

Tube Application Note

Applicable
Hardware :

BBC B
BBC B+
BBC Master 128

Support Group
Acorn Computers Limited
Acorn House
Vision Park
Histon
Cambridge CB4 4AE

Related
Application
Notes:

Copyright © Acorn Computers Limited 1992

Every effort has been made to ensure that the information in this leaflet is true and correct at
the time of printing. However, the products described in this leaflet are subject to continuous
development and improvements and Acorn Computers Limited reserves the right to change
its specifications at any time. Acorn Computers Limited cannot accept liability for any loss
or damage arising from the use of any information or particulars in this leaflet. ACORN,
ECONET and ARCHIMEDES are trademarks of Acorn Computers Limited.

16th January 1992

Support Group Application Note
Number: 004
Issue: 1
Author:

Overview

One of the BBC Microcomputer's strengths lies in its sophisticated Operating System, the MOS. This
operating system has a very fast and flexible response to Interrupts, which allows the machine to take a
wide range of peripherals and handle them with ease. The TUBE is a fast bus interface through which
additional Co-processors (also called second processors) can be added. when a co-processor is connected to
the TUBE interface, the BBC Micro continues to look after all of the I/O processing, whilst the additional
co-processor now carries out the task of running the Language Application.

The Co-Processor

The co-processor can be based on any microprocessor chip, and can have any memory size that this chip
can address. Units already in existence include 64K RAM 6502, 1MBit 32016, 64K Z80 etc. You may
wonder why there is any point in adding a unit using a 6502 chip, the same series as the BBC Micro itself,
and with a RaM size the same as the Model B+? The reasons are twofold:

1) Speed - whilst the co-processor is carrying out the computational tasks of the Application program, the
BBC Micro itself can look after the screen display, printer, disc drive etc.

2) Memory - In the Model B or B+ with a Disc Filing System, the position of PAGE is typically &1900.
The application has to fit above this and below HIMEM. In the Model B, HIMEM moves down when a
high resolution screen display is selected further reducing the memory available. In the 6502 co-processor,
PAGE is typically at &800 and HIMEM is at &8000 regardless of Filing System and screen display mode.

The TUBE interface

The co-processor is connected to the TUBE connector on the BBC Micro via the TUBE cable. In the
system, the BBC Micro is referred to as the "host", and the co-processor as the "parasite". Within any co-
processor there is a custom chip, the TUBE ULA, which provides the actual communicating interface
between both processors. The processors are not synchronised with one another, and the ULA chip forms
an effective set of pigeon holes through which each processor can leave information for the other to read
when it is ready.

For the TUBE interface to work, there has to be a set of machine code in both processors which looks after
the communicating protocols on both sides of the ULA. In the BBC Micro, this "host" code resides
typically in one of the sideways ROM's ie NFS 3.34, DNFS, 1770 DFS etc. In the co-processor, the
"parasite" code resides in a small ROM commonly called the "boot" ROM.

Software Compatibility

Applications software which has been written for the BBC Micro itself may not run on a 6502 co-processor
if it has not followed the rules for using the Tube interface. applications writers may become over familiar
with the memory map in the BBC Micro and it's operating system interface and "bypass" the standard
routines. This application will then almost certainly fail when it is run in the different memory map of a
cop-processor and where not all of the assumed interfaces are available. In the following sections of the
Application Note, the various "legal" way of interfacing with the operating system will be described. if
properly implemented, the Application Program will then run in either the BBC Micro or the 6502 co-
processor, with no modification. If the communication techniques across the Tube interface are also
properly implemented then maximum advantage of the overall system speed can be obtained without one
processor waiting an unreasonable length of time fo the other processor to respond.

2

16th June 1992Support Group Application Note No. 004, Issue 1

Support Group Application Note No. 004, Issue 1

The Load address used by filing system file names contains a "high order" address which indicates which
processor memory map it is to be loaded into. for example, a load address of &FFFFxxxx indicates that the
file should be loaded into the I/O processor area. A load address of &0000xxxx indicates that the parasite is
the destination. In practice, filing systems shorten the high order bytes to two ie &FFxxxx or &00xxxx. A
file loaded under BASIC control will load into the current language processor regardless of the file load
address. This ability to force *LOADing of files into a particular processor can be used to set up user
machine code from a filing system into the I/O processor when the co-processor is in use.

The TUBE ULA

As stated previously, the ULA acts as a parallel interface between two asynchronous processor systems. It
consists of four byte-wide read-only registers and four byte-wide write-only registers. eight bytes of
memory mapped I/O space are used to address these registers, four for the data registers and four for the
associated status registers.

Register number 1

I/O address Co-proc address
status &FEE0 &FEF8 write/read (clears IRQ)
data &FEE1 &FEF9 bit 7 - data available/IRQ

bit 6 - not full

Parasite to Host: Carries the OSWRCH call. Data register is a FIFO that can handle a VDU command
length (10 bytes).

Host to Parasite: There is a 1 byte buffer. It is used to generate IRQ's in the parasite from events in the
host.

Register number 2

I/O address Co-proc address
status &FEE2 &FEFA write/read
data &FEE3 &FEFB bit 7 - data available

bit 6 - not full

Used to implement OS calls that take a long time or that cannot interrupt Host tasks. The parasite passes a
byte describing the required task. The two processors then exchange data until the task is complete. OS
calls handled through this register include: OSRDCH, OSCLI, OSBYTE, OSWORD, OSBPUT, OSBGET,
OSFIND, OSARGS, OSFILE, OSGBPB.

Register number 3

I/O address Co-proc address
status &FEE4 &FEFC write/read
data &FEE5 &FEFD bit 7 - data available/NMI

bit 6 - not full

Used for the background task of fast data transfer between the two processors.

3

16th June 1992Support Group Application Note No. 004, Issue 1

Support Group Application Note No. 004, Issue 1

Register number 4

I/O address Co-proc address
status &FEE6 &FEFE write (sets IRQ)/read (clears IRQ)
data &FEE7 &FEFF bit 7 - data available/IRQ

bit 6 - not full/IRQ

Used as the control channel for block transfers going through Register 3, and also the transfer register for
error strings from host to parasite. In both cases, the host interrupts the parasite by placing a byte into the
Register. In the former case it is a byte describing the required action, in the latter it is an error code.

Writing for compatibility

The applications software writer needs to know which operating system interfaces will work "across the
tube", and which will not. He will also need to know how to implement other techniques for those that
don't work.

Valid calls across the Tube: OSWRCH, OSBYTE (Y only returned for A>= &80), OSRDCH, OSCLI,
OSWORD, OSBPUT, OSBGET, OSFIND, OSFILE, OSARGS, OSGBPB.

Note:
a) OSBYTE calls have some restrictions in the co-processor ie:
 &00-&7F - Only X (not Y) is sent and returned.
 &82 - Always returns 00 in both X and Y (ie the parasite high order address).
 &83 - Always returns 00 in X and 08 in Y (ie OSHWM in parasite).
 &84 - Always returns &8000 or &B800 (ie the position of HIMEM in the parasite).

b) OSWORD call parameters sent and received across the Tube can be ascertained from the following table
OSWORD No. Params sent Params received
1 (&01) 0 5
2 (&02) 5 0
3 (&03) 0 5
4 (&04) 5 0
5 (&05) 2 5
6 (&06) 5 0
7 (&07) 8 0
8 (&08) 14 0
9 (&09) 4 5
10 (&0A) 1 9
11 (&0B) 1 5
12 (&0C) 5 0
13 (&0D) 0 8
14 (&0E) 16 16
15 (&0F) 16 16
16 (&10) 16 13
17 (&11) 13 13
18 (&12) 0 128
19 (&13) 8 8
20 (&14) 128 128
<128 (&80) 16 16
>127 (&7F) XY offset 0 XY offset 1 (ie in param block)

4

16th June 1992Support Group Application Note No. 004, Issue 1

Support Group Application Note No. 004, Issue 1

Invalid calls across the Tube: OSRDRM/OSRDSC, OSWRSC

Other invalid actions include:
Peeking/Poking memory unless the location is guaranteed to be the same in both memory maps.
Directly addressing memory mapped I/O locations such as VIA.
Directly address &F4, the ROM latch variable.
Keeping data areas in &A00, &B00 and &C00. These are above PAGE in the parasite.
Using pages 4, 5, 6 and 7 in the I/O processor, normally reserved for the current language. these are used
by the Tube code.
Using the two pages above normal PAGE position in the I/O processor. These are used for font explosion
when a parasite processor is being used. Therefore stay above &2100, if PAGE is normally &1900, for user
machine code.

Valid communicating techniques:
OSBYTE 146 - Read from FRED (1MHz bus).
OSBYTE 147 - Write to FRED (1MHz bus).
OSBYTE 148 - Read from JIM (IMHz bus).
OSBYTE 149 - Write to JIM (1MHz bus).
OSBYTE 150 - Read from SHEILA (memory mapped I/O).
OSBYTE 151 - Write to SHEILA (memory mapped I/O).
OSBYTE 157 - Fast Tube BPUT.
OSBYTE 234 - Read Tube presence.
OSWORD 5 - Read from I/O processor (transfers 1 byte).
OSWORD 6 - Write to I/O processor (transfers 1 byte).
OSWORD 224 to 225 - Passed through USERV vector (Can transfer up to 128 bytes either way across the
Tube).

Some typical examples:

a) Moving a few bytes: Use OSWORD 5 or 6 from the co-processor the appropriate number of times.

b) Moving up to 128 bytes: OSWORD 5 or 6 is typically too slow for more than a few bytes, hence the
following is a recommended approach for the transfers to or from the co-processor and initiated by the co-
processor:

Use OSWORDS in the range &E0(224) to &FF(255). These "unknown" OSWORDS are passed through
the USERV vector at &200 in the I/O processor. Thus to transfer 64 bytes from the co-processor to the I/O
processor we select, say OSWORD &E0, with the following parameter block:

XY + 0 68 bytes to transmit
 1 0 bytes to receive
 2 LO Lo byte of destination in I/O processor
 3 HI Hi byte of destination in I/O processor
 4 x 1st byte of 64
 | | |
 68 x 64th byte of 64

To transmit 64 bytes from the I/O processor to the co-processor, we select, say OSWORD &E1, with the
following parameter block:

5

16th June 1992Support Group Application Note No. 004, Issue 1

Support Group Application Note No. 004, Issue 1

XY + 0 4 bytes to transmit
 1 68 bytes to receive
 2 LO Lo byte of source location in I/O processor
 3 HI Hi byte of source location in I/O processor

In practice you would intercept the USERV vector in the I/O processor (at &200,1) for the first run of the
program. When &E0 is intercepted, the data from the parameter block already set up is ready to be moved
across the Tube by the co-processor Tube code into the I/O processor location given in the parameter block.
Control is returned to the program. When &E1 is intercepted, the data is taken from the address given in
the parameter block and placed in the parameter block starting at address offset 4. Following this, the Tube
code will copy the data across the Tube into the co-processor into the original parameter block location.

c) Moving large quantities of data: To move large quantities of data, for example a complete screen update,
the fast Tube BPUT OSBYTE call is used. Prior to the call, some machine code is placed in the I/O
processor ready to handle the data as it arrives across the Tube from the co-processor. When data is ready
to be moved across the Tube, an OSBYTE &9D (157) is made to initiate the users code to in the I/O
processor. The data is moved through Tube register 1 and handled by the user code on the other side. Note
that all OSBYTE calls are vectored through the BYTEV vector at &20A,B in the I/O processor, and this
vector has to be intercepted to detect an OSBYTE &9D call and pick up the X and Y parameters to be used
by the user's code. The advantage of OSBYTE &9D over other OSBYTE calls is that after the X and Y
parameters have been sent across the Tube, control is immediately returned to the parasite. no parameters
are returned.

6

16th June 1992Support Group Application Note No. 004, Issue 1

Support Group Application Note No. 004, Issue 1

The Correct Use of Tubes

The Tube (c)Acorn Computers etc. is both a custom chip and a set of protocols. The protocols control the
flow of control and data between a second processor and the BBC machine to which it is attached. Clearly
the implementation of these protocols in the second processor is different with different processors and
operating environments, so this document is not concerned with second processor code. This document
does however please constraints on the performance of second processors, as the description of the Tube
use on the BBC machine side includes expected response times so that the BBC machine user need not poll
the hardware.

Conventions.

We assume you know about the 6502, and a bit about BBC machines. Hexadecimal numbers are written
&<Hex digit> (<Hex digit>^) eg &FEE5, &0406. Decimal numbers are just written. Host means BBC
computer, parasite means second processor.

1. Claiming the Tube

Before you can use the Tube, you must claim it successfully. This is to prevent reentrancy problems with
background and foreground tasks trying to use the system at the same time, for instance during an Econet
(c) peek. Of course, before attempting to use the Tube system you must be certain that the Tube is present,
by using OSBYTE call &EA with Y=&FF, X=0. The answer, in X, is 0 if there is no Tube or &FF if the
Tube system is present. Only if the Tube is present may you call the Tube code entry point, as otherwise it
is language workspace eg BASIC's variables.

To claim the Tube you must call the Tube code entry point at &0406 with a reason code of &C0+x in the
accumulator. x is an ID code which should identify you uniquely. this call return with the carry set if the
claim was successful, carry clear if it failed. Failure implies that some background task is using the Tube,
so the usual course of action is to keep trying until yu succeed. For example, the DFS uses the following
subroutine (MASM format)

CLATUB PHA ; Save A, as it happens
CLATBO LDAIM &C1 ; My magic number
 JSR &0406 ; Tube code entry point
 BCC CLATBO ; If it failed try again.
 PLA ; Recover A
 RTS

Some other magic numbers which have been allocated are:

&C0 - Cassette filing system
&C1 - Disc filing system - DFS
&C2 - Econet - Low level primitives
&C3 - Econet filing system
&C4 - ADFS
&C5 - Teletext
&C6 - Acorn in-house Terminal - HOSTFS (?)
&C7 - VFS - video discs
&C8 - 64/128k beebs sideways RAM utils
&C9 - Z80 chaps, CP/M

7

16th June 1992Support Group Application Note No. 004, Issue 1

Support Group Application Note No. 004, Issue 1

::
&CF - Acacia RAM FS (not allocated by us!) - also user applications

The ID code is in fact a six bit quantity, so you should use:
LDAIM &CO+MYID
JSR &0406
in your code.

When you have finished using the Tube you must release it so that other users may claim it. So that another
user cannot release the Tube when you claimed it, you must call the entry point with &80+x in the
accumulator, where x is the same magic number you used when claiming. For example DFS uses the
following subroutines.... (MASM format):

RELTUB PHA ; Save A
 LDAIM &81 ; Magic number
 JSR &0406 ; Tube entry point
 PLA ; Get A
 RTS

2) Data Transfers/Execution

The same entry point is used to initiate a data transfer through the Tube. The type of transfer is selected by
means of a reason code in the accumulator. You must also tell the system where in the second processor's
memory space to start the transfer. You must place the address of te first byte to the moved (source or
destination, depending on the transfer type, or the Execute address if you are forcing execution in the
parasite) in four bytes of memory in the BBC machine, low byte first as usual, and put the low byte of the
address of these four bytes in X and the high byte of the address of the four bytes in Y. So . .

Four byte address in BBC m/c
 YX ---> : Low byte : \
 : MidLo byte : > - - - - - -> data byte in second processor.
 : MidHi byte : /
 : Hi byte : /

Reason codes for data transfers are as follows:

RC Description Initial delay Delay per byte
0 Multi byte transfer, parasite to host 24 uS 24 uS
1 Multi byte transfer, host to parasite 0 24 uS

These transfer any number of bytes in
the appropriate direction - terminate by
releasing the Tube or recommanding
for another protocol.

2 Multi pairs of bytes transfer, parasite
to host 26 uS 26 uS/pair

3 Multi paris of bytes transfer, host to
parasite 0 26 uS/pair
These transfer an even number of bytes
in the appropriate direction, faster than
protocols 0 and 1 - terminate by

8

16th June 1992Support Group Application Note No. 004, Issue 1

Support Group Application Note No. 004, Issue 1

releasing the Tube or recommanding
for another protocol.

4 Execute - Execution starts in the parasite at
the address pointed to by YX. This call
contains an implied release and does not
return to you.

5 Reserved - this call is used in handling OS
calls which are passed across the Tube.

6 256 byte transfer, parasite to host 19 uS 10 uS/byte
7 256 byte transfer, host to parasite 0 10 uS/byte

These transfer exactly and only 256 bytes
only after 256 bytes are transferred may
the system be recommanded or released.

Having commanded the system, you may now transfer the data. The initial delay is the time you must wait
after control returns to you before you transfer the first byte of data. The port used to transfer the data is
memory mapped into the BBC machine at location &FEE5 (another magic number !), so either do an LDA
&FEE5 for parasite to host or STA &FEE5 for host to parasite to transfer the data.
eg To transfer 256 bytes of data into an arbitrary page in the BBC machine memory from the parasite.

; Set up page zero locations &80, &81 to point to the destination page
; Set up locations &3000, &3001, &3002, &3003 to contain the source address in the parasite

CLAIM LDAIM &CO+&10 ; Say my ID is 16
 JSR &0406 ; Claim the Tube
 BCC CLAIM

 LDXIM &00 ; Lo byte of &3000
 LDYIM &30 ; Hi byte of &3000
 LDAIM 6 ; P -> H, 256 bytes
 JSR &0406

 JSR ANRTS ; 6 uS delay
 JSR ANRTS ; 12 uS delay
 JSR ANRTS ; 18 uS delay

 LDYIM 0 ; so the initial delay in 19 uS

LOOP LDA &FEE5 ; Get it from the port (2 uS = 2)
 STAIY &80 ; Put the data byte (+3 uS = 5)
 NOP ; (+1 uS = 6)
 NOP ; (+1 uS = 7)
 NOP ; (+1 uS = 8)
 INY ; (+1 uS = 9)
 BNE LOOP ; Next data byte (+1.5 uS = 10.5 uS/byte)

 LDAIM &80+&10 ; Release code + My ID
 JSR &0406 ; Release the Tube

9

16th June 1992Support Group Application Note No. 004, Issue 1

Support Group Application Note No. 004, Issue 1

 :
 :
ANRTS RTS

Execute:
Calling the Tube code with A=4 is used to force execution to start in the second processor at a location
defined by the parasite. This is used by filing systems when *RUNning a file. The filing system claims the
tube, loads the program code into the second processor RAM and then uses call 4 with YX pointing to the
exec address of the file to start execution of the code.

3) OSWORD calls

These are a few things you should know if you are going to use your own OSWORD calls to pass control/
data back and forth across the Tube.

Low numbered OSWORD calls:
These have variable numbers of parameters both in and out. In practice, for all OSWORD calls with
A<128, 16 bytes are passed each way. This covers all the Acorn assigned calls and allows them to be made
transparently from either side of the Tube.

High numbered OSWORD calls:
OSWORD calls with A>128 have a special format to allow a variable number of parameters to be passed
each way.

YX ----> n (byte)
YX+1 m (byte)
YX+2 data

when the call is made in the second processor, n bytes (inclusive of the bytes containing n and m) are
copied into the I/O processor, then the call is made there with YX pointing to the copy. When the call
returns, m bytes (inclusive again) are copied back into the second processor. 2 <= n,m <= 128, so you can
pass at most 126 bytes of data back and forth. eg if you wish to pass a 4 byte record, the first byte of which
is a status return, use:

YX -> 6 ; 6 bytes to the I/O processor
 3 ; 3 bytes returned
 data0
 data1
 data2
 data3

10

16th June 1992Support Group Application Note No. 004, Issue 1

Support Group Application Note No. 004, Issue 1

TUBE AC Electrical Specification

NB On the host side, 02 is the timing reference and R/W gives the direction of transfer. On the parasite
side, the timing and direction are implied by MRDS or NWDS.

MIN MAX
1) R/W set up to 02 35 ns
2) timing strobe pulse width 110 ns
3) address set up time 35 ns
4) address and chip select hold times 10 ns
5) data out delay time 70 ns
6) data out hold time 20 ns
7) data in set up time 50 ns
8) data in hold time 20 ns
9) R/W hold time 10 ns
10) cycle time 250 ns
11) CS set up time 20 ns

The chip must operate within this specification, as this meets 4MHz 6502 requirements.

All other timings, such as across tube transfer times, are non critical, but are expected to be at
most 1 or 2 microseconds

Interrupt Operation

The tube has three processor interrupt outputs, two to the parasite (PIRQ & PNMI) and one to the host
(HIRQ). Each line has an enable bit, and PIRQ has two, one for each possible interrupt source. The
interrupt lines go active (low) under the following conditions:

HIRQ Q = 1 and register 4 has data available in the parasite to host latch

11

16th June 1992Support Group Application Note No. 004, Issue 1

Support Group Application Note No. 004, Issue 1

R/W

MRDS

NWDS

A0-2

D0-7

CS

1

2

102

2

3 34 4

5 6
7 8

11
4 411

0 2

PIRQ either: I = 1 and register 1 has data available in the host to parasite latch
or: J = 1 and register 4 has data available in the host to parasite latch
(or both)

PNMI either: M = 1 V = 0 1 or 2 bytes in host to parasite register 3 FIFO or 0 bytes in parasite
 to host register 3 FIFO (this allows single byte transfers across

 register 3)
or: M = 1 V = 1 2 bytes in host to parasite register 3 FIFO or 0 bytes in parasite to host

 register 3 FIFO. (this allows two byte transfers across register 3)
(or both)

In all cases the interrupt condition is cleared by removing the cause; in the case of HIRQ or PIRQ reading
the data from the appropriate register, in the case of PNMI reading or writing data to or from register 3 as
appropriate.

Reset Operation

An active (low) signal on HRST initialises the tube to a known state, and automatically produces a PRST
active output to reset the parasite system.

The state is T, P, V, M, J, I, Q are all set to zero.

All the registers are purged except that register 3 has one valid but insignificant byte in the parasite to host
FIFO (this is to prevent an immediate PNMI state after PRST).

The T control bit allows the processor to reset the Tube to the above state with the exception that P, V, M, J,
I & Q are unaffected, and P allows separate reset of the parasite processor by the host under software
control. These resets are activated by setting the respective flags, and they must be cleared before the reset
device will operate again, unless of course HRST is activated in the mean time.

DMA Operation

The DRQ pin (active state = 1) may be used to request a DMA transfer - when M = 1 DRQ will have the
opposite value to PNMI, and depends on V in exactly the sam way (see description of interrupt operation).
DACK then selects register 3 independently of PAo-2 and PCS, and forces a read cycle if PNWDS is active
or a write cycle if PNRDS is active (not inverse sense of PNWDS and PNRDS so that the DMA system can
read the data from memory an write it into the Tube in one cycle).

Control and Status Flags

In the above table the positions in the memory map of the various status and control bits are shown, and
their significance is explained below.

A1, A2, A3, A4 = 1 data available in register 1, 2, 3, 4
F1, F2, F3, F4 = 1 register 1, 2, 3, 4 not full
N =1 register 3 action required (if M = 1 then PNMI active)

The data available flag signifies data available to the processor reading the flag, whereas the not full flag
shows that the register from the processor reading the flag has space for more data.

12

16th June 1992Support Group Application Note No. 004, Issue 1

Support Group Application Note No. 004, Issue 1

In the case of a simple latch such as register 2, A2 on the host side and F2 on the parasite side will always
have the opposite value. In the case of the FIFO registers, data is available when there is one of more valid
byte in the register, but the not full flag only becomes inactive when the entire register is loaded.

All registers are simple latches except register 3, which has 2 byte FIFOs in each direction, and register 1,
which has a ten or more byte FIFO from the parasite to the host. The host to parasite part of register 1 is a
simple latch.

Q = 1 enable HIRQ from register 4
 I = 1 enable PIRQ from register 1
J = 1 enable PIRQ from register 4
M = 1 enable PNMI from register 3
V = 1 two byte operation of register 3
P = 1 activate PRST
T = 1 clear all Tube registers
S = 1 set control flag(s) indicated by mask

These flags are set or cleared according to the value of S, eg writing 92 (hex) to address 0 will set V and I to
1 but not affect the other flags, whereas 12 (hex) would clear V and I without changing the other flags. All
flags except T are read out directly as the least significant 6 bits from address 0.

Register 3 Operation

Register 3 is intended to enable high speed transfers of large blocks of data across the tube. It can operate
in one or two byte mode, depending on the V flag. In one byte mode the status bits make each FIFO appear
to be a single byte latch - after one byte is written the register appears to be full. In two byte mode the data
available flag will only be asserted when two bytes have been entered, and the not full flag will only be
asserted when both bytes have been removed. Thus data available going active means that two bytes are
available, but it will remain active until both bytes have been removed. Not full going active means that the
register is empty, but it will remain active until both bytes have been entered. PNMI, N and DRQ also
remain active until the full two byte operation is completed.

General Description

The Tube is a completely asynchronous parallel interface between two processor systems. To each system
it resembles a conventional peripheral device, occupying 8 bytes of memory or I/O space. within that space
are four byte wide read only latches, and four byte wide write only latches, plus associated control flags.
Some of the latches are just that - data written in one side is read out of the other on the next read to that
address, but some are in fact FIFO buffers, which store two or more bytes to be read out in the order they
were put in. Information is stored in the Tube until removed by the receiving processor, thus allowing
completely asynchronous operation of the two systems. messages and data are passed to and fro through
the various registers according to carefully designed software protocols, and proper allocation of the
registers to specific tasks allows both systems to operate with the minimum waiting time.

13

16th June 1992Support Group Application Note No. 004, Issue 1

Support Group Application Note No. 004, Issue 1

Register Organisation

A2 A1 A0 R/W or NWDS D7 Host DO D7 Parasite DO

0 0 0 1 A1 F1 P V M J I Q A1 F1 P V M J I Q
0 0 1 1 read reg 1 read reg 1 (1)
0 1 0 1 A2 F2 x x x x x x A2 F2 x x x x x x
0 1 1 1 read reg 2 read reg 2
1 0 0 1 A3 F3 x x x x x x N F3 x x x x x x
1 0 1 1 read reg 3 (2) read reg 3 (3)
1 1 0 1 A4 F4 x x x x x x A4 F4 x x x x x x
1 1 1 1 read reg 4 (4) read reg 4 (5)

0 0 0 0 S T P V M K I Q x x x x x x x x
0 0 1 0 write reg 1 (6) write reg 1
0 1 0 0 x x x x x x x x x x x x x x x x
0 1 1 0 write reg 2 write reg 2
1 0 0 0 x x x x x x x x x x x x x x x x
1 0 1 0 write reg 3 (7) write reg 3
1 1 0 0 x x x x x x x x x x x x x x x x
1 1 1 0 write reg 4 (9) write reg 4 (10)

Notes: 1) Will clear PIRQ if register 1 was the source
 2) May activate PNMI depending on M and V flags
 3) May clear PNMI (see description of interrupt operation)
 4) Will clear HIRQ if it was active
 5) Will clear PIRQ if register 4 was the source
 6) Will activate PIRQ if I = 1
 7) May activate PNMI depending on M and V flags
 8) May clear PNMI
 9) Will activate PIRQ is J = 1
10) Will activate HIRQ if Q = 1
11) All bits marked x are insignificant and will read out as 1

14

16th June 1992Support Group Application Note No. 004, Issue 1

Support Group Application Note No. 004, Issue 1

TUBE Logical Definition

Description of pins:

Power supply GND 0v reference
VCC1 Main +5v supply
VCC2 Secondary supply - may not be used. - must be derived from

 +5v through dropping resistor.

Data buses HDo-7 8 bit data bus to host processor
PD0-7 parasite processor

Address signals HAo-2/PAo-2 3 register select lines from host/parasite address
bus

HCS/PCS chip select line from host/parasite address
decoding

Timing signals H02 Host processor clock-high level signifies valid address bus
HR/W Host read-write line-controls direction of information flow on

HDo-7
PNRDS Parasite read strobe (low level active)
PNWDS Parasite write strobe (low level active)

Interrupt lines HRST Clears all internal latches and initialises tube to known state -
also generates PRST

HIRQ Interrupt to host processor
PRST Reset line to parasite processor
PNMI Non-maskable interrupt to parasite
PIRQ Interrupt to parasite

15

16th June 1992Support Group Application Note No. 004, Issue 1

Support Group Application Note No. 004, Issue 1

VCCI VCC2 CND

O O

O

O
O

O
OO

O

O

DRQ DACR

HAO

HA1

HA2
HCS

HDO

HD7

H02

HR/W

HRST

HIRQ

PAO

PA1

PA2
PCS

PDO

PD7

PNRDS

PNWDS
PRST
PNMI
PIRQ

PARASITE (2nd)

processor system

HOST (I/O)

processor system

DMA controller on 2nd processor system

DMA lines DRQ Request for DMA transfer
DACK DMA acknowledge from DMA controller

Schematic diagram of Tube registers

The following tables show the relative address and type of each register in the Tube, firstly for the Host
system, and secondly for the parasite system (second processor).

Table 1 Host System Registers

Address Read
000 Status flags and Register 1 flags
001 Register 1 (24 byte FIFO read only)
010 Register 2 flags
011 Register 2 (1 byte read only)
100 Register 3 flags
101 Register 3 (2 byte FIFO only)
110 Register 4 flags
111 Register 4 (1byte read only)

16

16th June 1992Support Group Application Note No. 004, Issue 1

Support Group Application Note No. 004, Issue 1

Write address 0
Read address 0

Read address 0
Write address 1

Read address 2
Write address 3

Read address 4
Write address 5

Read address 6
Write address 7

HOST

1

REGISTER 4

byte

2 byte
FIFO

REGISTER 3

1
byte

REGISTER 2

24 byte FIFO

REGISTER 1

1
byte

REGISTER 4

2 byte
FIFO

REGISTER 3

1
byte

REGISTER 2

1
byte

REGISTER 1

1
byte

STATUS REGISTER

Read address 0
Read address 1

Read address 2
Read address 3

Read address 4
Read address 5

Read address 6
Read address 7

PARASITE

Read address 0

Read address 0
Read address 1

Read address 2
Read address 3

Read address 4
Read address 5

Read address 6
Read address 7

Read address 0
Write address 1

Read address 2
Write address 3

Read address 4
Write address 5

Read address 6
Write address 7

Flags

Data availableNot full

Not full

Not full

Data available

Action required

Not full Data available

Data available Not full

Data available

Data available

Not full

Not full

Data available Not full

Address Write
000 Status flags
001 Register 1 (1 byte write only)
010 - - - - - -
011 Register 2 (1 byte write only)
100 - - - - - -
101 Register 3 (2 byte FIFO write only)
110 - - - - - -
111 Register 4 (1 byte write only)

Table 2 Parasite System Registers

Address Read
000 Status flags and Register 1 flags A1 F1 P V M J I Q
001 Register 1 (1 byte read only)
010 Register 2 flags
011 Register 2 (1 byte read only)
100 Register 3 flags
101 Register 3 (2 byte FIFO read only)
110 Register 4 flags
111 Register 4 (1 byte read only)

Address Write
000 - - - - - -
001 Register 1 (24 byte FIFO write only)
010 - - - - - -
011 Register 2 (1 byte write only)
100 - - - - - -
101 Register 3 (2 byte FIFO write only)
110 - - - - - -
111 Register 4 (1 byte write only)

17

16th June 1992Support Group Application Note No. 004, Issue 1

Support Group Application Note No. 004, Issue 1

INTERFACE SPECIFICATION

Title: Acorn Tube Software Protocol Specification

Reference: SP0, 989, 900I01

Issue No: 08

Author:

Date: 27. 05. 1986

Design Authority:

NOTE: All enquiries and requests for changes to this specification must be directed to the Design
Authority.

DISTRIBUTION: ACORN H Fisher Business Systems Dept
A Hinchley Communication Systems Dept
J B Tansley Engineering Systems Dept
M Jenkin Engineering Systems Dept
A McKernan Personal Systems Dept
C B Turner R & D Services Dept

EXTERNAL F Cockshott Glasgow Univ.
C Hall TDI
J Wein Digital Research

(C) Copyright Acorn Computers Limited 1986

Interface Specification Ref: SOtube8

18

16th June 1992Support Group Application Note No. 004, Issue 1

Support Group Application Note No. 004, Issue 1

1 Change History

31 Jan 1984 : Initial issue
 9 Feb 1984 : Correct R4 protocols, Minor clarifications
24 Feb 1984 : Correct R4 type 0-3 protocols
 6 Aug 1984 : OSWORD Parameter Counts corrected
12 Oct 1984 : Document restructure
25 Oct 1984 : Distribution List change
20 Nov 1984 : Correction of typographical errors
27 May 1986 : Addition of overview and timing details

2 Introduction

The Tube allows two processors to communicate using software protocols, it provides single or multibyte
buffering and the handshake signals required.

This document describes the Tube protocols from the point of view of the second processor. In this
document the following conventions are observed:

Hexadecimal numbers are preceded by &
When bit are numbered within a byte, bit 0 is the least significant bit
'Host' refers to the BBC computer
'Parasite' refers to the second processor

3 Overview

The objective of a host - parasite tube configuration is to allow th parasite to execute user programs, using
the host system as a servant to take care of low level I/O tasks. In order to use the host system as a servant,
the parasite must be able to control suitable routines in the host system. The standard host tube code allows
the parasite to make use of the standard BBC operating system calls. Thus any parasite system, on
initialisation, must be capable of using these standard OS routines through the tube, and may or may not
load new routines into the host at a later stage of start up. This document therefore defines the protocols
necessary for making use of these standard OS routines and coping with the results of issuing commands -
for example loading files from disc across the tube into the parasite system. a parasite system also has to be
able to cope with the needs of external systems such as a network - which may want to peek or poke
memory in the parasite system.

The system calls form three main categories:
a) Calls on which the host system acts and makes no return of information to the parasite.
b) Calls on which the host acts and then returns a few parameters to the parasite in a non time critical
fashion.
c) Calls on which the host acts and then returns or reads parameters or blocks of data in time critical
fashions.
An example of category c is a load of a file from disc. The process is started by the parasite issuing an
appropriate filing system call. The filing system response will result in bytes physically read from the disc
having to be passed straight across the tube to the parasite.

Categories a and b are dealt with by th host and parasite using registers 1 in the parasite to host direction
and 2 in both directions. register 1 in the parasite to host direction is used for OSWRCH calls (fitting

19

16th June 1992Support Group Application Note No. 004, Issue 1

Support Group Application Note No. 004, Issue 1

category a). These types of transfer are made by each processor polling the relevant register status until it
reaches the correct state for reading or writing. When it is not busy performing tasks, the host processor
polls registers R1STAT and R2STAT, waiting for commands. Filing system calls (category c) are made
with this type of transfer through register 2, but any time critical resulting transfer occurs under interrupt.
The 'Non Interrupt Protocols' section of this document describes in detail the protocols for these types of
transfer,

Time critical transfers use registers 1 or 4 in the host to parasite direction to generate IRQ's in the parasite
and reading or writing of register 3 by the host to generate NMI's in the parasite. The tube does not cause
interrupts in the host system, nor does the host system poll tube registers during time critical block transfers
such as file loading/saving. During time critical block transfers, the host processor simply reads from or
writes to register R3DATA at defined rates. Each read or write generates an NMI in the parasite system,
and the parasite must service this interrupt appropriately in time for the next interrupt. Some transfers also
occur without NMI's through register 3. The 'Interrupt Driven Operations" section of this document
describes in detail the protocols for these types of transfer.

4 Hardware Structure

The Tube hardware provides 4 independent bi-directional communication paths. Each consists of a one
byte control register and a one byte data register (which may have multibyte buffering). The characteristics
of each register set are described below, in the descriptions RnSTAT refers to status register n and
RnDATA refers to its corresponding data register.

4.1 Register set 1

R1DATA
 write
 read (reading clears IRQ)

R1STAT
 bit 7 data available/IRQ
 bit 6 not full

In the parasite to host direction this register set is used for the OSWRCH operating system call. The data
register is a FIFO big enough to enable the longest VDU command to reside within it - thus increasing the
chance that the host and parasite will achieve parallel execution.

In the host to parasite direction the data register provides a 1 byte buffer. When the host writes to it an IRQ
is generated to the parasite. It is used to pass on event interrupts, such as a keypress interrupt, and the
escape operation.

4.2 Register set 2

R2DATA
 write
 read

R2STAT
 bit 7 data available
 bit 6 not full

20

16th June 1992Support Group Application Note No. 004, Issue 1

Support Group Application Note No. 004, Issue 1

This register set is used to implement long (in machine time used) OS calls, or those which (eg RDCH)
cannot interrupt the WRCH host background task - in fact, any call apart from OSWRCH. The parasite
passes a byte to describe the required action. The two machines then co-operate in passing data across
R2DATA until the job is done.

4.3 Register set 3

R3DATA
 write
 read

R3STAT
 bit 7 data available/nmi
 bit 6 not full

R3DATA is programmable (from the Host) to be either a 1 or 2 byte FIFO. If set as a 2 byte FIFO, both
bytes have to be written to or read from to cause or clear a parasite NMI. register 3 can be programmed by
the host not to cause parasite NMI's.

This register set is used fro the background task of block data transfer between the two machines (of
register set 4). For higher performance applications this register may actually interface to a DMA
controller.

4.4 Register set 4

R4DATA
 write (writing sets IRQ)
 read (reading clears IRQ)

R4STAT
 bit 7 data available/IRQ
 bit 6 not full/IRQ

This register set is used as a control channel for block transfers carried out across R3. The host interrupts
the second processor by writing a byte describing the required action into R4DATA. The two machines
then co-operate in passing data across register 4 until removal of a synchronisation byte by the parasite
signals starting of transfers through register 3.

The register set is also used to initiate the passing of an error string from host to parasite. the host interrupts
the parasite by writing an error code into R4DATA, the two machines then cooperate in passing the error
string across R2DATA.

5 Software Protocols

Notes:
The BBC machine operates by polling the tube register for work.
In all the transactions which may generate errors it is important to realist that if the error is reported by the
BBC machine under interrupt (ie it was generated by a 6502 BRK sequence), the protocol which generated
the error is abandoned.

21

16th June 1992Support Group Application Note No. 004, Issue 1

Support Group Application Note No. 004, Issue 1

5.1 Non Interrupt Protocols

OSWRCH - Wait until R1DATA not full, write character into R1DATA.

OSRDCH - Wait until R2DATA not full, write RDCHNO (=&00) to R2DATA.
 Wait for data in R2DATA, top bit of R2DATA is 6502 C@bit (validity bit).
 Wait for data in R2DATA, R2DATA is 6502 A register (character read).

OSCLI - Wait until R2DATA not full, write CLINO (=&02) to R2DATA.
 FOR all characters in the command string (including terminating <cr>)
 DO [
 Wait until R2DATA not full, write character to R2DATA
]
 Wait for data in R2DATA and read it.

IF this byte =&80 then code has been loaded into the second processor store as a result of the command and
it should be entered at the address given by the last R4 protocol type 4 address.

OSBYTE - IF osbyteno , &80
THEN [
 Wait until R2DATA not full, write SBYTNo (=&04) to R2DATA
 Wait until R2DATA not full, write parameter for 6502@X to R2DATA

 Wait until R2DATA not full, write osbyteno to R2DATA
 Wait for data in R2DATA, read R2DATA which is 6502@X register

]

ELSEIF osbyteno = &82 THEN [result is machine high order address]
ELSEIF osbyteno = &83 THEN [result is low memory value]
ELSEIF osbyteno = &84 THEN [result is high memory value]
ELSE [
 Wait until R2DATA not full, write BYTENO (=&06) to R2DATA
 Wait until R2DATA not full, write parameter for 6502@X to R2DATA
 Wait until R2DATA not full, write parameter for 6502@Y to R2DATA
 Wait until R2DATA not full, write osbyteno to R2DATA
 IF osbyteno=&9D THEN RETURN from protocol (no reply)
 Wait for data in R2DATA, bit 7 of byte read is from 6502@C
 Wait for data in R2DATA, byte read is 6502@Y
 Wait for data in R2DATA, byte read is 6502@X
]

OSWORD - IF oswordno = &00
THEN [; Doing readline
 Wait until R2DATA not full, write RDLNNO (=&0A) to R2DATA
 Wait until R2DATA not full, write upper bound char to R2DATA
 Wait until R2DATA not full, write lower bound char to R2DATA
 Wait until R2DATA not full, write length allowed to R2DATA
 Wait until R2DATA not full, write &07 to R2DATA
 Wait until R2DATA not full, write &00 to R2DATA
 Wait for data in register2 -> response
 IF response .&7F
 THEN [

22

16th June 1992Support Group Application Note No. 004, Issue 1

Support Group Application Note No. 004, Issue 1

 ; escape was pressed on input
RETURN from protocol

]
 Read a <cr> terminated string from R2DATA
]
ELSE [
 Wait until R2DATA not full, write WORDNO (=&08) to R2DATA
 Wait until R2DATA not full, write oswordno to R2DATA
 Wait until R2DATA not full, write #params to send to R2DATA
 Write parameter block to R2DATA, last byte first
 Wait until R2DATA not full, write #params to recv to R2DATA
Read bytes back from R2DATA into parameter block, last byte first
]

The number of parameters to send/receive is determined by:
IF oswordno<&14
THEN [Determine number of parameters from following tables

 OSWORD number Parameters to send Parameters to receive
1 0 5
2 5 0
3 0 5
4 5 0
5 2 5
6 5 0
7 8 0
8 14 0
9 4 5
10 1 9
11 1 5
12 5 0
13 0 8
14 16 16
15 16 16
16 16 13
17 13 13
18 0 128
19 8 8
20 128 128

]
ELSEIF oswordno <&80
THEN [
 # parameters to send=16
 # parameters to receive=16
]
ELSE [
 # parameters determined in call specific manner
 (eg by embedding in transfer block)
]

23

16th June 1992Support Group Application Note No. 004, Issue 1

Support Group Application Note No. 004, Issue 1

OSBPUT - Wait until R2DATA not full, write BPUTNO (=&10) to R2DATA
Wait until R2DATA not full, Y to R2DATA (file handle)
Wait until R2DATA not full, A to R2DATA (byte to write)
Wait for data from R2DATA, discard it

OSBGET - Wait until R2DATA not full, write BGETNO (=&0E) to R2DATA
Wait until R2DATA not full, write file handle to R2DATA
Wait for data in R2DATA, top bit of byte is 6502@C (validity bit)
Wait for data in R2DATA, read R2DATA which is byte read from file

OSFIND - Wait until R2DATA not full, write FINDNO (=&12) to R2DATA
Wait until R2DATA not full, write type of open to R2DATA
IF type=0
THEN [
 Wait until R2DATA not full, write file handle to R2DATA
 Wait for data in R2DATA, read result
]
ELSE [
 Wait until R2DATA not full, write file name string to R2DATA

(including terminating <cr>)
 Wait for data in R2DATA, read handle from R2DATA
]

OSARGS - Wait until R2DATA not full, write ARGSNO (=&0C) to R2DATA
Wait until R2DATA not full, write file handle to R2DATA
Waiting for R2DATA not full,

[write 4 bytes orsarg@data to R2DATA (ms byte first)]
Wait until R2DATA not full, write operation code to R2DATA
Wait for data in R2DATA, read fs type from R2DATA
Waiting for R2DATA data,

[read 4 bytes osarg@data from R2DATA (ms byte first)]

Note: osarg@data is the file sequential pointer or length depending on the type of OSARG call.

OSFILE - Wait until R2DATA not full, write FILENO (=&14) to R2DATA
Waiting for R2DATA not full,

[write 16 byte OSFILE control block to R2DATA]
(last byte of block is written first)

Waiting for R2DATA not full, write filename to R2DATA including terminating <cr>
Wait until R2DATA not full, write type of transfer to R2DATA

(Any transfer is completed under interrupt using R3, R4)
Wait for data in R2DATA, read R2DATA AND &7F = filing system type
Waiting for data in R2DATA,

[read back 16 byte control block from R2DATA]
(last byte of block is read first)

Note: The 16 byte control block has format:

24

16th June 1992Support Group Application Note No. 004, Issue 1

Support Group Application Note No. 004, Issue 1

* The contents of these fields depends on the call type

OSGBPB - Wait until R2DATA not full, write GBPBNO (=&16) to R2DATA
Wait until R2DATA not full,

[write 13 byte OSGBPB control block to R2DATA]
(last byte of block is written first)

Wait until R2DATA not full, write type of transfer to R2DATA
Waiting for data in R2DATA

[read back 13 byte control block from R2DATA]
(last byte of clock is read first)

Wait for data in R2DATA, read R2DATA bit 7 is 6502@C bit
Waiting for data in R2DATA, read 6502@A from R2DATA

5.2 Interrupt driven operations

In addition to these parasite initiated activities the parasite is also required to respond to interrupts from
registers 1, 3 and 4.

To determine the source of an interrupt it is important to follow the following order:

1. check for register 4 interrupt
2. check for register 1 interrupt

Register 1 interrupts:

Register 1 interrupts occur only in the host to parasite direction. The interrupt service sequence is:

Read type byte from R1DATA IF type <0 THEN
 [; escape flag update
 Replace the escape flag with bit 6 of type
 RETURN from servicing interrupt
] ELSE
 [; Event signal
 Interrupt@R1@read 6502@Y event parameter

 Interrupt@R1@read 6502@X event parameter
 Interrupt@R1@read 6502@A event parameter
 ; BBC machine will now continue processing

25

16th June 1992Support Group Application Note No. 004, Issue 1

Support Group Application Note No. 004, Issue 1

12

8

4

0 Load address

Execution address

Data start address or Length *

End address or attributes *

 ; any other actions to service event can be taken
]

Where Interrupt@R1@read is:
 UNTIL data@ready@in@R1
 DO [
 IF data@ready@in@R4 THEN CALL R4@interrupt@service
]
 RETURN read R1DATA

Register 4 Interrupts:

Read type byte from R4DATA IF type<0
 THEN [; BBC machine is reporting an error
 Wait for data in R2DATA, read and discard it
 Wait for data in R2DATA, read error number form R2DATA
 Read a zero byte terminated string from R2DATA
]
 ELSE
 [; Type is a command to initialise for register 3 block transfer
 Wait for data in register 4, read Claimer@identity* from R4DATA

* For details of the identity numbers see Appendix A

 CASE type OF
 [
 0 : ; Single byte transfer parasite to host.
 Read 4 byte base address for transfer from R4DATA msb first

 Set NMI routine for this transfer type
 Wait for and remove synchronising byte from R4DATA

 1 : ; Single byte transfer host to parasite
 Read 4 byte base address for transfer from R4DATA msb first
 Set NMI routine for this transfer type

 Wait for and remove synchronising byte from R4DATA

 2 : ; Double byte transfer parasite to host
 Read 4 byte base address for transfer from R4DATA msb first
 Set NMI routine for this transfer type
 Wait for and remove synchronising byte from R4DATA

 3 : ; Double byte transfer host to parasite
 Read 4 byte base address for transfer from R4DATA msb first
 Set NMI routine for this transfer type

' Wait for and remove synchronising byte from R4DATA

 4 : ; No transfer (pass address host to parasite only)
 Read 4 byte address from R4DATA msb first
 Wait for data in R4DATA, discard it

26

16th June 1992Support Group Application Note No. 004, Issue 1

Support Group Application Note No. 004, Issue 1

 5 : ; No transfer (filing system release)

 6 : ; 256 type transfer parasite to host without interrupt
 Read 4 byte base address for transfer from R4DATA msb first

 Wait for data in Register 4, discard it
 Transfer 256 bytes to host, via R3DATA
 Write a byte into R4DATA; To stop unwanted ints on host

 7 : ; 256 byte transfer host to parasite without interrupt
 Read 4 byte base address for transfer from R4DATA msb first

 Wait for data in Register 4, discard it
 Transfer 256 bytes from host via R3DATA

]
 RETURN ; From the interrupt

Notes:

For types 0-3: As soon as the synchronising byte is remove register 3 transfer requests (NMI's) will start to
occur. When the interrupt occurs 1 or 2 bytes are transferred (depending on the current mode).

A release (type 5) is a guarantee that no more register 3 NMI's will occur for the current transfer.

Register 3 Transfer Timings

During such an operation as loading a file into the parasite system from disc, data has to be rapidly passed
through the tube at instants dictated by a physical process - in this case, reading from a disc. for this reason
such transfers are made via register 3, which may be programmed to cause parasite NMI's. Because these
NMI's occur very rapidly, there are constraints on the timings with which the parasite must respond to such
NMI's.

After the parasite processor has read the synchronisation byte from register 4, the host processor will wait
for at least the length of the initial delay below (zero for host to parasite direction) before transferring the
first byte of data. Thus for transfers in the parasite to host direction, this initial delay is the time within
which the parasite must place the fist byte (or pair of bytes) of data in register 3 after removing the
synchronising byte. For NMI transfers in the host to parasite direction, this delay is zero - the parasite
processor must be ready to cope with register 3 NMI's as soon as it has removed the synchronisation byte
from register 4. For type 7 transfer, not using NMi's the host will write the first byte without delay, but the
parasite cannot receive a byte immediately from R3DATA as it has to test the data available bit in R3STAT.
The parasite has to read this first byte in R3DATA before it is overwritten by the next host write. Assuming
the host code is as below, this allows 15.5 uS to read the first byte:

JSR &406 ; Initialise tube -routine returning when parasite reads
; synchronising byte

LDY 0 ; 1 uS
.loop LDA (host), Y ; 2.5 uS

STA TPORT ; 2 uS
NOP ; 1 uS
NOP ; 1 uS
NOP ; 1 uS
INY ; 1 uS

27

16th June 1992Support Group Application Note No. 004, Issue 1

Support Group Application Note No. 004, Issue 1

BNE loop ; 1.5 uS

(1 + 2.5 + 2 + 1 + 1 + 1 + 1 + 1.5 + 2.5 + 2 = 15.5)

The service time is the maximum time that the parasite has to process each subsequent transfer. The host
code is a simple loop reading or writing data, and so the parasite must be capable of inputting or outputting
data fast enough for this loop. For transfers of type 1 to 3, the host writing to or reading from register 3 a
byte (or pair of bytes) causes an NMI in the parasite. thus the service time is an upper bound on the allowed
time for te NMI service routine. Similarly, for type 6 and 7 transfers, the service time is the maximum time
for the parasite to transfer each byte to or from R3DATA.

Transfer type Transfer direction Initial delay Service time
 0 P to H 24 uS 24 uS
 1 H to P 0 uS 24 uS
 2 P to H 26 uS 26 uS/pair
 3 H to P 0 uS 25 uS/pair
 6 P to H 19 uS 10 uS
 7 H to P 0 uS 10 uS

6 Startup Protocol

The Startup sequence for the second processor is:

Use the OSWRCH mechanism to write out a startup message
Send a zero byte to host via R1DATA to terminate it
Wait for data in R2DATA
; during this wait a load may occur from the host
; using R4/R3 block transfer protocols
IF data=&80 THEN execute from the address given in the R4 type 4 transfer

APPENDIX A: Filing System Claimer Identities

When a filing system claims the R3/R4 resource in the host its identity is passed to the second processor as
part of te R4 startup protocol. The identity codes are not related to filing system numbers.

Filing System Claim Identity Used

Tape 0
DFS 1
NFS 2
NFS 3
ADFS 4

28

16th June 1992Support Group Application Note No. 004, Issue 1

Support Group Application Note No. 004, Issue 1

29

16th June 1992Support Group Application Note No. 004, Issue 1

Support Group Application Note No. 004, Issue 1

