SPRITES

GAME WRITERS’
UTILITY PACK

FOR THE BBC MICRO

SUPPLIED ON
CASSETTE OR DISC

BEEELGSDET

Copyright (c) 1983, BEEBUG Publications Ltd.

All rights reserved. No part of this manual may be
reproduced by any means without prior consent of the
copyright holder.

The accompanying computer package SPRITES, which is supplied
on disc or tape, is also subject to copyright. No part of
SPRITES shall be copied for the purpose of loan, resale or
donation; except for the routines M/CODE and SS/CODE which
may be incorporated into games and similar programs by the
user.

Published by BEEBUG Publications Ltd.,
PO BOX 50, St Albans, Herts, England.

BEEBUGSOFT

SPRITES

BEEBUG GRAPHICS PACKAGE
FOR THE BBC MICRO MODEL B
by Stephen Allen

3&%&@
gl

whiy
PRet

BEEBUGSOFT

A W N

7

CONTENTS
INTRODUCTION

FEATURES OF THE SPRITES PACKAGE

GETTING STARTED

USING SPRITES

4.1 Overview

4.2 Memory usage

4.3 Initialisation

4.4 Use of variables

4.5 Referencing a sprite
4.6 Drawing a sprite

4.7 Moving a sprite

4.8 Redefining directions
4.9 Deleting a sprite
4.10 Delay routines

4.11 Boundary definitions

ADVANCED FEATURES
5.1 Clones

5.2 Animation

5.3 Checking for collisions
5.4 Allocating sprites

5.5 Super sprites

DEFINING SPRITES
6.1 Using the definer

6.2 Incorporating User Sprites
DEMONSTRATION PROGRAMS

APPENDIX

Programs supplied on cassette

BEEBUGSOFT

1. INTRODUCTION

The major difference between games written in Basic (or
other high level languages) and those written in assembly
languages is their speed of operation. This is partly due to
their graphics handling. In Basic it is simply not possible
to plot intricate objects quickly; even the method of
plotting user defined graphics on the screen is clumsy since
each colour must be plotted separately. The usual result is
that Basic games tend to have jerky graphics, or if they are
smooth, the game must be kept simple. Sprites provide an
easy way of generating smooth multicoloured graphics.

This sprite package contains routines for creating and
moving sprites around the screen at will, for creating
sprite clones, and super sprites giving enhanced animation
facilities. Special routines are included to check if a
sprite collides with another, and all routines are
accessible from Basic, allowing arcade style games to be
written with a minimun of code. The package also contains a
set of example programs.

BEEBUGSOFT

2. FEATURES OF THE
BEEBUG SPRITES PACKAGE

1. Sprites are quickly created on an 8 by 16 grid, using a
special sprite definer program. Each of the 8 by 16 (128)
individual parts which make up the sprite may be any of the
16 colours available in mode 2 (8 steady + 8 flashing).

2. Each sprite is easily displayed or moved, using integer
variables. For example the following sequence:

W%=1: A%=30: B%=40: CALL S%

will draw sprite 1 at location (3@,40) on the screen ie 30
positions along from the left of the screen, and 40
positions up.

3. Plotting a sprite at a new position will automatically
delete its previous image, and this is achieved in such a
way that backgrounds are left unchanged.

4. The sprite routines permit the use of an automatic
wrap-around screen so that a sprite moving off the left of
the screen, will reappear on the right.

5. A special machine code routine will automatically check
for collisions between sprites, allowing you to take
appropriate action.

6. Each sprite may be defined twice, and a special facility
causes one image to be displayed if the x co-ordinate is
even, and the other if it is odd. This is quite automatic,
and may be used to provide animation effects; for example to
create the impression of a man running.

7. Up to 7 different sprites may be used and moved around
the screen independently. Each of these may be defined
twice as above. As well as this, each sprite may have up to
2 clones, (ie exact copies) of itself, allowing up to 21
moving sprite pairs on the screen at once.

BEEBUGSOFT

5

8. A super sprite facility is also incorporated, allowing 4
variations of each sprite to be created rather than the
normal two. The image chosen to represent a super sprite at
a given time could be made to depend on the direction of
travel, so that, for example, a monster could automatically
face the direction in which it was moving.

BEEBUGSOFT

3. GETTING STARTED

The tape or disc supplied with this pack contains a number
of programs. These are as follows:

1. Bn overview and an introductory display of sprites
moving about the screen.

2. A sprite definer program.

3. A machine code sprite routine, into which you may load
your sprite definitions.

4. An alternative machine code routine, for use with super
sprites.

5. Seven demonstration programs, to show exactly how to use
various features of the sprite pack.

These features will be explained in the course of this
manual, but to get started, you may care to run the
Introduction file on the cassette or disc. This makes a few
general comments about sprites, and displays a number of
sprites on the screen.

Cassette users should do this by typing:
CHAIN ""

and pressing Return. Cassette users should refer to the
Appendix for a full list of the programs on the tape.

Disc users should press Shift-Break (ie. hold down the Shift
key, then hit Break), to display the menu, and then select
option 1.

At this point you may also like to look at the
demonstration programs which form a part of the package. In
this case please refer to section 7 of this manual.

BEEBUGSOFT

4. USING SPRITES

4.1 OVERVIEW

When using this sprite package to create a computer game
the first stage is to define a number of sprites using the
special character definer supplied. Once defined, each
sprite is individually stored away on cassette or disc.

The next step is to incorporate selected sprites into the
machine code sprite handling routine. In fact there are two
alternative handling routines, one for ordinary sprites, and
one for super sprites. Super sprites are treated in section
5.5 of this manual. The handling routine containing your own
sprites is then re-saved.

You may then proceed to write your game in Basic. This
will access the sprite handling routine, which will need to
be co-resident in the machine whenever the Basic program is
run.

In practice the machine code sprite routines supplied,
already contain 7 pre-defined sprites. We suggest that in
the first instance you experiment with these before
attempting to define and load your own sprites. The sprites
supplied are as follows:

Sprite number Description
Pacman shape
Man

Laser base
Two cherries
Monster
Monster
Monster

N OAU S W N =

It is very easy to display and move sprites around the
screen, and the next sections deal with the precise way in
which this is achieved.

BEEBUGSOFT

In preparation for experiments with the various sprite
calls, you should first load in the sprite handler,’ complete
with default sprite definitions. To do this type:

*RUN M/CODE

This is the same for cassette or disc, but cassette users
should note that M/CODE is the second file on the tape. It
is also repeated a number of times later in the tape.

4.2 MEMORY USAGE

One of the first things that your Basic program should do
is to enter mode 2 - the sprites only function in mode 2 -
and reserve memory for the machine code sprite routine
already loaded. It resides between &2800 and &3000, and is
protected by setting HIMEM to &2800 after any mode change.

Early in your program a line similar to the following
should therefore appear:

190 MODE 2:HIMEM=&2800 (&2500 for super sprites,
see section 5.5)

HIMEM should be reset in this way after every mode change in

your program. Failure to do this could cause corruption of
the machine code routines.

4.3 INITIALISATION

One other essential is to initialise the sprite handler.
This is achieved by a call to P%. Thus all sprite programs
should contain the following two lines at an early stage:

109 MODE 2:HIMEM=&2800¢ (&2500 for super sprites)
119 CALL P%

BEEBUGSOFT

4.4 USE OF VARIABLES

The sprite routines use the static integer variables to
pass to and from Basic (ie. A% to 2%). Your Basic program
should not use these for purposes other than those outlined
below; and they should not be directly used as a loop
parameter in FOR NEXT loops. Of course any other integer
variables (eg. AA%, a% and so on) may be freely used.

4.5 REFERENCING A SPRITE

Each of the seven individual sprites have separate
integer variables reserved for the x and y co-ordinates of
their location on the screen. These are as follows:

Sprite number X co-ord Y co-ord

1 A% B%
2 C3% D%
3 E% F3
4 G% H%
5 I% J%
6 K% L3
7 M3 N%

The x coordinate may vary between 2 and 151, and the vy
coordinate between 2 and 239. There is an automatic
wrap-around 1f values are out of these ranges. The
wrap-around parameters may also be altered by the user; see
section 4.11.

4.6 DRAWING A SPRITE ON THE SCREEN

This is very easy to do. % is used to tell the computer
which sprite you wish to draw, and S% is used to call the
sprite plotting routine.

eg 40 W% = 2
50 C% = 30:D% = 40
60 CALL 5%

would plot sprite 2 at (36,40)

BEEBUGSOFT

10

If the sprite was already on the screen at some other
location, plotting it in a new position (as in the above
code) automatically erases the first image. Hence you do
not need to worry about deleting old images as you cause
movement, it is all done for you.

If you wish to try this, *RUN M/CODE as described in
section 4.2, then run the following program:

REM PROGI
13 REM USES S% TO POSITION
20 REM SPRITE NO 2
190 MODE2:HIMEM=&28%0
110 CALLP%
120 W3=2
130 C%=30:D%=40
140 CALLS%

4.7 MOVING A SPRITE

There are 2 ways of doing this:

A. Plot the sprite on the screen, update the integer
variables controlling its location, and simply plot it on
the screen elsewhere - as described in section 4.6 above.

The program below uses this principle in conjunction with
a FOR NEXT loop to move a sprite across the screen. If you
wish to try it, *RUN M/CODE before running the program, as
described in 4.2 above.

REM PROG2
18 REM USES S% TO MOVE
20 REM SPRITE NO 2
10¢ MODE2:HIMEM=&2800
110 CALL P%: ?&2EBE = 8
120 W3=2
130 D%=190
140 FOR AA%=2 TO 150
145 C%=RAA%
150 CALLS%
160 NEXT

BEEBUGSOFT

11

B. Use the special programmable directions, and CALL T%.
This is achieved as follows:

W% = Sprite Number

7% = Direction Number
CALL T%

4
60 2% =5
T

o0

would move sprite 4 in direction 5. This call assumes that
the starting coordinates of the particular sprite are
already defined. If this is not the case a statement of
previous position should be made before the call; eg.
G%=50:H%=100.

The directions for the call to T% are initially defined
as follows, but may be reprogrammed as required:

N1/
1 2 3
-4 * 5=
6 7 8
/T N\

Note that moving the sprites using this method will
automatically update the relevant position vectors. Thus in
the above example with sprite 4, G% and H%, would have been
automatically updated to reflect the sprite's new position.

As an example the following program uses this call to
move a sprite randomly around the screen.

BEEBUGSOFT

12

@ REM PROG3
10 REM USES T% TO MOVE
20 REM SPRITE NUMBER 2
100 MODE2:HIMEM=&2800
119 CALLP%
120 C%=30:D%=40
130 REPEAT:PROCRAND:UNTIL FALSE
100@ DEFPROCRAND
1019 We=2
1020 Z%=RND(8)
193¢ CALLTS
194@ ENDPROC

4.8 REDEFINING A PROGRAMMABLE DIRECTION

As mentioned above, it is possible to move a sprite using
the special programmable directions and the variable T%.
Initially these are defined to move one unit in each of 8
possible directions, but these may also be reprogrammed as
required. This is done as follows:

Z% = Number of direction to be reprogrammed
X% = desired positive movement on the x axis
Y% = desired positive movement on the y axis
CALL R%

So to alter direction 2, to move the sprite up 3 units,
rather than the default value of 1, use:

7%
X3
v3 =
CALL

2
[}
3
R

oe

the that negative values of X% and Y% used in this way,
will cause negative movements; that is right to left or top
to bottom, respectively.

BEEBUGSOFT

13

4.9 DELETING A SPRITE

As already mentioned the old image of a sprite is
automatically deleted, when the sprite is redrawn elsewhere.
However, you may wish to totally remove a sprite from the
screen, and to do this simply set W% to the value of the
sprite plus 256, and call S%.

For example, to delete sprite 3, use:

50 W% = 259
60 CALL S%

4.10 DELAY ROUTINES

Because of the high speed of movement provided by the
sprites, you may need to slow them down a little to prevent
them from shooting across the screen too quickly. This is
fairly easy to do in Basic with simple REPEAT loops, however
a machine code routine to do this is also included for your
use.

SET X% to the required delay (from 1 to 255)
CALL 0% (ie the letter O - not zero)

4.11 BOUNDARY DEFINITIONS

If an attempt is made to plot a sprite outside a given
boundary on the screen, the program will automatically sense
this and plot the sprite on the other side of the screen,
producing a 'wrap around' effect. These boundaries are
normally set to the edges of the screen, but may be reset
using the following:

Boundary Instruction ° Range of Value
left side ?&85=value (2 - 151)
right side ?&86=value (2 - 151)
bottom side ?&87=value (2 - 239)
top side ?&88=value (2 - 239)

BEEBUGSOFT

14

Thus for example, the following line:

100 2?&85 = 50
will reset the left boundary to 50.
The default values for these parameters are 2, 151, 2, and
239 respectively. To reset the four parameters to the
default values, use:
CALL V%

Any call to P% will also reset them; though this will also
reset other variables.

BEEBUGSOFT

15

5. ADVANCED FEATURES

It is advised that the features covered in this section
should only be used once familiarity has been gained with
those outlined in section 4.

5.1 CLONES

Each of the 7 sprites may have up to 2 additional clones
(ie exact copies) of themselves on the screen at any time.
Hence there may be up to 21 independently moving objects on
the screen at once.

Each clone is allocated an identity, and it is with this
that it 1is identified, called and moved. These are as
follows:

Primary First Second
Sprite Clone Clone X Y
Number Number Number co-ord co-ord
1 9 17 A% B%
2 19 18 C% D%
3 11 19 E% F%
4 12 20 G% H%
5 13 21 I% J%
6 14 22 K% L%
7 15 23 M N%

As you will observe, the variables used to define the
position of the clones, are the same as those used to
control the main sprite. For example A% and B% are used to
indicate the position of sprite 1 and both of its clones
(sprites 9 and 17).

Hence, to move the sprite and both of 1its clones will
require care on your behalf to ensure that you do not call,
say, sprite 1 and then sprite 9, without updating the values
of A% and B% to the new position of sprite 9.

BEEBUGSOFT

16

5.2 ANIMATION

If the sprite that you are moving is, say, a man walking
along, simply redrawing him in different positions will give
the appearance of him gliding along - not actually walking.
This is not important for moving shapes such as a pacman,
car or tank, but is essential for moving, say, a flying bird
or a man climbing a ladder.

The BEEBUG sprite pack takes care of this automatically.
As mentioned earlier, the x co-ordinate of a sprite's
location may vary between 2 and 151, however in actual fact
there are only half this number of different screen
locations. Consequently, a sprite will appear at the same
position on the screen, if its x co-ordinate is, say, 10 or
11. This fact is made use of to place alternate images of a
sprite at the same position so as to simulate animation.

When using the sprite definer, (as explained later in
this manual) it is possible to create 2 different versions
of the same sprite. (Do not confuse this with clones or
super sprites). If you do this, the first image of the
sprite will be displayed whenever the x co-ordinate of the
sprite is an even number, and the second image displayed on
odd numbers.

5.3 CHECKING FOR A COLLISION BETWEEN SPRITES

In most games, it is essential to know when one object on
the screen hits another, for example a bullet hitting an
alien or a pacman hitting a monster. The continual checking
for crashes in Basic, will tend to slow down the operation
of any but the most simple programs. The BEEBUG sprite pack
includes a special machine code routine, which is quickly
called from Basic, to do this for you.

To check for a collision between sprite number m and
sprite number n, use the following:

)
=M

Z%=n
CALL Q%

BEEBUGSOFT

17

Now simply test for the value of X%. If it is unity, then a
collision has occurred, and appropriate action can be taken.
The routine defines a crash as any overlap involving a
central area of a given sprite of 4 pixels wide by 16 pixels
high. This is something of a compromise in that sprites
defined by the user will be of varying size.

It is however possible to increase the area used for the
collision routine to cover the full 8 by 16 sprite size. To
do this, type the following:

?&2EBE=8

Once you have done this, you can re-save your sprite
handling routine (whether for normal or super sprites), and
the modification will be saved along with it. To return to
the default value, use:

?&2EBE=4

The collision checking routine contains a further
facility to assist here. Once Q% has been called, Y% will
return a value depending on the accuracy of the collision. A
value of 255 indicates no crash, while lower values indicate
progressively greater overlaps between the two colliding
sprites.

Note that if either of the two sprites concerned are clones,
you must ensure that their position vectors hold their
correct x and y coordinates before any collision check can
be made; and that W% or Z% holds the number of their parent
sprite (rather than the clone number) .

The program below moves two sprites randomly around the
screen. When a collision is detected a noise is sounded.
There is a continuous printout of the value of Y% on screen,
to demonstrate the way in which this parameter can measure
the closeness of a collision.

BEEBUGSOFT

18

19
20
100
110
120
139
140
150
160
179
189
190
209
210
229
230
249
1609
1010
1020
1039
1040
1950
1969
1070
1080
1099
1100
1110
1129
1139
1140
1159
1160

REM PROG4
REM MOVES TWO SPRITES RANDOMLY,
REM AND CHECKS FOR CHRASHES.
MODE 2:HIMEM=&2800
CALL P%
VDU 23;8202;0;0;9;0
A%=100:B%=100¢
%=100:D%=100
REPEAT
time%=TIME + RND(600)
Z1%=RND (8)
Z2%=RND (8)
REPEAT
PROCmovel
PROCmove2
PROCcrash
UNTIL time%$<TIME
UNTIL FALSE
DEFPROCmove 1
we=1
7%=71%
CALL T%
ENDPROC
DEFPROCmove?2
W%=2
7%=22%
CALL T%
ENDPROC
DEFPROCcrash
Ws =1
7% = 2
CALL Q%
IF X%<>@ THEN SOUND &18,-15,6,4:time%=0
PRINT CHRS (30);Y%;" "
ENDPROC

BEEBUGSOFT

19

5.4 ALLOCATING SPRITES

You may reach a point in your game, when you need to have
several versions of the same sprite moving on the screen at
the same time. As already mentioned, there are 7 available
sprites which may be defined as required, and so one method
to achieve this would obviously be to define sprites 1, 2
and 3 (say) as the same character. Another method would be
to use clones, as already explained in this manual.

However , a third method is available which is
particularly useful if your game requires all 7 sprites to
be defined as different characters, and then requires the
display of, say, 3 or 4 versions of one particular sprite.
Quite simply, calling U% will enable a sprite to be
displayed not as itself, but as one of the other sprites.
This is known as ‘'allocating a sprite', and is achieved as
follows:

W% = Number of sprite to be allocated
7% = Number of sprite whose image is to be copied
CALL U%

For example, if sprite 1 is a monster and sprite 2 is a man;

will cause both sprites 1 and 2 to display the man.

Note that it is advisable to delete previously displayed
images of the sprite to be replaced.

Clones take on the new forms of their allocated parent
sprite. It is possible to allocate one sprite shape to more
than one sprite, and likewise to have a sprite shape that is
not allocated to any sprite. Merely because any sprite
shape 1is not allocated to any sprite number at a particular
time does not mean that it no longer exists: it will Jjust
remain idle until required.

BEEBUGSOFT

20

5.5 SUPER SPRITES

Normal sprites may have two alternative and alternating
manifestations. This allows simple animation effects. A
super sprite has four such manifestations and is created as
a pair of normal sprites. Each normal sprite in a super
sprite is called a phase, and the user determines which
phase is displayed at any given moment. As an example, the
sprite could be used to represent a running man. By defining
one phase with him facing left and the other phase with him
facing right it is possible to have him facing the same way
as he moves, all using one sprite. Furthermore it would be
easy to introduce animatioa into both phases using the
odd/even effect on the x co-ordinate.

It is not possible to combine the use of normal sprites
and super sprites in one program since super sprites require
a separate machine code handling routine. To access the
super sprite code on cassette or disc, use the following:

*RUN SS/CODE
CALL P% (sets default values)

Cassette users should note that SS/CODE is the eighth file
on the cassette.

To protect this code it is necessary to set HIMEM to
&2500 whenever the mode is changed, rather than &28¢8 for
normal sprites.

Many of the commands for super sprites are similar to
those for normal sprites. However it is not posible to
switch sprite shapes and sprite numbers in the same way as
is possible with ordinary sprites.

When defining the sprites for use in SS/DEMO each sprite
is allocated two phases. For example sprite one has a phase
facing left, and a phase facing right. These two phases are
defined and saved quite separately, as explained in section
6 below.

BEEBUGSOFT

21

It is possible to determine which phase of a given sprite
will be drawn using a call of the following kind:

W% = Super sprite number
Z% = Phase (1 or 2)
CALL U%

For example:

19 ws =3
20 7% = 2
30 CALL U%

This will allocate phase 2 to super sprite 3. All further
manifestations of super sprite 3 will be in phase 2 until it
is altered by another call to U%. Note that this call has a
different effect when using normal sprites.

It is advisable to delete the relevant supersprites
before changing their phase.

BEEBUGSOFT

22

hed S T ME S

FUMLCTIOM + SHIFT

HEYS HEY

FO=

Fi=

FE2= L] |

F3a=] -]

FL= i

FS= W [

Fh= " n

Fi= | | L

C=CLEARR L=LORD

TO HOUE CURSOR

OEE TME R

ERMTER SPRITE MRMAFE

S=GAUE O=OQuIT

USE CURSOR HEYS

BEEBUGSOFT

23

6. DEFINING SPRITES
6.1 USING THE SPRITE DEFINER

Sprites are each defined separately, and each is saved
as a separate file. It is therefore possible to build up a
library of sprites, which can be selected independently for
use in programs. Instructions on how to load sprites into a
program can be found in section 6.2 below.

Each sprite 1is defined in two parts, the first being
displayed when the X co-ordinate of the sprite's position is
even, and the second when it is odd. The purpose of this
feature is to allow for the employment of animation
techniques, eg. to generate a running man or a flying bird.
When using the sprite definer, you can select which is being
displayed by typing "1" for part 1 and "2" for part 2. Each
is defined on an 8 by 16 grid. Unless the second part is
defined, it is assumed to be identical to the first.

Super sprites have four parts. These should be
considered as two pairs (or phases) of normal sprites
amalgamated into one. Super sprites are defined by defining
two normal sprites, each of which may have two parts as
usual. The two normal sprite definitions are saved exactly
as for normal sprites. But when they are loaded back into
the machine code sprite handler, a different piece of code
is used (ie. SS/CODE rather than M/CODE), and the two pairs
are saved into it separately. See section 6.2, which gives
the load addresses for the two phases of each super sprite.

To define a sprite proceed as follows:

(a) Load the sprite definer program. Disc users should
select it from the menu, and tape users should load
it with
CHAIN "DEFINE"

It is the fifth file on the cassette.

BEEBUGSOFT

24

(b) Press "1".

(c) Move the cursor (a small dot in the left-hand grid)
by pressing the cursor control keys; and press the
relevant function keys to paint the square at the
position of the cursor as required. Continue until
the sprite is complete.

(d) If the second part of the sprite is required to be
defined differently, then press "2" and repeat (c).

(e) Press "S" to save the sprite on tape or disc (see
the end of this section for more precise details).

(f) 1If you are creating a super sprite, repeat (b) to
(e) above to generate arnd save (separately) its
second phase.

Note that you may clear the grid to any chosen
colour by selecting a colour with the function
keys, and then pressing "C".

Key alone Key with shift
f@ black black/white
f1 red red/cyan
f2 green green/magenta
£f3 yellow yellow/blue
f4 Dblue blue/yellow
f5 magenta magenta/green
f6 cyan cyan/red
£f7 white white/black

The colours generated with the shift key and a function key
are all flashing colours.

NOTES
The smaller square grid shows the sprite at actual size.

To alter a previously defined sprite, type "L" (for Load) ,
load the sprite, alter it, and save it again.

BEEBUGSOFT

25

Saving sprites on tape.
(a) Make sure that there is a clean part of the tape in the
tape recorder. BAny tape can be used except the one
containing the sprite package.
(a) Press the S key.
(b) Type in the name of your SPRITE (up to seven letters).
(c) Press the RECORD button on your tape-recorder.
(d) Press RETURN.
(e) After the sprite has been saved press the STOP button on
your tape-recorder.
Loading sprites from tape back into the definer.

Once your sprite has been recorded on tape it can be
loaded back into the sprite definer program at any time to
be altered.

(a) Load the sprite definer program into your computer.

(b) Line up the start of the part of the tape on which you
have recorded your sprite.

(c) Press the L key.
(d) Type in the name that you gave to the sprite.
(e) Press the play button on the tape-recorder.

(f) After your sprite has loaded press the STOP button on
the tape-recorder.

BEEBUGSOFT

26

Saving sprites on disc.

(a) Insert a spare formatted disc into the disc drive. If a
double drive is being used, drive @ should be selected.

(b) Press the S key.
(c) Type in the name of your SPRITE (up to seven letters).
Once your sprite has been saved on disc it can be loaded
back into the sprite definer program at any time to be
altered.

Loading sprites from disc back into the definer

(a) Load the sprite definer program into your computer.

(b) Press the L key.

(c) Type in the name that you gave to the sprite.

BEEBUGSOFT

27

6.2 INCORPORATING USER DEFINED SPRITES

Before you use your sprites in a Basic program they
must be placed in the relevant machine code sprite handling
routine (M/CODE for normal sprites, SS/CODE for super
sprites). This subroutine must then be re-saved containing
the new sprites, so that it can run together with the main
Basic program. It is advised that the altered program is
saved under a different name. The operation should be
performed in mode seven, with HIMEM set to &280@ for normal
sprites and &250@ for supersprites.

(a) Type MODE 7: HIMEM = &2800 (or &2500)
(b) Run the machine céde subroutine using:
*RUN M/CODE (normal sprites)
*RUN SS/CODE (super sprites)

Cassette users should note that M/CODE 1is the second
file on the cassette, and SS/CODE the eighth.

(c) Load in the required sprites which should have been
previously saved on tape or disc by typing:

*LOAD name nnnn

where name is the sprite name
and nnnn is the relevant address (see table below)

Normal sprites sprite nnnn
number

2800
2880
2900
298¢
2700
2780
2B0g

~N oUW~

BEEBUGSOFT

28

Super sprites Sprite nnnn nnnn
number (phase 1) (phase 2)

1 2509 2580
2 2600 2680
3 27909 2780
4 2800 2880
5 2900 2980
6 2A00 2780
7 2B@0 2B8¢

If you only want to use two sprites in your Basic
program for example then only load the two sprites that
you require into the machine code routine. The remaining
sprites will remain the default designs.

(d) To re-save the machine code program that now contains
the redefined sprites type:-

*SAVE name 2800 +900 3000 (for normal sprites)
*SAVE name 25@0 +C@@ 3000 (for super sprites)
This saved program will now contain the redesigned

sprites and can be run exactly as if it were the
original M/CODE or SS/CODE.

BEEBUGSOFT

29

7. DEMONSTRATION PROGRAMS

Included in the sprites package is a series of seven
demonstration programs, of which six (1-5 and 7) deal with
ordinary sprites and one (number 6) deals with super
sprites. Each program is listable, and the user is strongly
recommended to experiment with these programs, trying to
alter speeds, directions of movement, sprites plotted and so
on. These programs are an ideal way to increase familiarity
with sprites quickly. The user will then be better equipped
to design programs of his own.

Users should note that the final space-bar pressing in
each demonstration causes the program to be listed on the
screen. To repeat the demonstration, 3just type RUN. When
examining the program, please note that the function of the
last five lines of each is to perform the auto-listing.

Cassette users:

All the demostration programs, with the exception of DEMO:6
and DEMO:7 may be run using:

*RUN M/CODE
CHAIN "DEMO:n" n is the program number

DEMO:6 is run by:

*RUN SS/CODE
CHAIN "DEMO:6"

and DEMO:7 by:

*RUN CODE_2
CHAIN "DEMO: 7"

Disc users
Disc users should call the programs from the menu. At the

end of eacn demonstration the easiest way to move to the
next is to access the menu again using Shift-Break.

BEEBUGSOFT

30

The functions of the various programs are summarized briefly

below.

DEMO: 1

DEMO: 2

DEMO: 3

DEMO: 4

DEMO: 5

DEMO: 6

This simply plots a number of sprites on the
screen, without movement.

This moves the sprites around the screen, using the
facility for displaying two images of one sprite to
create an effect of animation for the cherry. The
two images are plotted depending on whether the x
co-ordinate of the position is even or odd. See
section 5.2.

This moves the seven main sprites (1 - 7) around
the screen. It also demonstates how it is possible
to allocate the same shape to more than one of the
sprites. All the clones (9 - 15, 17-23) take the
same form as the sprites of their respective base
numbers.

_ This shows the movement of all of the sprites and

all of the clones. The program must keep a record
of where each sprite is, and this is done using
PROCswapin and PROCswapout which assign the actual
clone positions to their relative variables.

This generates a repeat pattern of sprites.
Normally, unless you use clones, it is not possible
to have the same sprite in more than one position
on the screen, since plotting it in a second
position automatically deletes it from the first. A
way round this is to re-initialize the variables
every time the character is to be re-plotted. A
CALL to P% achieves this.

This demonstates the use of super sprites, and
shows one moving around the screen facing left or
right depending on the direction of travel. There
are other super sprites already defined in the
machine code program and the user may like to
experiment with them.

BEEBUGSOFT

31

DEMO: 7

This is a short sequence showing the use of sprites
in combination with plot and fill graphics.

BEEBUGSOFT

32

APPENDIX
PROGRAMS SUPPLIED ON THE CASSETTE

The programs are located on the tape in a convienient
order. Where two programs are required in sequence they are
placed in order. The files are as follows:

Introduction INTRO
(M/CODE) (Normal sprite code)
(PART 1)
(PART_2)

Sprite definer DEFINE
(DEF 1)
(DEF_2)

Super sprite code SS/CODE

Demonstrations M/CODE
DEMO: 1

M/CODE
DEMO: 2

M/CODE
DEMO: 3

M/CODE
DEMO: 4

M/CODE
DEMO: 5

SS,/CODE
DEMO: 6

CODE_2
DEMO: 7

If the program name is enclosed in brackets this means
that it is automatically called by a previous program.

BEEBUGSOFT

33

The intoduction should be loaded by
CHAIN "INTRO"
and the sprite definer by:

CHAIN "DEFINE"

Access to the machine code routines, and to the sprite
definer are described in sections 4 and 6 respectively.

BEEBUGSOFT

34

NOTES

BEEBUGSOFT

	Front_Rear.png
	0_1.png
	2_3.png
	4_5.png
	6_7.png
	8_9.png
	10_11.png
	12_13.png
	14_15.png
	16_17.png
	18_19.png
	20_21.png
	22_23.png
	24_25.png
	26_27.png
	28_29.png
	30_31.png
	32_33.png
	34.png

