialised.
No index checking is done but error checks can be added
as for one-dimensional arrays.

It is used, for example, as:

10 5 2ARRAY RECTANGLE

to create a 10 by 5 array called RECTANGLE . Here, the
array indices may range from 0,0 to 9,4 inclusive. The

101

2ARRAY
CREATE DUP
* 2* ALLOT
DOES> ROT
OVER 9 *
ROT +
2*

2+

 store second index !
 reserve space !
 get first index to top !
 multiply by stored index !
 add second index !
 calculate byte offset !
 add to base address !
 step over stored index !

address of, for example, the 2,3 element is left on the
stack by:

It may be necessary to create a table of values for
which only the starting address is needed. This type
of structure can be implemented very simply as follows:

will create the word DATA with space for ten
single-byte values. When DATA is executed it will
leave on the stack the starting address of the data
table .

The word ALIST of section 6. 3 is an example of a table
which leaves both its start address and the number of
16-bit items it contains. It may be created by use of
the following definition of the word TABLE

ALIST is then created by

n TABLE ALIST

where n is the required maximum number of items.

102

2 3 RECTANGLE

9.4.3 Tables

CTABLE
CREATE ALLOT
DOES >

This, when used in the form

10 CTABLE DATA

TABLE
CREATE DUP

2* ALLOT
DOES> DUP 2+

SWAP g

 store number of items !
 reserve space !

 get start address !
 max number of items !

9.5 Strings

There are many ways of implementing string handling in
FORTH. Two examples are given in 'BYTE' magazine, in
the August 1980 and February 1981 issues.

The following example shows a simple alternative method
of handling strings up to 255 characters in length:

 max length ... !

 keep maximum length !
 zero length byte = empty !
 reserve space !

 step over maximum length !

An empty string is then created by, for example:

10 STRING WORDS

The string variable WORDS may now hold any character
string up to 10 characters in length. A few additional
words are required for input and output of strings.

A new definition of SIN see section 7.1.2.! uses the
constant C/L , which gives the number of characters
per line in the display i.e. 64 !. Remember also that
PAD returns the start address of the scratchpad area
used for text section 8.3.3! and for numeric
conversion section 7.3.4!.

SIN
WBFR C/L 1+ BLANKS
1 WORD

PAD C/L 1+ CMOVE
PAD DUP C g 1+

103

STRING
CREATE
DUP C,
0 C,
ALLOT
DOES>
1+

 ... addr31ength !
 clear memory at WBFR !
 input string to WBFR !

terminated by carriage return !
 move string to PAD !

 prepare to move string ... !
 including count byte !

$! from addr71ength to addr ... !
2DUP 1 � Cg 1+ ! check if space for string !
IF CR ." STRING OVERFLOW " if not give error !

2DROP DROP QUIT clear stack & quit !
THEN
SWAP CMOVE otherwise store string !

 addrl ... addr2$1ength !
 prepare to type string !

$Q
COUNT

The following shows how these words are used, assuming
that the string variable WORDS has been created as in
the earlier example:

$IN HELLO
OK
WORDS $!
OK
WORDS $0 TYPE SPACE
HELLO OK

If the words LEFT$ and RIGHT$ of section 7.3.2 are also
defined, the following examples can be tried:

WORDS 2 LEFT$ TYPE SPACE
HE OK
WORDS 3 RIGHT TYPE SPACE
LLO OK

9.6 A CASE statement

9.6.1 Introduction

IF ... ELSE ... THEN

A CASE statement allows a branch to one of many
possible word sequences with a return to a common
point. There are two basic methods for the selection
of the case to be executed. The first is a
'positional ' case where the values to be tested are
restricted to the first n integers. The second method

104

The conditional structure of section 6.2 allows a
two-way branch using

is a 'keyed' case where a value is tested against a
sequence of explicit values which need not be in
numerical order .

9.6.2 A positional CASE

The following simple example of a positional CASE will
select the words to be executed by means of an integer
value on the stack. The value must be in the range
from zero to one less than the number of cases
available in the particular example. No error checks
are made for a number out s i de the permit ted range .
This CASE structure is used in the graphics
demonstration, provided with the system and listed in
chapter 12.

Here is the definition of the defining word CASE:

CASE:
CREATE SMUDGE]
DOES! SWAP 2*

+
EXECUTE

The word EXECUTE takes the execution code field!
address of a word from the stack and executes the
word 's definition. Thus:

 get parameter field address of WARM !
 convert to code field address !

WARM
CFA
E XECUTE

To use the CASE structure it is first necessary to
define each of the possible actions, for example:

105

has the same effect as executing WARM directly from the
keyboard.

NOTH ING
CASE 0 DOESN 'T DO MUCH

BELL CASE 1 RINGS THE BELL
7 EMIT

HOME CASE 2 HOMES THE CURSOR
30 EMIT

These actions are then included in a CASE structure
for, say, the word TEST

CASE: TEST
NOTHING BELL HOME

When TEST is being created, SMUDGE ensures that the new
entry will be found in a dictionary search and] then
sets compilation mode, so that the words following
TEST will have their addresses compiled into the
dictionary entry.

When TEST is executed by:

0 TEST
1 TEST
or
2 TEST

the words following DOES> convert the case number to a
pointer to the address of the correct word in the
list, and execute it.

Note that the CASE statements of many high-level
languages are based on GOTO-type control transfers,
whereas this FORTH CASE has the options compiled into
the definition of the case word so that the choice is
fixed before execution. Basically, this is because it
is not easy to handle forward references, i.e. words
that have not yet been defined, in FORTH.

For a further discussion of keyed cases and of a
variety of other possible forms of CASE statements in
FORTH see FORTH Dimensions, Vol 2, No 3 �980! see
Appendix E!.

106

e ssem er

10.1 Introduction

The contents of this chapter assume that you have some
knowledge of 6502 machine code but previous experience
with an assembler is not necessary. There are a number
of books available which describe the use of machine

by R Zaks Sybex !. The BBC Microcomputer User G~ui e
also includes a comprehensive account ofsssemmmly
language programming .

When wr it ing long applications there wi 1 1 be occasions
when even the high speed of FORTH is not sufficient,
and unacceptably long execution times will occur. In
addition, certain applications, such as interrupt
handlers, cannot be written entirely in a high � level
language. In such circumstances it is necessary to
resort to machine code.

Short machine code routines can be hand-assembled,
placing the appropriate bytes of code directly into the
dictionary as described in chapter 5!. This has the
advantage of requiring no additional software aids, but
has a number of significant drawbacks. For example, it
can be a very tedious process for all but the shortest
routines, and the resulting source code is virtually
unreadable.

The addition of an assembler removes these
difficulties, but at the expense of increasing the
software overheads. A FORTH assembler, however,
occupies only about 1.5K and greatly simplifies the
task of producing error-free code. In many cases the
application can be developed in high-level FORTH and
the time-critical sections subsequently replaced by
their machine code equivalents. Such a development
will take very little more time than an entirely
high-level approach.

107

The use of a FORTH assembler may appear somewhat
st range to anyone accustomed to a 'convent iona 1 '
assembler. The branch instructions are never used
explicitly, the assembly mnemonics and their operands
are written in the 'wrong' order, and labels are only
rarely required.

It is, however, an extremely sophisticated single-pass
assembler with comprehensive error checks. Furthermore,
all the power of FORTH itself is available throughout
the assembly process. The speed, pover and simplicity
far outweigh the task of becoming accustomed to the
unusual approach .

10.2 An example

We can illustrate some of the features of the FORTH
assembler by looking at the creation of a simple
machine code definition. Before trying this or any
other example, the assembler vocabulary must be loaded.
It is provided in seven screens of source code starting
at screen 12 and is loaded, in the normal way, by
typing

12 LOAD

It is normal for a number of error messages to
appear on the screen during the loading process.
These can be ignored as they merely indicate that
several words are being redefined to have different
meanings in the assembler.

The example ve shall look at is DROP , whose action
should by now be familiar . The conventional assembly
language for the machine code of this word could be
written as

JMP POP

where POP is the entry point to existing machine code
to remove the top stack item and make a valid return to
FORTH.

108

The FORTH assembler allows the word with this code to
be created by

CODE DROP
POP JMP,

END-CODE

The two words CODE and END � CODE are used to start and
end a machine code definition, rather like <:> and
are used for a colon-definition.

CODE generates a name header for the word immediately
following it and starts some of the error � checking
procedures. Unlike <:>, however, it changes the
CONTEXT vocabulary to ASSEMBLER rather than to the
CURRENT vocabulary! and it leaves the system in
execution mode. The words in an assembler definition
are executed, not compiled. Each section of the code
is placed in the dictionary i.e. compiled! by the
execution of an assembler mnemonic for example JMP, !.
Every mnemonic acts like a mini-compiler to place its
own code in the dictionary entry currently being
constructed.

The whole process of assembly is therefore simply a
normal interpretation of the text but with the
ASSEMBLER as the CONTEXT vocabulary it is searched
first !. This means that all of FORTH is also available
during assembly, for modifying or manipulating the
stack contents, making the whole process extremely
flexible.

Two points should be noted here which may help with
writing the body of a machine code definition.

Firstly, the assembly mnemonic always ends with a
comma, which serves three purposes:

 a! It marks the end of a group of words which would
be a single line of conventional assembly code.

 b! The FORTH word <,> compiles values into the
dictionary and so, by analogy, the comma indicates
the point at which bytes of code are actually
compiled.

109

 c! It ensures that there is no confusion between
assembly mnemonics and

i! hexadecimal numbers e.g. ADC!
or ii ! other assembler words e.g. SEC!.

Secondly, the operand for example POP! is placed
before the mnemonic, rather than afterwards as in the
conventional assembler. This is always the case
whether the operand is a literal numeric value or, as
in the above example, a symbolic one. The operand, in
either case, causes its value to be placed on the stack
ready to be compiled, together with the opcode, by the
execution of the assembly mnemonic.

The definition is concluded by END � CODE which, in
addition to performing a number of error checks,
restores the original CONTEXT vocabulary.

10.3 Machine code labels

All machine code routines must terminate with a jump to
existing machine code which wi 1 1, directly or
indirectly, execute the code of NEXT . NEXT is used at
the end of every FORTH word and its basic function is
to transfer execution to the next word in the sequence
o f words which make up a dict i onary entry . It is
described more fully in Appendix B. Valid terminating
jumps to the routines are given in the following table:

110

Descri tionRoutine

Transfer execution to the next word in the
sequence.

NE XT

Push the accumulator as high byte! and one
byte from the return stack as a new number
on the computation stack, and execute NEXT

PUSH

Replace the current top stack item from
the accumulator and return stack as for
PUSH ! and execute NEXT

PUT

PUSHOA Push zero as high byte! and the accumulator
 low byte! to the stack and execute NEXT

Drop the top stack item and execute NEXTPOP

Drop the top two stack items and execute
NEXT

POPTWO

In the assembler these routines are given labels as
defined constants !.

The actual addresses of these routines wi 11 be needed
if machine code is to be hand assembled, as described
in chapter 5. Since Acornsoft FORTH is provided in
relocatable form these addresses cannot be given as
absolute values but must be stated relative to points

111

In addition to these terminating routines there is a
subroutine which may be used from within a code
def init ion. It is given the label SETUP and acts to
transfer up to four items from the stack to a scratch-
pad area in page zero. On entry the accumulator should
contain the number of items to be trans ferred. On
return from the subroutine the Y-register will contain
zero and the value in the accumulator will be doubled;
in other words it contains the number of bytes
trans ferred from the stack. The byte immediately
preceding the scratchpad area will also contain the
number of bytes transferred.

within the FORTH system. The address values can be
written in hex! as follows:

If any of the allowed Operating System routines are
needed they may be included in the assembler as defined
constants, as in the following examples:

ASSEMBLER DEFINITIONS HEX

FFEO CONSTANT OSRDCH
FFEE CONSTANT OSWRCH
FFF1 CONSTANT OSWORD
FFF4 CONSTANT OSBYTE

FORTH DEFINITIONS DECIMAL

An alternative method is given in section 10.9.

10.4 The registers

Although Acornsoft FORTH uses all the processor
registers, they may also be used in a machine code
definition, provided that certain conventions are
observed. These conventions are implementation-
dependent and should not be assumed to apply to all
versions of FORTH. The conventions used here, however,
are not likely to be too different from those in the
majority of other implementations for the 6502.

Whenever a machine code definition is executed, it is
entered directly from the routine NEXT . The processor
registers will therefore always be subject to the same
conditions, which are as follows:

1 ! The contents of the accumulator are undefined .
The accumulator may be used freely in any machine
code definition.

112

NEXT
PUSH
PUT
PUSH OA
POP
POPTWO
SETUP

6A
63
65

2FO
1DF
1DD

8A

+OR IG IN
+OR IG IN
+ORIGIN
+ORIGIN
+OR IG IN
+OR IG IN
+ORIGIN

2! The Yregister contains zero and may be used
without restriction.

3! The X-register points to the low byte of the most
accessible number on the computation stack. It may
be used provided that its contents are first saved
 in XSAVE ! and then restored at the end of the
routine.

4! The 6502 hardware stack is used as the return
stack. The stack pointer contains the address of
the first unused byte beyond the end of the stack
 normal for the 6502!. Its contents should not
normally be changed across a code definition,
otherwise FORTH return addresses may be lost.

5! The contents of the processor status register,
with the exception of the decimal flag, are
undefined and may be used freely. The decimal
flag is clear so that the processor is in binary
mode! and must be returned in that state.

In addition to all the processor registers, Acornsoft
FORTH uses a number of special registers located in
page zero. The assembler contains, again as defined
constants, the addresses of all the zero page registers
used. The addresses of these registers are not
affected by relocating FORTH and are given in the
following table.

Name Hex Size
Addr

Format Comments

Note that N and W use one extra byte before their
stated addresses.

113

N 60
XSAVE 68
W 6A
IP 6C
UP 6E

1+8 bytes
2 bytes
1+2 bytes
2 bytes
2 bytes

xXXXXXXXX
XX

xXX
XX
XX

scratchpad
temp. for X-register
code field pointer
interpretive pointer
user variable pointer

The scratchpad area is used by SETUP, as described
earlier, to hold up to four items trans ferred from the
computation stack. In general it is used to hold small
amounts of data at a known, fixed location for use by
machine code routines. Since this area is used by many
of the system words its contents will change frequently
and should not be assumed to be retained from one
definition to another.

The single byte at XSAVE is reserved for the temporary
storage of the contents of the X-register which
normally holds the computation stack pointer! if it is
needed within a code definition.

The user variable pointer UP contains the address of
the start of the area in which the values of the user
variables are stored. The subject of user variables is
described in chapter 5.

It now remains to explain the actions of the final two
registers, W and IP . These two are fundamental to the
operation of FORTH and should be used with great care.
If their contents are changed inadvertently the system
will 'go away' and require at least a WARM start to
recover. They are used, and modified, by NEXT

The code field pointer W , is used to hold the address
of the code field of the currently executing routine.
The interpretive pointer IP , always holds the address
of the routine to be executed at the conclusion of the
current one. The functions of IP, W and NEXT are
described in more detail in Appendix B.

10.5 Opcode mnemonics

The assembly mnemonics are divided into two main groups
according to their addressing modes. The first group
contains the one-byte codes, with only a single
 implied! addressing mode. The second group includes
all those which have a number of different addressing
modes. The mnemonics used are standard for the 6502
except that they all have an additional terminating
comma .

114

10.5.1 Single~ode mnemonics

The single � mode mnemonics are given in the following
table:

When one of these is executed it simply compiles the
corresponding opcode into the dictionary.

The following example will execute to push a zero to
the computation stack:

CODE ZERO
TYA, PHA,
PUSH JMP,

END � CODE

It makes use of the fact that the Y � register always
contains zero on entry to a code routine. The
accumulator and the bottom byte of the hardware stack
are both set to zero, and it is these two bytes
 accumulator first! which are transferred to the
computation stack by PUSH

10.5.2 Multi~ode mnemonics

The multi~ode mnemonics are as follows

ADC, AND > ASL, BIT, CMP,
CP X, CP Y, DEC, EOR, INC,
JMP, JSR, LDA, LDX, LDY,
LSR, ORA, ROL, ROR, SBC>
STA, STX, STY,

Each of these normally needs an operand which must
previously have been placed on the stack. If no address
mode is given the operand is assumed to be an address.
In this case absolute �6 � bit ! or zero page 8-bit!
modes are chosen, depending on both the magnitude of
the given address and on which modes are legal for the
particular opcode.

115

BRK,
DE X,
PHA>
RTS,
TAY,

CLC,
DEY,
PHP,
SEC,
TSX,

CLD,
INX,
PLA,
SED,
TXA,

CLI,
INY,
PLP,
SEI>
TXS,

CLV,
NOP,
RTI,
TAX,
TYA,

When any of these mnemonics is executed it compiles the
appropriate opcode and operand into the dictionary.

10.5.3 Addressing modes

The symbols in the following table are used to specify
the addressing mode to be used:

~Sbo1 Mode Ex ected 0 erand

memory
accumulator
immediate
indexed X
indexed Y
indexed indirect,X
indirect indexed,Y
indirect

The way in which the addressing modes are used is
illustrated below. The FORTH version is compared with
the corresponding form for a conventional assembler:

Conventional assemblerFORTH

ADDR JSR,
.A ASL,

4 N CMP,
ADDR >X LDA>
ADDR ,Y STA,
ADDR X! ADC,
ADDR !Y LDA>
ADDR ! JMP,

JSR ADDR
ASL A
CMP i�
LDA ADDR,X
STA ADDR,Y
ADC ADDR,X!
LDA ADDR!,Y
JMP ADDR!

The following two examples make use of the OSWRCH
routine, at address &FFEE, of the BBC Microcomputer
Operating System. This displays the contents of the
accumulator as an ASCII character. Since this routine
does not change the contents of any other register
 except the C, N, V and Z flags!, no special
precautions need be taken to restore them.

The word CHAR displays the contents of the byte at
address 128 &80! as an ASCII character.

116

none
.A

,X
,Y
X!

!Y !

zero page or absolute
none
8-bit literal value
zero page or absolute
zero page or absolute
zero page
zero page
absolute

HEX

CODE CHAR
80 LDA,
FFEE JSR,
NEXT JMP,

END-CODE

DEC I MAL

The following sequence typed at the keyboard will then
display an 'A' on the VDU note that we are back in
decimal mode !:

65 128 C!
CHAR

Modifying the routine to use the 'indirect indexed,Y'
addressing mode will allow the display of a character
whose address is given in the two bytes at address &80:

HEX

CODE CHAR !
80 !Y LDA,
FFEE JSR,
NEXT JMP,

END-CODE

DEC I MAL

where we have again made use of the fact that the
Y-register contains zero on entry to the code .

If you type the following, you should find that this
time a 'B' will be displayed. The character displayed
is, in fact, the first letter of the name of BASE .!

BASE NFA I+ 128 !
 CHAR!

10.6 Accessing the stacks

Most machine code routines will need to access the
computation stack, the return stack or both. A separate
technique is needed for each stack.

117

You may recall that in section 4.1 we mentioned that
the stacks grow towards lower addresses. Throughout
the rest of this manual we have been able to ignore
this detail and have referred to the most accessible
item as being at the 'top' of the stack. In the case
of machine code we can not afford to forget the actual
structure of the stack. The FORTH assembler therefore
refers to the most accessible stack item as the
'bottom ' value. In both stacks the more significant
byte is found at the higher address.

10.6.1 The computation stack

Stack

Second, high
Second, low
Bottom, high
Bottom, low

byte
byte
byte
byte

3 ,X or
2 ,X or
1 ,X or
0 ,X or

SEC 1+
SEC
BOT 1+
BOT

As an example we can consider the definition of 4*
which performs a fast multiply by four. It uses the
same method as for the word 2* which is provided in the
system and is considerably faster than either of the
possible high-level definitions:

4%' 4 w ~ or ~ 4* 2* 2* ~

The def init ion is

CODE 4* nl ... n2 !
BOT ASL, BOT 1+ ROL,
BOT ASL, BOT 1+ ROL,
NEXT JMP,

END-CODE

118

This stack is located in page zero and is usually
addressed in 'zero page ,X' mode with the X-register as
the stack pointer. The X-register normally contains
the address of the low order byte of the bottom stack
item. The bottom two stack items are accessed so
frequently that the special words BOT and SEC are
provided. Their meaning and the corresponding stack
addresses are illustrated in the following table:

10.6.2 The return stack

The return stack is located in the 6502 hardware stack,
in page one. Unlike the computation stack pointer, the
hardware stack pointer contains the address of the
first unused byte below the bottom of the stack. Since
the hardware stack pointer is only an eight-bit
register it can only contain the low byte of the stack
address . When machine code ' push ' or ' pu 1 1 '
instructions are used the processor automatically adds
a high byte of 01 to access the correct page, and
allows for the stack pointer indicating one byte below
the bottom item. The sequence

PLA, PLA,

will, therefore, simply remove the bottom item low
byte first!.

If it is necessary to manipulate the return stack
contents, the hardware stack pointer can be trans ferred
to the X-register. This normally contains the
computation stack pointer so its contents must first be
saved and later restored, using the temporary storage
location XSAVE. The adjustments made to the stack
pointer by the processor are not automatically added to
any other register and must be included explicitly.
The special address modifier RP ! is provided to access
the bottom byte of the return stack. It is equivalent
to 101 ,X so that

RP ! LDA,

will load the accumulator with the bottom byte of the
return stack.

The following code will, for example, load the
accumulator with the low byte of the second return
stack item i.e. the third byte from the bottom of the
hardware stack!:

XSAVE STX, TSX,
RP ! 2+ LDA,
XSAVE LDX,

The first line of this code saves the contents of the
X-register in XSAVE ! and transfers to it the contents

119

of the hardware stack pointer. The third line restores
the original contents of the X-register. These two
lines will normally enclose any reference, or group of
references, to the return stack.

10.7 Conditional structures

The conditional branching structures provided with the
assembler are similar to those used in high � level code.
They are distinguised by having terminating commas:

IF> ... ELSE> ... THEN!
BEGIN, ... AGAIN,
BEGIN, ... UNTIL,
BEGIN, ... WHILE, ... REPEAT,

The main difference is that the assembler versions test
various bits in the status register, rather than stack
values. The tests provided are as follows:

Test >~tennis True for

The following examples illustrate some uses of the
conditional branches. The first simply adds 3 to the
bottom stack item.

CODE 3+ nl ... n2 !
BOT LDA, CLC, 3 1I ADC,
0= IF, BOT 1+ INC, THEN >
NEXT JMP,

END � CODE

The second example illustrates the use of IF, ... ELSE,
THEN, and the nesting of conditionals. It

increments or decrements the second stack item,
depending on the sign of the number on the bottom of
the stack.

120

CS
VS
0<
0=

CS NOT
VS NOT
0< NOT
0= NOT

Carry set
Overflow set
Less than zero
Equals zero
Carry clear
Overflow clear
Not less than zero
Not equal to zero

C=l
V=1
N=l
Z=l
C=O
V=O
N=O
Z=O

CODE INC/DEC n13n2 ... n3 !
BOT 1+ LDA,
0< IF, SEC LDA,

0= IF, SEC 1+ DEC,
SEC DEC,

ELSE, SEC INC,
0= IF, SEC 1+ INC,

THEN,
POP JMP,

END � CODE

THEN,

THEN,

The next two examples implement double-precision
fetches and stores. They work in the same way as
and <! > except that the value occupies four bytes
starting at addr.

CODE 29 addr ... nd !
1 1I LDA, SETUP JSR, 3 O' LDY,
BEGIN, N !Y LDA,

DEX, BOT STA,
DEY, 0=

UNTIL,
NEXT JMP,

END � CODE

CODE 2! nd3addr ... !
1 8 LDA, SETUP JSR,
BEGIN, BOT LDA, N !Y STA,

INY, 4 fh CPY, 0=
UNTIL,
NEXT JMP,

END-CODE

INX,

10.8 Use of ;CODE

121

Chapter 9 showed how new data structures can be created
with the aid of CREATE and DOES> . The high-level code
following DOES> defines the action of all members of
the family of words created by a particular defining
word. One disadvantage, particularly for data
structures with complicated actions, is the length of
time taken to perform these actions when written in
high-level code. It would be use fu 1 to be able to
define the actions in terms of machine code for cases
where speed is important. Needless to say, FORTH

provides the method in the form of;CODE . It is used
as

NAME CREATE ...; CODE ... END � CODE

The general principles are the same as in the use of
CREATE and DOES! . The words following CREATE compile
the parameters peculiar to the family member, and all
members execute the code following;CODE in the
defining word.

During compilation ;CODE terminates the compilation of
the colon-definition and also starts the assembly
section. It therefore combines many of the actions
of the two words ;! and CODE . When a defining word
 such as NAME! is executed to create a new family
member a third aspect of;CODE comes into action. The
contents of the code field of the new member are
changed to contain the address of the machine code
following ;CODE

A couple of examples should help to clarify the use
of ;CODE. The first of these allows the creation of
double � precision variables:

2VARIABLE ... addr !
CREATE
0, 0

;CODE to push the PFA to the stack !
CLC, W LDA, 2 $I ADC, PHA,
TYA, W 1+ ADC,
PUSH JMP,

END-CODE

This defining word may be used as

2VARIABLE DOUBLE

to create a double � precision variable, named DOUBLE
which is initialised to zero. When DOUBLE is executed
it will use the machine code following;CODE in
2VARIABLE to leave on the stack the address of the
first byte of the parameter field of DOUBLE . A value
may be fetched from or stored to DOUBLE using 2� or 2!
 these were defined earlier!.

The code used by 2VARIABLE is identical to that of

122

VARIABLE since both return the same address. The only
difference is in the size of the parameter area
reserved. Memory usage can be reduced without any loss
of execution speed by using the following alternative
definition:

2VARIABLE
VAR I A BLE 0

As a second example we can look at a possible
definition of 2CONSTANT which, not surprisingly,
creates double-precision constants. Since such a word
must copy four bytes to the stack it cannot use the
machine code of CONSTANT . The following version is
designed for clarity and to minimise memory usage
rather than for maximum execution speed, though in fact
it is still quite fast. It requires the prior machine
code definition of 29

2CONSTANT
CREATE
;CODE

DEX, DEX,
CLC, W LDA, 2 f. ADC, BOT STA,
TYA! W 1+ ADC, BOT 1+ STA,

2 d JMP,
END-CODE

nd !

The code is very similar to that of 2VARIABLE, except
that the PFA is placed directly on the stack rather
than by the use of PUSH . The code is terminated by a
jump to the code of 2� which, after replacing the
address on the stack by the double-precision value
stored there, leads back to NEXT

10.9 Macro assembly

A macro is a section of machine code which is used
several times. It is used rather like a subroutine.
Unlike a subroutine, whose code appears only once, the
code of a macro is inserted into the body of the
machine code at each point where it is needed. The
advantage of a macro is the increase in execution

123

However, this is not a very good illustration of how
;CODE works!

speed, since a subroutine call and the corresponding
return are not needed. This speed increase is gained
at the cost of increasing the amount of memory used
 unless the assembled code is three bytes or less in
length ! .

Creating a macro in FORTH is very similar to
compiling a colon-definition . The assembly instructions
are compiled and are not executed until the macro is
called at a later time. The main difference is that a
macro must be created in the assembler vocabulary, as
in the following examples;

ASSEMBLER DEFINITIONS HEX

MACRO NEWL ... !
FFE7 JSR,

MACRO WRCH
FFEE JSR,

These two macros assemble subroutine calls to the
operating system 's OSNEWL and OSWRCH respectively .
Since all user-accessible operating system routines are
only used as subroutines, this method is a good
alternative to the definition of their addresses as
assembler constants.

The following pair of macros allow the assembly of a
definite loop similar to the high-level DO ... LOOP
They are used in the form

n TIMES, ... LOOP,

The loop index is stored in the Y-register which is
therefore not available for other purposes within the
loop body. The index is limited to the range 0 to 255
and the loop terminates when the index reaches zero.

MACRO TIMES,
$J LDY, BEG IN,

MACRO LOOP,
DEY, 0= UNTIL,

At the conclusion of the definition of one or more
macros you should remember to change the CURRENT

124

vocabulary back from assembler by, for example,

FORTH DEFINITIONS DEC IMAL

The example be low uses all four of the macros we have
just defined to present the alphabet on the display.

CODE ALPHABET ... !
NEWL
64 4 LDA, ASCII code of 8 !
26 TIMES,

CLC, 1 f ADC, WRCH
LOOP,
NEWL
NEXT JMP,

END-CODE

10.10 Errors

A comprehensive set of error checks is included with
the assembler. They will not, of course, guarantee that
the code definition will perform correctly but they do
prevent errors of syntax.

The error checks may be divided into five main groups:

1! Each mnemonic, when executed, ensures that a
valid addressing mode is used. An error message
will be generated, for example, by

BOT !Y LDY,

2! The conditional structures include checks that
they are correctly paired and nested. S'equences
such as the following are not allowed.

IF, ... UNTIL,

3! Within the conditionals a check is made that any
branch is within range. An error message is
given, for example, by

IF, 256 ALLOT THEN,

4! The number of stack items must not change across
a code definition. This can be caused, for

125

example, by an address being left on the stack or
by a conditional structure not being completed.

5! A macro definition must be created in the
assembler vocabulary . If it is not, an error
message is given and the definition will not be
accepted.

In all cases except the last the definition will be
left in an incomplete and non-executable ! form, with
the CONTEXT vocabulary set to ASSEMBLER.

126

i Execution vectors

and recursion

ll.l Execution vectors

The action of a dictionary entry is normally fixed at
the time of its definition. The word may be redefined
at a later stage and from that point onwards all
references to the word will use its new definition.
All earlier references, however, will still use the old
meaning. It would be useful to have a simple method of
changing a definition in such a way that all previously
compiled references were also switched to using the new
version. One method of doing this is by the use of
execution vectors.

The idea of an execution vector can best be described
by means of an example. Suppose we define a few words
like this:

ICAN
I CAN DO

1STWORD
ICAN " TH IS"

2NDWORD
OR " ICAN ." SOMETHING ELSE"

We now def ine a word DEMO which executes 1STWORD . We
do not write this as a direct colon-definition, but
make the execution work in a more indirect way, via the
contents of a variable:

VAR IABLE ACT ION
1STWORD CFA ACTION !

127

ACTION now contains the execution address of 1STWORD
so DEMO can be written as

DEMO
ACTION g EXECUTE

Executing DEMO will type the message

I CAN DO TH IS

as expected. The point of working in such a roundabout
manner is that we can now change what DEMO does simply
by changing the contents of the variable ACTION . For
e xamp 1 e,

2NDWORD CFA ACTION !

wi 11 cause DEMO to type

OR I CAN DO SOMETHING ELSE

The significance of this is that we have been able to
change the action of DEMO after it has been defined.
Furthermore all compiled references to DEMO will also
change their action. DEMO can be made to execute any
other word whose execution address is placed in the
var iable ACTION . This variable is known as the
execution vector for DEMO

This facility is very useful but there are a number of
problems associated with the simple method described
above. Firstly it is rather inefficient in its use of
memory since three dictionary entries are needed for
each vectored routine. These are the vectored word
itself, the routine that it is to execute and the
variable used to contain the execution vector. It can
be made more efficient by removing the need to have a
separate dictionary entry for the variable. Secondly,
and more importantly, it is possible to forget to put a
sensible address in the execution vector. This can
cause quite spectacular crashes!

In Acornsoft FORTH these problems are resolved by the
inclusion of a new defining word, EXVEC: to create an
execution-vectored word without the need to use an
additional variable. All words created by EXVEC: are
automatically given a default vector to a routine which

128

prints an error message. No harm can be done if you
forget to specify the action of the vectored word.

Speci fying the routine to be executed is known as
assignment and the words ASSIGN and TO DO are provided
to simplify the process.

The previous example can now be expressed more simply,
as follows. First

FORGET ACTION

since we shall not be needing it again. Then create
the vectored word DEMO by

E XVEC: DEMO

Try executing DEMO at this stage to see the default
error message, and then

ASSIGN DEMO TO-DO 1STWORD

At any time you may reassign DEMO to execute another
word, for example,

ASSIGN DEMO TO � DO 2NDWORD

A number of words in the nucleus dictionary are already
vectored and these are given in the following list,
together with the words they execute after a cold
start:

Word Executes

As an example we can redef ine EMIT, which sends
characters to the display, so that it will display
control codes as well as acting on them:

129

KEY
EMIT
NUM
MESSAGE
R/W
UPDATE
ABORT
CREATE

 KEY!
 EMIT!
 NUM!
MSGR
TR/W or DR/W
 UPDATE !
 ABORT !
 CREATE !

"EMIT

DUP 32
IF DUP !VDU

64 + I l I I

THEN
 EMIT !

ASS IGN EMIT TO-DO "EMIT

All control codes less than ASCII 32! are then
displayed with a preceding " e.g. a 'bell' control G!
is displayed as "G

The normal action can be restored either by a cold
start, when all vectored words are initialised to their
default actions, or less drastically by:

AS S IGN EMIT TO-DO EMIT !

The ability to redefine the action of the error message
routine MESSAGE gives a simple method of implementing
full error message reporting.

ERRMESS
?DUP IF

16 /MOD 1+
 non-zero !

 convert msg no. !
 to line & screen !

.LINE
THEN

ASSIGN MESSAGE TO-DO ERRMESS

This approach is not suitable for tape-based systems
and the following method would be preferred. Instead
of reading the error messages from mass storage
screens, the messages are kept in the dictionary. The
correct message is selected by the use of a CASE
structure as described in chapter 9.

130

Disk-based systems are provided with all the error
messages in screens one and two of the system disk. The
error message number corresponds to the screen line in
which the appropriate message is found, counting from
line zero of screen l. Error message 17, for example,
is found on the second line of screen 2. Producing
full error messages is particularly simple in this
case, as shown below.

CASE: CREATE SMUDGE j
DOES> OVER + + /EXECUTE

Each error message is written as a colon-definition:

ESTK ." Stack Empty"
DFUL ." Dictionary Full"
AMOD ." Address Mode"
REDF ." Isn 't Unique"
PARA ." Parameter?
SCR/k ." Screen Number."
FSTK ." Stack Full"
EFIL ." File Error"
R/WE ." Read/Write Error"
EOLN ." End-of � Line?"
/ZER ." Division by 0"
EVEC ." Undefined Vector"
EBRN ." Branch too Long"
CURV ." CURRENT Vocabulary?"
COMP ." Compilation Only"
EXEC ." Execution Only"
COND ." Conditionals?"
DEFN ." Unfinished"
PROT ." Protected"
LQDG ." LOADing Only"
EDSC ." Off Editing Screen"
CRNT ." Not in CURRENT"
EMEM ." Memory Clash"

These messages are shortened versions of those
appearing in chapter 13. You may of course replace
them with the full versions, or with any other wording
that you prefer.

CASE: ERRMESS
NOOP do nothing for error zero }
ESTK DFUL AMOD REDF PARA SCRf FSTK FILE
R/WE EOLN /ZER EVEC EBRN CURV NOOP NOOP
COMP EXEC COND DEFN PROT LODG EDSC CRNT
EMEM

ASSIGN MESSAGE TO-DO ERRMESS

A useful variation on a system ABORT is one which also

prints out the stack contents, as in the following
example:

.SABORT
CR ." STACK IS" .S ABORT!

ASSIGN ABORT TO-DO .SABORT

Further examples of the use of vectored routines
include the redefining of NUM the numeric interpreter
used by INTERPRET ! so that other number formats may be
accepted by the system and the vectoring of UPDATE, as
mentioned in section 8.3.6. A particularly useful
application is in the handling of forward references in
recursive definitions, which are the subject of the
next section.

11.2 Recursion

A recursive routine is one which uses itself as part of
its own definition. As a consequence of the security
built into the compiler it is not normally possible for
a FORTH word to contain a reference to itself. The name
header of the word currently being defined is made
unrecognisable in a dictionary search, using SMUDGE
It is restored by a second use of SMUDGE at the
successful conclusion of the definition. This is a very
effective method of preventing execution of an
incomplete or erroneous definition but has the side
effect that no word may contain a direct reference to
itself.

A popular solution is to define the word MYSELF before
writing any recursive definitions. This word calculates
the execution address of the word currently being
defined and compiles it into the definition. It by-
passes the dictionary search normally used to find the
address of a word and is defined as

MYSELF
LAST addr of 1st byte of last word !
PFA CFA convert to execution addr !

 compile the addr !
IMMEDIATE must execute during compilation !

132

Using this method we can define a recursive counting
rout ine as follows:

COUNTS n ... !
? DUP IF DUP 1�

MYSELF
CR

THEN

In Acornsoft FORTH a special form of colon-definition
is provided to aid the writing of recursive routines.
If <:> and <;> are replaced by their recursive forms,
R: and R; the previous definition may be written as

R: COUNTS n ... !
? DUP IF

DUP 1�
COUNTS
CR

THEN R;

The definitions of R: and R; could be written as

SMUDGE

R;
[COMP ILE]
SMUDGE

IMMEDIATE

They allow references by name to the definition
currently being compiled at the expense of a certain
amount of compiler security. If an error occurs during
compilation, the incomplete definition will be left in
an executable form.

The next example uses a recursive definition to
calculate factorials:

R: FACT! n13n2 ... n3 !
? DUP IF

DUP ROT ~ S WAP 1�
 FACT !

THEN

133

FACT n ... factn !
DUP 0< OVER 7
OR 5 ?ERROR
1 SWAP FACT !

The calculation of the factorial is performed by FACT!
which leaves the result on the stack. Error checking
is confined to FACT . Factorials are not defined for
negative numbers and an attempt to calculate the
factorial of a number greater than 7 will result in an
arithmetic overflow when single-precision numbers are
used.

The following alternative definition makes use of MD*
which was defined in section 4.4, to extend the
calculation to give a double-precision answer. This
will allow the calculation of factorials of numbers up
to and including 12:

R: FACT!
?DUP IF

DUP 1-
!R MD* R!
 FACT!

THEN

FACT n ... !
DUP 0< OVER 12
OR 5 ?ERROR
1 0 ROT FACT!
D.

11. 3 Forward references

The normal compiling process can only compile the
address of a word that has previously been defined and
can be found in the dictionary. The use of execution
vectors provides a simple solution to the problem of
including in a definition a reference to a word which
has not yet been written . Normally this type of
difficulty can be avoided by defining the words of an
application in the correct sequence. There are cases,
however, when this is not possible. An example would
be where two words are required to call each other in a
form of mutual recursion � whichever word is defined

134

first, it must still contain a reference to the other.

EXVEC: PART-TWO

PART -ONE
CR CR ." I am part one"
CR ." I call part two"
PART-TWO

The full definition of the second part can then be
writ ten:

PART WO
CR CR ." I am part two" CR
." Do you want to go to part
KEY 89 Y
IF PART-ONE THEN

one?
key pressed? !

Finally PART � TWO is assigned to execute PARTWO

ASSIGN PART-TWO TO-DO PARTMO

A more useful example is in the graphics routine
provided as a demonstration and listed in chapter 12.

135

One easy solution is to def ine the 'second' word as a
vectored routine before writing the definition of the
' first ', as in the following example:

ra ics an soun

The graphics and sound facilities provided on the BBC
Microcomputer are extremely powerful and it would be
impractical to cover all possibilities in this manual.
What we can do, however, is to look at a range of
simple examples which illustrate some of the basic
techniques that are available, and these will be the
subject of this chapter. In addition, the examples will
develop some of the ideas introduced in earlier
chapters.

12.1 Graphics

Since many applications do not require advanced
graphics, the only graphics-oriented word provided in
the nucleus dictionary is PLOT . The extensible nature
of FORTH means that it is very easy to add the specific
words required to tailor the system to your exact
requirements.

The versions of Acornsoft FORTH provided on tape or
disk are loaded into RAM, part of which would be used
by the higher resolution graphics modes. These modes
cannot, therefore, be used and the highest resolution
available from FORTH is mode 4. Most of the
examples wi ll be given in mode 5, in which four-colour
graphics are possible. Apart from this limitation the
full facilities of the computer are available to you.

12.1.1 PLOT

The word PLOT can be used, in any available graphics
mode, to plot points, draw lines, move the graphics
cursor or fill triangles with a selected colour. It
behaves similarly to the PLOT command as described in
the BBC Microcomputer User Guide. It is used in the
form:

K X Y PLOT

136

where X and Y are the coordinates of a point, and the
value of K determines the type of plotting action.
Thus,

5 MODE
4 200 200 PLOT

will move to the point �00,200! without plotting
anything,

5 700 500 PLOT

will draw a line to �00,500! in the current graphics
foreground colour, and

21 200 500 PLOT

will draw a dotted line to �00,500!.

We can write definitions to draw simple shapes: the
example that follows plots a triangle from the
coordinates on the stack:

TRIANGLE x0hy0hxlkylhx2hy2 ... !
2DUP >R >R save coordinates of last point!

4 ROT ROT PLOT move to first vertex !
6 ROT ROT PLOT plot 1st side !
6 ROT ROT PLOT plot 2nd side !
6 R> R> PLOT ; and back !

We can use this definition as, for example:

5 MODE
50 50 500 300 200 800 TRIANGLE

The triangle is plotted using K=6, i.e. the lines are
drawn in 'logical inverse colour'. This means that
plotting the figure a second time in the same place
will cause it to disappear. This technique can be used
to display simple animated graphics:

137

5 CONSTANT DISPX 5 CONSTANT DISPY
 X and Y displacements !

VARIABLE XO VARIABLE YO
VAR IABLK Xl VARIABLE Yl
VAR IABLE X2 VARIABLE Y2

1STPOS ... !
20 XO ! 0 YO !

0 Xl ! 20 Yl !
50 X2 ! 50 Y2 !

THISPOS ... x0hy0hxlhylhx2hy2 !
XO g YO Q Xl Q Yl g X2 g Y2 g

NEXTPOS ... !
DISPX XO +! DISPY YO +!
DISPX Xl +! DISPY Yl +!
DISPX X2 +! DISPY Y2 +!

DELAY ... !
1000 0 DO LOOP

The application may be used in mode 4 or 5; for example

4 NODE DISPLAY

The next example is a listing of the graphics
demonstration provided with the system. In addition to
using PLOT, it shows an application of mutually
recursive routines and the use of execution vectors to
allow forward references. Recursion is a very useful
technique for the generation of complex displays:

138

DISPLAY .. ~ !
1STPOS
BEGIN TH ISPOS TRIANGLE

THISPOS
NEXTPOS DELAY
TRIANGLE
X2 8 1000 !

UNTIL

 plot triangle !
 keep its coords !

 do calcs etc. !
 unplot triangle !
at top of screen? !

FORTH DEFINITIONS DECIMAL

CASE:
CREATE SMUDGE j
DOES! OVER + + /EXECUTE

 number of steps !
 size of picture !

6 CONSTANT N
1024 CONSTANT HO

 scale for current step !
 initial plot coords !

VAR IABLE H
VAR IABLE XO
VAR IABLE YO
VAR IABLE X
VAR IABLE Y

 coords for next plot !

XYLINE ... ! draw line to X,Y !
5 X g Y Q PLOT

EXVEC: DRAW-SIDES
3SIDES { nl n2...nl! { draw 3 sides of square!

OVER DUP
IF 1- SWAP DRAW � SIDES
ELSE 2DROP
THEN

 these are the 4 possible
3-sided figures !
0 3SIDES Y-
1 3S IDES DROP

OR1 n... !

1 3S IDES X+
0 3S I DE S DROP

2 3S IDES Y+
3 3S I DE S DROP

3 3S IDES X-
2 3S IDES DROP

139

X+
H g

Y+
H g

x- ...!
H g NEGATE

Y-
H g NEGATE

3 3SIDES X-
0 3SIDES X+

OR2 n... !
2 3S IDES Y+
1 3S IDES Y-

OR3 n... !
1 3S IDES X+
2 3SIDES X-

OR4 n... !
0 3SIDES Y-
3 3SIDES Y+

!
X +!

!
Y +!

X +!

!
Y +!

line in +ve
XYLINE
line in +ve
XYLINE
line in � ve
XYLINE
line in � ve
XYLINE

X-dir !

Y-dir !

X-dir !

Y-dir !

CASE: SIDES! n13n2... ! draw one of the 4 !
OR1 OR2 OR3 OR4

ASSIGN DRAW � SIDES TO-DO s ides !

IN ITIALISE ... !
HO DUP H !
2/ DUP XO ! YO !
4 MODE

XYSET ... !
H g 2/ DUP H !
2/ DUP XO +! YO +.'
4 XO 9 YO 8
2DUP Y ! X !
PLOT

PLOT-IT ... !
INITIALISE
0

BEGIN 1+
XYSET
0 3SIDES
DUP N

UNTIL DROP
KEY DROP 12 EMIT

When PLOT-IT is executed, INITIALISE sets the initial
line lengths in H! and the starting coordinates for
the plot in XO and YO!. It also sets mode 4 graphics.
The main work is done in the BEGIN ... UNTIL loop. A
step counter, initially zero, is kept on the stack and
incremented by 1 each time round the loop. This
process continues until the loop counter reaches the
value of the constant N when the loop is left and the
counter DROPped. The routine then waits for any key to
be pressed so that you can admire the result! before
clearing the screen.

Within the loop XYSET sets up the correct initial
conditions for each step. The contents of H are halved
 since at each step all line lengths are half the
length used in the previous step! and the contents of
XO and YO are adjusted to the correct starting
position . These coordinates are also stored in X and Y
and the graphics cursor is moved to this point, by a
PLOT with K=4.

140

The actual job of drawing each section of the picture
is done by 3SIDES and this is where things start to get
interesting much better than saying 'complicated',
don 't you think?!. 3SIDES expects two values on the
stack, the step counter beneath a number in the range
0 to 3, which indicates the orientation of the 3-sided
figure to be plotted. It leaves the step counter on
the stack for later use. Strictly speaking, this is
bad practice in FORTH since a word should normally
destroy all stack values that it uses. However, this
would involve more involved manipulations of the stack
and it is simpler in this case to leave the stack
'dirty'.

The recursive nature of this example can be seen by
examining the action of 3SIDES. It calls DRAW-SIDES
which has been assigned to execute one of the cases of
 SIDES!. These are the four possible orientations, OR1
to OR4 and each of these makes calls back to 3SIDES to
complete the recursion.

Each time that 3SIDES is executed a copy of the step
count is reduced by 1 and further calls to 3SIDES are
made, until a depth of call is reached where the count
has been reduced to zero. Thus the first time that
3SIDES is called is with a step count of 1 and only one
level of recursion is reached. The figure plotted is
therefore simply three sides of a square. The next
time it is called is with a count of 2, so that two
levels of recursion are used, and a 3 � sided figure is
drawn on each of the 3 sides of the first shape with
each side unit half the length of those in the previous
figure !.

The various stages can be examined by use of the
following definition .

STEP n ... !
INITIALISE
DUP 0 DO XYSET LOOP
0 3SIDES DROP

Typing 1 STEP, 2 STEP, etc. will show the various
stages separately.

The most complex display that can be shown in mode 4 is
produced by typing 7 STEP . If you try 8 STEP , you
will find an extremely slow but recursive!! method of
drawing a large white square.

12.1.2 The VDU drivers

In Acornsoft FORTH the word >VDU is used to send a byte
to the VDU drivers. It sends the less significant byte
of the top stack item, and is therefore rather similar
to EMIT . There are, however, two main differences
between these words. Whereas EMIT sends only a true
7-bit ASCII code, >VDU sends the full eight bits. Also,
each character sent by EMIT adds 1 to the value of the
user variable OUT , so that the total number of
characters sent to the display is known. Sending bytes
with >VDU does not affect this character count.

Chan in colours

So far the graphics have been plotted in the default
colours of the graphics mode being used. The options to
change colours are divided into 3 types which are:

change text colour
change graphics colour
change logical colour

These options are all available on the BBC
Microcomputer by sending the appropriate code sequence
to the VDU drivers.

For compatibility with other languages we can define
the word COLOUR to change the text foreground and
background colours:

COLOUR n... !
17 >VDU >VDU

This expects the 'colour number' on the stack and in
mode 5, for example, we may use

0 COLOUR 1 COLOUR 2 COLOUR or 3 COLOUR

Numbers greater than 127 cause the background colour to
be changed and in mode 5 the valid numbers are 128,
129, 130 and 131.

142

The colour used by all following graphics instructions
can be redefined using GCOL. This is defined as
follows:

GCOL nl!n2... !
18 >VDU SWAP >VDU >VDU

The definition is arranged so that the order in which
the two numbers are typed is the same as in BASIC and
other languages. The colour is specified by the top
stack item and its meaning is the same as for COLOUR.
The value beneath it specifies the mode of action, i.e.

0 plot in the specified colour
1 OR the specified colour with the one already there
2 AND the specified colour with the one already there
3 exclusive-OR the colour with the one already there
4 invert the colour already there.

If you do not want to change the type of plotting
action you may def ine a word that wi 1 1 per form only one
of these functions. For example

PCOL n... !
18 >VDU 0 >VDU >VDU

needs only the colour value and will always plot in the
specified colour.

The colours referred to so far are termed 'logical
colours ' in that the number need not always re fer to
the same 'actual colour '. The colours which are
displayed in two or four colour modes are selected from
the sixteen colours in the total palette of the

143

computer. The actual colour numbers are:

black/white
red/cyan
green/magenta
yellow/blue
blue/yellow
magenta/green
cyan/red
white/black

The default colours in, say, a four � colour mode are:

~Lo ical Actual Colour

black
red
yellow
white

Thus using, for example, 2 PCOL will cause all future
graphics to be plotted in logical colour 2, which is
actual colour 3 yellow!.

If we were to change the relationship between the
logical colour and the actual colour so that logical
colour 2 used actual colour 4 blue! then 2 PCOL would
cause plotting to be in blue instead of yellow.
Furthermore, all areas on the screen which had
previously been plotted in logical colour 2 and
therefore appeared as yellow! would also change to blue
since we would simply have changed the definition of
which colour is represented by the number 2.

The logical colour can be redefined using VDU 19, as in
this example:

144

0 1
2 3

4 5 6 7
8 9 10
11
12
13
14
15

black
red
green
yellow
blue
magenta
cyan
white
flashing
flashing
flashing
flashing
flashing
flashing
flashing
flashing

LCOL lco15acol... !
19 >VDU SWAP >VDU >VDU
0 >VDU 0 >VDU 0 >VDU

The earlier example of changing logical colour 2 to
represent actual colour 4 blue ! can be done by

2 4 LCOL

In the same way logical colour 1 originally red! can
be set to actual colour 6 cyan! by

1 6 LCOL

 step counter !VARIABLE COUNTER

ARRAY lots... ! this version fills array !
CREATE 0 DO , LOOP with values from stack !
DOES> OVER + +

490 380 340 triangle X-coords !
790 900 940

900 790 640
380 490 640
12 ARRAY XX

240 350 500 triangle Y coords !
760 650 500

350 240 200
650 760 800
12 ARRAY YY

145

The ability to change large areas of colour on the
screen with one simple command opens up a whole range
of possibilities for graphics, as the next two examples
show. The first plots a rapidly changing circle of
colour, made up of a number of differently coloured
triangles. It makes use of PCOL and LCOL as defined
above. The definition of TRIANGLE is different from the
one given earlier in that it plots a solid triangle in
the colour whose logical! number is on top of the
stack:

TRIANGLE x0hy0hxlhylhx2ky2hcol... !
PCOL
4 ROT ROT PLOT
4 ROT ROT PLOT
85 ROT ROT PLOT

ONE-STEP n ... x~y ! convert to coords !
COUNTER 9 + 12 MOD get step, modulo 12 !
DUP XX 9 look up coordinates !
SWAP YY P

WHEEL ... !
0 COUNTER ! 5 MODE
BEGIN 1 COUNTER +!

COUNTER 8 DUP I+ LCOL
 set LCOL J to ACOL J+1 !

12 0 DO
640 500 centre of circle !
I STEP coords of a vertex !
I 1+ STEP next vertex !
I 4 MOD pick a colour !
TRIANGLE

LOOP
COUNTER g 100 ! plot 100 circles !

UNTIL
7 MODE get rid of funny colours !

In WHEEL the same sequence of logical colours is used
every time round the circle. Between each plot of the
circle, however, one logical colour is changed to
display a different actual colour so that a constantly
varying effect is produced.

The next example shows how the redefinition of logical
colours can be used to produce extremely fast animation
effects. It displays a moving row of rectangles across
the bottom of the screen. It uses PCOL and LCOL as
defined earlier.

The first part of the application is concerned with
setting up the display.

VARIABLE LX left X-coord for rectangle !
VARIABLE RX right X !
VARIABLE BY bottom Y !
VARIABLE TY top Y !

146

RECTANGLE ... !
4 RX g BY P PLOT
4 RX Q TY g PLOT

85 LX � BY P PLOT
85 LX g TY g PLOT

ROW ... !
50 LX ! 100 RX !

100 BY ! 200 TY !

8 0 DO 4 1 DO I PCOL
RECTANGLE
50 LX +!
50 RX +!

LOOP
LOOP

Executing ROW in mode 5 graphics will display a row of
rectangles in 3 colours logical colours 1, 2 and 3!:

The next section is concerned with changing the actual
colours displayed to allow the illusion of movement to
be created. The trick is to make two logical colours
display the same actual colour so that the display
appears as shown in the following diagram:

First we create three 'colour registers' to hold the
actual colours to be displayed for logical colours 1, 2
and 3. Then we define SETCOLS to change the display
colours to those in the three registers:

VARIABLE 1COL 1 1COL !
VARIABLE 2COL 2 2COL !
VARIABLE 3COL 1 3COL !

147

SETCOLS ... !
1 1COL 8 LCOL
2 2COL 8 LCOL
3 3COL 8 LCOL

Executing

5 MODE ROW SETCOLS

should now give a display like that shown in the last
diagram.

We now write a word ROTCOLS which exchanges the
contents of the three colour registers in a circular
fashion, so that 1->2, 2->3 and 3->l.

ROTCOLS ... !
3COL 8
2COL 9 3COL !
1COL 8 2COL !
1COL !

Typing

ROTCOLS SETCOLS

should change the display from

1 I 1
I

to

1 I 12

so that the second colour appears to have moved one
rectangle to the right.

148

The final part of the application automates the process
of changing the colours. It introduces a variable delay
between each change so that the speed of motion will
change:

DELAYS n ... !
0 DO LOOP

SHIFT ... !
2000
BEGIN DUP DELAYS

10
ROTCOLS
SETCOLS
?DUP 0=

UNTIL

 initial delay !

 reduce delay !

 stop when delay = 0 !

 do the whole thing !GO ... !
5 MODE
ROW SH IFT
KEY DROP
7 MODE

Single byte VDU commands

12 >VDU

is the command to clear the text area of the screen,
but you may prefer to use the command CLS , defined as

CLS 12 >VDU

Similarly

CLG 16 >VDU

will clear the graphics area.

149

A number of VDU commands need only a single byte to be
sent to the VDU drivers. These are very simple to
define if you wish to do so. In many circumstances you
may find it simpler just to send the byte by direct use
of >VDU although this, unless commented, makes it less
easy to understand what is going on. For example,

The cursor controls may be written as:

!VDU
>VDU
!VDU
!VDU
>VDU

LEFT 8
RIGHT 9
DOWN 10
UP 11
RUBOUT 127

and

To join and separate the text and graphics cursors we
can use

5 >VDU ; and
4 >VDU

GTEXT
TTEXT

respectively.

All other single byte commands can be defined in the
same way.

Redefining graphics characters

Graphics characters in the range 224 to 255 may readily
be reprogrammed by the use of VDU 23 . This requires
another nine bytes of data; the character number and
the bit pattern for each of the eight rows of the
character. Clearly, the order in which the bytes are
presented to the VDU drivers is rather important, and
this is one case where the use of stacks to store
numbers can cause problems . The simplest method for
the computer! would be to enter the nine required
values in reverse order to that in which they are
needed. The bit patterns would be entered first,
starting with the bottom row and working towards the
top, and the character number last of all. The bytes,
taken one by one from the stack, are then in the
correct order for the VDU drivers. A definition that
works this way could be:

DEFCHAR1 r7 r6hr5hr4<r3hr2hrlhrOknchar
23 >VDU
9 0 DO >VDU LOOP

150

A second alternative would be to preserve the order of
entry exactly as is used in, say, BASIC i.e. the
character number first and then the bit patterns with
the top row first and the bottom row last!. The
numbers are then completely in the wrong order to be

sent to the VDU drivers and some fancy stack-shuffling
is required. A definition which worked this way would
be

DEFCHAR2 nchar hr0hr 1 hr 2hr 3hr4kr5 r 6kr 7 ... !
23 >VDU
1 9 DO I ROLL >VDU -1 +LOOP

A third possibility, which feels more FORTH-like, uses
a mixture of these two techniques. The bit patterns are
still entered in the 'normal' order, top row first so
that it is easy to use numbers worked out whilst
working with other languages!, but with the character
number entered last, so that it is on top of-the stack.

The definition would then look like this:

DEFCHAR r0hrlhr2hr3kr4hr5kr6hr7<nchar ...!
23 >VDU
>VDU
1 8 DO I ROLL >VDU -1 +LOOP

The following example defines character number 240 to
be a sp*c* *nv*d*r-type charac ter, using this last
vers ion o f DEFCHAR.

36 126 90 126 126 66 102 36
240 DEFCHAR

5 MODE 240 >VDU

Looks OK, don't you think?

Such characters usually 'wiggle' so we had better
define another, slightly different, shape as character
241:

36 126 90 126 126 66 195 129
241 DEFCHAR

Now we have to display them alternately in the same
place. The following word will display either of the
two characters, depending on whether there is a zero or
a one on the stack:

151

PIC n ... !
240 + !VDU

5 MODE 0 PIC 1 PIC

We shall want to rub out one version and plot the other
in the same place. Here is a definition which will do
that, using a couple of words from the previous
section:

SHOW n ... !
RIGHT
RUBOUT
PIC

It will be necessary to specify the position on the
screen where the character is displayed, using a word
like the BASIC! MOVE. Since MOVE is a word in
FORTH-79 we must use something different, e.g. GMOVE

GMOVE xhy ... !
4 ROT ROT PLOT

Then

1ROW nkxhy . !
GMOVE
0 DO 0 SHOW LOOP

ives us a whole row of n character 240s, starting at
x,y!. A row of the second character can be produced

by

2ROW nhxhy . - - !
GMOVE
0 DO 1 SHOW LOOP

All we need now is a word to put it all together, with
a delay between the two sets of characters. Here is
another version of DELAY that takes its delay time from
the variable SPEED

VARIABLE SPEED
10000 SPEED !

DELAY ... !
SPEED Q 0 DO LOOP

152

A bit of sound would improve matters, but that will
have to wait until section 12.3.

So far the redefined graphics characters have had to be
sent to the screen by use of >VDU . It would be useful
if we could also send them via EMIT , which is the
normal word to send codes to the display. The problem
is that EMIT sends only the lower 7 bits of a byte and
codes above 127 need the full 8 bits. EMIT is,
however, a vectored word so we can make it do whatever
we like.

Let us assume that you do not like the appearance of
the '9' on the display and wish to change it to look
more like the version that appears on the bottom of a
cheque. If we define character 250 to be that shape,

124 68 68 124 12 12 12 0
250 DEFCHAR

we can then make EMIT use that character whenever it
meets a '9' whose ASCII code is 57, or 639!.

ASSIGN EMIT TO � DO "9 "EMIT

The reason for converting to a 7-bit code before
testing the character is that the last byte of the name

153

MONSTERS
5 MODE GTEXT
BEGIN 10
100 500
1ROW DELAY
10
100 500
2ROW DELAY
?TAB
UNTIL
TTEXT

"9"EMIT n ... !
DUP 127 AND
57

IF DROP 250
1 OUT +!

ELSE EMIT !
THEN

 mask to 7 bits !
 is it a '9' ? !

>VDU send char 250 instead !
 and increment 'OUT' !

 normal action for others !

of every word in the dictionary has its most
significant bit set, to indicate the end of the name.
If this last character were a '9' it would slip through
the test and be displayed by EMIT! in its old
form.

After typing in the above code, all occurrences of
'9' displayed by EMIT will be in the new format. Note
that this will not apply to characters typed in at the
keyboard since these are not displayed by EMIT

12 2 Sound

Sound generation on the BBC Microcomputer requires, in
any language, the equivalent of the BASIC keywords
SOUND and ENVELOPE. These are not provided in the
nucleus of Acornsoft FORTH but are quite simple to
define. They do, however, require short sections of
machine code to make the relevant calls to the OSWORD
subroutine in the Operating System.

12.2.1 Machine code for SOUND and ENVELOPE

The routines are given here in tvo forms: in standard
FORTH assembler which vill require the assembler
vocabulary to be loaded first! and in hand-assembly
form, as described in chapter 5.

OSWORD requires a table of values to be present in
memory, and on entry to the routine, the processor's X
and Y registers must point to contain the address of!
the first byte of this table. The high order byte of
the address must be in the Y register and the low order
byte in the X register.

If we constructed the table at some arbitrary place in
~emory we would have to load the X and Y registers with
the correct values to point to this area.
However, we can do much better than that.

Remember that, on entry to a machine code routine in
Acornsoft FORTH, the X register contains the address of
the most accessible item on the stack and the Y
register contains zero. Since the stack is in page
zero i.e. all addresses are 600xx! the X and Y
registers point to the stack contents in exactly the

154

way required by OSWORD. All we have to do is to make
the data on the stack conform to that expected by
OSWORD and let the registers take care of themselves.
The only precaution we have to take is to save the
contents of the X register and restore them after the
call since OSWORD will, in general, leave the contents
undefined i.e. probably changed!.

A sound may be generated by making a call to OSWORD
with the accumulator containing 7 and eight bytes of
data on the stack. Assuming that this data is present
we can use the assembler to make the following machine
code primitive:

 nlhn2hn3hn4 ... !

NEXT JMP,
END-CODE
DEC IMAL

In hand-assembly form this is:

HEX
CREATE SOUND! HERE -2 ALLOT

6886
7A9 , 20 C, FFF1

68A5 , 18 C, 869 , AA C,
4C C, 6A +ORIGIN

DECIMAL

This will require an additional high-level definition
to ensure that the data on the stack is arranged
correctly and this is described in the next section.

A call to OSWORD with the accumulator containing 8 is
required for ENVELOPE . For this call 14 bytes �
items! of data are expected and the code definition is
very similar to that for SOUND!

155

HEX
CODE SOUND!

XSAVE STX,
7]t LDA,
XSAVE LDA,

FFF1 JSR, call to OSWORD !
CLC, 8 f ADC, TAX,

 quick way to drop 4 items !

HEX
CODE ENVELOPE! nlhn2hn3hn4hn53n6hn7 ... !

XSAVE STX,
8 $P LDA, FFF1 JSR,
XSAVE LDA, CLC, OE 0 ADC, TAX,
NEXT JMP,

END-CODE
DEC IMAL

For hand-assembly this is entered as

CREATE ENVELOPE !
6886

8A9
68A5

4C C,
DEC IMAL

HERE -2 ALLOT

20 C, FFF1
18 C, E69 , AA
6A +ORIGIN

Again a high-level definition will be needed to arrange
the stack contents in the correct sequence.

12.2.2 Campletion of SOUND and ENVELOPE

If the four parameters for SOUND are to be entered in
the 'normal' sequence i.e. channel, amplitude, pitch
and then duration! they will be in the wrong order to
the one expected by OSWORD . Fortunately each of the
four values is expected as a two byte number so we only
have to reverse their order before using SOUND! . This
can easily be done as shown below:

SOUND chahphd ... !
SWAP ROT 4 ROLL change to d$p3a5c !
 SOUND!

This may then be used to produce sounds; for example

1 -15 100 20 SOUND

will produce a loud one-second note of pitch C on
channel l.

156

The high-level definition for ENVELOPE is of course!!
more complicated. The 14 numbers, when entered, occupy
two bytes each but OSWORD requires the data in a table
of only 14 bytes. In addition to reordering the values
it is also necessary to 'pack' them so that all 14

numbers occupy only 7 stack values.

The basic method of doing this is simple, provided that
all the numbers are less than 256. Suppose we have two
such values on the stack as shown below in hex! where
the top of the stack is to the right, as usual.

0034 0012

If we multiply the top number by 256 &100! the stack
will now appear as

0034 1200

Simply adding the numbers then gives

1234

where we have not only packed the two values from four
bytes to two, but have also reversed their byte order.

256 * +

+
or

The second of these is clearly preferable since it is
both shorter and much faster.

An additional problem arises if either number is
negative, in which case the high byte will not be zero.
In this case the two methods shown above will not be
equivalent and both will fail to work as required.
However, since only the low byte of each number is
used, we can simply force the high byte to zero by
performing a logical AND with 255 &FF!. An order-

157

Multiplication is usually a slow process second
only to division! and should be avoided where
possible. With the numbers as shown above, multiplying
by 256 has simply had the effect of exchanging the low
and high bytes of the number. There happens to be a
word in Acornsoft FORTH to do just this � its name is

 pronounced 'swap-bytes'!. To pack the numbers as
shown above we could therefore use

changing packing routine can therefore be defined as
follows:

EXPACK nl n2 ... n3 !
>R 255 AND
R> 255 AND

+

and a 'straight ' pack by

PACK n13n2 ... n3 !
255 AND
SWAP 255 AND

+

We can now complete the definition of ENVELOPE

ENVELOPE nl!n2---n13!n14 ... !
EXPACK top 2 items !
ROT ROT EXPACK next 2 !
9 4 DO I ROLL dig deeper !

I ROLL
EXPACK

LOOP

This may be used in exactly the same way as described
in the BBC Microcomputer User Guide except, of
course, that the parameters should be entered before
the word ENVELOPE

158

rrors

13.1 Error handling

In general FORTH perfoms error checks only where
absolutely essential. The errors detected are those
which are the most likely causes of a system crash if
allowed to pass undetected.

Since FORTH gives such complete control over all the
facilities of the computer, it would be prohibitively
slow if all possible sources of error were checked
 assuming that this were possible!. For example,
there is nothing to prevent you attempting to fill the
entire dictionary with nulls.

It is, of course, possible to include full error checks
in your own application, as mentioned in chapter 10.
Use of full error checking during the development of an
application is recommended � many of the checks can be
removed later on when the application has been
debugged.

Since FORTH applications can be developed a word at a
time, and each word can be tested as it is written,
serious errors are fortunately rare.

Many non-fatal errors and quite a few fatal ones!! are
not detected. As an example, we can consider the
arithmetic operators. It is quite possible to perform
a calculation which gives a result too large to be
represented as a two's complement number in 16 bits or
32 bits for double � precision!. The overflow condition
is ignored and, in general, the value left on the stack
will be the least significant 16 or 32! bits of the
result. What happens afterwards will depend on the way
the result is used. It is your responsibility to make
sure that this sort of situation does not occur in an
application.

159

The case of division by zero is, however, always fatal
and therefore this error is detected by the system.
Since this error check slightly slows down the
execution of divisions one word, U/, has been left
unprotected. It is available for use in situations
where speed of execution is important, provided you
-ake sure that division by zero will not occur.

13.2 9etected errors

The errors which are detected fall into two main
classes:

i! errors detected by the Operating System
ii! errors detected by FORTH's internal checks

13.2.1 Operating system errors

The response to an error detected by the Operating
System is to display the error number and a brief
message, for example:

O.S. Error 194 File Open

These error messages will only appear when accessing
operating system facilities as when reading or writing
tape or disk files, or when using OS' to pass commands
to the O.S. command line interpreter.

13.2.2 %ORTH errors

Most detected errors in Acornsoft FORTH result in an
error message of the form

? cccc MSG 0 n

Here cccc is the name of the word from the input stream
which resulted in the error and n is the error number
from the list below. This number is always displayed
in decimal, regardless of the numeric base currently in
use.

160

Error M~eessa e

 Assembler!

The exception to this format occurs when a word from
the input stream cannot be found in a dictionary
search, nor converted to a valid number. In this case
the name of the word is displayed, followed by a
question mark,

In nearly all cases the error causes a return to the
keyboard interpreter with both the return and
computation stacks cleared. The one exception to this
rule is error message 4, indicating the redefinition of
an existing word. In this case the message is a warning
only and the current task continues after the warning
has been given.

Error numbers greater than 25 are available for
user-definable error checks.

161

0 1
2 3

4 5 6 7
8
9

10
ll
12
13
14
15
16
17
18
19
20
21
22
23
24
25

 reserved!
Stack Empty
Dictionary Full
Has Incorrect Address Mode Assembler!
Isn't unique
Parameter Outside Valid Range
Screen Number Out of Range
Stack Full
Can't Open or Extend File
Read/Write not Completed
Can't Redefine End-of-Line
Can 't Divide by Zero
Undefined Execution Vector
Branch Too Long
Incorrect CURRENT Vocabulary
 reserved!
 reserved!
Compilation Only
Execution Only
Conditionals not Paired
Definition not Finished
In Protected Dictionary
Use Only When LOADing
Off Current Editing Screen
Not in CURRENT Vocabulary
System Memory Clash

162

Glossary
This glossary presents all words in Acornsoft FORTH,
listed in ASCII order, with the following information:

Word: The name of the word

Pronunciation: Unless
iation is given.

Stack action: The computation parameter! stack action
is shown, where appropriate, as a list of the values
and their types before and after the execution of the
word, in the form:

 stack contents before ... stack contents after!

In all references to the stack, numbers to the right
are at the top of the stack. The notation n1$n2 is
read as 'nl is beneath n2'. The symbols used to
represent the different stack value types include:

The number of stack values the word uses and leaves:
For example, 2 0

163

n
u
addr
nd
ud
b
c
count
f
ff
tf

it is obvious, the pronunc-

16-bit single precision! signed number
16-bit single precision ! unsigned number
16-bit address unsigned!
32-bit double precision! signed number
32-bit double precision! unsigned number
8-bit one-byte number unsigned!
7-bit ASCII character
6-bit string length count
boolean flag: 0 = false, non-zero = true
boolean false flag = 0
boolean true flag = non-zero

Status: Some words have an additional letter
indicating their status:

Description: A description of the FORTH word.

164

C E I may only be used in a colon-definition
intended for execution only
is IMMEDIATE; will execute even when in compile
mode

List of order

!CSP
P
12
//BUF
I/S
I

 $+!
I.+!.OOP !
 ."!
 ; CODE!
 ABORT !
 CI.I !
 CREATE !
 DO!
 EMIT!
 FIND!
 KEY!
 LINE !
 LOOP !
 NUM!
 OPEN !
 R/W!
 U LOOP !
 UPDATE !
 WARM!
 WORD !

� 1
� 2
0<
0=
0>
OBRANCH
1+
1�
1WORD
! *
2+
2�
2/
2 DROP
2DUP
2OVER
2SWAP
4HEX
79 -STANDARD

;CODE

!

>CLI
! IN
R

>VDU
?
? COMP
?CSP
?DUP
?ERROR
? EXEC
?KEY
? LOADING
?PAIRS
?STACK
?TAB
 d
/EXECUTE
ABORT
ABS
AGAIN
ALLOT
AND
ASSIGN
B/BUF

»,'MOD
+
+I
+-
+BUF
+LOOP
+ORIGIN

-FIND
-TRA I I. I NG

, LINF.
.R
.S
/
,'MOD
0
1

165

FORTH words in Ascii

B/SCK
BACK
BAS E
BEGIN
BL
BLANKS
BLK
BLOC K
BRANCH
BUFFER
BUFS 2
C!
C,
C/L
CQ
CFA
CHANNEL
CLOSE
CMOVE
COLD
COMPILE
CONSTANT
CONTF.XT
CONVERT
COUNT
CR
CREATE
CREATF.-SCREENS
CSP
CURRENT
D+
D+-
D.
D.R
D<
DABS
DEC .
DECIMAL
DEFINITIONS
DEPTH
D IG IT
DISK
DI.ITERAL
DNEGATE
DO
DOES>
DOVEC
DP
DPL
DR/W
DROP
DUP
ELSE
EM IT

EMPTY � BUFFFRS
ENCLOSE
ERAS F.
ERROR
ESCAPE
EXECUTE
EXIT
EXPFC I
EXVEC:
FENCE
FILL
FIND
FIRST
FLUSH
FNAME
FORGET
FORTH
H.
HERE
HEX
HLD
HOLD
I
ID.
IF
IMMEDIATF.
INDEX
IN ITBUF
INITVECS
INTERPRET
J
KEY
KEY '
LAST
LEAVE
LFA.
LIMIT
LIST
LIT
LI'I'ERAL
LOAD
LOOP
M»
M/
M /MOD
MAX
MAXFILES
MESSAGE
MIN
MINBUF
MOD
MODE
MOV E
MSGR

NEGATE
NFA
NOOP
NOT
NOVEC
NUM
NUMBER
OFFSET
OPEN
OR
OS '
OSCLI
OSERROR
OUT
OVER
PAD
PFA
P ICK
PLOT
PREY
PRUNE
QUERY
QUIT
R8
R/W
RO
R:
R;
R>
R !
REPEAT
ROLL
ROT
RP!
RP f<
S->D
S/FILE
SO
SAVE-SUFFERS
SCR
SETBUF
SIGN
SMUDGE
SP!
SPg
SPACE
SPACES
ST -ADDR
START
START -KE YS
STATE
STRING
SWAP
TAPE

TEXT
THEN
TI B
TLD
TO-DO
TOGGLE
TR
TR/W
TRAVERSE
TRIAD
TSV
TW
TYPE
U*
U.
v/
U/MOD
U<
UNT I L
UP DATE
USE
USER
VARIABLE
VLIST
VOC-LINK
VOCABULARY
WARM
WARNING
WBFR
WDS Z
WH I LE
WIDTH
WORD
X
XOR

[COMPILE]
]

166

Glossary

Pronounced: sharp-greater
Stack Action: nd ... addr7count!
Uses/Leaves: 2 2
Status:
Description: Terminates numeric output conversion by
dropping the double number nd and leaving the address
and character count of the converted string in a form
suitable for TYPE

fBUF
sharp-bu f f
 .. addr!
0 1

$/s
Pronounced: sharp-s
Stack Action: ndl ... nd2!
Uses/Leaves: 2 2
Status:
Description: Converts the double-precision number ndl
into ASCII text by repeated use of f, and stores
the text at PAD . The double-precision number nd2 is
left on the stack, and has the value zero. /AS is used
between ft and

168

Pronounced:
Stack Action:
Uses/Leaves:
Status:
Description:
mass-storage
start.

A variable containing the number of
buffers. Initialised to 2 on a cold

Glossary

Pronounced: tick
Stack Action; ... addr!
Status: I during execution!

 during compilation !
Uses/Leaves: 0 0
Description: Used in the form ' nnnn and leaves the
parameter field address of dictionary word nnnn if in
execution mode.

If used within a colon-definition it will execute to
compile the address as a literal numerical value
 preceded by the address of the literal handler
routine, LIT! in the definition.

Pronounced: paren
Stack Action:
Uses/Leaves:
Status: I
Description: Used in the form nnnn ! to insert a
comment. All text nnnn up to a right parenthesis on
the same line is ignored. Since is a FORTH word it
must be followed by a space. A space is not necessary
before ! since it is only used as a delimiter for the
text.

! is pronounced 'close-paren '

169

G1OSSary

~ ~5+!
Pronounced: bracket-dollar-plus
Stack Action: addrl~count3addr2 ...!
Uses/Leaves: 3 0
Status:
Description: The string of length 'count' whose first
character is at addrl is added to the end of the string
whose count byte is at addr2 i.e. whose first
character is at addr2+1!. The count byte at addr2 is
incremented to be the new length of the concatenated
string.

Pronounced: bracket-plus-loop
Stack Action: n ...!
Uses/Leaves: 1 0
Status:
Description: The run � time procedure compiled by
+LOOP . It increments the loop index by the signed
quantity n and tests for loop completion. See +LOOP

 ."!
Pronounced: bracket-dot-quote
Stack Action:
Uses/Leaves:
Status:
Description: The run-time procedure compiled by

It transmits the following in-line text to the
output device. See

170

G1OSSary

Pronounced: bracket-semi-colon-code
Stack Action:
Uses/Leaves:
Status: C
Description: The run-time procedure compiled by ;CODE
that rewrites the code field address of the most
recently defined word to point to the machine code
following ; CODE! . It is used by the system defining
words :>, CONSTANT etc.! to define the machine code
actions of dictionary entries using them. This is, in a
sense, a machine-code version of DOES>

Pronounced: bracket-abort
Stack Action:
Uses/Leaves;
Status:
Description: Clears the data and return stacks and
sets execution mode. Control is returned to the
keyboard interpreter. See ABORT

Pronounced: bracket-c-1-i
Stack Action:
Uses/Leaves:
Status:
Description: The run-time procedure, compiled by
>CLI . It transmits the following in-line text to the
operating system command line interpreter.

G1OSSary

Pronounced: bracket -create
Stack Action:
Uses/Leaves:
Status:
See CREATE

 DO!
Pronounced: bracket -do
Stack Action:
Uses/Leaves:
Status: C
Description: The run-time procedure compiled by DO . It
moves the loop control parameters to the return stack.
See DO

Pronounced: bracket-emit
Stack Action: c ...!
Uses/Leaves: 1 0
Status:
See EMIT

Pronounced: bracket -find
Stack Action: addr13addr2... cfa$b5tf![found]
Uses/Leaves: 2 3
Stact Action: addrl~addr2 ... ff![not found]
Uses/Leaves: 2 1
Status:
Description: Searches the dictionary starting at the
name field address addr2 for a match with the text
starting at addrl. For a successful match the code
field execution! address and length byte of the name

172

G1OSSary
field plus a true flag are left. If no match is found
only a false flag is left.

Pronounced: bracket-key
Stack Action: ... c!
Uses/Leaves: 0 1
Status:
See KEY

Pronounced: bracket-line
Stack Action: n13n2 ...addr5count!
Uses/Leaves: 2 2
Status:
Description: Returns the start address in the mass
storage buffers of the data in line nl of screen n2,
and also the count of characters in the line. A count
of 64 is returned so that a full line of text can be
displayed.

Pronounced: bracket-loop
Stack Action:
Uses/Leaves:
Status:
Description: The run-time procedure compiled by
LOOP . It increments the loop index by one and tests
for loop completion. See LOOP

173

G1OSSary

Pronounced: bracket ~um
Stack Action: addr ...!
Uses/Leaves: 1 0
Status:
See NUM

Pronounced: bracket-open
Stack Action: addr ... b!
Uses/Leaves: 1 1
Status:
Description: Opens a named file for reading and
writing. The name of the file is given by the string
whose first character is at addr and whose last
character is 60D . The eight � bit channel number b is
left on the stack. See CHANNEL , OPEN

Pronounced: bracket-read-write
Stack Action:
Uses/Leaves: 8 4
Status:
Description: A system-dependent routine to read or
write a screen in the disk � filing system. It calls the
operating system routine OSGBPB which is not available
on cassette systems. It is used by R/W in a disk-based
system and is not intended to be executed in any other
circumstance.

174

Glossary

Pronounced: bracket-u-loop
Stack Action:
Uses/Leaves:
Status:
Description: The run-time procedure for an unsigned
version of LOOP . It is used by the system for loops
involving unsigned indices, for example, addresses. It
is not available to the user in the system as provided
but can be made so by entering the following
definition:

3 ?PAIRS COMPILE ULOOP ! BACKULOOP
IMMEDIATE

It may then be used in a colon-definition as:

DO ULOOP

Pronounced: bracket-update
Stack Action:
Uses/Leaves:
Status:
Description: See UPDATE

175

Pronounced: bracket-warm
Stack Action:
Uses/Leaves:
Status:
Description: A routine which returns control to the
keyboard interpreter. It is used by COLD , WARM and the
error-handling procedures. The numeric base is set to
decimal and FORTH becomes both the current and context
vocabularies. The return stack but not the computation
stack! is cleared.

Glossary

Pronounced: bracket -wor d
Stack Action: c ... addr5count!
Uses/Leaves: 1 2
Status:
Description: Scans the input buffer, ignoring leading
occurrences of the delimiter character c, for the next
word. The start address and length of the text up to
the terminating delimiter are left. No text is moved.
See WORD

Pronounced: times
Stack Action: nl~n2 ... n3}
Uses/Leaves: 2 1
Sta'tus:
Description: Leaves as n3 the product of the two
signed numbers nl and n2.

a/
Pronounced: times -divide
Stack Action: nl ~n2$n3 ... n4!
Uses/Leaves: 3 1
Status:
Description: Leaves as n4 the value nl n2 * n3/. The
product nl n2 * is here kept as a double-precision
intermediate value, resulting in a more accurate
result than can be obtained if the operations are
performed independently.

176

Glossary

Pronounced: times -divide~od
Stack Action: nl n23n3 ... n43n5!
Uses/Leawes: 3 2
Status:
Description: Leaves, as n4 and n5 respectively, the
remainder and the integer value of the result of nl
n2 * n3 /MOD . The product nl n2 * is here kept as a
double � precision intermediate value, resulting in a
more accurate result than can be obtained if the
operations are performed independently.

Pronounced: plus
Stack Action: nl n2 ... n3!
Uses/Leaves: 2 1
Status:
Description: Leaves as n3 the sum of nl and n2.

+I

Pronounced: plus -s t ore
Stack Action: n5addr ... !
Uses/Leaves: 2 0
Status:
Description: Adds n to the value at the address addr.

+-

Pronounced: plus minus
Stack Action: n15n2 ... n3!
Uses/Leaves: 2 1
Status:
Description: Leaves as n3 the result of applying
the sign of n2 to nl.

177

Glossary

+BUF

plus -bu f f
 addr1
1 2

addr2 f!

Pronounced: plus -loop
Stack Action: n ...!
Uses/Leaves: 1 0
Status: I,C
Description: Used in colon � definition in the form:

DO ... +LOOP

During execution +LOOP controls branching back to the
corresponding DO , dependent on the loop index and loop
limit. The loop index is incremented by n, which may
be positive or negative. Branching to DO will occur
until

a! for positive n, the loop index is greater than or
equal to the loop limit, or

b! for negative n, the loop index is less than the
loop limit.

Execution then continues with the word following
+LOOP

178

Pronounced:
Stack Action:
Uses/Leaves:
Status:
Description:
start of the
when addr 2
referenced bu

Advances the buffer address addrl to the
next buffer at addr2. The flag is false
is the address of the most recently
ffer.

G1OSSary

Pronounced: plus-origin
Stack Action: n ... addr!
Uses/Leaves: 1 1
Status:
Description: Leaves the address of the nth byte after
the start of the boot-up parameter area . Used to
access or modify the boot-up parameters.

Pronounced: comma
Stack Action: n ...!
Uses/Leaves: 1 0
Status:
Description: Stores compiles ! n in the first two
available bytes at the top of the dictionary and
increments the dictionary pointer by two.

Pronounced: subtract
Stack Action: n15n2 ... n3!
Uses/Leaves: 2 1
Status:
Description: Leaves as n3 the difference nl � n2.

Pronounced: next screen
Stack Action:
Uses/Leaves:
Status: I
Description: Continues interpretation with the next
screen of source code from mass storage.

179

Glossary

Used as, for example,

CONTEXT g I -FIND nnnn

The CONTEXT and FORTH vocabularies are searched for
the word nnnn. If found, the entry's code field
 execution! address, name length byte and a true flag
are left; otherwise just a false flag is left.

Pronounced: dash-trailing
Stack Action: addrinl ... addrin2!
Uses/Leaves: 2 2
Status:
Description: Changes the character count nl of the
text string at the address addr so as not to include
any trailing blanks, and leaves the result as n2.

Pronounced: dot
Stack Action: n ...!
Uses/Leaves: 1 0
Status:
Description: Prints the number n on the terminal
device in the current numeric base. The number is
followed by one blank space.

180

Pronounced:
Stack Action:
Uses/Leaves:
Stack Action:
Uses/Leaves:
Status:
Description:

dash-f ind
 addr ... cfaibitf! [if found]
1 3
 addr ... ff![if not found]
1 1

G1OSSary

Pronounced: dot -quote
Stack Action:
Uses/Leaves:
Status: I
Description: Used as:

CCCC

In a colon � definition the literal string cccc is
compiled together with the execution address of a
routine to transmit the text to the terminal device.

In the execution mode the text up to the second " will
be printed immediately.

Pronounced: dot-line
Stack Action; n15n2 ...!
Uses/Leaves: 2 0
Status:
Description: Print, on the terminal, line nl of screen
n2 from mass storage. Trailing blanks are suppressed.

.R

Pronounced: dot-r
Stack Action: nl~n2 ...!
Uses/Leaves: 2 0
Status:
Description: Print the number nl at the right-hand end
of a field of n2 spaces. Unlike .! no following space
is printed.

181

G1OSSary

o
Pronounced: zero-less
Stack Action: n ... f!
Uses/Leaves: 1 1
Status:
Description: Leaves a true flag if n is less than zero,
otherwise leaves a false flag.

0=

Pronounced: zero-equals
Stack Action: n ... f!
Uses/Leaves: 1 1
Status:
Description: Leaves a true flag if n is equal to zero,
otherwise leaves a false flag .

0!
Pronounced: ze r o -gr e a t e r
Stack Action: n ... f !
Uses/Leaves: 1 1
Status:
Description: Leaves a true flag if n is greater than
zero, otherwise leaves a false flag.

Pronounced: zero-branch
Stack Action: f ...!
Uses/Leaves: 1 0
Status:
Description: The run-time procedure to cause a
conditional branch. If f is false the following
in � line number is added to the interpretive pointer to
cause a forward or backward branch. It is compiled by

IF , UNTIL and WHILE

183

G1OSSary

1+

one � plus
 nl ... n2!
1 1

1�

Pronounced: one-minus
Stack Action: nl ... n2!
Uses/Leaves: 1 1
Status:
Description: Decrements nl by one to give n2.

one ~ord
 c ... addr !
1 1

2»

Pronounced: two-times
Stack Action: nl ... n2!
Uses/Leaves: 1 1
Status:
Description: Fast multiply by two. Equivalent to 2 *

184

Pronounced:
Stack Action:
Uses/Leaves:
Status:
Description:

Pronounced:
Stack Action:
Uses/Leaves:
Status:
Description:
character co
address addr
input stream
WORD

Increments nl by one to give n2.

Similar to WORD, except that the
unt at the beginning of the string at

has a minimum value of 1, even if the
is exhaus ted when 1WORD is ca 1 led� . See

Glossary

2+

Pronounced: two-plus
Stack Action: nl ... n2!
Uses/Leaves: 1 1
Status:
Description: Increments nl by two to give n2.

2-

Pronounced: two ~inus
Stack Action: nl ... n2!
Uses/Leaves: 1 1
Status:
Description: Decrements nl by two to give n2.

2/
Pronounced: two-divide
Stack Action: nl ... n2!
Uses/Leaves: 1 1
Status:
Description: Fast divide by two. Equivalent to 2 /

Pronounced: two-dro
Stack Action: nd
Uses/Leaves: 2 0
Status:
DescriPtion: Drops the double-precision number nd or
two single-precision numbers ! from the stack .

185

Glossary

Pronounced: 79-standard
Stack Action:
Uses/Leaves:
Status:
Description; Can be executed to assure the user that
a FORTH-79 standard system is available. It is the last
word of the FORTH � 79 standard required vocabulary in
the dictionary. FORGETing this or any earlier word will
result in a non � standard system.

Pronounced: colon
Stack Action:
Uses/Leaves:
Status: E
Description: Used to create a colon-definition in the
form

CCCC

Pronounced: semi-colon
Stack Action:
Uses/Leaves:
Status: I,C
Description: Terminates a colon-definition and
further compilation.

stops

187

Creates a dictionary entry for the word CCCC as being
equivalent to the sequence of FORTH words until the
next ;>. Each word in the sequence is compiled into
the dictionary entry, unless it is in the immediate
execution mode.

Glossary

Pronounced: semi -colon-code
Stack Action:
Uses/Leaves:
Status: I,C
Descri'ption: The use of this word requires the
ASSEMBLER vocabulary to be loaded. Use in the form

NNNN ...;CODE ... assembler words! ... END-CODE

Compi lat ion of the def init ion NNNN is terminated and
ASSEMBLER becomes the CONTEXT vocabulary. A defining
word NNNN is created which when executed in the form

NNNN CCCC

will create a new word CCCC. When CCCC is itself
executed its action will be determined by the machine
code following; CODE in NNNN

less � than
 n13n2
2 1

<N
Pronounced: less-sharp
Stack Action:
Uses/Leaves:
Status:
Description: Sets up for numeric output formatting.
The conversion is performed on a double number to
produce text at PAD . See also $P, fP!, fS , SIGN

188

Pronounced:
Stack Action:
Uses/Leaves:
Status:
Description:
n2, otherwise

Leaves a true flag i f nl is less than
leaves a false f lag .

G1OSSary

Pronounced: equals
Stack Action: n13n2 ... f!
Uses/Leaves: 2 1
Status:
Description: Leaves a true flag if nl is equal to n2,
otherwise leaves a false flag.

Pronounced: greater � than
Stack Action: n13n2 ... f!
Uses/Leaves: 2 1
Status:
Description: Leaves a true flag if nl is greater than
n2, otherwise leaves a false flag.

Pronounced: swap-bytes
Stack Action: nl ... n2!
Uses/Leaves: 1 1
Status:
Description: Exchanges the
bytes of nl to give n2.

high and low order

>CLI

Pronounced: to-c � 1-i
Stack Action: addr3count ...!
Uses/Leaves: 2 0
Status: I
Description: In a colon-definition the text starting
at the address addr and of the given length is
compiled, together with the execution address of a
routine to transmit the text to the operating system
command line interpreter. In the execution mode the

189

G1OSSary
Status:
Description: Prints the value contained in the two
bytes starting at the address addr. Equivalent to

Pronounced: query-comp
Stack Action:
Uses/Leaves:
Status:
Description: Issues an error message if not compiling.

?CSP

Pronounced: query-c -s -p
Stack Action:
Uses/Leaves:
Status:
Description: Issues an error message if stack
position differs from that saved in CSP . Used as part
of the compiler security.

? DUP

Pronounced: query-dup
Stack Action: ff ... ff!
Uses/Leaves: 1 1
or
Stack Action: tf ... tf 3tf !
Uses/Leaves: 1 2
Status:
Description: Duplicates the top stack item if it is
true non-zero!.

Glossary

Pronounced: query-error
Stack Action; f3n ...!
Uses/Leaves: 2 0
Status:
Description: Issues error message number n if the
boolean flag f is true. Uses ERROR . The stack is
always empty after an error message.

Pronounced: query � exec
Stack Action:
Uses/Leaves:
Status:
Description: Issues an error message if not executing.

?KEY

Pronounced: q ue r y-ke y
Stack Action: nl ... n2!
Uses/Leaves: 1 1
Status:
Description: Flushes the keyboard buffer of all
characters and tests if a key is being pressed. There
are two cases:

1! If nl is positive, i e. in the range 0 to 32767
inclusive, ?KEY will wait for up to nl hundredths
of a second, constantly testing to see if a key has
been pressed. If a key is pressed within the time
limit its ASCII value will be returned as n2. If
the time limit expires before a key is pressed a
negative number will be returned as n2.

192

Glossary
2! If nl is negative a test will be made to see if a

particular key is pressed at the instant ?KEY is
called. The value of nl determines which key is to
be tes ted according to the table given in the
description of INKEY in the BBC Microcomputer User
Guide page 275!. If the key is pressed n2 will
be returned as -1, otherwise n2 will be zero. These
may be treated as true and false flags
respectively.

Pronounced: query-loading
Stack Action:
Uses/Leaves:
Status:
Description: Issues an error message if not loading
from mass storage.

Pronounced: query-pairs
Stack Action: nl n2 ...!
Uses/Leaves: 2 0
Status:
Description: Issues an error message if nl does not
equal n2. The message indicates that compiled
conditionals IF ... ELSE ... THEN or BEGIN ... UNTIL
etc. ! do not match. It is part of the compiler
security. The error message is given if, for example,
the sequence IF ... UNTIL is found during compilation
of a dictionary entry.

Pronounced: query-stack
Stack Action:
Uses/Leaves;
Status:
Description; Issues an error message if the stack is
out of bounds.

193

G1OSSary

Pronounced: b-slash-screen
Stack Action: ... n!
Uses/Leaves: 0 1
Status:
Description: A constant returning
buffers per 1024 byte screen. In this
is 1 but is included for compat ibi
systems, and to allow reconfiguring of
inter face.

the number of
system the value
lity with other
the mass-storage

BACK

Pronounced:
Stack Action: addr ...!
Uses/Leaves: 1 0
Status:
Description; Calculates the backward branch offset
from HERE to addr and compiles into the next available
dictionary memory address. Used in the compilation
of conditionals AGAIN, UNTIL etc!.

BASE

197

Pronounced:
Stack Action: ... addr!
Uses/Leaves: 0 1
Status:
Description: A user variable containing the current
number base used for input and output conversion.

G1OSSary

Pronounced:
Stack Action:
Uses/Leaves: 0 1
Status: I,C
Description: Used in a colon definition in the forms

BEGIN ... AGAIN
BEGIN ... UNTIL
BEGIN ... WHILE ... REPEAT

BEGIN marks the start of a sequence that may be
executed repeatedly. It acts as a return point from
the corresponding AGAIN, UNTIL or REPEAT

BL

Pronounced: b-1
Stack Action: ... c!
Uses/Leaves: 0 1
Status:
Description: A constant that leaves the ASCII value
for 'blank' or 'space' hex 20!.

Pronounced:
Stack Action: addr3n ...!
Uses/Leaves: 2 0
Status:
Description: Fills n bytes of memory starting at the
address addr with blanks.

198

G1OSSary

BLK

Pronounced: b-1-k
Stack Action: ... addr!
Uses/Leaves: 0 1
Status:
Description: A user variable containing the number of
the mass storage block from which input is being taken .
If BLK contains zero input is taken from the keyboard,

Pronounced:
Stack Action: n ... addr!
Uses/Leaves: 1 1
Status:
Description: Leaves the address of the first byte of
data in block screen ! n. If the block is not already
in memory it is trans ferred from mass storage into
whichever memory bu f fer has least-recent ly been
accessed. If the block occupying that buffer has been
UPDATEd it is written to mass storage before block n is
read into the buffer. Only the data in the latest block
re ferenced by BLOCK is guaranteed not to have been
overwritten.

Pronounced:
Stack Action:
Uses/Leaves:
Status:
Description: The run-time procedure to cause an
unconditional branch. The following in � line value is
added to the interpretive pointer to cause a forward or
backward branch. It is compiled by ELSE , AGAIN and
REPEAT

199

G1OSSary

Pronounced:
Stack Action; n ... addr!
Uses/Leaves: 1 1
Status:
Description: Obtain the next block buffer, assigning
it to block screen! n. The screen is not read from
mass storage but if the previous contents are marked as
UPDATEd they are written to mass storage, freeing the
buffer for use. The address left is the first byte in
the buffer available for data storage.

Pronounced: buf-size
Stack Action: ... n!
Uses/Leaves: 0 1
Status:
Description: A constant giving the total length of a
buffer. Its value is B/BUF +4.

C i

Pronounced: c -s t or e
Stack Action: biaddr ... !
Uses/Leaves: 2 0
Status:
Description: Stores byte b 8 bits ! at the address addr.

C,
Pronounced: c-comma
Stack Action: b ...!
Uses/Leaves: 1 0
Status:
Description: Stores compiles ! b in the next available
dictionary byte advancing the dictionary pointer by one.

200

Glossary

Pronounced.
Stack Action: b ...!
Uses/Leaves: 1 0
Status:
Description: Closes the file whose channel number is
b. If b is zero all open files are closed.

Pronounced: c~ove
Stack Action: from3to count ... !
Uses/Leaves: -3 0
S'tatus:
Description: Moves 'count ' bytes, starting at ' from '
to the block of memory starting at 'to'. The byte at
' from' is moved first and the trans fer proceeds
towards high memory. No check is made as to whether
the destination area overlaps the source area. Nothing
is moved if 'count ' is zero or negative.

COLD

Pronounced:
Stack Action:
Uses/Leaves:
Status:
Description: The cold start procedure used on first
entry to the system. The dictionary pointer and user
variables are initialised from the boot-up parameters
and the system re � started via ABORT! . The mass
storage buffers are cleared, function keys 8 and 9 are
initialised, and printer output is disabled. All
vectored words are set to their default actions. It
may be called from the keyboard to remove all
application programs and restart with the nucleus
dictionary alone.

202

G1OSSary

Pronounced:
Stack Action:
Uses/Leaves:
Status:
Description: COMPILE acts during the execution of the
word containing it . The code field execution ! address
of the word following COMPILE is compiled into the
dictionary instead of executing, cf. [COMPILE]

Pronounced:
Stack Action: n ...!
Uses/Leaves: 1 0
Status:
Description: A defining word used in the form:

n CONSTANT CCCC

It creates a constant CCCC with the value n contained
in its parameter field. When CCCC is executed the
value n will be left on the stack.

Pronounced:
Stack Action: ... addr!
Uses/Leaves: 0 1
Status:
Description: A user variable leaving the address of a
pointer to the VOCABULARY in which a dictionary search
will start.

203

Glossary

Pronounced:
Stack Action: ndliaddrl ... nd2iaddr2!
Uses/Leaves: 3 3
Status:
Description: Converts the text beginning at the
address addrl to the equivalent stack number. The value
is accumulated into double number ndl, with regard to
the current numeric base, being left as nd2. The
address of the first non-convertible character is left
in addr2.

Pronounced:
Stack Action: addrl ... addr2in!
Uses/Leaves: 1 2
Status:
Description: Leaves the address addr2 and byte count
n of a text string starting at addrl, in a form
suitable for use by TYPE . It is assumed that the text
string has its count byte at addrl and that the actual
character string starts at addrl + l.

CR

Pronounced: c -r
Stack Action:
Uses/Leaves:
Status:
Description: Transmits a carriage return and line
feed to the terminal output device.

204

Glossary

Pronounced:
Stack Action:
Uses/Leaves:
Status:
Description: A vectored routine initialised on a cold
start to execute CREATE! which creates a new
dictionary header. Used as

CREATE CCCC

to create a dictionary header for the word CCCC with
the code pointer of UARIABLE . Later execution of CCCC
will therefore leave the address of the first byte of
its parameter field. See also DOES>

Pronounced:
Stack Action:
Uses/Leaves:
Status:
Description: Intended only for use with disk-based
systems. Creates, on the currently selected drive, a
number of files for the storage of source screens. The
disk must previously have been formatted with the
*FORM40 and *FORM80 utilities. The number of files
created is given by MAXFILES and each file contains
S/FILE screens. A total of S/FILE * MAXFILES screens
are created and they are numbered from 0.

205

G1OSSary

DABS

ud! nd
2 2

DEC .

dec-dot
 n ...!
1 0

Pronounced:
Stack Action:
Uses/Leaves:
Status:
Description: Sets BASE to decimal numeric
for input and output.

conversion

208

Pronounced:
Stack Action:
Uses/Leaves:
Status:
Description:
double number

Pronounced:
Stack Action:
Uses/Leaves:
Status:
Description.
format of
BASE

Leaves the absolute value ud of a signed
nd . See ABS

Displays n in DECIMAL base, us ing the
regardless of the current value of

Glossary

Pronounced:
Stack Action:
Uses/Leaves:
Status:
Description: Sets the CURRENT vocabulary
CONTEXT vocabulary. If used in the form:

to the

CCCC DEF IN IT IONS

where CCCC is a VOCABULARY word, all subsequent
definitions will be placed in the vocabulary CCCC

Pronounced:
Stack Action: ... n!
Uses/Leaves: 0 1
Status:

Description: Leaves the number of single-precis ion
values on the stack, not counting n itself.

Pronounced:
Stack Action: c nl ... n25tf!
Uses/Leaves: 2 2 [valid]
Stack Action: c5nl ... ff!
Uses/Leaves: 2 1 [invalid]
Status:
Description: Converts ASCII character c, with base nl,
to its binary equivalent n2 and a true flag. If c is
not a valid character in base nl, then only a false
flag is left.

209

Glossary

DISK

Pronounced:
Stack Action:
Uses/Leaves:
Status:
Description: Switches to the Disk Operat ing System
for mass storage. An error message is given if the Disk
Operating System requires the use of memory allocated
to FORTH . This is the default system in the version
provided on disk.

Pronounced: d-literal
Stack Action: nd ...!
Uses/Leaves: 2 0 [compilingj
Status: I
Description: In the compiling state a double number
nd is compiled as a double literal number in the
dictionary. Later execution of the word including this
literal number will replace nd on the stack.

In the execution mode DLITERAL has no effect

d-negate
 ndl ... nd2!
2 2

210

Pronounced:
Stack Action:
Uses/Leaves:
Status:
Description:
ndl, leaving

Change the sign of the double number
it as nd2.

Glossary

Pronounced:
Stack Action: nl~n2 ... !
Uses/Leaves: 2 0
Status: I,C
Description: May only be used within a colon-definition
in the forms

nl n2 DO ... LOOP
nl n2 DO ... +LOOP

This is the equivalent of a FOR ... NEXT loop in BASIC,
repeating a sequence of operations a fixed number of
times. The value of nl is the loop limit and n2 is the
initial value of the loop index. The loop terminates
when the loop index equals or exceeds the limit. The
sequence of operations in the loop will always be
executed at least once. See I , LOOP , +LOOP , LEAVE

Pronounced: does-greater
Stack Action:
Uses/Leaves:
Status:
Description: Used with CREATE in the form:

NNNN CREATE ... DOES>

It creates a new defining word NNNN . Executing NNNN in
the form

NNNN CCCC

creates a new word CCCC whose parameter area is
allocated by the words following CREATE and whose
action is governed by the words following DOES> in
NNNN

211

Glossary

do-vec
 addr3pfa ... !
2 0

DP

Pronounced: d-p
Stack Action: ... addr!
Uses/Leaves: 0 1
Status:
Description: The dictionary pointer, a user variable
which leaves the address addr, whose contents point to
the first free byte at the top of the dictionary.

DPL

Pronounced: d-p-1
Stack Action: ... addr!
Uses/Leaves: 0 1
Status:
Description: A user variable which may be used to
contain information about the position of the decimal
point in a number. Not used in the system provided.

DR W

Pronounced: disk-read-write
Stack Action: addr$n5f ... !
Uses/Leaves: 3 0
Status:
Description: See R/W

212

Pronounced:
Stack Action:
Uses/Leaves:
Status:
Description:
to its code
result at the
execution vec

Converts the parameter field address pfa
field execution! address and stores the
address addr. Used in the reassignment of

tors .

Glossary
character c to the output device. The contents of OUT
are incremented for each character output. The stack
value is masked to a 7-bit value before transmission.

Pronounced:
Stack Action:
Uses/Leaves:
Status:
Description: Fill the whole of the mass storage
buffer area with zeros. No data is written to mass
storage.

n3Text at ad dr nl n2

6
4

3 1

ccABCDcc
ABCDcc
ABCOc c
Occc

214

Pronounced:
Stack Action: addr c ... addr3n13n23n3!
Uses/Leaves: 2 4
Status:
Description: The text-scanning primitive used by
WORD . The text starting at the address addr is
searched, ignoring leading occurrences of the
delimiter c, until the first non-delimiter character is
found. The offset from addr to this character is left
as nl. The search continues from this point until the
first delimiter after the text is found. The offsets
from addr to this delimiter and to the first character
not included in the scan are left as n2 and n3
respectively. The search will, regardless of the value
of c, stop on encountering an ASCII null �! which is
regarded as an unconditional delimiter. The null is
never included in the scan .

Examples:

G1OSSary

Pronounced:
Stack Action: addr$n ... !
Uses/Leaves: 2 0
Status:
Description: Sets n bytes of memory starting
address addr to contain zeroes.

at the

Pronounced:
Stack Action:
Uses/Leaves:
Status:
Description: Prints the message 'Escape' and re-enters
the system via QUIT . This is the routine executed when
the ESCAPE key is pressed.

Pronounced:
Stack Action: addr ... !
Uses/Leaves: 1 0
Status:
Description; Executes the definition whose code field
 execution! address is on the stack.

215

Pronounced:
Stack Action: n ...!
Uses/Leaves: 1 0
Status:
Description: Gives a notification of error number
n. After a cold start this is in the form of an error
number followed by a system ABORT . The vectored
rout ines MESSAGE and ABORT are used and may there fore
be reassigned by the user to modify the error response.

Glossary

Pronounced:
Stack Action:
Uses/Leaves: 0 0
Status:
Description: When compiled within a colon-definition,
terminates execution of the definition at that point.
It may not be used within a DO ... LOOP . It is also
used to terminate the interpretation of mass storage.

Pronounced:
Stack Action: addr3count ...!
Uses/Leaves: 2 0
Status:
Description: Transfers characters from the keyboard
to the memory starting at the address addr until a
 RETURN! &OD! is found, or until the maximum count of
characters has been received. Backspace deletes
characters from both the display and the memory area
but will not move past the starting point at the
address addr. One or more nulls are added at the end of
the text. Control characters are passed to the VDU but
are not transferred to memory at the address addr.

Pronounced:
Stack Action:
Uses/Leaves:
Status:
Description: Used in the form:

EXVEC: NNNN

It creates an execution-vectored word NNNN , initially
assigned to execute NOVEC which gives an error message.
The action of NNNN should then be assigned to execute
some other word CCCC by the use of

216

GlOSSary
ASSIGN NNNN TO-DO CCCC

The action of NNNN may be reassigned at any time, when
all previously compiled uses of NNNN will be changed to
the new assignment.

Pronounced:
Stack Action: addr ...!
Uses/Leaves: 1 0
Status:
Description: A user variable containing an address
below which the user is not allowed to FORGET . In
order to use FORGET on an entry below this point it is
necessary to alter the contents of FENCE

FILL

Pronounced:
Stack Action: addr3n3b ... !
Uses/Leaves: 3 0
Status:
Description: Fills n bytes of memory starting at the
address addr with the value b.

FIND

Pronounced:
Stack Action: ... addr!
Uses/Leaves: 0 1
Status:
Description: Used as

FIND NNNN

and leaves the code field execution ! address of the
next word name NNNN found in the input stream. If that
word cannot be found in a search of CONTEXT and then
FORTH , zero is left.

217

Glossary

Pronounced:
Stack Action: ... addr!
Uses/Leaves: 0 1
Status:
Description: A constant that leaves the address addr
of the first byte of the mass storage buffer area.

Pronounced:
Stack Action:
Uses/Leaves:
Status:
Description: Transfers all UPDATEd screens from the
buffers to mass storage, marking all buffers as empty.

Pronounced: file-name
Stack Action; ... addr!
Uses/Leaves: 0 1
Status:
Description: Gives the address of the start of an
8-byte region of memory containing the name of the
last-used disk file. The contents of this memory should j
not be changed by the user.

Pronounced:
Stack Action:
Uses/Leaves:
Status: E
Description: Used in the form:

FORGET CCCC

218

Glossary

HEX

Pronounced:
Stack Action:
Uses/Leaves:
Status:
Description: Sets the numeric
sixteen hexadecimal !.

conversion BASE to

HLD
Pronounced: h-1-d
Stack Action: ... addr!
Uses/Leaves: 0 1
Status:
Description: A user variable containing the address
of the latest character of text produced during
numeric output conversion by fi' !.

Pronounced:
Stack Action: c ...!
Uses/Leaves: 1 0
Status:
Description: Used between � and $i'! to insert an
ASCII character c into a converted numeric string. 2E
 hex! HOLD will place a decimal point in the string.

Pronounced:
Stack Action: ... n !
Uses/Leaves: 0 1
Status: C
Description: Used in a DO ... LOOP to place the
current value of the loop index on the stack. It must
be used at the same level of nesting as the DO ... LOOP
i.e. it will not operate correctly if included in a
colon-definition word between DO and LOOP

220

Glossary

HID.
i-d-dot

 addr ...!
1 0

IF

Pronounced:
Stack Action: f ...!
Uses/Leaves: 1 0
Status: P,C
Description: Used in a colon-definition in the forms

a! IF true ! ... THEN
' o! Tr true! ... ELSE talse! ... THEN

If the flag f is true, the sequence of words after IF
is executed and execution is then transferred to the
word immediately following THEN . If f is false,
execution transfers

a! to the word following THEN , or
b ! to the sequence of words following ELSE and

subsequently to the first word after THEN

Pronounced:
Stack Action:
Uses/Leaves:
Status:
Description: Sets the precedence bit of the most
recently defined word so that it will execute rather
than being compiled during the compilation of. a word
definition. See [COMPILE]

221

Pronounced:
Stack Action:
Uses/Leaves:
Status:
Description:
field address

Prints the name of a word from its name
on the stack.

Glossary

Pronounced: init-buf
Stack hction:
Uses/Leaves:
Status:
Description: Initialises the
to hold the number of screens
MINBUF and marks all buffers
buffers is also stored in the

mass storage buffer area
contained in the constant
as empty. The number of

variable fkBUF

Pronounced: init-vecs
Stack Action:
Uses/Leaves:
Status:
Description: Initialises all vectored words in the
nucleus dictionary to their default assignments.

222

Pronounced:
Stack hction: n13n2 ... !
Uses/Leaves: 2 0
Status:
Description: Lists the first lines of screens nl to
n2 inclusive from mass storage.

Glossary

Pronounced:
Stack Action:
Uses/Leaves:
Status:
Description: The outer text interpreter which either
executes or compiles a text sequence, depending on
STATE , from the current input buffer terminal or
tape!. If the word name cannot be found after a search
of the CONTEXT and then the FORTH vocabularies, it is
converted to a number using the current base. If this
conversion also fails an error message is given.

If a decimal point is found as the last character of a
number a double number will be left on the stack. The
number itself will not contain any reference to the
decimal point.

 ... n!
0 1

LOOP ... LOOP

KEY

Pronounced:
Stack Action: ... c!
Uses/Leaves: 0 1
Status:
Description: A vectored routine initialised on a
cold start to execute KEY! which leaves the ASCII

223

Pronounced:
Stack Action:
Uses/Leaves:
Status:
Description:
loop . It may
the form

Returns the index of the next outer
only be used within a nested DOLOOP of

Glossary
value of the next available character from the current
input device.

KEY'

Pronounced: key-quote
Stack Action: n ...!
Uses/Leaves: 1 0
Status:
Description: Used in the form:

n KEY' text

It programs user-defined key n to execute the following
text, up to the terminating single quote. A RETURN!
may be embedded in the text by including IM, as
described in chapter 25 of the BBC Microcomputer User
Guide. When used in a colon-de f in it ion n mus t be
either a literal numeric value or a constant appearing
immediately before KEY'

LAST

Pronounced:
Stack Action: ... addr!
Uses/Leaves: 0 1
Status:
Description: Leaves the name field address of the
most recently defined word in the CURRENT vocabulary.

Pronounced:
Stack Action:
Uses/Leaves:
Status: C
Description: Forces the termination of a DO ... LOOP
at the first following time that LOOP or +LOOP is
reached. This is done by setting the loop limit equal
to the current value of the loop index, which is not
changed. Fxecution will continue normally until
224

Glossary
reaching LOOP or +LOOP

LFA

Pronounced: 1-f-a
Stack Action: pfa ... lfa!
Uses/Leaves: 1 1
Status:
Description: Converts the parameter field address pfa
to its link field address lfa.

Pronounced:
Stack Action: ... addr!
Uses/Leaves: 0 1
Status:
Description: A constant leaving the address of the
first byte after the highest memory available for the
tape I/O buffer.

LIST

Pronounced:
Stack Action: n ...!
Uses/Leaves: 1 0
Status:
Description: Lists screen n. If screen n is not in
the buffers it is read from mass storage. The numeric
conversion base is set to DECIMAL.

225

Glossary
returns to the original input stream. Screen 0 may not
be loaded.

LOOP

Pronounced:
Stack Action:
Uses/Leaves:
Status: I,C
Description: Used in a colon-definition in the form:

DO ... LOOP

During execution LOOP controls branching back to the
corresponding DO , dependent on the loop index and loop
limit. The loop index is incremented by one and tested
against the loop limit. Branching to DO continues
until the index is equal to or greater than the limit
when execution continues with the word following
LOOP

Pronounced: m-times
Stack Action: n15n2 ... nd !
Uses/Leaves: 2 2
Status:
Description: Leaves as the double-precision number nd
the signed product of the two signed single~recision
numbers nl and n2.

~/
Pronounced: m-divide
Stack Action: nd3nl ... n2~n3!
Uses/Leaves: 3 2
Status:
Description: Leaves, as the single numbers n2 and n3
respectively, the signed remainder and signed quotient
from the division of the double number dividend nd by
the single number divisor nl. The sign of the

227

Glossary
remainder is that of the dividend.

Pronounced: m-d iv i de -mod
Stack Action: udl u2 ... u33ud4!
Uses/Leaves: 3 3
Status:
Description: Leaves, as the double number ud4 and the
single number u3 respectively, the quotient and
remainder from the division of the double number
dividend udl by the single number divisor u2. All are
unsigned integers .

Pronounced:
Stack Action: n13n2 ... max!
Uses/Leaves: 2 1
Status:
Description: Leaves as max the larger of nl

Pronounced:
Stack Action:
Uses/Leaves:
Status:
Description: A constant returning the maximum number
of mass � storage files used to store screens in a
disk-based system. It is initally set to
the use of double-dens ity drives . See CREATE � SCREENS

228

G1OSSary

 nl ... n2!
1 1

NFA

Pronounced: n-f-a
Stack Action: pfa ... nfa!
Uses/Leaves: 1 1
Status:
Description: Converts the parameter field address of
a definition to its name field address.

Pronounced: no-op
Stack Action:
Uses/Leaves:
Status:
Description: A no-operation in FORTH. One possible
use is to reserve address space in a colon-definition
for later overwriting by the execution address of a
subsequent definition.

NOT

Pronounced:
Stack Action: fl ... f2!
Uses/Leaves: 1 1
Status:
Description: Reverse the boolean value of fl leaving
the result as f2. It is identical to 0=

231

Pronounced:
Stack Action:
Uses/Leaves:
Status:
Description:
result as n2.
complement.

Changes the sign of nl and leaves the
The sign is changed by forming the two 's

Glossary

Pronounced:
Stack Action: addr ... nd !
Uses/Leaves: 1 2
Status:
Description: Converts the character string starting
with a character count byte at the address addr to the
signed double number nd using the current numeric base.
If a valid numeric conversion is not possible an error
message will be given . The string may contain a
leading negative sign and a trailing decimal point. The
decimal point is ignored by NUMBER

Pronounced:
Stack Action: ... addr!
Uses/Leaves: 0 1
Status:
Description: A user variable which may contain a
block screen! offset for mass storage. The contents of
OFFSET are added to the screen number on the stack by
BLOCK . It is initialised to zero on a cold start.

OPEN

Pronounced:
Stack Action: addr ... !
Uses/Leaves: 1 0
Status:
Description: Opens a named file for reading and
writing. The name of the file starts at the address
addr, as described in OPEN! . If the file is opened
successfully its channel number is stored in the
variable CHANNEL . If the attempt to open the file does
not succeed an error message is given and the previous
contents of CHANNEL are maintained.

233

Glossary

OR

Pronounced:
Stack Action: n13n2 ... or!
Uses/Leaves: 2 1
Status:
Description: Leaves as 'or' the bit-by-bit logical OR
of nl and n2.

OS'

Pronounced: o-s-quote
>tacL action:
Uses/Leaves:
Status: I
Description: Used as

OS' text

to transmit text to the operating system command line
interpreter. In compile mode the text is compiled
together with the address of a routine to transmit the
text to the command line interpreter. In execution mode
the text is transmitted directly. The required closing
60D is supplied automatically.

Pronounced:
Stack Action: addr ...!
Uses/Leaves: 1 0
Status:
Description: The machine code routine used to
transfer the text string, whose first character is at
the address addr and which has a terminat ing 60D, to
the operating system command line interpreter.

234

G1OSSary

Pronounced: o-s-error
Stack Action:
Uses/Leaves:
Status:
Description: The routine executed when an operating
system error is detected. The error message number is
given in decimal base and the relevant operating system
error message is displayed. Control is returned to the
keyboard via WARM!

OUT

Pronounced:
Stack Action: ... addr!
Uses/Leaves: 0 1
Status:
Description: A user variable containing a value that
is incremented by EMIT . It may be examined and
changed by the user to control display formats.

OVER

Pronounced:
Stack Action: nlin2 ... nlin2inl!
Uses/Leaves: 2 3
Status:
Description: Copies the second stack item over the
top item.

235

Glossary

Pronounced:
Stack Action:
Uses/Leaves:
Status:
Description: Inputs up to 80 characters terminated by
 RETURN> &OD! from the keyboard. The text is stored
in the terminal input buffer whose address is given by
TIB . The value of >IN is set to zero in preparation
for interpretation by INTERPRET !.

Pronounced:
Stack Action:
Uses/Leaves:
Status:
Description: Clears the return stack, stops and
returns control to the keyboard. No message is given.

R$f
Pronounced: r-sharp
Stack Action: ... addr!
Uses/Leaves: 0 1
Status:
Description: A user variable which contains the
location of the editing cursor for the Editor.

238

Glossary

R/W
Pronounced: read-write
Stack Action: addrnf ... !
Uses/Leaves: 3 0
Status:
Description: A vectored routine to perform mass
storage read/write operations. It is initialised on a
COLD start to execute either TR/W tape version! or
DR/W disk version!. The flag f indicates read true !
or write false!. Screen n is transferred to or from
the mass storage buffer whose first byte of data is at
the address addr.

RO

Pronounced: r-zero
Staclt Action: ... addr!
Uses/Leaves: 0 l
Status:
Description: A user variable containing the initial
address of the top of the return stack.

R:

Pronounced: r-colon
Stack Action:
Uses/Leaves:
Status:
Description: A recursive version of <:> used as

R: NNNN R;

With this form of colon-definition references may be
made from within the definition to the name NNNN
itself. It should be used with care since any error
during compilation will leave the incomplete definition
in an executable form.

239

G1OSSary

R;
Pronounced: r-semi-colon
Stack Action:
Uses/Leaves:
Status:
Description: The form of ;> used to terminate a
recursive colon-definition.

R>

Pronounced: r � f r om
Stack Action: ... n!
Uses/Leaves: 0 1
Status:
Description: Removes the top value from the return
stack and leaves it on the computation stack. See >R

Rg
r-fetch
 ... n!
0 1

240

Pronounced:
Stack Action
Uses/Leaves:
Status:
Description:
computation
I

Copy the top of the return stack to the
stack. The action is identical to that of

G1OSSary

Pronounced:
Stack Action:
Uses/Leaves:
Status: I
Description: Used in a colon-definition in the form:

BEGIN ... WHILE ... REPEAT

In execution REPEAT forces an unconditional branch back
to BEGIN

1 ROLL has no effect
2 ROLL is equivalent to SWAP
3 ROLL is equivalent to ROT

No action is taken if n is less than l.

ROT

Pronounced:
Stack Action: nl,n2,n3 ... n2,n3,nl!
Uses/Leaves: 3 3
Status:
Description: Rotates the top three items
stack, bringing the third item to the top.

on the

241

Pronounced:
Stack Action: n ...!
Uses/Leaves: 1 1
Status:
Description: Rotates the top n stack items so that the
nth item is moved to the top .

Glossary

RP t

Pronounced: r � p-store
Stack Action:
Uses/Leaves:
Status:
Description: Initialises the return stack pointer.

RP

Pronounced: r-p-fetch
Stack Action: ... addr!
Uses/Leaves: 0 1
Status:
Description: Leaves the address of the return stack
pointer. Note that this points one byte below the last
return stack value.

Pronounced: s-to-d
Stack Action: n ... nd!
Uses/Leaves: 1 2
Status:
Description: Leaves as nd the signed single-precision
number n converted to the form of a signed
double � precision number with unchanged value!.

Pronounced: s-per-f i le
Stack Action: ... n!
Uses/Leaves: 0 1
Status:
Description: A constant
screens per disk file.

returning the number of

242

Glossary

Pronounced:
Staclr. Action: n5nd ... nd !
Uses/Leaves: 3 2
Status:
Description: Stores an ASCII ' � ' sign in the
converted numeric output string at PAD if n is
negative. The sign of n is usually that of the double
number to be converted. Although n is discarded the
double number nd is kept either for further conversion
or to be dropped by]P! . SIGN may only be used
between ft and

Pronounced:
Stack Action:
Uses/Leaves;
Status:
Description: TOGGLEs the 'smudge bit ' in the name
header of the most recently created definition in the
CURRENT vocabulary. This switches between enabling and
disabling the finding of the entry during a dictionary
search.

The name field is smudged during the definition of a
word to prevent the incomplete definition from being
found, and then smudged again on completion .

sp!

Pronounced: s-p-store
Stack Action:
Uses/Leaves:
Status:
Description: Initialises the computation stack pointer
 i.e. clears the stack!.

244

Glossary

Pronounced:
Stack Action:
Uses/Leaves:
Status:
Description: The high-level entry point to FORTH on a
cold start. The computation and return stacks are
cleared. Any applications dictionary is discarded and
all vectored words are initialised to their default
values. The mass storage buffers are initialised to the
number of buffers given by MINBUF and marked as being
empty; OFFSET is set to zero. User-defined keys 8 and 9
are programmed for the correct WARM and COLD entry
points respectively and printer output is disabled.
Control is passed to the keyboard interpreter via
 ABORT !

Pronounced:
Stack Action:
Uses/Leaves:
Status:
Description: Initialises the user-defined keys 8 and
9 to perform a warm and cold start respectively. These
functions are best used only after the BREAK key has
been pressed.

Pronounced:
Stack Action: ... addr !
Uses/Leaves: 0 1
Status:
Description: A user variable indicating the state of
compilation. A zero value indicates execution and a
non-zero value indicates compilation.

246

Glossary

Pronounced:
Stack Action: c ... addr3count!
Uses/Leaves: 1 2
Status:
Description: Uses the delimiter character with ASCII
code c to accept text from the input stream up to the
first appearance of the delimiter. The address of the
first character of the string and its length are left.
The delimiter may be any character except a space; a
null �0! is regarded as an unconditional delimiter.

Pronounced:
Stack Action: n15n2 ... n2 nl!
Uses/Leaves: 2 2
Status:
Description: Exchanges the top two items on the
stack.

Pronounced:
Stack Action:
Uses/Leaves:
Status:
Description: Selects the tape operating system . This
is the default system in the version provided on tape.

247

G1OSSary

Pronounced: tape-read-write
Stack Action: addrnf ... !
Uses/Leaves: 3 0
Status:
Description: The Cassette Operating System version of
R/W. This is the default routine in systems provided on
tape. See R/W

Pronounced:
Stack Action: addr13n ... addr2!
Uses/Leaves: 2 1
Status:
Description: Moves across the name field of a
dictionary entry. If n=l, addrl should be the address
of the name length byte i.e. the NFA of the word! and
the movement is towards high memory. If n= -1, addrl
should be the last letter of the name and the movement
is towards low memory. The addr2 that is left is the
address of the other end of the name.

Pronounced:
Stack Action: n ...!
Uses/Leaves: 1 0
Status:
Description: Performs a form-feed and then lists the
three screens which start at a multiple of 3 and
contain screen n. The format is suitable for a standard
page of continuous printer stationery.

250

Glossary

TSV

Pronounced: tape-save
Stack Action:
Uses/Leaves:
Status:
Description: Uses the Operating System command line
interpreter to save a screen to tape. Used by TW

TW

Pronounced: tape-write
Stack Action: addr3n ... !
Uses/Leaves: 2 0
Status:
Description: Saves the 1024 bytes starting at the
address addr to tape as screen n. The screen number, as
a four-digit hexadecimal number, is used as the file
name.

TYPE

Pronounced:
Stack Action: addr3count ... !
Uses/Leaves: 2 0
Status:
Description: Transmits 'count' characters of a string
starting at the address addr to the output device.

U*

Pronounced: u-times
Stack Action: ul u2 ... ud!
Uses/Leaves: 2 2
Status:
Description: Leaves the unsigned double-precision
product of two unsigned numbers.

251

Glossary

U.

u-dot
 n ...!
1 0

Transmits the 16-bit value n to the
n is represented as an unsigned integer

nt numeric conversion base. A trailing
ted.

v/
u-divide
 ud!ul ... u23u3!
3 2

Pronounced:
Stack Action:
Uses/Leaves:
Status:
Description:
unsigned quoti
double number
No protection
division by ze

Pronounced: u-dividend
Stack Action: ud!ul ... u2 u3!
Uses/Leaves: 3 2
Status:
Description: The action is similar to that of U/
except that an error message is given if division by
zero is attempted. All other division words use U/MOD
as their basis and are therefore protected against
division by zero.

252

Pronounced:
Stack Action:
Uses/Leaves:
Status:
Descript ion:
output device
in the curre
space is prin

Leaves the unsigned remainder u2 and
ent u3 from the division of the unsigned
dividend ud by the unsigned divisor ul.
is given against arithmetical overflow or
ro.

Glossary

u
Pronounced: u-less-than
Stack Action: un17un2 ... f!
Uses/Leaves: 2 1
Status:
Description: Unsigned comparision. Leav s a true flag
if unl is less than un2, otherwise leaves a false
f lag.

Pronounced:
Stack Action: f ...!
Uses/Leaves: 1 0
Status: I,C
Description: Used in a colon � definition in the form

BEGIN ... UNTIL

If f is false execution branches back to the
corresponding BEGIN

If f is true execution continues with the next word
after UNTIL

Pronounced:
Stack Action:
Uses/Leaves:
Status:
Description: A vectored routine, initialised on a
cold start, to execute UPDATE! which marks the current
editing screen as having been changed. Any UPDATEd
screen will be saved automatically before its buffer is
reused. In a tape-based system its action is modified
to execute NOOP, to simplify the use of the Editor.

253

Glossary

USE

 ... addr!
0 1

USER

Pronounced:
Stack Action: n ...!
Uses/Leaves: 1 0
Status:
Description: A defining word used in the form:

n USER GGGG

It creates a user variable CCCC , execution of which
leaves the address, in the user area, of the value of
CCCC . The value of n is the offset from the start of
the user variable area to the memory location � bytes !
in which the value is stored. The value is not
initialised. Offsets from 0 to &30 inclusive are used
by the system.

Pronounced:
Stack Action:
Uses/Leaves:
Status:
Description: A defining word used in the form:

VARIABLE CCCC

It creates a variable CCCC with initial value zero.
Execution of CCCC leaves the address, in the parameter

254

Pronounced:
Stack Action:
Uses/Leaves:
Status:
Description:
mass storage
written.

A variable containing the address of the
buffer to use next, as the least recently

Glossary
area of CCCC, containing the value.

Pronounced: v-list
Stack Action:
Uses/Leaves:
Status:
Description: Display, on the output device, a list of
the names of all words in the CONTEXT vocabulary and
any other vocabulary to which the CONTEXT vocabulary
is chained. All VLISTs will therefore include a listing
of the words in the FORTH vocabulary. The listing
can be interrupted by pressing the TAB key and resumed
by pressing the Space Bar. If, after interruption, any
key except the Space Bar is pressed, the listing will
be aborted.

Pronounced: voc-link
Stack Action: ... addr !
Uses/Leaves: 0 1
Status:
Description: A user variable containing the address
of a vocabulary link field in the word which defines
the most recently created vocabulary. All vocabularies
are linked through these fields in their defining
words .

Pronounced:
Stack Action:
Uses/Leaves:
Status: E
Description: A defining word used in the form:

VOCABULARY CCCC

255

Glossary
It creates a defining word for a vocabulary with name
CCCC . Execution of CCCC makes it the CONTEXT
vocabulary in which a dictionary search will start.
Execution of the sequence

CCCC DEFINITIONS

will make CCCC the CURRENT vocabulary into which new
definitions are placed. Vocabulary CCCC is so linked
that a dictionary search will also find all words in
the vocabulary in which CCCC was originally defined.
All vocabularies, therefore, ultimately link to FORTH

By convent ion al 1 vocabulary def ining words are
dec lared IMMEDIATE

WARM

Pronounced:
Stack Action:
Uses/Leaves:
Status:
Description: Performs a warm start. The stacks are
cleared. The CURRENT and CONTEXT vocabularies are set
to FORTH, and DECIMAL numeric base is selected. No
other initialisation takes place. In particular the
user's dictionary and the contents of the buffers are
preserved. All vectored routines maintain their current
assignments.

Pronounced:
Stack Action: ... addr!
Uses/Leaves: 0 1
Status:
Description: A user variable whose value can be used
to determine the action on detection of
non � Operating System errors. A negative value will
cause execution of ABORT when an error occurs,
otherwise an error message is given. The user may, by
reassigning MESSAGE, test for a positive value to
control the form of error message given. The value is

256

Glossary
initialised to zero on a cold start.

WBFR

Pronounced: word-buffer
Stack Action: ... addr!
Uses/Leaves: 0 1
Status:
Description: A constant returning the address of the
first byte of the buffer used by WORD

WDS Z

Pronounced: word-size
Stack Action: ... n!
Uses/Leaves: 0 1
Status:
Description: A constant returning the length in
bytes of the buffer used by WORD . It is set to a
value of 258, allowing strings of up to 256 WDSZ 2!
characters to be handled.

Pronounced:
Stack Action: f ...!
Uses/Leaves: 1 0
Status: I,C
Description: Used in a colon-definition in the form:

BEGIN ... WHILE ... REPEAT

WHILE tests the top value on the stack. If it is true
execution continues to REPEAT which forces a branch
back to BEGIN . If f is false execution skips to the
first word after REPEAT . See BEGIN

257

Glossary

Pronounced:
Stack Action; ... addr!
Uses/Leaves: 0 1
Status:
Description: A user variable containing the maximum
number of letters saved during the compilation of a
definition's name. It must be a value between 1 and 31
inclusive and has a default value of 31. The value may
be changed at any time provided it is kept within the
above limits. Use of a value less than 3 is not
recommended.

Pronounced:
Stack Action: c ... addr!
Uses/Leaves: 1 1
Status:
Description: Accepts characters from the input stream
until the non-zero delimiting character c is
encountered, or the input stream is exhausted. Leading
delimiters are ignored. The characters are stored as a
packed string with the character count in the first
position. The actual delimiter encountered c or null!
is stored at the end of the text but not included in
the count. If the input stream is exhausted when WORD
is called then a zero length will result. The address
of the count byte of the string is left on the stack.

258

Glossary

Pronounced: bracket � compi le
Stack Action:
Uses/Leaves:
Status: I,C
Description: Used in the creation of a colon-definition
to force the compilation of an IMMEDIATE word which
would otherwise execute. The most frequent use is with
vocabulary words for example.

[COMPILE] FORTH

to delay the change of the CONTEXT vocabulary to FORTH
until the word containing the above sequence executes.

Pronounced: right-bracket
Stack Action:
Uses/Leaves:
Status:
Description: Used during execution mode to force
compilation of the subsequent input. See [

260

Appendix A
The FORTE-79 Standard

1 System requirements

The minimum requirements of the host computer are given
below. The resources provided in Acornsoft FORTH are
given in brackets.

2000 S000 min ! bytes of memory for application
dictionary.
Data stack of 64 �2! bytes.
Return stack of 48 �34! bytes.
Mass storage capacity of 32 90 or more! blocks,
numbered consecutively from zero.
One ASCII input/output device acting as an
opera t or ' s terminal keyboard+VDU! .

2!
3!
4!

2 Required word set

A FORTH-79 Standard system must include all words in
the Required Word Set. This word set is given below,
divided into groups to show like characteristics. The
lower case entries refer to the run-time code
corresponding to a compiling word and need not be
present as a dictionary entry separate from the
corresponding compiling word.

261

The FORTH-79 Standard document, produced by the FORTH
Standards Team and distributed by the FORTH Interest
Group, specifies the requirements of a 79-standard
system. Copies of this document are available from the
FORTH Interest Group UK see Appendix E!.

Nucleus words

! * */ */MOD + +! +loop � /MOD 0< 0= 0> 1+
1 � 2+ 2- < = » R ?DUP Q ABS AND BEGIN C!
Cg colon CMOVE constant create D+ D< DEPTH
DNEGATE do does> DROP DUP else EXECUTE EXIT
FILL I if J LEAVE 1iteral loop MAX MIN MOD
MOVE NEGATE NOT OR OVER PICK R> Rg repeat ROLL
ROT semicolon SWAP then U* U/ until variable
--h i le XOR

Inter reter words

f, f> KS ' -TRAILING 79-STANDARD <K >IN ?
ABORT BASE BLK CONTEXT CONVERT COUNT CR CURRENT
DECIMAL EMIT EXPECT FIND FORTH HERE HOLD KEY
PAD QUERY QUIT SIGN SPACE SPACES TYPE U. WORD

+LOOP , ." : ; ALLOT BEGIN COMPILE CONSTANT
CREATE DEFINITIONS DO DOES> ELSE FORGET IF
IMMEDIATE LITERAL LOOP REPEAT STATE THEN UNTIL
VARIABLE VOCABULARY WHILE [[COMPILE]]

Device words

BLOCK BUFFER EMPTY-BUFFERS LIST LOAD SAVE-BUFFERS
SCR UPDATE

3 Usage requir~nts

A FORTH Standard program may reference only the
definitions of the Required Word Set, and definitions
which are subsequently defined in terms of these words.
Furthermore, a FORTH Standard program must use the
standard words as required by any conventions of the
Standard. Equivalent execution on any FORTH-79 Standard
system must result from Standard programs.

In a Standard program the user may only operate on data
which was stored by the application.

262

A Standard program may address:

1! parameter fields of variables, constants and DOES>
words. A DOES> word's parameter field may only be
addressed with respect to the address left by
DOES> itself.

2 ! dictionary space ALLOTed.

3! data in mass storage block buffers.

4! the user area and PAD

A Standard program may NOT address:

1 ! directly into the data or return stacks .

2! into a definition 's name field, link field or code
field.

3! into a definition 's parameter field if not stored
by the application.

FORTH Standard definitions may not be redefined in a
Standard system or Standard program.

*IMPORTklilT NOTE
These restrictions are severe. It must be emphasised
that the demonstrations and applications in this manual
are not intended to be Standard programs.

4 Error conditions

A number of words in the FORTH-79 Standard have an
associated error condition and the system action for
each of these must be specified. The following list
gives the action in Acornsoft FORTH for each error
condition. All other errors are described either in
chapter 13 or in the individual glossary entries for
the words concerned.

An error condition exists if the word
following '> can not be found in either the
CONTEXT or FORTH vocabularies� . The word 's
name is repeated, followed by a question mark
and control is returned to the keyboard via
ABORT

263

There is an error condition if the input
stream is exhausted before a right
parenthesis is found. The comment is simply
terminated.

A negative string length count on the stack
is an error condition. An error message is
given.

-TRAILING

There is an error condition if the input
stream is exhausted before a < > is found.
In this case the string is terminated and no
other action is taken .

If, during compilation, a word is encountered
that cannot be found in the CURRENT or FORTH
vocabularies, an attempt is made to convert
to a number. If this attempt also fails there
is an error condition. The word's name is
repeated, followed by a question mark,
compilation is terminated and control is
returned to the keyboard.

During compilation, an error message is
given if the input stream is exhausted before
a <;> is found. Compilation is terminated.

If the specified block number is out of
range error message 6 is given. If a read or
write fails for any other reason an Operating
System error message is given.

BLOCK

A block number out of range or a failure to
write to mass storage results in an error
message as for BLOCK

BUFFER

264

79-STANDARD
This simply marks the point in the
dictionary where all the FORTH-79 Required
Word Set is included. No checks are made on
the system. FORGETing or changing words
be fore 79-STANDARD is an error .

Error message 24 is given if the specified
word can not be found in a search of the
CURRENT or FORTH vocabularies.- If the
specified word is found in the protected area
of the dictionary, error message 21 is given.

FORGET

PICK

ROLL As for PICK

SAVE-BUFFERS
As for BLOCK and BUFFER

265

An error condition exists if the count on
the stack is less than 1. In this case PICK
has no action.

266

Appendix B
How FORTH works

1 The structure of a dictionary entry

Name length � byte !
Characters of the name

 up to 31 bytes!

NFA Name
field

Link pointer to
previous NFA

� bytes !

Link
field

LFA
HEAD

Pointer to machine
code to execute

� bytes!

Code
field

CFA

The particular values
or addresses for this

word

Parameter
field

PFA
BODY

2 The interpretation and execution of FORTH

FORTH is an interpretive threaded language. This means
that the instructions which make up an application are
stored as a list of previously defined routines. This
list is threaded together during the entry of source

267

The basic structure of a dictionary entry in FORTH may
vary slightly from one implementation to another but
all FORTH words generally consist of two main parts,
the head and the body. The head of the entry usually
contains some information about the name of the word, a
pointer to the previous word in the dictionary and a
pointer to some actual machine code. The order in which
these appear may vary and the following description
applies to Acornsoft FORTH. This form is also used by
the 'fig~odel' and is probably the most common method
used:

code from either the keyboard or the mass storage
buffers.

The process of producing the list is often termed
compilation, but this is not strictly accurate since
the result of true compilation should be native machine
code. Most implementations of FORTH this one included!
store a list of addresses rather than pure machine code
and so the process should more accurately be termed
interpretation. Since the result is a list of pointers
to locations containing the address of machine code
 i.e. to the CFA's! rather than the start of the code
routines themselves, this type of implementation is
known as indirect threaded code. If the pointers do
indicate the actual start of machine code the
implementation is using direct threaded code.

Some implementations produce a list of subroutine calls
instead of a list of addresses and are therefore true
compilers. This method uses subroutine threaded code.
Executing a routine in such an implementation is simply
a matter of executing the code of the subroutine calls
and this tends to be somewhat faster than the execution
of direct or indirect threaded code. The penalty is
that each entry in the list occupies three bytes of
memory instead of the two bytes needed for direct or
indirect threaded code, so the system is usually much
larger.

During the execution of direct or indirect threaded
code the list of addresses has to be translated into
the execution of the routines themselves and this is
again a form of interpretation.

An implementation such as Acornsoft FORTH, using
indirect threaded code, therefore needs two
interpreters, the 'outer', or 'text' interpreter and
the inner interpreter. The outer interpreter accepts
text from the input stream and either executes or
compiles it as appropriate. The 'compiled ' text is
left as a list of the addresses of other FORTH words.
When such a list is to be executed each address must be
interpreted, to cause the execution of the correct
word, before moving to the next address in the list.
Two pointers are used to assist this process. One, the
interpretive pointer, holds the current position in the
list of addresses being interpreted and the other W!

268

is used to store the address of the code field of the
word being executed.

Let us assume that a colon-definition with the name
DEMO is being executed, as illustrated in the following
diagram. Imagine that we are part of the way through
the definition and that the word currently beingexecuted is THISWORD to code for

THISWORD

to code for
a colon-de f .

At this time the code field pointer, W, contains the
code field address of THISWORD . The interpretive
pointer, IP, contains the address of points to! the

269

execution address of NEXTWORD, which is the next
routine to be executed. When the execution of THISWORD
is completed control will be passed to the machine code
of NEXT . This transfers the contents of the location
pointed to by IP to W , which now contains the address
of the code field of NEXTWORD . The value of IP is then
incremented by two so that it again contains the
address of the routine following the current one. The
last instruction in NEXT is an indirect jump via W to
the machine code of NEXTWORD . It is by this method
that the routines of which DEMO is composed are
executed in their correct sequence. The process
continues until the word EXIT , which returns control
to the word which called DEMO , is executed.

The two points yet to be described are the initial
entry into the sequence and the final exit. These
depend on the nature of the word being executed and are
discussed in the next section.

3 The different types of dictionary entry

The various classes of word differ only in the contents
of their code fields and parameter fields. The code
field always contains a pointer to the start of an
executable machine code routine and the different
possibilities are given in the following list.

a ! Machine code primitives

The parameter field of a machine code word contains the
actual code to be executed and the code field contains
the address of its start. The operation of NEXT causes
a jump to the address contained in the code field, and
the machine code is executed immediately. The code
ends with a jump to NEXT which transfers execution to
the next word in the sequence.

b ! Constants

The value of the constant is contained in a two-byte
parameter field. The code field contains the address
of a piece of machine code called 'constant' in the
FORTH-79 Standard! which uses the address in W to
locate the parameter field and copy its contents to the
stack. Remember that W contains the address of the code

270

field of the word being executed and that the parameter
field is just two bytes further on. The final
instruction in 'constant ' is a jump to NEXT

c ! Var iab les

The structure of a variable is similar to that of a
constant except that the code field contains a pointer
to machine code called ' var iab le ' in FORTH-79 ! . This
code uses the current contents of W to locate the
parameter field and place its address on the stack. A
jump to NEXT terminates the code of 'constant '. See
section 10.8 for the code used for variables and
constants.!

d ! User var iab les

User variables have only a single byte parameter area,
containing the of fset from the start of the user
variable area to the two bytes containing the value.
The code field contains a pointer to code which adds
the offset to the contents of the user variable pointer
UP and places the result on the stack, finally jumping
t o NEXT

e ! Colon-definitions

As we saw earlier, the parameter field of a colon-
definition contains a list of the addresses of other
FORTH words and section B.2 showed how execution steps
from one address to the next. The code field of a
colon-definition contains a pointer to the code
 'colon ' in FORTH-79! to start interpretation of this
list. The colon-definition must have been called from
some other word and at this point IP contains the
address of a point in the calling word.

The first action of 'colon ' is to copy the contents of
IP to the return stack for later retrieval. Two is
added to the contents of W to give the address of the
start of the new word's parameter area and this address
is stored in IP . A jump to NEXT then starts the
interpretation of the new word. The last address in all
colon � definitions is that of the word EXIT . This is a
machine code routine whose action is to transfer the
top value from the return stack into IP and then jump
to NEXT . This value is the old contents of IP, placed

271

on the return stack by 'colon ' and so the ef feet of
EXIT is to restore execution back to the point from
which the new word was called.

f ! Words constructed using CREATE and DOES>

The parameter area of such a word may contain any
combination of values and addresses, depending on the
CREATE part of the creating word. On execution the
address of the parameter area is left on the stack so
that the contents can be used by the sequence of
words following DOES> in the creating word. The code
field of such a word contains a pointer to code called
'does>' in FORTH-79! which

i! places the address of the start of the
parameter area on the stack

ii! loads W with an address which is two bytes
before the start of the words following
DOES! in the creating word, and then jumps
to ' co ion ' .

It will probably take a little time with paper and
pencil to see that this really does perform the
required action of words generated by the use of CREATE
and DOES>.

272

Appendix C
Memory allocation

Pointer AddressContents

8000

58QQ

4FF8

APPLICATIONS
DICTIONARY

NUCLEUS
DICTIONARY

BOOT-UP LITERALS PAGE!0 � ORIGIN ~
OPERATING

SYSTEM

RESERVED

SCRATCH PAD TEXT Q5CQ
Q5A2

PAD~
NUMERIC

9542
WORD
BUFFERWBFR~ 9440

USER
VARIABLESUP~

RQ~

RP~
OPERATING

SYSTEM

FREE

FORTH REGISTERS

COMPUTATION
STACK

QQ58
SQ~

SP~

273

LIMIT ~

FIRST ~

DP~

DPQ ~

GRAPHICS

MASS STORAGE
BUFFERS

TERMINAL INPUT
BUFFER

OPERATING
SYSTEM

RETURN
STACK

274

Appendix D
Two'smasapleaemt aritbaetic

In unsigned arithmetic using 16-bit numbers, the lowest
value that can be represented is zero, appearing as
binary notation as

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

and the highest number appears as

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

which represents the decimal value 65535. There are
therefore, including zero, 65536 different numbers.

To understand the operations on signed numbers,
consider what happens if one is added to the highest
unsigned value, 65535. In binary notation this sum
appears as

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

 I! 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

In a computer, working to 16-bit accuracy, the one in
the 17th place is lost and the value stored as the
result will be zero. If we add one to a number and
find the result is zero, it is natural to interpret
the original number as having a value of -1.

Thus, for signed arithmetic, the number

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

can be used to represent -1.

275

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 1

and

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

respectively.

All negative values are represented by binary numbers
whose most significant �6th! bit is a one.
Accordingly, the highest positive number that can be
represented is:

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

or +32767, and the most negative number is -32768,
shown earlier.

The range for a signed number is thus from -32768 to
+32767 which, including zero, gives a total of 65536
different values as for unsigned numbers !.

Whether a number is interpreted as a signed or an
unsigned value is entirely a matter of context; the
binary number

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

may represent either +65535 or -1 depending on the
conversion routine used.

The above discussion has been confined to 16-bit
numbers but similar considerations apply to any
precision. In all cases the most significant bit of
the number will be zero for a positive value and one
for a negative value. It may, therefore, be regarded as
a 'sign bit '.

In general the binary representation of a negative
number may be found by writing down the binary

276

In general the
wh ich gives a
 ignor ing any
signed values
represented by

number -x is represented by the value
zero result when +x is added to it

overflow into the 17th place! . The
-2, -23 and -32768 are therefore

representation of the corresponding positive number,
inverting all the bits and adding one. This is shown
in the following example to find the two's-complement
representation of -4 in 8-bit precision !:

0 0 0 0 0 1 0 0 +4!

invert all bits form the one 's-complement !:

1 1 1 1 1 0 1 1

add 1 form the two's-complement!:

1 1 1 1 1 1 0 0 -4!

277

278

Appendix E
Further reading

1! The FORTH Interest Group in the USA supply many
documents relating to FORTH, including assembly
listings for many different microprocessors, a
language model, reprints of 'BYTE ' magazine articles
and a bimonthly magazine entitled 'FORTH Dimensions '.

For details of current costs for membership and their
publications write with sae please ! to:

FORTH Interest Group
PO Box 1105
San Carlos
Ca 94070

2! The FORTH Interest Group UK is the British branch of
the USA group. At present it meets on the firsL'
Thursday of every month at 7.00 pm at the Polytechnic
of the South Bank in London . Membership includes a
bi-monthly newsletter entitled 'FORTHWRITE '. Like its
parent group, FIG UK exists to promote interest in and
the use of the FORTH language and its members are
prepared to help with any difficulties that may be
encountered. For further details contact sae please!:

The Honorary Secretary
FIG UK
15, St Albans Mansions
Kensington Court Place
London W8 5QH

3! A number of articles on FORTH have appeared in
'BYTE' magazine:

August 1980, A FORTH language 'special'
February 1981, Stacking Strings in FORTH
March 1981, A Coding Sheet for FORTH
October & November 1981, P.S. � A FORTH-like language

279

April 1982, A Disk Operating System for FORTH
December 1982, Cosmic conquest � a game in FORTH

The August 1980 issue is now unobtainable, but reprints
o f the BYTE ar t ic les are available from the USA FORTH
Interest Group Ref. 1!.

4 ! 'FORTH for Microcomputers ' Dr Dobb 's Journal No . 25
 May 1978!. A brief review of the external and internal
workings, with a variety of examples.

5 ! 'Starting FORTH ' L Brodie .
published by Prentice-Hall November 1981!.

Available from most good bookshops; or

Computer Solutions Ltd
Treway House
Hanworth Lane
Chertsey
Tel: Chertsey �9328! 65292

The author is from FORTH Inc, the company started by
Charles Moore, the inventor of FORTH. This is a very
good introduction to the language, with lots of
examples .

6! 'Threaded Interpretive Languages' R G Loeliger,
published by Byte Books McGraw-Hill! �981!

A good, clear, description of the internal workings of
FORTH-like languages, based on an implementation for
the Z-80 microprocessor. Not for the complete
beginner, but try it in a couple of months ' time!

280

Index

! FORTH word ! 30, 167
!CSP FORTH word ! 167

character 181

 FORTH word ! 77, 167
 FORTH word ! 77, 168

PBUF FORTH word! 168
fS FORTH word ! 77, 168

$! example 104
$+ FORTH word! 170
$g example 104
$IN example 65, 103
$INPUT example 65

 FORTH word ! 169

 FORTH word ! 84, 169
 +LOOP ! FORTH word ! 170
 ."! FORTH word ! 170
 ; CODE ! FORTH word ! 171
 ABORT ! FORTH word ! 171
 CLI! FORTH word! 171
 CREATE! FORTH word! 172
 DO! FORTH word! 172
 EMIT! FORTH word! 172
 ENVELOPE ! example 156
 FACT! example 133
 FIND! FORTH word! 172
 KEY! FORTH word! 173
 LINE! FORTH word! 173
 LOOP ! FORTH word! 173
 NUM! FORTH word! 174
 OPEN! FORTH word! 174
 R/W! FORTH word! 174

 SOUND! example 155
 ULOOP ! FORTH word! 175
 UPDATE ! FORTH word ! 93, 175
 WARM ! FORTH word ! 1 75
 WORD! FORTH word! 176

! ch arac ter 84, 169

* FORTH word! 15, 176
*/ FORTH word! 15, 176
*/MOD FORTH word ! 15, 177
*FORTH c omman d 6

+ FORTH word! 15, 177
+! FORTH word ! 31, 177
+- FORTH word! 15, 177
+BUF FORTH word! 178
+LOOP FORTH word ! 54, 178
+ORIGIN FORTH word! 179

 FORTH word! 35, 179

 FORTH word ! 15, 179
 editor word! 93

 FORTH word ! 179
-1 FORTH word! 182
� 2 FORTH word! 182
-FIND FORTH word! 180
� TRAILING FORTH word ! 63, 73,

180

 FORTH word ! 13, 62, 75, 180
 FORTH word! 62, 64, 181

.HERE FORTH o d! 219

.LINE FORTH ord! 181

.POUNDS example 78

.R FORTH word ! 75, 181

.REAL example 78

.S FORTH word! 182

/ FORTH word! 15, 182
/MOD FORTH word! 182

0 FORTH word! 182
0 FORTH word! 20, 183
0= FORTH word! 20, 183

0> FORTH word! 183
0 BRANCH FORTH word ! 18 3

1 FORTH word ! 182
1+ FORTH word ! 15, 184
1- FORTH word ! 15, 184
100-COUNT example 55
1WORD FORTH word! 184

2 FORTH word! 182
2! examp le 121
2* FORTH word! 15, 184
2+ FORTH word ! 15, 185
2- FORTH word ! 15, 185
2/ FORTH word ! 15, 185
2ARRAY example 101
2CONSTANT example 123
2DROP FORTH word! 24, 185
2DUP FORTH word! 24, 186
20VER FORTH word! 186
2SWAP FORTH word ! 186
2VARIABLE example 122

3+ example 120
3-COUNT example 54

4* example 118
4HEX FORTH word ! 186

79-STANDARD FORTH word ! 187

 FORTH word! 29, 187

 FORTH word! 29 187
;CODE FORTH word ! 121, 122, 188

 FORTH word! 20, 188
 FORTH word ! 77 188

 CMOVE FORTH word ! 68

 FORTH word ! 20, 189

 FORTH word! 189
 FORTH word ! 189

>CLI FORTH word! 189
>IN FORTH word! 33, 190

>R FORTH word! 18, 190
>VDU FORTH word ! 142, 190

? FORTH word! 32 190
?COMP FORTH word ! 191
?CSP FORTH word ! 191
?DUP FORTH word ! 17, 51, 191
?ERROR FORTH word! 192
?EXEC FORTH word! 192
?KEY FORTH word! 70 192
?LOADING FORTH word ! 193
?PAIRS FORTH word ! 193
?STACK FORTH word ! 193
?TAB FORTH word ! 60, 194

g FORTH word ! 31, 194
example 121

/EXECUTE FORTH word ! 194

ABORT FORTH word ! 194
ABS FORTH word ! 15, 195
addressing modes 116
AGAIN FORTH word ! 42, 195
ALLOT FORTH word! 34, 98, 195
ALPHABET example 125
AND FORTH word ! 21, 196
applications separating 29
arithmetic 13

double-precision 22
single-precision 15

arrays 71
one-dimensional 71
two-dimensional 101
with error message 100
with index check 100

assembler 107
ASSEMBLER FORTH word ! 109
assembler errors 125

example 108
ASSIGN FORTH word ! 129, 196

B 196, 197
 editor word ! 91

B/BUF FORTH word ! 196
B/SCR FORTH word ! 197
BACK FORTH word! 197

BACKWARDS example 55
BASE FORTH word! 33, 71, 197
base conversion example 72
bases numeric 71
BEGIN FORTH word ! 42, 198
BL FORTH word ! 70 198
BLANKS FORTH word! 198
BLK FORTH word ! 33, 199
BLOCK FORTH word! 80, 199
blocks 80

of memory manipulating 67
BRANCH FORTH word ! 199
branches 48, 120

conditional 48
nested 51

BREAK 7
BUFFER FORTH word ! 200
buffers 81
BUFSZ FORTH word ! 81, 200

C editor word! 90
C! FORTH word ! 200
C, FORTH word ! 36, 200
C /L FORTH word ! 10 3, 201
Cg FORTH word! 201
CASE example 105
cassette loading 6
CAT' FORTH word! 95
CFA FORTH word ! 28> 201
CHANNEL FORTH word! 201
CHAR example 117
character graphics 150

input 62
output 72

CLI FORTH word! 171
CLOSE FORTH word! 202
CLS example 149
CMOVE FORTH word ! 67, 202

examp le 69
CODE FORTH word! 109
code field address 27
coding example 4
COLD FORTH word ! 9, 202
cold start 9
colon-definitions 29

form of 29

COLOUR FORTH word ! 142
colours 142, 144

logical 144
comments 84
compilation of IMMEDIATE words 44

numbers 46
COMPILE FORTH word ! 45, 203

example 46
compiler security 44
computation stack 12, 118
conditional branches 48
CONSTANT FORTH word! 30, 98, 203
CONTEXT FORTH word! 33, 40, 203
CONVERT FORTH word! 66, 204
COUNT FORTH word! 63, 73, 204
COUNTER example 53
COUNTS example 54, 133
CR FORTH word ! 204

CREATE FORTH word ! 34, 96 205
CREATE-SCREENS FORTH word! 94,

205
CSP FORTH word! 206
CTABLE example 102
CURRENT FORTH word! 33, 40, 206
cursor editing 90
CVARIABLE example 71, 71

D editor word ! 88
D+ FORTH word ! 22, 206
D+- FORTH word! 24, 207
D-!H example 72
D. FORTH word! 75, 207
D.R FORTH word! 75, 207
D FORTH word! 207
DABS FORTH word ! 23, 208
DATA example 102
DEC . FORTH word! 75, 208
DECIMAL FORTH word ! 71, 208
decimal point 22
default vectors 129
DEFCHAR example 151
definite loops 52
definitions 26
DEFINITIONS FORTH word! 41, 209
DELAYS example 53

DELETE editor word ! 91
deleting lines 88
DEPTH FORTH word ! 209
dictionary entries 26
DIGIT FORTH word ! 209
DISK FORTH word! 210
disks 93
DLITERAL FORTH word ! 46, 210
DNEGATE FORTH word ! 23> 210
DO FORTH word! 52, 211
DO-IT-LATER example 45
DO-IT-NOW example 43
DOES> FORTH word! 96, 211
double-precision arithmetic 22

numbers 22
operators 22

DOVEC FORTH word ! 212
DP FORTH word ! 33, 212
DPL FORTH word ! 33, 212, 212
DR/W FORTH word ! 212
DROP FORTH word ! 17, 213

example 108
DUMP example 76
DUP FORTH word ! 17, 21 3

E editor word! 88
editing cursor 90

example 83, 85, 91
lines 88
strings 90

editor 83
loading 80, 83

editor words:
93

B 91
D 88
DELETE 91
E 88
F 90
H 88
I 88
LOCATE 88
M 91
MATCH 91
N 91

P 84, 88
PROGRAM 84
R 88
S 89
T 89
TILL 90
X 90

ELSE FORTH word! 213
EMIT FORTH word ! 72, 213
EMPTY-BUFFERS FORTH word ! 82,

214
ENCLOSE FORTH word! 214
ENDCODE FORTH word! 109
envelope 154
ENVELOPE example 156, 158
ERASE FORTH word! 70, 215
erasing lines 88
ERRMESS example 130, 131
ERROR FORTH word ! 215
error message from arrays 100
errors 159, 161

assembler 125
FORTH 160
operating system 160

ESCAPE 7
 FORTH word ! 215

examples:
$! 104
$9 104
$IN 65, 103
$INPUT 65
 ENVELOPE! 156
 FACT! 133
 SOUND! 155
.POUNDS 78
.REAL 78
100-COUNT 55
2! 121
2ARRAY 101
2CONSTANT 123
2VARIABLE 122
3+ 120
3-COUNT 54
4* 118
g 121
ALPHABET 125

assembler 108
BACKWARDS 55
base conversion 72
CASE 105
CLS 149
CMOVE 69
coding 4
COMPILE 46
COUNTER 53
COUNTS 54, 133
CTABLE 102
CVARIABLE 71> 71
D-!H 72
DATA 102
DEFCHAR 151
DELAYS 53
DO-IT-LATER 45
DO-IT-NOW 43
DROP 108
DUMP 76
edit ing 83, 85, 91
ENVELOPE 156, 158
ERRMESS 130, 131
FACT 134
FAMILY 97
GCD 61
graphics 139
HELL-FREEZES WVER 60
IMMEDIATE 43> 46
INC/DEC 121
INPUT 67
INVERT editing 89
JTEST 58
LCOL 145
LEFTY 73
LOOK-UP 56
LOOP 124
MD* 24
MEMBER 97
MID' 73
MONSTERS 153
NUMIN 66
PAUSE 60
PCOL 143
quadratic 16, 19
RECTANGLE 101

RIGHTS 73
RND 85
ROTCOLS 148
ROW 146
SEQUENCE 55
SHOWASCII 62
SIZE 98
SOUND 156
STARS 7
STRING 103
STRINGS 74
TABLE 102
TABTEST 71
TENCOUNT 52
TIMES 124
TRIANGLE 137
VALUES 71
VARIABLE 98
WASHING 4
WHEEL 145
[COMPILE] 45, 46

EXECUTE FORTH word! 215
execution address 27
EXIT FORTH word! 216
EXPECT FORTH word! 216
EXVEC: FORTH word! 128, 216

F editor word ! 90
FACT example 134
FAMILY example 97
FENCE FORTH word! 33, 217
FILL FORTH word! 217
FIND FORTH word! 217
FIRST FORTH word ! 81, 218
FLUSH FORTH word! 81, 218
FNAME FORTH word! 218
FORGET FORTH word ! 30, 40, 218
form of colon-definitions 29
FORTH FORTH word ! 219

errors 160
vocabulary 41

FORTH words:
! 30, 167
!CSP 167

77, 167
77, 168

NBUF 168
]IS 77, 168
$+ 170

169
 84, 169
 +LOOP ! 170
 ."! 170
 ; CODE ! 171
 ABORT ! 171
 CREATE ! 172
 DO! 172
 EMIT! 172
 FIND! 172
 KEY! 173
 LINE! 173
 LOOP ! 173
 NUM! 174
 OPEN! 174
 R/W! 174
 ULOOP ! 175
 UPDATE ! 93, 175
 WARM! 175
 WORD! 176
* 15, 176
*/ 15, 176
*/MOD 15, 177
+ 15, 177

31, 177
+- 15, 177
+BUF 178

+LOOP 54, 178
+ORIGIN 179

15, 179
179

-1 182
-2 182
-FIND 180
-TRAILING 63, 73, 180

13, 62, 75, 180
62, 64, 181

.HERE 219

.LINE 181

.R 75, 181

.8 182
/ 15, 182

/MOD 182
0 182
0< 20, 183
0= 20, 183
0> 183
0 BRANCH 18 3
1 182
1+ 15, 184
1- 15, 184
1WORD 184
2 182
2* 15, 184
2+ 15, 185
2- 15, 185
2/ 15, 185
2DROP 24, 185
2 DUP 24, 186
20VER 186
2SWAP 186
4HEX 186
79 � STAN DAR D 18 7

29, 187
29, 187

;CODE 121, 122, 188
20, 188

77, 188
<CMOVE 68

20, 189
20, 189

189
>CLI 189
>IN 33, 190
>R 18, 190
>VDU 142, 190
? 32, 190
?COMP 191
?CSP 191
?DUP 17, 51, 191
?ERROR 192
?EXEC 192
?KEY 70, 192
?LOADING 193
?PAIRS 193
?STACK 193
?TAB 60, 194
9 31, 194

/EXECUTE 194
ABS 15, 195
AGAIN 42, 195
ALLOT 34, 98, 195
AND 21, 196
ASSEMBLER 109
ASSIGN 129, 196
BACK 19 7
BASE 33, 71, 197
BEGIN 42, 198
BL 70, 198
BLANKS 70, 198
BLK 33, 199
BLOCK 80, 199
BRANCH 199
BUFFER 200
BUFSZ 81, 200
C! 200
C, 36, 200
C/L 103, 201
C8 201
CAT ' 95
CFA 28, 201
CHANNEL 201
CLI 171
CLOSE 202
CMOVE 67, 202
CODE 109
COLD 9> 202
COLOUR 142
COMPILE 45 > 203
CONSTANT 30, 98, 20 3
CONTEXT 33 > 40 > 203
CONVERT 66! 204
COUNT 63, 73, 204
CR 204
CREATE 34> 96, 205
CREATE-SCREENS 94, 205
CSP 34, 206
CURRENT 33> 40> 206
D+ 22, 206
D+ � 24, 207
D. 75, 207
D R 75, 207
D 207
DABS 23 > 208

DEC . 75, 208
DEC I MAL 71, 20 8
DEFINITIONS 41> 209
DEPTH 209
DIGIT 209
DISK 210
DLITERAL 46> 210
DNEGATE 23, 210
DO 52, 211
DOES> 96, 211
DOVEC 212
DP 33, 212
DPL 33, 212, 212
DR/W 212
DUP 17, 213
ELSE 213
EMIT 72, 21 3
EMPTY-BUFFERS 82> 214
ENCLOSE 214
ENDCODE 109
ERASE 70, 215
ERROR 215
ESCAPE 215
EXECUTE 215
EXIT 216
EXPECT 216
EXVEC: 128, 216
FENCE 33, 217
FILL 217
FIND 217
FIRST 81, 218
FLUSH 81> 218
FNAME 218
FORGET 30, 40, 218
FORTH 219
GCOL 143
H. 75, 219
HERE 63
HEX 71, 220
HLD 34, 220
HOLD 77, 220
I 220
ID. 221
IF 48, 221
IMMEDIATE 43, 221
in text 1

INDEX 222
INITBUF 82> 222
INITVECS 222
INTERPRET 223
J 58, 223
K 42
KEY 223
KEY ' 224
LAST 224
LEAVE 57> 224
LFA 28, 225
LIMIT 81, 225
LIST 80, 225
LIT 226
LITERAL 46> 226
LOAD 83, 226
LOOP 52> 227
M* 23, 227
M/ 23> 227
M/MOD 23, 228
MACRO 124
MAX 20, 228
MAXFILES 95, 228
MESSAGE 229
MIN 20, 229
MINBUF 229
MOD 15, 230
MODE 137, 230
MOVE 230
MSG/I 230
names of 165
NEGATE 15, 231
NFA 28, 231
NOOP 231
NOT 231
NOVEC 232
NUM 232
NUMBER 233
OFFSET 233
OPEN 233
OR 21, 234
OS ' 64, 234
OSCLI 234
OSERROR 235
OUT 33, 235
OVER 17, 235

PAD 78 > 88, 236
PFA 28, 236
PICK 17, 236
PLOT 136, 237
PREV 237
pronunciation of 163
PRUNE 237
QUERY 62, 238
QUIT 238
R 18
R7t 34, 238
R/W 239
RO 33, 239
R: 133, 239
R; 240
R! 18, 240
R8 240
REPEAT 42, 61, 241
ROLL 17, 241
ROT 17, 241
RP! 242
RPg 242
S-!D 242
S/ 95
S/FILE 242
SO 33, 243
SAVE 87
SAVE-BUFFERS 81, 243
SCR 33, 197, 243
SETBUF 82, 243
SIGN 77, 244
SMUDGE 22, 244
SP! 244
SP!s 245
SPACE 245
SPACES 245
START 246
START-ADDRESS 245
START-KEYS 246

STATE 33> 246
status of 164
SWAP 17, 247
TAPE 247
TEXT 248
THEN 48, 248

TIE 33 > 248
TLD 249
TO-DO 129, 249
TOGGLE 21, 249
TR 249
TR/W 250
TRAVERSE 250
TRIAD 250
TSV 251
TW 251
TYPE 63, 72, 80, 251
U* 23, 251
U. 14, 75, 252
U/ 23, 252
U/MOD 252
U 20, 253
UNTIL 42, 253
UPDATE 93, 253
USE 254
USER 32, 254
validity of 4
VARIABLE 31, 254
VLIST 7, 255
VOC-LINK 33, 255
VOCABULARY 26> 39> 255
WARM 9, 256
WARNING 33, 256
WBFR 25 7
WDSZ 257
WHILE 42, 61, 257
WIDTH 33, 258
WORD 63, 258
XOR 21, 259
[43, 259
[COMP ILE] 44, 260
! 43, 260

forward references 134

GCD example 61
GCOL FORTH word! 143
glossary of FORTH words 163
GOTO 48
graphics 136

character 150
example 139

H editor word! 88
H. FORTH word ! 75, 219
HELL-FREEZES-OVER example 60
HERE FORTH word! 63, 219
HEX FORTH word ! 71, 220
HLD FORTH word! 34, 220
HOLD FORTH word! 77, 220

I editor word! 88
 FORTH word ! 220

ID. FORTH word! 221
IF FORTH word! 48, 221
IMMEDIATE FORTH word! 43, 221

example 43, 46
words compilation of 44

INC/DEC example 121
indefinite loops 42
INDEX FORTH word! 222
index check for arrays 100
indirect threaded code 4
INITBUF FORTH word ! 82, 222
INITVECS FORTH word! 222
input 62

character 62
INPUT example 67
input numeric 65

text 62
integers printing 16
INTERPRET FORTH word! 223
introduction to FORTH 2

to manual 1
INVERT editing example 89
IP register 113

J FORTH word! 58, 223
JTEST example 58

K FORTH word ! 42
KEY FORTH word! 223
KEY' FORTH word! 224

labels machine code 110
LAST FORTH word! 224
LCOL example 145
LEAVE FORTH word! 57, 224
LEFT$ example 73

LFA FORTH word! 28, 225
LIMIT FORTH word ! 81, 225
lines deleting 88

editing 88
erasing 88
replacing 88

link field address 27
LIST FORTH word ! 80, 225
LIT FORTH word! 226
LITERAL FORTH word! 46, 226
LOAD FORTH word ! 83, 226
loading editor 80, 83

FORTH 6
LOCATE editor word! 88
logical colours 144

operators 20
LOOK-UP example 56
LOOP FORTH word! 52, 227

example 124
loop index 52, 52

limit 52
loops definite 52

indefinite 42
nested 55

M editor word! 91
M* FORTH word! 227
M/ FORTH word! 23, 227
M/MOD FORTH word! 23, 228
machine code 34, 37, 107

labels 110
MACRO FORTH word ! 124
macros 123
manipulating blocks of memory 67
mass storage 80
MATCH editor word ! 91
MAX FORTH word! 20> 228
MAXFILES FORTH word ! 95 > 228
MD* example 24
MEMBER example 97
MESSAGE FORTH word! 229
meta � FORTH 96
MID$ example 73
MIN FORTH word ! 20, 229
MINBUF FORTH word! 229
mixed-precision operators 22, 24

mnemonics 114, 115
MOD FORTH word ! 15, 230
MODE FORTH word ! 1 37, 230
modes addressing 116
MONSTERS example 15 3
MORE FORTH word ! 87
MOVE FORTH word! 230
MSGR' FORTH word! 230

N editor word! 91
name field address 27
names of FORTH words 163
NEGATE FORTH word ! 15, 231
nested branches 51

loops 55
NEXT routine 111
NFA FORTH word ! 28, 231
NOOP FORTH word ! 231
NOT FORTH word ! 231
notation postfix 13, 16

reverse-Polish 13, 16
NOVEC FORTH word ! 232
NUM FORTH word! 232
NUMBER FORTH word ! 233
numbers compilation of 46

double-precision 22
single-precision 14

numeric bases 71
input 65
output 75
output formatting 77

NUMIN example 66

OFFSET FORTH word! 233
one-dimensional arrays 71
opcodes 114
OPEN FORTH word ! 233
operating system errors 160

routines 112
operators:

logical 20
mixed-precision 22, 24
relational 20
single-precision 15
stack 17, 24

OR FORTH word ! 21, 234

OS ' FORTH word ! 64, 234
OSCLI FORTH word ! 234
OSERROR FORTH word! 235
OUT FORTH word ! 33, 235
output 72

character 72
output formatting numeric 77
output numeric 75

text 72
OVER FORTH word! 17, 235

P editor word ! 84, 88
PAD FORTH word ! 78, 88, 236
parameter field 27

stack 12
PAUSE example 60
PCOL example 143
PFA FORTH word! 28, 236
PICK FORTH word! 17, 236
PLOT FORTH word ! 136, 237
PLOT-IT 139
POP routine 111
POPTWO routine 38, 111
postfix notation 13, 16
PREV FORTH word! 237
printing integers 16
processor registers 112, 113
PROGRAM editor word! 84
pronunciation of FORTH words 163
PRUNE FORTH word! 237
PUSH routine 111
PUSHOA routine 111
PUT routine 111

quadratic example 16, 19
QUERY FORTH word! 62, 238
QUIT FORTH word ! 238

R editor word! 88
 FORTH word! 18

R1k FORTH word! 34, 238
R/W FORTH word ! 239
RO FORTH word! 33, 239
R: FORTH word! 133, 239
R; FORTH word ! 240
R! FORTH word! 18, 240

Rg FORTH word ! 240
RECTANGLE example 101
recursion 132
registers:

IP 113

processor 112, 113
status 113
XSAVE 113

relational operators 20
REPEAT FORTH word! 42, 61
replacing lines 88
return stack 12, 18, 119
reverse-Polish notation 13
RIGHT$ example 73
RND example 85
ROLL FORTH word! 17, 241
ROT FORTH word ! 17, 241
ROTCOLS example 148
routines:

NEXT 111
operating system 112
POP 111
POPTWO 38, 111
PUSH 111
PUSHOA 111
PUT 111

ROW example 146
RP! FORTH word! 242
Rpg FORTH word! 242

241

16

S editor word ! 89
S-!D FORTH word! 242
S/ FORTH word! 95
S/FILE FORTH word ! 242
SO FORTH word! 33, 243
SAVE FORTH word! 87
SAVE-BUFFERS FORTH word ! 81, 24'
SCR FORTH word ! 33, 197, 243
screens 80
security compiler 44
separating applications 29
SEQUENCE example 55
SETBUF FORTH word ! 82, 243
SHOWASCII example 62
SIGN FORTH word ! 77, 244

single-precision arithmetic 15
numbers 14
operators 15

SIZE example 98
SMUDGE FORTH word ! 22, 244
sound 154
SOUND example 156
SP! FORTH word! 244
SP� FORTH word! 245
SPACE FORTH word! 245
SPACES FORTH word ! 245
stack computation 12, 118

operators 17, 24
overflow 52
parameter 12
return 12, 18, 119
transfers 18

stacks 10, 117
STARS example 7
START FORTH word ! 246
START-ADDRESS FORTH word ! 245
START-KEYS FORTH word ! 246
STATE FORTH word ! 246
status of FORTH words 164
status register 113
storage of strings 73
STRING FORTH word ! 64, 247

example 103
string handling 73
strings 103

editing 90
STRINGS example 74
strings storage of 73
SWAP FORTH word ! 17, 247

T editor word! 89
TABLE example 102
tables 102
TABTEST example 71
TAPE FORTH word ! 247
TENCOUNT example 52
terminating routines 111
TEXT FORTH word ! 248
text FORTH words in 1

input 62
input delimiter 63

output 72
THEN FORTH word ! 48, 248
threaded code 4
TIB FORTH word! 33, 248
TILL editor word! 90
TIMES example 124
TLD FORTH word! 249
TO-DO FORTH word! 129, 249
TOGGLE FORTH word ! 21, 249
TR FORTH word! 249
TR/W FORTH word! 250
TRAVERSE FORTH word ! 250
TRIAD FORTH word! 250
TRIANGLE example 137
TSV FORTH word! 251
TW FORTH word! 251
two-dimensional arrays 101
TYPE FORTH word ! 63, 72, 80, 251

U* FORTH word! 23, 251
U. FORTH word! 14> 75, 252
U/ FORTH word! 23, 252
U/MOD FORTH word! 252
U FORTH word! 20, 253
UNTIL FORTH word ! 42, 25 3
UP register 113
UPDATE FORTH word ! 93, 253
USE FORTH word! 254
USER FORTH word ! 32, 254
user variables 33

validity of FORTH words 4
VALUES example 71
VARIABLE FORTH word ! 31, 254

example 98
vectors 127

default 129
VLIST FORTH word ! 7, 255
VOC � LINK FORTH word! 33, 255
VOCABULARY FORTH word! 26, 39,

255

WARM FORTH word! 9, 256
warm start 8
WARNING FORTH word! 33, 256
WASHING example 4

WBFR FORTH word! 257
WDSZ FORTH word! 257
WHEEL example 145
WHILE FORTH word ! 42, 61, 257
WIDTH FORTH word ! 33, 258
WORD FORTH word! 63, 258

X editor word! 90, 259
XOR FORTH word ! 21, 259
XSAVE register 113

[FORTH word! 43, 259
[COMPILE! FORTH word! 44, 260

example 45, 46

] FORTH word! 43, 260

~ ~ ~

~ ~ ~

~ s s ss r ~ ~ ~ ~~ ~ ~
~ s ~ s~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~
s ss s~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~~ ~ ~ ~ ~ ~ ~ ~ ~
~ s~ ~ ~ ' ~ ~~ ~ ~ ~

~ ~ ~~ ~

~ ~ ~
~ - - ~ ~~ s ~ ~ ~ ~~ ~

~ s ~ ~ ~~ ~ ~
~ ~ ~ ~~ ~ ~

~ ~

~ ~ ~ ~ ~~ ~ ~
~ ~

~ !- ~ ~ ~
~ ~ e ~

~ ~ - . ~ . ~ ~ ~ ~ ~ ~ ~
~ ~ ~ ~

~ s

~ ~ ~ s~ ~ ~ ~

~ ~ ~ ~ ~

I 'I ~ ~ I ~ '
~ ~ I

~ 0

~ ~
~ ~ ~

~ ~
~ ~

~ s

~ ~ ~

~ ~ ~
~ ~ s

