EUREKA

64K RAM CARD

for the BBC MICRO

Watford Electronics
Whilst every care has been taken in transcribing this document it is in your own interest to compare the program listings against those in the scanned version.

EUREKA 64K BOARD
Watford Electronics,

Jessa House,

250 High Street,

Watford,

Herts.

WD1 2AN

England

Tel. (0923) 37774
Tlx. 8956095
Fax. 01 950 8989
The Eureka 64K Board provides the user with around 58K of memory in a variety of languages. The sophisticated software which controls the board makes its operation almost entirely transparent to the user, despite the extremely complex hardware necessary to provide this facility.

Hardware and software designed/written by Cliff Bryant; ROMs converted by Jack Bryant; manual written by Matthew Rapier with additional comments from David Fell and Laura Hartwell.

The Operating Software in ROM and this manual are copyright (C) 1986 NMI Designs Ltd. / Watford Electronics. A patent has been applied for on the principle of operation.

All rights reserved. No part of this package may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic or mechanical, photocopying, recording, or otherwise, without the prior specific written permission of Watford Electronics/NMI Designs Ltd. The only exceptions are as provided for by the Copyright (photocopying) Act or for the purposes of review.

Watford Electronics has now been established for over 14 years. We are one of the major electronics distributors and retailers in the country, supplying thousands of different components and micro peripherals by mail order and through our retail outlet at Watford. In the last few years Watford Electronics have expanded from being one of the largest components suppliers in the U.K. to one of the most prolific software houses for the BBC microcomputer. We market a wide range• of books, software, add on hardware and peripherals for the BBC microcomputer.

CONTENTS
1. INTRODUCTION
.
4

1.1
 DIFFERENCES WHEN USING THE EUREKA 64K BOARD .
5

2.
INSTALLATION
6

3. GETTING STARTED
8
3.1 USING EUREKA WITH VARIOUS LANGUAGES
8

3.1.1 BAS64

8
3.1.2 V1EW64

9

3.1.3 WW64

9

3.2
OTHER COMMANDS
9

3.2.1 *NWAD AND *NSAVE
10

3.2.2 *NEDIT

10

4.
HARDWARE TECHNICAL SECTION
11

4.1
INTRODUCTION
11

4.2 PRINCIPLE OF OPERATION
11

4.3
 HARDWARE
12

5. SOFTWARE TECHNICAL SECTION
14

5.1 TRANSFER OF DATA
BETWEEN MEMORY
BANKS
14

5.2 MACHINE CODE USE

15

5.3 EXAMPLE PROGRAM

16

5.4 THE CONTROL LATCH

17
6. WHY YOUR PROGRAM DOESN’T RUN

. 22

The Eureka 64K Board is an add-on for the BBC model B computer which provides extra memory for programs and data. With’ Eureka fitted the computer will behave exactly like a normal machine for almost all commands, the only difference is that approximately 58K of memory will be available! You can use any screen mode without affecting the available memory and programs will run at exactly the same speed as normal. The principle of operation is described in the Hardware section and is the subject of a British Patent Application.

The Eureka 64K Board will only work with certain ROMs, those for which modification code has been included within the Eureka system. At present, the ROMs that will work are Basic 2, VIEW and Wordwise Plus. Typing *HELP will show the languages supported by the version of the Eureka software that you have (this range may be expanded in the future). As explained later the Eureka software will only work with particular versions of the various languages. The version number’ of the particular language ROM that ‘you are using will be displayed by *HELP. The reason that Eureka will only work with certain ROMs is because the Eureka software contains special code for each ROM which converts that ROM for Eureka operation. Further modification is required to support the different versions of each language. Note that a warning message appears if an attempt is made to use a ROM with Eureka when this ROM is not present in the computer. This message will also appear if the version of the language that you are using is not supported by the Eureka system. If you want the computer to work exactly like a normal machine then Eureka can be de-selected by typing:

*BASIC
This will select unmodified Basic and make the computer work exactly as normal.

Note that, due to a feature of the way in which the Eureka card works, you must select a normal language between calling up Eureka expanded ones. For example, if you are currently in Viewó4 and wish to select WW64, you should first enter, say, Basic as normal, press the Break key (to reset various pointers) and then enter WW64 (expanded Wordwise Plus). The reasons for this being necessary are beyond the scope of this manual. However, if you experience problems swapping languages with Eureka, then enter normal Basic, as above, or power the machine down for 10 seconds.

1.1 DIFFERENCES WHEN USING THE EUREKA 64k BOARD

1. Second Processors cannot be used with Eureka in operation.

2. Machine code programs will not run in the extra memory,

although machine code programs in normal memory can use it as a large data store. (See “Machine code use” later.)

3. * commands in Basic programs must be made using OSCLI e.g.

 100 OSCLI “FXl2,2”

can be used but the more normal form of

100 *FX12,2
cannot be used. The reason for this is that when a * command is issued, the text within the program is pointed to. As the operating system cannot directly access the Eureka memory, it obviously cannot process the command correctly. When an OSCLI is issued, Basic will first put the text into its string buffer, which is below PAGE and accessible by the operating system. * commands can be entered from immediate mode as Basic does not put these commands into program space before issuing the command.

4. Writing to, and reading from memory using the indirection operators (!, ? and $) will refer to the Eureka 64K memory when the address in question is higher than PACE. You must use OSBYTE calls to refer to addresses in normal memory such as SHEILA. Note that data blocks for OS calls need to reside in the original memory, not the Eureka memory. In order to create control blocks located higher in memory than PACE, use the equate directives within the assembler.

5. Disk accesses are slower than normal when loading and saving entire files. This is because it is necessary to use OSCBPB to transfer data instead of OSFILE. This is an unfortunate result of the way the DFS in the BBC micro works. In general, however, you can offset the disk access speed against the amount of extra memory available. Note that ADFS and some other systems provide quite respectable performance when used with OSCBPB.

2.
INSTALLATION
Installing the Eureka Board is a simple process if you follow the directions given below.

1. Switch the computer off and disconnect it from the mains supply. Remove the lid which is held on with four screws marked ‘FIX’.

2. Locate and remove the 6502 CPU from socket IC1 in the middle of the main circuit board. If you have a Watford ROM/RAM Board or any other such product which requires the 6502 CPU to be placed on to itself, then the 6502 should be removed from that board.

3. The 6502 CPU can now be plugged into the Eureka Board. Plug it into the socket nearest the edge of the Eureka circuit board. The flexible ribbon cable supplied with the board should already be plugged in to the other socket. The half moon notch at one end of the 6502 should be pointing in the same direction as all the notches on the chips on the Eureka Board.

4.
The flexible lead attached to the Eureka Board can now be plugged in to the socket IC1 on the main BBC circuit board from which the 6502 CPU was removed (or into the socket on the ROM/RAM Board etc. if appropriate). The orientation of this lead is also very important. With the cable laid flat, orientate the Eureka board so that the 6502 CPU has its notch to the rear of the computer. The plug on the other end of the lead will now be correctly oriented to be plugged into the computer. To help with this there should be one red strip on the connecting lead which should face towards the rear of the computer. If this lead is connected the wrong way round then serious damage will occur to the Eureka board, and possibly the computer. The plug should be pushed firmly into place.

5. The Eureka ROM can now be plugged into ‘any available ROM socket, i.e. into one of the sockets 1C52, 1C88, IC100 or IC1O1 on the main circuit board, or onto a ROM Board. This chip should also be orientated with its notch facing the rear of the computer. Plugging the ROM in the wrong way round may destroy it and could also damage the computer. It does not matter which ROM socket the software is plugged into as its priority is not important.

To gain access to the ROM sockets on the main board it is necessary to unscrew the keyboard. This is held on with two or three bolts. Undo these and rotate the keyboard through about 30 degrees clockwise to reveal the sideways ROM sockets. Be careful not to strain the keyboard cable when moving the keyboard as this could damage it.

When inserting the ROM you may find that the legs are too widely splayed to fit into the socket. If this is the case, then the legs should be bent inwards by placing the ROM on its side on a~ flat surface and by applying firm, even pressure. Bend the legs at their thickest point, nearest to the body of the chip to avoid snapping them off. Insert the ROM into its socket, checking that no legs have been bent out. The chip should fit snugly in its socket.

6. This completes the fitting so plug the computer back into the mains and switch on. The Eureka 64K Board should announce its presence at the top of the screen. If it does not then check that everything is plugged in firmly and that all the pins are in properly. Check very carefully that no pins are bent underneath the various chips as this can be difficult to spot.

7. Once the board is working, bolt the keyboard back in place and screw the lid back on.

3. GETTING STARTED
When switched on the computer will initially behave exactly like a normal machine. To use the extra memory provided by Eureka, you need to use a special version of the language in question (e.g. Basic). This is invoked by one of the special commands listed below.

3.1 USING EUREKA WITH VARIOUS LANGUAGES
3.1.1
*BAS64
To enter Basic with the extra memory available type
*BAS64
The message Eureka 64K System should now appear. Typing:

PRINT HIMEM—PAGE
should now show approximately 58K (58000 bytes) of memory available. This much memory is available when using BAS64 no matter what screen mode you are in. Basic will work just as expected, though there are one or two minor changes to its operation. The extra memory can be used for programs and data just as you would expect.

If the message “BASIC 2 not present in computer” appears then you do not have Basic 2 fitted to your machine. Eureka will only work with version 2 of Basic. To discover which version of Basic you have press Break, type REPORT and press Return. A response of 1981 indicates Basic 1 and 1982 indicates Basic 2. If you have Basic 1 then we can supply this later version of Basic for a small charge.

Remember that * commands in Basic programs must be issued using the OSCLI feature of Basic 2. For example use: OSCLI “FX 1,4” instead of: *FX 1,4. This does not apply to commands entered in immediate mode.
A warning message will be issued if a second processor is active as it is not possible to use Eureka and a second processor simultaneously. If you have a second processor attached then make sure that it is switched off before trying to use Eureka.

3.1.2 *VIEW64

To enter View type *VIEW64. This will enter View with 58K of memory available whatever the screen mode. If a warning message is issued then you do not have a version of View fitted which is supported by the Eureka software. To discover which versions are supported by your Eureka software type:

*HELP VIEW64

3.1.3
*WW64
To enter Wordwise Plus type *WW64. This will enter Wordwise Plus with approximately 58K of memory available. If a warning message is issued then you do not have a version of Wordwise Plus fitted which is supported by the Eureka software. To discover which versions are supported by your software type:

*HELP WW64

Note that the Wordwise Plus programming language will not function correctly as this cannot be converted for Eureka operation. If you wish to process your text with this language then it will have to be processed from disk using the continuous processing facilities, or split into small sections so that normal Wordwise Plus can be used.

3.2
 OTHER COMMANDS
Within the various languages supported by Eureka the built-in load and save commands will appear to work as normal, even though the Eureka software modifies them. This includes the LOAD and SAVE commands in Basic and View and options 1 and 2 from the Wordwise Plus menu. In fact, these commands are modified by the Eureka system to use the OSCBPB call to transfer data between memory and disk. This is necessary due to a technical limitation of the DFS which means that the standard load and save routines do not work correctly with Eureka. Unfortunately OSGBPB is slower than the normal save and load routines under DFS, although ADFS is faster when used for this operation.

3.2.1
*NLOAD AND *NSAV
The commands *LOAD and *SAVE (together with their various 05 call equivalents) will only refer to the original memory on the main circuit board. There are two new commands provided to access the new memory. *NLOAD and *NSAVE work exactly like *LOAD and

*SAVE except that they deal with the new memory, i.e. the. memory in which your programs and data are stored on the Eureka card. The Eureka software automatically makes languages you are using access these routines so that their standard load and save operations function correctly. If you need to specifically access one set of memory then you should choose the appropriate command. For example, if you have a program that currently issues a *LOAD command to load some data, then this will need to be changed to

OSCLI”NLOAD...”.

3.2.2
*NEDIT
If you examine the memory with a normal memory editor then it will see the original machine’s memory, not your program and data in the Eureka memory. This is because the memory editor is running as a normal machine code program and not as a ROM modified by the Eureka system. To get round this problem the command *NEDIT is built into the Eureka controlling software. This allows you to edit the new Eureka memory. To use this command type *NEDIT and press Return. This will enter the editor and display a ‘?‘ prompt. You should now enter the address, in hexadecimal, that you wish to see. This will display memory from this address onwards showing the values in hexadecimal and their ASCII equivalents. You can step from byte to byte using the cursor keys and enter new data by overtyping.

To leave *NEDIT press Escape. This will return you to the ‘?‘ prompt at the top left hand corner of the screen. At this point you can either type a new address to examine; type a ‘~‘ to enter an operating system command, or press Escape to return to the previously selected language. Note that *NEDIT does not display zero page in the new memory, but displays the original BBC’s zero page instead. This is for complex technical reasons.

HARDWARE TECHNICAL SECTIQN
4.1 INTRODUCTION
To use the Eureka 64K Board as described above, you do not need to understand how the hardware of the board works. However, if you want to use machine code programs to exploit the new memory provided then you will need to read and understand this section.

4.2 PRINCIPLE OF OPERATION
To explain how the board works we will consider the case of the Basic 2 ROM, as operation is very similar for the other languages supported. As the 6502 CPU can only address 64K of memory, the extra memory provided by the Eureka system has to work in parallel with the existing memory on the main board. The hardware on the Eureka board can connect the CPU to either the 64K on the main circuit board or to the 64K of RAM provided on the Eureka Board.

When executing the code contained in the Basic ROM the 6502 processor fetches its information, such as operation codes, from the normal BBC’s memory, (in this case from the Basic ROM itself). Certain instructions in the Basic ROM are intended to read data, such as the contents of your program or the value of a variable from the memory used to hold the program, whilst others will read data from the Basic ROM itself, such as the names of the keywords and floating point constants (eg PI). The Eureka system will automatically switch the data bus between the two parallel memory banks so that when an instruction is executed which reads program data the Eureka memory is switched on. The rest of the time the normal BBC memory is used. Thus Eureka can execute the Basic ROM from the main board and read program memory from the Eureka board which, in the case of a long program, might partially exist at the same addresses as the Basic ROM.

The switching between the two banks of memory is performed completely automatically in the hardware and so does not delay the computer at all. Also, as the memory is completely separate from the main memory of the computer, the full 64K that the 6502 can handle is potentially available. Unfortunately, due to the way that Basic 2 is written, it is not possible to access absolutely all of this possible memory space. Whenever an address below the current value of PAGE is accessed, Eureka will always go to the original memory built into the computer rather than its own. A further page of memory (&FFOO to &FFFF) is reserved for Eureka.

4.3 HARDWARE
Figure 1 is a simplified diagram of the circuit for Eureka. RAM 1 is used to hold a version of Basic (or View etc. as selected) transferred and modified by the Eureka software from the Basic ROM. The Eureka hardware will automatically select this copy of the ROM rather than the original whenever the particular socket number that the ROM is plugged into is accessed. RAM 2, addressed in parallel with RAM 1, is filled with a pattern of flag bits where a flag is set in each byte at the address of each critical instructions where switching to the new 64K RAM 3 is required. When any of these critical locations are addressed an electronic switch is triggered, which causes the change from normal computer memory to the new memory at the appropriate cycle. Thus, for this cycle, data is read from, or written to the new memory. This switching is disabled if the address being accessed is less than PAGE as detected by the comparator against the copy of PAGE held in a register latch. The master control 8 bit latch is used to control whichever, of the various RAMs is selected. Thus by the appropriate series of instructions it is possible to set up the various registers and memories as required for 641 Basic, 641 View or other controlling programs. This sequence of instructions, and the locations of the critical switch points for each ROM, are held in the Eureka Controlling ROM.

[image: image1.png]FIGURE 1

RAM 1

“SIDE"

6K

5. SOFTWARE TECHNICAL SECTION
5.1 TRANSFER OF DATA BETWEEN MEMORY BANKS
This is achieved by using an OSWORD call with A=&CO. The parameter block should be pointed to by X and Y; the format of the control block is defined below. Note that the control block needs to located in normal memory, not the Eureka memory. This can be achieved by writing the control block with EQUB statements (all assembler output is directed to the original memory) or be ensuring that the control block is located below PACE. When placing data, (or code for that matter) in memory with the assembler, you cannot simply allocate memory with DIM; this will allocate memory within the 64k RAN space and not the original memory. Care needs to be taken when doing this sort of thing. Calls are available to copy data from the original memory to Eureka memory, copy vice versa, and to move data around within the Eureka memory entirely. Note that when running a normal Basic program (ie not BAS64), then the control block can be created within an area of memory assigned with a DIM statement.

BYTE VALUE
XY+0 &0C

]
XY+1 &0C

]
XY+2 &FE

] Hex constants to

XY+3 &FF

] identify the call

XY+4 &0B

]
XY+5
1 = Read from
64K RAM

2 = Write to
64K RAM

3 = Copy within
64K RAM

XY+6 Source start address (LSB)

XY+7 Source start address (MSB)

XY+8 Source end address (LSB)

XY+9 Source end address (MSB)

XY+A Destination address (LSB)

XY+B Destination address (MSB)
In Read mode (XY+5=1) the source address is a 64K memory address and the destination address is a normal computer memory address. In Write mode (XY+5=2) the source address is a normal computer memory address and the destination address is a 64K memory address. When OSWORD is called, the specified number of bytes is copied from one bank of memory to the other.

In Copy mode (XY-i-5=3) a block of memory is copied entirely within 64K RAM to allow programs running in normal memory to shift blocks in the Eureka memory. This call, combined with the two above, permits flexible handling of the extra memory, and provides the basic calls need to write a program that utilises this extra memory.

On exit from the OSWORD call, the source and destination addresses point to the next address, the mode byte (XY+5) is set to 0, XY is set to &B and A is preserved. Note that you can only access Eureka memory above PAGE. WARNING: Do NOT write to the top page of 64K memory (&FFOO to &FFFF), as this area is used by the Eureka system, and the system will crash if it is corrupted.

5.2 MACHIINE CODE USE
As explained earlier, and as can be seen from the principle of operation of the Eureka 64K board, it is not possible to run machine code in the new memory without modification. Any machine code program in Basic is assembled into normal computer memory, and can be called by CALL as this will always refer to normal computer memory. The assembled machine code can refer directly only to normal computer memory. For it to operate on data in 64K memory this data must first be transferred to normal computer memory using the OSWORD call (JSR &FFFI), with the appropriate parameter block as explained above. The results can of course be transferred back to 64K memory, again by using OSWORD. Note that the memory region holding the machine code can have the same addresses as the source code in Basic as the machine code is in normal computer memory and the source code in 64K memory. Indeed the whole of normal computer memory between PAGE and the bottom of the display (HIMEN) is available for machine code regardless of how large the Basic program is in 64K memory.

It is also possible to use the Eureka memory for storing large amounts of data. To do this you need to transfer data between the two memory areas using the appropriate OSWORD call. From 64K Basic a simple machine code routine would allow further data to be stored in the original memory. All the space from PAGE to the bottom of the screen memory is available.

A machine code program can also access the Eureka memory in the same way that 64K Basic uses the memory. To do this you have to store the machine code program in the PROGRAM memory (RAM 1 of Figure 1) and set the appropriate flags in the SWITCH memory (RAM 2 of Figure 1) to read from and write to the new memory. This is exactly what is happening when 64K Basic or 64K View is using the Eureka 64K Board.

The procedure is complicated so it is illustrated by an example. The program to be put in the PROGRAM memory is a simple one which tests the 64K memory from &2000 to &FFOO by writing first zeroes and then &FF into each location, in each case reading them back and checking they are correct. PASS or FAIL is then displayed on the screen. Because this program overwrites part of the Basic 64 program in the PROGRAM memory press “Control—Break” to exit to normal Basic when it finishes.

5.3
EXAMPLE PROGRAM

The example program below shows how you can read and write the new 64k memory. Before attempting to run it you should read the text following it. It is best to type in all the programs and save them to disk before executing any of them. Eureka must also be de—activated by typing *BASIC as this program uses the Eureka memory.

1OREM EXAMPLE PROGRAM

2OREM RUNS AT &8000 ON EUREKA

30:

4OFOR PASS = 4 TO 6 STEP 2

50P%=&8000 : REM ASSEMBLE TO &8000

600%=&3000 : REM LOAD TO &3000

70:

80[OPT PASS

90.start LDA #&1F

100
STA &FEDE
\ allow new RAM above &2000

110
LDA #0

\ indirection pointer

120
STA &80

130
LDA #&20

140
STA &81

150
LDA #0

160
STA &2000 \ pass / fail flag

170
LDY #0

l80.loop
LDA #0

190
STA (&80),Y \ special store

200
LDA (&80),Y \ special load

210
BNE fail00
220.cont00 LDA #&FF

230
STA (&80),Y \ special store

240
LDA (&80),Y \ special load

250
CMP #&FF

260
BNE failff

270.contff INC &80

280
BNE loop

290
INC &81

300

LDA &81

310
CMP #&FF

320
BNE loop

330
LDA &2000 \ old BBC memory

340

BNE fail

350

LDX #0
\ display pass message

360.passlp LDA passms,X

370

JSR &FFE3
\ OSASCI

380

INX
390

CMP #13

400
BNE passlp

410
RTS

420.fail
LDX #0
\ display fail message

430.faillp
LDA failms,X

440
JSR &FFE3
\ OSASCI

450
INX

460

CMP
#13

470
 BNE
failip

480
 RTS

490.fail00
 LDA
#1
\ fail with 00 test

500
 STA
&2000
\ old BBC memory

510
 BNE
cont00
520.failff
LDA
#1
\ fail with FF test

530
 STA
&2000
\ old BBC memory

540
 BNE
contff

550

560.failms
 EQUS “FAIL”

570

EQUB 13
\ carriage return

580.passms EQUS “PASS”

590
EQUB 13
\ carriage return

600]:NEXT
Before the program is run it must be loaded into the Eureka board. So how do we do this? The Eureka board contains two banks of 16k of sideways RAM. One bank is designated SIDE and the other bank is designated SWITCH. As will be seen later it is the switch RAM which allows switching to the new 64k RAM. The side RAM holds any sideways ROM and indeed can be used just to run a normal sideways ROM.

5.4 THE CONTROL LATCH
Accessing the latch is complex as it is located in the normal memory map. If running 64K Basic then only an assembler routine (using OSBYTE) can write to it. If running normal Basic then a normal ? operator will do. The control latch is an eight bit latch designated as follows.

ADDRESS &FEDF
bit0 1]
bit1 2] These select which sideways ROM position
bit2 4] the Eureka takes over.

bit3 8]
bit4 16 1=enable writing to side/switch RAM
bit5 32 1=enable SIDE memory

bit6 64 1=enable SWITCH memory

bit7 128 1=enable EUREKA 64k switch

To further explain bits 0 to 3 suppose that ROM position 15 is currently being selected by the BBC computer. Then if &FEDF was poked to 45 (15÷32), the Eureka board sideways SIDE RAM would take over ROM position 15 and become ROM 15. Indeed if bit 4 was also set then the sideways RAM would also be writeable. If &FEDF was poked to 95 (15+16+64) then the switch memory would become ROM 15. In the case of the switch memory, the write enable (bit 4) must be set so the switch memory is not write protectable when used as sideways ROM/RAM. (When the Eureka board is active bits 5,6 and 7 are all set to 1 and bits 0 to 3 reflect the sideways position being intercepted.) To load our program into the Eureka side RAM we must use a machine code loader. The program below gives a loader that will load normal BBC memory from &3000 to &7000 into SIDE RAM.

I0REM SIDE RAM LOADER

20FOR PASS = 0 TO 2 STEP 2

30P%=&7000

40[OPT PASS

50.start
SEI

60
 LDA
&F4
\ get current selected ROM

70
 ORA
#32+16

80
 STA
&FEDF
\ select ROM

90
 LDA#O

100
 STA
&80
\ source memory

110
 STA
&82
\ target memory

120
 LDA
#&30

130
 STA
&81
\ from

140
 LDA
#&80

150
 STA
&83
\ to

160
 LDY
#0

l70.loop
 LDA
(&80),Y

180
 STA
(&82),Y

190
 INC
&80

200
 INC
&82

210
 BNE
loop

220
 INC
&81

230
 INC
&83

240
 LDA
&83

250
 CMP
#&C0

260
 BNE
loop

270
 LDA
#0

280
 STA
&FEDF \ deselect side ram

290
 CLI

300
RTS

310]
320NEXT

330CALL start

This program loads our test program into the Eureka side RAM. At this stage Eureka is still just working as sideways RAM. To allow access to the 64K memory the switch RAM locations must be set. Since the locations cannot be directly accessed from Basic an image of what is required in switch memory is generated from &3000 to &7000 and then loaded into switch RAM using the modified loader program shown later. To start with the switch memory should be set to all &FFs. This can be done simply as in line 20 below.

1OREM SET SWITCH RAM TO FF

2OFOR L=&3000 TO &6FFF:?L=&FF:NEXT

30REM

40REM SET UP SWITCH POSITIONS IN RAM

50?&3017=&FE

6O?&3019=&FE

70?&301F—&FE

8O?&3021=&FE

Now it is necessary to set up the switches to enable new 64k RAM to be addressed at exactly the right moment. To do this you need to examine the example program. The instructions that are intended to refer to new 64K RAM are at addresses &8016, &8018, &8O1E and &8020. These instructions must be related to the switch memory image at &3000 and are therefore at &3016, &3018, &301E and &3O20. The address of the instructions plus one must be set to &FE. Hence write &FE to locations &3017, &3019, &301F and &3021 as in lines 50 to 80 above. To copy the image generated into the switch RAM the loader program below should be executed.

10REM SWITCH RAM LOADER

20FOR PASS = 0 TO 2 STEP 2

30P%=&7000

40[OPT PASS

50.start SEI

60

LDA &F4
\ get current selected ROM
70
ORA #F4+16

80
STA
&FEDF
\ select ROM
90
LDA#0

100
STA
&80
\ source memory

110
STA
&82
\ target memory

120
LDA
#&30

130
STA
&81
\ from

140
LDA
#&80

150
STA
&83
\ to

160
LDY#0

l70.loop
IDA
(&80),Y

180
STA
(&82),Y

190
INC
&80

200
INC
&82

210
BNE
loop

220
INC
&81

230
INC
&83

240
LDA
&83

250
CMP
#&C0

260
BNE
loop

270
LDA#0

280
STA
&FEDF
\ deselect switch RAM

290
CLI

300
RTS

310]

320NEXT

330CALL start

Having loaded the SIDE memory with the program and the SWITCH memory with the switching information, the program to address new 64k RAM can be run. As the program is in a bank of sideways RAM vet another simple program must be used to execute the test.

10REM TEST PROGRAM EXECUTION

2OFOR PASS = 0 TO 2 STEP 2

30P%=&7000

40[OPT
PASS

50.start SEI

\ set just for this test

60
LDA
&F4

70
ORA
#32+64+128

80
STA
&FEDF
\ enable Eureka board

90
JSR
&8000
\ call routine

100
 LDA#0

110
STA
&FEDF
\ disable Eureka

120
CLI

130
RTS

140]

150NEXT

I60CALL
start

At this stage the program should run and hopefully print PASS. If it prints FAIL then check the programs carefully. If required the programs can be merged into one big program or simply chained together. The whole procedure is rather involved when it is invoked from Basic. However, more advanced programmers should understand how to write an assembler program to set up the banks of memory as necessary. When Basic 64, or other languages supported by the Eureka software are invoked, an assembler program carries out broadly what has been demonstrated above, though it is slightly more complex as ROM headers etc. are added,
6.
WHY YOUR PROGRAM DOES NOT RUN
If you are reading this section it probably means that your

program violates one of the exception rules:

1.
Are you using indirection operators to try to write e.g. to the screen or a port? Use the appropriate OSBYTE call instead.
2.
Are you using any * commands in your program? Use

100 OSCLI “FX 4,1”

instead of

100 *FX4,l

3.
Are you using assembly programs? Remember they will only access normal computer memory so you must use the OSWORD call to transfer from/to 64K memory if this is necessary.
4.
Will your program, if small enough, run in ordinary Basic? If so you can check that your program works correctly with the machine working normally.
5.
If you are using the OSWORD call to transfer data either way between normal computer memory and the new 64K memory be sure it is in the right memory for your program.

6.
Does your program alter PAGE? or HIMEM? or other limits?

PAGE

