8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC ROM Routines
Page L ast Altered: undefined

BASIC ROM Routines
by Christopher Dewhur st

BASIC IV ROM Routines
By Steve Fewell

| decided to begin something I've been wanting to do for along time, that is to produce listings of BASIC 4 ROM's routines, together with detailed
descriptions of how they work.

Please let me know what you think, and whether you'd like to see more like it. If anyone else wants to have ago at writing up with me then please feel free to
post (added CJR: send them to 8BS) your own descriptions of routines from BASIC 4 (or another version of BASIC).

If I've made a mistake, and someone wants to correct/expand on something, then please do so.

L atest addtions:

19/Jan/2004 Addition of keywords: FOR, NEXT, ON, REPEAT and UNTIL
Addition of the 'Get Line Number & find Program Address of the Line Number' routine and keywords: TRACE, GOSUB,

06/Jani2084 RETURN, GOTO, RESTORE, READ and |F
28/ Greetings during this Christmas and new year period!
Dec/2003 This update contains descriptions for the Trigonometry functions!

Addition of keywords: TAN, ACS, ASN, ATN, SIN and COS

mailto:kranser@yahoo.co.uk
file:///C|/temp/basic/basic4-a8a1.htm

05/Oct/2003

12/Sep/2003

20/
Aug/2003

0L/
Aug/2003

10/Jun/2003

oL/
May/2003

09/Apr/2003

24/
Mar/2003

28/Feb/2003

Addition of the 'BASIC error handler' routine and keywords: CHAIN, RUN, LOAD, END, CALL, DELETE,
RENUMBER, AUTO, USR, EXT, =PTR, BGET, OPENIN, OPENOUT, OPENUP, EOF, INSTR, STRINGS$, CHR$,
SAVE, OSCLI, CLOSE and BPUT

Addition of "'[' - Begin Assembly", "Execute *'-command", " Execute next command line/ program statement”, 'skip end
of program line' and 'Display current Line Number to screen [for TRACE]' routines and keywords: OLD, EXT=and PTR=
Addition of 'Print Line Number on screen’, 'Cal culate next Random Number Seed value', 'Output ASCII character/BASIC
Token (in ASCII text)' routines and keywords: TIME=, TIME$=, MOVE, DRAW, PLOT, REPORT, VDU, RND, POS,
VPOS, EVAL, INT, INKEY, INKEY$, SGN, POINT(, ADVAL, =TIME, =TIMES$, LEFT$(, RIGHT$(, MID$(, EDIT,
LIST, LISTO

Addition of 'BASIC ROM Startup Initialisations, ‘Find positon of Program Line', 'Tokenise command line text', ‘Insert line
into Program’, 'Remove line from program’, 'Check program can be read correctly' and 'Detokenise Line Number' routines
and keywords HHIMEM=, LOMEM=, PAGE=, CLEAR, GCOL, COLOUR and MODE

Addition of 'Assemble Assembly Statement’, 'Output character to screen’ and 'Extract next field' routines and keywords
PRINT, PRINT#, CLG, SOUND, ENVELOPE, WIDTH, INPUT and INPUT#

Addition of Numeric to ASCIl (NUMASC) routine and keywords: NOT, VAL, ASC, ABS, LEN, =PAGE, TOP, COUNT,
=LOMEM, =HIMEM, ERL & ERR

Addition of Disassembler program to the analysis disc images, Added LET & DIM keywords, and added & AD36 (get
value routine)

Addition of Reference Disk Images, SQR & routine [&9909] to evaluate Variables and Arrays (and get address of the
required value/variable parameter block).

First of the Floating-Point Series calculations for functions such as LOG, LN and EXP

BASIC IV Routines

Routine Name it(?(rj'; " AddressRange Comments
BASIC ROM header 8000 8000-8022
BASIC ROM Startup Initialisations 802B 802B-8074
Get Address of Variable 8085 8085-80CC
Search for Program Line 80CD 80CD-80F8

Integer Division 80F9 80F9-8171

Convert I nteger to Floating-Point

Set FWA to 1-byte value

Normalise FWA#2

Normalise FWA#1

Convert Floating-Point to | nteger

Integer Reverse Order Complement

Split FWA (into Integer/Fractional part)

Calculate next Random Number Seed value

Copy FWB to FWA

Floating-point addition

BASIC Keyword List

BASIC Execution Address List

1" Begin Assembly

Assemble Assembly instruction/statement

Replace untokenised ASCII value with a 1-byte token

Tokenise Line Number

8185

81D5

81E2

81F7

8242

82C4

82E0

831E

8349

8368

8456

8769

8920

89EB

8CEB

8D04

8185-81CB

81D5-81DF

81E2-81F6

81F7-8241

8242-826E

82C4-82DF

82E0-830C

831E-8348

8349-8367

8368-8455

8456-8768

8769-884C

891A-89D3

89D4-8CD6

8CEB-8D03

8D04-8D83

Also includes: 81E0-81E1

Also includes: 81CC-81D4

Also includes: 8272-8274; 827E-82BC; 82BD-82BF; 82C0-
82C3

Also includes: 8275-827D

Also includes: 884D-891B

Check for Variable name character or digit (in A) 8D84 8D84-8D9%A

Increment [and read] pointer (& 37, & 38) 8DAO 8DAO-8DAE

Tokenise Command Line 8DB2 8DAF-8ED4 Alsoincludes: 8D9B-8D9F
Next non-space Char PTRB 8ED5 8ED5-8EDF Alsoincludes: 8EEB-8EFO
Next non-space Char PTRA 8EEO 8EEO-8EEA Also includes: 8CD7-8CEA
CHAIN 8EFB 8EFB-8EFF

Ol 8F00 8F00-8F11

RUN 8F12 8F12-8F1F

LOAD 8F20 8F20-8F24

END 8F25 8F25-8F2C

BASIC ROM Startup initialisations (part 2) 8F2D 8F2D-8F7C

—— — SFID-BF82 " Also includes BEFE-BF13
(I;r)ompt for command line and execute the entered command 8F83 8F83.8FA3

Execute *'-Command 8FA4 8FA4-8FAD

Execute next command line / program statement 8FAE 8FAE-9049

IS 904A 904A-905F Also includes: 9072-9085

STOP

Set String variable

PRINT#

PRINT

(PRINT) TAB(

(PRINT) SPC

(PRINT) quote ()

Get Result of expression from BASIC Text pointer A &

convert to | nteger

CALL

DS

RENUMBER

AUTO

DI

HIMEM=

LOMEM=

PAGE=

9086

90AB

9141

918D

9241

925B

9267

926F

92BE

9317

9384

9489

9534

960F

9620

9634

9086-9088

90AB-9140

9141-918C

918D-9229

922A-925A

925B-9266

9267-926E

926D-9279

92BE-9313

9314-934C

934D-9488

9489-94B8

9534-9604

960F-961F

9620-9633

9634-963D

Also includes: BE25-BE32

Also includes: BA3C-BA57

Also includes; 927A-9293

Also includes:; 9840-9844

Also includes: 94B9-9502, 9AF6-9B1B, BC43-BC50, BEEF-
BEFD

Also includes: 96B9-96BD

TIME=

TIMES$=

Get Integer result of expression and check for closing

bracket

Get I nteger result of expression

Get Integer value at PTR B

Check if Integer and Convert if Float

Get & Check Float value

GCOL

COLOUR

<

oD

m

=

Qv

m

DRAW

963E

9646

9679

968E

96A7

96AF

96B4

96BE

96DA

9741

9755

975F

97A2

97A6

97B1

97EO

963E-9645

9646-9678

9679-968D

968E-96A3

96A7-96AB

96AC-96B3

96B4-96B8

96BE-96D9

96D 7-96E3

9741-9754

9755-975E

975F-97A1

97A2-97A5

97A6-97B0

97B1-97DF

97EO-97E6

Also includes: 8EF1-8EF5

Create new variable namein Variable Pointer table

Allocate space for new variable

Evaluate variable name & Create if new variable

'? and '!" address peek/poke operators

'$ address peek/poke operator

Evaluate Variable name and return value address

'I' and '? address modifier operators

Get address of specified Array € ement

Detokenise the requested Line Number and Set IWA to the
Line Number value

Check for '=', evaluate expression & check end of statement

Check for End of Statement

Check & skip end of program line

1=

97E7

97F4

980D

9854

9883

98AE

98D1

98DC

9909

99AE

99FE

9B1C

9B52

9BAG6

9BCF

9C08

97E7-97F3

97F4-9807

9808-983F

9854-9882

9883-98AA

98AB-98BF

98D1-98DB

98DC-98EA

9909-99AD

99AE-99D4

99FE-9AE9

9B1C-9B45

9B52-9B5F

9BA6-9BCE

9BCF-9C04

9C05-9C4A

Also includes: 98C1-98D0O

Also includes: 9503-952B

Also includes: 9B8E-9B95

Also includes: 9B96-9B99

Display current Line number to screen [for TRACE]

Compare Float values

Compare Integer values

Compare String values

Expression Handler

'OR' Operator

EOR' Operator

'AND' Operator

'="and other relational operators

'<' Operator

'<=' Operator

'<>' Operator

'>' Operator

'>=' Operator

String Addition

'+' Operator

9C4B

9C82

9CC9

9D02

9D3B

9D4C

9D66

9D89

9DB5

9DCD

9DE1

9DEC

9DF5

9EO07

9E22

9ES58

9C4B-9C64

9C65-9CC5

9CC6-9D01

9D02-9D2E

9D2F-9D4B

9D4C-9D65

9D66-9D7A

9D89-9DAS8

9DB5-9DCC

9DCD-9DEO

9DE1-9DEB

9DEC-9DF4

9DF5-9E06

9EO07-9EOF

9E22-9E4B

9ES58-9E64

Also includes: 9D7B-9D88, 9DA9-9DB4, 9E4C-9E57, 9FC1-
9FDA, AOOF-A026

Also includes: 9E91-9EBC

Integer Addition 9E65 9E65-9E90 Also includes; 9E4F-9E57

'-' Operator 9EBD 9EBD-9EC9 Alsoincludes: 9EE7-9F11; ACC7-ACD6
Integer Subtraction 9ECA 9ECA-9EE6

*' Operator 9F3B 9F12-9F63

Integer Multiplication 9F64 9F64-9FDA

'[' Operator 9FDB 9FDB-9FF4

Integer MOD routine 9FF5 9FF5-9FFC

Integer DIV routine 9FFD 9FFD-AOOE

\' Operator (raise to Power) A027 A027-A07F

Print Line Number on screen A085 A081-A0C9 Alsoincludes: 8021-802A
Multiply FWA Mantissaby 10 A26C A26C-A2BB

NUMASC (convert Numeric value to ASCII value) A118 AOCA-A2D9 Also Includes:

ASCNUM: Extract Number at PTRB A2E1 A2DA-A35C

ASCNUM: Handle Exponental values & complete number
conversion

A35D A35D-A3F1

Floating-point Sign A3F2 A3F2-A40A

Copy FWA to FWB A40B A40B-A427

Floating-point multiply by 10

Floating-point divide by 10

Unpack FP Variable to FWB

Store FWA to Temporary Variable

Pack FWA to Variable

Unpack FP Variable to FWA

Clear FWB

TAN

Raise FWA to the power of the integer valuein A

Floating-Point Reciple

Floating-Point Division Entry Point

Floating-Point Division

Floating-Point Subtract Entry Point

Floating-Point Addition Entry Point

Round FWA Mantissato 4 bytes

Floating-Point Multiply Entry Point

Clear FWA

A436

A478

A4EO0

A50D

A519

A4l

A570

A59B

AS5SBE

A5E9

ASEE

AS5FA

AGBA

A68D

AB95

AGAG

A6B4

A436-A477

A478-A4DF

A4E0-A50C

A50D-A518

A519-A538

A539-A56F

A570-A57E

A59B-A5BD

ASBE-A5E1

A5E9-ASED

ASEE-A5F9

AS5FA-A689

AG8A-AGBC

A68D-A694

AB95-A6AS5

AGAG-ABAA

A6B4-A6C4

Also Includes: A428-A435

Also Includes: A589-A591

Also includes: & A5E5 to & ASE8

Also includes & AGAB to & A6B3.

Floating-Point Multiplication AGCF AG6CF-A745

LN A746 A746-A7B4
SOR A7B5 A7B5-A860
Evaluate continued-fraction expansions Series A861 A861-A89B Also includes: A57F-A588 and A592-A59A
ACS A89C AB89C-ABA0
ASN A8A1 AB8A1-A8C2
ATN A8C3 A8C3-A90C
SIN A90D A90D-A90D
COS A90E A90E-A9AC
RAD A9C8 A9C8-A9CE
LOG A9CF A9CF-A9D7
DEG A9DS8 A9D8-A9DE
=P A9DF A9DF-AA11l
RND AAT73 AA1E-AATF
Load Integer from Zero Page Address AA80 AABO-AA92
NOT AA93 AA93-AAA2

POS AAA3 AAA3-AAA8

file:///C|/temp/basic/basic4-a8a1.htm

‘C
(0]
A

<
3

EXT

=PTR

BGET

OPENIN

OPENOUT

OPENUP

Ascnum (ASCI| String to Binary Number)

INT

EOF

TRUE

AAA9

AABC

AACS5

AAC9

AAD7

AADF

AAE3

AAE7

AAFF

ABO5

AB49

AB4E

ABSA

ABB3

ABC2

ABCF

ABDB

AAA9-AABB

AABC-AACA

AAC5-AACS

AAC9-AADG6

AAD7-AADE

AADF-AAE2

AAE3-AAEG

AAE7-AAFE

AAFF-AB0O4

ABO5-AB39

AB46-AB4D

AB4E-AB88

AB8A-ABB2

ABB3-ABC1

ABC2-ABCB

ABCF-ABDA

ABDB-ABDC

Also includes:AB3A-AB45

Also includes: 830D-831D

Alsoincludes: AA12-AA1D

FALSE (Clear IWA)

SGN

POINT(

INSTR

ABS

Integer Positive

Floating-Point Compliment

Compliment Result

Integer Compliment

Extract next field

Extract String

Evaluate Variable/\VValue/BASI C Function/Open Bracket

Evaluate expression and check for closing bracket

Extract Hex | nteger

ADVAL

LOP

=PAGE

ABES

ABF5

ACOE

AC36

ACB7

ACBE

ACCA

ACD7

ACDE

ACF8

AD19

AD36

ADAC

ADBY

ADEC

ADF9

AEOQ8

ABDD-ABEB

ABEC-ACOD

ACOE-AC35

AC36-ACB3

ACB4-ACBD

ACBE-ACC3

ACCA-ACD6

ACD7-ACDD

ACDE-ACF7

ACF8-AD18

AD11-AD35

AD36-AD8B

ADAC-ADB6

ADB7-ADEB

ADEC-ADF8

ADF9-AEO7

AEO08-AEQOD

Also includes: ACC4-ACC6

LEN

IWA = 8-bit or 16-bit Integer

COUNT

=LOMEM

=HIMEM

ERL

ERR

GET

=TIME

=TIME$

GET$

LEFTS$

RIGHT$(

INKEY$

MID$(

SRS

STRING$

AE1l

AE1A

AE25

AE29

AE2F

AE35

AE3B

AE3F

AE44

AE57

AEG9

AE73

AE74

AEB3

AEC5

AF1C

AF47

AEOE-AEL7

AE18-AE24

AE25-AE28

AE29-AE2E

AE2F-AE34

AE35-AE3A

AE3B-AE3E

AE3F-AE43

AE44-AE56

AES57-AEGS

AEG9-AET2

AE73-AE73

AE74-AEB2

AEB3-AEBE

AEBF-AF1B

AF1C-AF46

AF47-AF81

Also includes: AESF-AE93

Also includes: 96A4-96A6

Load Variable

Load IWA with Integer from Address [iin]

Load IWA with 1-byte Integer value

Load FWA with Float Variable (ain)

Load SWA with String Vaue

CHR$

BASIC Error handler

Reset ON ERROR code pointer

SOUND

ENVELOPE

WIDTH

Set Numeric variable

Save Integer to Address

ED/IE

LIST

q |
O

B1AO

B1AA

B1C2

B1C7

B1F7

B22F

B278

B2A6

B2C8

B2EC

B317

B32B

B347

B393

B39A

B3DD

B4F1

B1A0-B1A9

B1AA-B1C1

B1C2-B1C6

B1C7-B1F6

B1F7-B22E

B22F-B236

B237-B2A5

B2A6-B2C7

B2C8-B2EB

B2EC-B316

B317-B324

B325-B346

B347-B35F

B389-B399

B39A-B3DC

B3DD-B3F2

B4F1-B5F7

Also includes: B360-B388

Also: B3F3-B4F0

FOR

GOSuUB

RETURN

GOTO

ON

Get Line Number & find Program Address of the Line

Number

INPUT#

INPUT

RESTORE

READ

UNTIL

REPEAT

Start new output line

Remove Line Number (specified in the IWA) from the

Program

Tokenise Command Line and Insert Line into Program

Initialise Page 7 & reset VVariable pointers, etc...

Pop Float from Stack (to & 4A ,&4B)

B618

B6D9

B707

B71D

B75B

B82A

B847

B8B6

B94D

B97D

BA1/

BAS58

BA92

BA98

BAEB

BBAC

BBES

B618-B6D8

B6D9-B6F2

B707-B71C

B71D-B738

B739-B829

B82A-B83B

B83C-B8B1

B8B2-B94C

B94D-B974

B975-BOFO

BA17-BA3B

BAS58-BAGF

BA92-BA97

BA98-BAEA

BAEB-BBAB

BBAC-BBE7Y

BBES-BBF9

Also includes: 9299-92BD, BA70-BA91

Also includes: BA13-BA16

Also includes: BF14 to BF23

Push FWA to Stack

Push Integer to BASIC Stack

Push String to Stack

Pop String from Stack

Pop I nteger from BASIC Stack

Pop Integer from BASIC Stack (Zp)

Check for Stack clash with Heap

Output ASCII character or BASIC Token (in ASCII text) to

the screen

Output character to the screen

Save Integer to Zero Page Address

L oad/Save named file

Check Program can be read correctly

Get Filename and set parameter block Filename and Load
address

SAVE

OSCLI

EXT =

PTR

BBFA

BC26

BC51

BCD2

BCE6

BDO08

BD1E

BD37

BD92

BDC6

BDD7

BDES

BEA1

BES5

BES87

BE93

BE97

BBFA-BC21

BC22-BC42

BC51-BC69

BCD2-BCE5

BCE6-BD05

BD06-BD1D

BD1E-BD30

BD37-BD6B

BD6C-BDCS5

BDC6-BDD6

BDD7-BDE4

BDE5-BE24

BE33-BE54

BES5-BE86

BE87-BE92

BE93-BE96

BE97-BEAD

Also includes: BD34-BD36

Also includes: BD34-BD36

Also includes: BD31-BD36

Also includes BECF-BEE1

CLOSE

BPUT

Read byte from 1/O processor memory location (at the

address contained in the IWA)

Floating Point Constant Table

Error Messages

Character Set

Memory Map

Glossary

Disassembly

8000 to 9000 HTML TEXT CSV

9000 to AOOO HTML TEXT CSV
A000 to BOOO HTML TEXT CSV

BO0O to CO00 HTML TEXT CSV

Reference Disc images

BEAE

BEBD

BEE2

BF24

BEAE-BEBC

BEBD-BECE

BEE2-BEEE

BF24-BFFA

file:///C|/temp/main.htm
file:///C|/temp/submit.htm

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC ROM Routines
Page last modified: undefined

BASIC ROM ROUTINES

By Christopher Dewhurst

The Basic Rom is that dark and mysterious area of memory that lies beyond the screen, starting at

& 8000 and stretching up to & BFFF. It's the backstage department containing the machine code needed
to interpret your Basic commands. But have you ever wondered if we can use some of that machine code
In our own programs? Have you, for instance, struggled to write an assembler routine to print a number
on the screen, when one must surely exist somewhere in the Basic Rom?

WEell, wonder no more, because there is indeed such aroutine, and in this article we'll be exploring that
and alot more besides.

Before we go any further, however, aword of caution. The best machine code is specific machine code
written for a specific job; Basic Rom routines are general-purpose routines, and are not the answer to
everything. Having said that, if speed is not your main priority, then the Rom routines are ideal. They
make your programs smaller and smarter, provided you use them properly - and this usually involves
some fairly tricky setting up - so listen carefully.

| learnt alot about the Basic Rom by exploring around it and experimenting with it myself. | also picked
up afew tips from "The Advanced Basic Rom User Guide' by Colin Pharo (Cambridge Micro Centre,
1984). Roland Waddilove also presented a series of excellent articles on the subject in 'Electron User’; if
you still have these paper beauties, dig out the November 1988 for a rundown on mathematical Rom
routines. However, | will be concentrating on routines which print numbersin hex or decimal, the
random number generator, and printing strings of text.

In case you're wondering, BBC Master owners won't be left out of the discussion thistime. | have done

quite a bit of disassembling of the Basic 4 Rom to find out where equivalent routines to Basic 2 reside.
Basic 2 isthe Rom fitted in the BBC B and Electron, and Basic 4 is the one fitted in the Master. (Like
the Plus 2, for some reason Basic 3 never was.)

When | talk about a Rom routine, | will specify both the Basic 2 and Basic 4 addresses - together with
examples and commentaries on how to use them - so it is up to you to use the correct one depending on
which computer you have.

If you experience any difficulties - or if you have additional hints and tips - just email me.

Right, down to business. We must first get to know what is called the Integer Work Area, or IWA for
short. Thisisjust a sequence of four bytesin zero page, located at & 2A-&2D. Before Basic can work on
an integer variable, be it adding a number to it or printing it out, it must be put into the IWA.
Fortunately, life is made easier with the help of a couple of routines which copy an integer variable,
either from zero page or from the main memory, to the IWA:

1. Routine: Copy 4-byte integer from zero page to the IWA
Basic 2 address. & AF56
Basic 4 address: & AA80

Entry: X = zero page offset at which the integer to be copied is located.
Exit: IWA contains the integer.

Ex.: LDX #&70 \integer at &70-3

JSR & AF56 \copy to IWA

2. Routine: Copy 4-byte integer from memory to the IWA
Basic 2: &B336
Basic4: &B1AA

Entry: & 2A/& 2B contain address of the integer.
Exit: IWA contains the integer.

Ex.: LDA #integer MOD 256

STA &2A

LDA #integer DIV 256

STA &2B

JSR &B336

integer EQUD & 12345678

There are also two routines which do the opposite of above. The one at & BE44 (Basic 2)/&BDC6 (Basic
4) copiesthe IWA to a zero-page location, X being set to the zero page location on entry. The routine at

& B4C6 (Basic 2)/ &B347 (Basic 4) copies the IWA to alocation in main memory whose address is held
in &37/& 38.

3. Routine: Print astring
Basic 2: & BFCF
Basic 4: & BECF

Entry: The string must follow the JSR & BFCF instruction, and be terminated by a byte of value &80 or
greater.

Ex.: JSR & BFCF

EQUS "Hello there.":NOP

Notice how I've used the NOP instruction to terminate the string. The NOP opcode has a value of & EA,
which satisfies the condition of being &80 or greater. The important point to remember is that program
execution continues AFTER that NOP instruction. In machine code, every time a JSR instruction is
executed the current address is pushed onto the stack. Basic pulls this address from the stack, storesit in
zero page locations & 37/& 38, and uses indirect addressing to get the bytes of the string. By the time the
string has been printed, & 37/& 38 contains the address of the next instruction after the string in the
program that called the routine. The disadvantage of this routine, however, isthat while you can include
control codes (to turn off the cursor for instance) you can't print out a string of graphics characters
because they have an ASCII value of &80 or above which, aswe said, is used to terminate the string.

4. Routine: Print A in hex
Basic 2: & B545
Basic 4: &BD6C

Entry: The Accumulator contains the byte to be printed in hex
Ex.: LDA #&CD
JSR &B545

This one can be quickly demonstrated from Basic, if you really want, by typing A%=& CD:
CALL&B545.

5. Routine: Print 16-bit number in decimal
Basic 2: &991F
Basic 4: & A081

Entry: &2B/& 2C (the 2 least significant bytes of the IWA) should contain the number to be printed.
Ex.: LDA #1023 MOD 256 \put the number 1023

STA &2B

LDA #1023 DIV 256 \onto the two Isb's of the IWA

STA &2C
JSR & 991F

Thisisthe routine which | promised we would discuss at the beginning of this article, so let's take some
time going through it in detail. If you have a disassembler then you could look at the actual machine
code, which in English goes something like this. You first of all see how many times 10,000 can be
subtracted from the given number before it becomes negative. For example, you can subtract 10,000 six
times from the number 60,000. Thisis the 10,000s count. Then you see how many times 1,000 can be
subtracted from the remainder, then how many times 100 can be taken away from the remainder of that,
and so on down to the 1s count. In order to do this, we need atable of two-byte values. 10,000, 1,000,
100, 10 and 1. There are two tables in Rom; the first table contains the low bytes, and the second table
contains the high bytes:

Basic 2 Low bytes: High bytes

&996B [&01] &99B9 [&00] &0001 =1
&996C [&0A] &99BA [&00] &000A =10
& 996D [&64] &99BB [&00] & 0064 = 100
& 996E [& E8] &99BC [&03] &03E8 = 1000
& 996F [&10] &99BD [&27] &2710 =
10000

Basic 4 Low bytes High bytes

& 8026 [&01] &8021 [&00] &0001 =1

& 8027 [&0A] & 8022 [&00] &000A = 10

& 8028 [& 64] &8023 [&00] &0064 = 100

& 8029 [& E8] &8024 [& 03] &03E8 = 1000
& 802A [&10] &8025 [&27] &2710 = 10000

If you haven't got a disassembler, then the program below demonstrates how it works:

10 FORI%=0TO2STEP2

20 P%=& 900

30 [OPTI1%

40 LDX #&50 \copy integer from zero page
50 JSR & AF56 \to IWA

60

70 LDX #4

80 .loop LDA#0

90 STA &3F,X

100 SEC

110 .loop2 LDA&2A

120 SBC &996B,X \& 8026 for BBC M

130 TAY

140 LDA &2B

150 SBC &99B9,X \& 8021 for Basic 4
160 BCC skip

170 STA &2B

180 STY &2A

190 INC & 3F,X

200 BNE loop2

210 .skip DEX

220 BPL loop

270

280 LDX #5 \suppress leading zeroes
290 .loop3 DEX \by indexing to first
300 BEQ print \non-zero number
310 LDA &3F,X

320 BEQ loop3

330 .print LDA &3F,X

340 ORA #& 30

350 JSR & FFEE

360 DEX

370 BPL print

380 RTS

390]

400 NEXT

410 INPUT !&50

420 CALL &900

The section of code from line 280 to 320 suppresses leading zeroes. Thisjust meansthat if you had the
number 234, then it will be printed as 234 and not 00234. Sometimes you might not care for leading zero
suppression. In most games, for instance, your score is displayed as 00000 at the start, then changesto
00010 when you score some points and so on. In this case, you can dispense with lines 290-320 in the
above program and replace line 280 with LDX #4.

6. Routine: Convert number in IWA to ASCII decimal or hexadecimal
Basic 2: & 9EFF
Basic 4: & A138

Entry: IWA should contain number to be converted location & 15 = & FF for hexadecimal ASCII or & 15
= 0 for decimal ASCI|

The previous routine only allowed 16-bit numbers (numbersin the range 0-65535) to be printed. This
routine helps you print 32-bit numbersin decimal or hex. When we speak of "hexadecimal” or "decimal
ASCII", it means that a string containing ASCI| codes is made for the given number. For example, the

four ASCII decimal codes for & OEFF are 57, 69, 70, and 70 (ignoring the ampersand which Basic
doesn't print anyway). Basic puts these ASCI| codesinto the String Work Area, or SWA for short. We
can then use another routine to print out the contents of the SWA:

7. Routine: Print the SWA
Basic 2: & 8E12
Basic 4;: &921B

Entry: location &30 must contain the length of the string the SWA must contain the string location & A
must = 0.

Ex.. LDX #&50 \copy integer at &50-3
JSR & AF56 \to SWA

LDA #&FF:STA & 15 \number to be in hex
JSR & 9EFF \convert IWA to ASCII codes
LDA #0:STA &A

JMP &8E12 \and print the number

8. Routine: Random number generator
Basic 2: & AF51
Basic 4. &AATB

No entry requirements. On exit, the IWA contains a 4-byte random integer.

Ex.: ISR & AF51
LDA &2A
JSR alien

| find this Rom routine extremely useful for getting random numbers in games, and it's the only decent
way of getting fairly unpredictable numbers in machine code.

Conclusion

If you use any of the above routines, don't forget to use the correct address for your version of Basic.
Now that you've seen what the Basic Rom can do, hopefully you'll want to start exploring other parts. If
you find anything useful, do write in and let us know!

Christopher Dewhurst
24 September, 2000

mailto:Christopher.Dewhurst@essexcc.gov.uk

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines
Page L ast Altered: undefined

B618 FOR
Submitted by Steve Fewell

Description:

Call routine & 98AE to evaluate the variable name at the BASIC Text Pointer A location, and to createiit if it doesn't
exist, and return the variable value's memory addressin locations & 2A-& 2B and itstypein & 2C.

If the zero flag is set on return from & 98AE, then the variable nameis not avalid variable name, so issue

'FOR variable error.

If the carry flag is set on return from & 98AE, then the variable is a String variable, so issue 'FOR variable

error, as a FOR variable must be numeric.

Call routine & BC43 to store the variable information data (& 2A-& 2C) to the 6502 stack.
Call routine & 9B86 to check whether the next non-space character is'=' (equals), if not then issue 'Mistake' error;
otherwise, skip over the '=' character.

Call routine & B328 to evaluate the expression (after the '=' character), retrieve the variable information from the

6502 stack and set the Numeric FOR variable to the result of the expression.

If the next non-space character at BASIC Text Pointer B is not the 'TO-token', then issue 'No TO' error, as the TO-Keyword
must follow the expression giving the variable's start value.

Load Y with the current FOR level (location & 26).
If the current FOR level is greater than or equal to #& 96 (150) then issue "Too many FORS' error, as only a maximum
of 10 FOR loops can be nested (each FOR loop uses 15 bytes on the FOR stack - and increases the FOR level by 15).

Add #& OF (15) to the current FOR level, and update location & 26 with the new value.

Now, the & 26 location has been updated, but Y still contains the original FOR level (before the addition).
Store the variable value address (& 37-& 38) in locations & 0528 + Y and &0529 + Y'; and store the
variable type (&39) in location &052A + Y.

If the variable type (& 39) is Floating-Point (i.e. it is #& 05) then:

* [& B6A1] Call routine & 9D3B to evaluate the expression after the TO-Keyword

* Call routine & 96DD to convert the result to a Floating-point value if it is Integer, or issue "Type
mismatch' error if it isa String value.

* Add #& 21 (33) to the current FOR level (location & 26) and store the result in location & 4A.

* Store #& 05 in location &4B

* Store the TO-value (the value in the FWA) in the 5-byte location pointed to by argp (&4A-&4B).

* Call routine & A5D8 to set the FWA to 1.0 (the default FOR STEP value)

* Get the next non-space character after the TO-expression (at the location pointed to by BASIC text
pointer B)

* |f the character isthe 'STEP-token' then: Call routine & 9D3B to evaluate the expression after the
STEP-Keyword, Call &96DD to convert the result to Floating-Point (if it was an
integer, or issue 'Type mismatch' error if it was a String) and Set Y to the BASIC
text pointer B offset.

* [& B6C7] Update BASIC Text Pointer A to point to the end of the FOR-statement (by setting it to the
value of Y (which isthe current position on the Program Line)).

* Add #& 1C to the current FOR level (location & 26) and store the result in location & 4A

* Set location & 4B to #& 05

* Call & A519 to store the STEP value (the value in the FWA) to the location pointed to by argp
(&4A-&4B)

* Jump to & B68F to Check and skip the end of the program statement (issuing 'Syntax error' if the end of
statement character (*:','<cr>','EL SE') wasn't found), Store the current BASIC Text pointer A value
t0 &0526 + Y - &0527 + Y (whereY isthe FOR level - from location & 26), Jump to & 900B to
continue executing the program - starting at the next program statement after the FOR-Statement.

Otherwise, the variable type (& 39) must be Integer (i.e. it is#& 04), so:

* [&B64D] Call routine & 96AF to evaluate the expression after the TO-K eyword and convert the
expression result to an Integer (if it was a Floating-Point value), or issue 'Type
mismatch' error if the result was a String value.

* Set Y to the current FOR level (from location & 26)

* Store the TO-value (in the IWA) in locations & 0521 + Y to &0524 + Y (L SB first)

* Set the IWA to 1 (the default FOR STEP value)

* Get the next non-space character after the TO-expression (at the location pointed to by BASIC text
pointer B)

* |f the character isthe 'STEP-token' then: Call routine & 96AF to eval uate the expression after the
TO value, and convert the result to Integer (if it was Floating-Point, or issue 'Type mismatch' error if
the result was a String value), Set Y to the BASIC text pointer B offset value (& 1B).

* [&B677] Update BASIC Text Pointer A to point to the end of the FOR-statement (by setting it to the
value of Y (which isthe current position on the Program Line)).

* Set Y to the current FOR level (from location & 26).

* Store the STEP value (the current IWA value) to the FOR stack at starting at location &051C + Y (for the
LSB byte - &2A) and ending at location & 051F + Y (for the MSB byte - & 2D).

* [&B68F] Check and skip the end of the program statement (issuing 'Syntax error' if the end of

statement character (*:','<cr>''EL SE") wasn't found) - also reset the BASIC text pointer A base
value (&0B-&0C) to take into account the offset value (& 0A).
* Store the current BASIC Text pointer A valueto &0526 + Y and &0527 + Y (where Y isthe FOR
level - from location & 26)
* Jump to & 900B to continue executing the program - starting at the next program statement after the FOR-
statement.

The memory layout of the FOR Stack (& 0528-& 05CB) is as follows:

The stack contains details for a maximum of 10 FOR loops. Each FOR block is 15 bytes long.

In each FOR block, the bytes have the following meaning:

Byte 1 (&0528) isthe variable location - LSB.

Byte 2 (&0529) is the variable location - MSB

Byte 3 (&052A) isthe variable type

Byte 4 (&052B) - Byte 8 (& 052F) isthe STEP value (Float (5-byte) / Integer (4-byte))

Byte 9 (&0530) - Byte 13 (& 0534) isthe TO value (Float (5-byte) / Integer (4-byte))

Byte 14 (& 0535) is the program location of the start of the first statement within the FOR loop - LSB
Byte 15 (& 0536) is the program location of the start of the first statement within the FOR loop - MSB

Disassembly for the FOR routine

B618 032 174 152 20 AE 98 JSR & 98AE Evaluate variable name & createit if it'sanew variable
B61B 240 219 FODB BEQ -37 --> & B5F8 'FOR variable' error

B61D 176 217 BO D9 BCS -39 --> & B5F8 'FOR variable' error

B61F C 032067 188 2043 BC JSR & BC43 Push & 2A, &2B & & 2C (the variable info) to the Stack
B622 032 134 155 20 86 9B JSR &9B86 Check whether the next non-space character is'=" (‘Mistake' error if not)
B625 (032040179 2028 B3 JSR & B328 Evaluate expression and set Numeric variable

B628 032 213 142 20 D5 8E JSR & 8EDS Get next non-space character (PTR B)

B62B 201 184 coBs8 CMP#& B8

B62D 208 226 DOE2 BNE -30 --> &B611 'No TO' error

B62F & 164038 A4 26 LDY &26

B631 192 150 C0 96 CPY#&96

B633 176 207 BO CF BCS -49 --> & B604 'Too many FORS error

B635 152 98 TYA

B636 i 105015 69 OF ADCH#&OF

B638 & 133038 85 26 STA &26

B63A 7 165055 A5 37 LDA &37

B63C (153040005 99 28 05 STA &0528)Y

B63F 8 165056 A5 38 LDA &38

B641
B644
B646
B649
B64B
B64D
B650
B652
B654
B657
B659
B65C
B65E
B661
B663
B666
B668
B66B
B66E
B670
B672
B675
B677
B679
B67B
B67D
B680
B682
B685
B687
B68A
B68C
B68F
B692
B694

153 041 005
165 057
153 042 005
201 005
240 084
032 175 150
164 038
165 042
153 033 005
165 043
153 034 005
165 044
153 035 005
165 045
153 036 005
169 001
032 024 174
032 213 142
201 136
208 005
032 175 150
164 027
132 010
164 038
165 042
153 028 005
165 043
153 029 005
165 044
153 030 005
165 045
153 031 005
032 207 155
164 038
165011

99 29 05
A5 39

99 2A 05
C905

FO 54

20 AF 96
A4 26
A5 2A
992105
A52B
9922 05
A52C
99 23 05
A52D
9924 05
A9 01
2018 AE
20 D5 8E
C9 88
DO 05

20 AF 96
A41B
84 0A
A4 26
A5 2A
991C 05
A52B
99 1D 05
A52C
99 1E 05
A52D
99 1F 05
20 CF 9B
A4 26
A50B

STA &0529,Y

LDA &39

STA &052A,Y

CMP#& 05

BEQ 84 --> &B6A1

JSR & 96AF Get expression result & convert it to Integer
LDY &26

LDA &2A

STA &0521Y

LDA &2B

STA &0522,Y

LDA &2C

STA &0523)Y

LDA &2D

STA &0524,Y

LDA#&01

JSR & AE18 Set IWA to the 8-bit valuein A
JSR &8ED5 Get next non-space character (PTR B)
CMP#&.88

BNE 5 --> &B677

JSR & 96AF Get expression result & convert it to Integer
LDY &1B

STY &0A

LDY &26

LDA &2A

STA &051C)Y

LDA &2B

STA &051D,Y

LDA &2C

STA &051E,Y

LDA &2D

STA &051F,Y

JSR & 9BCF Check & skip end of program line
LDY &26

LDA &0B

B696
B699
B69B
B69E
B6A1
B6A4
B6A7
B6A9
B6AA
B6AC
B6AE
B6BO
B6B2
B6B5
B6B8
B6BB
B6BD
B6BF
B6C2
B6C5
B6C7
B6C9
B6CB
B6CC
B6CE
B6DO
B6D2
B6D4
B6D7

153 038 005
165 012

153 039 005
076 011 144
032 059 157
032 221 150
165 038
024

105 033
133074

169 005
133075
032 025 165
032 216 165
032 213 142
201 136
208 008

032 059 157
032 221 150
164 027

132 010

165 038
024

105 028
133074

169 005
133075

032 025 165
128 182

99 26 05
A50C

99 27 05
4C 0B 90
203B 9D
20 DD 96
A5 26

18

69 21

85 4A

A9 05
8548
2019 A5
20 D8 A5
20 D5 8E
C9 88

DO 08

20 3B 9D
20 DD 96
A41B

84 0A

A5 26

18

69 1C

85 4A

A9 05
8548
2019 A5
80 B6

STA &0526,Y

LDA &0C

STA &0527)Y

JMP & 900B Process next BASIC program statement

JSR &9D3B Evaluate expression at BASIC Text pointer B
JSR &96DD Check Float value (Convert if Integer, or 'Type mismatch' error if String)
LDA &26

Cke

ADC#& 21

STA &4A

LDA#&05

STA &4B

JSR & A519 Store FWA's value to argp address (& 4A-&4B)
JSR & A5D8 Set FWA to 1.0

JSR &8ED5 Get next non-space character (PTR B)

CMP#& 88

BNE 8 --> &B6C7

JSR &9D3B Evaluate expression at BASIC Text pointer B
JSR &96DD Check Float value (Convert if Integer, or 'Type mismatch' error if String)
LDY &1B

STY &0A

LDA &26

CLC

ADC#&1C

STA &4A

LDA#&05

STA &4B

JSR & A519 Store FWA's value to argp address (& 4A-& 4B)
BRA -74 --> & B68F

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines
Page L ast Altered: undefined

98AE Evaluate variable name & Create if new variable

Submitted by Steve Fewell

Routine:CreateNewV ariable

Name: Evaluate variable name & Create if new variable

Starting Address. &98AE

Entry criteria: The BASIC Text Pointer A points to the start of avariable name.
Exit: The Variable has been created (or no action if it aready exists).

Zeroflag is set if the variable name was not valid (Syntax error).

C =0if the variable is numerical; otherwise, C = 1 (for String variable).

Description:

Call routine & 98F5 to reset the BASIC Text pointer B to the BASIC Text pointer A location,
and evaluate the variable name at that |ocation.

If the variable name is aready allocated then exit [A = non zero, BNE).

If the variable name is a direct memory access (? or !) then exit [A = non zero].

If the variable name is not avalid name then exit [Carry flag is set].

Othwise, the variable doesn't exist yet, so it needs to be created.

So, call &9854 to add the variable name to the variable pointer table.

Next, If the variable typeisnot 5 then call &9883 with X = 4 (Integer/String).
Otherwise, increment X to 5, and call &9883. & 9883 will allocate parameter
block space for the new variable.

Next, call &98F5 again to evaluate the variable name again and set & 2A, & 2B to

point to the variable's value and set & 2C to the variable type.

We need to call &98F5 again, as we would not have the variable vaue addressin & 2A-& 2B if
wedidn't.

Disassembly for the Evaluate variable name & Create if new variable routine

98AB 032131152 208398 JSR &9883 Allocate space for variable
98AE 032245152 20F598 JSR &98F5 PtrB=PtrA & evaluate variable name & obtain address of value

98B1 208029 DOID BNE29-->&98D0 [RTS
98B3 176027 BO1B BCS27-->&98D0 [RTS

98B5 T 032084 152

98B8
98BA
98BC
98BE
98BF

162 005
228 044
208 237
232

128 234

2054 98
A205
E42C
DOED
E8

80 EA

JSR & 9854 Create new variable name in variable pointer table
LDX#&05

CPX &2C

BNE -19 --> &98AB

INX

BRA -22 --> & 98AB

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines
Page L ast Altered: undefined

9883 Allocate space for new variable

Submitted by Steve Fewell

Routine:allocspace

Name: Allocate space for new variabler

Starting Address: & 9983

Entry criteria: Y contains the length of the variable name (which has

just been copied to the VARTOP location) + 1.

X contains the number of bytes required for the variable parameter block.

Exit: The Variable parameter block is complete, and VARTOP has been updated
to point to the next free location.

Description:
Place a zero at the end of the variable name (to mark the end of the name).

Zero X number of bytes following the variable name location (starting at VARTOP + Y + 1).
Thiswill clear the new variable parameter block.

Calculate new VARTOP (& 02-& 03) location (which will point to the next free variable location (i.e. the
location after the variable name and parameter block info which has been stored for the current
variable)). But, don't update VARTOP with the new address yet.

If the new VARTOP location would be >= the BASIC Stack pointer, then we have run into the stack,
so store O for the Next variable MSB address field of the previous variable's parameter block (& 3A,1),
to set that variable as being the last variable in the list, and generate a'No Room' error.

Otherwise Store the updated VARTOP position back in & 02-& 03 and exit.

Disassembly for the Allocate space for new variable routine

9883 169 000 A900 LDA#&00

9885 145 002 9102 STA (&02),Y
9887 200 C8 INY

9888 202 CA DEX

9889 208 250 DOFA BNE -6 --> & 9885

988B 024 18 CLC

988C
988D
988F
9891
9893
9895
9897
9899
989B
989D
989F
98A1
98A3
98A5
98A8
98AA

152

101 002
144 002
230 003
164 003
196 005
144 015
208 004
197 004
144 009
169 000
160 001
145 058
076 161 144
133 002
096

98

65 02
90 02
E6 03
A403
C4 05
90 OF
D004
C504
90 09
A9 00
A0 01
91 3A
4C A190
8502
60

TYA

ADC &02

BCC 2 --> &9893
INC &03

LDY &03

CPY &05

BCC 15 --> &98A8
BNE 4 --> & 989F
CMP &04

BCC 9--> &98A8
LDA#&00
LDY#&01

STA (&3A),Y

JMP &90A1 No Room error
STA &02

RTS

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines

Error Messages

Submitted by Steve Fewell

This page contains all of the error messages issued by the BASIC IV ROM. A number surrounded by
pointed brackets, i.e. <138>, indicates referenceto a BASIC KEYWORD. These references are
automatically expanded into the actual keywords when BASIC prints the error message. The Keywords
relating to each number are shown on the character table page.

Note: The error messages "Bad Program™ and "Failed at" are not included, as they aren't really error
messages, because they are not handled viathe BRK vector. Instead, the BASIC ROM just displays
these texts directly on the screen, without causing a BRK event to occur.

The Error Messages are listed in Numerical order by ERR number:

Error O- LINE space
BB61 BRK
BB62 EQUB O
BB63 EQUS "<134> space"
BB6A EQUB O

Error O- Noroom
90A1 BRK
90A2 EQUB 0O
90A3 EQUS"No room"
90AA EQUBO

Error 0O- RENUMBER space

93B3 BRK

93B4 EQUB O

93B5 EQUS "<204> space"
93BC EQUBO

Error O- Silly

93BC BRK

93BD EQUBO
93BE EQUS"Silly"
93C3 EQUB 0O

Error O- STOP

9089 BRK
908A EQUB 0
9088 EQUS "<250>"
908C EQUB 0

Error 1- Out of range

8ACC BRK

8ACD EQUB 1

8ACE EQUS"Out of range"
8ADA EQUBO

Error 2 Byte

8AF9 BRK

8AFA EQUB 2
8AFB EQUS "Byte"
8AFF EQUB O

Error 3 - Index

8B3C BRK

8B3D EQUB 3
8B3E EQUS"Index"
8B43 EQUBO

Error 4 - Mistake

9B60 BRK

9B61 EQUB 4

9B62 EQUS"Mistake"
9B69 EQUB O

Error 5- Missing,

8EF6 BRK
8EF7 EQUB 5
8EF8 EQUS"<141>"
S8EFA EQUB 0

Error 6 - Type mismatch
9092 BRK
9093 EQUB 6
9094 EQUS"Type mismatch”
90A1 EQUBO

Error 7- NoFN
908C BRK
908D EQUB 7
908E EQUS"No <164>"
9092 EQUB 0

Error 8-$range
98EB BRK
98EC EQUB 8
98ED EQUS"$range"
98F4 EQUB O

Error 9- Missing"
9294 BRK
9295 EQUB 9
9296 EQUS"<141>"""
9298 EQUB O

Error 10- Bad DIM
952C BRK
952D EQUB 10
952E EQUS "Bad <222>"
9533 EQUBO

Error 11 - DIM space
9605 BRK
9606 EQUB 11
9607 EQUS "<222> space”
960E EQUB O

Error 12 - Not LOCAL

9732 BRK

9733 EQUB 12

9734 EQUS "Not <234>"
9739 EQUB 0

Error 13- No PROC
9B77 BRK
9B78 EQUB 13
9B79 EQUS"No <242>"
9B7D EQUB O

Error 14 - Array
99F6 BRK
99F7 EQUB 14
99F8 EQUS"Array"
99FD EQUB 0

Error 15 - Subscript
9AEA BRK
9AEB EQUB 15
9AEC EQUS "Subscript"
9AF5 EQUB O

Error 16 - Syntax error
9B69 BRK
9B6A EQUB 16
9B6B EQUS "Syntax error"
9B77 EQUBO

Error 17 - Escape
9B7D BRK
9B7E EQUB 17
9B7F EQUS "Escape"
9B85 EQUB O

Error 18 - Division by zero
8172 BRK
8173 EQUB 18
8174 EQUS "Division by zero"
8184 EQUB 0

Error 19 - String too long

9E10 BRK

9E11 EQUB 19

9E12 EQUS "String too long"
9E21 EQUBO

Error 20 - Too big
A6C5 BRK
A6C6 EQUB 20
A6C7 EQUS"Too big"
A6CE EQUB 0O

Error 21 - -veroot
A75B BRK
A75C EQUB 21
A75D EQUS"-veroot"
A765 EQUBO

Error 22 - Log range
A750 BRK
A751 EQUB 22
A752 EQUS"Log range"
A75B EQUBO

Error 23 - Accuracy lost
A9AD BRK
A9AE EQUB 23
A9AF EQUS"Accuracy lost"
A9BC EQUBO

Error 24 - Exp range
A9BC BRK
A9BD EQUB 24
A9BE EQUS"Exp range"
A9C7 EQUBO

Error 25 - Bad MODE
9739 BRK
973A EQUB 25
973B EQUS "Bad <235>"
9740 EQUBO

Error 26 - No such variable

ADSC BRK

ADSD EQUB 26

ADSE EQUS "No such variable"
AD9E EQUB 0

Error 27 - Missing)
AD9E BRK

AD9F EQUB 27
ADAO EQUS"<141>)"
ADA2 EQUBO

Error 28 - Bad Hex

ADA2 BRK

ADA3 EQUB 28
ADA4 EQUS "Bad Hex"
ADAB EQUB 0

Error 29 - No such FN/PROC

AF89 BRK

AFSA EQUB 29

AFS8B EQUS "No such <164>/<242>"
AF96 EQUB 0

Error 30 - Bad call

BOOC BRK

BOOD EQUB 30
BOOE EQUS"Bad call"
BO16 EQUB 0

Error 31 - Arguments

B134 BRK

B135 EQUB 31

B136 EQUS"Arguments'
B13F EQUB O

Error 32- No FOR

B532 BRK

B533 EQUB 32

B534 EQUS"No <227>"
B538 EQUB O

Error 33 - Can't match FOR

B523 BRK
B524 EQUB 33
B525 EQUS "Can't match <227>"
B532 EQUB 0

Error 34 - FOR variable
B5F8 BRK
B5F9 EQUB 34
B5FA EQUS "<227> variable"
B604 EQUBO

Error 35- Too many FORs
B604 BRK
B605 EQUB 35
B606 EQUS"Too many <227>s"
B611 EQUBO

Error 36-NoTO
B611 BRK
B612 EQUB 36
B613 EQUS "No <184>"
B617 EQUB O

Error 37 - Too many GOSUBs
B6F3 BRK
B6F4 EQUB 37
B6F5 EQUS"Too many <228>s'
B700 EQUBO

Error 38- No GOSUB
B700 BRK
B701 EQUB 38
B702 EQUS"No <228>"
B706 EQUB 0O

Error 39 - ON syntax
B7EA BRK
B7EB EQUB 39
B7EC EQUS"<238> syntax"
B7F4 EQUB O

Error 40 - ON range

B7E1 BRK
B7E2 EQUB 40
B7E3 EQUS"<238> range"
B7EA EQUB 0

Error 41 - No such line
B7F4 BRK
B7F5 EQUB 41
B7F6 EQUS"No such line"
B802 EQUBO

Error 42 - Out of DATA
BO9F1 BRK
BO9F2 EQUB 42
B9F3 EQUS"Out of <220>"
BO9FB EQUB 0O

Error 43- No REPEAT
BO9FB BRK
BOFC EQUB 43
BOFD EQUS"No <245>"
BAO1 EQUB O

Error 44 - Too many REPEATS
BAO5 BRK
BA06 EQUB 44
BAO7 EQUS"Too many <245>s'
BA12 EQUBO

Error 45 - Missing #
BAO1 BRK
BAO2 EQUB 45
BAO3 EQUS"<141>#"
BAO5 EQUB 0O

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines

Characters

Submitted by Steve Fewell
Page Last Altered: undefined

This page contains alisting of all of the ASCII values that are meaningful to the BASIC ROM.

The Characters are listed in ASCI| order:

ASCII value casltcj:(—lzl(H &) gthSrI:z:/ter/
Keyword
< >
L D R(e:tljrn Lud
32 20 < > Space
33 21 !
34 22
35 23 #
36 24 $
37 25 %
38 26 &
39 27
40 28 (
41 29)

2B
2C
2D
2E
2F
30
34

32

33

35

36

37

38
39

3A
3B
3C
3D
3E
3F

40

41

42

46

a7

49

42

43

45

46
a7

48
49
50
51

52

53

55
56

57

58
59
60
61

62

63

65

66
67

68
69
70
71

72
73

4A
4B
4C
4D
4E
4F

50
Sk

52

53

55
56

S7

58
59

S5A
oB
5C
sD
SE
SF
60
61

62

63

65
66
67

68
69

74
75
76
7
78
79
80
81

82

83

85

86
87

88
89
90
91

92

93

94
95
96
97

98
99

100
101
102
103
104

105

AND
DIV

EOR

MOD
OR

ERROR
LINE
OFF

STEP

SPC

6A
6B
6C
6D
6E
6F

70
71

72
73
74
75

76
77

78
79
7A
7B
7C
/D
7E
F
80

81

82

83

85

86

87

88

89

106
107

108
109
110
111
112

113
114
115
116
117

118
119
120

121

122

123

124

125

126

127

128

129

130
131
132

133
134
135
136

137

138 8A TAB(
139 8B ELSE
140 8C THEN
141 8D Missing
142 8E OPENIN
143 8F PTR
144 90 PAGE
145 91 TIME
146 92 LOMEM
147 93 HIMEM
148 94 ABS
149 95 ACS
150 96 ADVAL
151 97 ASC
152 98 ASN
153 99 ATN
154 9A BGET
155 9B COS
156 9C COUNT
157 9D DEG
158 9E ERL
159 oF ERR
160 A0 EVAL
161 Al EXP
162 A2 EXT
163 A3 FALSE
164 A4 FN

165 A5 GET
166 A6 INKEY
167 A7 INSTR(
168 A8 INT
169 A9 LEN

170 AA LN
171 AB LOG

172 AC NOT

173 AD OPENUP
174 AE OPENOUT
175 AF Pl

176 BO POINT(
177 B1 POS

178 B2 RAD

179 B3 RND

180 B4 SGN

181 B5 SIN

182 B6 SOR

183 B7 TAN

184 B8 TO

185 B9 TRUE
186 BA USR

187 BB VAL

188 BC VPOS
189 BD CHR$
190 BE GET$
191 BF INKEY$
192 CO0 LEFT$(
193 C1 MID$(
194 C2 RIGHTS$(
195 C3 STR$
196 ca STRINGS$(
197 C5 EOF

198 C6 AUTO
199 C7 DELETE
200 C8 LOAD
201 C9 LIST

202 CA NEW
203 CB OLD
204 CC RENUMBER
205 CD SAVE
206 CE EDIT
207 CF PTR

208 DO PAGE
209 D1 TIME
210 D2 LOMEM
211 D3 HIMEM
212 D4 SOUND
213 D5 BPUT
214 D6 CALL
215 D7 CHAIN
216 D8 CLEAR
217 D9 CLOSE
218 DA CLG
219 DB CLS
220 DC DATA
221 DD DEF
222 DE DIM

223 DF DRAW
224 EO END
225 El ENDPROC
226 E2 ENVELOPE
227 E3 FOR
228 E4 GOSUB
229 E5 GOTO
230 E6 GCOL
231 E7 IF

232 ES8 INPUT
233 E9 LET

234 EA LOCAL
235 EB MODE
236 EC MOVE
237 ED NEXT
238 EE ON

239 EF VDU

240 FO PLOT
241 F1 PRINT
242 F2 PROC
243 F3 READ
244 F4 REM

245 F5 REPEAT
246 F6 REPORT
247 F7 RESTORE
248 F8 RETURN
249 F9 RUN

250 FA STOP
251 FB COLOUR
252 FC TRACE
253 FD UNTIL
254 FE WIDTH
255 FF OSCLI

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines
Page L ast Altered: undefined

9909 Evaluate Variable Name and return address of value

Submitted by Steve Fewell

Routine:getvar

Name: Evaluate Variable Name and return address of value

Starting Address: & 98F5/& 9909

Entry criteria: A contains the next character. Text PTR B pointsto the rest of the
command line.

Exit: (&2A, &2B) point to the variable's value. & 2C contains the value type.

A = 0if error (variable not found); otherwise, A = & FF (?).

If A =0for error condition, then the carry flag has the following meanings:

Carry isclear if variable name was valid but variable doesn't exist (not declared).
Carry is set if no variable was specified (invalid variable name character/Syntax error).
If A isnot O for variable found condition, then the carry flag has the following meanings:
Carry isclear if the variable contains a numerical value.

Carry is set if the variable isa string (non-numerical) value.

Description:

If called from & 98F5 then set Text Pointer B to point to the current Text Pointer A location,
and skip any leading spaces in text pointer B.

Firstly thisroutine checksfor a'peek/poke addressoperator ('?','!",'$).

This needs to be done first, because if a peek operator is found then this provides

us with our address value without need to look further.

If a'peek’ operator isfound, then exit with the address (to be peeked) placed in (&2A, &2B) and

& 2C containing the return value type (String for '$', 1-byte Integer for '? or 4-byte Integer for '!").
Note: After a peek/poke operator is evaluated, thisroutine is exited. This means that a peek/poke
address cannot be modified by an address modifier (!, “?), as address modifier operators can only
be used with numeric variables.

If the next character was less than '@', but it wasn't a'?, '!" or '$' operator then exit (routine & 99A6)
with A = 0 and the carry set asthetext is not a variable name.

Secondly, theroutine checksfor use of a resident integer variable (@% to Z%).
Thisis done second to ensure that resident integer variables are processed as fast

as possible, so that the quickest access times an be given.

If aresident Integer variable is found then multiply the first character of the variable

name by 4 (to obtain the page & 4 starting address of the resident Integer variable).

and store the starting addressin & 2A. Store 4 in & 2B (asthisis the page where the variable

islocated). Store 4 in & 2C (as the return type is a 4-byte Integer value).

Check that the variable is not an Array by checking that the character after the ‘%' is an open
bracket. If it isn't then we have aresident Integer variable, so jump to the exit section (& 9998)
of the evaluate variable routine.

Variableisnot a peek/poke or aresident integer variable, soit isanormal variable
Begin by setting the default return value type and setting (& 37, & 38) to point to the
start of the variable name.

Thisis done asfollows:
* Store #5 in & 2C (the variabl€'s return value type). This defaults the return value to Floating-Point
if a'%' or '$ isnot found at the end of the variable name.
* Set A to point to the Text pointer B Offset.
* Set Y to point to the Text pointer B MSB.
* |f the offset (A) isnot O, then add the Text pointer B L SB address value to the offset (A)
and increment Y (if page overflowed).
* |f the offset (A) is zero then add the Text pointer B LSB address value.
* |f the Text pointer B LSB value is zero also, then decrement Y (to point to the
previous page (the value in A is decremented to & FF in the next step!).
* Decrement the offset(A), to point to the first character of the variable name.
* Set zero page location & 37 to the L SB address of the first character of the variable name.
* Set zero page location & 38 to the MSB address of the first character of the variable name.

[9949] Check the first character of the variable name, as follows:

Load thefirst character of the variable name. Set Y to 1.

If the first character is between ‘A" and 'Z' then increment the pointers (X and Y) to point to the

next character and test the next character [995B].

If the first character is between' ' and 'Z' then increment the pointers (X and Y) to point to the

next character and test the next character [995B]. Note: this includes the characters' ', '£' and 'a-'Z'.

If the first character is between '0" and '9' then increment the pointers (X and Y) to point to the

next character and test the next character [995B]. Note: hiswill not be the case as '0' to '9' are aready

rejected as being the first character in the variable name in routine & 98C1.

If the first character is anything else then goto 9977 to indicate the end of the variable name has been reached.

[995B] Check the next character of the variable name, as follows:

Get the next character.

If the next character is between 'A" and 'Z' then increment the pointers (X and Y) to point to the

next character and test the next character [995B].

If the next character is between' ' and 'Z' then increment the pointers (X and Y) to point to the

next character and test the next character [995B]. Note: thisincludes the characters' ', '£' and 'a-'z'.

If the next character is between '0" and '9' then increment the pointers (X and Y) to point to the

next character and test the next character [995B].

If the next character is anything else then goto 9977 to indicate the end of the variable name has been reached.

[9977] The end of the variable name has been reached, so check the following:

If Y =1 then no valid characters were found (the first character was invalid), so

exit [&99A6] with A = 0 and Carry set.

If the invalid character (last character) was'$ then goto & 99DA to handle String variables.

String variables are handled as follows:
* Decrement & 2C (the variable value type, from 5 to 4). Thistricks the Get Array element
routine (& 99FE), if it is called, to handle Integer values. As String variables have a 4-byte
parameter block, thisworks well as it tells the Get Array element address routine to work with 4-byte values.
* |ncrement the pointers (X and Y) (to point to the character after the '$")

* |f the next character is an open bracket (', then call & 99FE to get the

address of the specified element.

Otherwise, call &8085 to get the address of the variable block for the specified variable &

store the text pointer B offset (X) back to & 1B; & if the variable wasn't found (Zero flag set) then
exit via(&99AA --> A =0 and Carry clear).

* Store #& 81 in & 2C - to specify that the return type is astring value.

* exit with the carry set (String value) and A = & 81. Note with string variables we do not need to
check for address modifier operators'!* and '? [as done by routine & 9998 for numeric val ues]

as a String variable cannot contain an address value in which to modify!

Now String variables have been dealt with ('$), so the following code deals only with

Integer and Floating-Point variables.

If the invalid character (last character) was '%' then decrement & 2C (from 5 to 4)

asthe return type is now an Integer, Increment the pointers (Y and X) and load the next character.

If the next character is an open bracket, '(’, then call & 99FE (the Get Array element

address routine). Otherwise: call & 8085 to get the address of the variable block for the specified variable &
store the text pointer B offset (X) back to &1B; & if the variable wasn't found (Zero flag set) then

exit via (&99AA --> A =0 and Carry clear).

Load the next character, and exit via routine & 9998 to check for address modifier
operators ("' and '?).

9998 Exit the evaluate variableroutine:

Now we have the address for a numerical variable value, we need to check whether the variable
isfollowed by an address modifier operator ('!" or '?). If it is then the numeric

value of the variable needs to be modified by the number of bytes specified after the

address modifier operator. |.e. the expression could be 'var!4', meaning that the

value of variable 'var' needs to be adjusted by 4, and the return value type is a 4-byte Integer.

If an address modifier isfound then the appropriate routine is called (& 99AE for "' or &99B0 for '?).
Otherwise, clear the carry (as numerical value), store the pointer B offset back in & 1B and exit with A=& FF
(as routine succeeded).

Disassembly for the Evaluate Variable Name and return address of value routine

98F5 165011 A50B LDA &0B

98F7 133 025 8519 STA &19

98F9 165012 A50C LDA &0C

98FB 133026 85 1A STA &1A

98FD 164 010 A4 0A LDY &O0A

98FF 136 88 DEY

9900 200 C8 INY

9901 132 027 84 1B STY &1B

9903 177 025 B119 LDA (&19),Y
9905 201 032 C920 CMP#&20

9907 240 247 FOF7 BEQ -9 --> &9900
9909 @ 201064 C940 CMP#&.40

990B 144 180 90 B4 BCC -76 --> &98C1 Check for "', "7 or '$' address peek operators

990D [201091 C95B CMP#& 5B

990F
9911
9912
9913
9915
9916
9918
991A
991C
991E
9920
9922
9924
9925
9927
9929
992B
992D
992
9930
9932
9934
9935
9937
9938
993A
993C
993D
993F
9940
9942
9944
9945
9947
9949
994B
994D
994F
9951
9953
9955
9957
9959
995A

%

—~

176 026
010

010

133042
200

177 025
201 037
208 015
169 004
133043
162 004
134 044
200

177 025
201 040
208 109
162 005
134 044
024

164 026
165 027
170

208 008
058

101 025
176 009
136

128 006
058

101 025
144 001
200

133 055
132 056
160 001
177055
201 065
176 026
201 048
144 034
201 058
176 030
232

200

BO 1A
0A

0A

85 2A
C8

B119
C925
DO OF
A9 04
852B
A204
86 2C
C8

B119
Co928
DO 6D
A2 05
86 2C
18

A4 1A
A51B
AA

DO 08
3A

6519
BO 09
88

80 06
3A

6519
9001
C8

8537
84 38
A0O01
B137
Co41
BO 1A
C930
90 22
C93A
BO 1E
E8

C8

BCS 26 --> &992B
ASL A

ASL A

STA &2A

INY

LDA (&19),Y
CMP#& 25

BNE 15 --> & 992B
LDA#& 04

STA &2B
LDX#&04

STX &2C

INY

LDA (&19),Y
CMP#&.28

BNE 109 --> a href="#9998">& 9998 EXxit the Evaluate Variable routine
LDX#& 05

STX &2C

CLC

LDY & 1A

LDA & 1B

TAX

BNE 8 --> &993F
DECA

ADC &19

BCS 9 --> &9945
DEY

BRA 6 --> &9945
DECA

ADC &19

BCC 1 --> &9945
INY

STA &37

STY &38
LDY#&01

LDA (&37),Y
CMP#& 41

BCS 26 --> &996B
CMP#&30

BCC 34 --> &9977
CMP#& 3A

BCS 30 --> & 9977
INX

INY

995B
995D
995F
9961
9963
9965
9967
9969
996B
996D
996F
9971
9973
9975
004
9979
997B
997D
o=
9981
9983
9985
9986
9987
9989
998B
998D
9990
9992
9994
9996
9998
999A
999C
999E
99A0
99A1
99A3
99A5
99A6
99A8
99A9
99AA

—~

177 055
201 065
176 010
201 048
144 018
201 058
144 240
128 012
201 091
144 234
201 095
144 004
201 123
144 226
192 001
240 043
201 036
240 091
201 037
208 006
198 044
232

200

177 055
201 040
240 072
032 133 128
240 024
134 027
164 027
177 025
201 033
240018
073 063
240 016
024

132 027
169 255
096

169 000
056

096

169 000

B137
Co41
BO OA
C930
9012
C93A
90 FO
800C
C95B
90 EA
C9 5F
90 04
Cco97B
90 E2
Co01
FO2B
Co24
FO 5B
C925
DO 06
C62C
E8

C8
B137
Co928
FO 48
208580
FO 18
86 1B
A41B
B119
Co21
FO12
49 3F
FO 10
18

84 1B
A9 FF
60

A9 00
38

60

A9 00

LDA (&37),Y

CMP#&41

BCS 10 --> &996B

CMP#&30

BCC 18 --> &9977

CMP#& 3A

BCC -16 --> & 9959

BRA 12 --> &9977

CMP#&5B

BCC -22 --> & 9959

CMP#& 5F

BCC 4 -->&9977

CMP#& 7B

BCC -30 --> & 9959

CPY#&01

BEQ 43 --> & 99A6 Error: Set carry
CMP#& 24

BEQ 91 --> &99DA Handle String variables
CMP#& 25

BNE 6 --> &9989

DEC &2C

INX

INY

LDA (&37),Y

CMP#& 28

BEQ 72 --> & 99D5 Handle Numeric Array
JSR & 8085 Get address of variable
BEQ 24 --> & 99AA Error: Clear carry
STX &1B

LDY &1B

LDA (&19),Y

CMP#& 21

BEQ 18 --> & 99AE '!" address modifier operator
EOR#& 3F

BEQ 16 --> &99B0 *? address modifier operator
EhC

STY &1B

LDA#& FF

RTS

LDA#&00

SEC

A KS)

LDA#&00

99AC
99AD

Handle numeric array

99D5
99D8

Handle String variables

99DA
99DC
99DD
99DE
99E0
99E2
99E4
99E7
99E9
99EB
99ED
99EF
99F0
99F1
99F4

024
096

032 254 153
128 186

198 044
232

200
177055

201 040
240 013

032 133 128
240 193
134 027

169 129
133044
056

096

032 254 153
128 245

CLC
RTS

20 FE 99
80 BA

C6 2C
E8

C8
B137
C928
FO 0D
2085 80
FOC1
86 1B
A981
852C
38

60

20 FE 99
80 F5

JSR & 99FE Get address of required Array element

BRA -70 --> &9994

DEC &2C

INX

INY

LDA (&37),Y

CMP#& 28

BEQ 13 --> &99F1

JSR & 8085 Get address of variable
BEQ -63 --> & 99AA Error: Clear carry

STX &1B

LDA#&81
STA &2C

SEC

RTS

JSR & 99FE Get address of required Array element

BRA -11 --> &99EB

Check for '!",'$' or '?' address peek operators

98C1
98C3
98C5
98C7
98C9
98CB
98CD
98CF
98D0

I 201033
240 012

$ 201036

240 019
I? 073063
240 006
169 000

8 056

096

Co921
FOOC
Co24
FO 13
49 3F
FO 06
A9 00
38

60

CMP#& 21

BEQ 12 --> &98D1 '!" address peek operator
CMP#H& 24

BEQ 19 --> &98DC '$' address peek operator
EOR#& 3F

BEQ 6 --> &98D3 '? address peek operator
LDA#&00

SEC

RTS

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines
Page L ast Altered: undefined

8085 Get Address of Variable

Submitted by Steve Fewell

Routine:varaddr

Name: Get Address of Variable

Starting Address: &8085

Entry criteria: & 37 and & 38 point to the variable name. Y = Variable name length.
Exit: & 2A and & 2B = the address of the variable block for the variable name [LSB first].
A = &00 if variable not found. & 39 = Length of variable Name (Y).

Description:

Store the offset to the end of the variable namein & 39 (variable name length).

Load the first character of the variable name. Multiply the ASCII value of the first
character by 2 and storein Y. Y now points to the page & 4 offset for the variable pointer
table.

I.e.: If first Char ="A" [ASCII value=&41], then the variable pointer table for

"A" variablesislocated at &0482.

Note: The resident integer variables (@%, A%, B%, etc...) are handled separately.

Load the MSB of the address stored at the specified variable pointer table location.
If the MSB of the address is zero, then no "A" variables have been defined, so exit with A=& 00.

Store the MSB of the variable pointer table addressin & 2B.
Store the LSB of the variable pointer table addressin & 2A.

& 80A6: Load the 3rd byte of the variable lookup table (& 2A, &2B). The 3rd byteisthe
beginning of the rest of the variable name [as the variable name is stored without its first
character].

If the variable name character is zero, then we have reached the end of the variable name,
so check whether the length of the variable we are searching for (& 39) is the same

as the variable we have found (Y). If not then jump to & 8099 to look at the next variable

in the pointer table. If equal, then we have found our variable, so jump to & 80C3.

Otherwise (end of name not reached); [& 80B6:] Compare the variable name character

(from lookup table) with the next character pointed to by & 37, & 38.

If the characters don't match then thisis not our variable, so goto 8099 to look at next variable
in the pointer table.

Increment Y, and check whether the variable length (& 39) has been reached, if not

then (& 80B2) load the next character of the variable name in the pointer table (and

jump to & 8099 (look at next variable), if the the end of the name was reached (while we il
had more characters in the variable name we were |ooking for)); otherwise compare this next character [& 80B6].
If the end of the variable we are looking for has been reached then check that the next
character of the variable name in the lookup table is zero (indicating the end of the name);

if it isn't, then jump to & 8099 to look at the next variable in the lookup table.

Otherwise -> [& 80C3:] We have found our variable.

Add length of variable to the addressin & 2A, &2B -> so that & 2A, & 2B now

points to the variable details/variable contents section of the variable block (which islocated
directly after the variable name). And exit (updating the MSB if any overflow occurred).

[&8099:] Look at next variablein lookup table.

This routine checks byte 2 of the variable block, if it is zero then there is no

next variable address, so exit (with A=00) as the variable doesn't exist.

Otherwise, store the next variable addressin & 2A (LSB) and & 2B and jump to & 80A6 to
compare the variable name with the one we are looking for.

Disassembly for the Get Address of Variable routine

8085 9 132057 84 39 STY &39

8087 160 001 A0 01 LDY#&01

8089 7 177055 B137 LDA (&37),Y
8088 010 0A ASL A

808C 168 A8 TAY

808D 185 001 004 B9 01 04 LDA &0401,Y
8090 : 240058 FO 3A BEQ 58 --> & 80CC
8092 + 133043 85 2B STA &2B

8094 185 000 004 B9 00 04 LDA &0400,Y
8097 128 011 80 0B BRA 11 --> &80A4
8099 160 001 A0 01 LDY#&01

809B x 177042 B12A LDA (&2A),Y
809D - 240045 FO 2D BEQ 45 --> &80CC
809F 168 A8 TAY

80A0 x 178042 B2 2A LDA (&2A)

80A2
80A4
80A6
80A8
80AA
80AC
80AE
80B0O
80B2
80B4
80B6
80B8
80BA
80BB
80BD
80BF
80C1
80C3
80C4
80C6
80C8
80CA
80CC

e*

132 043
133 042
160 002
177042
208 010
196 057
208 233
128 017
177 042
240 227
209 055
208 223
200

196 057
208 243
177 042
208 214
152

101 042
133042
144 002
230 043
096

84 2B
85 2A
A0 02
B12A
DO OA
C439
DO E9
8011
B12A
FOE3
D137
DO DF
C8

C4 39
DOF3
B12A
DO D6
98

65 2A
85 2A
90 02
E6 2B
60

STY &2B
STA &2A
LDY#802

LDA (&2A),Y
BNE 10 --> & 80B6
CPY &39

BNE -23 --> & 8099
BRA 17 --> &80C3
LDA (&2A),Y
BEQ -29 --> &8099
CMP (&37),Y

BNE -33 --> & 8099
INY

CPY &39

BNE -13 --> & 80B2
LDA (&2A),Y
BNE -42 --> & 8099
TYA

ADC &2A

STA &2A

BCC 2 --> &80CC
INC &2B

RTS

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines
Page L ast Altered: undefined

99AE 'I" and '?' address modifier operators

Submitted by Steve Fewell

Routine:addrmodify

Name: "' and '? address modifier operators

Starting Address: & 99AE (for 'I") or &99B0 with A=0 (for '?)

Entry criteria: &2A and & 2B point to the contents of the variable.

The Text Pointer B points to the next character of the program line.

Exit:(&2A, &2B) contain the adjusted address (variable value + modifier value).
& 2C contains the return type (of the value to obtain from the new address).

Description:

Store the return value type on the stack (O for 1-byte Integer or 4 for 4-byte Integer).

Store back the offset in & 1B, as we have correctly evaluated the variable address.

Load the variable value to obtain the base-memory address to modify.

If the variable is a string, then it is not a Memory address so generate a Type mismatch error.

Store the Integer base-address MSB <& 2B) on the Stack.
Store the Integer base-address L SB (& 2A) on the Stack.
Get the Integer value at PTR B. This provides the value to modify the base-address by.

Add the Integer value to the Base memory address (from the Stack). Now (& 2A, &2B) contain
the modified address.
Exit with Carry clear and A = #& FF (meaning that the routine ended sucessfully).

Disassembly for the '!" and '?' address modifier operators routine

99AE 169 004 A9 04 LDA#& 04

99B0 H 072 48 PHA

99B1 200 C8 INY

99B2 132 027 84 1B STY &1B

99B4 032 160 177 20A0B1 JSR &B1A0 Load Variable

99B7 032 191 150 20 BF 96 JSR & 96BF Check if Integer and Convert if Float
99BA + 165043 A52B LDA &2B

99BC H 072 48 PHA

9BD * 165042 A52A LDA &2A

99BF H 072 48 PHA

99CO0 032 180 150 20 B4 96 JSR &96B4 Get Integer value at PTR B
99C3 024 18 CLC
99C4 h 104 68 PLA

99C5 e* 101042 65 2A ADC &2A
99C7 * 133042 85 2A STA &2A
99C9 h 104 68 PLA

99CA e+ 101043 65 2B ADC &2B
99CC + 133043 852B STA &2B
99CE h 104 68 PLA

99CF , 133044 852C STA &2C
99D1 024 18 CLC
99D2 169 255 A9 FF LDA#& FF

99D4 © 096 60 RTS

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines

Page Last Altered: undefined

Check Number and Convert to Integer if Float

Submitted by Steve Fewell

Routine: CheckNumé& ConvFloat

Name: Check Number and Convert to Integer if Number is Floating-Point

Starting Address: &96BE

Entry criteria: The Accumulator specifies which type of value has just been processed.

Exit: If the value was Floating-Point, then the FWA's value will be converted to Integer and stored in
the IWA.

Description:
Transfers the current Variable Type [stored in A] to Y in order to update the status flags.

If the current Variable Type = 0 (String) then a Type Mismatch error is given.

If the current Variable Type = positive (i.e. &40, Integer) then nothing to do as the number is already
integer, so exit with the IWA's value intact.

Otherwise, the current Variable Type must be negative (i.e. & FF, Floating-Point), so the number is
floating-point. So we need to convert the number into an Integer and return it in the IWA.

The Convert Float to Integer routine is used to return a Two's-complement Integer value in the FWA

Mantissa (stored Most significant byte first, least significant byte last). Now, store the Integer Number in
the IWA - stored the right way around (least significant byte first, and Most significant byte last), and
exit.

Disassembly for the Check Number and Convert to I nteger if Float routine

96BE 168 A8 TAY

96BF 240 022 FO 16 BEQ 22 --> &96D7
96C1 016 019 1013 BPL 19 --> &96D6
96C3 B 032066130 204282 JSR&8242 Convert Float to Integer
96C6 1 165049 A531 LDA &31

96C8 - 133045 852D STA &2D

96CA 2 165050 A5 32 LDA &32

96CC , 133 044 852C STA &2C

96CE 3 165051 A5 33 LDA &33

96D0 + 133043 85 2B STA &2B

96D2 4 165052 A5 34 LDA &34

96D4 * 133042 85 2A STA &2A

9%6D6 = 096 60 RTS

96D7 L 076146144 4C9290 JIMP&9092 Type Mismatch error 6

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines

Glossary

Submitted by Steve Fewell
Page Last Altered: undefined

A
A usually refers to the Accumulator. Thisis an 8-hbit register within the processor, which is written/read
viamany assembler commands.

argp
The argp is the argument pointer - a pointer to a floating-point variable. Its location is usually &4A (for
low byte) and &4B (for high byte).

Carry Flag
The Carry flag is one of the processor flags, which can contain the values O or 1. It is often used to

implement carrying and borrowing functionality when calculating with numbers larger than 8-bitsin
length. If it has avalue of 1 then thisindicates that a carry has occurred. Thistells the command ADC to
include the carry in its calculations. If it has a value of 0 then thisindicates that a borrow has occurred.
Thistells the command SBC to include the borrow in its calculations. Programs usually reset this flag to
0 before beginning any add calculations, and set it to 1 before beginning any subtract calculations, as
this clears the carry/borrow condition.

Error Vector

The BASIC error vector islocated in zero-page locations & 16 (low byte) and & 17 (high byte). This
vector contains the address of the BASIC error code which BASIC will execute after an error condition
occurs. This vector will point to the code located after an ON ERROR statement in a program. The
BASIC instructions pointed to by the error vector are executed by the BASIC interpreter when an error
condition occurs.

FWA

The FWA isthe Floating-point working area'A’, thisis an 8 byte zero-page location for the temporary
storage of one floating-point number. Itslocation is & 2E for the sign byte, & 2F for the Exponent
Overflow, &30 for the number's Exponent and & 31 (most significant byte) to & 35 (least significant
byte) for the number's Mantissa. Byte 5 of the mantissa (& 35) is arounding byte, as it doesn't form part
of the number when it is copied from the FWA and stored to a floating-point variable. It allows extra
precision during calculations while the number isin the FWA. Thereis also a Floating-point working
area'B'.

FWB

The FWB is the Floating-point working area'B’, thisis a 7 byte zero-page location for the temporary
storage of one floating-point number. Itslocation is & 3B for the sign byte, & 3C for the number's
Exponent and &3D (most significant byte) to &41 (least significant byte) for the number's Mantissa. It
does not have an Exponent Overflow byte (like the FWA). Byte 5 of the mantissa (& 41) isarounding
byte, asit doesn't form part of the number when it is copied from the FWB and stored to a floating-point
variable. It allows extra precision during calculations while the number isin the FAVB.

Heap Pointer

The BASIC Heap Pointer islocated in zero page memory at locations & 02 (low byte) and & 03 (high
byte). It contains the address of the top of the Heap. The Heap is the work space for the current program.
It contains all variables used by the program. The Heap expands (as more items get allocated to
memory) upwards starting from the top of the program code. When the Heap clashes with the Stack,
there is no memory left, and a"No Room" error is produced.

IWA
The IWA isthe Integer working area'A’, thisis a 4-byte zero-page location for the temporary storage of
one 32-bit Integer number. Itslocation is & 2A (least significant byte) to & 2D (most significant byte).

N Flag
The N flag is one of the processor flags. It is set if the processor has just worked on (or calculated) a

value that has bit 7 set. In two's compliment this indicates a negative number.

PTRA

PTRA isBASIC'sprimary Text Pointer. It islocated in a 3-byte zero page location: &0B and &0C are
the PTRA Base, i.e. The address of the first character in the text string pointed to. And &0A isthe
PTRA offset (this points to the current character being processed in the Text string). This pointer usually
points to the current position in the Command/Program line as the line is processed.

PTRB

PTRB isBASIC's second Text Pointer. It islocated in a 3-byte zero page location: &19 and & 1A are the
PTRB Basg, i.e. The address of the first character in the text string pointed to. And & 1B isthe PTRB
offset (this points to the current character being processed in the Text string). This pointer usually points

to the current value/variable being processed.

Reset
To reset aflag, or abit, usually means giving it avalue of 0.

Set
To set aflag, or abit, usually means giving it avalue of 1.

Stack Pointer

The BASIC Stack Pointer islocated in zero page memory at locations & 04 (low byte) and & 05 (high
byte). It contains the address of the top item on the stack. In numeric calculations, thisis usually the next
number to process. When an item is popped from the stack, the Stack Pointer is usually moved up so that
It points to the previous item on the Stack. The BASIC Stack grows downwards in memory from
HIMEM.

SWA

The SWA isthe String working area, this location has a maximum of 255-bytes for the storage of one
string. Itslocation is & 600 (First Character), with each subsequent byte representing the subsequent
character, until the end of the String (or to the maximum of & 6FF). The length of the SWA (pointer to
the last character) is stored in zero page location & 36. This means that a terminator byte is not needed to
signify the end of the string, as this length byte provides the required information.

VARTOP

VARTOP is apointer to the next free variable storage location. It islocated in zero page locations & 02-
& 03. When the value of VARTOP exceeds the value pointed to by the BASIC Stack pointer (& 04-& 05)
then a No Room error occurs as BASIC has run out of storage space for the program's variables.
VARTOP isthe same as the Heap Pointer.

X
X usually refersto the X register. Thisis an 8-bit register within the processor, which is written/read via
many assembler commands. It is often used as an index.

Y
Y usualy refersto the Y register. Thisis an 8-bit register within the processor, which is written/read via
many assembler commands. It is often used as an index in address lookups.

Zero Flag
The Zero flag is one of the processor flags. It is set if the processor has just worked on (or calculated) a

value of zero.

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines

Page Last Altered: undefined

Convert Floating-Point to Integer

Submitted by Steve Fewell

Routine: ConvFWAtolnt

Name: Convert Floating-Point to Integer

Starting Address. & 8242

Entry criteria: The FWA contains a Floating-Point number.

Exit: The FWA value has been truncated, and the Integer part of it's value has been retained.

Description:
Load A with the FWA Exponent Byte, if it isn't negative (offset by & 80) then the Floating-Point value is less than or
egual to zero, so jump to Clear FWA and exit with the Integer value set to zero.

If the FWA Mantissa byte 1 is zero then assume that the FWA contains the value zero [7], so exit by doing an Integer
Reverse Order Complement of the FWA's Mantissa value. I'm not sure why thisis necessary though, asif the number
zero doesn't need to be stored in two's complement form.

Now, keep on moving the bite in the FWA Mantissa right one position, until we are left with the Integer part of the
number (Stored most significant Byte first, and least significant Byte in ?& 34). This achieves two goals, first it gets
rid of the fractional part of the number, and second it right-aligns the Integer value and prefixes it with leading zeros
(The Integer value will still be stored the opposite way around to an Integer in the IWA though!).

Here is a comparison showing how a Two's-Complement Integer value is stored in the IWA, and how it is stored in
the FWA:

[Integer in IWA | Integer in FWA
Byte Description Byte
&2A Least Significant Byte &34
&2B Integer Byte 2 &33

&2C Integer Byte 3 &32

&2D Most Significant Byte &31

Note: The Floating-Points exponent is the number of bits which make up the Integer part of the number offset by &80
(128). Additionally, the FWA Mantissa Rounding Byte is ignored during this conversion.

To achieve the two goals stated above, BASIC does the following:

Keep dividing the FWA Mantissa by 2 (Moving the bits right one position, making the first bit zero, and loosing the
last bit) and incrementing the exponent (Stored in the Accumulator), so that the exponent still points to the imaginary
decimal point which separates the Integer part from the fractional part, until the exponent is 32 (& A0). l.e. This
occurs when the start of the fraction has just been moved out of the end of the Mantissa and lost.

This operation (divide Mantissa by 2 and Increment Exponent) is done once at the beginning, but then if more than 7
bits need to be shifted right, then the alternative quicker method (Divide Mantissa by 16 and Add 8 to Exponent) is
used [i.e. move the Mantissa bytes along one place, loosing the last (?& 34) byte]. If less than 8 bits need to be shifted,
then the single-bit method is used.

If at any point the exponent goes over & A0, then a Too Big error is produced (as the number is> 32 bits long),
otherwise, when the exponent is equal to & A0, the Exponent [A] is stored back in the FWA Exponent Byte and an
Integer Reverse Order Complement is done (which converts the Integer into Two's-complement notation if a negative

result isrequired - i.e. if the FWA's Sign Byte is negative).

Disassembly for the Convert Floating-Point to I nteger routine

8242 0 165048 A530 LDA &30

8244 , 016044 102C BPL 44 --> & 8272

8246 1 164049 A4 31 LDY &31
BEQ 52 --> & 827E Move the fractional value from the

8248 4 240052 FO 34 FWA to the FWB

824A F1 070049 46 31 LSR &31

824C f2 102050 66 32 ROR & 32

824E f3 102051 66 33 ROR & 33

8250 f4 102052 66 34 ROR &34

8252 026 1A INC A

8253 h 240104 FO 68 BEQ 104 --> &82BD Too big error

8255 201 160 C9 A0 CMP#H&AO

8257 g 176103 B0 67 BCS 103 --> &82C0 C_:heck Exponent and make Twa's
Complement Integer (if necessary)

8259 201 153 C9 99 CMP#& 99

825B 176 237 BO ED BCS-19 --> & 824A

825D i 105008 69 08 ADC#&08

825F 3 164051 A433 LDY &33

8261 4 132052 8434 STY &34

8263 2 164050 A4 32 LDY &32

8265 3 132051 84 33 STY &33

8267 1 164049 A431 LDY &31
8269 2 132050 84 32 STY &32
826B dl1 100 049 64 31 STZ &31
826D 128 230 80 E6 BRA -26 --> & 8255

Jump to Clear FWA
8272 L 076180166 4CB4A6 JIMP&AGB4 Clear FWA

Movethe fractional value from the FWA to the FWB

827E D 240068 FO 44 BEQ 68 --> &82C4 Integer Reverse Order Complement

8280 F1 070049 46 31 LSR &31

8282 f2 102050 66 32 ROR & 32

8284 f3 102051 66 33 ROR &33

8286 f4 102052 66 34 ROR & 34

8288 f= 102061 66 3D ROR &3D

828A f> 102062 66 3E ROR & 3E

828C f? 102063 66 3F ROR & 3F

828E f@ 102064 66 40 ROR &40

8290 026 1A INCA

8291 * 240042 FO 2A BEQ 42 --> &82BD Too big error

8293 201 160 C9A0 CMP#&AO

8205) 176041 B0 29 B_CS 41 --> & 82C0 Check Exponent and make Two's Complement Integer
(if necessary)

8297 201 153 C9 99 CMP#&99

8299 176 229 BO E5 BCS-27 --> & 8280

829B i 105008 69 08 ADC#&08

820D ? 164063 A4 3F LDY &3F

829F @ 132064 84 40 STY &40

82A1 > 164062 A4 3E LDY &3E

82A3 ? 132063 84 3F STY &3F

82A5 = 164061 A4 3D LDY &3D

82A7 > 132062 84 3E STY &3E

82A9 4 164052 A4 34 LDY &34

82AB = 132061 84 3D STY &3D

82AD 3 164051 A4 33 LDY &33

82AF 4 132052 8434 STY &34

82B1 2 164 050 A4 32 LDY &32

82B3 3 132051 84 33 STY &33

82B5 1 164049 A431 LDY &31
82B7 2 132050 84 32 STY &32
82B9 d1 100049 64 31 STZ &31
82BB 128 214 80 D6 BRA -42 --> & 8293

Jump to " Too Big" error
82BD L 076197166 4CC5A6 JMP&AGC5 Too Big error number 20
Check Exponent and make Two's Complement Integer (if necessary)

82C0 208 251 DOFB BNE -5 --> &82BD
82C2 0 133048 8530 STA &30
82C4 Integer Reverse Order Complement

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines
Page Last Altered: undefined

Integer Reverse Order Complement (compliment Integer in FWA)

Submitted by Steve Fewell

Routine: icompFWA

Name: Test and Complement Integer in FWA
Starting Address: &82C4

Entry criteria: The FWA contains an Integer number.

Exit: The Integer Number in the FWA has been complemented (FWA = zero - FWA)

Description:

Complements an Integer stored in the Floating-Point A Mantissa (which is stored the opposite way to
Integers, that is: most significant byte first and least significant byte last; whereas Integers are stored
least significant byte first, most significant byte last [as two's complement is used)]).

If the FWA Sign Bit is positive, then no compliment is required (as we already have a positive I nteger),
SO exit.

[82C8] Asthe FWA Sign Bit is negative (i.e. & FF), we need to complement the Integer, by subtracting
each of the bytes (7& 34 -> ?& 31) from zero, using the carry flag to keep track of any borrows.

Disassembly for the Test and Compliment Integer in FWA routine

82C4 . 165046 AS52E LDA &2E
82C6 016 023 1017 BPL 23-->&82DF
82C8 8 056 38 SEC

82C9
82CB
82CC
82CE
82D0
82D1
82D3
82D5
82D6
82D8
82DA
82DB
82DD

82DF

160 000
152
229 052
133 052
152
229 051
133 051
152
229 050
133 050
152
229 049
133 049
096

A0O00
98
E5 34
85 34
98
E5 33
8533
98
E5 32
85 32
98
E531
8531
60

LDY#&00
TYA
SBC &34
STA &34
TYA
SBC & 33
STA &33
TYA
SBC & 32
STA &32
TYA
SBC & 31
STA &31
RTS

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines

Page Last Altered: undefined

Clear FWA

Submitted by Steve Fewell

Routine: aclear

Name: Clear FWA

Starting Address. & A6B4

Entry criteria: None

Exit: Every byte in the FWA contains the value O (this indicates the number 0).

Description:
Sets every byte of the FWA (locations & 2E to & 35) to zero. This uniquely identifies the number zero.

This routine can be jJumped in at address A6B8, in this case all bytes of the FWA are cleared, except for
the Exponent and Mantissa byte 1 (the most significant byte of the mantissa).

Disassembly for the Clear FWA routine

A6B4 dO 100048 64 30 STZ &30
A6B6 dl1 100049 64 31 STZ &31
A6B8 d. 100046 64 2E STZ &2E
AG6BA d/ 100 047 64 2F STZ &2F
A6BC d2 100050 64 32 STZ &32
AG6BE d3 100051 64 33 STZ &33

A6CO d4 100052 64 34 STZ &34

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines
Page L ast Altered: undefined

96B4 Get Integer value at PTR B
Submitted by Steve Fewell

Description:

This routine calls the Get value (Keyword, variable, value, open bracket) routine (& AD36)
to obtain the next value on the command line.

If the value is a String, then a Type Mismatch error will be generated.

If thisvalueis aFloat then it will be converted to an Integer.

Exit with the Integer value.

Disassembly for the Get Integer Value at PTR B

96B4 6 032054173 2036 AD JSR &AD36 Get Vaue (Keyword, variable, value, open bracket)
96B7 128 006 80 06 BRA 6 --> &96BF Check if Integer & convert if float or error if String

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines
Page L ast Altered: undefined

AD36 Evaluate Value/Variable/Open Bracket/BASIC Function

Submitted by Steve Fewell

Routine:evalValue

Name: Evaluate Vaue/Variable/Open Bracket/BASIC Function

Starting Address: &AD36

Entry criteria: &19, &1A & &1B (Text Pointer B) point to the program text location
at which we should begin our evaluation.

Exit: Any variable/value found will be loaded, or the function will have been executed,
Or the value inside the brackets ['(",)] will have been evaluated.

Description:

Load the ASCII value of the next character into the accumulator & increment the
Text pointer B offset (keeping a previous copy of itin Y). Skip any spaces in the text
by incrementing the Text Pointer B offset (past the space character) and loading the next character.

Now, we have our first non-space character in the accumulator.

If the character is'-', then we have aleading [unary] '-', so call & ACD7 to evaluate the
expression after the '-', and complement the result (or Type mismatch error if result is a string).
If the character is™" [open quote], then call & AD19 to extract string into the SWA & exit.

If the character is'+', leading [unary] '+', then skip any spaces (after the '+") and load the next
non-space character after the '+'.

If the character isa BASIC Statement Keyword (non-function, i.e. >= 198 '"AUTQ') then
generate a'No such variable' error asaBASIC Statement keyword can only occur
at the beginning of aline, and not in the middle of an expression!

If the character is >= 142 & 8E (OPENIN) [& < 198 & C5], then this represents a BASIC Function Keyword,
so execute the portion of code (in the BASIC ROM) which deals with the appropriate function.

[9019] To do this, the character ASCII Codeis multiplied by 2 & added to the base address

& 874D to form a pointer to the execution address (L SB first, MSB next) of the required

function. This resulting addressis jumped to.

Example 1: Character = & 8E [OPENIN token] = 10001110 multiply by 2 = 00011100 (which is & 1C in hex).
So, &874D + &1C = & 8769 (The LSB of the execution address for the OPENIN function (& 876A is

the MSB of the address)).

Example 2: Character = & C5 [EOF token] = 11000101 multiply by 2 = 10001010 (which is &8A in hex).
S0, &874D + &8A = &87D7 (The LSB of the execution address for the EOF function (&87D8 is

the MSB of the address)).

BASIC Keywords between 128 and 141 are not considered, as these Keywords are used

in the middle of statements (and are not functions), so the statements/expression handler will
deal with these values. These keywords are as follows: AND, DIV, EOR, MOD, OR, ERROR,
LINE, OFF, STEP, SPC, TAB(, ELSE and THEN.

If the character is>&eq;"." and <"?' then call routine & A2E1 to evaluate the numeric

value at Text Pointer B. This routine will place the result either into the IWA or FWA (depending
on how large the valueis, or whether it contains a fractional part).

If the carry flag is clear then the routine failed to convert the ASCII text to anumeric

value, so issue a'No such variable' error. Otherwise exit.

If the character is"&" then call routine & ADBY7 to extract the Hex Number and exit.
If the character is" (" then call routine & ADAC to get the result of the expression (inside
the brackets) & check for aclosing bracket *)' at the end (issue a‘'Missing)' error if not present) & exit.

If the character is anything else, then it must be avariable.

So, call routine & 9909 to evaluate the variable name (or array reference) and

set (& 2A, & 2B) to the address of the variable's value (or the address of the value

of the specified Array element).

If &9909 returns with the zero flag clear, then the variable was evaluated sucessfully

so exit viaroutine & B1AO to Load the variables value into the appropriate location (IWA/FWA/SWA).
Otherwise (zero flag was set), the variable either wasn't found, or avalid variable

name was not found, so check the value of & 28, which isthe OPT flag.

if Bit 1 of thisflag (the second bit from the right) [Relocate ison?] is not set then issue a
'No such variable' error. If the carry flag (on exit from routine & 9909) is set then

the text was not a valid variable name, so issue a'No such variable' error.

Otherwise, (the second bit is set, meaning that OPT = Relocate?) Store back the Text pointer
B offset in & 1B and set the IWA to the 2-byte address value from locations & 0440-& 0441
(& 0440 isthe LSB), this is the value of the address stored in variable P%, then exit.

Disassembly for the Evaluate Value/Variable/Open Bracket/BASIC Function routine

AD36 164 027 A41B LDY &1B

AD38 230027 E6 1B INC &1B

AD3A 177 025 B119 LDA (&19),Y

AD3C 201 032 C9 20 CMP#& 20

AD3E 240 246 FO F6 BEQ-10--> &AD36

AD40 - 201045 C92D CMP#& 2D

ADA42 240 147 FO 93 BEQ -109 --> & ACD7 Complement result of expression
AD44 " 201034 C9 22 CMPH& 22

AD46 240 209 FOD1 BEQ -47 --> & AD19 Extract String

AD48 + 201043 Cc92B CMP#& 2B

AD4A 208 003 D003 BNE 3 --> & AD4F

AD4C 032213142 20D58E JSR &8EDS5 Skip Spaces (Ptr B) & Get next character
AD4F 201 142 C9 8E CMP#& 8E

AD51 144 007 90 07 BCC 7--> & AD5A

ADS53 201 198 C9C6 CMP#& C6

AD55 5 176053 BO 35 BCS53 --> & AD8C No such variable error

ADS7
ADSA
ADSC
AD5SE
ADG60
ADG62
ADo64
ADG66
ADG8
ADGA
AD6C
ADGF
AD71
AD74
AD77
AD79
ADT7A
AD7C
ADTE
AD80
AD82
AD84
AD87
ADB8A

L 076025 144
? 201063
176 012
201 046
176 018
201 038
240 081
201 040
240 066
198 027
032 009 153
240 009
L 076160177
032 225 162
144 019
096
(165040
) 041002
208 012
176 010
134 027
@ 173 064 004
A 172 065 004
k 128107

W O R

4C 1990
CO3F
BOOC
C9 2E
BO 12

C9 26
FO51
C928

FO 42

C6 1B
2009 99
FO 09

4C A0OB1
20E1A2
9013

60

AS528

29 02
DooC
BO OA

86 1B
AD 4004
AC4104
80 6B

JMP &9019 Jump to BASIC Keyword evaluation routine

CMP#& 3F

BCS 12 --> & AD6GA

CMP#& 2E

BCS18--> &AD74

CMP#& 26

BEQ 81 --> & ADB7 Extract Hex number

CMP#&.28

BEQ 66 --> & ADAC Evaluate expression & check for ")’

DEC &1B

JSR & 9909 Evaluate variable/array name & return the value's address
BEQ 9 --> & AD7A If variable wasn't found

JMP &B1AO0 Load Variable's value

JSR & A2E1 ASCNUM: Extract ASCII number at PTRB to FWA/IWA
BCC 19 --> & AD8C No such variable error

RTS

LDA &28

AND#& 02

BNE 12 --> & AD8C No such variable error

BCS 10 --> & AD8C No such variable error

STX &1B

LDA &0440

LDY &0441

BRA 107 --> & ADF7 [BRA &21-> &AEI1A (Load IWA with 2-byte value)]

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines

Page Last Altered: undefined

ACD7 Complement Result (get result then complement it)

Submitted by Steve Fewell

Routine: resultcomp
Name: Compliment Result
Starting Address: &ACD7

Description:
Calls ADAC to get the result of the expression (ADA4C is part of the evaluate
expression/get next value from the command line/program routine).

If the return type of the result is 0 then a string was found; so, as this routine
requires a numerical result, a Type Mismatch error is generated.

If the return type of the result is negative (i.e. & FF) then a floating-point number
was found; so exit the routine via the Float Compliment routine [& ACCA].
Otherwise an integer was found (result type is &40). So, exit the routine viathe
Integer Complement routine [& ACDE].

Disassembly for the compliment result routine

ACD7 L 032076 173 20 4C AD JSR &ADA4C

BEQ -40 --> & ACB4 [IMP &9092 - Type
Mismatch error]

ACDC 0 048 236 30EC BMI -20 --> & ACCA Float Compliment
ACDE ...& ACDE Integer Compliment

ACDA 240216 FO D8

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines

Page Last Altered: undefined

Floating-Point Compliment

Submitted by Steve Fewell

Routine: acomp

Name: Floating-Point Compliment

Starting Address: & ACCA

Entry criteria: The FWA contains a floating-point number.

Exit: FWA has been complimented (FWA = zero - FWA)

Description:
If the FWA Mantissa byte 1 (Most significant byte) contains zero - indicating that the current number in
the FWA is zero, then exit as no further operation required.

Otherwise, Exclusive-OR the FWA Sign Byte with 10000000 (& 80). This reverses the Most significant
Bit of the Sign Byte (so 0 becomes 1, and 1 becomes 0). Then exit with A = 255 (& FF) indicating that a
Floating-Point value has just been processed.

Disassembly for the Floating-Point Compliment routine

ACCA 1 165049 A531 LDA &31
ACCC 240 006 FO 06 BEQ 6 --> & ACD4
ACCE . 165046 AS52E LDA &ZE
ACDO | 073128 49 80 EOR#& 80

ACD2 . 133046 85 2E STA &2E
ACDA4 169 255 A9FF LDA#&FF
ACD6 -~ 096 60 RTS

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines

Page Last Altered: undefined

Integer Compliment Routine

Submitted by Steve Fewell

Routine: icomp

Name: Integer Compliment

Starting Address: & ACDE

Entry criteria: The IWA contains the integer to compliment.

Exit: IWA contains the compliment integer [i.e. IWA = - IWA]

Description:
Subtracts each byte of the IWA from zero. The least significant byte is processed first. The carry flag is

set at the beginning because its reset state (0) indicates that a borrow has occurred. This routine makes
clever usage of the Y register to hold the value of zero, and to transfer the value to A before each byteis
subtracted. Thisis alot faster than if A wasloaded with #& 00 each time.

On exit, A isloaded with #& 40, which indicates that an integer value is being processed.

Disassembly for theinteger compliment routine

ACDE 8 056 38 SEC
ACDF 169 000 A9 00 LDA#&00
ACE1l 168 A8 TAY
ACE2 * 229042 E5 2A SBC &2A
ACE4 * 133042 85 2A STA &2A

ACE6 152 98 TYA

ACEY

ACE9 +

ACEB
ACEC
ACEE
ACFO
ACF1
ACF3
ACF5
ACF7

229 043
133043
152

229 044
133 044
152

229 045
133 045
169 064
096

E52B
852B
98

E52C
852C
98

E52D
852D
A940
60

SBC &2B
STA &2B
TYA

SBC &2C
STA &2C
TYA

SBC &2D
STA &2D
LDA#&40
RTS

file:///C|/temp/main.htm

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines
Page L ast Altered: undefined

9854 Add new variable name to Variable Pointer table

Submitted by Steve Fewell

Routine:addvar

Name: Add new variable name to Variable Pointer table

Starting Address: &9854

Entry criteria: &37 and & 38 point to the start of the variable name.

& 39 contains the length of the variable name + 1.

Exit: The Variable name has been stored in a newly created variable parameter block.

Description:

Load the first character of the variable name.

Multiply the ASCII character of the variable name by 2 to get the page & 4 address of

the pointer table start position for that character (a 2-byte addressis allocated for each character

avariable can start with. This address points to the first defined variable beginning with that

character, or the MSB adress byte contains & 00, if no variables have been defined beginning with that character.

Store the variable pointer table start address (for the character we want) in & 3A-& 3B.

If the variable pointer table |ocation contains a non-zero address, then there are already variable(s)

defined beginning with that character, so, store this addressin & 3A-& 3B and check this address.

Thefirst two bytes of each variable block is the address of the next variable (beginning with that character),
so we just need to keep checking this address, then the location pointed to by that address (etc...),

until we find an address with azero MSB value.

[9868] When we have found zero address, we know that we are at the last variable in the list

of variables beginning with the character we want [note: the variables are stored as alinked list].
Replace the & 0000 address with the value of VARTOP (the next free space for variable storage).
VARTOP will be thefirst location of the variable block for the variable that we will create.

Store 00 in the seond byte of this variable location (as a M SB adress of & 00 represents the new end of
the variable list).

If there are no more characters in the variable name (only 1 character name) then exit, aswe

do not need to store the variable name, as the first character is already known (by the pointer table

location).

Otherwise, store the rest of the variable name (excluding the first character) at the new variable block location.
Exit when the variable name has been copied.

Disassembly for the Add new variable name to Variable Pointer table routine

9854 160 001 A0 01 LDY#&01
9856 7 177055 B137 LDA (&37),Y
9858 010 0A ASL A

9859 162 004 A204 LDX#& 04

9858 . 133058 85 3A STA &3A

985D . 134059 86 3B STX &3B

985F : 177058 B13A LDA (&3A),Y
9861 240 005 FO 05 BEQ5--> & 9368
9863 170 AA TAX

9864 . 178058 B2 3A LDA (&3A)

9866 128 243 80 F3 BRA -13 --> & 985B
9868 165 003 A5 03 LDA &03

986A . 145058 91 3A STA (&3A),Y

986C 165 002 A5 02 LDA &02

986E . 146058 92 3A STA (&3A)

9870 169 000 A9 00 LDA#& 00

9872 145 002 9102 STA (&02),Y

9874 200 o INY

9875 9 196057 C4 39 CPY &39

9877 1 240049 FO 31 BEQ 49 --> &98AA [RTS]
9879 7 177055 B137 LDA (&37),Y
9878 145 002 9102 STA (&02),Y

987D 200 o INY

987E 9 196057 C4 39 CPY &39

9880 208 247 DO F7 BNE -9 --> & 9879

9882 T 096 60 RTS

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines
Page L ast Altered: undefined

9534 DIM
Submitted by Steve Fewell

Description:

Get the next non-space character pointed to by BASIC Text pointer A.

Subtract 1 from address pointed to by Text pointer A (plus Pointer A offset) and store
the new addressin location & 37-& 38.

Store 5in & 3F (variable trype), as the default variable type (unlessa % or $ is specified
at the end of the variable name) is a 5-byte Floating-Point value.

Backup the current PTR Offset valuein X (to preserve the pointer to the start of the variable name).
Call routine & 9AF6 to Check the variable name. This routine does the following:

1* Scia@=a

2* Read next character from address pointed to by & 37-& 38.

3* If the next character is< "0" then exit.

4* |f the next character is>=":" and lessthen "@" then exit.

5* If the next character is"0" to0 "9" and Y = 1 then exit (variable cannot start with a digit).
6* If the next character is>="[" and <" _" then exit.

7* If the next character is>"z" then exit.

8* Otherwise, the character isvalid for the variable name, soincrement Y & X (Ptr A offset)
and check next character (2*).

If Y isdtill 1 then no valid characters were found, so a variable name was not specified
after the DIM keyword, so issue aBad DIM error.

if A (the Character after the last valid character of the variable name) is" (" (open bracket)

then jump to & 9570 to dimension an Array variable.

If Ais"$" or "%" then we have either a String or an Integer variable type, as both of

these has a parameter block size of 4 bytes, then decrement & 3F (size of the variable

parameter block) from 5 (default - Float) to 4. Also, check the next charater pointed to

by &37-&38. If this character is" (" then jump to & 9570 todimension an Array variable.

If the next character isnot " (", or the variable was a Floating-Point value (no "%" or "$" after name),
then jump to & 94BC to dimension a memory area.

& 9570 - DIM Array variable

Increment Y to point to after bracket character (this is the variable name length we will pass to & 8085).
Store back X to the PTR A offset (pointer to start of variable name).

Call routine & 8085 to get the variable return address details.

If A isnot O then an array with that name already exists, so issue aBad Dim error as
we cannot have two arrays with the same name. & 8085 sets & 39 to the length of the variable name.

Call routine & 9854 to add the new array name to the variable parameter block.
Set X to 1 (Number of bytesto reserve for the variable parameter block) and call routine & 9883 to Allocate
variable parameter block space for the variable.

Store & 3F to the stack (Variable type length - 5 for float, 4 for Integer/String).
Store 1 to the stack (thisis the next Dimension subscript position in the variable parameter block).
Call & AE18 to set the IWA to 1.

[9589]

Push the current IWA value to the BASIC stack.

Call routine & 926F to get the result of the expression pointed to by BASIC text pointer A

and convert the result to an Integer value (or issue Type Mismatch error if String value).

If any of the bytes & 2C or & 2D, or either of the top 2 bits of Byte & 2B, are set

then the value is either negative or too large for an array subscript (>& 3FFF (16383 in decimal)).

Increment the IWA value (routine & BEEF), we we need to define 1 more position that the value stated, in order
to make space for element O of the array.

Retrieve the "next Dimension subscript position in the variable parameter block" from the stack

and store & 2A and & 2B (the next dimension subscript value) to VARTOP + next subscript position in
parameter block value.

Increment the next subscript position by 2 (to obtain the next dimension's (if any) position

and store this value back on the stack.

Call routine & 9503 to Multiply the specified subscript by any lower subscript values (the IWA value on the
Stack). Thisroutine issues a Bad DIM error if the total number of elementsis >FFFF.

Now, the IWA contains the current total number of elementsin the array.y

Check the next non-space character at BASIC Text Pointer A (&8CES5) and if the character is

acomma (',"), thengo back to & 9589, to store the current number of elements (IWA) on the Stack

and process the next dimension subscript in the array.

Otherwise, if the next non-space character is not acomma, then it needs to be a close bracket '),
if itisn't aclose bracket then thereis an error with the structure of the DIM statement,
so issue aBad DIM error.

Retrieve the Variable return type value, and store this value in location & 3F.

[To do this the variable block offset (pointer to next free location in the Array's variable block header)
istemporarily retrieved, and stored back to the stack again, after we have retrieved the variable type.]
Set location &40 to zero. Now & 3F-&40 contain the number of bytes required by the variable

return type [that is 4 for String/Integer and 5 for Floating-Point].

Multiply the number of elements by the number of bytes required by the variable return type.

Thiswill set the IWA to the total number of bytes required for the array variable data.

Retrieve the Variable parameter block offset value (which points to the location after the last Subscript value)
from the stack, and add this to the IWA.

Now the IWA contains the total number of bytes required for the array storage (including the storage
required to hold the maximum subscript values for each dimension).

Copy the current VARTOP address to & 37-& 38.

Add the total number of bytes required for ther array's storage (& 2A-& 2B) to the

address pointed to by VARTORP. If this value exceeds & FFFF then issue a DIM space error.
If the new VARTOP value would run into the BASIC Stack then issue

the DIM space error, as there is not enough variabl e storage space | eft for the array.

Update VARTORP to point to the next free location after the array storage space.

Retrieve the offset to the next dimension in the variable parameter block (which actually
isapointer to the first value, as there are no more dimensions to add) in the first

byte of the variable parameter block (pointed to by & 37-& 38 - the old VARTOP value!).
This byte specifies how many dimensions the array has.

Next, store zero in the array's element value locations to initialise all elementsto blank.

[To get the value of the first element to byte, we set Y to & 37 (Old VARTOP LSB value) + offset
to thefirst value, so that Y contains the LSB pointer to the first value in the array,

and clear & 37, so now (& 37),Y will return the first byte of the first array value].

[Keep storing zero until (&37), Y reaches the new value of VARTOP.]

Jump to & 94FB to check for acommaat BASIC Text pointer A location, if there is acomma
there we have more arrays to define, so jump back to & 9534.
Otherwise, jump to & 9000 to continue processing the current BASIC command/program line.

& 94BC - DIM Memory area
Decrement & 0OA (the BASIC Text pointer A), to disregard the last character we read (we needed to check
whether it wasa'(’ or not in order to know whether to DIM an array or memory).

Call routine & 98AE to check for the variable's existence (and create a new variable if it doesn't
aready exist).

If the variable name was not valid (zero flag set) then issue aBad DIM error.

If the variableis a String variable (carry flag set), then issue aBad DIM error,

as we need a variable that can hold the address value of the dimensioned memory space.

Call &BC43to Push & 2A, & 2B and & 2C to the stack (&2A-& 2B isthe

address of the variable's value, and & 2C is the variable's type).

Call &96AF to get the result of the expression and convert the result to an Integer

if it was a Floating-Point value, or issue Type Mismatch error is a string value was returned.
Increment the IWA value (& BEEF), as we need to account for the Oth byte (i.e. DIM &% O - reserves
1-byte of storage). Now the IWA contains the number of bytes of memory to reserve.

If &2C or &2D contain a value then the amount of memory to reserve is either negative
or >FFFF, so issue aBad DIM error.

Add the required number of bytesto reserve (IWA) to the current VARTOP address

(but dont update VARTOP value yet).

If the new VARTOP would run into the Stack then there is not enough room for the

required number of bytes of memory to be reserved, so issue aDIM Space error.

[Note: The variable is still defined even if there is not enough room to reserve the required memory!].

Set & 2A-& 2B to the previous VARTOP address (the start of the reserved memory).

Update VARTOP to point to the new VARTOP value.

Set & 27 and A to #& 40 (Integer result value), and call & B32B to set the

variable (whose value address and type are stored on the Stack) to the current result value

(in this case the value of the IWA, as the result type (& 27) is Integer).

Call &9275 to reset BASIC Text Pointer A offset (&0A) to the BASIC Text Pointer B offset (& 1B).

Continue to & 94FB to check for acommaat BASIC Text pointer A location, if there isacomma
there we have more arrays to define, so jump back to & 9534.
Otherwise, jump to & 9000 to continue processing the current BASIC command/program line.

Disassembly for the DIM routine

9534 032 224 142 20 EO 8E JSR & 8EEQ Get next non-space character pointed to by Ptr A
9537 152 98 TYA

9538 024 18 CLC

9539 e 101011 65 0B ADC &0B

953B 166 012 A60C LDX &0C

953D 144 002 90 02 BCC 2 --> &9541

953F 232 E8 INX

9540 024 18 CLC

9541 233 000 E9 00 SBC#& 00

9543 7 133055 8537 STA &37

9545 138 8A TXA

9546 233 000 E9 00 SBC#& 00

9548 8 133056 85 38 STA &38

954A 162 005 A2 05 LDX#&05

954C ? 134063 86 3F STX &3F

954E 166 010 A6 0A LDX &0A

9550 032 246 154 20 F6 9A JSR & 9AF6 Check variable name
9553 192 001 coo1 CPY#&01

9555 240 213 FO D5 BEQ -43 --> & 952C Bad DIM error
9557 (201040 C9 28 CMP#& 28

9559 240 021 FO 15 BEQ 21 --> &9570 DIM Array variable
955B $ 201036 co24 CMP#& 24

955D 240 004 FO 04 BEQ 4 --> &9563

955F % 201037 C925 CMP#& 25

9561 208 010 DO OA BNE 10 --> & 956D

9563 ? 198063 C6 3F DEC &3F

9565 200 Cc8 INY

9566 232 E8 INX

9567 7 177055 B137 LDA (&37),Y

9569 (201040 C9 28 CMP#& 28

956B 240 003 FO 03 BEQ 3 --> &9570 DIM Array variable

956D L 076188148 4CBC % JMP &94BC DIM Memory area

DIM Array

9570 200 C8 INY

9571 134010 86 OA STX &0A

9573 032133128 208580 JSR &8085 Get variable address
9576 208 180 DO B4 BNE -76 --> & 952C Bad DIM error

0578 T 032084152 205498 JSR &9854 Add new variable name to Variable Pointer table
957B 162 001 A201 LDX#&01

957D 032131152 208398 JSR &9883 Allocate space for new variable

9580 ? 165063 A5 3F LDA &3F

9582 H 072 48 PHA

9583
9585
9586
9589
958C
958F
9591
9593
9595
9597
9599
959C
959D
OB
95A1
95A2
95A4
95A6
95A7
95A8
95AB
95AE
95B0
95B2
95B4
95B5
95B6
95B7
95B9
95BB
95BE
95BF
95C0
95C2
95C4
95C6
95C8
95CA
95CC
95CE
95D0
95D1
95D3

TEERO oo

169 001
072
032024 174
032 038 188
032 111 146
165 043
041 192
005 044
005 045
208 147
032 239190
122

165 042

145 002

200

165 043

145 002
200

090

032 003 149
032 229 140
240 217

201 041

208 194
250

104

218

133 063

100 064

032 008 149
104

072

101 042
133042

144 002

230 043

165 003

133 056

165 002

133 055
024

101 042

168

A9 01
48

2018 AE
2026 BC
20 6F 92
A52B
29 CO
052C
052D
D093
20 EF BE
A

A5 2A
91 02
C8
A52B
91 02
C8

5A
2003 95
20E58C
FOD9
C9 29
DO C2
FA

68

DA

85 3F

64 40
2008 95
68

48

65 2A
85 2A
90 02

E6 2B
A503
8538
A502
8537

18

65 2A
A8

LDA#& 01

PHA

JSR & AE18 Set IWA to 1-byte (A) [i.e. 1]
JSR & BC26 Push IWA to Stack

JSR & 926F Evaluate Expression at BASIC Text pointer A convert result to integer
LDA &2B

AND#&CO

ORA &2C

ORA &2D

BNE -109 --> &952C Bad DIM error

JSR & BEEF Increment WA

PLY

LDA &2A

STA (&02),Y

INY

LDA &2B

STA (&02),Y

INY

PHY

JSR & 9503 Multiply upper dimension value by lower dimenson subscript
JSR & 8CE5 Compare next non-space PTRA character with','
BEQ -39 --> & 9589

CMP#& 29

BNE -62 --> & 9576 [Bad DIM error]

PLX

PLA

PHX

STA &3F

STZ &40

JSR & 9508 Multiply upper dimension value by the lower dimension subscript
PLA

PHA

ADC &2A

STA &2A

BCC 2 --> &95C8

INC &2B

LDA &03

STA &38

LDA &02

STA &37

CLC

ADC &2A

TAY

95D4

95D6 e
95D8 +

95DA
95DB
95DD
95DF
95E1
95E3
95E5
95E6
95E8
95EA
95EB
95ED
95EF
95F1
95F3
95F5
95F6
95F8
95FA
95FC
95FE
9600
9602

el

d7

L

165 043
101 003
176 043
170

196 004
229 005
176 036
132 002
134 003
104

146 055
101 055
168

169 000
100 055
144 002
230 056
145 055
200

208 002
230 056
196 002
208 245
228 056
208 241

A52B
65 03
BO 2B
AA
C4 04
E505
BO 24
84 02
86 03
68

92 37
65 37
A8
A9 00
64 37
90 02
E6 38
9137
C8
D002
E6 38
C4 02
DOF5
E4 38
DOF1

LDA &2B

ADC &03

BCS 43 --> & 9605 DIM Space error
TAX

CPY &04

SBC &05

BCS 36 --> & 9605 DIM Space error
STY &02

STX &03

PLA

STA (&37)

ADC &37

TAY

LDA#& 00

STZ &37

BCC 2 --> &95F3
INC & 38

STA (&37),Y

INY

BNE 2 --> & 95FA
INC & 38

CPY &02

BNE -11 --> & 95F3
CPX & 38

BNE -15 --> & 95F3

076 251 148 4CFB 94 JIMP &94FB Check if there are further Arraysto DIMension

DIM Memory Area
94B9 L 076005150 4C 0596

94BC
94BE
94C1
94C3
94C5
94C8
94CB
94CE
94D0
94D2
94D4
94D5
94D7
94D9

198 010
032 174 152
240 105
176 103
032 067 188
032175150
032 239 190
165 045
005 044
208 088
024

165 042

101 002

168

C6 0A
20 AE 98
FO 69

BO 67
2043 BC
20 AF 96
20 EF BE
A52D
052C
D0 58

18

A5 2A
65 02
A8

JMP & 9605 DIM Space error

DEC &0A
JSR & 98AE Evauate variable name & create new variable

BEQ 105 --> &952C Bad DIM error

BCS 103 --> &952C Bad DIM error

JSR &BC43 Push & 2A, & 2B & &2C to Stack

JSR & 96AF Get expression result & convert it to Integer
JSR & BEEF Increment IWA

LDA &2D

ORA &2C

BNE 88 --> &952C Bad DIM error
CLC

LDA &2A

ADC &02

TAY

94DA + 165043 A52B LDA &2B

94DC e 101003 65 03 ADC &03

94DE 170 AA TAX

94DF 196 004 C404 CPY &04

94E1 229 005 E505 SBC &05

94E3 176 212 BO D4 BCS-44 --> &94B9 [DIM Space error]
94E5 165 002 A502 LDA &02

94E7 * 133042 85 2A STA &2A

94E9 165 003 A503 LDA &03

94EB + 133043 85 2B STA &2B

94ED 132 002 84 02 STY &02

94EF 134 003 86 03 STX &03

94F1 @ 169 064 A9 40 LDA#&40

94F3 ' 133039 8527 STA &27

94F5 + 032043179 202B B3 JSR &B32B Set Numeric variable
94F8 u 032117146 207592 JSR &9275 Ptr A offset = Ptr B offset
94FB 032229140 20E58C JSR &8CE5 Compare next non-space PTRA character with*,'

94FE 4 240052 FO 34 BEQ 52 --> & 9534 DIMension next array/variable
9500 L 076000144 4C0090 JMP &9000 Check for end of statement & process next BASIC program Statement

Check variable name

9AF6 160 001 A0 01 LDY#&01

9AF8 7 177 055 B137 LDA (&37),Y

9AFA 0 201 048 C930 CMP#& 30

9AFC 144 024 90 18 BCC 24 --> &9B16
9AFE @ 201 064 C940 CMP#&40

9800 176 012 BOOC BCS 12 --> &9BOE
9B02 : 201 058 C93A CMP#& 3A

9B04 176 016 BO 10 BCS 16 --> &9B16
9B06 192 001 C001 CPY#&01

9B08 240012 FOOC BEQ 12 --> &9B16
9B0OA 232 E8 INX

9B0B 200 C8 INY

9B0C 208 234 DO EA BNE -22 --> & 9AF8
9BOE _ 201 095 C9 5F CMP#& 5F

9B10 176 005 BO 05 BCS5-->&9B17
9B12 [201 091 C9 5B CMP#& 5B

9B14 144 244 90 F4 BCC-12 --> &9B0A
9B16) 096 60 RTS

9B17 { 201123 Cco7B CMP#& 7B

9B19 144 239 90 EF BCC -17 --> &9B0A
9B1B g 096 60 RTS

Store & 2A-& 2C on Stack

BC43
BC44
BC45
BC47
BC48
BC4A
BC4B
BC4D
BCAE
BCAF
BC50

I ncrement WA value

BEEF
BEF1
BEF3
BEF5
BEF7
BEF9
BEFB
BEFD

*

Z 122
250
165 042
072
165 043
072
165 044
072
218
Z 090
) 096

e

L

230 042
208 010
230 043
208 006
230 044
208 002
230 045
096

E6 2A
DO OA
E6 2B
DO 06
E6 2C
D0 02
E6 2D
60

7A PLY
FA PLX
A5 2A LDA &2A
48 PHA
A52B LDA &2B
48 PHA
A52C LDA &2C
48 PHA
DA PHX
S5A PHY
60 RTS

INC &2A

BNE 10 --> & BEFD

INC &2B

BNE 6 --> &BEFD

INC &2C

BNE 2 --> & BEFD

INC &2D

RTS

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines
Page Last Altered: undefined

Next non-space Char PTRA

Submitted by Steve Fewell

Routine: NextCharPTRA

Name: Next non-space Char PTRA

Starting Address: &8ED5S

Exit: Move past spacesin BASIC's Text Pointer A and return the next Character in the string (A).

Description:
Reads past any space characters found at the current position in the PTRA. Returns with the next non-
space Character from PTRA in A, and with the PTRA Offset pointing to this value.

Routine & 8CD7 returns the next non-space character in PTRA, and also sets
the zero flag is the character is X" or 'X', or clears the zero flag isthe
character isnot X' or 'x'. Bit 5 of the ASCI| value is cleared to return any
lower case ASCII characters as upper case.

Routine & 8CDF returns the next non-space character in PTRA, and aso sets
the zero flag is the character is ahash (‘#), or clears the zero flag is the
character is not a hash.

Routine & 8CES5 returns the next non-space character in PTRA, and also sets
the zero flag is the character isacomma (','), or clears the zero flag isthe
character is not acomma.

Disassembly for the Next non-space Char PTRA routine

8EEO
8EE2
8EE4
8EEG
8EE8
8EEA

164 010
230 010
177 011
201 032
240 246

© 096

A4 0A
E6 OA
B10B
C920
FO F6
60

LDY &0A
INC &0A
LDA (&0B),Y
CMP#&20

BEQ -10--> &8EEQ

RTS

Get Next non-space Char PTRA and comparewith ' X' or 'X'

8CD7
8CDA
8CDC
8CDE

X

032 224 142
041 223
201 088
096

20 EO 8E
29 DF
C9 58

60

Get Next non-space Char PTRA and compar e with '#

8CDF
8CE2
8CE4

#

032 224 142
201 035
096

20 EO 8E
C923
60

Get Next non-space Char PTRA and compare with ')’

8CE5
8CES8
8CEA

032 224 142
201 044

© 096

20 EO 8E
Cco2C
60

JSR & 8EEQ
AND#&DF
CMP#& 58
RTS

JSR &8EEQ
CMP#& 23
RTS

JSR & 8EEQ
CMP#&2C
RTS

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines

Page Last Altered: undefined

IWA = 8-bit or 16-bit Integer

Submitted by Steve Fewell

Routine: i116-bit

Name: IWA = 8-bit or 16-bit Integer

Starting Address: & AE1A for 16-bit value [or AE18 for 8-hit]

Entry criteria: A containsthe least significant byte of the 16-bit number, Y contains the most
significant byte of the 16-bit number.

[Y isaways set to O when called from AE18, so only need to supply A].

Exit: WA contains the 8-bit or 16-bit number [(256* Y) + A].

Description:
Stores an 8-hit [if called from AE18] or 16-bit [if called from AE1A] number (The 16-bit valueis

represented by 2 individual bytes) into the IWA and sets the 2 most significant bytes (or in the case or an
8-bit value, the 3 most significant bytes) of the IWA to zero.

Disassembly for the IWA = 8-bit or 16-bit Integer routine

AE18 160 000 A0 00 LDY#&00
AE1A * 133042 85 2A STA &2A
AE1C + 132043 84 2B STY &2B
AEL1E d, 100044 64 2C STZ &2C
AE20 d- 100045 64 2D STZ &2D
AE22 @ 169064 A940 LDA#&40

AE24 ~ 096 60 RTS

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines
Page L ast Altered: undefined

Push Integer to BASIC Stack

Submitted by Steve Fewell

Routine: pushi

Name: Push Integer to BASIC Stack

Starting Address. & BC26

Entry criteria: The IWA contains the 32-hit Integer to store on the BASIC Stack.

Exit: A copy of the IWA has been pushed to the Stack or a"No Room" error occursif insufficient memory.

Description:
[1f called from BC22 then the type of value will be tested and if the valueis a String
or Float then the appropriate Push routine will be called; otherwise push Integer (as below)].

Subtract the required number of bytes (that is 4, as we are about to push an Integer number) from the Stack Pointer Low Byte. Leaving
theresult in A, call the routine to Check for Stack clash with Heap (which will decrement the high byte of the Stack Pointer, if a page
boundary is crossed). Store the WA on the Stack.

Disassembly for the Push Integer to BASIC Stack routine

BC22 - 240045 FO2D BEQ45--> &BC51 Push String to Stack
BC24 0 048212 30D4 BMI -44--> &BBFA Push FWA to Stack
BC26 165 004 A504 LDA&04

BC28 8 056 38 SEC

BC29 233 004 E9 04 SBC#& 04

BC2B 032030189 201EBD JSR&BDIE Check Stack clash with Heap
BC2E 160 003 A003 LDY#&03

BC30 - 165045 A52D LDA&2D

BC32 145 004 9104 STA (&04),Y

BC34 136 88 DEY

BC35 , 165044 A52C LDA &2C

BC37 145 004 9104 STA (&04),Y

BC39 136 88 DEY

BC3A + 165043 A52B LDA&2B

BC3C 145004 91 04 STA (&04),Y

BC3E * 165042 A52A LDA &2A

BC40 146 004 92 04 STA (&04)

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines

Page Last Altered: undefined

Check for Stack clash with Heap

Submitted by Steve Fewell

Routine: checkstackclash

Name: Check for Stack clash with Heap

Starting Address: &BD1E

Entry criteria: A = The BASIC Stack Pointer Low Byte, after the required number of bytes of storage
space has been subtracted. C (Carry flag) = 0 if overflow occurred during the subtraction of the required
number of bytes.

Description:
Store A back to the Stack Pointer Low Byte. Decrement & 05 (The Stack Pointer High Byte), if
necessary.

If the Stack Pointer High Byte is now less than the Heap high byte then there is no room in memory, so
error (as the Stack is stored above the Heap).

If the Stack Pointer High Byte is equal to the Heap high Byte, then test the low bytes. If the Stack
Pointer Low Byte is less than the Heap Low Byte then a"No Room" error is produced, otherwise the
routine returns successfully.

Disassembly for the Check for Stack clash with Heap routine

BD1E 133 004 8504 STA &04
BD20 176 002 BO 02 BCS2-->&BD24

BD22 198 005 C6 05 DEC &05

BD24 164 005 A4 05 LDY &05

BD26 196 003 C4 03 CPY &03

BD28 144 010 90 OA BCC 10 --> &BD34
BD2A 208 004 DO 04 BNE 4 --> &BD30
BD2C 197 002 C502 CMP &02

BD2E 144 004 90 04 BCC4--> &BD34
BD30 = 096 60 RTS

BD34 L 076161144 4C A190 JMP &90A1 Error: No Room

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines
Page L ast Altered: undefined

BC51 Push String to Stack
Submitted by Steve Fewell

Description:

Check whether there is space for the length of the String in the String Buffer (SWA) plus 1 byte (for length)
on the stack. If no space, then generate "No Room" error.

Y =length of the String Buffer (?& 36, Length of SWA). If length is zero then store

binary zero on the Stack (length of String) and return, as the first byte retrieved from

the Stack will be the String length, O in this case.

Otherwise, store the String on the Stack (in reverse order).

Lastly, the length of the string is stored on the stack (?& 36) [last byte of Stack Value] and routine exits.

Disassembly for the Push String to Stack routine

BC51 024 18 CLC
BC52 165 004 A5 04 LDA &04

BC54 6 229054 E536 SBC &36

BC56 032 030 189 201EBD JSR &BDIE Check for Stack clash with Heap
BC59 6 164054 A4 36 LDY &36

BC5B 240 008 FO 08 BEQ 8 --> & BC65

BC5D 185 255 005 BOFF05 LDA &O5FF,Y

BC60 145 004 9104 STA (&04),Y

BC62 136 88 DEY

BC63 208 248 DOF8 BNE -8 --> & BC5D

BC65 6 165054 A5 36 LDA &36

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines
Page L ast Altered: undefined

BBFA Push FWA to Stack

Submitted by Steve Fewell

Routine:pushFWA

Name: Push FWA to Stack

Starting Address: & BBFA

Entry criteria: The FWA contains afloating-point value.

Description:

Check whether the Stack has room for 5 bytes. If no space, then generate 'No Room' error;
otherwise, update the Stack Pointer to point to the next free location on the Stack.

Store the FWA Exponent byte on the Stack (1st Byte).

Load FWA Sign, EOR with FWA Mantissa byte 1, AND with &80 (to restore the top bit)

and EOR with the FWA Mantissa byte 1 again to set the Mantissa byte 1 value. Store result on
stack (2nd byte). Thisis done to pack the FWA Mantissa, as the FWA is pushed to the Stack
in its 5-byte packed variable format to save on Stack space.

Store the FWA Mantissa Byte 2 on the stack (3rd byte of Stack Value).

Store the FWA Mantissa Byte 3 on the stack (4th byte of Stack Value).

Store the FWA Mantissa Byte 4 on the stack (5th byte of Stack Value).

all done, so return.

Disassembly for the Push FWA to Stack routine

BBFA 165 004 A5 04 LDA &04
BBFC 8 056 38 SEC
BBFD 233 005 E9 05 SBC#& 05

BBFF 032 030 189 20 1EBD JSR &BD1E Check for Stack Clash with Heap

BC0O2
BCO4
BCO6
BCO08
BCOA
BCOC
BCOE
BC10
BC12
BC13
BC15
BC17
BC18
BC1A
BC1C
BC1D
BC1F
BC21

El

El

165 048
146 004
160 001
165 046
069 049
041 128
069 049
145 004
200

165 050
145 004
200

165 051
145 004
200

165 052
145 004
096

A530
92 04
A0O01
A52E
45 31
29 80
45 31
91 04
C8
A5 32
9104
C8
A533
91 04
C8
A5 34
91 04
60

LDA &30
STA (&04)
LDY#&01
LDA &2E
EOR &31
AND#& 80
EOR &31
STA (&04),Y
INY

LDA &32
STA (&04),Y
INY

LDA &33
STA (&04),Y
INY

LDA &34
STA (&04),Y
RTS

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines
Page L ast Altered: undefined

926F Get result of expression from BASIC Text Pointer A & convert to Integer

Submitted by Steve Fewell

Description:

If called from & 926D then decrement the BASIC Text Pointer A offset.
Set BASIC Text Pointer B = BASIC Text Pointer A.

Get result of expression.

Convert expression result to Integer - or Type Mismatch error (if String value).
Set BASIC Text Pointer A offset (& 0A) = BASIC Text Pointer B offset (& 1B) to
set Text Pointer A to point to after the expression.

Disassembly for the Get result of expression from BASIC Text Pointer A routine & convert to

Integer

926D 198 010
926F / 032047 157
9272 032191150
9275 164 027
9277 132010
9279 ° 096

C6 OA
20 2F 9D
20 BF 96
A41B
84 0A

60

DEC &0A

JSR &9D2F Ptr B = Pir A & Get result of expression

JSR & 96BF Check value & convert to Integer (if Float), error if String
LDY &1B

STY &0A

RTS

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines
Page L ast Altered: undefined

9D3B Expression Handler
Submitted by Steve Fewell

Description:
If called from & 9D2F then set BASIC Text Pointer B = BASIC Text Pointer A.

The lowest level of the expression handler starts at address & 9D3B.

There are many levels to the expression handler, each level callsthe level above

(to evaluate any higher-level operators) before checking whether any of its operators
need to be evaluated.

The Expression handler is structured as follows:
JSR &9D3B [Entry point (lowest level)] Handle (OR, EOR)
JSR &9D81 handle (AND)
JSR &9DA9 handle (<, =, >)
JSR &9EAC handle (+, -)
JSR &9FC7 handle (*,/, MOD, DIV)
JSR & A012 handle (Skip spaces and ™)
JSR & AD36 handle (leading -, Variable name/value, Open Bracket, BASIC Keyword

(functions))

Some routines have additional entry points which enable a previous value to be stored
on the stack and/or a new value obtained before evaluating the expression.

Thisis so that any previous valueis not lost during the expression handling,

in situations where more than 1 value may be required to be worked on at the same time.

After evaluating the operator, the routine usually jumps back into the expression handler

at the same level as the previous operator - this checks for further operators with the same
priority (precedence) before carrying on with the lower levels. |.e. an expression can contain
many multiplications, one after the other, all which much be evaluated before the lower level is
returnedto (i.e. 2+ X * Y * Z). The exception for this, isthe relational operators (<, =, >);

these cannot be located one after the other, as thisis not allowed in BASIC.

If there are no more operators/values to evaluate (& 9D46), then the PTR B offset is decremented,
Y =Vauetype, and ?& 27 is aso set to the value type, and then exit.

Note: On exit X contains the next non-space character found after the expression (pointed to
by &1B). Many of the routines that call this expression handler use this as a quick way of
knowing what the next character is.

Disassembly for the Expression Handler routine

9D3B Expression Handler Entry/Level 1 [OR, EOR]

9D2F
9D31
9D33
9D35
9D37
9D39
9D3B
9D3E
9D40
9D42
9D44
9D46
9D48
9D49
9D4B

9D81 Expression Handler Level 2[AND]

9D7B
9D7E
9D81
9D84
9D86
9D88

9DA9 Expression Handler Level 3 [<, =, >]

165 011
133025
165 012
133 026
165 010
133027
032 129 157
224 132
240 010
224 130
240 032
198 027
168

" 133039

096

032 190 150
& 032038 188

032 169 157

224 128

240 001

096

20
20
20

A5 0B
8519
A50C
85 1A
A50A
851B
2081 9D
EO 84
FO OA
EO 82
FO 20
C6 1B
A8

85 27
60

BE 96
26 BC
A9 9D

EO 80
FO 01

60

LDA &0B

STA &19

LDA &0C

STA &1A

LDA &0A

STA &1B

JSR &9D81 Expression Handler level 2 (AND)
CPX#& 84 Token value for OR
BEQ 10 --> &9D4C OR operator
CPX#& 82 Token value for EOR
BEQ 32 --> &9D66 EOR operator
DEC &1B

TAY

STA &27

RTS

JSR & 96BE Check for Integer & convert to Integer if Float
JSR & BC26 Push Integer to Stack

JSR & 9DA9 Expression Handler level 3 (<, =, >)

CPX#& 80 Token value for AND

BEQ 1 --> &9D89 AND operator

RTS

9DA9
9DAC
9DAE
9DBO
9DB2
9DB4

L 032076 158

? 224063
176 004

< 224060
176 001
096

204C 9E

EO 3F CPX#&3F'?

BO 04 BCS4-->&9DB4
EO03C CPX#&3C

BOO1

60 RTS

OE4C Expression Handler Level 4 [+, -]

9E4C

032 199 159

9E4F + 224043

9E51

240 005

9E53 - 224045
9E55 f 240102

9ES57

"~ 096

JSR & 9EAC Expression Handler level 4 (+, -)

BCS1--> &9DB5 '=" and other Relational operators

20C79F JSR &9FC7 Expression Handler level 5 (*, /, MOD, DIV)

EO 2B
FO 05
EO 2D
FO 66
60

CPX#&2B '+'

BEQ 5 --> & 9E58 '+' Operator - Addition

CPX#&2D -

BEQ 102 --> & 9EBD '-' Operator - Subtraction

RTS

9FC7 Expression Handler Level 5[*,/, MOD, DIV]

9FC1 L; 076 059 159 4C 3B 9F IMP &9F3B

9FC4 & 032038188 20 26 BC JSR &BC26 Push Integer to Stack

9FC7

9FCA *
9FCC
9FCE /

9FDO
9FD2
9FD4
9FD6
9FD8 #

9FDA °

032 018 160 20 12 A0 JSR &A012

224 042
240 243
224 047

240 009

224 131

240 031

224 129

240 035

096

EO 2A
FO F3
EO 2F

FO 09

EO 83

FO 1F

EO 81

FO 23

60

CPX#&2A ™'

BEQ -13 --> & 9FC1
CPX#&2F'I

BEQ 9 --> & 9FDB '/* Operator -
Division

CPX#& 83 Token value for MOD

BEQ 31 --> & 9FF5 Integer MOD
routine

CPX#&81 Token value for DIV

BEQ 35 --> & 9FFD Integer DIV
routine

RTS

A012 Expression Handler Level 6 [Skip spaces, "]

AOQOF & 032038 188 20 26 BC JSR &BC26 Push Integer to Stack

JSR & A012 Expression Handler level
6 (Skip Spaces,)

A012 6 0320541732036 AD

A015 H 072
A016 164 027
A018 230027
AO1A 177025
AOIC 201032
AOlE 240 246
A020 170
A021 h 104
A022 N 224 094
A024 240001
A026 ~ 096

48
A41B
E6 1B
B119
C920
FO F6
AA
68

EO 5E
FO 01
60

JSR & AD36 Evaluate Variable / Value / BASIC Keyword (Function)/ Open
bracket

PHA

LDY &1B

INC &1B

LDA (&19),Y

CMP#& 20 <space>
BEQ-10--> &A016

TAX

PLA

CPX#&5E "N

BEQ 1 --> & A027 'N' operator
RTS

The disassembly for the" AD36 Expression Handler Level 7 [Unary -, Variable/VValue, Open bracket,
BASIC Keyword (function)]" routineisin the separate description for " AD36 Evaluate Variable/Value'

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines
Page L ast Altered: undefined

9D4C 'OR' operator
Submitted by Steve Fewell

Description:

Convert thefirst value (current value) to an integer (if it's a Float).

If thefirst value is a string then issue a ype Mismatch error.

Push the first value to the stack.

[9D7B] Get the next value (expression handler level 2 [AND]). For the next value

we only need to search the operators with higher precedence, as these must be evaluated
before we have the correct second value that we need. If the value obtained is a float
then it is converted to an integer (if it's a string then Type Mismatch error).

OR the Integer on the stack (first value) with the Integer in the IWA (second value)
storing the result in the IWA.
We now have the result we require.

Reclaim the stack space, set A = #& 40 (as we are handling an Integer) and jump to
& 9D3E to check for further OR/EOR operators which need to be processed.

Disassembly for the 'OR" Operator routine

9D4C { 032123157 20 7B 9D JSR &9D7B Convert to Int, push to Stack & Get next value

9D4F 032 190 150 20 BE 96 JSR & 96BE Check for Integer & convert if Float
9D52 160 003 A003 LDY#&03
9D54 177 004 B104 LDA (&04),Y

9D56 * 025042000 19 2A 00 ORA &002A,Y
9D59 * 153042 000 99 2A 00 STA &002A,Y

9D5C 136 88 DEY

9D5D 016 245 10F5 BPL -11 --> &9D54

9D5F 032 250 188 20 FA BC JSR & BCFA Move Stack Pointer up 4 bytes (reclaim space)
9D62 @ 169064 A9 40 LDA#&40

9D64 128 216 80 D8 BRA -40 --> & 9D3E Expression Handler level 1 [OR, EOR]

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines

Page Last Altered: undefined

Pop Integer from the BASIC Stack

Submitted by Steve Fewell

Routine: popi

Name: Pop Integer from the BASIC Stack

Starting Address: & BCE6

Entry criteria: None

Exit: IWA contains the value of the most recent Integer number on the BASIC Stack. The Basic Stack
Pointer is moved up.

Description:
L oads the IWA with the 32-bit Integer pointed to by the BASIC Stack Pointer. Then move the Stack
Pointer up 4 bytes so that is points to the previous item pushed onto the stack.

Disassembly for the Pop Integer from the BASIC Stack routine

BCE6 160 003 A003 LDY#&03
BCES8 177004 B104 LDA (&04),Y
BCEA - 133045 852D STA &2D
BCEC 136 88 DEY

BCED 177004 B104 LDA (&04),Y
BCEF , 133044 852C STA &2C
BCF1 136 88 DEY

BCF2 177004 B104 LDA (&04),Y

BCF4 +
BCF6
BCF8 *
BCFA
BCFB
BCFD e
BCFF
BDO1
BDO3
BDO5

133 043
178 004
133 042
024

169 004
101 004
133 004
144 002
230 005
096

852B
B2 04
85 2A
18

A9 04
65 04
85 04
90 02
E6 05
60

STA &2B
LDA (&04)

STA &2A

Qi

LDA#& 04

ADC &04

STA &04

BCC 2 --> &BD05
INC &05

RTS

Submitted by Steve Fewell

Description:

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines
Page L ast Altered: undefined

9D66 'EOR' operator

[9D7B] Convert the first value (current value) to an integer (if it's a Float).
If thefirst value is a string then issue a ype Mismatch error.

Push the first value to the stack.
[9D81] Get the next value (expression handler level 2 [AND]). For the next value

we only need to search the operators with higher precedence, as these must be evaluated
before we have the correct second value that we need. If the value obtained is a float
then convert it to an integer (if it's a string then Type Mismatch error).

EOR the Integer on the stack (first value) with the Integer in the IWA (second value)

storing the result in the IWA.

We now have the result we require.

Reclaim the stack space, set A = #& 40 (as we are handling an Integer) and jump to
& 9D3E to check for further OR/EOR operators which need to be processed.

Disassembly for the 'EOR' Operator routine

9D66
9D69
9D6C
9D6E
9D70
9D73
9D76
9D77
9D79

{

Y*

032 123 157
032 190 150
160 003

177 004
089 042 000
153 042 000
136

016 245

128 228

20 7B 9D
20 BE 96
A003
B104

59 2A 00
99 2A 00
88

10F5

80 E4

JSR &9D7B Convert to Int, push to Stack & Get next value

JSR & 96BE Check for Integer & convert if Float

LDY#&03

LDA (&04),Y

EOR &002A,Y

STA &002A.Y

DEY

BPL -11 --> &9D6E

BRA -28 --> & 9D5F Reclaim stack space & Expression handler level 1

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines
Page L ast Altered: undefined

9D89 'AND' operator
Submitted by Steve Fewell

Description:

[96BE] Convert the first value (current value) to an integer (if it's a Float).

If thefirst value is a string then issue a ype Mismatch error.

Push the first value to the stack.

[9DA9] Get the next value (expression handler level 3 [<, =, >). For the next value

we only need to search the operators with higher precedence, as these must be evaluated
before we have the correct second value that we need. If the value obtained is a float
then convert it to an integer (if it's a string then Type Mismatch error).

AND the Integer on the stack (first value) with the Integer in the IWA (second value)
storing the result in the IWA.
We now have the result we require.

Reclaim the stack space, set A = #& 40 (as we are handling an Integer) and jump to
&9D84 to check for further AND operators which need to be processed. Note: We
only need to check for the AND operator, as all higher precedence operators have
aready been processed.

Disassembly for the 'AND' Operator routine

9D89 032 190 150 20 BE 96 JSR & 96BE Check for Integer & convert if Float
9D8C & 032038188 20 26 BC JSR & BC26 Push Integer to Stack

9D8F 032 169 157 20 A9 9D JSR &9DA9 Expression handler level 3 (<, =, >)
9D92 032 190 150 20 BE 96 JSR & 96BE Check for Integer & convert if Float
9D95 160 003 A003 LDY#&03

9D97 177 004 B1 04 LDA (&04),Y

9D99 9* 057042000 39 2A 00 AND &002A,Y
9D9C * 153042000 99 2A 00 STA &002A,Y

9DYF 136 88 DEY
9DAO 016 245 10F5 BPL -11 --> &9D97
9DA2 032 250 188 20FABC JSR &BCFA Move Stack Pointer up 4 bytes (reclaim space)

9DA5 @ 169 064 A9 40 LDA#&40

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines
Page L ast Altered: undefined

9DB5 '=' and other relational operators
Submitted by Steve Fewell

Description:

Check which operator (<, = or >) we have. If we have the Less Than operator "<",

then jump to & 9DCD to handle L ess Than.

If we have the Greater Than operator ">", then jump to & 9DF5 to handle Greater Than.
Otherwise, we have '=" Equal To. Thisis handled as below:

Update the flags with the current value type (in A).
Call &9CCA to Compare the current value with the second value and set the flags
according to which value is greater, or whether the values are equal.

If the zero flag is set then the values are equal, so set the IWA to TRUE; otherwise,
the values aren't equal so set the IWA to FALSE.
Exit with A = #& 40 (as we are currently handling an Integer value).

Disassembly for the '=" and other relational operators routine

9DB5 240 022 FO 16 BEQ 22 --> &9DCD '<' Less Than Operator
9DB7 > 224062 EO 3E CPX#& 3E

9DB9 . 240058 FO 3A BEQ 58 --> & 9DF5 '>' Greater Than Operator
9DBB 170 AA TAX

9DBC 032 202 156 20CA 9C JSR & 9CCA Compare Values

9DBF 208 001 DO 01 BNE 1 --> &9DC2

9DC1 136 88 DEY

IDC2 * 132042 84 2A STY &2A

9DC4 + 132043 84 2B STY &2B

9DC6 , 132044 84 2C STY &2C

9DC8 - 132045 84 2D STY &2D

9DCA @ 169 064 A940 LDA#& 40

9DCC ——{96 60 RTS

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines
Page L ast Altered: undefined

9DCD '<' operator
Submitted by Steve Fewell

Description:

Check the next character from the BASIC Input line. If the next character is'=" then
the operator is'<=' Less Than or Equa To, so jump to & 9DE1 to handle this operator.
If the next character is'>' then the operator is '<>' Not Equal To, so jump to & 9DEC
to handle this operator.

Otherwise the operator is'<' Less Than. which is handled as follows:

Call &9CC9 to Compare the current value with the second value and set the flags
according to which value is greater, or whether the values are equal.

If the carry flag is clear then the first value is less than the second, so set the
IWA to TRUE; otherwise, thefirst value is not |ess than the second, so set the IWA to FALSE.
Exit with A = #& 40 (as we are currently handling an Integer value).

Disassembly for the '<' Operator routine

9DCD 170 AA TAX

9DCE 164 027 A41B LDY &1B

9DDO 177 025 B119 LDA (&19),Y

9DD2 = 201061 C93D CMP#&.3D '='

9DD4 240 011 FO 0B BEQ 11 --> &9DE1 '<=' Less Than or Equal Operator
9DD6 > 201062 C9 3E CMP#& 3E >

9DD8 240 018 FO 12 BEQ 18 --> & 9DEC '<>' Not Equal Operator

9DDA 032 201 156 20 C9 9C JSR &9CC9 Compare Values

9DDD 144 226 90 E2 BCC -30 --> &9DC1 Set TRUE

9DDF 128 225 80 E1 BRA -31 --> &9DC2 Set FALSE

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines
Page L ast Altered: undefined

9DE1 '<=' operator
Submitted by Steve Fewell

Description:

Increment the Text Pointer B offset (so that the next character is the character
after the'=").

Call &9CC9 to Compare the current value with the second value and set the flags
according to which value is greater, or whether the values are equal.

If the zero flag is set then the values are equal, so set the IWA to TRUE.

Otherwisg, if the carry flag is clear then the first value is less than the second,

so set the IWA to TRUE; otherwise, the first value is not less than or equal to the second,
so set the IWA to FALSE.

Exit with A = #&40 (as we are currently handling an Integer value).

Disassembly for the '<=" Operator routine

9DE1 230 027 E6 1B INC &1B

9DE3 032 201 156 20C99C JSR &9CC9 Compare Values
9DEG 240 217 FO D9 BEQ -39 --> & 9DC1 Set TRUE
9DES8 144 215 90 D7 BCC -41 --> &9DC1 Set TRUE

9DEA 128 214 80 D6 BRA -42 --> &9DC2 Set FALSE

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines
Page L ast Altered: undefined

9cc9 Compare Integer values

Submitted by Steve Fewell

Starting Address: &9CC9

Entry criteria: if called from &9CCA, the flags indicate the value type we

are working with (Int,Float,String); otherwise, (called from &9CC9) X contains
thisinformation.

If we are working with an integer value: the IWA contains the value to compare.
BASIC Text pointer points to the expression to compare IWA with.

Exit: Zero Flag = 1 if valuesare equal. Carry is set if value 1 > value 2; clear otherwise.
Y =00.

Description:

Test the value type (X). If the value is a string, then do Compare String routine,
If the value is a Float, then do compare Float routine, otherwise continue with this routine
asthe 1st value to compare is an Integer.

Push the IWA to the Stack (first value to compare).

Gosub & 9E4C to get the result of the expression (in the BASIC program text line),

[we need to process expression level (+,-) upwards as any operators below this level should
only be evaluated once this compare has been evaluated].

If the second value is a string then generate a Type Mismatch error.

If the second value is afloat then goto & 9C65, to convert the first value to a Float

and continue with the Compare Float values routine (as the values are now Float not I nteger).

Reverse the sign of the IWA (second value) and the Integer on the Stack (first value).

This causes positive numbers to correctly be identified as greater than negative values.

Pop the Integer from the stack (first value) and compare each byte with the corresponding byte
of the IWA (second value) LSB first.

C = 1if thefirst value is > the second value.

& 2A contains avalueif the two values are not equal, thisisreturned in A.

Exit with A and C set as appropriate.

Disassembly for the Compare Integer values routine

OCC6 L 076146144 4C9290 JIMP &9092 Type Mismatch error

9CC9
9CCA
9CCC
9CCE
9CDO
9CD1
9CD3
9CD4
9CD6
9CD7
9CD9
9CDA
9CDD
9CDE
9CEO
9CE2
9CE4
9CE6
9CES8
9CE9
9CEA
9CEC
9CEE
9CEF
9CF1
9CF3
9CF4
9CF6
9CF8
9CF9
9CFB
9CFD
9CFF
9D01

138
240 054

0 048180

HEmwt T - I

— T

* + SHEE < > o)

-3

*

165 045
072

165 044
072

165 043
072

165 042
072

032 076 158
168

240 230
048 131
165 045
073 128
133 045
056

104

229 042
133 042
104

229 043
004 042
104

229 044
004 042
104

160 000
073 128
229 045
005 042
096

8A

FO 36
30B4
A52D
48
A52C
48
A52B
48

A5 2A
48
204C9E
A8

FO E6
3083
A52D
49 80
852D
38

68

ES 2A
85 2A
68
E52B
04 2A
68
E52C
04 2A
68

A0 00
49 80
E5 2D
052A
60

TXA

BEQ 54 --> &9D02 Compare String values

BMI -76 --> &9C82 Compare Float values

LDA &2D

PHA

LDA &2C

PHA

LDA &2B

PHA

LDA &2A

PHA

JSR & 9EAC Expression handler [(+,-) level and above]
TAY

BEQ -26 --> & 9CC6 Generate Type mismatch error
BMI -125 --> & 9C65 Convert 1st Integer to Float and compare Float values

LDA &2D
EOR#& 80
STA &2D
SEC

PLA

SBC &2A
STA &2A
PLA

SBC &2B
TSB &2A
PLA

SBC &2C
TSB &2A
PLA
LDY#&00
EOR#& 80
SBC &2D
ORA &2A
RTS

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines
Page L ast Altered: undefined

9D02 Compare String values

Submitted by Steve Fewell

Starting Address: &9D02

Entry criteria: SWA contains the value to compare.

BASIC Text pointer points to the expression to compare SWA with.

Exit: Zero Flag = 1 if values are equal. Carry is set if value 1 > value 2; clear otherwise.
Y =00.

Description:

Push the SWA to the Stack (first value to compare).

Gosub & 9EAC to get the result of the expression (in the BASIC program text line),

[we need to process expression level (+,-) upwards as any operators below this level should
only be evaluated once this compare has been evaluated].

If the second value is not a string, then issue a Type Mismatch error.

Set & 37 to the number of bytes to compare (the length of the shortest string).

If the number of bytesto compareis 0 then stop comparing [&9D23].

Keep comparing each character in both strings until we either encounter a difference

between the strings, in which case we have our result (C = 1 if first value > second value) [goto &9D27],
or until we have compared the number of bytes that we needed to compare (& 37) [goto &9D23].

[9D23:]

Now we have compared the number of bytes we needed to compare, and the values we have
compared so far are equal.

Compare the length of the first value with the length of the second value.

Whichever string is the longer will be the greater. The Zero flag will be set if

the lengths are equal, and thus the strings are equal. (C = 1 if the first value length

is greater than the second value length).

[9D27]

We have our result, so store result (PHP), restore stack space used by the string, then
restore the result value (PLP) and exit.

Disassembly for the Compare String values routine

9D02 Q 032081 188

9D05
9D08
9D09
9D0B
9D0D
9DOF
9D11
9D13
9D15
9D17
9D19
9D1A
9D1C
9D1F
9D21
9D23
9D25
9D27
9D28
9D2B
9D2D
9D2E

L 032076 158
168
208 187
178 004

6 197054

144 002

6 165054
7 133055
7 196 055

240 010
200

177 004
217 255 005
240 244
128 004
178 004

6 197 054

008
032 225 188
160 000

(040

096

2051 BC
204C 9E
A8

DO BB
B2 04
C536

90 02

A5 36

85 37

C4 37

FO OA
C8

B104
D9 FF 05
FO F4

80 04

B2 04
C5 36

08
20E1BC
A0 00

28

60

JSR & BC51 Push String to Stack
JSR & 9E4C Expression Handler [level (+, -) and above]
TAY

BNE -69 --> & 9CC6 [IMP & 9092]
LDA (&04)

CMP & 36

BCC 2-->&9D13

LDA &36

STA &37

CPY &37

BEQ 10 --> &9D23

INY

LDA (&04),Y

CMP & O05FF,Y
BEQ-12-->&9D15

BRA 4 --> &9D27

LDA (&04)

CMP & 36

PHP

JSR & BCE1 Restore Stack Space used by String
LDY#&00

PLP

RTS

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines

Page L ast Altered: undefined

BCD2 Pop String from Stack

Submitted by Steve Fewell

Description:

Get last byte from Stack, Storein & 36 (Length of String, SWA). If length is zero
then increase Stack space by 1 (to remove length byte from Stack) & exit.

Otherwise, copy ?& 36 number of bytes from the Stack to the SWA and then increase
Stack space by ?& 36 + 1 bytes (to reclaim the space used by the String) and exit.

Disassembly for the Pop String from Stack routine

BCD2
BCD4
BCD6
BCD8
BCD9
BCDB
BCDE
BCDF
BCE1
BCE3
BCE4

178 004 B2 04
133054 85 36
240011 FO OB
168 A8
177 004 B104
153 255 005 99 FF 05
136 88
208 248 DOF8
178 004 B2 04
056 38
128 023 80 17

LDA (&04)

STA &36

BEQ 11 --> &BCES3
TAY

LDA (&04),Y

STA &O05FFY

DEY

BNE -8 --> & BCD9
LDA (&04)

SEC

BRA 23 --> & BCFD End of Pop Integer routine

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines
Page L ast Altered: undefined

9C82 Compare Float values

Submitted by Steve Fewell

Starting Address: &9C82 (or &9C65 to convert Integer first)

Entry criteria: FWA contains the value to compare.

BASIC Text pointer points to the expression to compare FWA with.

Exit: Zero flag = 1 if values are equal. Carry is set if value 1 > value 2; clear otherwise.
Y =00.

Description:

9C65 Convert Integer to Float and initialise Float values:

Thisroutineis called during Compare Integer values if the second value in the

compare is a Float value (not an Integer value, as expected).

Pop the IWA value from the processor stack (the first value to compare).

Push the FWA value (second value to compare) to the BASIC Stack.

Convert the IWA (first value to compare) to a Float value.

Copy thisresult from the FWA to the FWB.

Pop the Float from the BASIC Stack (second value to compare) and unpack the returned
variable (pointed to by &4A, &4B) to the FWA.

Now, FWA = second value to compare & FWB = first value to compare. Go to & 9C92 to perform
the compare.

9C82 I nitialise and get the Float values:

Push FWA to stack (first value to compare).

Gosub & 9EAC to get the result of the expression (in the BASIC program text line),

[we need to process expression level (+,-) upwards as any operators below this level should
only be evaluated once this compare has been evaluated].

Copy A to Y [to update processor flags] and call &96DD to check that the result obtained
iIsaFloat value - if it isan Integer it will be converted to Float. If it isa String then a

Type Mismatch error will be generated.

Pop the Float variable from the stack and unpack this variable to the FWB.
Now, the FWB = the first value to compare, and the FWA = second value to compare.

9C92 Comparethe Float values:

Y =#&00

Reset bottom 7 bits of the FWB sign byte.

Load the FWA sign bit & reset the bottom 7 bits of the loaded value, then compare

this sign with the FWB sign byte. If the signs are not equal then exit (with C=1 if FWA>FWB).

Compare the FWB exponent with the FWA exponent (if not equal then stop as we have result).

Compare the FWB Mantissa byte 1 with the FWA Mantissa byte 1 (if not equal then stop as we have result).
Compare the FWB Mantissa byte 2 with the FWA Mantissa byte 2 (if not equal then stop as we have result).
Compare the FWB Mantissa byte 3 with the FWA Mantissa byte 3 (if not equal then stop as we have result).
Compare the FWB Mantissa byte 4 with the FWA Mantissa byte 4 (if not equal then stop as we have result).
If the Mantissa and exponents are equal, then the values are equal, so exit with A = 0.

Otherwise, C =1 (if FWA > FWB). However, if both values are negative (Sign byteis 1), then
we need to reverse the carry, so that C = 0 (if it was 1), or C =1 (if it was zero)

thisis because the value that was higher is actually lower (asit is negative).

Exit with A = &01 (as values not equal).

Disassembly for the Compare Float values routine

9C65 h 104 68 PLA

9C66 * 133042 85 2A STA &2A

9C68 h 104 68 PLA

9C69 + 133043 85 2B STA &2B

9CeB h 104 68 PLA

9CeC , 133044 852C STA &2C

9C6E h 104 68 PLA

9C6F - 133045 852D STA &2D

9C71 032250187 20FA BB JSR &BBFA Push FWA to Stack

9C74 032133129 208581 JSR & 8185 Convert Integer to Float

oC77 032011164 200B A4 JSR&A40B Copy FWA to FWB

9C7A 032232187 20E8BB JSR &BBES Pop Float from Stack

OC7TD A 032065165 2041A5 JSR &A541 Unpack Float variable to FWA

9C80 128 016 80 10 BRA 16 --> &9C92

9C82 032250187 20FA BB JSR &BBFA Push FWA to Stack

9C85 L 032076158 204C9E JSR &9E4C Expression Handler (+, - level onwards)
ocss 168 A8 TAY

9C89 032221150 20DD 96 JSR &96DD Check Float value (conv int to float, etc.)
9Cc8C 032232187 20E8BB JSR &BBES Pop Float from Stack (to &4A, &4B)

9C8F
9C92
9C94
9C9%
9C98
9C9A
9CoC
9C9E
9CAO
9CA2
9CA4
9CAG6
9CAS8
9CAA
9CAC
9CAE
9CBO
9CB2
9CB4
9CB6
9CB8
9CBA
9CBC
9CBE
9CBF
9CCO
9CC2
9CC3
9CC5

032 224 164
160 000
169 127
020 059
165 046
041 128
197 059
208 030
165 060
197 048
208 025
165 061
197 049
208 019
165 062
197 050
208 013
165 063
197 051
208 007
165 064
197 052
208 001
096
106
069 059
042
169 001
096

20E0A4
A000
A9 7F
14 3B
A5 2E
29 80
C53B
DO 1E
A53C
C530
D019
A53D
C531
DO 13
A53E
C532
DO 0D
A5 3F
C533
DO 07
A540
C534
DO 01
60
6A
45 3B
2A
A901
60

JSR & A4EQ Unpack Float variable to FWB

LDY#&00
LDA#& TF

TRB & 3B

LDA &2E
AND#& 80

CMP &3B

BNE 30 --> &9CBE
LDA &3C

CMP &30

BNE 25 --> & 9CBF
LDA &3D

CMP &31

BNE 19 --> & 9CBF
LDA &3E

CMP &32

BNE 13 --> & 9CBF
LDA &3F

CMP &33

BNE 7 --> &9CBF
LDA &40

CMP &34

BNE 1 --> &9CBF
RTS

ROR A

EOR & 3B

ROL A

LDA#&01

RTS

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines

Page Last Altered: undefined

Convert Integer to Floating-Point

Submitted by Steve Fewell

Routine: ConvIWAtoFWA

Name: Convert Integer to Floating-Point

Starting Address: &8185

Entry criteria: The IWA contains an Integer number.

Exit: The value of the IWA has been transferred to the FWA.

Note: The FWA Mantissais stored Most significant byte first, least significant byte last (the opposite
way to Integers).

Description:

Set the FWA Rounding (Mantissa 5) and Exponent Overflow bytesto zero. Store the IWA Sign Byte (?
&2D) in the FWA Sign Byte (The top bit of this byte indicates whether the number is positive or
negative, and it's value is directly transferable between the IWA and FWA).

If the Integer in the IWA is negative, then complement the Integer, and load A with the most significant
byte of the Integer (We can deal directly with a positive value as the FWA will be stored as a positive
number, with its Sign Byte indicating its sign).

If the Most Significant Byte of the IWA [A] isn't zero, then the number is 4 bytes long, so store IWA
Byte 3in FWA MantissaByte 2, IWA Byte 2 in FWA MantissaByte 3 and IWA Byte 1in FWA
Mantissa Byte 4 (opposite order), then normalise the FWA (Make the Most Significant Bit of the FWA's
Mantissa equal to 1, and store A back to FWA MantissaByte 1, and Y back to the FWA Exponent), with
an initial exponent [Y] value of 160 (that is 2"32, asthere are 32 bitsin a4 byte number), and exit.

Otherwise, store zero in FWA Mantissa Byte 4, and check to seeif IWA Byte 3 is zero.

If IWA Byte 3isn't zero, then the number is 3 byteslong, so store IWA Byte 2 in FWA Mantissa Byte 2
and IWA Byte 1 in FWA Mantissa Byte 3 (opposite order), then normalise the FWA (Make the Most
Significant Bit of the FWA's Mantissa equal to 1, and store A back to FWA MantissaByte 1, and Y
back to the FWA Exponent), with A = IWA Byte 3 and an initial exponent [Y] value of 152 (that is
224, asthere are 24 hitsin a 3 byte number), and exit.

Otherwise, store zero in FWA Mantissa Byte 3, and check to seeif IWA Byte 2 is zero.

If IWA Byte 2 isn't zero, then the number is 2 bytes long, so store IWA Byte 1 in FWA Mantissa Byte 2,
then normalise the FWA (Make the Most Significant Bit of the FWA's Mantissaequal to 1, and store A
back to FWA MantissaByte 1, and Y back to the FWA Exponent), with A = IWA Byte 2 and an initial
exponent [Y] value of 144 (that is 2*16, asthere are 16 bitsin a 2 byte number), and exit.

Otherwise, store zero in FWA Mantissa Byte 2 and normalise the FWA (Make the Most Significant Bit
of the FWA's Mantissa equal to 1, and store A back to FWA MantissaByte 1, and Y back to the FWA
Exponent), with A = IWA Byte 1 and an initial exponent [Y] value of 136 (that is 28, asthere are 8 bits
in a 1 byte number). The normalisation will decide whether the number is zero, or a 1-byte number, and
adjust the FWA accordingly.

Disassembly for the Convert I nteger to Floating-Point routine

8185 d5 100053 64 35 STZ &35

8187 d/ 100 047 64 2F STZ &2F

8189 - 165045 A52D LDA &2D

818B . 133046 85 2E STA &2E

818D 016 005 10 05 BPL 5--> &8194
818F 032222172 20DEAC JSR&ACDE icomp
8192 - 165045 A52D LDA &2D

8194 & 208038 DO 26 BNE 38 --> &81BC
8196 d4 100052 64 34 STZ &34

8198 , 165044 A52C LDA &2C

819A 208 020 DO 14 BNE 20 --> &81B0
819C d3 100051 64 33 STZ &33

819E + 165043 A52B LDA &2B

81A0 208 006 DO 06 BNE 6 --> &81A8

81A2 d2 100050 64 32 STZ &32

81A4 * 165042 A5 2A LDA &2A

81A6 8 128056 80 38 BRA 56 --> &81EQ
81A8 * 164042 A4 2A LDY &2A

81AA 2 132050 84 32 STY &32

81AC 160 144 A0 90 LDY#&90

81AE 2 128050 80 32 BRA 50 --> &81E2
81BO + 164043 A4 2B LDY &2B

81B2 2 132050 84 32 STY &32

81B4 * 164042 A4 2A LDY &2A

81B6 3 132051 84 33 STY &33

81B8 160 152 A0 98 LDY#& 98

81BA & 128038 80 26 BRA 38 --> &81E2
81BC , 164044 A42C LDY &2C

81BE 2 132050 84 32 STY &32

81CO + 164043 A4 2B LDY &2B

81C2 3 132051 84 33 STY &33

81C4 * 164042 A4 2A LDY &2A

81C6 4 132052 84 34 STY &34

81C8 160 160 AOAO LDY#&AO0

81CA 128 022 80 16 BRA 22 --> &81E2 Normalise FWA#2

Normalise FWA with an initial exponent of 136 (& 88)

81E0 160 136 A0 88 LDY#&88
81E2 Normalise FWA#2

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines

Page Last Altered: undefined

Normalise FWA#2 [only bit-by-bit method]

Submitted by Steve Fewell

Routine: anorm[2]

Name: Normalise Floating-Point Accumulator (FWA)#2 [only bit-by-bit method]

Starting Address: &81E2

Entry criteria: The FWA contains a floating-point number. Y = Exponent (?&30). A = MSB of FWA's
Mantissa (?& 31).

Exit: FWA has been normalised

Description:
'OR' the Accumulator with 0 to set the status flags according to the value.

If A = Negative then the top bit is set and the FWA is already normalised, so store A & Y back into & 31
and & 30 (respectively) and exit.

If A iszero then the number in the FWA is considered to be zero, so the FWA's sign, Exponent and
Mantissa byte 1 are set to zero to indicate this, and the routine is exited. This uniquely identifies the
number zero.

Otherwise, the top bit of the Mantissais not 1, so we need to normalise the FWA asfollows:
==> Keegp on decrementing the exponent (Y) and multiplying the mantissa by 2 (moving its bits
left a position), until the top bit is set (A becomes negative).

When the number is normalised, store A & Y back into & 31 and & 30 (respectively) and exit.

Disassembly for the Normalise FWA#2 [only bit-by-bit method] routine

81E2 009 000
8l1E4 O 048012
81E6 240 228
81E8 136

81E9 4 006 052
81EB &3 038 051
81ED &2 038050
81EF * 042

81FO0 016 246
81F2 1 133049
81F4 O 132048
81F6 096

Complete Zero Number:

81CC d.
81CE dO
81D0 d/
81D2 di
81D4

100 046
100 048
100 047
100 049
096

09 00
300C
FO E4
88

06 34
26 33
26 32
2A

10 F6
8531
84 30
60

64 2E
64 30
64 2F
64 31
60

ORA#&00

BMI 12 --> & 81F2
BEQ-28 --> &81CC
DEY

ASL &34

ROL &33

ROL &32

ROL A

BPL -10 --> & 81E8
STA &31

STY &30

RTS

STZ &2E
STZ &30
STZ &2F
STZ &31
RTS

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines
Page Last Altered: undefined

Copy FWA to FWB

Submitted by Steve Fewell

Routine: bcopya

Name: Copy FWA to FWB

Starting Address. & A40B

Entry criteria: None

Exit: Copiesthe value of the FWA to the FWB.

Description:
Sets every byte of the FWB to a copy to the corresponding FWA byte as follows:

Byte Description FWA FWB
Sign &2E ---> &3B
Overflow &2F ---> XX Not copied
Exponent &30 ---> &3C
Mantissa 1 &31 ---> &3D
Mantissa 2 &32 ---> &3E
Mantissa 3 &33 --> &3F
Mantissa4 &34 ---> &40
Mantissa 5 / Rounding &35 ---> &41

The FWB now holds the same value as the FWA.

Disassembly for the Copy FWA to FWB routine

A40B .

A40D
A40F
A411
A413
A415
A417
A419
A41B
A41D
A41F
A421
A423
A425
A427

P Al (@

> g A VWV N

165 046
133 059
165 048
133 060
165 049
133 061
165 050
133 062
165 051
133 063
165 052
133 064
165 053
133 065
096

A5 2E
85 3B

A5 30
853C
A531
853D
A5 32
85 3E
A5 33
85 3F

A5 34
8540

A5 35
8541

60

LDA &2E
STA &3B
LDA &30
STA &3C
LDA &31
STA &3D
LDA &32
STA &3E
LDA &33
STA &3F
LDA &34
STA &40
LDA &35
STA &41
RTS

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines
Page L ast Altered: undefined

BBES8 Pop Float from Stack (and point (&4A,&4B) to popped value)
Submitted by Steve Fewell

Description:

Store the Stack Pointer LSB in &4A and the Stack Pointer MSB in &4B.

Add 5 to the Stack Pointer LSB (& 04) (add any carry resulting from this add to the
Stack Pointer MSB (& 05). Thiswill increase Stack size by 5 bytes (reclaiming the 5 bytes
occupied by the Floating-Point value that is now pointed to by (&4A,&4B).

Basically, this routine decreases occupied stack space by 5 bytes and stores old values of the
stack pointer in (&4A,&4B - the argp).

Disassembly for the Pop Float from Stack routine

BBES 165 004 A504 LDA &04
BBEA 024 18 CLC
BBEB J 133 074 85 4A STA &4A
BBED i 105 005 69 05 ADCH#& 05
BBEF 133 004 85 04 STA &04
BBF1 165 005 A505 LDA &05
BBF3 K 133 075 854B STA &4B
BBF5 [105 000 69 00 ADC#&00
BBF7 133 005 8505 STA &05

BBF9) 096 60 RTS

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines
Page L ast Altered: undefined

A541 Unpack Floating-Point Variable to FWA

Submitted by Steve Fewell

Routine:aunp

Name: Unpack Floating-Point Variable to FWVA

Starting Address: & A541 (or & A539 to set argp to & 046C first)

Entry criteria: &4A and & 4B (the argp) point to a 5-byte Floating-Point variable to unpack.
Exit: The FWA contains the value of the variable.

Description:

If called from & A539 then set argp to point to variable location & 046C first.
The FWA value will be extracted from the packed floating-point value at the address pointed to by argp.

Set FWA Rounding byte = 0.

Set FWA Overflow byte = 0.

FWA Mantissa 4 = 5th byte of the packed variable
FWA Mantissa 3 = 4th byte of the packed variable
FWA Mantissa 2 = 3rd byte of the packed variable
FWA Mantissa Sign = 2nd byte of the packed variable
FWA Exponent = 1st byte of the packed variable

If the Exponent is zero, then check whether the Mantissa byte 2, Mantissa byte 3

and Mantissa byte 4 are also zero. If so, then the FWA value = 0.0 so store zero in

FWA Mantissa 1 and exit.

Mantissa 1 isformed by ORing the 2nd byte of the packed variable with #& 80 to ensure that
the top bit is set - asthe top bit is replaced by the sign bit in the packed form.

Disassembly for the Unpack FP Variable to FWA routine

A539
A53B
A53D
AS53F
A4l
A543
A545
A547
A549
A54B
A54C
ASE
A550
A551
A553
A555
A556
A558
A55A
A55B
A55D
AS55F
A561
A562
A564
A566
A568
A56A
A56B
A56D
A56F

169 108
133074
169 004
133075
100 053
100 047
160 004
177 074
133052
136

177074
133051
136

177074
133050
136

177 074
133 046
168

178 074
133048
208 009
152

005 050
005 051
005 052
240 003
152

009 128
133049
096

A96C
854A
A9 04
854B
64 35
64 2F
A0 04
B14A
85 34
88
B14A
8533
88
B14A
8532
88
B14A
85 2E
A8
B2 4A
8530
DO 09
98
0532
0533
05 34
FO 03
98

09 80
8531
60

LDA#&6C
STA &4A
LDA#&04
STA &4B
STZ &35

STZ &2F
LDY#&04
LDA (&4A),Y
STA &34
DEY

LDA (&4A),Y
STA &33
DEY

LDA (&4A),Y
STA &32
DEY

LDA (&4A),Y
STA &2E
TAY

LDA (&4A)
STA &30
BNE 9 --> & A56A
TYA

ORA &32
ORA &33
ORA &34
BEQ 3 --> & A56D
TYA

ORA#& 80
STA &31
RTS

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines
Page L ast Altered: undefined

96DA Get & Check Float Value
Submitted by Steve Fewell
Description:
This routine gets the result of the expression (in the SWA) and checks the result; or if caled at &96DD, it just
checks the latest resullt.

If the returned type is String (0), then Type Mismatch error.
If the returned typeis Float (& FF), then ok, so return.

If the returned type is Integer (&40), then perform Integer to Floating-Point conversion (& 8185).

Disassembly for the Get & check Float Value routine

96D7 L 076 146 144 4C 92 90 JMP & 9092 Type mismatch error
96DA 6 032054173 2036 AD JSR & AD36 Get result of expression
96DD 240 248 FOF8 BEQ -8 --> &96D7

96DF 0 048245 30F5 BMI -11 --> &96D6 [RTY]

96E1 L 076133129 4C 85 81 JMP & 8185 Integer to Float

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines
Page L ast Altered: undefined

A4EQ Unpack Floating-Point Variable to FWB

Submitted by Steve Fewell

Routine:bunp

Name: Unpack Floating-Point Variable to FAB

Starting Address: & A4EQ

Entry criteria: &4A and & 4B (the argp) point to a 5-byte Floating-Point variable to unpack.
Exit: The FWB contains the value of the variable.

Description:

Set FWB Rounding byte = 0.

Set FWB Overflow byte = 0.

FWB Mantissa4 = 5th byte of the packed variable
FWB Mantissa 3 = 4th byte of the packed variable
FWB Mantissa 2 = 3rd byte of the packed variable
FWB Mantissa Sign = 2nd byte of the packed variable
FWB Exponent = 1st byte of the packed variable

If the Exponent is zero, then check whether the Mantissa byte 2, Mantissa byte 3

and Mantissa byte 4 are also zero. If so, then the FWB value = 0.0 so store zero in

FWB Mantissa 1 and exit.

Mantissa 1 is formed by ORing the 2nd byte of the packed variable with #& 80 to ensure that
the top bit is set - asthe top bit is replaced by the sign bit in the packed form.

Disassembly for the Unpack FP Variable to FWB routine

A4EQ dA 100 065 64 41 STZ &41
A4E2 160 004 A0 04 LDY#&04

A4E4
A4E6
A4ES8
A4E9
A4EB
A4ED
A4EE
A4F0
A4F2
A4F3
A4F5
A4F7
A4F8
A4FA
A4FC
A4FE
A4FF
A501
A503
A505
A507
A508
A50A
A50C

@(_a

N G

D

177 074
133 064
136

177074
133 063
136

177074
133 062
136

177 074
133 059
168

178 074
133 060
208 009
152

005 062
005 063
005 064
240 003
152

009 128
133 061
096

B14A
8540
88
B14A
85 3F
88
B14A
85 3E
88
B14A
85 3B
A8
B2 4A
853C
DO 09
98

05 3E
05 3F
0540
FO 03
98

09 80
853D
60

LDA (&4A),Y
STA &40
DEY

LDA (&4A),Y
STA &3F
DEY

LDA (&4A),Y
STA &3E
DEY

LDA (&4A),Y
STA &3B
TAY

LDA (&4A)
STA &3C
BNE 9 --> & A507
TYA

ORA &3E
ORA &3F
ORA &40
BEQ 3 --> & A50A
TYA
ORA#&.80
STA &3D
RTS

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines
Page L ast Altered: undefined

9DEC '<>' operator
Submitted by Steve Fewell

Description:

Increment the Text Pointer B offset (so that the next character is the character
after the >").

Call &9CC9 to Compare the current value with the second value and set the flags
according to which value is greater, or whether the values are equal.

If the zero flag is not set then the values are not equal, so set the IWA to TRUE.
Otherwise, set the IWA to FALSE.

Exit with A = #& 40 (as we are currently handling an Integer value).

Disassembly for the '<>' Operator routine

9DEC 230 027 E6 1B INC & 1B
9DEE 032 201 156 20C99C JSR & 9CC9 Compare Values
9DF1 208 206 DO CE BNE -50 --> & 9DC1 Set TRUE

9DF3 128 205 80 CD BRA -51 --> &9DC2 Set FALSE

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines
Page L ast Altered: undefined

9DF5 '>' operator
Submitted by Steve Fewell

Description:

Check the next character from the BASIC Input line. If the next character is'=" then
the operator is ">="' Greater Than or Equal To, so jump to & 9E07 to handle this operator.
Otherwise the operator is'>' Greater Than. which is handled as follows:

Call &9CC9 to Compare the current value with the second value and set the flags
according to which value is greater, or whether the values are equal.

If the zero flag is set then the values are equal, so set the IWA to FALSE, asthe

first value is not greater than the second value.

If the carry flag is set then the first value is greater than the second, so set the

IWA to TRUE; otherwise, the first valueis not greater than the second, so set the IWA
to FALSE.

Exit with A = #& 40 (as we are currently handling an Integer value).

Disassembly for the '>' Operator routine

9DF5 170 AA TAX

9DF6 164 027 A41B LDY &1B

9DF8 177 025 B119 LDA (&19),Y

9DFA = 201061 C93D CMP#& 3D '='

9DFC 240 009 FO 09 BEQ 9 --> & 9EQ7 ">=' Greater Than or Equal to Operator
9DFE 032 201 156 20C99C JSR &9CC9 Compare Values

9E01 240191 FO BF BEQ -65 --> & 9DC2 Set FALSE

9E03 176 188 BOBC BCS-68 --> &9DC1 Set TRUE

9E05 128 187 80 BB BRA -69 --> &9DC2 Set FALSE

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines
Page L ast Altered: undefined

9EQ7 '>=' operator
Submitted by Steve Fewell
Description:

Increment the Text Pointer B offset (so that the next character is the character
after the'=").

Call &9CC9 to Compare the current value with the second value and set the flags
according to which value is greater, or whether the values are equal.

if the carry flag is set then the first value is greater than or equal to the second,
so set the IWA to TRUE; otherwise, the first value is not greater than or equal to the second,
so set the IWA to FALSE.

Exit with A = #& 40 (as we are currently handling an Integer value).

Disassembly for the '>=' Operator routine

9EQ7 230 027 E6 1B INC &1B
9E09 032 201 156 20C99C JSR &9CC9 Compare Values
9EOC 176 179 BO B3 BCS-77--> &9DC1 Set TRUE

9EOE 128 178 80 B2 BRA -78 --> &9DC2 Set FALSE

Submitted by Steve Fewell

Description:

Check the value type (in A).

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines
Page L ast Altered: undefined

9ESS8 '+' operator - addition

If variable type = 0 then goto the String Addition routine.

If variable type is negative then the first value is a Float, so jump to & 9E94, which
does the following:

* Push FWA to Stack
* Get the second value from the expression handler (level 5)

* |f second value is a String then generate a Type Mismatch error.

* |f second valueis an Integer then convert it to a Float

* Pop thefirst Float value from Stack to argp (&4A, &4B)

* Call the Floating-Point Addition routine to add the values (& A68D)

* Jump to 9E4F (Expression handler level 4) to check for further + or - operators.

Otherwise, the value is Integer, so push the first value to the stack and call the
Expression Handler level 5 routine (& 9FC4) to get the second value to add.
If the second value is a string then generate a Type Mismatch error.

If the second value is a Float then jump to & 9EBO to do the following:

* Pop the first value (the Integer) from the Stack

* Push the second value (the Float) to the Stack

* Convert the Integer to aFloat (and put it in the FWA).

* Pop the second Float value from Stack to argp (&4A, &4B)

* Call the Floating-Point Addition routine to add the values (& A68D)

* Jump to 9E4F (Expression handler level 4) to check for further + or - operators.

Otherwise, both values are Integers, so carry out the Integer Addition routine. This
routine automatically jumps back to 9E4F on completion, to check for further + or - operators.

Disassembly for the '+' Operator - Addition routine

9ES8
9E59
9ESB
9ESD

07

168

240 199
048 055
032 196 159

A8

FO C7
30 37

20 C4 9F

TAY

BEQ -57 --> & 9E22 String Addition

BMI 55 --> & 9E94

JSR & 9FC4 Push Integer to stack & Expression handler level 5

9E6O
9E61
9E6G3
9E65

168
240 046
OK 048075

A8
FO 2E
304B

TAY

BEQ 46 --> &9E91 [IMP & 9092 Type Mismatch error]
BMI 75 --> & 9EBO

...iplus (Integer addition)

Disassembly for the Floating Point '+' Operator

9E91
9E%4
9E97
9E9A
9E9B
9E9D
9E9F
9EA1
9EA4
9EA7
9EAA
9EAC
9EAE
9EBO
9EB2
9EB5S
9EBS
9EBB

L 076 146 144

032 250 187
032 199 159
168

240 244
134 039

048 003

032 133 129
032 232 187
032 141 166
166 039

169 255

128 159

134 039

032 230 188
032 250 187
032 133 129
128 231

4C 92 90
20 FA BB
20 C7 9F
A8

FO F4

86 27
3003
208581
20E8 BB
208D A6
A6 27

A9 FF

80 9F

86 27
20E6BC
20 FA BB
208581
80 E7

JMP &9092 Type Mismatch error
JSR &BBFA Push FWA to Stack

JSR & 9FC7 Expression Handler level 5 (*,/,MOD,DIV)

TAY

BEQ -12 --> & 9E91 Type Mismatch error
STX &27

BMI 3--> &9EA4

JSR & 8185 Convert Integer to Float

JSR & BBES8 Pop Float to argp

JSR & A68D Floating-Point Addition
LDX &27

LDA#& FF

BRA -97 --> & 9EAF Expression handler level 4 (+,-)
STX &27

JSR & BCEG6 Pop Integer from Stack

JSR & BBFA Push FWA to Stack
JSR & 8185 Convert Integer to Float
BRA -25 --> & 9EA4

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines
Page L ast Altered: undefined

9E22 String Addition

Submitted by Steve Fewell

Routine:splus

Name: SWA = SWA + string expression

Starting Address: & 9E22

Entry criteria: SWA contains astring value. The BASIC Text pointer
points to the second string to concatenate to the end of the SWA.

Exit: The SWA contains the concatenated strings.

Description:

Frstly, push the existing string value in the SWA to the Stack.

Call & A012 to get the result of expression (as there are no higher priority
operators for strings above '+, then the highest level of the expression handler can
be used [A012].

Y =A [to set flags]

If the second value is not a string then generate a Type Mismatch error.

Store X (type of variable?) on stack.

Add the new string's length to the length of the first string (on Stack). If the
result is > 255 then generate a String Too Long error.

X =resulting length (Iength of new concatenated string).

Store length of new string on Stack.

Y = Length of secong string.

Move each character of the second string (last character first) to the end of they
SWA value, so that the last character of the second string is stored in the SWA
at the new string length position, and the first character of the second string

Is stored in the SWA at the position of the first string length + 1.

Now the second string is in the appropriate place, we just need to put the first
string back in to the SWA (starting at position & 600), to do this we simply

Pop the SWA String value from the Stack. [Note: Thiswon't overwrite any of the 2nd String, as

only the length of the first value is extracted].

Pop the new string length from the Stack, and store it in & 36, so that the correct
new length of the SWA is specified.
Pop X from the stack (to restore the variable type information?).
exit with A = 00 (asresult is a String).

Disassembly for the String Addition routine

9E22 Q 032081 188

9E25
9E28
9E29
9E2B
9E2C
9E2D
9E2F
9E31
9E33
9E34
9E35
9E37
9E3A
9E3D
9E3E
9E3F
9E41
9E44
9E45
9E47
9E48
9E4A

032 018 160
168

208 102
024

218

178 004
101 054

176 221
170

072

164 054

185 255 005
157 255 005
202

136

208 246
032 210 188
104

133 054

250

169 000

128 003

2051 BC
2012 A0
A8

DO 66

18

DA

B2 04

65 36
BODD
AA

48

A4 36
B9 FF 05
9D FF 05
CA

88

DO F6
20D2BC
68

85 36

FA

A9 00

80 03

JSR &BC51 Push SWA to Stack

JSR & A012 Get result of expression
TAY

BNE 102 --> &9E91 [IMP & 9092 Type Mismatch error]

CLC

PHX

LDA (&04)
ADC &36

BCS-35--> &9E10 String Too Long error

TAX

PHA

LDY &36

LDA &O05FF,Y

STA &O05FF,X

DEX

DEY

BNE -10 --> & 9E37

JSR & BCD2 Pop String from Stack
PLA

STA & 36

PLX

LDA#&00

BRA 3 --> & 9E4F Process any more +'s

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines
Page last modified: undefined

Integer Addition Routine

Submitted by Steve Fewell

Routine: iplus

Name: Integer Addition

Starting Address: & 9E65

Entry criteria: IWA contains the first Integer number. ?&4 and ?&5 [The BASIC stack pointer] points
to the second Integer variable. X = The next operator code (or 4, if there is no further operation).

Exit: IWA contains the result of [Integer variable + IWA]

Description:
Adds the 32-bit Integer pointed to by the BASIC Stack Pointer (&4 (10),&5 (hi)) to the number in the
IWA. Theleast significant byte [&2A] is added first, followed by & 2B, & 2C and & 2D (The most

significant byte). The carry flag allows any overflow to be carried forward and updated to the next
significant byte of the number.

The code from & 9E82 updates the Stack pointer, so that it now points to the address after the added
number. To do this, 4 bytes are added to the address pointed to by (&4, &5).

Jump to & 9E4F to test the value of X [the next operator]. If X contains the operator code for '+' or '-'
then send the result to the appropriate routine, for further calculation, otherwise exit the addition routine.

Disassembly for the integer addition routine

9EGS 024 18 CLC

9E66
9EG8
9EGA
9E6C
9EGE
9E70
9E72
OE74
9E75
OE77
9E79
9E7B
9E7C
9ET7E
9E80
9E82
9E83
9E85
OE87
9E89
9ESB
9E8D
OE8F

OE4F
9E51
9ES53
9E55

+

OE57

178 004
101 042
133 042
160 001
177004
101 043
133 043
200

177004
101 044
133 044
200

177004
101 045
133 045
024

165 004
105 004
133 004
169 064
144 194
230 005
128 190

224 043
240 005
224 045
240 102
096

B2 04
65 2A
85 2A
A0 01
B104
65 2B
85 2B
C8

B104
65 2C
852C
C8

B104
652D
852D
18

A5 04
69 04
8504
A940
90 C2
E6 05
80 BE

EO 2B
FO 05
EO 2D
FO 66
60

LDA (&04)
ADC &2A
STA &2A
LDY#&01
LDA (&04),Y
ADC &2B
STA &2B
INY

LDA (&04),Y
ADC &2C
STA &2C
INY

LDA (&04),Y
ADC &2D
STA &2D
CLC

LDA &04
ADCH& 04
STA &04

L DA#& 40
BCC -62 --> & 9E4F
INC &05
BRA -66 --> & 9E4F

CPX#&2B
BEQ 5 --> & 9E58
CPX#&2D

BEQ 102 --> & 9EBD
RTS

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines
Page L ast Altered: undefined

A68D Floating-Point Addition Entry Point

Submitted by Steve Fewell

Routine:aplus

Name: Floating-Point Addition

Starting Address: & A68D

Entry criteria: &4A and & 4B (the argp) point to a 5-byte Floating-Point variable to add.
The FWA contains the other value to add.

Exit: The FWA = [argp] + FWA [Normalised and Rounded)].

Description:

Calls & A4EQ to unpack the variable pointed to by argp (&4A, &4B) to the
FWB.

If the unpacked variable is zero (Mantissa byte 1 is 0) then exit as there is nothing to add.
Call the Floating Point Addition routine [FWA = FWA + FWB] to actually do the addition.
Continue to the 'Round FWA Mantissa to 4 bytes routine at address & A695

so that we can exit with the resulted rounded and the Mantissa rounding byte clear.

If called from & A692 then just the FWA = FWA + FWB calculation is done and the
FWA Mantissais rounded to 4 bytes before exiting.

Disassembly for the Floating-Point Addition Entry Point routine

A68D 032224164 20E0A4 JSR &A4EQ Unpack argp variableto FWB

A690 2 240050 FO 32 BEQ 50 --> & A6C4 [RTY]

A692 h 032104131 206883 JSR &8368 Floating-Point Addition

A695 ... Round FWA Mantissa to 4-bytes (loose rounding byte)

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines
Page L ast Altered: undefined

A695 Round FWA Mantissa to 4 bytes (loose rounding byte)
Submitted by Steve Fewell

Description:
If FWA Mantissa rounding byte is less than #& 80 then jump to AGAE.

Otherwise we need to round-up the current 4-byte Mantissa value.

If the Mantissa rounding byte is equal to #& 80 then, the LSB of the FWA Mantissa

byte 4 will be set to 1 (if it was zero). No other rounding is done.

[Note: the ROL A instruction in this code will change value 1000 0000 to 0000 0001].

Otherwise (rounding > #& 80) to round up the value we increment the FWA Mantissabyte 4 by 1 (if
necessary, & A4D3 will be called to follow through the increment (to the rest of the Mantissa)

if the increment caused the value of Mantissa byte 4 to overflow (from & FF to & 00).

Continue with & AGAE (described below).

& ABAE checks the FWA Exponent overflow byte. If it is zero then the number
isfine, so clear FWA Mantissa rounding byte and exit.
Otherwise, FWA exponent overflow byte is positive, so generate a"Too Big" error.

Disassembly for the Round FWA Mantissa to 4 bytes routine

AB95 5 165 053 A5 35 LDA &35

AB97 201 128 C980 CMP#&80

A699 144 019 9013 BCC 19 --> & AGAE
A69B 240 014 FO OE BEQ 14 --> & A6AB
A69D 4 230 052 E6 34 INC &34

ABGOF 208 013 DO 0D BNE 13 --> & AGAE

AGA1 032211164 20D3A4 JSR&A4D3

A6A4 128 008 8008 BRA 8 --> & AGAE

ABAG-ABGAA Not used by this routine

AG6AB * 042 2A ROL A

ABAC 4 004 052 04 34 TSB &34

ABAE /165 047 A5 2F LDA &2F

A6BO 240 016 FO 10 BEQ 16 --> & A6C2 [STZ & 35:RTS] from aclear

A6B2 016 017 1011 BPL 17 --> & A6C5 Too Big Error

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines

Page Last Altered: undefined

Float Divide 10

Submitted by Steve Fewell

Routine: adiv10

Name: Float Divide 10

Starting Address: & A478

Entry criteria: The FWA contains the Floating-point number to divide by 10.
Exit: FWA contains the result of [FWA / 10]

Description:
AsBASIC handlesinput and output of base-10 numbers (decimal), but doesiit's calculations in base-2
(binary), is needs fast routines to multiple and divide by afactor of 10.

The standard Floating-point /' and *' routines could be used for this purpose, and BASIC could provide
10 as the second value in the division and multiplication routines. But this wouldn't be a very
satisfactory method - as BASIC requires these frequent cal culations to be performed as fast as possible.

The problem with the standard Floating-point '/* and *' routines is that they require loops (iteration), in
order to perform the required action on the two variable numbers. The loops will probably be iterated for
different numbers of times depending on the values of both of the variable numbers. BASIC requires
multiplication and division by 10 as part of its internal routines, and as such cannot accept an
undetermined number of iterations until aresult is found.

Hence, the BASIC ROM contains separate routines to multiply and divide floating-point numbers by 10.
These routines contain no loops (iteration), and run through a set sequence of commands each time (with
little variation).

This page contains the complicated code that BASIC performsin order to achieve a Division by 10. The
Multiply by 10 routine can be found here.

The routine executes the following steps:

a) 4 is subtracted from the FWA exponent, this divides the number by 16 (as the number is stored in
binary). If aborrow occurred, then also decrement the FWA overflow exponent.

b) Copy the FWA to FWB, and divide the FWB mantissa by 2. Then add the FWB mantissa to the FWA
mantissa (Least significant byte first, asusual). If carry if left after adding, then the FWA mantissa
overflowed, so divide the FWA mantissa by 2 (making the top bit 1), and increment the FWA exponent
& FWA exponent overflow (if necessary) to correct.

c) Copy the FWA to FWB, and divide the FWB mantissa by 16. Then add the FWB mantissa to the
FWA mantissa (Least significant byte first, asusual). If carry if |eft after adding, then the FWA mantissa
overflowed, so divide the FWA mantissa by 2 (making the top bit 1), and increment the FWA exponent
& FWA exponent overflow (if necessary) to correct.

d) Zero &3D (FWB Mantissa byte 1), and set FWB mantissa byte 2 to FWA mantissa byte 1, FWB
mantissa byte 3 to FWA mantissa byte 2, FWB mantissa byte 4 to FWA mantissa byte 3 and FWB
mantissa byte 5 to FWA mantissa byte 4. ROL & 35 (FWA mantissa byte 5), so that C = mantissa byte
5'stop bit. This byte manipulation has resulted in FWB = FWA divided by 256.

Next add the FWB mantissa to the FWA mantissa (Least significant byte first, as usual). If carry if left
after adding, then the FWA mantissa overflowed, so divide the FWA mantissa by 2 (making the top bit
1), and increment the FWA exponent & FWA exponent overflow (if necessary) to correct.

e) Zero & 3E (FWB Mantissa byte 2, Note: FWB byte 1 is still zero from the previous step), and set
FWB mantissa byte 3 to FWA mantissa byte 1, FWB mantissa byte 4 to FWA mantissa byte 2 and FWB
mantissa byte 5 to FWA mantissa byte 3. ROL & 34 (FWA mantissa byte 4), so that C = mantissa byte
4'stop bit. This byte manipulation has resulted in FWB = FWA divided by 65536.

Next add the FWB mantissa to the FWA mantissa (Least significant byte first, as usual). If carry if left
after adding, then the FWA mantissa overflowed, so divide the FWA mantissa by 2 (making the top bit
1), and increment the FWA exponent & FWA exponent overflow (if necessary) to correct.

f) If the mantissa overflowed during the previous step, some extra rounding is performed, to correct the
mantissa's value (this rounding correction aso takes into account the value in the FWA mantissa byte 5).

g) If no overflow from the mantissa has occurred then end, otherwise divide the FWA mantissa by 2,
making the top bit equal to 1 (from carry flag) to account for the overflow. The FWA exponent is then
incremented to allow for the carry that was added to the mantissa. The FWA overflow exponent is also
incremented if the FWA exponent overflowed.

In ssimpler terms, this routine is doing the following:

>a) FWA =FWA /16

> b) FWA = FWA + (FWA / 2)

> c) FWA = FWA + (FWA / 16)

> d) FWA = FWA + (FWA / 256)
> e) FWA = FWA + (FWA / 65536)

Each of the division steps results in the following fractions of the original number:

a)1/16 [0.0625]
b)1/32 [0.03125]

c) 3/512 [0.0058593748]
d) 51/ 131072 [0.000389099]

€) 6553 / 4294967296 [0.00000152585]

All of these fractions add up to 0.1 (atenth) - So this routines basically takes a tenth of the original
number.

This gives the same result as FWA / 10, except that the calculations are done using binary powers -
which are alot easier (and faster) to handle in 6502 Assembly language, than other decimal numbers.

Disassembly for the Floating Point divide 10 routine

A478 8 056 38 SEC

A479 0 165048 A530 LDA &30

A47B 233 004 E9 04 SBC#& 04

A4/D 0 133048 85 30 STA &30

A4TF 176 002 BO 02 BCS2-->&A483

A481 [198 047 C6 2F DEC &2F

A483 (032040164 2028A4 JSR&A428 FWB=FWA/2
A486 G 032071164 2047A4 JSR&A447 Add FWB to FWA
A489 (032040164 2028A4 JSR&A428 FWB=FWA/2
A48C + 032043164 202BA4 JSR&A42B FWB=FWB/2
A48F + 032043164 202BA4 JSR&A42B FWB=FWB/2
A492 + 032043164 202BA4 JSR&A42B FWB=FWB/2
A495 G 032071164 2047A4 JSR&A447 Add FWB to FWA

A498 d= 100 061 64 3D STZ &3D

A49A 1 165049 A531 LDA &31

A49C > 133062 85 3E STA &3E

A49E 2 165050 A5 32 LDA &32

A4A0 ? 133063 85 3F STA &3F

A4A2 3 165051 A5 33 LDA &33

AdA4 @ 133064 8540 STA &40

A4A6 4 165052 A5 34 LDA &34

A4A8 A 133065 8541 STA &41

A4AA 5 165053 A535 LDA &35

A4AC * 042 2A ROL A

A4AD G 032071164 2047A4 JSR&A447 Add FWB to FWA
A4B0 d> 100 062 64 3E STZ &3E

A4B2 1 165049 A531 LDA &31

A4B4 ? 133063 85 3F STA &3F

A4B6 2 165050 A5 32 LDA &32

A4B8 @ 133064 8540 STA &40

A4BA 3 165051 A5 33 LDA &33

A4BC A 133065 8541 STA &41

A4BE 4 165052 A5 34 LDA &34

A4CO * 042 2A ROL A

A4C1 G 032071164 2047A4 JSR&A447 Add FWB to FWA
A4C4 2 165050 A5 32 LDA &32

A4C6 * 042 2A ROL A

A4C7 1 165049 A531 LDA &31

A4C9 e5 101 053 65 35 ADC &35

A4CB 5 133053 8535 STA &35

A4CD 144 016 90 10 BCC 16 --> & A4DF
A4CF 4 230052 E6 34 INC &34

A4D1 208 012 DO OC BNE 12 --> & A4DF
A4D3 3 230051 E6 33 INC & 33

A4D5 208 008 DO 08 BNE 8 --> & A4ADF
A4D7 2 230050 E6 32 INC &32

A4D9 208 004 DO 04 BNE 4 --> & AADF

A4DB 1 230049 E6 31 INC &31
A4DD 240 136 FO 88 BEQ -120 --> & A467 Handle Mantissa Overflow

A4DF ~ 096 60 RTS

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines

Page Last Altered: undefined

Float Multiply 10

Submitted by Steve Fewell

Routine: amult10

Name: Float Multiply 10

Starting Address: & A436

Entry criteria: The FWA contains the Floating-point number to multiply by 10.
Exit: FWA contains the result of [FWA * 10]

Description:
AsBASIC handlesinput and output of base-10 numbers (decimal), but doesiit's calculations in base-2
(binary), is needs fast routines to multiple and divide by afactor of 10.

The standard Floating-point /' and *' routines could be used for this purpose, and BASIC could provide
10 as the second value in the division and multiplication routines. But this wouldn't be a very
satisfactory method - as BASIC requires these frequent cal culations to be performed as fast as possible.

The problem with the standard Floating-point '/* and *' routines is that they require loops (iteration), in
order to perform the required action on the two variable numbers. The loops will probably be iterated for
different numbers of times depending on the values of both of the variable numbers. BASIC requires
multiplication and division by 10 as part of its internal routines, and as such cannot accept an
undetermined number of iterations until aresult is found.

Hence, the BASIC ROM contains separate routines to multiply and divide floating-point numbers by 10.
These routines contain no loops (iteration), and run through a set sequence of commands each time (with
little variation).

This page contains the Multiplication by 10 routine. The Division by 10 routine can be found here.

3 is added to the FWA exponent, this multiplies the number by 8 (as the number is stored in binary). The
FWA overflow exponent is also updated, if this causes the FWA exponent to overflow.

Copy the FWA to FWB, and divide the FWB mantissa by 4. Then add the FWB mantissa to the FWA
mantissa (Least significant byte first, as usual).

If no overflow from the mantissa has occurred then end, otherwise divide the FWA mantissa by 2,
making the top bit equal to 1 (from carry flag) to account for the overflow. The FWA exponent is then
incremented to allow for the carry that was added to the mantissa. The FWA overflow exponent is also
incremented if the FWA exponent overflowed.

In ssimpler terms, this routine is doing the following:

> FWA = FWA * 8
> FWA = FWA + (0.25* FWA)

which is the same as the following:
>FWA =1.25* (FWA * 8)

This gives the same result as FWA * 10, except that the calculations are done using binary powers -
which are alot easier (and faster) to handle in 6502 Assembly language, than other decimal numbers.

Disassembly for the Floating Point multiply 10 routine

A436 024 18 CLC

A437 0 165048 A5 30 LDA &30

A439 i 105 003 69 03 ADC#&03

A43B 0 133048 85 30 STA &30

A43D 144 002 90 02 BCC2--> &A441
A43F |/ 230047 E6 2F INC &2F

Ad41 (032040164 2028A4 JSR&A428

Ad44 + 032043164 202BA4 JSR&A42B
Ad47 5 165053 A5 35 LDA &35

A449 eA 101065 6541 ADC &41

A44B 5 133053 8535 STA &35
Ad44D 4 165052 A5 34 LDA &34
Ad4F e@ 101064 65 40 ADC &40
A451 4 133052 8534 STA &34
A453 3 165051 A5 33 LDA &33
A455 e? 101063 65 3F ADC &3F
A457 3 133051 8533 STA &33
A459 2 165050 A5 32 LDA &32
A45B e> 101062 65 3E ADC &3E
A45D 2 133050 85 32 STA &32
A45F 1 165049 A531 LDA &31
A461 e= 101061 65 3D ADC &3D
A463 1 133049 8531 STA &31
A465 144 016 90 10 BCC 16 --> & A477
A467 f1 102 049 66 31 ROR &31
A469 f2 102 050 66 32 ROR & 32
A46B f3 102 051 66 33 ROR &33
A46D f4 102 052 66 34 ROR &34
A46F f5 102 053 66 35 ROR &35
A471 0 230048 E6 30 INC &30
A473 208 002 DO 02 BNE 2 --> & A477
A475 | 230 047 E6 2F INC & 2F
AATT 096 60 RTS

FWB = FWA / 2 (Sub routine used by amult10):

A428 032011164 200B A4 JSR &A40B bcopya
A42B F= 070061 46 3D LSR &3D
A42D f> 102062 66 3E ROR &3E
A42F f? 102063 66 3F ROR &3F
A431 f@ 102064 66 40 ROR &40

A433 fA 102065 66 41 ROR &41

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines
Page L ast Altered: undefined

8368 Floating-Point Addition

Submitted by Steve Fewell

Routine:aplusl

Name: Floating-Point Addition (FWA=FWA+FWB Normalised & Unrounded)
Starting Address: &8368

Entry criteria: The FWA and FWB contain the required numbers.

Exit: The FWA contains the result.

Description:

If FWA Mantissabyte 1 = 0 then FWA= 0.0, so return FWB
in FWA (AcopyB routine).

A = FWA Exponent - FWB Exponent
If exponents are equal then goto 83E2 to do the addition.

If the FWA exponent > FWB exponent then goto 83A9 to adjust the exponents to be equal.
This routine does the following:
Inverse and increment (by 1) the exponent difference. Thiswill make it atwo's
complement value and complement the value (exponent diff=-exponent diff).
If the exponent difference > & 24 then the FWA istoo small to add, so return FWA=FWB.

Otherwise, Set the Result's exponent [FWA exponent] = FWB exponent.

If the exponent differenceisamultiple of 8 (8, 16, 24, 32) then shift
the FWA mantissaright a byte [divide FWA Mantissa by 16] and reduce the
exponent diference by 8. [Keep doing this until FWA exponent = FWB exponent].

If the exponent differenceis zero (it will beif the byte shifting was done (above))
then do the addition [83E2].

Otherwise shift the FWA Mantissa's bitsright abit [divide Mantissa by 2] and decrement
the exponent difference. Repeat this until the differenceis zero.

Lastly, goto 83E2 to do the additional as the exponents are now equal.

Otherwise, (FWB exponent > FWA exponent) so need to make the exponents equal as follows:
If the exponent difference > & 24 then the FWB istoo small to add, so return with FWA unchanged.

Otherwise, if the exponent differenceisamultiple of 8 (8, 16, 24, 32) then shift
the FWB Mantissaright a byte [divide FWA Mantissa by 16] and reduce the
exponent diference by 8. [Keep doing this until FWB exponent = FWA exponent].

If the exponent differenceis zero (it will beif the byte shifting was done (above))
then do the addition [83E2].

Otherwise shift the FWB Mantissa right one bit [divide Mantissa by 2] and decrement
the exponent difference. Repeat this until the differenceis zero.

Lastly, goto 83E2 to do the additional as the exponents are now equal.

83E2: Addition (wherethe exponentsare equal):
A = FWA Sign; EOR with FWB Sign.
If different signs then goto 83EC to do subtraction (described below).

Clear carry and jump to & A447 (in Floating-Point Multiply by 10 routine).
A447 does the following:

FWA Mantissa5 = FWA Mantissa5 + FWB Mantissa5

FWA Mantissa4 = FWA Mantissa4 + FWB Mantissa 4

FWA Mantissa 3 = FWA Mantissa 3 + FWB Mantissa 3

FWA Mantissa2 = FWA Mantissa 2 + FWB Mantissa 2

FWA Mantissal = FWA Mantissal + FWB Mantissa 1

If no overflow from adding the Mantissas then end (RTS).
(Note: The exponent and sign bytes are unchanged as they are the same for both numbers.)
Otherwise, divide the Mantissa by 2 (keeping the top bit set) & increment exponent.

83EC: Signsare not equal - do subtraction:
If FWA = FWB then Clear FWA to return with FWA = 0.0 (numbers add to zero)
else 840D: If FWA > FWB then goto 8435 (Subtract FWA from FWA) [Described below]

Otherwise, copy the FWB sign to FWA sign (as the result will have the same sign as FWB)
& subtract FWA Mantissa from FWB Mantissa storing the result in the FWA Mantissa.
Jump to & 81F9 to Normalise FWA (A = FWA Mantissa 1 on entry)

8435: Subtract FWB Mantissa from FWA Mantissa:
This routine subtracts the FWB value from FWA, keeping the FWA Exponent and FWA sign unaltered
asthe result will have the same sign as the FWA.

Subtract FWA Mantissafrom FWB Mantissa storing the result in the FWA Mantissa.
Jump to & 81F9 to Normalise FWA (A = FWA Mantissa 1 on entry)

Disassembly for the Floating-Point Addition routine

8368 1 165 049 A531 LDA &31

836A 240 221 FO DD BEQ -35 --> & 8349 AcopyB
836C 8 056 38 SEC

836D 0 165 048 A530 LDA &30

836F < 229 060 ES3C SBC &3C

8371 0 240 111 FO 6F BEQ 111 --> &83E2
8373 4 144 052 90 34 BCC 52 --> &83A9
8375 % 201 037 C925 CMP#& 25

8377 176 238 BO EE BCS-18 --> & 8367 (RTYS)
8379 168 A8 TAY

837A)8 041 056 29 38 AND#& 38

837C 240 023 FO 17 BEQ 23 --> & 8395
837E 8 056 38 SEC

837F @ 166 064 A6 40 LDX &40

8381 A 134 065 86 41 STX &41

8383 7 166 063 A6 3F LDX &3F

8385 @ 134 064 86 40 STX &40

8387 > 166 062 A6 3E LDX &3E

8389 ? 134 063 86 3F STX &3F

838B = 166 061 A6 3D LDX &3D

838D > 134 062 86 3E STX &3E

838F d= 100 061 64 3D STZ &3D

8391 233 008 E9 08 SBC#& 08

8393 208 234 DO EA BNE -22 --> &837F
8395 152 98 TYA

8396) 041 007 29 07 AND#& 07

8398 H 240072 FO 48 BEQ 72 --> &83E2
839A F= 070 061 46 3D LSR &3D

839C > 102 062 66 3E ROR & 3E

839E f? 102 063 66 3F ROR & 3F

83A0 f@ 102064 66 40 ROR &40

83A2 fA 102 065 66 41 ROR &41

83A4
83A5
83A7

9

058

208 243
128 057

3A
DOF3
80 39

DECA
BNE -13 --> &839A
BRA 57 --> & 83E2

83A9: Adjust FWA exponent to equal FWB Exponent (where FWA exp > FWB exp)

83A9
83AB
83AC
83AE
83B0
83B2
83B4
83B5
83B7
83B9
83BA
83BC
83BE
83C0
83C2
83C4
83C6
83C8
83CA
83CC
83CE
83D0
83D1
83D3
83D5
83D7
83D9
83DB
83DD
83DF
83EO0

%

N P W DN P W OB \66

o
=

F1
f2
f3
f4
5

073 255
026

201 037
176 153
164 060
132 048
168

041 056
240 023
056

166 052
134 053
166 051
134 052
166 050
134 051
166 049
134 050
100 049
233 008
208 234
152

041 007
240 013
070 049
102 050
102 051
102 052
102 053
058

208 243

49 FF
1A
C925
B0 99
A43C
84 30
A8

29 38
FO 17
38
A6 34
86 35
A6 33
86 34
A6 32
86 33
A6 31
86 32
64 31
E9 08
DO EA
98

29 07
FO OD
46 31
66 32
66 33
66 34
66 35
3A
DOF3

EOR#& FF

INC A

CMP#& 25
BCS-103 --> & 8349 AcopyB
LDY &3C

STY &30

TAY

AND#& 38

BEQ 23 --> &83D0
SEC

LDX &34

STX &35

LDX &33

STX &34

LDX &32

STX &33

LDX &31

STX &32

STZ &31

SBC#& 08

BNE -22 --> & 83BA
TYA

AND#& 07

BEQ 13 --> & 83E2
LSR &31

ROR & 32

ROR &33

ROR &34

ROR &35

DECA

BNE -13 --> &83D5

83E2: FWA = FWA + FWB [wherethe exponents are equal]

83E2
83E4
83E6
83E8
83E9
83EC
83EE
83F0
83F2
83F4
83F6
83F8
83FA
83FC
83FE
8400
8402
8404
8406
8408
840A
840D
840F
8411
8413
8414
8416
8418
841A
841C
841E
8420
8422
8424
8426
8428
842A

Ul @-b N W

>

R

NNV WWw DA Al oo > o

165 046
069 059
048 004
024

076 071 164
165 049
197 061
208 027
165 050
197 062
208 021
165 051
197 063
208 015
165 052
197 064
208 009
165 053
197 065
208 003
076 180 166
176 038
165 059
133 046
056

165 065
229 053
133 053
165 064
229 052
133 052
165 063
229 051
133051
165 062
229 050
133 050

A5 2E
45 3B
3004
18
4C 47 A4
A531
C53D
DO 1B
A5 32
C53E
DO 15
A533
C53F
DO OF
A534
C540
D009
A535
C541
DO 03
4C B4 A6
BO 26
A53B
85 2E
38
A541
E535
8535
A540
E5 34
8534
A5 3F
E5 33
8533
A53E
E5 32
8532

LDA &2E

EOR & 3B

BMI 4 --> &83EC
CLC

JMP &A447

LDA &31

CMP &3D

BNE 27 --> & 840D
LDA &32

CMP &3E

BNE 21 --> & 840D
LDA &33

CMP &3F

BNE 15 --> & 840D
LDA &34

CMP &40
BNE 9 --> &840D
LDA &35

CMP &41
BNE 3 --> &840D
JMP &A6B4 Clear FWA
BCS38-->&8435
LDA &3B

STA &2E

SEC

LDA &41

SBC &35

STA &35

LDA &40

SBC &34

STA &34

LDA &3F

SBC & 33

STA &33

LDA &3E

SBC & 32

STA &32

842C
842E
8430
8432

165 061
229 049
133049
076 249 129

N -

A53D
E531
8531

4CF9 81

LDA &3D
SBC &31
STA &31

JMP & 81F9 Normalise FWA#1

8435: Subtract FWB Mantissa from FWA M antissa:

8435
8437
8439
843B
843D
843F
8441
8443
8445
8447
8449
844B
844D
844F
8451
8453

8435 5

229 065
133 053
165 052
229 064
133 052
165 051
229 063
133 051
165 050
229 062
133 050
165 049
229 061
133 049
076 249 129

PNV NWY WA A o>

[l

165 053
E541
8535
A534
ES 40
85 34
A533
E5 3F
8533
A5 32
o ol =
8532
A531
E5 3D
8531
4C F9 81

A5 35

SBC &41
STA &35
LDA &34
SBC &40
STA &34
LDA &33
SBC & 3F
STA &33
LDA &32
SBC & 3E
STA &32
LDA &31
SBC &3D
STA &31

JMP &81F9 Normalise FWA#1

LDA &35

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines
Page Last Altered: undefined

Copy FWB to FWA

Submitted by Steve Fewell

Routine: acopyb

Name: Copy FWB to FWA

Starting Address: &8349

Entry criteria: None

Exit: Copiesthe value of the FWB to the FWA.

Description:
Sets every byte of the FWA to a copy to the corresponding FWB byte as follows:

Byte Description FWB FWA
Sign &3B ---> &Z2E
Overflow 00 ---> &2F
Exponent &3C ---> &30
Mantissa 1 &3D ---> &31
Mantissa 2 &3E ---> &32
Mantissa 3 &3F ---> &33
Mantissa4 &40 ---> &34
Mantissa 5 / Rounding &41 ---> &35

The FWA now holds the same value as the FWB.

Disassembly for the Copy FWB to FWA routine

8349
834B
834D
834F
8351
8353
8355
8357
8359
835B
835D
835F
8361
8363
8365
8367

o A

'01>.l>@oo-o|\>v|_\

165 059
133 046
100 047
165 060
133 048
165 061
133 049
165 062
133 050
165 063
133 051
165 064
133 052
165 065
133 053
096

A53B
85 2E
64 2F
A53C
85 30
A53D
8531
A5 3E
85 32
A5 3F
8533
A540
8534
A541
8535
60

LDA &3B
STA &2E
STZ &2F
LDA &3C
STA &30
LDA &3D
STA &31
LDA &3E
STA &32
LDA &3F
STA &33
LDA &40
STA &34
LDA &41
STA &35
RTS

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines

Page Last Altered: undefined

Normalise FWA#1 [bit-by-bit & byte-by-byte methods supported]

Submitted by Steve Fewell

Routine: anorm[1]

Name: Normalise Floating-Point number in the FWA [bit-by-bit and byte-by-byte methods supported]
Starting Address: &81F7

Entry criteria: The FWA contains a floating-point number.

Exit: FWA has been normalised (The top bit of the FWA is set, and the exponent adjusted accordingly)

Description:
Unlike the Normalise FWA#2 routine, this routine does not have any special entry requirements (i.e.
certain bytes of the number needing to be copied to the A and Y registers).

If ?& 31 is negative (the FWA Mantissa's top bit is already set) then exit as the number is aready
normalised.

If FWA's Mantissabyte 1 (?& 31) is zero then OR ?& 31 with ?& 32, ?& 33, ?& 34 and ?& 35. If the result
Is zero, then the whole Mantissa (and hence, the whole number) is zero, so jump to &81CC to zero the

FWA's Exponent, Exponent Overflow and Sign bytes, and exit.

[Byte-by-Byte method - Normalise one byte at a time]

If FWA's Mantissa byte 1 (?& 31) is zero, but the FWA doesn't not contain zero, then Load A with the
FWA's Exponent (7& 30), and [& 8209] move the FWA Mantissa byte 2 to the FWA Mantissa Byte 1,
move the FWA Mantissa byte 3 to the FWA Mantissa Byte 2, move the FWA Mantissa byte 4 to the
FWA Mantissa Byte 3 and move the FWA Mantissa rounding byte to the FWA Mantissa Byte 4. Set the
FWA Mantissa Rounding byte to zero. Subtract 8 from the exponent (as we have moved the number

along 8 hits), and decrement the FWA Exponent Overflow (if the Exponent underflowed). If FWA
Mantissa Byte 1 is still zero, then we need to normalise by another 8 bits, so jump back to & 8209 to
move the Mantissa along another byte.

If by moving the Mantissa along byte-by-byte, we now have a normalised number, store A back in the
FWA Exponent byte and exit, otherwise jJump to & 822C to proceed with the bit-by-bit method.

[Bit-by-Bit method - Normalise one bit at a time]

If FWA's Mantissa byte 1 (?& 31) is not zero, but the FWA isn't normalised, then Load A with the
FWA's Exponent (?& 30), and [& 822C] subtract 1 from the FWA Exponent byte [A], and decrement the
FWA Exponent Overflow byteif the result underflowed, and shift the FWA Mantissa left one bit
(multiply by 2) so that the bits move from the ?& 35 end of the number to the ?& 31 end of it. Keep
repeating this until the top bit is set.

Now that the number is normalised, store A back in the FWA Exponent Byte (?& 30), and exit.

Disassembly for the Normalise FWA#2 routine

81F7 1 165049 A531 LDA&31
81F9 0 048217 30D9 BMI-39-->&81D4 [RTS]

81FB - 208 045 D02D BNE45--> &822A
81FD 2 005050 05 32 ORA &32
81FF 3 005051 0533 ORA &33
8201 4 005052 0534 ORA &34
8203 5 005053 05 35 ORA &35

8205 240 197 FOC5 BEQ-59-->&81CC

8207 0 165048 A530 LDA &30
8209 2 164050 A432 LDY &32
820B 1 132049 84 31 STY &31
820D 3 164051 A433 LDY &33
820F 2 132050 84 32 STY &32
8211 4 164052 A434 LDY &34
8213 3 132051 84 33 STY &33
8215 5 164053 A435 LDY &35
8217 4 132052 84 34 STY &34
8219 d5 100053 64 35 STZ &35

821B 8 056 38 SEC

821C 233 008 E908 SBC#&O08

821E
8220
8222
8224
8226
8228
822A
822C
822D
822F
8231
8233
8235
8237
8239
823B
823D
823F
8241

&4
&3
&2
&1

176 002
198 047
164 049
240 227
048 023
128 002
165 048
024

233 000
176 002
198 047
006 053
038 052
038 051
038 050
038 049
016 238
133 048
096

B0 02
C6 2F
A4 31
FO E3
30 17
80 02
A530
18

E9 00
B0 02
C6 2F
06 35
26 34
26 33
26 32
26 31
10 EE
85 30
60

BCS2--> &8222
DEC &2F

LDY &31

BEQ -29 --> &8209
BMI 23 --> & 823F
BRA 2 --> &822C
LDA &30

CLC

SBC#& 00

BCS 2 --> &8233
DEC &2F

ASL &35

ROL &34

ROL &33

ROL &32

ROL &31

BPL -18 --> & 822D
STA &30

RTS

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines
Page L ast Altered: undefined

9EBD '-' operator - Subtraction
Submitted by Steve Fewell

Description:

Check the value type (in A).
If the value is a string then issue a Type Mismatch error, as you cannot subtract
Stringsin BASIC.

If variable type is negative then the first value is a Float, so jump to & 9EE7, which

does the following:

* Push FWA to Stack

* Get the second value from the expression handler (level 5)

* |f second value is a String then generate a Type Mismatch error.

* |f second valueis an Integer then convert it to a Float

* Pop thefirst Float value from Stack to argp (&4A, &4B)

* Call the Floating-Point Subtraction routine to subtract the 2nd value from the 1st (& AG68A)
* Jump to 9E4F (Expression handler level 4) to check for further + or - operators.

Otherwise, the value is Integer, so push the first value to the Stack and call the
Expression Handler level 5 routine (& 9FC4) to get the second value to add.
If the second value is a string then generate a Type Mismatch error.

If the second value is a Float then jump to & 9EFF to do the following:

* Pop the first value (the Integer) from the Stack

* Push the second value (the Float) to the Stack

* Convert the Integer to aFloat (and put it in the FWA).

* Pop the second Float value from Stack to argp (&4A, &4B)

* Call the Floating-Point Subtraction routine to subtract the 1st value from the 2nd (& ACC7)

* |f the FWA is not zero, then reverse the sign of the FWA (as the subtraction was performed
the opposite way than it should have been.

* Jump to 9E4F (Expression handler level 4) to check for further + or - operators.

Otherwise, both values are Integers, so carry out the Integer Addition routine. This
routine automatically jumps back to 9E4F on completion, to check for further + or - operators.

Disassembly for the '-' Operator - Subtraction routine

9EBD 168 A8 TAY
9EBE 240 209 FO D1 BEQ -47 --> &9E91 [IMP & 9092 - Type Mismatch error]

9ECO
9EC2
9ECS
9EC6
9ECS8
9ECA

0% 048 037
032 196 159

168
240 201

05 048053

3025

BMI 37 --> & 9EE7Y

20C49F JSR &9FCA4 Push Integer to stack & Expression handler level 5

A8
FO C9
3035

TAY
BEQ -55 --> &9E91 [IMP & 9092 - Type Mismatch error]

BMI 53 --> & 9EFF
iminus start:

Disassembly for the Floating Point '-' Operator

9EE7
9EEA
9EED
O9EEE
9EFO
9EF2
9EF4
9EF7
9EFA
9EFD
9EFF
9F01
9F04
9F07
9F0A
9F0D
9F10

032 250 187
032 199 159
168

240 161

134 039

048 003
032 133 129
032 232 187
032 138 166
128 171
134 039
032 230 188
032 250 187
032 133 129
032 232 187
032 199 172
128 152

20 FA BB
20 C7 9F
A8

FO A1l

86 27
3003
208581
20 E8 BB
20 8A A6
80 AB

86 27
20E6BC
20 FA BB
208581
20 E8 BB
20C7AC
80 98

JSR & BBFA Push FWA to Stack

JSR & 9FC7 Expression Handler level 5 (*,/,MOD,DIV)
TAY

BEQ -95 --> &9E91 [IMP & 9092 - Type Mismatch error]

STX &27

BMI 3 --> &9EF7

JSR & 8185 Convert Integer to Float
JSR & BBES Pop Float to argp

JSR & A68A Floating-Point Subtraction
BRA -85 --> & 9EAA

STX &27

JSR & BCE6 Pop Integer from Stack
JSR & BBFA Push FWA to Stack

JSR & 8185 Convert Integer to Float
JSR & BBES8 Pop Float to argp

JSR & ACCY Floating-Point Subtraction with reverse sign of result
BRA -104 --> & 9EAA

Disassembly for the Floating Point Subtraction (with reverse sign of result) routine

ACCY7
ACCA
ACCC
ACCE
ACDO
ACD2
ACDA4
ACDG6

032 138 166

1 165049
240 006

. 165046

| 073128
133 046
169 255
096

20 8A A6 JSR & A68A Floating-Point Subtraction
A531 LDA &31

FO 06 BEQ 6 --> & ACD4

A5 2E LDA &2E

49 80 EOR#& 80

85 2E STA &2E

A9 FF LDA#& FF

60 RTS

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines
Page L ast Altered: undefined

Integer Subtraction Routine

Submitted by Steve Fewell

Routine: iminus

Name: Integer Subtraction

Starting Address: &9ECA

Entry criteria: ?&4 and ?&5 [The BASIC stack pointer] points to the first Integer variable. The IWA contains the integer to subtract. X
= The next operator code (or 4, if there is no further operation).

Exit: IWA contains the result of [Integer variable - IWA]

Description:
Subtracts the IWA from the 32-bit Integer pointed to by the BASIC Stack Pointer (&4 (10),&5 (hi)) storing the result in the IWA. The
least significant byte [& 2A] is subtracted first, followed by & 2B, &2C and & 2D (The most significant byte). The carry flag allows any

overflow to be borrowed forward and updated to the next significant byte of the number. The carry flag is set at the beginning because its
reset state (0) indicates that a borrow has occurred.

Theroutine &9E80 in iplusis jumped to. This routine stores the result in A back to & 2D and updates the Stack pointer, so that it now

points to the address after the added number. To do this, 4 bytes are added to the address pointed to by (&4, &5) and then jumps to
& 9E4F to test the value of X [the next operator]. If X contains the operator code for '+' or '-' then send the result to the appropriate
routine, for further cal culation, otherwise exit the routine.

Disassembly for theinteger subtraction routine

9ECA 8 056 38 SEC

9ECB 178 004 B2 04 LDA (&04)
9ECD * 229 042 E5 2A SBC &2A
9ECF e 133042 85 2A STA &2A
9ED1 160 001 A0 01 LDY#&01
9ED3 177 004 B104 LDA (&04),Y
9EDS + 229 043 E52B SBC &2B
9ED7 4 133043 852B STA &2B
9ED9 200 C8 INY

9EDA 177 004 B104 LDA (&04),Y
9EDC : 229 044 E52C SBC &2C
9EDE , 133 044 852C STA &2C
9EEO 200 C8 INY

9EE1 177 004 B104 LDA (&04),Y

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines
Page L ast Altered: undefined

A68A Floating-Point Subtract Entry Point

Submitted by Steve Fewell

Routine:aminus

Name: Floating-Point Subtraction

Starting Address: & AGBA

Entry criteria: &4A and & 4B (the argp) point to a 5-byte Floating-Point variable to
subtract from the FWA. The FWA contains the number to subtract from.

Exit: The FWA = [argp] - FWA.

Description:

Calls & ACCA to compliment the FWA. Now the FWB and [argp] values can be added,
so, continue to the Floating-Point addition entry point at address & A68D.

Disassembly for the Floating-Point Subtract Entry Point routine

AGSA 032202 172 20CA AC JSR & ACCA Compliment FWA
A68D ... Floating-Point Addition Entry Point

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines
Page L ast Altered: undefined

9FDB '/' operator - division
Submitted by Steve Fewell

Description:

Check the value type (in A).

If variable type = 0 (String) then Type Mismatch error [96DD].
If variable typeis Integer then Convert to Float [96DD].

Push FWA value to Stack.

Call the expression handler level 6 routine, A012, to get the value of the second
operand (the divisor).

Check the value type (in A).

If variable type = 0 (String) then Type Mismatch error [96DD].

If variable typeis Integer then Convert to Float [96DD].

Pop Dividend (first value) from Stack and set argp to point to it.

Call the Floating-Point Divide routine (ASEE), to divide argp by FWA and store
the result in the FWA.

Set A to & FF aswe are handling afloat value. Store X in &27 and call
& 9FDB to check for further *,/,MOD or DIV operators.

Note: The'/' Operator always converts Integer values to Float-Point ones.

The'/* Operator does not call the DIV routine if both of the operands are Integer,
because the result may not be Integer. The Addition, Subtraction and Multiplication
routines need to handle conversion between and use of Integer routines as well as
Floating-Point ones, as the Integer routines are quicker, as we know that integer
operands will usually give an Integer result (unless multiplication of large numbers
is carried out).

Disassembly for the '/* Operator - Division routine

9FDB 168 A8 TAY

OFDC 032221150 20DD 9 JSR &96DD Check Result Type (& If Int, Convert to Float)
OFDF 032250187 20FA BB JSR &BBFA Push FWA to Stack

9FE2 032018160 2012 A0 JSR & A012 Expression handler Level 6 [Skip Spaces, /]

9FE5 ' 134039 86 27 STX &27
9FEY 168 A8 TAY

9FES8
9FEB
9FEE
9FF1
9FF3

032 221 150
032 232 187
032 238 165
169 255
128 200

20 DD 96
20 E8 BB
20EE A5
A9 FF
80 C8

JSR & 96DD Check Result Type (& If Int, Convert to Float)

JSR & BBES Pop Float to argp

JSR & ASEE Floating-Point Division

LDA#& FF

BRA -56 --> &9FBD Store X & Check for further *,/,MOD or DIV operators

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines
Page L ast Altered: undefined

ASEE Floating-Point Division Entry Point

Submitted by Steve Fewell

Routine:adiv

Name: Floating-Point Division

Starting Address: & ASEE

Entry criteria: &4A and & 4B (the argp) point to a 5-byte Floating-Point variable to be divided.
The FWA contains the value to divide by.

Exit: The FWA = [argp] / FWA [Normalised and Rounded].

Description:

If the FWA is zero, then issue a Division by Zero error.
Unpack the argp variable to the FWB. If the FWB is zero then exit with aclear [Clear FWA],
asthe result will be zero. Otherwise, call the divide FWB by FWA division routine [& ASFA].

Disassembly for the Floating-Point Division Entry Point routine

ASEE 1 165049 A531 LDA &31

A5F0 240 240 FO FO BEQ -16 --> & ASE2 [IMP &8172] Division by Zero error
A5F2 032224164 20E0A4 JSR &A4EQ Unpack variableto FWB

A5F5 208 003 DO 03 BNE 3 --> & ASFA Floating-Point Division

A5F7 L 076180166 4CB4A6 JMP&A6B4 Clear FWA

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines
Page L ast Altered: undefined

Floating-Point Division

Submitted by Steve Fewell

Routine: adivb

Name: Floating-Point Division (FWA=FWB/FWA)

Starting Address: & ASFA

Entry criteria: The FWA contains the Divisor and the FWB contains the Dividend.

Exit: The routine evaluates the expression FWB / FWA and puts the resulting Floating-Point number is the FWA.

Description:
Store the sign of the result in the FWA Sign byte [FWB sign EOR FWA sign]. If FWA & FWB signs are
different, then the result will be negative, otherwise it will be positive.

Add #& 82 to the FWB exponent, to remove the #& 80 offset for the exponent. [E.g. 128+130 = 2], rotate the
overflow (if FWB was > =1 then there will be an overflow) into the FWA overflow byte (low bit). Subtract the
FWA Exponent from the "FWB Exponent + #& 82" result to obtain the result's exponent [this automatically adds
the #& 80 again] store the result as the FWA exponent. Decrement the FWA overflow if aborrow occurred during
the subtraction. The overflow considerations cater for very large and very small numbers. The FWB exponent -
the FWA exponent gives the unnormalised exponent of the result.

This routine uses the Binary Division method known as " Shift and Subtract”.
At ahigher level, the routine is doing the following:
* Set the Quotient to 0
* Align the leftmost digitsin the dividend and divisor (already donein BASIC!)
* Repeat:
* If the portion of the dividend above the divisor is greater than or equal
to the divisor then (1)Subtract the divisor from that portion of
the Dividend and (2) Concatentate 1 to the right hand end of the quotient;
Otherwise, concatentate 0 to the right hand end of the quotient.
* Shift the divisor to the right for one bit.
* Until the dividend is less than the divisor

* The quotient is correct and the dividend is the remainder.

Description of the Mantissa division:

Initialize some variables: Y =4 (Number of bytesto process); ?&3C =4 (backup of Y); A =?2&3D (FWB
Mantissa byte 1); and X = 8 (Number of bitsleft in current byte). For speed optimizations, the first byte of the
FWB Mantissais stored in A. The result will be stored in bytes & 43 to & 46. & 3B istemporary storage for the
current byte of the Result.

*1) [A622] Compare the FWB Mantissa (bytes 1 to 4) with the FWA Mantissa (stopping when the bytes differ).
If the first differing byte in the FWB Mantissais less than the first differing byte in the FWA Mantissa then
[AB4F] (FWB < FWA). Multiply the result byte (& 3B) by 2 [shift the bits |eft a place] (this adds a binary O to the
L SB end of the value) and go on to the next bit (step * 3)).

*2) Otherwise, [A638] Subtract the FWA Mantissa (the divisor) from the FWB Mantissa, multiply the result byte
(&3B) by 2 [shift the bits |eft a place] and add 1. (Thistags a1 on to the end of the result). Then go on to the next
bit (Step 3).

*3) To move on to the next hit, the bitsin the FWB Mantissa are shifted along one position (loosing the most
significant bit). X is decremented. [A620] if X isnot zero, and the bit that was just lost from the FWB Mantissa
was 1, then go to step *2) to subtract and update the result again.

*4) [A620] If X hasn't reached zero then go back to step * 1) to process the next bit.

*5) Decrement Y. If Y islessthan zero, then jump to step *7) as all of the required bytes have been processed.
Otherwise, store the current result byte (& 3B), which is now complete in the next result location (that is location
& 46 for the first byte, & 43 for the last byte, as we calculate the result most significant byte first). Next, store Y in
& 3C [temporary storage during processing of steps* 1) to *4)]. Set X to the number of bits that need processing
in the next FWB Mantissa byte - for the first 4 bytes, 8 bits are processed, and in the last (least significant) byte,
only 2 bits need to be processed. The number of bytesto processis stored in BASIC ROM locations & ASES to
&ASES.

*6) [A620] If the bit that was just lost from the FWB Mantissawas 1, then go to step *2) to subtract and update
the result again, otherwise go back to step * 1) to process the next bit.

*7) Now, al of the bits have been processed, and we have a result, normalise the result [& 81F7].
Next exit by rounding the FWA Mantissato 4 bytes (loosing the rounding byte).

943.34 / 33.33 = 28.3030303030303030303030

FWA = 3333000000 Exponent =2
FWB = 9433400000 Exponent =3

*1) FWB > FWA, so do step *2) subtraction ==>
*2) FWB = 91001, Result = Result + 1 =1
FWB = 87668, Result = Result + 1 = 2

FWB = 84335, Result = Result + 1 =3
FWB = 81002, Result =Result + 1 =4
FWB = 77669, Result = Result + 1 =5
FWB = 74336, Result = Result + 1 = 6
FWB = 71003, Result = Result + 1 =7
FWB = 67670, Result = Result + 1 =8
FWB = 64337, Result = Result + 1 =9
FWB = 61004, Result = Result + 1 =10
FWB = 57671, Result = Result + 1 =11
FWB = 54338, Result = Result + 1 =12
FWB = 51005, Result = Result + 1 =13
FWB = 47672, Result = Result + 1 = 14
FWB = 44339, Result = Result + 1 =15
FWB = 41006, Result = Result + 1 = 16
FWB = 37673, Result = Result + 1 =17
FWB = 34340, Result = Result + 1 =18
FWB = 31007, Result = Result + 1 =19
FWB = 27674, Result = Result + 1 =20 @
FWB = 24341, Result = Result + 1 =21
FWB = 21008, Result = Result + 1 = 22
FWB = 17675, Result = Result + 1 =23
FWB = 14342, Result = Result + 1 = 24
FWB = 11009, Result = Result + 1 =25
FWB = 07676, Result = Result + 1 = 26
FWB = 04343, Result = Result + 1 = 27
FWB = 01010, Result = Result + 1 =28
*3) FWB = 1010, Result = Result * 10 = 280
*1) FWB < FWA, So Result = Result + Carry [3] = 283,
*3) FWB = 010, Result = Result * 10 = 2830
*1) FWB < FWA, So Result = Result + Carry [3] = 28303,
*3) FWB = 10, Result = Result * 10 = 283030
*1) FWB < FWA, So Result = Result + Carry [3] = 2830303,
*3) FWB = 0, Result = Result * 10 = 28303030.

Result Exponent = FWB Exponent (3) - FWA Exponent (2) + 1 = 2, So result is 28.30303030

This disassembly also contains code that is not used within Floating-Point division.

Code at & A68A isthe call point for Floating-Point Minus

Code at & A68D isthe call point for Floating-Point Addition

& AB8A just compliments the FWA and then continues with Floating-Point Addition.

& A68D Unpacks the variable pointed to by (&2A, &2B) into the FWB and then, if FWB is not zero,
calls the Floating-Point addition routine (& 8368).

Disassembly for the Floating-Point Division routine

A5SES 002 02 EQUB &02

ASEG
A5E7
A5ES8
A5FA
A5FC
ASFE
A600
A601
A603
A605
A607
A609
A60B
A60D
AGOF
A611
A613
A615
A6L7
A619
A61B
AGlE
A620
A622
A624
A626
A628
AG2A
A62C
AG2E
A630
AG32
A634
A6G36
A638
A6G39
AG3B
A63D

D

D

008

008

008

165 059
069 046
133 046
056

165 060
105 129
038 047
229 048
176 002
198 047
133 048
160 004
132 060
165 061
162 008
128 009
150 067
190 229 165
132 060
176 022
197 049
208 016
164 062
196 050
208 010
164 063
196 051
208 004
164 064
196 052
144 023
168

165 064
229 052
133 064

08

08

08

A5 3B
45 2E
85 2E
38
A53C
69 81
26 2F
E5 30
B0 02
C6 2F
8530
A0 04
84 3C
A53D
A208
80 09
96 43
BE E5 A5
84 3C
BO 16
C531
DO 10
A4 3E
C4 32
DO OA
A4 3F
C4 33
DO 04
A440
C4 34
90 17
A8
A540
E5 34
8540

EQUB &08

EQUB &08

EQUB &08

LDA &3B

EOR &2E

STA &2E

SEC

LDA &3C

ADC#& 81

ROL &2F

SBC &30

BCS 2 --> & AGOD
DEC &2F

STA &30
LDY#&04

STY &3C

LDA &3D
LDX#& 08

BRA 9--> & A622
STX &43,Y

LDX &ABE5,Y
STY &3C

BCS22 --> &A638
CMP&31

BNE 16 --> & A636
LDY &3E

CPY &32

BNE 10 --> & A636
LDY &3F

CPY &33

BNE 4 --> & A636
LDY &40

CPY &34

BCC 23 --> & ABAF
TAY

LDA &40

SBC &34

STA &40

AG3F ? 165063 A5 3F LDA &3F
A641 3 229051 E5 33 SBC & 33
A643 ? 133063 85 3F STA &3F
A645 > 165062 A53E LDA &3E
Ae47 2 229050 E5 32 SBC & 32
A649 > 133062 85 3E STA &3E
A64B 152 98 TYA
A64C 1 229049 E531 SBC &31
AG4E 8 056 38 SEC

A64F &; 038059 26 3B ROL & 3B
A651 @ 006 064 06 40 ASL &40
A653 &7 038063 26 3F ROL &3F
AB55 &> 038062 26 3E ROL &3E
A657 * 042 2A ROL A
A658 202 CA DEX

A6B59 208 197 DO C5 BNE -59 --> & A620
A65B ; 166 059 A6 3B LDX &3B
A65D < 164 060 A43C LDY &3C
AGSF 136 88 DEY

A660 016 183 10B7 BPL -73--> &A619
A662 > 005062 05 3E ORA &3E
A664 ? 005063 05 3F ORA &3F
A666 @ 005064 0540 ORA &40
A668 240 001 FO 01 BEQ1--> &A66B
AG6A 8 056 38 SEC

A66B 138 8A TXA
A66C | 106 6A ROR A
A66D | 106 6A ROR A
AGBE | 106 6A ROR A
AGGF) 041224 29 EO AND#&EQ
A671 5 133053 8535 STA &35
A673 C 165067 A543 LDA &43
A675 4 133052 85 34 STA &34
A677 D 165068 A544 LDA &44
A679 3 133051 8533 STA &33
A67B E 165069 A5 45 LDA &45
A6/D 2 133050 8532 STA &32
A67/F F 165070 A5 46 LDA &46

A681
A683
A685
A688

133 049
048 016
032 042 130
128 011

8531
30 10
20 2A 82
80 0B

STA &31
BMI 16 --> & A695

JSR & 822A part of Normalise FWA
BRA 11 --> & A695 Round FWA Mantissato 4 bytes

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines

Page Last Altered: undefined

Integer Multiplication Routine
Submitted by Steve Fewell

Routine: imult

Name: Integer Multiplication

Starting Address: & 9F64

Entry criteria: IWA containsthe first Integer number. Y contains the Most Significant Byte of this
Integer number (?&2D). ?&4 and ?& 5 point to the second Integer variable. ?&27 =4, X = &4.
Notes: If the IWA > & FFFF, it istruncated to 16 hits.

Exit: IWA contains the result of [Integer variable * IWA]

Description:

Exclusive-OR the Most significant bytes of both integers together, this determines the sign of the result
(if only one of the MSBs is negative then the result is negative, otherwise it is positive).

Make both integers positive [using ipos] (so that we only have to do positive multiplication).

Store the multiplier in zero-page locations (& 39 to & 3C) and put the multiplicand into the IWA [popi].

Initialise the result to zero (Theresult isstored in Y [&3D], X [&3E], & 3F and &40).

Keep repeating the following loop until the multiplier is zero [only the least significant two bytes of the
multiplier are used]:

(1) Divide the multiplier by 2 (and make the result integer)

(2) If an integer result was not obtained, (i.e. Multiplier was an odd number before division) then add the
multiplicand to the result. [Dividing the multiplier lost 0.5 of its value, so we add on the multiplicand
(which at this stage isworth 0.5 * the actual multiplicand) before it is multiplied to perform the
multiplication of the lost 0.5 of the multiplier].

(3) Multiply the multiplicand by 2
Until multiplier is zero ((&39 OR & 3A) = zero).

Retrieve the result from the zero page locations (& 3D to &40) and make it negative if the sign [at the
beginning] was determined to be negative.

Jump to & 9FCA to test the value of X [the next operator] when the routine was entered. If X contains
the operator code for *', '/, 'MOD' or 'DIV' then send the result to the appropriate routine, for further
calculation, otherwise exit the multiplication routine.

Disassembly for theinteger multiplication routine

OF64 Z 90 5A PHY
9F65 032 190 172 20 BE AC JSR & ACBE Make IWA value positive [ipos]

9F68 ' 134039 86 27 STX &27

9F6A 9 162057 A2 39 LDX#& 39

JSR & BDC6 Save Integer (IWA) to zero page

location [izpout]

OF6E 032 230 188 20 E6 BC JSR &BCE6 Retrieve IWA value from Stack
[popi]

9F72 h 104 68 PLA

9F73 E- 069 045 45 2D EOR & 2D

OF75 7 133055 85 37 STA &37

oF77 032 190 172 20 BE AC JSR & ACBE Make the IWA value positive [ipos]

OF7A 160 000 A0 00 LDY#&00

9F7C 162 000 A200 LDX#&00

9F7E d? 100063 64 3F STZ &3F

9F80 d@ 100 064 64 40 STZ &40

9F82 F:. 070058 46 3A LSR &3A

9F84 f9 102057 66 39 ROR & 39

986 144 021 90 15 BCC 21 --> &9F9D

9F6C 032 198 189 20 C6 BD

9F88
9F89
9F8A
9F8C
9F8D
9F8E
9F90
9F91
9F93
9F95
9F97
9F99
9F9B
9F9D
9F9F
9FA1
9FA3
9FAS5
9FA7Y :
9FA9
9FAB
9FAD
9FAF
9FB1
9FB2

~N Vol

9FB4

9FB7 (
OFBS
OFBA
9FBD '
OFBF
9FC1 L:

9FC4 &

24 18 CLC

152 98 TYA

101 042 65 2A ADC &2A

168 A8 TAY

138 8A TXA

101 043 65 2B ADC &2B

170 AA TAX

165 063 A5 3F LDA &3F

101 044 65 2C ADC &2C

133 063 85 3F STA &3F

165 064 A5 40 LDA &40

101 045 65 2D ADC &2D

133 064 85 40 STA &40

006 042 06 2A ASL &2A

038 043 26 2B ROL &2B

038 044 26 2C ROL &2C

038 045 26 2D ROL &2D

165 057 A5 39 LDA &39

005 058 05 3A ORA &3A

208 215 DOD7 BNE-41-->&9F82

132 061 84 3D STY &3D

134 062 86 3E STX &3E

165 055 A5 37 LDA &37

8 8 PHP

162 061 A2 3D LDX#&3D

032 128 170 20 80 AA JSR & AA80 Set thg IWA to an Integer value at a
zero-page location [izpin]

40 28 PLP

016 003 1003 BPL 3--> &9FBD

032 222 172 20 DE AC JSR & ACDE icomp

166 039 A6 27 LDX &27

128 009 80 09 BRA 9 --> &9FCA

076 059 159 4C 3B 9F JMP &9F3B ™' Operator

JSR & BC26 Push IWA value to the BASIC

2 188 2026 B :
032 038 188 20 26 BC Stack [pushi]

9FC7
9FCA *
9FCC
OFCE /
9FDO
9FD2
9FD4
9FD6
9FD8 #
OFDA °

032018 160 20 12 A0 JSR &A012

224042
240 243
224 047
240 009
224131
240 031
224 129
240 035
96

EO 2A
FOF3
EO 2F
FO 09
EO 83
FO 1F
EO 81
FO 23
60

CPX#&2A

BEQ -13 --> & 9FC1

CPX#& 2F

BEQ 9 --> & 9FDB '/' Operator
CPX#&83

BEQ 31 --> &9FF5 Integer MOD routine
CPX#&81

BEQ 35 --> & 9FFD Integer DIV routine

RTS

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines

Page Last Altered: undefined

Integer Positive Routine

Submitted by Steve Fewell

Routine: ipos

Name: Integer Positive

Starting Address: & ACBE

Entry criteria: The IWA contains the integer to make positive.

Exit: If the IWA contained a negative value, it will now be positive, otherwise IWA will be unchanged.

Description:
Check the most significant byte of the Integer Number in the IWA. If bit 7 of thisbyteisset [N flag], the
IWA contains a negative number, so the icomp routine is jumped to (to compliment the value).

Otherwise the routine exists with A = #& 40, indicating that an Integer number is being processed. [Note:
The code for thisis located in the icomp routine].

Disassembly for theinteger positiveroutine

ACBE $ 036045 24 2D BIT &2D
ACCO O 048028 301C BMI 28 --> & ACDE Integer Compliment
ACC2 1 128049 8031 BRA 49 --> & ACF5 [LDA#&40 : RTS]

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines

Page Last Altered: undefined

Save Integer to Zero Page Address

Submitted by Steve Fewell

Routine: izpout

Name: Save Integer to Zero Page Address

Starting Address: &BDC6

Entry criteria: X isthe Zero page address of the first of 4 sequential bytes of memory in which to store
a 32-bit Integer variable.

Exit: The zero page locations pointed to by X (That islocations 00,X to 03,X) now contain the 32-bit
Integer from the IWA.

Description:
The contents of the IWA are copied to the zero page memory locations pointed to by the X register (The

number is stored least significant byte first, one byte is copied at atime). The routine sets A to #&40 to
indicate that an Integer number is being processed before exiting.

There is another routine which saves the IWA to any address, but we need this zero page routine because
It executing alot faster than the one which allows longer addresses.

Disassembly for the Save Integer to Zero Page Addressroutine

BDC6 * 165042 A5 2A LDA &2A
BDC8 149 000 95 00 STA &00,X
BDCA + 165043 A52B LDA &2B
BDCC 149 001 9501 STA &01,X

BDCE ,
BDDO
BDD2 -
BDD4
BDD6 -

165 044
149 002
165 045
149 003
096

A52C
95 02
A52D
9503
60

LDA &2C
STA &02,X
LDA &2D
STA &03,X
RTS

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines

Page Last Altered: undefined

Load IWA with Integer from Zero Page Address

Submitted by Steve Fewell

Routine: izpin

Name: Load IWA with Integer from Zero Page Address

Starting Address: & AA80

Entry criteria: X isthe Zero page address of the Least Significant (first) byte of a 32-bit Integer variable
Exit: WA contains the Integer number pointed to by X (That is the 32-bit Integer stored in locations 00,
X to 03,X).

Description:
L oads the IWA with the 32-bit Integer pointed to by the X register (The number is stored |east

significant byte first, one byte is copied at atime), and sets A to #&40 to show that an Integer number is
being processed.

There is another routine which loads the IWA from any address, but we need this zero page routine due
to it executing alot faster than the one which allows longer addresses.

Disassembly for the Load Integer from Zero Page Addressroutine

AAB80 181 000 B5 00 LDA &00,X
AA82 * 133042 85 2A STA &2A
AA84 181 001 B501 LDA &01,X
AA86 + 133043 852B STA &2B

AAS88 181 002 B5 02 LDA &02,X

AABA
AAS8C

AASBE -
AA0 @
AA92

133 044
181 003
133 045
169 064
096

852C
B503
852D
A940
60

STA &2C
LDA &03,X
STA &2D
LDA#&40
RTS

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines
Page L ast Altered: undefined

9F3B '*' operator - multiplication
Submitted by Steve Fewell

Description:

[9F3B:] Check the value type (in A).
If variable type = 0 then issue a Type Mismatch error.

If variable type is negative then the first value is a Float, so jump to & 9F23, which

does the following:

* Push FWA to Stack

* Get the second value from the expression handler (level 6) [A012]

* |f second value is a String then generate a Type Mismatch error. [96DD]

* |f second valueis an Integer then convert it to a Float [96DD]

* Pop thefirst Float value from Stack to argp (&4A, &4B)

* Call the Floating-Point Multiplication routine to multiply the values (& A6A6)

* Set A = #& FF, as we have a Floating-Point result.

* Jump to 9FCA (Expression handler level 5) to check for further *,/,MOD or DIV operators.

Otherwise, the valueis Integer.

If the IWA byte 4 or IWA byte 3 is zero or the top bit of IWA byte 2 is set,

then we are dealing with alarge number, so we will need to use Floating-Point multiplication
(as the result will most likely not be an integer), so call 9F20. [Note: What happens if the IWA
contains & 10FFFFFF, it looks like Floating-Point multiplication will not be used for thisl].
9F20 does the following:

* Convert the Integer in the IWA to aFloat (FWA).

* Push FWA to Stack

* Get the second value from the expression handler (level 6) [A012]

* |f second value is a String then generate a Type Mismatch error. [96DD]

* |f second value is an Integer then convert it to a Float [96DD]

* Pop thefirst Float value from Stack to argp (&4A, &4B)

* Call the Floating-Point Multiplication routine to multiply the values (& A6A6)

* Set A = #& FF, as we have a Floating-Point result.

* Jump to 9FCA (Expression handler level 5) to check for further *,/,MOD or DIV operators.

Otherwise, thefirst value (multiplicand) is an integer which isn't too large,

so push thefirst value to the stack and call the Expression Handler level 6 routine
(& AOQOQF) to get the second value to multiply (the multiplier).

If the second value is a string then generate a Type Mismatch error.

If the second value is a Float then jump to & 9F15 to do the following:
* Pop the first value (the Integer) from the Stack

* Push the second value (the Float) to the Stack

* Convert the Integer to a Float (and put it in the FWA).

* Pop the second Float value from Stack to argp (&4A, &4B)

* Call the Floating-Point M ultiplication routine to multiply the values (& A6A6)

* Set A = #& FF, as we have a Floating-Point result.

* Jump to 9FCA (Expression handler level 5) to check for further *,/,MOD or DIV operators.

Otherwise, check whether the second value istoo large for Integer multiplication
routine (it'stoo large if IWA byte 3 or 4 isnot 0, or top bit of byte 2 is 1).

If the second value istoo large for Integer Multiplication then jump to & 9F12

to do the following:

* Convert the second value (which is Integer) to a Float

* Pop the first value (also an Integer) from the Stack

* Push the second value (the Float) to the Stack

* Convert the Integer to a Float (and put it in the FWA).

* Pop the second Float value from Stack to argp (&4A, &4B)

* Call the Floating-Point Multiplication routine to multiply the values (& A6A6)
* Set A = #& FF, as we have a Floating-Point result.

* Jump to 9FCA (Expression handler level 5) to check for further *,/,MOD or DIV operators.

Otherwise, both Integers arein the required range, so do the Integer Multiplication
routine (& 9F64).

This routine automatically jumps back to 9FCA on completion, to check for further */,
MOD or DIV operéators.

Disassembly for the '*" Operator - Multiplication routine

9F12 032 133 129 208581 JSR & 8185 Convert Integer to Float

9F15 032 230 188 20E6BC JSR & BCE6 Pop Integer from Stack

9F18 032 250 187 20 FA BB JSR & BBFA Push FWA to Stack

9F1B 032 133129 208581 JSR & 8185 Convert Integer to Float

OF1E 128 013 800D BRA 13 --> &9F2D

9F20 032 133 129 208581 JSR & 8185 Convert Integer to Float

9F23 032 250 187 20 FA BB JSR & BBFA Push FWA to Stack

9F26 032 018 160 2012 A0 JSR & A012 Expression handler Level 6 [Skip Spaces,]
9F29 168 A8 TAY

9F2A 032 221 150 20 DD 96 JSR &96DD Check Result Type (& If Int, Convert to Float)
9F2D 032 232 187 20 E8 BB JSR &BBES8 Pop Float to argp

9F30 032 166 166 20 A6 A6 JSR & AGAG6 Floating-Point multiplication
9F33 169 255 A9 FF LDA#& FF

9F35 L 076202159 4C CA 9F JMP &9FCA Check for further *,/,MOD or DIV operators
9F38 L 076146144 4C 92 90 JMP &9092 Type Mismatch error

9F3B 168 A8 TAY

9F3C 240 250 FO FA BEQ -6 --> &9F38

9F3E 0 048227 30 E3 BMI -29 --> & 9F23

9F40 - 164045 A42D LDY &2D

9F42 |, 196044 C42C CPY &2C

9F44 208 218 DO DA BNE -38 --> & 9F20

9F46 + 165043 A52B LDA &2B

9F48
9F49
9F4A
9F4C
9F4E
9F51
9F52
9F54
9F56
9F58
9F5A
9F5C
9F5E
9F5F
9F60
9F62
9F64

010

152

105 000
208 210
032 015 160
168

240 228
048 191
164 045
196 044
208 182
165 043
010

152

105 000
208 174

0A

98

69 00
D0 D2
200F AO
A8

FO E4
30 BF
A42D
C42C
DO B6
A52B
0A

98

69 00
DO AE

ASL A

TYA

ADC#&00

BNE -46 --> & 9F20

JSR & AOOF Push Integer & Expression handler Level 6 [/
TAY

BEQ -28 --> & 9F38

BMI -65 --> & 9F15

LDY &2D

CPY &2C

BNE -74 --> & 9F12

LDA &2B

ASL A

TYA

ADC#&00

BNE -82 --> & 9F12

..imult Integer Multiplication

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines
Page L ast Altered: undefined

AB6AG6 Floating-Point Multiply Entry Point

Submitted by Steve Fewell

Routine:amult

Name: Floating-Point Multiplication

Starting Address: & AGAG6

Entry criteria: &4A and & 4B (the argp) point to a 5-byte Floating-Point variable to multiply.
The FWA contains the other value to multiply [multiplicand].

Exit: The FWA = [argp] * FWA [Normalised and Rounded)].

Description:

Call the Floating Point Multiplication routine [FWA = Argp Variable * FWB] to actually do the addition.
Jump to the 'Round FWA Mantissato 4 bytes routine at address & A695

so that we can exit with the resulted rounded and the Mantissa rounding byte clear.

Disassembly for the Floating-Point Multiply Entry Point routine

AGAG 032 207 166 20 CF A6 JSR & A6CF Floating-Point Multiplication
AGA9 128 234 80 EA BRA -22 --> & A695

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines
Page L ast Altered: undefined

AG6CF Floating-Point Multiplication

Submitted by Steve Fewell

Routine:fpmult

Name: Floating-Point Multiplication

Starting Address: & AG6CF

Entry criteria: &4A and & 4B (the argp) point to a 5-byte Floating-Point variable to multiply the FWB by.
Exit: The FWA contains the normalised result [FWA=argp variable * FWA].

Description:
If FWA is zero, then the result is zero, so just exit.

Unpack the argp variable to the FWB.
If the FWB is zero then call FWA clear routine to return with a zero result.

Add the FWB exponent to the FWA exponent and subtract #& 7F (to account for the #& 80 offset)
The FWA overflow byte will contain any overflow that occurred.
This gives the result's exponent value, so store it in the FWA exponent.

EOR the FWB sign with the FWA sign byte to obtain the sign of the result and store result's
sign in the FWA sign byte. (i.e. neg_num * neg_num = pos_num, POS_Num * pos_num = pos_hum
neg_num * pos_num = neg_num, & pPOS_nNum * neg_num = neg_num).

Store X on the stack during the routine (as X contains the next operator?).

Move the FWA Mantissa to locations &42 to &45 (in reverse order), and clear out

FWA mantissavalue (to zero). (i.e. &45=&31; &44 = & 32; &£43 = &33; &42 = & 34).

Zero The FWB Exponent, the FWB Sign and location & 3A (these bytes form the leading zeros
during the multiplication.

(A735): Load the next byte (& 42 for thefirst time, asY = 0 and X = &FC; so load L SB of Mantissafirst).
If the byte is not zero then perform the multiply operation with the byte (A705).

Repeat for all bytes (& 42 to &45).

When complete, store any rounding in the FWA Rounding Byte, then if the FWA
Mantissa (Result) Byte 1 top bit is 0 then exit viathe normalise FWA routine.
Otherwise, just exit as the number is already normalised.

(A705): Performing the multiplication for the current byte:
X is saved to the stack during this routine and retrived at the end, thisis so that
the value of X - which is used in the byte loop (above) - is not overwritten.

The multiplication consists of the following steps:

1) Divide the FWB Mantissa by 2 [bytes & 3D to &41]

2) Shift the top bit out of the FWA byte we are looking at (Either: &42, &43, &44 or &45, asthe FWA Mantissa
has been moved to these temporary locations).

--> |f the top bit shifted out was 0 then look at the next byte (4).

--> |f the top bit shifted out was 1 then add the FWB Mantissa to the Result's Mantissa (FWA)(?).

Add the corresponding FWB byteto Y [rounding value]. (?)

3) look at the next byte. When the top bit of all 4 bytesis processed then go back to A735 to work with

the next byte.

Example:

FWA =718.456 [exp = 8A;Man 1 =B3; Man 2 =9D; Man 3 = 2F;, Man 4 = 1B]
FWB =47.1173 [exp = 86;Man 1 = BC; Man 2 = 78; Man 3= 1D; Man 4 = 7E]
Result should be 33851.7068888.

Add exponents: 8A + 86 - 7F = 91.

Move FWA to &45 to &42 and zero some fields, So:
7845 = &B3 [Temp FWA Mantissa 1]
?&44 = &9D [Temp FWA Mantissa 2]
?843 = & 2F [Temp FWA Mantissa 3]
?&42 = & 1B [Temp FWA Mantissa 4]
?&41 = & 00 [FWB Rounding]

?&40 = & 7E [FWB Mantissa 4]

?& 3F = &1D [FWB Mantissa 3]
?&3E = & 78 [FWB Mantissa 2]
?&3D = &BC [FWB Mantissa 1]
?&3C=&00

?&3B =&00

?&3A = &00

Process next byte [A735]

Y=0

X =&FC

A = &1B [?&42], not zero so A705.

Process byte ?& 42 [A705]:
Divide FWB by 2: [FWB ?& 3D = 5E;?& 3E = 3C;?& 3F = OE;?& 40 = BF;?& 41 = 00]
Multiply Byte (&46,X) by 2 [?&42] = &1B* 2=&36

Top bit wasn't set, so jump to next byte [A731]

AT73L:

X=X+1=&FD.

X not 0 yet sojumpto A710

A710: Multiply Byte (&46,X) by 2 [?&43] = &2F * 2 =&5E
Top bit wasn't set, so jump to next byte [A731]

A73L: X =X +1=&FE.

X not 0 yet sojumpto A710

A710: Multiply Byte (&46,X) by 2 [?&44] =&9D * 2=&3A
Top bit was set, so Add FWB to result:

Y=Y +?28&42,X [?&40]. Y = &BF.

7834 =7834 + &41,X [&3F] = &00 + &0E = &0E
?&33=7&33+ &40,X [&3E] =&00 + &3C = &3C
?&32=7832+ &3F,X [&3D] = &00 + &5E = &5E
?&31=7&31+ &3E,X [&3C] = &00 + &00 = &00

A73L: X =X +1=&FF.

X not O yet so jump to A710

A710: Multiply Byte (&46,X) by 2 [?&45] = &B3* 2= &66
Top bit was set, so Add FWB to result:

Y=Y + 242X [?&41]. Y = &BF + &00 = &BBF.

7834 =78&34 + &41,X [&40] = &0E + &BF = &CD

7833 =7&33 + &40,X [&3F] = &3C + &0E = &4A

7832 =732+ &3F X [&3E] = &5E + &3C = &9A
?8&31=72&31 + &3E X [&3D] = &00 + &5E = &5E

A73L: X =X +1=&00.

Xis0, so X = &FC (old value from stack)

Process next byte [A735]

Y = &BF

X =&FC

A =& 36 [?&42], not zero so A705.

Process byte ?& 42 [A705]:

Divide FWB by 2: [FWB ?& 3D = 2F;?& 3E = 1E;?& 3F = 07;?& 40 = 5F;?& 41 = 80]
Multiply Byte (&46,X) by 2 [?&42] = &36* 2=&6C

Top bit wasn't set, so jump to next byte [A731]

A731L:

X=X+1=&FD.

X not 0 yet so jump to A710

AT710: Multiply Byte (&46,X) by 2 [?&43] = &5E* 2=&BC
Top bit wasn't set, so jump to next byte [A731]

A731: X =X +1=&FE.

X not O yet so jump to A710

A710: Multiply Byte (&46,X) by 2 [?&44] =&3A * 2=&74
Top bit wasn't set, so jump to next byte [A731]

A73L: X =X +1=&FF.

X not O yet so jump to A710

A710: Multiply Byte (&46,X) by 2[?&45] = &66* 2=&CC
Top bit wasn't set, so jump to next byte [A731]

A73L:

X=X +1=&00.

Xis0, so X = &FC (old value from stack)
Process next byte [A735]

Y = &BF

X =&FC

A = &6C [?&42], not zero so A705.

Process byte ?& 42 [A705]:

Divide FWB by 2: [FWB ?&3D = 17;7& 3E = 8F;?& 3F = 03;7&40 = AF;?&41 = CQ]
Multiply Byte (&46,X) by 2 [?&42] = &6C* 2 =&D8

Top bit wasn't set, so jump to next byte [A731]

A731:

X=X+1=&FD.

X not O yet so jump to A710

A710: Multiply Byte (&46,X) by 2 [?&43] =&BC* 2=&78
Top bit was set, so Add FWB to result:

Y=Y +242 X [?&3F=03]. Y =&C2.

7834 =734+ &41,X [&3E] =&CD + &8F + 1 =&5D
7833 =7&33+ &40,X [&3D] = &4A + &17+1=&62
2832 =7832+ &3F,X [&3C] = &9A + &00 = &9A
?831=7?&31 + &3E X [&3B] = &5E + &00 = &5E

A73L: X =X +1=&FE.

X not O yet so jump to A710

A710: Multiply Byte (&46,X) by 2 [?&44] = &74* 2 =& E8
Top bit wasn't set, so jump to next byte [A731]

A73L: X =X +1=&FF.

X not 0 yet sojumpto A710

A710: Multiply Byte (&46,X) by 2 [?&45] = &CC* 2 =&98
Top bit was set, so Add FWB to result:

Y=Y +72&42,X [?&41=C0]. Y =&82.

2834 =7834 + &41,X [&40] =&5D + &AF+ 1=&0D
?&33=7833+ &40,X [&3F] =&62+ &03+1=&66
?832=7832+ &3F X [&3E] = &9A + &8F =&29
?&31=7&31+ &3E,X [&3D] =&5E+&17+1=&76

— —

—

A73L:

X =X+1=&00.

Xis0, so X = &FC (old value from stack)
Process next byte [A735]

Y =&03

X =&FC

A = &D8[?&42], not zero so A705.

Process byte ?& 42 [A705]:

Divide FWB by 2: [FWB ?& 3D = 0B;?& 3E = C7;?& 3F = 81,;7& 40 = D7;?& 41 = ECQ]
Multiply Byte (&46,X) by 2 [?&42] =&D8* 2=&B0

Top bit was set, so Add FWB to result:

Y=Y + 242X [?&3E=C7]. Y = &49.

?834 =734+ &41,X [&3D] =&0D + &0B + 1 =&19
?&33=7833+ &40,X [&3C] = &66 + &00 = & 66

2832 =732+ &3F X [&3B] =&29 + &00=&29

7831 =7831+&3EX [&3A] =& 76+ &00=&76

A731L:

X=X+1=&FD.

X not 0 yet sojumpto A710

A710: Multiply Byte (&46,X) by 2[?&43] =&78* 2=&F0
Top bit wasn't set, so jump to next byte [A731]

A73L:

X=X+1=&FE.

X not 0 yet so jumpto A710

A710: Multiply Byte (&46,X) by 2 [?&44] = &E8* 2= &DO0
Top bit was set, so Add FWB to result:

Y =Y + 2842 X [?&40=D7]. Y =&20.

?834=7834+ &41X [&3F] =&19+ &81+1=&9B
?833=7&33+ &40,X [&3E] = &66 + &C7 = &2D
?832=7832+ &3F,X [&3D] =&29+&0B +1=&35
?831=7?831+ &3EX [&3C] =& 76+ &00=&76

A73L: X =X +1=&FF.

X not 0 yet so jump to A710

A710: Multiply Byte (&46,X) by 2 [?&45] =&98* 2=&30
Top bit was set, so Add FWB to result:

Y =Y +2&42,X [?&41 = EQ]. Y = &00.

7834 =734+ &41,X [&40] =&9B +&D7+1=&73
?833=7&33+ &40, X [&3F] =&2D + &81 + 1 =&AF
?832=7832+ &3F X [&3E] = &35+ &C7=&FC
?831=7?&31+ &3E X [&3D] =&76 + &0B = &81

——

— —

A73L:

X=X+1=&00.

Xis0, so X = &FC (old value from stack)
Process next byte [A735]

Y =&00

X =&FC

A = &B0[?&42], not zero so A705.

Process byte ?& 42 [A705]:

Divide FWB by 2: [FWB ?& 3D = 05;?& 3E = E3;?& 3F = C0;?7& 40 = EB;?& 41 = FQ]
Multiply Byte (&46,X) by 2 [?&42] =&B0* 2=&60 (Carry 1)

Top bit was set, so Add FWB to result:

Y=Y +242X [?&3E=E3]. Y =&ES.

7834 =734+ &41,X [&3D] =&73+&05+0=&78

7833 =7&33 + &40,X [&3C] = &AF + &00 = &AF
?832=7832+ &3F,X [&3B] =&FC + &00=&FC
?8&31=7&31+ &3E X [&3A] =&81 + &00=&81

A73L:

X=X+1=&FD.

X not 0 yet sojumpto A710

A710: Multiply Byte (&46,X) by 2 [?&43] = &F0* 2=&EO
Top bit was set, so Add FWB to result:

Y=Y +?2842X [?&3F =C0]. Y = &AS.

?834=7834+ &41,X [&3E] =& 78+ &E3 +1=&5C
?833=7&33+ &40,X [&3D] = &AF+ &05+1=&B5
7832 =732+ &3F X [&3C] =&FC + &00=&FC
?831=7&31+ &3E X [&3B] =&81 + &00=&81

AT73L:

X=X+1=&FE.

X not 0 yet sojumpto A710

A710: Multiply Byte (&46,X) by 2 [?&44] =&D0* 2=&A0
Top bit was set, so Add FWB to result:

Y=Y +72842X [?&40=EB]. Y = &8E.

7834 =734+ &41,X [&3F] =&5C+ &C0O0+1=&1D
?833=7&33+ &40,X [&3E] =&B5+ &E3+1=&99
?832=7832+ &3F X [&3D] =&FC+ &05+1=&02
7831 =7831+&3EX [&3C] =&81+&00+1=&82
A73L: X =X +1=&FF.

X not O yet so jump to A710

A710: Multiply Byte (&46,X) by 2 [?&45] = &30* 2= &60
Top bit wasn't set, so jump to next byte [A731]

——

—

A73L:

X=X +1=&00.

Xis0, so X = &FC (old vaue from stack)
Process next byte [A735]

Y =&8E

X =&FC

A = &60 [?&42], not zero so A705.

Process byte ?& 42 [A705]:

Divide FWB by 2: [FWB ?&3D = 02;?& 3E = F1;7& 3F = EO0;?& 40 = 75;?& 41 = F§]
Multiply Byte (&46,X) by 2 [?&42] = &60* 2 = & CO (Carry 0)

Top bit wasn't set, so jump to next byte [A731]

A731L:

X=X+1=&FD.

X not O yet so jump to A710

A710: Multiply Byte (&46,X) by 2 [?&43] = &E0* 2 =& CO (Carry 1)
Top bit was set, so Add FWB to result:

Y=Y + 242X [?&3F =EQ]. Y = &6E.

7834 =734+ &41,X [&3E] =&1D + &F1 + 1= &0F

?&33=7&33+ &40,X [&3D] =&99+ &02+1=&9C
?&32=7832+ &3F,X [&3C] =&02 + &00 = &02
?831=7&31+ &3E X [&3B] =&82 + &00=&82

A73L:

X=X+1=&FE.

X not 0 yet sojumpto A710

A710: Multiply Byte (&46,X) by 2 [?&44] = &A0* 2=&40
Top bit was set, so Add FWB to result:

Y=Y +?2842X [?&40=75]. Y = &E3.

7834 =734+ &41,X [&3F] =&0F + &E0O + 0 = & EF
?&33=7&33+ &40,X [&3E] =&9C + &F1 +0=&8D
?832=7832+ &3F,X [&3D] =&02 + &02 + 1 = &05
7831 =7&31+ &3E,X [&3C] =&82+&00+0=&82
A73L: X =X +1=&FF.

X not 0 yet sojumpto A710

A710: Multiply Byte (&46,X) by 2[?&45] = &60* 2=&CO
Top bit wasn't set, so jump to next byte [A731]

——

— —

A731L:

X=X +1=&00.

Xis0, so X = &FC (old value from stack)
Process next byte [A735]

Y =&E3

X =&FC

A = &C0[?&42], not zero so A705.

Process byte ?& 42 [A705]:

Divide FWB by 2: [FWB ?& 3D = 01;?& 3E = 78;?& 3F = F0;?7& 40 = 3A;?&41 = FC]
Multiply Byte (&46,X) by 2 [?&42] =& C0* 2 = &80 (Carry 1)
Top bit was set, so Add FWB to result:

Y=Y +72%42X [?&3E=78]. Y = &5B.

7834 =734+ &41,X [&3D] =&EF + &01+1=&F1
?833=7&33+ &40,X [&3C] =&8D + &00+ 0=&8D
?832=7832+ &3F,X [&3B] =&05 + &00 = &05
?8&31=7&31+ &3EX [&3A] =&82+ &00=&82

A73L:

X=X+1=&FD.

X not 0 yet so jumpto A710

A710: Multiply Byte (&46,X) by 2 [?&43] =&C0* 2= &80 (Carry 1)
Top bit was set, so Add FWB to result:

Y=Y +72842 X [?&3F =F0]. Y = &4B.

7834 =734+ &41,X [&3E] =&F1+&78+ 1 =&6A
?833=7&33+ &40,X [&3D] =&8D + &01+1=&8F
?832=7832+ &3F,X [&3C] =&05+ &00 = &05
?831=7&31+ &3E X [&3B] =&82+ &00=&82

A73L:

X=X+1=&FE.

X not O yet so jump to A710

A710: Multiply Byte (&46,X) by 2 [?&44] = &40* 2= &80
Top bit wasn't set, so jump to next byte [A731]

A731L: X=X +1=&FF.

X not 0 yet so jumpto A710

A710: Multiply Byte (&46,X) by 2[?&45] =&C0* 2=&80
Top bit was set, so Add FWB to result:

Y=Y +72842X [?2&41 =FC]. Y = &47.

7834 =7834 + &41,X [&40] = &6A + &3A + 1= &A5
?833=7&33+ &40,X [&3F] = &8F +&FO+0=&7F
?832=7832+ &3F X [&3E] =&05+ & 78+ 1=&7E
?831=7?&31+ &3E X [&3D] =&82+ &01+0=4&83

— —

—

A731:

X =X+1=&00.

Xis0, so X = &FC (old value from stack)
Process next byte [A735]

Y =&09

X =&FC

A = &80 [?&42], not zero so A705.

Process byte ?& 42 [A705]:

Divide FWB by 2: [FWB ?& 3D = 00;?& 3E = BC;?& 3F = 78;7& 40 = 1D;?& 41 = 7E]
Multiply Byte (&46,X) by 2 [?&42] = &80 * 2 =&00 (Carry 1)

Top bit was set, so Add FWB to result:

Y=Y +?2&42,X [?&3E=BC]. Y =&03.

7834 =734+ &41,X [&3D] =&A5+ &00+1=&A6
?&33=7&33+ &40,X [&3C] =&7F+ &00+0=&7F
?832=7832+ &3F, X [&3B] =&7E+ &00=&7E

7831 =7&31+ &3E,X [&3A] =&83 + &00 = &83

A731L:

X=X+1=&FD.

X not 0 yet sojumpto A710

A710: Multiply Byte (&46,X) by 2 [?&43] = &80 * 2= &00 (Carry 1)
Top bit was set, so Add FWB to result:

Y=Y +242X [?&3F=78]. Y =&7B.

7834 =734+ &41,X [&3E] = &A6+ &BC + 0= &62
?&33=7&33+ &40,X [&3D] =&7F + &00+ 1= &80
?832=7&32+ &3F, X [&3C] =& 7E+ &00 =& 7E

?&31=7831+ &3EX [&3B] =&83+&00=&83

A731L:

X=X+1=&FE.

X not O yet so jump to A710

A710: Multiply Byte (&46,X) by 2 [?&44] = &80 * 2= &00 (carry 1)
Top bit was set, so Add FWB to result:

Y=Y + 742X [?%40=1D]. Y = &98.

7834 =7834 + &41,X [&3F] =&62+ & 78+ 0=&DA

— —

—

?833=7&33+ &40,X [&3E] =&80+ &BC+0=&3C
?832=7832+ &3F X [&3D] =&7E+&00+1=&7F
?831=7&31+ &3EX [&3C] =&83+&00+0=&83
A731: X =X +1=&FF.

X not 0 yet sojumpto A710

A710: Multiply Byte (&46,X) by 2 [?&45] = &80 * 2 =&00 (carry 1)
Top bit was set, so Add FWB to result:

Y=Y +72842X [?&41 =TE]. Y = &16.

7834 =7834+ &41,X [&40] = &DA +&1D + 1= &F8
?833=7833+ &40, X [&3F] =&3C+&78+0=&B4
?832=7832+ &3F X [&3E] =&7F+ &BC+0=&3B
?831=7?&31+&3EX[&3D] =&83+&00+1=&84
A731:

X=X+1=&00.

Xis0, so X = &FC (old value from stack)

— —

——ly)

2845, ?& 44, ?& 43 and ?& 42 are all now zero, so we have our result in FWA: Exponent = 90 (after
normalisation)

Mantissa 1 = &4 (minus & 80 offset)

Mantissa2 = &3B

Mantissa 3 = &B4

Mantissa4 = &F8

Mantissa5 = &16 (set from Y)

Decimal value = 33851.7069

| think this routine uses the "Binary Multiply - Repeated Shift and Add" method for multiplication.
This method is described below:

* Result =0

* Repeat

* Shift 2nd multiplicand left until rightmost digit islined up with leftmost 1 in the

first multiplicand.

* Add 2nd multiplicand in that position to the result.

* Remove the 1 from the 1st multiplicand (done when the value is shifted |eft).

* Until 1st multiplicand is zero * the result has now been obtained

Disassembly for the Floating-Point Multiplication routine

AGCF 1 165 049 A531 LDA &31

A6D1 240 241 FOF1 BEQ-15--> &A6C4 [RTY

A6D3 032 224 164 20E0A4 JSR & A4EQ Unpack (&4A, &4B) var to FWB
A6D6 240 220 FODC BEQ -36 --> & A6B4 Clear FWA

A6D8 024 18 CLC

A6D9 0 165048 A530 LDA &30

A6DB
A6DD
AGDF
AGE1l
AGE3
AGES
AGEY
AGE9
AGEB
AGED
AGEE
AGFO
AGF2
A6F4
AGF6
AG6F9
AGFA
AG6FB
AGFD
AGFF
A701
A703
A705
A706
A708
AT70A
A70C
AT0E
A710
AT712
AT714
AT715
A716
A718
A719
AT71B
AT71D
AT1F

&/

t9

uB

UA

101 060
038 047
233 127
133 048
176 002
198 047
165 046
069 059
133 046
218

162 248
160 004
181 057
116 057
153 065 000
232

136

208 245
100 060
100 059
100 058
128 048
218
070 061
102 062
102 063
102 064
102 065
022 070
144 029
024

152

117 066
168

165 052
117 065
133052
165 051

65 3C
26 2F
E9 7F
8530
BO 02
C6 2F
A5 2E
45 3B
85 2E
DA
A2F8
A0 04
B5 39
74 39
994100
E8

88
DOF5
64 3C
64 3B
64 3A
80 30
DA
46 3D
66 3E
66 3F
66 40
66 41
16 46
901D
18

98
7542
A8
A534
7541
85 34
A533

ADC &3C

ROL & 2F

SBCH& TF

STA &30
BCS2--> & AGE7
DEC &2F

LDA &2E

EOR &3B

STA &2E

PHX

LDX#&F8
LDY#&04

LDA &39,X

STZ &39,X

STA &0041,Y
INX

DEY

BNE -11 --> & A6F2
STZ &3C

STZ &3B

STZ &3A

BRA 48 --> & A735
PHX

LSR &3D

ROR & 3E

ROR & 3F

ROR &40

ROR &41

ASL &46,X

BCC 29 -->&A731
CLC

TYA

ADC &42,X

TAY

LDA &34

ADC &41,X

STA &34

LDA &33

A721
A723
A725
AT727
AT29
A72B
A72D
AT2F
A731
A732
A734
A735
AT737
A739
AT73A
A73C
A73D
AT73F
A741
A743

u@ 117064

il (@) [— e

133051
165 050
117 063
133050
165 049
117 062
133 049
232

048 220
250

181 070
208 204
232

048 249
250

132 053
165 049
048 129
076 251 129

7540
8533
A5 32
75 3F
8532
A531
75 3E
8531
E8
30DC
FA

B5 46
DO CC
E8
30F9
FA

84 35
A531
3081
4C FB 81

ADC &40,X

STA &33

LDA &32

ADC &3F X

STA &32

LDA &31

ADC &3E,X

STA &31

INX

BMI -36 --> & A710

PLX

LDA &46,X

BNE -52 --> & A705

INX

BMI -7 --> & A735

PLX

STY &35

LDA &31

BMI -127 --> & A6C4 [RTY]
JMP &81FB Normalise FWA

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines
Page Last Altered: undefined

Integer MOD routine

Submitted by Steve Fewell

Routine: iMOD

Name: Integer MOD routine

Starting Address. & 9FF5

Entry criteria: Either IWA or FWA contain the dividend. A contains the variabl e type (Floating-Point/Integer). The Basic Text Pointer 2
points to an expression (the divisor) [e.g. " A%"]

Exit: The IWA .= The Remainder of IWA / Divisor-expression

Description:
Call the Integer Division routine to evaluate the Divisor-expression and perform the actual division.

Push the sign-bit (& 38) of the result to the 6502 stack, load X with & 3D (to specify where the result islocated, thisis done by 9FB2), and
call the end of the Integer multiplication routine to put the Result into the IWA, convert it to the correct sign, and to check the next operator
to seeif any further multiplication/division processing is required.

Disassembly for the Integer MOD routine

9FF5 032249128 20F980 JSR&80F9 Integer Division
9FF8 8 165056 A5 38 LDA &38
9FFA 008 08 PHP

9FFB 128 181 80 B5 BRA -75--> &9FB2 Get Result from Zero Page & check next operator in expression

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines
Page L ast Altered: undefined

Integer Division

Submitted by Steve Fewell

Routine: Integer Division

Name: Integer Division

Starting Address: &80F9

Entry criteria: Either the IWA or FWA contain the Dividend (Integer A), The BASIC Expression pointed to by
BASIC's second text pointer (&19, & 1A) evaluates to the Divisor value (Integer B).

Exit: The routine evaluates the expression Integer A / Integer B. Addresses & 39 to & 3C & the Carry-flag [so that
odd-numbers are handled correctly] contain half of the quotient (result) value. Addresses & 3D to &40 contain the
remainder.

Description:

Check the current variable type (A), and if the current value is Floating-Point, convert the Floating-Point value to
an Integer (IWA).

Next, prepare the Dividend value by pushing its sign-byte (& 2D) to the 6502 stack, and making the dividend
positive (so that we only need to deal with positive numbers).

Next call BASIC's Integer expression handler & AOOF to push the current integer to the BASIC stack, read the
BASIC expression from the second Text Pointer (&19, & 1A), evaluate it and return a numeric result. Check the
variable type (A) of the numeric result, and if the current value is Floating-Point, convert the Floating-Point value
to an Integer (IWA).

Retrieve the sign-byte for the Dividend (from the 6502 stack), Store it in & 38 - Thisisthe sign of the Remainder.
EOR the Dividend's sign-byte with the sign-byte of the Divisor to obtain the sign of the result, store thisin & 37.

Next, as we aready have determined the signs of our remainder and result, prepare the Divisor value by making it
positive (so that we only need to deal with division of positive numbers).

Retrieve the Dividend from the BASIC stack to locations & 39, & 3A, & 3B and & 3C and clear locations & 3D,
& 3E, & 3F and &40 (the remainder). So that the IWA contains the Divisor, & 39-& 3C contain the Dividend/result

and & 3D-& 40 contain the remainder.
If al bytes of the Divisor are zero (indicating a zero value), then give a Division by zero error and exit.
Set Y to 32 (thisisthe number of Dividend digits that we need to process, assume a 32-bit I nteger).

& 812D-& 8139 keep decrementing Y and shifting the Dividend value left (towards the Most significant byte
& 3C), until we find a bit that is not zero. Now we know exactly how many bits in the Dividend we need to
process (as we have removed the leading zeros).

Thisisthe main loop, which performs binary long division on the two numbers:

*1) Shift the Result left 1 place. &£813A-8141. (Thisisthe same as the shift in step *2), but is specified here for
clarity, as adifferent value is affected).

*2) Shift the Dividend left 1 place, loosing the top-most bit and shift the bit that was just lost from the Dividend
into the lower-end of the Remainder (moving the remainder's other bits left a place). & 813A-& 8149.

*3) Subtract the Divisor from the Remainder (least significant byte first), storing the 32-bit result in these 4
locations: 6502 stack (2 bytes), in X (1 byte) and in A (1 byte). & 814A-& 815D.

*4) If aborrow did not occur (the Divisor was successfully subtracted), then [& 815E-& 816B] store the result as
the new remainder (& 3D to &40). The next time step *2) is executed, shift 1 into the upper-end [right] of the
Dividend, thiswill form the next bit of the result, when the Dividend's bits are shifted left. BASIC cleverly uses
the same 4-bytes to store the result, and the bits which are still left to be processed of the Dividend. Note: asthe
values are Binary, only 1 subtraction is required.

*5) Decrement Y

Keep looping until Y has reached zero. This indicates that no digits of the Dividend remain to be processed, and
that locations & 39-& 3C contain the result. Note: The result has not been updated with the number of times the
Divisor could be subtracted from the Remainder (in step *4)), so it is up to the calling routine to shift the carry-
flag value into the bottom-end of the Result, shifting its other bits |eft a place. The calling routine also needs to
convert the result (using & 37) and/or Remainder (using & 38) to the correct sign.

To smplify what this division routine is dong, here is the same routine using Base-10 Integer numbers:

ResultAdd =0

Result=0

Remainder =0

Base =10

Y = Len(Dividend)

Repesat
*1) Result = (Result * Base) + ResultAdd
*2) Remainder = (Remainder * Base) + Next-Digit-of-Dividend
*3a) Temp = Remainder

*3b) ResultAdd =0
*3c) For Counter = 1 to Base-1
*3d) Temp=Temp - Divisor
*3e) if Temp > 0then Remainder = Temp : ResultAdd = ResultAdd + 1
*3f) Next Counter
*4) Rem Not required
*BYY=Y-1
untilY =0

E.g. 324 / 5 would produce the following workings:
Y=3

Divisor =5

Dividend = 324

1) Result=(0 10)+0 =0

2) Remainder = (0 10) +3=3
*4) Remainder = 3; ResultAdd =0
s

1) Result=(0 10)+0 =0

2) Remainder = (3 10) +2=32
*4) Remainder = 2; ResultAdd = 6
*BH)Y=1

1) Result=(0 10) +6 =6

2) Remainder = (2 10) +4=24
*4) Remainder = 4; ResultAdd = 4
*5Y =0

Now to get the correct Result we need to do step *1) again :
1) Result=(6 10) + 4=64
So, the result of 324/5 is 64, and the remainder is 4.

Disassembly for the Integer Division routine

80F9 032190150 20BE 9 JSR&96BE Check if Integer and Convert if Float

80FC - 165 045 A52D LDA &2D

80FE H 072 48 PHA

80FF 032190172 20BEAC JSR &ACBE Integer Positive

8102 032015160 200F A0 JSR &AOOF Push Integer to Stack and Get result of expression
8105 134039 86 27 STX &27

8107 032190150 20BE 96 JSR &96BE Check if Integer and Convert if Float

810A h 104 68 PLA

810B 8 133056 85 38 STA &38

810D E- 069 045 452D EOR &2D

810F 7 133055 85 37 STA &37

8111 032190172 20BEAC JSR &ACBE Integer Positive
8114 9 162057 A2 39 LDX#& 39

8116 032008189 2008BD JSR &BDO08 Pop Integer from BASIC Stack Zero-page
8119 d= 100061 64 3D STZ &3D

811B d> 100062 64 3E STZ &3E

811D d? 100063 64 3F STZ &3F

811F d@ 100064 64 40 STZ &40

8121 - 165 045 A52D LDA &2D

8123 * 005042 05 2A ORA &2A

8125 + 005043 05 2B ORA &2B

8127 005 044 052C ORA &2C

8129 G 240071 FO 47 BEQ 71 --> &8172 Division by zero error
812B 160 032 A0 20 LDY#&20

812D 136 88 DEY

812E A 240065 FO41 BEQ 65 --> &8171

8130 9 006 057 06 39 ASL &39

8132 &: 038058 26 3A ROL &3A

8134 &; 038059 26 3B ROL &3B

8136 &< 038060 26 3C ROL &3C

8138 016 243 10F3 BPL -13 --> &812D

813A &9 038057 26 39 ROL &39

813C &: 038058 26 3A ROL &3A

813E &; 038059 26 3B ROL &3B

8140 &< 038060 26 3C ROL &3C

8142 &= 038061 26 3D ROL &3D

8144 &> 038062 26 3E ROL &3E

8146 &2 038063 26 3F ROL &3F

8148 & @ 038 064 26 40 ROL &40

814A 8 056 38 SEC

814B = 165061 A53D LDA &3D

814D
814F
8150
8152
8154
8155
8157
8159
815A
815C
815E
8160
8162
8164
8165
8167
8168
816A
816C
816D
816E
816F
8171

> V = '\)@

229 042
072
165 062
229 043
072
165 063
229 044
170
165 064
229 045
144 012
133 064
134 063
104
133 062
104
133 061
176 002
104
104
136
208 201
096

E5 2A

A5 3E
E5 2B

A5 3F
E52C
AA
A540
E5 2D
900C
8540
86 3F
68

85 3E
68
853D
BO 02
68

68

88

DO C9
60

SBC &2A

PHA

LDA &3E

SBC &2B

PHA

LDA &3F

SBC &2C

TAX

LDA &40

SBC &2D

BCC 12 --> &816C
STA &40

STX &3F

PLA

STA &3E

PLA

STA &3D

BCS 2 --> &816E
PLA

PLA

DEY

BNE -55 --> &813A
RTS

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines
Page L ast Altered: undefined

Pop Integer from the BASIC Stack (Zp)

Submitted by Steve Fewell

Routine: popi0

Name: Pop Integer from the BASIC Stack into the Zero page location pointed to by X

Starting Address: &BDO08 (or BDO6 to pop Integer to location & 37-& 3A)

Entry criteria: X contains the first byte of a4-byte zero page memory location where the Integer from the Stack will be saved.
Exit: The 4-byte zero page memory location pointed to by X (i.e. 2X, ?X+1, ?X+2 and ?X+3) contains the most recent I nteger
number on the BASIC Stack. The Basic Stack Pointer is moved up.

Description:
If called at address & BDO6, then set X to #& 37 (thiswill the starting byte of the
4-byte location that the Integer value on the stack will be retrived to.

L oads the Zero page location pointed to by X with the 32-bit Integer pointed to by the BASIC Stack Pointer. Then move the
Stack Pointer up 4 bytes so that is points to the previous item pushed onto the stack.

Disassembly for the Pop Integer from the BASIC Stack (Zp) routine

BDO6 7 162055 A2 37 LDX#& 37
BDO8 160 003 A0 03 LDY#&03
BDOA 177 004 B104 LDA (&04),Y
BDOC 149 003 9503 STA &03,X
BDOE 136 83 DEY

BDOF 177 004 B104 LDA (&04),Y
BD11 149 002 95 02 STA &02,X
BD13 136 83 DEY

BD14 177 004 B104 LDA (&04),Y
BD16 149 001 95 01 STA &01,X
BD18 178 004 B2 04 LDA (&04)
BD1A 149 000 95 00 STA &00,X

BD1C 128 220 80DC BRA -36 --> &BCFA Move SP up 4 bytes

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines
Page Last Altered: undefined

Integer DIV routine

Submitted by Steve Fewell

Routine: iDIV

Name: Integer DIV routine

Starting Address: & 9FFD

Entry criteria: Either IWA or FWA contain the dividend. A contains the variable type (Floating-Point/Integer). The Basic Text Pointer 2

points to an expression (the divisor) [e.g. * A%"]
Exit: The IWA .= Quotient (Result, IWA = WA / Divisor-expression).

Description:
Call the Integer Division routine to evaluate the Divisor-expression and perform the actual division.

Multiply the Result by the base (Base 2 - Binary) and add on any value needing to be added to the result. Thisis not done by the Integer
Division routine due to time constraints, as the MOD routine does not need to perform these tasks in order to obtain its required remainder.

Push the sign-bit of the result to the 6502 stack, load X with & 39 (to specify where the result is located), and call the end of the Integer

multiplication routine to put the Result into the IWA, convert it to the correct sign, and to check the next operator to see if any further
multiplication/division processing is required.

Disassembly for the Integer DIV routine

9FFD 032249128 20F980 JSR&B80F9 Integer Division
A0O00 &9 038057 26 39 ROL &39
A002 &: 038058 26 3A ROL &3A

AO004 &; 038059 26 3B ROL &3B

AQ006 &< 038060 26 3C ROL &3C

A008 $7 036055 24 37 BIT &37

AQOA 008 08 PHP

AOOB 9 162057 A2 39 LDX#& 39

A00D 128 165 80 A5 BRA -91 --> &9FB4 Get Result from Zero Page & check next operator in expression

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines

Page Last Altered: undefined

Extract String

Submitted by Steve Fewell

Routine: ExtStr

Name: Extract String

Starting Address: &AD19

Entry criteria: Text Pointer B pointsto the " character [quote] of the String. Y contains the Text Pointer
B Offset (& 1B).

Exit: SWA contains the extracted String.

Description:
Set X to 0 (X isapointer to the next free position in the SWA).

Increment Y to point to the character after the quote. If the current character is a carriage return (ASCI|
13), then the end of line has been reached before the closing quote, so aMissing " error is generated.
Otherwise, store the character in the next free location in the SWA, and increment the next free location
(X), and the Text Pointer B Offset (Y).

If the character that was just stored wasn't a quote ["] then process the next character.

Otherwise, if aquote was just processed, then check the next character. If the next character is not a
guote then branch to the end of string routine (& AD11), otherwise increment Y to the next character
(ignoring the second quote, as the first quote has already been stored in the SWA), before processing the

next character.

End of string routine (&AD11):

When the end of string is reached (a quote which isn't followed by a second quote), the length of the
string (X) is decremented by 1 (as the end quote is not part of the string). Thislength is stored in & 36
(The SWA length byte), and the current Text Pointer B Offset position (Y) is stored back in the Text
Pointer B working area (& 1B), the offset now pointsto the character after the end quotes. Load the
Accumulator with O (to signify that a String type has just been processed) and exit.

Disassembly for the Extract String routine

AD19 162 000 A2 00 LDX#& 00

ADI1B 200 C8 INY

ADI1C 177 025 B119 LDA (&19),Y

ADI1E 201 013 C90D CMP#&0D

AD20 240 017 FO 11 BEQ 17 --> & AD33
AD22 157 000 006 9D 00 06 STA &0600,X

AD25 200 C8 INY

AD26 232 E8 INX

AD27 " 201034 C9 22 CMP#& 22

AD29 208 241 DOF1 BNE -15 --> & AD1C
AD2B 177 025 B119 LDA (&19),Y

AD2D " 201034 C9 22 CMP#& 22

AD2F 240 234 FO EA BEQ -22 --> & AD1B
AD31 208 222 DO DE BNE -34 --> & AD11
AD33 L 076148146 4C 94 92 JMP &9294 Missing " error

Complete the Extraction of the String

AD11 202 CA DEX
AD12 6 134054 86 36 STX &36
AD14 132 027 84 1B STY &1B
AD16 169 000 A9 00 LDA#& 00

AD18 ° 096 60 RTS

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines

Page Last Altered: undefined

Next non-space Char PTRB

Submitted by Steve Fewell

Routine: NextCharPTRB

Name: Next non-space Char PTRB

Starting Address: &8ED5S

Exit: Move past spacesin BASIC's Text Pointer B and return the next Character in the string. Y isthe

PTR B offset of the character

Description:
Reads past any space characters found at the current position in the PTRB. Returns with the next non-
space Character from PTRB in A, and with the PTRB Offset pointing to this value.

Routine & 8EEB returns the next non-space character in PTRB, and also sets
the zero flag is the character isacomma (,'), or clears the zero flag isthe
character is not acomma.

Disassembly for the Next non-space Char PTRB routine

8EDS 164 027 A41B LDY &1B
8ED7 230 027 E6 1B INC & 1B
8ED9 177 025 B119 LDA (&19),Y
8EDB 201 032 C920 CMP#& 20

8EDD 240 246 FO F6 BEQ -10 --> &8ED5

8EDF ° 096 60 RTS

Get Next non-space Char PTRB and compare with*;'

8EEB 032 213 142 20 D5 8E JSR & 8ED5
8EEE , 201044 C92C CMP#&2C
8EFO © 096 60 RTS

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines
Page L ast Altered: undefined

8FAE Execute next command line / program statement
Submitted by Steve Fewell

Description:

This routine has many entry points (depending on how the last statement finished and what needs to be done to tidy up
before the next statement can be executed. The entry points are listed between square brackets ([]).
Therefore, this routine may not necessarily be executed in the order described.

[&8FAE] Skip the rest of the line. Thisroutine is called when aDATA keyword is found (as DATA statements are skipped
when reached and not executed (as the READ command controls how they are handled). It is also called when the DEF keyword
isfound (as function and procedure definitions are not directly executed until they are called by an FN or PROC keyword).
Thisroutine is also called when aREM keyword is found, to skip therest of the line - asit isacomment line.

Additionally, this routine is also executed when a™*' command is found (the ** command is first passed to the Operating
System OSCL I routine and then this routine skips the line - so that BASIC doesn't try to execute the *' command.

Therest of the line is skipped as follows:

* Set A to #& 0D (the end of line character - '<cr>").

* Set Y to the BASIC Text Pointer A offset (&0A) - 1.

* Keep incrementing Y and checking the character at BASIC Text pointer A (&0B-&0C) plus Y (offset) with the

character in A (the '<cr>' character) until the characters match.

* Call routine & 9BBC to update the BASIC Text Pointer A address (to includethe Y offset value) and to reset the offset
(&0A) to 1. (basically, thisadds Y to the Text Pointer A address (& 0B-&0C)).

[&8FBD] This routine checks whether the last character read (in A) is'<cr>', if it isn't then jump to & 8FAE
to skip therest of the line.
Now, we are at the end of the line (i.e. we have reached the '<cr>' character).

[&8FC1] If the BASIC Text pointer MSB address is #& 07 then there are no more program lines to execute (as we were
executing a statement from the command line - and not from within a program), so jump to & 8F86 to prompt for the next
command line input.

SetY to#&01.

L oad the next character (offset Y) from the BASIC text pointer A location.

If the character is negative (i.e. #& FF) then we have reached the end of the program, so jump to & 8F86 to prompt
for the next command line input.

If the TRACE flag (location & 20) ison (i.e. it's value is not zero), then:
* Set IWA to the Line number (MSB byte (&2B) = thefirst byte at BASIC Text pointer A (offset 1) and the LSB byte (&2A)
= the second byte at BASIC text pointer A location (offset 2)).
* Call routine & 9C4B to display the TRACE line number (in the IWA) on the screen.

[&8FDB] Set the BASIC Text pointer A offset (location & 0A) to #& 04 (i.e. the first character of the program
line - after the line number and line length).
Jump to & 900D to execute the statement at the BASIC Text pointer A location.

[& 8FEB] Check for special start statement characters'*', '=', '"EXT keyword' and '['

Set Y to the BASIC Text pointer A offset (location & 0A) minus 1.

L oad the character at the BASIC text pointer A location (plus offset - Y) (this should be the first character of the

BASIC statement).

If the character is™*' then jump to & 8FA4 to execute the "*'-command.

If the character is[' then set the OPT flag (location & 28) to 3 (default setting) and jump to & 8920 to begin

the assembly.

If the character is'=" then jump to & 9060 to deal with returning from a function and setting the return variable's

value.

If the character is'EXT keyword' then jump to & BE93 to execute the 'EXT =' statement. Note: In BASIC 2, it was not
possible to assign afile length (EXT) value, only to read the EXT value; therefore, only 1 BASIC token exists for the 'EXT!
keyword (unlike PTR, PAGE, LOMEM and HIMEM which have 2 keyword tokens, one for the setting of the value (where the keyword
occurs before the '="), and one for the reading of the value (where the keyword occurs after the '=")).

When BASIC version 4 was written, there was not enough spare BASIC Keyword token values to have two 'EXT' keywords
(onefor 'EXT ='and the other for '= EXT"), so this workaround directly tests for the 'EXT' keyword appearing at the

start of a statement (along with the other special start statement characters ™', '[' and '=") in order to distinguish between

the reading of the EXT value and the writing of the EXT value.

[& 9000-& 9048] Executethe BASIC statement

[&9000] Decrement the BASIC Text pointer A offset (location & 0A).

[£&9002] Call routine & 9BAG6 to check for the end of statement (‘Syntax error' if ', '<cr>' or 'EL SE' not found).

[&9005] Load the character pointed to by BASIC Text Pointer A.

If the character isnot "' then jump back to & 8FBD to skip the rest of the program line and then proceed to execute

the statement on the next line.

[£&900B] Set Y to the BASIC Text Pointer A offset (location &0A).

[&900D] Keep incrementing the BASIC Text Pointer A offset (location & 0A) until we have found a non-space character.
This skips any spaces at the beginning of the BASIC Statement.

If the first non-space character is more than or equal to #& CF (PTR=, PAGE=,...,OSCLI), [i.e. it is not a Command

Line-only statement (e.g. OLD, NEW, RENUMBER, EDIT) or a middle of statement keyword (e.g. MID$, ELSE, AND, LEN), but a
valid keyword that can occur at the start of a program Statement], then:

[&9019] Jump to the keyword's execution address, as follows:

Multiply the character's ASCII Code by 2 & add the result to the base address & 874D to form a pointer to the execution
address (L SB first, MSB next) of the required BASIC keyword. This resulting addressis jumped to.

Example 1: Character = & CF [PTR= token] = 11001111 multiply by 2 = 10011110 (which is & 9E in hex).

So, &874D + &9E = &87EB (The LSB of the execution address for the PTR= keyword (& 87EC isthe MSB of the address)).
Example 2: Character = & FF [OSCLI token] = 11111111 multiply by 2 = 11111110 (which is & FE in hex).

So, &874D + & FE = &884B (The L SB of the execution address for the OSCLI keyword (& 884C isthe MSB of the address)).

BASIC Keywords between 128 and 141 are not considered. as these Keywords are used in the middle of statements (and are not
functions), so the statements/expression handler will deal with these values. These keywords are asfollows: AND, DIV, EOR,
MOD, OR, ERROR, LINE, OFF, STEP, SPC, TAB(, ELSE and THEN.

[& 901E] Execute the BASIC Command line statement (which can include keywords OLD, NEW, AUTO, EDIT, etc...)
If the first/next non-space character on the command line is more than or equal to #& C6 ('AUTO") then jump back to & 9019
to jump to the execution address for the BASIC keyword. This includes all BASIC statement start keywords (but not middle
of statement keywords like MID$, LEN, =PTR, AND, etc...).

Otherwise (the character is less than #& C6) continue to & 9025 to check for a variable name.

[& 9025] Check for variable name

If the character is less than #& CF then check whether it is a variable name as follows:

* Set BASIC Text pointer B location to the BASIC Text Pointer A location. (&19=&0B, & 1A=&0C, & 1B=Y)

* Call routine & 9909 to evaluate a variable name at the BASIC text pointer B location.

* |f routine & 9909 returns with a value other than zero then jump to the LET keyword routine (address & 904F).
to assign avalue to the variable, as the variable was found and the address of the variable's value was found

* Otherwise, (routine & 9909 returned zero) the variableis either invalid or hasn't been created yet, so:

* Check the carry flag status (as returned by routine & 9909). If carry is set then jump to & 8FEB to
check whether the BASIC statement begins with a special character (*', '[', '=" or 'EXT keyword',
and issue 'Syntax error' [via check end of statement routine & 9BAG] if none of these special
characters match the character at the start of the statement).

* Store the BASIC text pointer B offset (in X) back to location & 1B.

* Call routine & 9B86 to check whether the next non-space character after the variable nameis an '=' character.
If it isn't then issue the ‘Mistake' error, as the variable assignment is not correct and a variable
cannot appear at the start of a statement unlessit is being assigned a value.

* Otherwise, '=" was found sucessfully.

* Call routine & 9854 to add the new variable name to the variable pointer table.

* |f the variable typeis afloat (location & 2C contains #& 05) then set X to #& 06; otherwise, set X to
#& 05. This specifies the amount of space to allocate for the variable's value.

* Call routine & 9883 to alocate space for the variable (and initialise it's value to zero/null).

* Decrement the BASIC text pointer A offset (so that BASIC Text pointer A points to the first character of the
variable name) and continue to the LET keyword routine to eval uate the variable name (again!) and
assign the value specified after the '="to the variable.

Disassembly for the Execute next command line / program statement routine

8FAE 169 013 A9 0D LDA#&0D

8FBO
8FB2
8FB3
8FB4
8FB6
8FB8
8FBB
8FBD
8FBF
8FC1
8FC3
8FC5
8FC7
8FC9
8FCB
8FCD
8FCF
8FD1
8FD3
8FD4
8FD6
8FD8
8FDB
8FDD
8FDF
8FE1
8FE3
8FE5
8FE8
8FEB
8FED
8FEE
8FFO
8FF2
8FF4
8FF6

164 010

136

200

209 011
208 251
032 188 155
128 004
201 013
208 237

165 012
201 007
240 191
160 001
177011
048 185
166 032
240 010
133043
200
177011
133 042
032 075 156
160 004
132 010
128 044
169 003
133 040
076 032 137
076 147 190
164 010

136
177011
201 042
240 176
201 091
240 233

A4 0A
88

C8

D1 0B
DOFB
20BC 9B
8004
C90D
DO ED
A50C
C9 07
FO BF
A0O01
B10B
30B9
A6 20
FO OA
852B
C8
B10B
85 2A
204B 9oC
A0 04
84 0A
80 2C
A9 03
8528

4C 2089
4C 93 BE
A4 0A
88
B10B
C92A
FO BO
C95B
FO E9

LDY &0A

DEY

INY

CMP (&0B),Y

BNE -5 --> & 8FB3

JSR &9BBC Update BASIC Text pointer A (Add offset value & then reset offset to 1)
BRA 4 --> & 8FC1 Process the next program line
CMP#&0D

BNE -19 --> & BFAE Skip the rest of the line and process the next program line
LDA &0C

CMP#&07

BEQ -65 --> & 8F86 Read & execute command line input
LDY#&01

LDA (&0B),Y

BMI -71 --> & 8F86 Read & execute command line input
LDX &20

BEQ 10 --> &8FDB

STA &2B

INY

LDA (&0B),Y

STA &2A

JSR &9C4B Display current line number (IWA) on screen [if TRACE is on]
LDY#&04

STY &0A

BRA 44 --> &900D

LDA#&03

STA &28

JMP &8920 '[' Begin Assembly

JMP &BE93 EXT =

LDY &0A

DEY

LDA (&0B),Y

CMPH& 2A

BEQ -80 --> & 8FA4 "*'-Command

CMP#&5B

BEQ -23 --> & 8FE1

8FF8
8FFA
8FFC
8FFE
9000
9002
9005
9007
9009
900B
900D
900F
9011
9013
9015
9017
9019
901A
901B
901E
9021
9023
9025
9027
9029
902B
902D
902F
9032
9034
9036
9038
903B
903E
9040
9042

YM

201 162
240 236
201 061
240 096

198 010
032 166 155
178 011
201 058
208 178
164 010
230010
177011
201 032
240 246
201 207
144 012
010

170

124 077 135
032 224 142
201 198
176 244
166 011
134 025

166 012
134 026

132 027
032 009 153
208 027

176 181
134 027
032 134 155
032 084 152
162 005
228 044
208 001

CoA2
FOEC
C93D
FO 60
C6 OA
20 A6 9B
B2 0B
C93A
D0 B2
A4 0A
E6 OA
B10B
C920
FO F6
CI9CF
90 0C
0A

AA

7C 4D 87
20EOQ 8E
C9C6
BO F4
A6 0B
86 19
A60C
86 1A
84 1B
2009 99
D0 1B
BO B5
86 1B
2086 9B
2054 98
A205
E42C
DO 01

CMPH& A2

BEQ -20 --> & 8FE8

CMP#& 3D

BEQ 96 --> & 9060

DEC &0A

JSR & 9BA6 Check end of Statement

LDA (&0B)

CMP#&3A

BNE -78 --> & 8FBD Skip the rest of the line (until '<cr>' found) & process the next program line
LDY &0A

INC &0A

LDA (&0B),Y

CMP#& 20

BEQ -10 --> &900B

CMP#& CF

BCC 12 --> &9025

ASL A

TAX

JMP (& 874D, X)

JSR & 8EEQ Get next non-space character pointed to by Ptr A
CMP#&C6

BCS-12 --> &9019

LDX &0B

STX &19

LDX &0C

STX &1A

STY &1B

JSR & 9909 Evaluate variable/array name & return the address of the value
BNE 27 --> & 904F Create variable (LET)

BCS-75 --> & 8FEB

STX &1B

JSR & 9B86 Check for '='

JSR & 9854 Create new variable namein variable pointer table
LDX#&05

CPX &2C

BNE 1 --> &9045

9044 232 E8 INX

9045 032131152 208398 JSR & 9883 Allocate space for variable
9048 198 010 C6 0A DEC &0A
904A ...LET keyword...

Disassembly for 9B86 Check for '=' routine

9B86 032 213 142 20 D5 8E JSR &8EDS5 Get next non-space character (PTR B)
9B89 = 201061 C93D CMP#& 3D
9B8B 208 211 DOD3 BNE -45 --> Mistake error

9B8D ° 096 60 RTS

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines
Page L ast Altered: undefined

9BAG6 Check for End of Statement

Submitted by Steve Fewell

Routine:9BA6

Name: Check for End of Statement

Starting Address: &9BA6

Entry criteria: &0A, &0B and & 0C point to the input line.

Exit: Syntax Error if unexpected input isfound at end of a statement.

Description:

Thisroutineis called before acommand (e.g. CLS) is executed to check that the BASIC
Statement line is terminated correctly, and contains no errors. If al is ok then

the routine returns sucessfully and the command is performed.

If errors are found on the input line, then a Syntax Error is generated.

The routine does the following:

Set Y to the offset which contains the next character to check. Thiswill be & 0A for the BASIC Text pointer A
offset,

or, to &1B for the BASIC text pointer B offset (if called from routine & 9B96).

Get next character on the line (at the offset position), skiping any spaces found.

If the next character is":' or '<return>' or 'EL SE' (token & 8B) then the

line has been terminated correctly, so update the pointer (& B, & C) and set the pointer offset

to 1. Test whether an error has occurred, if no error then return (otherwise goto 9B7D to issue an 'Escape’ error).

If the next character on the line is anything else then generate a Syntax Error.

Disassembly for the Check for End of Statement routine

9BAG6
9BAS8
9BA9
9BAA
9BAC
9BAE
9BBO
9BB2
9BB4
9BB6
9BB8
9BBA
9BBC
9BBD
9BBE
9BCO
9BC2
9BC4
9BC6
9BC8
9BCA
9BCC
9BCE

164 010
136
200
177011
201 032
240 249
: 201 058
240 008
201 013
240 004
201 139
208 173
024
152
e 101 011
133011
144 002
230 012
160 001
132 010
$ 036 255
0 048175
096

A4 0A
88

c8

B10B
C9 20
FO F9
C93A
F0 08
C90D
FO 04
C9 8B
DOAD
18

98

65 0B
85 0B
90 02
E6 0C
A0 01
84 0A
24 FF
30 AF
60

LDY &0A

DEY

INY

LDA (&0B),Y

CMP#& 20

BEQ -7 --> &9BA9

CMP#& 3A

BEQ 8 --> &9BBC

CMP#&0D

BEQ 4 --> &9BBC

CMP#& 8B

BNE -83 --> & 9B69 'Syntax error'
CLC

TYA

ADC &0B

STA &0B

BCC 2 --> &9BC6 Set PTR A Offset to 1 & Check for Escape error condition
INC &0C

LDY#&01

STY &0A

BIT &FF

BMI -81 --> & 9B7D Escape error
RTS

Disassembly for the Check for End of Statement (PTR B) routine

9B9%6
9B98

164 027
128 014

A41B LDY &1B
80 OE BRA 14 --> & 9BA8

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines
Page L ast Altered: undefined

8F83 Prompt for command line and execute the entered command(s)
Submitted by Steve Fewell

Description:

If called from & 8F83 then afull initialisation will be done before the command line prompt appears.

Thiswill reset the following:
* Program start address
* Stack Pointer
* Clear *EDIT mode
* REPEAT/FOR/GOSUB parameters, return addresses, etc...
* Page & 7 user tables (& 07F0-& 07FF)
* Variable pointer tables (destroys all variables that have been created)

If called from & 8F86 then the initialisation will not be done as not required. Any defined variables (etc...) will remain

Reset the BASIC Text pointer A (&0B, &0C) to & 0700 (the address of the command line buffer).
Call routine & B2A6 to reset the 'ON ERROR' pointer to BASIC's default error handling routine.

Call OSWRCH with A = #& 3E to output the '>' [prompt character] to the screen.

Call routine & BA74 to read the input line (using OSWORD 0) and store the input to the command line buffer (& 0700-
& O07EF). The parameters (line length, minimum and maximum acceptable characters, etc...) for thisinput as the same as
those used during the INPUT command (as both inputs are done by the same routine, (& BA70)).

[&8F97] Set the 6502 stack pointer to #& FF (to clear any FN/PROC subroutines that were in progress when the last
command (that was executed by the BASIC Intrepreter) had finished, or when the last program execution had ended).
Call routine & B2A6 (again) to reset the 'ON ERROR' pointer to BASIC's default error handling routine.

Call routine & BAEB to tokenise the command line (& 0700-& 07EF) and to enter the line into the current BASIC

program if aline number was supplied at the start of the command line.

If the Command line contained a program line (which has now been inserted into the current program), then jump back

to &8F83 to do afull initialisation (as after aline in the Program has been inserted/changed or removed, any defined
variables need to be reset, because the TOP of the program has now been changed - corrupting the variable storage space).

Otherwise, if adirect command (not a program line) has been entered, then call & 901E to execute the statement(s) on
the Command Line.

Disassembly for the Prompt for command line and execute the entered command(s) routine

8F83 032172187 20ACBB JSR&BBAC Initialise Page 7 & reset Variable pointers, etc...
8F86 160 007 A0 07 LDY#&07

8F388 132012 840C STY &0C

8F8A d 100011 64 0B STZ &0B

8F8C
8F8F
8F91
8F94
8F97
8F99
8F9A
8F9D
8FAO

032 166 178
> 169 062
032 238 255

t 032 116 186

162 255
154

032 166 178
032 235 186
176 225

8FA2 z 128122

20 A6 B2
A9 3E

20 EEFF
2074 BA
A2 FF
9A

20 A6 B2
20 EB BA
BOEl

80 7A

JSR & B2A6 Reset 'ON ERROR' pointer to BASIC's default error handling routine
LDA#& 3E

JSR & FFEE OSWRCH

JSR & BA74 Prompt for & get the User's input line (storing it in buffer & 0700-& 07FF)
LDX#&FF

XS

JSR & B2A6 Reset 'ON ERROR' pointer to BASIC's default error handling routine

JSR & BAEB Tokenise Command Line and Insert Lineinto Program (if line number given)
BCS -31 --> &8F83 Initialise & prompt for next command line

BRA 122 --> & 901E Execute the command line

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines
Page Last Altered: undefined

BBAC Initialise Page 7 & reset Variable pointers, etc...
Submitted by Steve Fewell

Description:

Set LOMEM and VARTOP to TOP [end of BASIC program].
Gosub BBCF to do the following:
Set BASIC PROGRAM START (MSB byte) page (&1D) to PAGE.
Set BASIC Stack Pointer to HIMEM.
Clear thetop bit of & 1F -> LISTO flag (to cancel *EDIT mode).
Clear the Curent REPEAT level (&24).
Clear the Current FOR level (& 26).
Clear the Current GOSUB level (& 25).
Clear the BASIC PROGRAM START LSB address (& 1C).

Copy the 16-byte table in BASIC ROM locations & BF14 to & BF23 to page 7 (RAM) locations
& 07F0 to & 07FF. Thisisthe Floating-Point routine table, and provides the address
for various routines which can be called from an assembly language program.

This table contains the following information (all addresses are stored L SB first):

BASIC ROM Locations Page&7 location Value and meaning

BF14-BF15 07F0-07F1 A7B8 = the executable address for FWA = SQR(FWA)

BF16-BF17 07F2-07F3 ASEE = Executable address for FWA = [argp] / FWA

BF18-BF19 07F4-07F5 ABAG = Executable address for FWA = [argp] * FWA

BF1A-BF1B 07F6-07F7 A68D = Executable address for FWA = [argp] + FWA

BF1C-BF1D 07F8-07F9 ACCA = Executable address for compliment FWA [FWA = -FWA]
BF1E-BF1F 07FA-07FB A541 = Executable address for Load FWA [FWA = [argp]]
BF20-BF21 07FC-07FD A519 = Executable address for Store FWA [[argp] = FWA]

BF22 07FE 4A = Start of the zero page location for argp [pointer to Float variabl €]
BF23 07FF 2E = Start of the 8 byte zero page location of FWA

This page 7 information will be overwritten if a BASIC text (program) lineis entered
which exceeds & FO characters. But BASIC refreshes this information often, so that
it will always be available to assembly language programs.

Zero the locations & 0480 to & 04FF. Thiswill overwrite the BASIC variable pointer table.
Thiswill, however, preserve the resident Integer (A%, B%, etc...) workspace and

the Temporary Floating-Point variable areas.

Disassembly for the Initialise Page 7, etc...

BBAC
BBAE
BBBO
BBB2
BBB4
BBB6
BBB8
BBBB
BBBD
BBCO
BBC3
BBC4
BBC6
BBCS8
BBCB
BBCC
BBCE
BBCF
BBD1
BBD3
BBD5
BBD7
BBD9
BBDB
BBDD
BBDF
BBE1
BBE3
BBES
BBE7

ds
d&
d%

165 018

133 000

133 002

165 019

133 001

133 003

032 207 187
162 016

189 019 191
157 239 007
202

208 247

162 128
158 127 004
202

208 250
096

165 024

133 029
165 006

133 004
165 007

133 005
169 128
020 031
100 036
100 038
100 037
100 028
096

A512
8500
8502
A513
8501
8503
20CF BB
A210
BD 13 BF
9D EF 07
CA
DOF7
A280
9E 7F 04
CA

DO FA
60

A518
851D
A5 06

85 04

A5 07
8505

A9 80

14 1F

64 24

64 26

64 25

64 1C

60

LDA &12
STA &00
STA &02
LDA &13
STA &01
STA &03
JSR &BBCEF /td>

LDX#& 10
LDA &BF13,X
STA &07EF,X
DEX

BNE -9 --> &BBBD
LDX#& 80
STZ &047F,X
DEX

BNE -6 --> &BBCS8
RTS

LDA &18
STA &1D
LDA &06
STA &04
LDA &07
STA &05
LDA#& 80
TRB &1F
STZ &24

STZ &26

STZ &25

STZ &1C
RTS

ggggg

\ ol \ o \ o \ ol \ o \

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines
Page L ast Altered: undefined

A519 Pack FWA to Floating-Point Variable

Submitted by Steve Fewell

Routine:apack

Name: Pack FWA to Floating-Point Variable

Starting Address: & A519

Entry criteria: &4A and & 4B (the argp) point to the first byte of the address
that should be used to store the packed 5-byte Floating-Point variable.

Exit: The FWA value has been converted to 5-byte variable format

and copied to the address specified.

Description:

The 1st byte of the variable is set to the FWA exponent.

The 2nd byte of the variable is set to the FWA Sign byte EORed with the FWA Mantissa byte 1.
(this sets the top bit to 1 (if positive number [sign=0]) or O (if negative number [sign not 0])
the value is now ANDed with #& 80 to clear all bits except for the top bit (which we want to preserve).
the value is lastly EORed with the Mantissa byte 1 to replace bits O to 6 with the Mantissa byte 1 (preserving
the top bit).
The 3rd byte of the variableis set to the FWA Mantissa byte 2.
The 4th byte of the variable is set to the FWA Mantissa byte 3.
The 5th byte of the variableis set to the FWA Mantissa byte 4.

Disassembly for the Pack FWA to FP Variable routine

A519 0 165 048 A530 LDA &30
A51B J 146 074 92 4A STA (&4A)
A51D 160 001 A001 LDY#&01

AS51F : 165 046 A52E LDA &2E

A521
A523
A525
AS527
A529
A52B
A52C
AS52E
A530
A531
A533
A535
A536
AS538

El

El

069 049
041128
069 049
145074
165 050
200

145 074
165 051
200

145074
165 052
200

145074
096

45 31
29 80
45 31
91 4A
A5 32
C8

91 4A
A5 33
C8

91 4A
A534
C8

91 4A
60

EOR &31
AND#& 80
EOR &31
STA (&4A),Y
LDA &32
INY

STA (&4A),Y
LDA &33
INY

STA (&4A),Y
LDA &34
INY

STA (&4A),Y
RTS

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines

Page Last Altered: undefined

Reset ON ERROR code pointer

Submitted by Steve Fewell

Routine: ON ERROR OFF

Name: Reset BASIC's error code pointer

Starting Address: & B2A6

Exit: BASIC's error vector (&16, &17) contains the address & B2AF.

Description:

This routine resets the BASIC error vector code address to the address of the default BASIC error
routine code (the default address of & B2AF).

If an ON ERROR statement is issued then the error vector will point to the code after the ON ERROR
instead of this defaullt.

The BASIC's default error program code is located from & B2AF to & B2C7, and contains the following
tokenised BASIC instructions:

Address Contents (in Hex) BASIC program Code
B2AF F6 REPORT

B2B0 3A ;

B2B1 E7 IF

B2B2 OE ERL

B2B3 F1 PRINT

B2B4 22 -

B2B5 20 <space>

B2B6 61 a

B2B7 74 t

B2B8 20 <space>
B2B9 6C I

B2BA 69 [

B2BB 6E n

B2BC 65 e

B2BD 20 <space>
B2BE 22 o

B2BF 3B :

B2CO OE ERL
B2C1 3A :

B2C2 EO END
B2C3 8B ELSE
B2C4 F1 PRINT
B2C5 3A :

B2C6 EO END
B2C7 0D <return>

Therefore, the default BASIC error codeiis:
REPORT:IFERLPRINT" at line";ERL:ENDELSEPRINT:END

Disassembly for the Reset ON ERROR Code Pointer routine

B2A6 169 175 A9 AF LDA#&AF
B2A8 133022 85 16 STA &16
B2AA 169178 A9 B2 LDA#& B2
B2AC 133 023 8517 STA &17

B2AE = 096 60 RTS

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines
Page L ast Altered: undefined

B8B6 INPUT
Submitted by Steve Fewell

Description:
Check the next non-space character. If it'sa'# then jump to the PRINT# routine [& B847].

If the next character isa'LINE' keyword token then set the carry flag; otherwise, decrement BASIC Text Pointer A
Offset (&0A), as we do not need the next character yet, and clear the carry flag.

Set bit 6 of location & 4C to the value of the carry flag [by setting the top bit & shifting right one position].

Set &4D to #& FF (field extraction offset flag, #& FF if not currently extracting fields from the Input String).

[&B8CA] Cdll routine & 9299, which does the following:
* Get the next non-space character.
* Call routine & 927A to process any ' [quote], TAB(and SPC special print characters
* |f carry is clear on return from routine & 927A, then a special function was carried out (either New line, TAB(
or SPC), so exit routine.
* |f next character isnot " [double-quote] then a String is not present, so set the carry flag and exit.
* Otherwise, we need to extract and output the String value, as follows:
* [&92A5] Get next character.
* If next character is <cr> [carriage return] then issue 'Missing "' error [as a closing double quote
wasn't present before the end of the statement line.
* If the next character is a double quote and the characer after it is not then clear carry, set BASIC
Text Pointer A to BASIC Text Pointer B location and exit, as we have outputted the string value. Otherwise, we need to
output a single double quote character (as two double quotes were found inside the string value).
* Call routine & BD98 to output the character.
* Jump back to & 92A5 to get next character of the string.

If the carry flag is clear on return from routine & 9299, then a special character was found & processed, so keep
calling routine & 9299 to check for further specia operations (i.e. New line ('), TAB(, SPC or String (")), until

the carry flag is set (indicating that no further specia characters were found); Set &4D to #& FF & clear carry flag
(as specia characters terminate afield extraction).

[&B8D9] Shift byte &4C (the LINE-status byte) left 1-position (so that the top bit is set if we are in 'LINE-mode)
(the processor flags are temporarily saved while thisis done). This also removes the previous Top-bit setting (special
character) of &4C. Shift the carry flag into the top byte of &4C (moving the 'LINE'-mode flag right a position,
again). (The carry flag is clear if special characters were not found, or set if special characters were found).

So, now Bit 7 of &4C is clear if special PRINT characters (',", TAB(,SPC) were processed, and Bit 6 is set if were are
in'LINE'-mode.

If the next character is"," or *;", then jump back to & B8CA to check for, and process, and special characters

after the field separator.

[Note: If special characters were found after the last ', or ;', then a'?-prompt is not output; also, additional

fields cannot be extracted from a previous input entry for any additional variables supplied - instead, the user will be
prompted for another entry value]

Next, we should either have a variable or the end of the statement, as we have processed all valid characters that can precede
avariablein an INPUT statement, namely: double quote ("), Comma (,), Semi-Colon (;), SPC, TAB(and quote (*).
Decrement BASIC Text pointer A offset (so that the variable name starts at the next character, rather than the current one).
Save bytes &4C and & 4D to the stack.

Call routine & 98AE to evaluate the variable name (and create it if the variable doesn't already exist and isn't a

direct memory access (!x, X, $x).

If the zero flag is set on return from & 98AE, then a variable was not specified, so retrieve the 2-bytes pushed to

the stack and jump to & 9002 (to continue to the next statement if end of statement was found; otherwise, issue a

Syntax error).

Retrieve bytes & 4C and &4D from the stack.

Call routine & 9275 to Set BASIC Text pointer A offset to BASIC Text pointer B offset.

Store the processor flags to the stack (this stores whether the variable is a String or not).

if bit 6 of &4C isclear (i.e. we are not in LINE mode), and &4D location is not #& FF (i.e. not first field)
then jump to & B91F (to extract the next field).

If the top bit of &4C is set (Special characters were not found after the last field break), then output a
‘?-character - thisis the default user input prompt.

Call routine & BA70 to get the user'sinput, as follows:
* Set &38 10 6 and zero & 37. Thisisthe address to place the user's input entry: & 0600 (The SWA).
[Note: If called from & BA74, the address to place the user's input entry is & 0700 (The Command Line)].
* Set & 39 to #& EE. Thisisthe maximum input line length.
* Set & 3A to #& 20 and & 3B to #& FF. These are the minimum and maximum characters.
* Set Y to #& 00 (parameter block MSB), X to #& 37 (parameter block LSB).
* Set A to #& 00 (OSWORD call 0 - get input characters from current device).
* Call OSWORD (& FFF1) with A = 0 and the parameter block data in locatons & 0037 - & 003B.
* |If the carry flag is set after OSWORD call (with A = 0), then Escape was pressed, so generate an ‘Escape’ error;
otherwise, al is ok, so zero COUNT (& 1E) and exit the & BA70 routine.

Store Y (the length of theinput field) in &36 (SWA length field).
Clear the top bit of & 4C (the specia characters not found flag).

If bit 6 of &4C isclear (i.e. we are not in LINE mode), then fields are separated by commas (etc...), so:
* [BO1F] Set & 1B (the current SWA offset) to A (thisisO for thefirst field, & &4D for other fields).
* Zero & 19 and set & 1A to #& 06 (So that & 19-& 1A is a Pointer to the SWA value).
* Call routine & ACF8 to Extract the next field from the SWA (& placeit in the SWA starting at location & 0600)
* Call routine & BEEB to Get the next non-space character and compare with ",".
* |f comma not found (then <cr> found [if not <cr> get next char until '," or <cr>] - end of input entry (SWA)); so,
set Y to #& FE (Next statement will increment this to #& FF - indicating that we are no longer extracting fields
from the input line).

* Increment Y (SWA offset) [This equals #& FF when we are not extracting fields from the SWA] and store Y in &4D.

Retrieve the processor flags from the stack.

If the variableis an Integer (carry flag clear) then set the variable as follows:
* [&B93B] Call routine & BC43 to store the variable address & type details (& 2A,& 2B,& 2C) to the stack.
* Call ASCII to Numeric conversion routine (ASCNUM, & AB4E) to convert SWA string value to a binary number.
* Call routine & B32B to set the numeric variable to the numeric value (which is either a Floating-Point or Integer
value)
* Jump back to & B8CA to check for further variables or special characters on the INPUT statement.

If the variableis a String (carry flag set) then set the variable as follows:
* [&B946] Zero & 27 - (Set current result type to String).
* Call routine & 90AE to Set the String variable to the SWA value.
* Jump back to & B8CA to check for further variables or special characters on the INPUT statement.

Disassembly for the INPUT routine

B8B2 h 104 68 PLA

B8B3 h 104 68 PLA

B8B4 128 142 80 8E BRA -114 --> &B844 [IMP & 9002] check end of statement & process next program statement
B8B6 032 223 140 20 DF 8C JSR &8CDF Get next non-space char (PTR A) and compare with '#
B38B9 240 140 FO8C BEQ -116 --> & B847 PRINT#

B3BB 201 134 C9 86 CMP#& 86 'LINE'-token

B8BD 240 003 FO 03 BEQ 3--> &B8C2

B8BF 198 010 C6 0A DEC &0A

B8C1 024 18 CLC

B8C2 fL 102076 66 4C ROR &4C

B8C4 FL 070076 46 4C LSR &4C

B8C6 169 255 A9 FF LDA#& FF

B8C8 M 133077 854D STA &4D

BBCA 032153146 209992 JSR &9299

B8CD 176 010 BO OA BCS 10 --> &B8D9

B8CF 032153146 209992 JSR &9299

B8D2 144 251 90 FB BCC -5 --> & B8CF

B8D4 162 255 A2 FF LDX#& FF

B8D6 M 134077 86 4D STX &4D

BSDS 024 18 cLC
BSD9 008 08 PHP
BSDA L 006076 064C ASL &4C
BSDC (040 28 PLP

B8DD fL 102076 66 4C ROR &4C

B8DF , 201044 c92C CMPH&2C";

B8E1l 240 231 FO E7 BEQ -25 --> & BBCA
B8E3 ; 201059 C93B CMP#&3B "'

B8ES 240 227 FOES3 BEQ -29 --> & B8CA
B8E7 198 010 C6 0A DEC &0A

B8E9 L 165076 A54C LDA &4C
B8EB H 072 48 PHA
B8EC M 165077 A54D LDA &4D
B8EE H 072 48 PHA

BSEF 032174 152 20 AE 98 JSR &98AE Evaluate variable name & create if new variable
B8F2 240 190 FO BE BEQ -66 --> & B8B2 exit & process next statement

B8F4 h 104 68 PLA
B8F5 M 133077 854D STA &4D
B8F7 h 104 68 PLA
B8F8 L 133076 854C STA &4C

B8FA
B8FD
B8FE
B900
B902
B904
B906
B908
B90A
B90C
BOOE
B911
B914
B916
B918
B919
B91B
B91D
BI1F
B921
B923
B925
B927
B92A
B92D
BO2F
B931
B933
B935
B936
B938
B939
B93B
BO3E
B941
B944
B946
B948
B94B

9299

9299
929C
929F

u 032117146 207592 JSR &9275PTR A Offset = PTR B offset

008
$L 036076
p 112006
M 165 077
201 255
208 023
$L 036076
016 005
2 169063
032 238 255
p 032112186
6 132054
L 006076
024
fL 102076
$L 036076
p 112025
133027
d 100025
169 006
133 026
032 248 172
032 235 142
240 006
201013
208 247
160 254
200
M 132077
040
176 011
C 032067 188
N 032078171
+ 032043179
128 132
d 100039
032 174 144
128 247

—~

032 224 142
z 032 122 146
144 242

08

24 4C

70 06
A54D
COFF
DO 17

24 4C
1005

A9 3F

20 EE FF
20 70 BA
84 36

06 4C

18

66 4C
244C
7019
851B

64 19

A9 06

85 1A
20F8 AC
20 EB 8E
FO 06
C90D
DO F7
AOFE
C8
844D

28

BO OB
2043 BC
20 4E AB
202B B3
80 84

64 27

20 AE 90
80 F7

20 EO 8E
20 7A 92
90 F2

PHP

BIT &4C

BVS6-->&B908

LDA &4D

CMPH& FF

BNE 23 --> & B91F

BIT &4C

BPL 5--> &B911

LDA#& 3F '?

JSR & FFEE OSBY TE

JSR &BA70

STY &36

ASL &4C

CLC

ROR &4C

BIT &4C

BVS 25 --> & B938

STA &1B

STZ &19

LDA#& 06

STA &1A

JSR & ACF8 Extract next field (PTR B)
JSR & 8EEB Get next non-space char (PTR B) & compare with ;'
BEQ 6 --> &B935

CMP#&0D

BNE -9 --> & B92A

LDY#&FE

INY

STY &4D

PLP

BCS11--> &B946

JSR & BCA43 Push & 2A, &2B & &2C to the Stack
JSR & AB4E ASCNUM (Convert ASCII String to Numeric value)
JSR &B32B Set numeric variable

BRA -124 --> & B8CA

STZ &27

JSR & 90AE Set String variable

BRA -9 --> &B944

JSR & 8EEO Get next non-space char (PTR A)
JSR &927A Check for """, "TAB(' or 'SPC'
BCC -14 --> & 9293 [RTS]

92A1 " 201034 C9 22 CMP#H& 22

92A3 208237 DO ED BNE -19 --> &9292 [SEC : RTS]
92A5 200 C8 INY

92A6 177 025 B119 LDA (&19),Y

92A8 201013 C90D CMP#&0D

92AA 240232 FO E8 BEQ -24 --> & 9294 'Missing "' error
92AC " 201034 C922 CMP#& 22

92AE 208009 D009 BNE 9 --> &92B9

92B0 200 C8 INY

92B1 132 027 84 1B STY &1B

92B3 177 025 B119 LDA (&19),Y

92B5 " 201034 C922 CMP#& 22

92B7 208 177 DOB1 BNE -79 --> &926A Clear carry flag, Set PTR A offset = PTR B offset & exit
92B9 032152189 2098BD JSR &BD98 Output character in A
92BC 128231 80 E7 BRA -25 --> & 92A5

BA70 Prompt for and get the user's input line

BA70 169 006 A9 06 LDA#& 06

BAT72 128 002 80 02 BRA 2 --> &BA76
BA74 169 007 A9 07 LDA#& 07

BA76 d7 100055 64 37 STZ &37

BA78 8 133056 85 38 STA &38

BA7A 169 238 A9 EE LDA#& EE

BA7C 9 133057 8539 STA &39

BATE 169 032 A9 20 LDA#& 20

BA80 : 133058 85 3A STA &3A

BA82 160 255 AO FF LDY#&FF

BA84 ; 132059 84 3B STY &3B

BA86 200 Cc8 INY

BA87 7 162055 A2 37 LDX#& 37

BA89 152 98 TYA

BABA 032 241 255 20 F1FF JSR & FFF1 OSWORD
BAS8D 144 006 90 06 BCC 6 --> &BA95 Zero COUNT (& 1E) and exit routine

BASF L} 076125155 4C 7D 9B JMP &9B7D Escape error

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines
Page L ast Altered: undefined

B847 INPUT#
Submitted by Steve Fewell

Description:

Call routine & BA3C to set BASIC Text Pointer B to BASIC Text Pointer A location and check that the next
character is a '#-character. If not then generate '‘Missing # error message. Evaluate the expression after

the '# [Type mismatch error if string value], and set Y to the number found after the '# character (thisis

the file channel number). Store the channel number to location &4C.

Call &9275 to set BASIC text pointer A offset to the BASIC text pointer B offset value (to update BASIC Text
pointer A to point to the next character on the program line after the channel number.

[&B84F] Get the next non-space character at Text pointer A location. If the next character is not acomma (',"), then we
are not expecting any more data, so exit (Store Y back to & 0A (Text Pointer B offset) and jump to & 9002
[if the end of statement was not reached then & 9002 will generate a 'Syntax Error']).

Push the channel number (&4C) to the stack.

Call &98AE to Evaluate the variable name at Text pointer A, and create the variable if it doesn't already exist.

If the zero flag is set on return from & 98AE, then the text at Text pointer B was not a valid variable name, so
generate a Syntax efror.

Otherwise, the variable name was valid.

Call &9275 to set BASIC text pointer A offset to the BASIC text pointer B offset value (to update BASIC Text
pointer A to point to the next character on the program line after the variable name. Thisis done because routine
& 98AE copies Text Pointer A location to Text Pointer B location and works from Text Pointer B.

Pop the channel number from the stack abd set & 4C back to the channel number.

Push the flag settings to the stack to preserve the Carry flag value after the & 98AE call.
Push the IWA (variable settings) to the BASIC stack (routine & BC26).

Set Y to the channel number (&4C).

Call OSBGET (&FFD7) to get the next Variable Type byte from the datafile.

Store the variable type in location & 27.

Retrieve the processor flags from the Stack. If the carry flag is clear (meaning that the variable has a
numeric value - no'$ at the end) then jump to & B88A to set the Numeric variable.

Otherwise set the String variable as follows:
If the value type (& 27) read from the datafile is not zero (Numeric), then generate Type mismatch error as
anumeric value cannot be assigned to a String variable.
Cal OSBGET (& FFD7) to get the String length & store the length in &36 (SWA length byte).
If the string length is not 0 then Call OSBGET (& FFD7) to get each character of the string value (last
character first). Store each character in the SWA (& 600-& 6FF) at the appropriate position (so that
& 5FF + String length points to the last character of the String value).
Call &90AB to set the String variable to the SWA value (extending the length of the variable if needbe)
[or, if amemory location is being set, i.e. $& 1200, then & 90AB sets the required memory locations to the SWA value].

& B8B8A sets the numeric variable as follows:
If the value type (& 27) read from the datafile is zero (String), then generate Type mismatch error as

a String value cannot be assigned to a Numeric variable.

If the value type (& 27) is an Integer value (& 40) then call OSBGET (& FFD7) to get each byte of the
Integer value from the datafile (MSB first (&2D)). Store the Integer in the IWA.

If the value type (& 27) is an Float value (& FF) then call OSBGET (& FFD7) to get each byte of the packed
Floating-Point value from the data file (last byte first). Store the packed Float in Temporary Float location
& 046C-& 0470 and call &A539 to load the FWA with the temporary variable's value.

Call routine & BDOG6 to retrieve the Integer from the BASIC stack to locations & 37-& 3A.

This restores the variable address and type details.

Call routine & B338 to set the numeric variable. This routine will store the Numeric value (either in the
IWA or FWA) to the Numeric variable, and convert the value from Floating-Point to Integer, or vice versa,
if the variableis of a different type to the value.

Jump back to & B84F to check for further commas (',"), indicating that further values are required to be
retrieved from the data file.

Disassembly for the INPUT# routine

B83C L 076146144 4C9290 JIMP &9092 Type Mismatch error
B83F Li 076105155 4C699B JMP &9B69 Syntax error
B842 132 010 84 0A STY &0A

B844 L 076002144 4C0290 JMP &9002'Syntax error'if not end of statement; otherwise, execute next statement/program line
B847 < 032060186 203CBA JSR&BAS3CPTRB=PTR A, Check for '#, Set Y to file channel number (PTR B)

B84A L 132076 84 4C STY &4C Store file channel number

B84C u 032117146 207592 JSR &9275 Set PTR A Offset to PTR B Offset

B84F 032229140 20E58C JSR &8CE5 Get next non-space char (PTR A) and compare with *;'
B852 208 238 DO EE BNE -18 --> & B842 No comma, so exit as no more data expected
B854 L 165076 A54C LDA &4C

B85 H 072 48 PHA Store channel number

B857 032174152 20AE98 JSR &98AE Evauate variable name & create if new variable
B85A 240 227 FOE3 BEQ -29 --> & B83F [IMP & 9B69 Syntax error]

B85C u 032117146 207592 JSR &9275 Set PTR A Offset to PTR B Offset

B85F h 104 68 PLA
B860 L 133076 854C STA &4C
B862 008 08 PHP

B863 & 032038188 2026BC JSR &BC26 Push IWA (variable details) to stack

B866 L 164076 A44C LDY &4C

B868 032215255 20D7FF JSR &FFD7 OSBGET [Read variable type from file]
B86B ' 133039 8527 STA &27

B86D (040 28 PLP

B86E 144 026 90 1A BCC 26 --> & B88A Numeric variable (no '$)

B870 ' 165039 A5 27 LDA &27

B872 208 200 DO C8 BNE -56 --> &B83C [JMP & 9092 Type mismatch error]
B874 032215255 20D7FF JSR &FFD7 OSBGET [Read string length from fil€]
B877 6 133054 85 36 STA &36

B879 170 AA TAX

B87A 240 009 F0 09 BEQ 9 --> &B885

B87C 032215255 20D7 FF JSR &FFD7 OSBGET [Read next String character from file]
B87F 157255005 9D FF05 STA &O05FF,X

B882 202 CA DEX

B883
B885
B888
B88A
B88C
B88E
B890
B892
B895
B897
B898
B89A
B89C
B89E
B8A1l
B8A4
B8AS5
B8BA7
BBAA
B8AD
B8BO

208 247
032 171 144
128 197
165 039

240 174
048 012

162 003
032 215 255
149 042

202

016 248

128 014

162 004
032 215 255
157 108 004
202

016 247
032 057 165
032 006 189
032 056 179
128 157

DO F7

20 AB 90
80 C5
A5 27
FOAE
300C
A203
20D7 FF
95 2A
CA

10 F8

80 OE
A204
20D7 FF
9D 6C 04
CA

10F7
2039 A5
20 06 BD
2038 B3
809D

BNE -9 --> &B87C

JSR & 90AB Set String variable

BRA -59 --> & B84F

LDA &27

BEQ -82 --> &B83C [IMP & 9092 Type mismatch error]
BMI 12 --> &B89C

LDX#& 03

JSR & FFD7 OSBGET [Get next Integer byte from file]
STA &2A X

DEX

BPL -8 --> & B892

BRA 14 --> & B8AA

LDX#&04

JSR & FFD7 OSBGET [Get next Float byte from file]
STA &046C,X

DEX

BPL -9 --> & B8OE

JSR &A539 Load FWA from & 046C

JSR & BD06 Retrieve Integer from stack to & 37-& 3A
JSR & B338 Set numeric variable

BRA -99 --> & B84F

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines
Page L ast Altered: undefined

9141 PRINT#
Submitted by Steve Fewell

Description:

Copy BASIC Text pointer A valuesto Text Pointer B.

Check that '# is the next non-space character - if it isn't then generate a'Missing # error.

Note: The next character will always be '# as this routineis only called from the PRINT routine,
which checks for the '# character before calling this routine!

Get the Integer value from PTR B (after the '#) and set Y to the LSB of this value.

Thisisthe file channel number for the file that we will write to.

Push channel number to the stack.

If the next non-space character (after the channel number) is not acomma, then we have no
datato write to the file, so exit [if the end of statement was not reached then & 9002 will
generate a'Syntax Error'].

Call the expression handler (& 9D3B) to obtain the result of the expression after the comma character.

Store the FWA value (in Floating-Point 5-byte packed format) to temporary Floating-Point location & 046C-& 0470.
This packs the FWA value (ready to be written to the file). This is done irrespective of whether the expression return
valueis a Floating-Point value or not.

Retrieve the channel number (in Y) from the stack.

Store & 27 (the returned value type) to the file [1-byte value] using OSBPUT (& FFD4)
[Y =channel handle & A = byte to write].

If the value type (& 27) is Integer (positive & 27 value) then write the 4-byte IWA value to thefile
(using 4 callsto OSBPUT). The integer value is written Most-significant byte (& 2D) first.

If the value type (& 27) is Float (negative & 27 value) then write the 5-byte packed FWA value at
location & 046C-& 0470 to thefile (using 5 callsto OSBPUT). The Float value is written last byte (& 0470) first.

If the value type (& 27) is String (zero & 27 value) then write the SWA value
to thefile (using a separate OSBPUT call for each byte). Firstly, the string length is written (& 36) [1-byte].
Next, the String value is written (last byte first (& 0600+& 36-1)-& 0600).

After the returned value has been written, go back to & 9144 to check if there are any more commas.

If another commais present (after the expression) then another value is required to be written to the file,

so repeat the processing for the next datavalue. If no more values are found then goto & 9187 to

pop the channel number value from the stack (clean up stack), store back the offset (in Y - set in & 8EEB) to & 0A
(Pointer A offset location), check for the end of statement (issuing Syntax error if not end of statement)

and start processing the next statement/program line (& 9002).

Disassembly for the PRINT# routine

9141 < 032060186 203CBA JSR&BA3CPTRB=PTR A, Check for '#, Set Y to file channel number (PTR B)

9144 Z 090 5A PHY

9145 032235142 20EB 8E JSR &8EEB Get next non-space char (PTR B) and compare with *,'
9148 = 208 061 D0 3D BNE 61 --> & 9187 No comma found, so exit

914A ; 032059157 203B9D JSR &9D3B Get result of expression

914D 032017165 2011 A5 JSR &A511 Store FWA to &046C & set argp=& 046C
9150 z 122 TA PLY

9151 ' 165039 A5 27 LDA &27

9153 032212255 20D4FF JSR &FFD4 OSBPUT [Store variable typeto fil€e]
9156 170 AA TAX

9157 240027 FO 1B BEQ 27 --> &9174

9159 0 048012 300C BMI 12 --> & 9167

915B 162 003 A203 LDX#&03

915D * 181042 B52A LDA &2A,X

915F 032212255 20D4FF JSR &FFD4 OSBPUT [Store IWA tofil€]
9162 202 CA DEX

9163 016 248 10F8 BPL -8 --> &915D

9165 128 221 80DD BRA -35-->&9144

9167 162 004 A204 LDX#&04
9169 | 189108004 BD 6C04 LDA &046C,X
916C 032212255 20D4FF JSR &FFD4 OSBPUT [Store FWA (packed) to file]

916F 202 CA DEX
9170 016 247 10 F7 BPL -9 --> &9169
9172 128 208 80 D0 BRA -48 --> &9144

9174 6 165054 A5 36 LDA &36

9176 032212255 20D4FF JSR &FFD4 OSBPUT [Store string (SWA) length to fil€]
9179 170 AA TAX

917A 240200 FO C8 BEQ -56 --> & 9144

917C 189255005 BDFF05 LDA &O5FF,X

917F 032212255 20D4FF JSR &FFD4 OSBPUT [Store SWA to fil€]

9182 202 CA DEX

9183 208 247 DO F7 BNE -9 --> &917C
9185 128 189 80 BD BRA -67 --> &9144
9187 h 104 68 PLA

9188 132010 84 0A STY &0A
918A L 076002144 4C0290 JMP &9002 'Syntax error' if not end of statement; otherwise, execute next statement/program line

Copy PTR A to PTR B, check for '#, get file channel number and set Y=channel number

BA3C 198 010 C6 0A DEC &0A

BA3E 165 010 A50A LDA &0A

BA40 133 027 851B STA &1B

BA42 165 011 A5 0B LDA &0B

BA44 133 025 8519 STA &19

BA46 165012 A50C LDA &0C

BA48 133 026 85 1A STA &1A

BA4A 032 213 142 20 D5 8E JSR &8ED5 Get next non-space char (PTR B)
BA4D # 201035 C923 CMP#& 23 check for '#

BA4F 208 176 DO BO BNE -80 --> & BAO1 'Missing # error
BA51 032 180 150 20 B4 96 JSR &96B4 Get integer value (PTR B)
BA54 * 164 042 A4 2A LDY &2A

BAS6 152 98 TYA

ggggggw

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines
Page L ast Altered: undefined

A50D Store FWA to temporary Floating-Point Variable location

Submitted by Steve Fewell

RoutineFWAtoTemp

Name: Store FWA to temporary FP variable location

Starting Address: & A50D or &A511 or &A513

Entry criteria: The FWA contains the value to store.

(if caled from & A513, A contains the Temporary variable address (LSB)).
Exit: The FWA has been stored in the temporary variable location.

Description:

If caled from & A50D, then the FWA will be saved to Temporary Floating-Point variable
address & 0476

If called from & A511, then the FWA will be saved to Temporary Floating-Point variable
address & 046C

If called from & A513, then the FWA will be saved to Temporary Floating-Point variable
address & 0400 plus A (the LSB address)

Disassembly for the Store FWA to temporary variable location routine

A50D v 169118 A9 76 LDA#& 76

A50F 128 002 80 02 BRA 2 --> &A513
A511 | 169108 A96C LDA#&6C

A513 J 133074 85 4A STA &4A

A515 169 004 A9 04 LDA#& 04

A517 K 133075 85 4B STA &4B

A519 ... Store FWA to argp address routine

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines
Page L ast Altered: undefined

90AB Set String variable

Submitted by Steve Fewell

Routine:setstringvar

Name: Store string value in the specified Variable

Starting Address: &90AB

Entry criteria: The SWA contains the String value &

the variable address and type details are stored in the Integer value on the BASIC stack.
Exit: The specified variable has been set to the value in the SWA.

Description:

Pop the Integer from the BASIC Stack. Now & 2A-& 2B will contain the address of the variable's value,
and & 2C will contain the variabl€e's return type.

If the variable's return type is #& 80 then we are not setting a variable, but a direct memory access
viaastatement such as: LET $& OF55="HELLQO"; so, as we are not dealing with a variable we can skip the
checking of the variable's existing length and go directly to storing the value.

To store the value of a non-variable String, we first store a carriage return as the next free position in the

SWA (as String values must terminate with a carriage return character). If SWA length (& 36) is zero then

store the carriage return character at the Direct Memory address given and exit; otherwise, copy the SWA vaue
to the Direct Memory address (and subsequent bytes, as necessary) and exit.

Note: The SWA vaueis stored last character first, and first character last.

Otherwise we are dealing with a String variable (as the return type is probably #& 81).
The String variable's address points to a 4-byte parameter block, this parameter

block contains the following: A 2-byte pointer to the current value of the String,
followed by the maximum size alocated for the String variable value (1 byte),
followed by the current size of the String value.

Compare the maximum length assigned for the String Variable value (the 3rd byte in the
variable's parameter block) with the length of the SWA (& 36).

if the current Maximum length is >& eq; the SWA length then we do not need to alocate
more space for the variable, so [& 910E] Store the SWA value in variable location.

Otherwise we need to allocate more space, as follows:

Store VARTOP address (the next free Variable storage address) in & 2C-& 2D, this
will be the location of the variable's new String value.

If the new String length is less than 8 and the new string length + 8 isless then #& FF

then set the new String length to #& FF. [This will resolve possible problems with String values
more than #& F7 characters long]. Otherwise set the new string length to & 36 (SWA length).
Push the new String length to the Stack.

If the current VARTOP value is equal to the Variable value address (first 2 bytes of
variable's parameter block) plus the variable length (4th byte of the variable parameter
block) then the Variable's current value was the last item added to VARTOP, so

Store zero in location & 2D (thiswill tell the allocate space routine not to

change the current Variable value address) and Subtract the old String length from the
new String length (in X), so that we only allocate the remaining number of bytes required!

Add the new string length (in X) to VARTOP address (storeresult in X & Y).

Thiswill be the new VARTOP value, but first check whether this value would overlap with
the BASIC Stack, if it would then there is no more variable storage space, so issue a No Room
error.

Otherwise, update VARTOP (& 02-& 03) to the new VARTOP value (in X and Y).

Next, we need to set up the Variable's parameter block with the newly allocated information.
Retrieve the new variable length from the Stack.

Store the new variable length in the Max Size Allocated byte of the variable's parameter

block (the 3rd byte).

Check location & 2D, if it is zero then we do not need to change the address of the variable's
value, asthelast location (which was at the top of the BASIC variable Heap) has been extended.
Otherwise, store the new located (in & 2C-& 2D) as the address of the variable's value

in thefirst 2 bytes of the variable's parameter block.

Now, that we have the required space, continue to & 910E to store the SWA value.

[&910E] Storethe String SWA valuein the variable location

Firstly, store the SWA length (& 36) in byte 4 of the String variable's parameter block, thisisthe
1-byte which represents the current length of the String variable.

If the String is blank (SWA length is 0) then exit.

Store the variable's address (the first 2 bytes of the variable's parameter block)
inlocations & 2C-&2D.

Store the SWA value to the memory location pointed to by &2C-&2D. [Note: The SWA
value is stored first character first, last character last].

When we have stored all characters of the SWA's String value then exit, as the variable's
value is now complete.

Disassembly for the Set String variable routine

90AB 032 230 188 20 E6 BC JSR &BCES6 Pop Integer from BASIC Stack
9AE 165 044 A5 2C LDA &2C

90B0 201 128 C9 80 CMP#&.80

90B2 x 240120 FO 78 BEQ 120 --> &912C Set String Variable to value
90B4 160 002 A0 02 LDY#& 02

90B6 * 177 042 B12A LDA (&2A),Y

90B8 6 197054 C536 CMP&36

9BA R 176082 B0 52 BCS 82 --> &910E

90BC 165 002 A5 02 LDA &02

90BE 133044 852C STA &2C

90CO0 165 003 A503 LDA &03

00c2 e 133 045 852D STA &2D
90C4 6 165054 A5 36 LDA &36

90C6 201 008 C908 CMP#&08

90C8 144 006 90 06 BCC 6--> &90D0
90CA i 105 007 69 07 ADCH#&07

90CC 144 002 90 02 BCC 2 --> &90D0
90CE 169 255 A9 FF LDA#&FF

90D0 024 18 CLC

90D1 . Hemir> 48 PHA

90D2 170 AA TAX

90D3 * 177 042 B12A LDA (&2A),Y
90D5 r* 114042 72 2A ADC (&2A)

90D7 E 069002 4502 EOR &02

90D9 208 015 DO OF BNE 15 --> & 90EA
90DB 136 83 DEY

90DC o*E 113042 712A ADC (&2A),Y
90DE 069 003 4503 EOR &03

90EOD 208 008 DO 08 BNE 8 --> & 90EA
E2 - 133045 85 2D STA &2D

90E4 138 8A TXA

90E5 200 Cc8 INY

QE6 8 056 38 SEC

9QE7 * 241 042 F12A SBC (&2A),Y
90E9 170 AA TAX

90EA 138 8A TXA

90EB 024 18 CLC

9EC e 101002 65 02 ADC &02

90EE 168 A8 TAY

90EF 165 003 A5 03 LDA &03

9OF1 | 105 000 69 00 ADCH#&00

90F3 170 AA TAX

90F4 196 004 c404 CPY &04

90F6 229 005 E5 05 SBC &05

90F8 176 167 BOA7 BCS-89 --> &90A 1 No Room error
90FA 132 002 8402 STY &02

90FC 134 003 86 03 STX &03

QWFE h 104 68 PLA

90FF 160 002 A0 02 LDY#&02

9101 * 145 042 91 2A STA (&2A),Y
9103 136 88 DEY

0104 - 165 045 A52D LDA &2D

9106 240 006 FO 06 BEQ 6 --> & 910E

9108 * 145042 91 2A STA (&2A),Y

910A
910C
910E
9110
9112
9114
9116
9118
911A
911C
911E
9120
9121
9124
9126
9127
9129
912B
912C
912F
9131
9133
9136
9138
9139
913B
913E
9140

165 044

146 042

160 003

165 054

145 042

240 021

160 001

177 042
133045

178 042

133 044

136

185 000 006
145 044

200

196 054
208 246
096

032 043 190
192 000
240011

185 000 006
145 042

136

208 248

173 000 006
146 042

096

A52C
92 2A
A0 03
A5 36
91 2A
FO 15
A001
B12A
852D
B2 2A
852C
88
B9 00 06
912C
C8

C4 36
DO F6
60

20 2B BE
C0 00
FO 0B
B9 00 06
91 2A
88
DOF8
AD 00 06
92 2A
60

LDA &2C

STA (&2A)
LDY#&03

LDA &36

STA (&2A),Y

BEQ 21 -->&912B
LDY#&01

LDA (&2A),Y
STA &2D

LDA (&2A)

STA &2C

DEY

LDA &0600,Y
STA (&2C),Y

INY

CPY &36

BNE -10 --> &9121
RTS

JSR & BE2B Store carriage return at end of SWA
CPY#&00

BEQ 11 --> &913E
LDA &0600,Y
STA (&2A),Y

DEY

BNE -8 --> & 9133
LDA &0600

STA (&2A)

RTS

Store#& 0D (Carriage Return) at end of SWA and set (& 37-& 38) to point to the SWA

BE25
BE27
BE29
BE2B
BE2D
BE2F
BE32

d7 100 055
169 006
8 133 056
6 164 054
169 013

153 000 006

096

64 37 STZ &37

A9 06 LDA#& 06
8538 STA &38

A4 36 LDY &36

A9 0D LDA#&0D

99 00 06 STA &0600,Y
60 RTS

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines
Page L ast Altered: undefined

B32B Set Numeric Variable

Submitted by Steve Fewell

Routine:setnumericvar

Name: Store numerical value in the specified variable

Starting Address: & B32B

Entry criteria: Either the IWA or the FWA

contains the value & the variable address and type details are stored on the Stack (3 bytes).
Exit: The specified variable has been set to the numerical value from the IWA or FWA.

Description:

(if called from & B328 then evaluate the expression value (thiswill be the value that we
will set the variable to).

Temporarily pop the return address from the Stack (that is the address to return to after the end

of subroutine RTS statement!).

Pop the variable return type from the stack and store this value in & 39.

Pop the Variable value address from the stack and store this addressin & 37-& 38.

Push the return address back onto the stack.

If called from & B338, then the stack manipulation is skipped, as the variable address details and variable type
information has already been set (and ae not located on the stack).

If the variable return typeis 5 then the variable requires a Floating-Point value, so do the following:
* |f the value type (for the current value in the IWA/FWA, in & 27) is zero then we have
astring value, so issue a Type Mismatch error, as we cannot assign a String to our variable.
* |f the value type is positive then we have an Integer value that we need to assign to a Floating-Point
variable, so convert the Integer to a Floating-Point value.
* Store the FWA to the variable's Memory address (& B369) to output the FWA value
to the address pointed to by & 37-& 38, and then exit.
Note: the FWA will be stored in it's 5-byte packed format, as follows:
Byte 1: The FWA Exponent
Byte 2: The FWA Sign Bit (MSB) followed by the lower 7-bits of Mantissa Byte 1
(asthe FWA valueis normalised, we don't need to store the TOP bit of
the FWA Mantissa byte 1 value (asit isalways 1), so the FWA sign
value replaces this bit).
Byte 3: The FWA Mantissa Byte 2
Byte 4: The FWA Mantissa Byte 3
Byte 5: The FWA Mantissa Byte 4

Otherwise, the variable return typeis Integer, so do the following:

* |f the value type (for the current value in the IWA/FWA, in & 27) is zero then we have
astring value, so issue a Type Mismatch error, as we cannot assign a String to our variable.

* |f the value type is negative then we have a Floating-Point value that we need to assign to an Integer
variable, so convert the Floating-Point value to an Integer.

* Continue to the Store IWA to Memory address routine (& B347) to output the IWA value
to the address pointed to by & 37-& 38, and exit.
Note The Store IWA to address routine will check the variable type (& 39)
to see if we need to store a 1-byte or 4-byte value, asif the variable is a direct
memory access (e.g. ?& 70 = 1), then we must only store 1-byte; all other Integer values
are 4-byte variables.

Disassembly for the Set Numerical variable routine

B325 L 076146 144 4C 92 90 JMP &9092 Type mismatch error

B328 ;032059 157 203B 9D JSR &9D3B Get result of expression
B32B Z 1082 7A PLY

B32C 250 FA PLX

B32D h 104 68 PLA

B32E 9 133057 8539 STA &39

B330 h 104 68 PLA

B331 8 133056 8538 STA &38

B333 h 104 68 PLA

B334 7 133055 85 37 STA &37

B336 218 DA PHX

B337 Z 090 5A PHY

B338 9 165057 A5 39 LDA &39

B33A 201 005 C905 CMP#& 05

B33C " 240034 FO 22 BEQ 34 --> & B360 Set Float variable
B33E ' 1684039 A5 27 LDA &27

B340 240 227 FOE3 BEQ -29 --> & B325 issue 'Type mismatch' error
B342 016 003 1003 BPL 3 --> &B347 Store IWA to address
B344 032 195 150 20 C3 96 JSR &96C3 Convert Float to Integer
B347 ... Store IWA to address [iout]

Set Float variable routine

B360 . 165 039 A5 27 LDA &27

B362 240 193 FOC1 BEQ -63 --> & B325 Issue "Type mismatch' error
B364 0 048003 3003 BMI 3 --> &B369

B366 032 133 129 208581 JSR & 8185 Convert Integer to Floating-Point
B369 0 165048 A5 30 LDA &30

B36B 7 146 055 92 37 STA (&37)

B36D 160 001 A0 01 LDY#&01

B36F : 165 046 A5 2E LDA &2E

B371
B373
B375
B377
B379
B37A
B37C
B37E
B37F
B381
B383
B384
B386
B388

El

El

069 049
041 128
069 049
145 055
200

165 050
145 055
200

165 051
145 055
200

165 052
145 055
096

4531
29 80
4531
91 37
C8

A5 32
Ll
C8

A533
9137
C8

A5 34
91 37
60

EOR &31
AND#& 80
EOR &31
STA (&37),Y
INY

LDA &32
STA (&37),Y
INY

LDA &33
STA (&37),Y
INY

LDA &34
STA (&37),Y
RTS

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines

Page Last Altered: undefined

Save Integer to Address

Submitted by Steve Fewell

Routine: iout

Name: Save Integer to Address

Starting Address: &B347

Entry criteria: &37 and & 38 (lo, hi) contain the address of the first byte of the memory location to
store either the 32-bit Integer from the IWA (4 consecutive bytes required), or the 8-bit Integer from the
IWA (1 byte required). & 39 must contain zero if an 8-bit result is required, otherwise a 32-bit result is
assumed.

Exit: The 1 or 4 byte memory location specified by & 37 and & 38 contain a copy of the contents of the
IWA.

Description:
Saves a copy of the WA to the memory location specified by & 37 and & 38. The least significant byte

of the IWA (&2A) iscopied first. If & 39 contains zero, the routine then exists as the 8-hit integer in
& 2A has been copied to the requested location.

Otherwise, the rest of the Integer in the IWA is copied into the 3 subsequent bytes of the address pointed
to by &37 and & 38.

Disassembly for the Save Integer to Addressroutine

B347 * 165042 A52A LDA &2A
B349 7 146055 9237 STA (&37)

B34B
B34D
B34F
B351
B353
B355
B357
B358
B35A
B35C
B35D

BISEN

165 057
240 016
165 043
160 001
145 055
165 044
200

145 055
165 045
200

145 055
096

A5 39
FO 10
A52B
A0 01
91 37
A52C
C8

91 37
A52D
C8

91 37
60

LDA &39
BEQ 16 --> & B35F
LDA &2B
LDY#&01
STA (&37),Y
LDA &2C
INY

STA (&37),Y
LDA &2D
INY

STA (&37),Y
RTS

8-Bit Software

The BBC and Master Computer Public Domain Library

BASIC IV ROM Routines
Page L ast Altered: undefined

ACF8 Extract next field
Submitted by Steve Fewell

Description:
This routine gets the next field from an input (or data) line. The field valueis returned as a string in the SWA

First, get the next non-space character and set Y to point to this character.

If the character is a double quote ("), then we have found a String value, so call routine AD19 to extract the String,
place the value of the String (without the surrounding quotes) in the SWA and update BASIC Text Pointer B Offset to
point to after the String value.

Keep getting the next character from BASIC Text Pointer B (Starting at Y) and store the character in the next free
SWA location (starting at & 0600 - uses X as an index), until the character is a carriage return <cr>, or acomma',".

Decrement Y and X (so that they point to the <cr> or*,' character), store X in & 36 (the length of the field
excluding the <cr> or ',' character), and store Y in & 1B (so that PTR B pointsto the <cr> or ', character).

Set A to 00 (as return type is a String), and exit.

Disassembly for the Extract next field routine

ACF8 032 213 142 20 D5 8E JSR &8ED5 Get next non-space character (PTR B)
ACFB " 201034 C922 CMP#& 22

ACFD 240 026 FO 1A BEQ 26 --> & AD19 Extract String
ACFF 162 000 A200 LDX#&00

ADO1 177 025 B119 LDA (&19),Y

ADO3 157 000 006 9D 00 06 STA &0600,X

ADO6 200 C8 INY

ADO7 232 E8 INX

ADO8 201 013 Co0D CMP#& 0D

ADOA 240 004 FO 04 BEQ4-->&AD10

ADOC , 201044 Co2C CMP#& 2C

ADOE 208 241 DOF1 BN