el Nl

‘_ ;

— — 1

LI

The Hybrid Music System
for the BBC Microcomputer -

AMPLE Toolbox

 USER GUIDE

AMPLE Toolbox Issue Disc ID: 41410
) . Passcode: 1945

First published 1889

Copyright (C) 1989 Hybrid Technology Limited. All rights reserved.
Neither the whole nor any part of the information contained herein ms
be adapted or reproduced in any form without the prior written
approval of Hybrid Technology Limited.

Hybrid Technology Limited

273 The Science Park

CAMBRIDGE

CB4 4WE

Issue 1

Written by Chris Jordan and Tony Thompson

AMPLE Toclbox Issue and System discs (C) 1989 Hybrid Tezrnzl:

m

copylng and use of the software or documentat‘ﬁn is strictly
forbidden.

Contents

1 Introduction
2 Installation

Part 1 - General

3 TEDIT text editor

4 JEDIT image editor

5 UTILS utilities

6 Editor module management

7 SideMod sideways RAM module store
8 AREC program recoverer

Part 2 - Reference

9 Summary of key controls

-~ U

17
33
49
55
61

1 Introduction

AMPLE Toolbox is a collection of extensions to the AMPLE Nucleus
and Studio 5000 software, consisting of:

TEDIT text editor, for entering and editing AMPLE words:

*
*
*

*

40/80 column, vertical and horizontal scrolling edit window
insert mode editing, including line split and concatenate
editing of any number of words simultaneously

(allowing words to be easily combined and split)
private text storage, retaining text on program run and save
module format, allowing load or discard at any time
CLEAR, GET, ADD, NAME and MAKE commands

IEDIT image editor - for entering and editing mode 7 displays:

L R B R

entry of text, graphics, colours and effects
full-screen editing area

block copy and character paint facil:

second image buffer, with get, put
storage of full or part screens zs wors

compact or full text word formats

module format, allowing load or discard at any time
CLEAR, GET, NAMZ, MLKEZ and TMAYZ commands

UTILS utilities - for advanced pregram development:

M ok ke ok Nk kN kN

LEDIT line editor with CI SET APPEND LIST RENUMBER & MAKE
COMPILE to make minimum- run-cniy versions of programs
DISCOMPILE to return compiled programs to an editable form
MERGE to combine a savec program with the one in memory
BROWSE to view and search a tree-display of the program
SPARESHOW and SPAREDELETE to show and delete unused words
ABBREV to find the minimum abbreviation of any word

REPORT to locate and describe the position of the last error
module format, allowing load or discard at any time

SideMod sideways RAM module store (Master 128 only)

Sidemod adapts any System Disc to store the user's selection of
modules in Master sideways RAM, from where they are loaded when
required, giving faster access to editors and removing the need
for a system disc once the system has started.

1 Introduction

AREC AMPLE disc program recover

AREC recovers lost AMPLE programs from DFS and ADFS floppy
discs, allowing recovery of programs that have been
accidentally deleted or whose disc has become corrupted.

This User Guide gives all the information required to install and
use the Toolbox software. For some subjects, it refers you to the
AMPLE Nucleus Programmer Guide for further information.

2 Installation

Check that you have received the following:

¥ this User Guide
¥ AMPLE Toolbox Issue Disc
* label for AMPLE Toolbox System Disc

You will also need:

¥ BBC Micro Model E. B+, or Master 128, with disc drive and
TV or monitor

¥ Music 5000 Synthesiser, installed and tested

* one blank disc, feormatted to suit your system

You may also have cther Hvorid Music System components, such as:

* Music 4000 Keyboard,
* Music 3000 Expander,
*¥ Music 2000 Interface, instz.led and tested
¥ Music 1000 Amplifier.

making a system disc

The AMPLE Toolbox Issue Disc supplied creates (for your ROM only)
the Toolbox Syster Disc wnicn you then use.

The Issue Disc will operzte on both 40 and 80-track disc drive.

If your drive has a '40/87 track' switch, you should set it to
suit the type of disc you ha chosen to use with your System. In
the case of a dual drive with switches, both must be so set.

To generate an AMPLE Tooibox System Disc:

* insert the Issue Disc into the disc drive
(if there are two slots, into the top slot)
*¥ tap the BREAK key while holding down SHIFT
*¥ follow the instructions that appear on the screen.

When the computer asks you to enter a passcode, read it from the
inside front cover of this User Guide. Before pressing RETURN,
check that the passcode you have entered, and the disc title and
ROM ID shown at the top of the screen, are the same as those
printed inside the cover.

2 Installation

When the message 'Generation complete' appears, remove the
Disc and stick the supplied label on it, folding the label
the right edge of the disc so that the black strip ends up
back.

If the message 'Generation complete' fails to appear, refer tc
'fault-finding' below.

testing

Start the system from your existing Studio 5000 System Disc. When
the Main Menu appears, remove the System Disc, insert the AMPLE
Toolbox System Disc in drive 0 and press f9. When the Toolbox
menu appears, press RETURN to select the first option, TEDIT.
After a moment, the TEDIT screen will appear, and you will be able
to press TAB to enter edit mode, and type-in some text.

fault-finding

If the Issue Disc fzils in any w
followed by 'Generation atcrie

disc.

If *'Disc fault' appears while tne Issus Tisc Is s2ing ac
the drive, the drive zr & v
problem persists, contact

If on attempting to loacd one ¢
module' message, you enterec ©

ne wrong de.
system disc, re-using the same disc if ycu wisrn.

3 TEDIT text editor ’

TEDIT is an editor designed specifically for text, and therefore
it offers various advantages over Notepad, the Studio 5000's
general-purpose editor. It is used to edit AMPLE word definitions
in textual form, and to enter the text of new word definitions and
command sequences.

loading

Before TEDIT can be used, it must be loaded from the Toolbox
System Disc into memory. It then remains available for use until
it is unloaded.

The simplest way to load TEZIT is through the Toolbox ' jukebox'
menu. This discards the user program, so if necessary you should
save it first and reloacd it afterwzrds. There is a more advanced
method that lets you to load TE:IT ithout disturbing the user

To load TEDIT using the Tcclbox jukebox, make sure you have saved
the current program if you want =c keep 1t, and:

remove the Studio 53CC Sys
insert the Toolbox Syster
ensure you are in command mode or the Main Menu, and press f9
select one of the TEDIT optiicns

remove the Toolbox System Tisc

insert the Studio 5000 System Disc

* K Wk ok %k ok

Once loaded, TEDIT remains available until the Main Menu or
Toolbox jukebox needs to load a different editor, at which point
the TEDIT module is unloaded (remcved from memory) to reclaim the
memory it uses. The Main Menu's 'EREun program' and 'New program'
options will also unload the TEDIT mcdule, and you can also unload
it directly with a command - see the chapter ‘'editor module

management' for details.

3 TEDIT text editor

command and edit modes

As with most Studio 5000 editors, TEDIT provides a command mode in
which you enter commands to transfer material between TEDIT's tex:
store and the program you are working on, and an edit mode in
which you work on the material in the text area. You press TLE tc
swap between the two. —__

The screen is divided between the command area and the edit area.
When in command mode, you work in the command area, which may
expand to push the edit area off the screen. When you enter edit
mode, the edit area re-appears, shrinking the command area to show
just the last few commands you made.

commands

TEDIT provides the following commands for transferring between its
text store and the user program:

CLEAR clear text area (does not refresh screen)

"wordname"GET get the definition of the named word,
replacing the existing text

"wordname"ADD add the definition of the named word tc the
text area, before the current line

"wordname"NAME complete the definition of a word by zdding
"wordname" [
at the start ¢f the text, zn2
]
at the end
MAKE execute the contents of the text area
You use CLEAR, GET, AND MAKE in the same way as their counterparts
in, for example, Notepad. To set the name of a new word, either

before or after entering its contents, you use NAME in the same
way, too.

10

3 TEDIT text eii=zr

entering text

After loading TEDIT for the first time, or entering CLEAR, the
text store is empty. At all times, a solid block marks the end of
text, and when, as now, the text store is empty, the marker
appears at the top left corner of the edit window.

When you press TAB to enter edit mode, the cursor moves to the
end-of-text marker, and you can enter text, as follows:

* the characters you type appear at (immediate left of) the
cursor, moving the cursor to the right;

* pressing RETURN moves the cursor to the start of the next
line down, that is, it inserts a 'return character';

*® pressing DELETE removes the character to the left of the
cursor and moves the the cursor to the left, or if you had
just pressed RETURN to move down a line, it removes the
'return character' and so moves the cursor back up to the end
of the previous line.

As you enter text, the end-ci-text marker is moved along with the
cursor.

entering a word definition

To make a new word using TEZIT, stzrting from command mcle, vou:

*

enter CLEAR if necessary. and press TAE tc enter edit mode

type in the contents of trne word, for example:

*

0:CDEFG

* press Zég and set the name, for example:
"tune"NAME

¥ enter MAKE

If MAKE finds a mistake ir the text, the cursor will be placed on
it when you next re-enter edit mode.

"

3 TEDIT text editor

There are two other ways you can set the name:

* by using NAME in the same way but before entering the word

* by not using NAME, but entering the full definition of the
word including its gquoted name, [and], as it would be shown
by TYPE, for example:

"tune" [SCORE
0:CDEFG
]

Note that, as NAME simply adds lines to the text area, you cannot
change your mind and simply use the NAME command again, as is
possible with other editors. In this case, you must either first
clear the text area, or delete the unwanted name while in edit
mode (see editing text, below).

editing text

The cursor keys let you move the cursor off the encd-cf-text marker
around the text, so you can go back tc maxe inserticnsz ard
deletions, as follows

¥ characters you type are inserted. =irz
the characters to the right cf trhe cur

cter, splitting the
we cursor, the text tc

¥ pressing RETUPN inserts a 'return' charza
': .044 :"
a.l lines below

line at the cursor, and

Fa

the right of it con th

¥ pressing DELETE pulls the text to the right of the cursor
along, or if thne curscr was at the left end of a line, it
removes the 'return' character, joining the line to the right
end of the one above, and moving up the lines below.

Note that TEDIT has no special keys for insert and delete
character and line, since they are not needed.

editing a word definition

If after entering a word, MAKE gives an error, you simply make the
correction to the existing text and MAKE again. If you want to
edit an existing word whose definition is not already in the text

3 TEDIT text editor

store, starting from command mode, you:
* enter, for example:
"tune" GET

* press TAB
¥ edit and MAKE as before.

If the word you GET contains the site of the last error in a word,
then GET will automatically place the cursor at this point in the
text.

additional editing keys

Though the character keys, RETUEN, DELETE and the cursor keys are
all you need to perform entry and editing functions, the following
keys can speed up the process:

COPY delete forward, removing the character (or
'return' character) at tne cursor and
pulling the texT bai«

SHIFT COPY delete the res

of the line, wiping all
Charactters t« e

right ¢f the curscer

CTRL COPY delete the whole line, pulling up the lines
below

SHIFT left/right move left/right by one word, possibly to the
line abcve or below

CTRL left/right move to the start/end of the line

CTRL Eg/down move to the start/end of the text

line copying

TEDIT provides the standard BBC line editing facility based on the
COPY key, so that you can make copies of existing lines, with
modifications.

To start copying, you press CTRL SHIFT COPY, and a block cursor
appears to mark the insert position. You then move the underline
cursor to the start of the characters you want to copy, and press
COPY to copy each one. As you copy, you can use the DELETE key
and the cursor keys as normal. To end copying, you press RETURN.

13

3 TEDIT text editor

editing more than one word definition

Because TEDIT works with full word definitions, including name, [
and], the text store can hold more than one definition at a time.
For example, you can simply enter a second definition after the]
of one already present, and MAKE will make one after the other, in
one operation. Similarly, you can split a word into two
definitions by an insertion in the single original definition, for
example,

"tune" [SCORE

0:CDEFG

] "tune2" [% inserted line
1:Cbagf

]

The ADD command works just like GET except that it adds the
definition to the existing text, inserting it before the cursor
line. One powerful application of this is to gather a group of
related words into the text area for editing together. Ancther
use is to combine two words into one, for example:

"tune2"GET "tune"ADD % (get in reverse orcer|
press TAB

"tune" [SCORE

0:CDEFG

] % press
"tune2" [% press
1:Cbagf

]

OPY tc remcve this line
OPY to remove this line

o
e
[SNE®]

long text

There is no limit to the number of lines that the text store can
hold. When there are more lines than will fit in the edit area,
the edit area becomes a movable window on to the text store, and
displays '+' indicators at the top and/or bottom to remind you
that there are more lines, out-of-sight, in that direction.

As you move the cursor, the text scrolls automatically to keep the
cursor in the edit area. Alternatively, you may yourself move the
edit area up and down the text:

SHIFT up/down move up/down by half a screen-full

14

it
!

Wi

~

3 TEDIT text editor

wide text

TEDIT allows lines to be longer than the screen width, whereupon
the edit area acts as a window that automatically moves sideways
to keep the cursor in view. If a line goes off the edge of the
screen, a '+' indicator is displayed at that point to show that
there are more characters in that direction.

TEDIT does have a limit to the line length, which, though it may
vary from version to version, is guaranteed to be 80 characters or
more.

changing screen mode

TEDIT provides a command ‘TEDIT', one of the uses of which is to
change the screen mode used for editing (the command is
described fully in the chapter 'Editor module management').

The TEDIT command records the current screen mode as the editing
mode for this session, so that it will always return tc this mode
for editing, even if you change mode by, say, running a program or
entering a MODE command.

The 'jukebox' menu options set the appropriate mode oo
issue the TEDIT command, but you can change editing mcd
using MODE and re-entering TEDIT, for example:

3 MODE TEDIT

This does not clear the contents of the text store.

commands in text

The effect of TEDIT's MAKE is in fact to simply execute the
contents of the text store as if it was typed in commanc mode - it
'makes' a word only because that is the effect of executing a full
word definition.

This means that you can include just about any commands in the
text area, and they will be executed by MAKE. One use of this is
to execute automatically a test sequence for the word you are
editing, by the addition of, say, the word name after the

15

3 TEDIT text editor

definition itself at the end of the text, for example:

"note" [@ 0:C]
"randnotes" [

8 FOR(7 RANDL note)FCR
]

SCORE 12, randnotes

You could also use TEDIT to execute just a sequence of commands,
without any definitions. This would let you enter, check and, if
necessary, edit them before beginning execution. Though any
command that prints a message on the screen will over write the
edit area, the display will be restored on returning to edit mode.

text storage

TEDIT holds the text being edited as part of the user program,

in the form of data rather than words. An advantage of this is
that SAVE saves the data along with the words of the program, and
LOAD reloads it for you to continue editing, provided you are in
TEDIT at the time.

To find out whether a program has TEDIT data, you use the SEOA
command. This normally shows 'nc data' after its 1ist of words,
but when TEDIT data is present, it shows 'TXT datz'. The MEM
command shows the amount of user memcry the fexT ccrnsumes. as
'Data:’'.

Since the text dat
it before running
the command CLEL=.
want to CLEAR the

This public data facility is d:is
'Editor module management'.

(@]

4 TEDIT image editor

IEDIT lets you design and edit mode 7 screen images using text,
graphics and effects, and then store them as AMPLE user words for
recall from within user programs.

loading

Before IEDIT can be used, it must be loaded from the Toolbox
System Disc into memory. It then remains available for use until
it 1s unloaded.

The simplest way to load IEDIT is through the Toolbox ' jukebox'
menu. This discards the user program, so if necessary you should
save it first and reload it afterwards. There is a more advanced
method that lets you to load IEDIT without disturbing the user
program - see the chapter 'editor module management' for details.

To load IEDIT using the Toolbox jukebox, make sure you have saved
the current program if you want to keep it, and:

remove the Studio 5000 System Disc

insert the Toolbox System Disc

ensure you are in command mode or the Main Menu, anc press ¢
select one of the IEDIT options "_
remove the Toolbox System Disc

insert the Studio 5000 System Disc

¥’ ok %k Kk kK ok

Once loaded, IEDIT remains available until the Main Menu or
Toolbox jukebox needs to load a different editor, at which point
the IEDIT module is unloaded (removed from memory) to reclaim the
memory it uses. The Main Menu's 'Run program' and 'New progrzr'
options will also unlocad the IECIT module, and you can aiso un.oad
it directly with a command - see the chapter 'editor modu.e
management' for details.

4 TEDIT image editor

command and edit modes

As with other Studio 5000 editors, IEDIT provides a command mode
in which you enter commands to transfer material between IEDIT's
image store and the program you are working on, and an edit mode
in which you work on an image. You press IAE to swap between the
two.

When you are in edit mode, the edit area occupies the whole of the
screen to show your full image. When you switch to command mode,
the command area appears, covering up some of the edit area, and
as you work in the command area, it may expand to temporarily push
the edit area off the screen.

commands

IEDIT provides the following commands for transferring between its
image store and tne user program:

CLEAR clear image area (does not refresh screen]

"wordname"GET g=< <re image of the named word, replacing
tre “sting image

"wordname"ADD 242 the image of the named word, overlaving
tne existing image

"wordname"NAME set the name of the word to be made

MAKE make a word with the given name, containinrg

the current image in DISPLAY form.

TMAKE make a word with the given name, containing
the current image in standard text form.

You use CLEAR, GET, NAME and MAKE/TMAKE in the same way as their
counterparts in, for example, Notepad. These commands are
explained in more detail below.

entering text

After loading IEDIT for the first time, or entering CLEAR, the
image store is empty. When you press TAB to enter edit mode, the
blank edit area appears, with flashing cursor at the top left
corner.

You may now enter text by typing as normal. Text entry in IEDIT

wery similar to that in Notepad - you use the cursor keys to

18

4 IEDIT image editor

move around the screen, and the same function keys to
insert/delete line, and insert/delete character. The only
difference is that COPY carries out block copying rather than
character copying, as described later.

In addition, IEDIT has the following keys:

SHIFT 6 insert column
SHIFT f7 delete column
CTRL up/down/left/right move to edge of screen

Note that you cannot enter any character in the bottom right
corner of the screen, since attempting tc display one at this
position would cause the screen tc scroll.

entering control codes

IEDIT's edit mode provides the teletext control codes on function
keys, as follows:

function key SEIFT functiion key

1 next alpha (text) colour toggle flashing/steady

2 next graphics colour toggle doutle/normal height

3 new background toggle separated/contiguous

4 black background toggle hold/release graphics

5 conceal display
Each of the single-code function keys - 'new background', 'black
background' or 'conceal display' - just enters the appropriate
code.

Each 'toggle' function key works similarly but enters whichever of
its two codes is appropriate to that point on the line. It also
leaves the cursor in place. For example, if the state of
flashing/steady at the cursor point was 'steady', pressing SHIFT
f1 would enter a 'flashing' code. If you then pressed right
cursor, typed some text and pressed SHIFT f1 again, it would
enter a 'steady' code.

Each 'next' function key either enters a colour code, or if the
cursor is already on one, changes it to the next colour. It
leaves the cursor in place, so you can tap it repeatedly until you
get the colour you want. For example, to make an existing word
appear in green, you would move to the space before it and tap f1
(next alpha colour) until green appeared. To return the following
words to their original colour, you would move to the next space
and again tap f1 until the required colour appeared.

19

4 JEDIT image editor

As you move the cursor around the screen, it changes shape to tell
you what kind of item is at that position - an underline indicates
a text or graphics character, and a block indicates a control
code.

entering graphics characters

To enter a graphics character, you alter individual pixels using
the following cluster of six letter keys, with CTRL:

00 |
00 —
00

The character you start with will often be a space, but any
non-graphics character will have the same effect. Alternatively,
you can start with a solid block obtained by pressing Eg.

Remember that graphics characters only appear as such if precedec
by a graphics colour code on the same line.

making an image word

To make an image and store it as a word, you start from command
mode and:

* enter CLEAR if necessary, then press TAB to enter edit mode

* compose your image using character, graphics and code keys
Begin at the top of the screen so that if your image turns
out not to fill the full height available, the unused space
will all be at the bottom

* press TAB to enter command mode

% enter, for example:

"image"NAME MAKE
This stores your image without the unused space below it
You now have a word called 'image' which when executed will

display your image. You may test it by entering its name at the %

20

4 IEDIT image editor

prompt:

image .
To recall a previously made image for editing, you use the GET
command as normal:

"image"GET

using an image word

Once you've made an image word, you can invecke it from within your
program just by including its name, like any other AMPLE word. A
common example is as the title display for a piece of music:

" RUN " [

7 MODE titleimage
"1234"PLAY

]

When you type RUN, the MODE 7 instruction makes sure the screen is
in mode 7 and also clears i:t. tre : w lel ' produces
its display, and then the % cTrom:

title.

A special case arises when the imz
screen, such that there i1s nc lire
cursor on. In this case, the irag
top left of the screern.

g2 is the full height of the
o w tne image to leave the
i eaves the cursor at the

help facility

IEDIT's edit mode has a por-ur menu with options for help,
reminding you of function key arc cursor key usage, and code,
describing the code or character at the cursor. To access either
one, press f0, move to it (using cursor left/right keys), and
press RETURN. When you want to return to editing, you press
RETURN again.

The other options on the fO menu are described further on in this
chapter.

21

4 TEDIT image editor

painting

You can take the character or code at the cursor position, and
swiftly 'paint' it around the screen by holding down SHIFT while
you move with the cursor keys. This is particularly useful for
making designs with graphics characters, and for repeating a
control code down a column. For example, to prepare an area of
the screen for graphics codes, you might enter a graphics colour
code at the start (left end) of the the area's top line, and then
paint it downwards until you reach the area's bottom line.

copying

You can copy any rectangular area of the screen to another place
on the screen using two markers. The procedure is as follows:

* move to one corner of the orginal area and press CCOTY

¥ move to the opposite corner and press COPY

* move to the top left corner of the destination area
and press SHIFT COPY to make the ccopy.

You can make as many multiple copies as you like, where you like,
but if the destination area overlaps the original, you may not get
the result you expect.

Remember that many objects in your image will have control codes
to the left of the visible part, so when copying any screen area
that is less than the full width, be sure to include these
essential codes in the rectangle you mark.

To help you in making precise copying operations, the f0 edit menu

has an info option which displays the co-ordinates and positions
of the cursor and both markers.

22

4 IEDIT image editor

using image words in programs

It is quite simple to take a number of image words, and have them
displayed in sequence by your program.

To make the images appear one under the other down the screen, you
simply invoke one image after another, probably with some kind of
pause in between, for example:

"message" [

7 MODE imagel

#IN #2 % wait for key press
image?

#IN #2

image3

]

Once the screen is full, <he Zisclzv will z2rzll o 23 new lines

are printed.

To make each image
previous one, ycu
cursor to the top

"message" [
7 MODE image-”

#IN #2

30 #0UT imagez . nome curscr, Zisc.zy image

]
Though you could use a 7 MCIZ :irs : 2T #0UT, this would
produce a momentary blank screern » pages. When using 30
#0OUT you should make sure aXl im the same length so that

there is no way the bottom of onse mage can be left showing.

Instead of waiting for a key press, your sequence could use a
fixed delay prduced by the following word definition:

"delay" [% number delay

QTIME #- DURATION % set period, ignoring current time
REP(QTIME SIGN)UNTIL(% wait for period to end

IDLE)REP]

23

4 IEDIT image editor
used as follows:

500 delay % wait for 5 seconds
image

The number is the delay period in time units - at the normal tempo
of 125, there are 100 per seccnd.

synchronising images with music

Images may be c¢i
word (or a non-I .
itself. The follow:

"swaith" [
REP{ QTIMZ SIZN JUNTIL(% wailt for omusic svent T oand
IDLE)REP J

You include this before the image worz, to rmzax
on time, for example:

o

0:GgGAalgfe
swalt image
0:d//7/7/7/77

Another form of this uses a separate, silent player tc 'perform’
the images, so that the short time taken to actually output arn
image cannot disturb the rhythm of the musical parts.

particularly convenient for images that appear at musiczl
sections, since you don't need to mark any time in the image par:.
for example:

"part9a" [swait imagea]
"part9b" [swait imageb]
"part9c" [swait imagec]

"1239-abacada"PLAY % play music and image parts

One thing to remember when displaying images from any player is
that they can appear right in the middle of you typing a command
or using an editor! For this reason, its a good idea to eguip
your piece with a menu that offers a non-image performance, let:in

Ny
H

]

4 IEDIT image editor

you use the Mixing Desk without disturbance, for example:

"RUN" [

7 MODE MENUDISP

%

%Dance of the Three Witches

%

%music and pictures%"1239-abacada"PLAY
%music only %" 123-abacada"PLAY
%

MENU]

specifying the image area

MAKE and TMAKE normally store the complete image down to and
including the last non-blank line in the image, but you can change
this by specifying the bottom right corner, to store a taller,
shorter or narrower area of the image.

To specify the bottom right hand corner of the area tc be stored,
you simply move to that position and mark it by pressing COPY.
Now when you use MAKE or TMAKE, only that part of the rectangle
between the top left corner and the marked position will be
included in the worc.

copy

%MAKE % (or TMAKE)

This facility lets you include blank lines below the visible
image, so that on printing, the corresponding area of the screen
is cleared. It also lets you make narrower images for display in
text windows created by your program, though the windowed image
facility described later is sometimes better suited for this.

Note that though you use the same marker facility for both block
copy and MAKE/TMAKE, MAKE/TMAKE take care to ignore markers that

25

4 TEDIT image editor

are just left over from a previous block copy. In case you want
to check before using MAKE or TMAKE, the 'info' option on the f0
edit menu displays 'm' after the marker co-ordinate if it applies
to MAKE/TMAKE; the flashing on-screen markers are alsc only half
height if they will not be used for MAKE/TMAKE.

Upon recalling an image word with GET, the marker is set
automatically if it is needed to record the size of the image for
MAKE. This means that you can GET an image, make minor changes,
and then MAKE it, knowing that its size will be preserved. Note,
however, that if your changes are outside the area marked, they
will not appear in the final image. In this case, you will need
to:

* clear the MAKE use of markers, by pressing COPY, COPY, then
SHIFT COPY while in edit mode
¥ if desired, mark the new area to be stored with COPY

word formats

If you examine the definitic
notice that MAKE creates z LIS
enter in Notepad or TELIT, exc
control codes found in the image.

an image word with TYPE, you'll
AY sequence just as you might
t that it can also include the

The TMAKE command is equivalent to MAKE except it stores the image
in standard text form. using $CUT and #0UT to display text and
control codes, as if you had programmed it the hard way.

IEDIT gives you the choice of these two formats because each has
its own advantages and disadvantages. MAKE's DISPLAY format uses
up the minimum amount of memory and gives the fastest output, sc
this is the best choice in most cases. Only TMAKE's standard text
form lets you edit, print and spool the definition like any other,
so this is the one to use if you'll need to do any non-IEDIT work
on the stored image.

GET works equally and identically on both formats, so you can
convert an existing image word from one format to the other usirg
GET and MAKE/TMAKE.

Ny
o

4 IEDIT image editor

importing non-IEDIT images

Almost any mode 7 display produced by a user word can.be carried
into IEDIT. This is possible because GET gets the image from the
named word not by examining its definition, but by executing it.
Regardless of how the word creates the image and what it may do in
addition, GET will transfer the image to the image store when the
word finally exits.

One common usage is capturing the non-IEDIT-image title display of
a piece, for which you would enter:

"RUN"GET
Having captured it, you could keep Tor later use by entering:
NEW
"image"NAME M:iXE
"image"SAVE

The MERGE commanc in
convenient way cf zdiin

Alternatively, you might w
the program in place :
replace the whole RUI worl
make it under a different rzam
definition of RUN.

the image buffer

In addition to the image store that h:clids the current Ima
are editing, IEDIT has a completeiy separate image buffer . .
can hold an independent image, giving you greater flexizilZity for
assembling complex designs.

m

You use the image buffer through the following operations:

*¥ put (f0 menu) copies the image store to the buffer
* get (0 menu) copies the buffer to the image stcre
% swap (O menu) swaps the contents of the store and buffer
% copy (SHIFT copy) if the marked area is in the buffer

(having been put or swapped there),
copies it to the cursor position in the
image store

Some of the uses of the image buffer are:

* keeping a set of commonly used picture elements from which

27

4 TEDIT image editor

individual ones can be copied when required

¥ combining parts of two pictures to make a third

% temporarily storing sections of the image while rearranging
them on the screen

* keeping a safety copy of your image, ready for undoing a
serious mistake

The image buffer is discardec by CLEAR, but is not cleared by the
IEDIT command.

The info option on the fO menu displays the positions of the
markers and tells you if they are in the buffer, as opposed to the
store.

windowed images

So far we have seen how to store just the raw data of an image,
without any extra information about its size or position on the
screen. This is ideal for images such full-size screens, titles
(which you want to appear at the cursor positicn whatever it may
be), and images that will be presented under the Full ccntrel of
more advanced programs.

In addition, IEDIT can also store windowed images, containing th
image data as before, plus the definition of a text window which
fully specifies the position and size of the image. Any
rectangular area of the image being edited can be made into a
windowed image word so that when displayed it will reappear at the
same position, leaving the rest of the screen unchanged.

To store a part of the image being edited as a windowed image, you
simply mark two opposite corners of the area using the COPY key
(as you would for copying) before using MAKE or TMAKE:

copy

copy

XMEKT % (or TMAKE)

28

4 T1EDIT image editor

To display the image, you simply invoke the word in the normal
way.

After displaying its image, each word leaves its window in place,
with the cursor in the top left corner.

If you don't want to use the window {urther, you should cancel it
with a 26 #0UT ('default windows' viu code) so that the full
screen is accessible again, for exampls:

7 MODE

winimage % diszliav windowed image

26 #0UT % carzel window
Windowed images leave the wirdzw set sinze this makes it easy for
you to modify the image, for examrp.e tv cver-printing additional
text:

7 MODE

albumlogo

10 #0UT 10 #3UT

9 #0UT § #0UT S #CUT
"The Marching *
26 {fOUT

text
if required)

The same result couid te prciucel with a second windowed image
containing just the © position. To make a
composite display Ir images, you just

invoke them one-z:7t ¢ cancel only the last

window, for example:

2.

7 MODE
albumlogo tracklogo authorlogo
26 #0OUT

For more advanced applications, programs may also read the

position and size of the windcw Ircrm the operating system.
Windowed images have many applications, including:

¥ as image elements for combination with each other to build a
larger number of alternative screens conveniently, for
example a set of titles with a common background or border

* as image elements for combination with displays from other
sources, such as menus

¥ as a more-efficient alternative to a non-windowed words when
the image is small (especially if it is not at the left
screen edge) such as overlays for making successive frames of
animated sequences

29

4 TIEDIT image editor

modifying windowed image words

As with words made with one marker, using GET to recz2 . 2 winizuws?
image will result in the markers being set such that =z
recreate the original word. As before, modifications ¢
area will not be included in the final MAKE, so be sure
that the markers are where you want them before swarprc?
command mode. This is particularly important in the si:
of wanting to reposition the image: after using GET, ther
inserting or deleting a few rows or columns, the origirzl imzz=
area is hopelessly out-of-touch with the new position.

Windowed images can also be moved by editing them in TEZIZ. TUs=
TMAKE to obtzin an editable version of the word, then GET it
TEDIT. You will see that the first line uses #0UT to ser< ©
codes that set up the text window. This is what sets tre
of the image or-screen, so the image can be moved by up:iz
window limits. Be sure to keep the final window the sax
and width az <ne original, or the integrity of the displ=z
lost.

adding images

to GET but instead of clearinz ths

The ADD commanc is milar
e ng it and adds the new image over _*%.

existing image., r

To add a nermal non-windowed image to the existing imazs. v:ou
position the cursor at the left end of the line you wan: trns =2ZZed
image to start on, and then enter the ADD command, for sxzmil=s:

"banner'"ADD

After adding the image, ADD positions the cursor
the bottom of it, ready for adding a further ima

doesn't attempt to prevent you adding an image t=

fit, so this is your responsibility.

same way. ADD leaves the cursor in the top le
added image.

Ncte that ADD does not affect any markers.

4 IEDIT image editor

image storage

IEDIT holds its image store and image buffer as part of the user
program, in the form of data rather than words. An advantage of
this is that SAVE saves the data along with the words of the
program, and LOAD reloads it for you to continue editing, provided
you are in IEDIT at the time.

To find out whether a program has IEDIT data, you use the SHOW
command. This normally shows 'no data' after its list of words,
but when IEDIT data is present, it shows 'TEL data'. The MEM
command shows the amount of user memory the text consumes, as
'‘Data: .

Since the image data being edited uses up user memory, you will
probably want to discard it when ycu have finished editing. To do
this, you simply enter the command CLEAT. Similarly, to conserve
disc space, you may want to CLE:ZE the image data before saving the
program.

This public data facility is discussed fur<her in the chapter
'Editor module management!'.

31

5 UTILS utilities '

UTILS provides eight additional program management commands and
LEDIT, a BASIC-style line editor that can be used manually or
under the control of batch files or user programs.

loading

Before UTILS can be used, it must be loaded from the Toolbox
System Disc into memory. It then remains available for use until
it is unloaded.

The simplest way to load UTILS is through the Toolbox 'jukebox'
menu. This discards the user program, so if necessary you should
save it first and reload it afterwards. There is a more-advanced
method that lets you to load UTILS without disturbing the user
program - see the chapter 'editor module management' for details.

To load UTILS using the Toolbox :ukebox, make sure you have saved
the current program if you want to keep it, and:

remove the Studio 3000 System Dlisc
insert the Toclbox System Disc
ensure you are in command mode or the Main Menu, and press f¢

select the UTILS option
remove the Tooclbox System Disc
insert the Studic £037 System Disc

* ok ok ok ok ok

Once loaded, UTILS remains available until the Main Menu or
Toolbox jukebox needs to load a different editor, at which point
the UTILS module is unloaded (removed from memory) to reclaim the
memory it uses. The Main Menu's 'Run program' and 'New program'
options will also unlcac the UTILS module, and you can also unloacd
it directly with a command - see the chapter 'editor mcdule
management' for details.

33

5 UTILS utilities

program management commands

Once the module has been loaded, its program management commands
are available. They are:

ABBREV display minimum abbreviation of word name
BROWSE give program structure display

COMPILE compile program

DISCOMPILE discompile program

MERGE merge program

REPORT report error location

SPARESHOW display names of unused words

Some of the commznds can take some time to prepare themselves; for
example, BRZWSE has to decide which words to display first, before
it can start. In this case, they print full stops as an
indicatior thzt rrogress is still being made.

ABBREV display minimum abbreviation of word name

ABBREV returns <re minimum abbreviation for the given word name,
whether Nucleus, module or user, in the current installation.

Note that trns i
change i7
words with

Nucleus or module word may
r removed, or if, for example, user
re added or removed.

%"MDELETE" AB.
MD.

BROWSE give program structure display

BROWSE presents a display of the structure of the program,
allowing the user to move to inspect individual words in more
detail using the cursor keys. Pressing TAB exits BROWSE and
returns to the % prompt. -

BROWSE initially displays a list of unused user words ~ the top
level of the program structure - each followed by a full stop fcr
each reference to a user word it contains - the next level dowrn.
& '>' character marks the current position, which may be mcwved
using the cursor keys:

(0%
I~

5 UTILS utilities

key action
up/down move up/down the list
right enter the current word, to display an indented

list of all the user word references within it

left exit the current word, removing its list of
references from the screen, and return to the list
containing the reference to it

RETURN display the definition of the current word. In
80~column screen modes, the definition appears to
the right of the program display, but in 40-column
modes, it replaces the program display and waits
for a RETURN key-press before restoring the
program display.

COMPILE compile program

COMPILE reduces the program to the smallest possible size by

converting all user word names to a single character ('z'), and
removing spaces, carriage returns (line ends) and comments. In
this form, the program may be run but not fully read or edited.

As COMPILE processes each program word, it displays the number of
bytes removed in each category, and in total. When compilation is
complete, it displays the total number of bytes removed from the
program.

COMPILE converts all user word names except those starting with an
upper-case letter (such as RUN) and those that you have
specifically protected by including them in the definition of a
user word called NOCOMPNAMES. This allows you to protect the
names of words that are called as commands, rather than just as
instructions in other words. Examples include key words that the
AMPLE Nucleus or modules look for, such as 'partl', and special
command words used in menu options and macros. If these names
were removed, the program would fail to function correctly. Since
these words are usually unused as instructions in words, the
SPARESHOW command is useful for detecting them.

After compilation, the NOCOMPNAMES word may be deleted to save
memory.

Note that if COMPILE finds a DISPLAY or MENUDISP instruction, it

retains all following spaces, line ends and comments in that word
to ensure that the text of user displays is not removed.

35

part3 RUN % list of key names
part1 part2 part3] % protect key names
% begin compilation

DISCOMPILE discompile program

DISCCM¥EILE expards anv rregram to a fully readable and editable

form, enterin zzeg anZ line ends where required, and givin
b ?

arbitrary ©z user words whose names have been removed by

COMPILE.

Though DISCOMPILET !
readable ancd
program tc rermc

red to restore a COMPILEd program to a
it may also be used to re-format any
<l lines, such as those created by

direct entry ini s at the % prompt, use of an 80-column
editor or RZ 2 names. The maximum line length
permitted is thz -ne current text window (usually the screen

width).

it displays the number
of bytes adde . and in total When compilation is
complete, 1%t Zis rumber of bytes added from the
program. DISCOMFILE never ramcves anv type of item.

Like COMPILE, DISTIWFILE Zces rct molify the contents of a word

following nerenv ensuring that the text of
user displays
example
%7 MODE % set 40-column line length
%DISCOMPILE % begin discompilation

MERGE merge program
namestring MERGE

MERGE loads the named program without removing the one in memory,
adding the two sets of words together to make a new, merged
program.

If a loaded word has the same name as an existing one, a warninz
message is given so that you can RENAME the loaded word to
something different. To avoid confusion when words are
re-defined, you should normally do this immediately.

36

5 UTILS utilities

Any public data in the merged program is discarded. Any public
data already in memory is retained, so if you are using an editor
that uses the public data facility, for example TEDIT or IEDIT,
your current text or image will not be affected.

REPORT report error location

REPORT shows where in the program the last error occured by
printing the numbered line of the user word with a '!' indicating
the reference to the system word that generated the error.

The line number that appears is the number of the line as assigned
by LEDIT's GET (see later in this chapter). Remember that though
the word may already be in the buffer, its line numbers could have
been changed since the last GET, so to avoid confusion, you should
use GET to get the current definition of the word before making
corrections.

REPORT's record of the last error in 2 user word is not affected
by errors in the input line or irn ncr-user words us=Z as commands.

REPORT does nothing if, sirce the errcr. you have useZ a command,
such as DELETE or LOAT, that could have rermcoved the user word.
example
%RUN
No number in part' % errcr message
%RPEORT % typing error
Mistake % error message
%REPORT % command
30.SCORE : % line printed by REPORT
! % indicates ':' caused error
% % prompt

SPARESHOW display names of unused words

SPARESHOW displays the name of each user word not used as an
instruction in any user word (including itself). It is very
useful for identifying words that were left in a program after
development, and may be deleted to save memory.

Note that a word found unused may be an important part of the
program which is accessed only as a command, rather than an
instruction inside a definition. Examples include RUN, key
'interface' words such as 'part1', and command words for use in
menu options or macros.

37

5 UTILS utilities

Any word reported by SPARESHOW may be removed immediately using
DELETE without any possibility of the '! In use' error, or using
SPAREDELETE.

Note also that SPARESHOW will not report a word that uses itself
even if it is not used by any other word in the program, since
strictly speaking it is 'in use' and could not be directly removed
using DELETE.

example
%SPARESHOW
parti partz mix purensim RUN

%"purensim"DELETE

SPAREDELETE optionally delete unused words

SPAREDELETE searches the program and for each user word not used
as an instruction in any user word (including itself), displavs
its name and, if confirmed by the user pressing 'Y', deletes the
word. Entering 'N' or any other character causes the werd tc te
retained.

Note that as words are deleted, other words further down the 1ist
may become unused, and will therefore be offered by SFL=ZIZLETE:
do not be concerned if SPAREDELETE's iist is longer than
SPARESHOW 's.

Similariy, words earlier in the
case, repeatel use ¢of SPLTECELE
unwanted words.

the LEDIT line editor

The UTILS module also contains a line-based editor, LEDIT. This
provides a direct, command-driven method of editing any type of
textual word definition, regardless of the length or number of
lines. It supports conventional manual editing at the % prompt,
'batch' editing using files, and editing controlled by the user
program itself.

The UTILS option on the Toolbox jukebox automatically enters
LEDIT, Jjust as the TEDIT option enters TEDIT.

38

5 UTILS utilities

LEDIT provides the following commands:

CLEAR clear text store R

GET get text of word into text store

APPEND add text of word to text store

. put text on numbered line in text store

LIST display text in store

RENUMBER renumber text lines

NAME complete the definition by adding name, [and]
MAKE execute text

You use CLEAR, GET and MAKE just like their counterparts in other
editors. To set the name of a new word, either before or after
entering its contents, you use NAME in the same way too.

Unlike screen editors, LEDIT has no edit mode - the TAB key is not
used. All editing is carried out through the above commands,
along with the BBC's COPY editing facility for editing lines.

entering lines

After loading UTILS from the Toolbox for the first time, the text
store is empty. Next time you might have some text left over from
the previous use, so you should enter the command CLEAR to make
sure the text store is empty before entering new lines.

To add a line to the text store, you enter a line number followed
by a dot ('.') and the text you want to put on that line. Any
number will do, but 10 is a convenient choice for the first line.

To enter a sequence of lines, you just using successive line
numbers, for example:

%10.SCORE
%20.12 -1: C//G e//¢c
%30. A/A/ /ARA

(The % signs are the prompt - you don't type them in yourself.)

By choosing numbers 10 apart, you leave room for insertions, as
described in a moment.

To display the lines in the text store, you use the command LIST.
It lists all lines, in numerical order.

If at this point you enter MAKE, the lines will be executed as if

you entered them at the % prompt, allowing you to try them out
before making into a word.

39

5 UTILS utilities

creating a word definition

To create a word in LEDIT, you enter its contents line by line,
and then set the word name using the NAME command, for example:

"tune"NAME

NAME adds the quoted name and '[' on a new line at the start, and
']' on a new line at the end, renumbering the lines if it has to.

Now when you enter MAKE, the word becomes defined.
An alternative way of setting the name is to enter it yourself,

along with the '[' and ']'. To create the 'tune' word this way,
you would enter:

10."tune" [
20.SCORE

30.12 -1: C//G e//c
40. A/A/ /AAA
50.]

and then MAKE as before.

editing lines

If MAKE reports a mistake, you will need to change one or more
lines in the text. To make a minor modification to a line, ycu
use LIST to display the original (if it is not already on the
screen) and copy it using the cursor and COPY keys, making
modifications using CELETE and character keys as you go.
press RETURN, the new line will replace the old.

R s
whern wvou

If you need to insert a new line, you simply enter it with a line
number between the two originals, for example:

%LIST
10."tune" [
20.SCORE 12, =-1:
30.C//G e/ /c
40.a/a/ /aaa
50.1]

%

%25 .bChbC bCbC % insert line between lines 20 and 30

If trhe line numbers of the originals are adjacent, you will need
=z use the RENUMBER command first. This imposes new line numbers,
stzrting at 10, and increasing by 10 for each line, giving you 9

40

5 UTILS utilities

places to add between any two existing lines. Remember that after
RENUMBERing the listing, any lines left on the screen will have
invalid numbers, so you should use LIST again before making any
changes.

To completely remove a line, you enter just the line number and
dot, with no characters after the dot, for example:

%25 . % delete line 25

editing existing words

To get the definition of existing word for editing, you use the
GET command as in other editors, for example:

"tune"GET

Since MAKE simply executss ezch ¢ the lires in corder, ycou can
define as many words zs ycu 1ikes with one MAXE. You can even use
MAKE to execute a commani seguence, ©o try it cut befcre inclusion

in a word.

make sure that the text has

To make more than one word, you t
after the other. As an

Ju
the complete word definitions, cone

example, consider the "hellc" word:

%"hello"GET LIST

10."hello" [

20. "Hello" $0UT
30. NL

40. "Goodbye" $0UT
50.1]

%35. 1"goodbye" [
MAKE will now give two words, 'hello' and 'goodbye'.
The APPEND command lets you get more than one word into the text
store. It is equivalent to GET but adds the definition of the new

word to the end of the exiting text. APPEND is particularly
useful for editing many words together, combining words, and

41

5 UTILS utilities

moving lines between words. For example:

%"hello"GET "goodbye" APPEND LIST

10. "hello" [

20. "Hello" $0UT
30. NL

40.]

50. "goodbye" [
60. "Goodbye" $0OUT
70.1]

%40.

%50.

% % the two words have now been combined intc one

creating text files

Sometimes when using AMPLE you need to create a text file on disc,
usually for executing with EXEC. This might be a commonly-used
command sequence, or the definition of a word you want to later
add to a program.

You could create a text file using the ¥BUILD command, but by
using LEDIT (or any other AMPLE text editor), you gain the
advantage of being able to edit the text before committing it tc
disc.

To create a text file with LEDIT, you enter the text as a DISPLAY
sequence, and ther incliude it in a definition with *SPOOL
commands, fcr example:

CLELFR
10."makedelins" [
20."SPOOL delins"™O0SCLI

30.DISPLAY
40.%"purensim"DELETE
50.%"medieval"DELETE
60.%"zizzysyn"DELETE
70."SPOOL"0OSCLI

80.]

90.makedelins

MAKE

This creates a text file containing:
"purensim"DELETE

"medieval"DELETE
"zizzysyn"DELETE

42

5 UTILS utilities

editing by batch file

Since unlike all other Main Menu and Toolbox editors, all LEDIT
editing is carried out through commands, LEDIT is well suited to
being driven by a 'batch' file - a text file containing a
preprepared sequence of edit instructions to be carried out as a
batch. Any sequence of LEDIT commands can be entered in to a text
file and then executed when required using the EXEC command. This
makes a very convenient way of carrying out simple repetitive edit
sequences with minimum effort from the user.

Text files can be created using a standalone text editor, or one
or any AMPLE text editors - Notepad, TEDIT or LEDIT itself. As an
example, we will use LEDIT to prepare a batch file that adds a
copyright message to any program's RUN word of the following
format:

10."RUN" [

20.7 MODE DISPLAY
30.% Song for Ro
40.%

90.1

To create the batch file on disc, you enter the following:

CLEAR

10."makeaddc" [
20."SPOOL addc"OSCLI
30.DISPLAY

40.%LEDIT "RUN"GET
50.%25.% 1989 (C) Rcbonk
60 .9%MAKE
70."SPOOL"0OSCLI

80.]

90 .makeaddc

MAKE

The final MAKE command creates and executes a word 'makeaddc',
creating a file 'addc' on disc, containing

LEDIT "RUN"GET
25.% 1989 (C) Robonk
MAKE

Now, to use 'addc' to add the copyright message to a program, you
would make sure that UTILS was loaded, and enter, for example:

"rosong"LOAD

¥exec addc
"rosong"SAVE

43

5 UTILS utilities

You can reuse 'addc' on any program which has the same format RUN
word.

program-controlled editing

Program-controlled editing goes one stage further than batch
files, by creating and executing LEDIT edit commands from the user
program itself. This i1s a very powerful technique that lets the
user program define new words, define and execute words to define
new words, or even completely redefine itself.

The following examples of program-controlled editing employs the
standard method of issuing AMPLE commands from within programs
using the '$+' word. To fully understand the examples, you must
be familiar with this method - it is described in full in the
AMPLE Nucleus Programmer ZJuide under the index entry 'using the
imput line'. Because a sequence of editing commands are issued,
each command line encds with a user word name to return control to
the program.

The first example is 2 word to place given text on a given line in
the definition of a2 word ¢f a given name, by producing a command
sequence of the format:

"namestring"GET

linenumber.textstring

MAKE nextnamestring

The definition is:
"setline" [

% namestring linenumber textstring nextnamestring setline
% note: builds a command line right to left

"MAKE " $+ % -> "MAKE <nextnamestring>
13 $CHR $+ % end of next command

$12 "." $+ $STR $+ % make linenumber.textstring
$+ % add to left end of line

13 $CHR $+ % end of next command

$12 "MNGET" $12 $+ """ $+ % make "namestring"GET

$+ % end of next command

$+] % add to command line

L4

5 UTILS utilities

To test it, first make a target word:

CLEAR

10."say" [°
20.DISPLAY

30.% hello

40.% there

50.]

MAKE

and then a word to make a particular edit:
"editsay" ["say" 30 "%hi" "" setline]

Now, when you enter 'editsay' as a command, it will carry out the
sequence:

"say"GET
30.%hi
MAKE

When using this in a program, you would replace the "" in
'editsay' with the name of the user word to which control was to
be returned - remember that the $+ method requires that the
command-line-generating word exit to the % prompt to execute the
line.

Command-generators like 'setline' can be difficult to debug in
their active form, so a usefu’ ‘echnique is to replace the final
'$+' with a '$0UT', toc prin® the command rather than execute it.

producing the correct commmand.

45

5 UTILS utilities

The second example is a word to create a multi-line word
definition from strings provided by the calling program.

"create" [

% namestring "" stringl ... stringn resumenamestring create
% note: builds one large command line, right to left

"MAKE " $+ 13 $CHR $+

vv]n
100 REP({ % start lines at 100, going dow
LEN O #=z)UNTIL(% until null string,
"t og+ #1171 $STR $+ 1 #- % make line number and '.'
13 $CHR $+ $+
$12 % get next line to top
)JREP $2
$12
w0 o$12 g+ """ $4 $STR $+ % make '"namestring" ['
$+ % and add
13 $CHR $+ "CLEAR" $+
$+] % add to comand line

Here's a simple example of its use, to create a variable:

"createtotal” ["total™ "" "GVAR" "next" create]
createtotal

This issues the following command sequence:

CLEAR

3&8."total" [

SS.GVAR

MA¥E rex:t
ard 'tz 'next' is the name of the user word that
returns program. You can define ar emgty 'next' tc
test th
This definitiorn of 'create' makes a single large command line
(with carrizge ret: crhar e

~ - A -

commands; sc r. being created is limited =y th
stack size. e z more-advanced version which cv
this by issuing mcore trharn cne command line.

Q

¥ oot oot
&2
[¢]

M n

'3 ot

O3

Q)
o]

m (g

46

5 UTILS utilities

text storage

The number of lines that LEDIT can hold is restricted only by the
available memory.

LEDIT holds the text being edited as part of the user program, in
the form of data rather than words. An advantage of this is that
SAVE saves the data along with the words of the program, and LOAD
reloads it for you to continue editing, provided you are in LEDIT
at the time.

To find out whether a program has LEDIT data, you use the SHOW
command. This normally shows 'no data' after its list of words,
but when LEDIT data is present, it shows 'LNT data'. The MEM
command shows the amount of user memory the text consumes, as
'Data:’'.

Since the text data uses up user memory, you may want to discard
it before running the user program. To do this, you simply enter
the command CLEAR. Similarly, to conserve disc space, you may
want to CLEAR the text befcre saving the program.

This public data facilitv is discussed further in the chapter
'Editor module management'.

47

6 Editor module management

You can gain further benefits from the Toolbox editors by taking
more-direct control over their management. This entails using
certain additional AMPLE Nucleus commands - this chapter tells you
how to use them, but full descriptions are only available in the
AMPLE Nucleus Programmer Guide.

module loading by menu

The Main Menu and Toclbox jukebox manage the loading and unloading
of modules entirely automatically, sc you don't normally need to
worry about editor modules. However, iIf vyou are going to make use
of direct module management facilities. 1t's useful to know how
they work, so a brief descripticon 1s given here,

see if it is already in memorv.
the editor, but if it is nct,

module from disc.

The Toolbox jukebox works in the
the Main Menu so that between the
editor module loaded at a time,
memory free for the user program. Mzin Men
and 'New program' options will unlcac a mocu
Toolbox jukebox, in the same way as a module I
Menu itself.

]
[\VEN S S}

1]

unloading the menu-loaded module

Since each loaded module reduces the amount of memory for the user
program, you may sometimes want to unload the current eciter

module without loading another. This gives you free memory to run
the program, make changes to small words at the % prompt. and load

modules directly as described below.
To unload the current editor module, you simply select 'Run

program' from the Main Menu. 'New program' has the same
side-effect.

49

6 Editor module management

loading modules directly

The MLOAD command lets you load modules directly, as opposed to
via a menu. For Toolbox modules, the main advantage is that the
user program is not erased by the jukebox, so you can load a
module whenever you need it without having to save the program
first.

MLOAD attempts only to load the named module - it does not try
to unload any previous module or enter any editor in the loaded
module. Unless you particularly want more than one module
present, you can ensure that the last menu-loaded module is not
present by selecting 'Run program' from the Main Menu.

To load the module, insert the Toolbox System Disc into the drive
and enter the quoted name of the module followed by MLOAD. If, as
is likely in the case of TEDIT and IEDIT, you also want to enter
the editor, you add the name of the editor as a command after the
MLOAD, for example:

"TEDIT"MLOACZ TEDIT % load TEDIT module and enter TEDIT

"IEDIT"MLOAD IEZIT % load IEDIT module and enter IEDIT

"UTILS"MLCED % load UTILS module

"UTILS"MLOAZ _EZCDIT % 1load UTILS module and enter LECZIT
Once the module nas lozded successfully, vou can rep.ace tre
Studio 5000 Syster Zis: 17 necessary.

If there is insufflcien z c ! the module, MLOAT will
give the '! Toc tig’ w rZ S, L

een mode in

TEDIT is special in that e urrent r
L0 set the screern mode alsc, for example:

h sc
entry, so you may want

"TEDIT"MLOAD 3 MODE TEDIT

Once you have entered an editor, you use it just as if you had
loaded it from the jukebox.

An MLOADed module remains present until you remove it explicitly.

50

6 Editor module management

finding out what modules are loaded

To get a list of the names of loaded modules, you may enter the
MCAT command. The extra information you see is not needed at this
stage, so 1s explained only in the AMPLE Nucleus Programmer Guide.

unloading a module directly

Having loaded a module using the MLOAD command, you may unload it
to reclaim the memory it uses with the MDELETE command.

You put the name of the module in quotes before the MDELETE
command. AMPLE won't let you unload an editor while you are still
in it, so you need to add the QUIT command to exit it before
MDELETE, for example:

QUIT "TEDIT"MDELETE % unload TEDIT
QUIT "IEDIT"MDELETE % unload IEDIT
QUIT "UTILS"MDELETE % unload UTILS

Unlike filenames, the precise name of a loaded module must be
entered, that is, in upper-case.

Many editors clear the screen when they are quitted, so don't be
alarmed if the screen goes blank for a moment.

loading and unloading Main Menu modules

The Main Menu editor modules may be loaded and unloaded directly
in the same way as just described, though unless you want more
than one editor loaded simultaneously, you will probably prefer to
use the Main Menu to do this. The names of the Main Menu editor
modules are:

Notepad PAD
Staff Editor STAFF
Mixing Desk MIX
Recorder REC

For example, to load and enter Notepad, you enter:

"PAD"MLOAD PAD

51

6 Editor module management

unloading the menu-loaded module directly

You are free to use MDELETE to unload the module last loaded by
the Main Menu or Toolbox jukebox - when either menu comes to
unload the module itself, if the module can't be found, it
continues regardless.

switching between editors

One powerful feature of AMPLE is its ability to have many editor
modules present at the same time (memory permitting), to switch
instantly between them using their entry commands or menu options.

Once you have loaded an editor module using the Main Menu, Toolbox
Jjukebox or MLOAD command, you may load a second using the MLOAD
command (the Main Menu and Toolbox jukebox would automatically
unload the first one). Then, to switch to either editor, you
simply enter its entry command, for example:

"UTILS"MLOAD % UTILS module, containing LEZIT
"MIX"MLOAD

LEDIT % enter LEDIT

v % do some editing

MIX % switch to Mixing Desk

In the case of a Main Menu editor, you may find it more converient
to simply select it from the Main Menu, rather than entering its
name. You may even use the Toolbox jukebox to enter
already-loaded editors.

Though you can switch freely between loaded editors, the data for
each is not necessarily retained while you use another - see
below.

public data storage

Unlike the Main Menu editors, the Toolbox editors use the AMPLE
Nucleus public data facility, so that the material being edited is
stored as part of the user program and is saved, loaded and
discarded along with it.

The SHOW command displays the type of data present in the prograr
using a three-letter abbreviation, or 'no data' if there is none.
The types of data of the Toolbox editors are:

TEDIT: TXT (text)
IEDIT: TEL (teletext screen)
LEDIT: LNT (line-numbered text)

52

6 Editor module management

Only one type of data can be present at a time.

The MEM command shows the number of bytes of memory used for
public data as 'Data: '.

clearing editor data

The Nucleus CLEAR command discards all material being edited
(returning to the initial 'no data' state), freeing the memory it
uses. If you get short of memory for running or editing your
program and you do not want to retain the editor data, you use
CLEAR to reclaim this memory. If you do not want the editor data
stored on disc as part of the saved program, you use CLEAR before
SAVE.

When you are in an editor whi
any Main Menu editor, the CLEA?
accordingly by the editcr ans
If you were in a Main Menu
data, you would use thes Nucl

£s not use public data, such as
mand 1s in fact re-interpreted
ces rnot affect the public data.
tc clear the public

Because only one type ¢f Zztz
data is cleared cr enterirg ¢
does not recognise the Zatz <yie.
second Toolbox editor, cn reiturning
that its data has be=* Clearel.
Main Menu editor, or returnirz <2 the
its data is still trere,

first you will Tind
fter switchning to a
ox editor you will find

In summary, the only operaticrns “ha* clear public data are:

* the commands AMPLE and LOAZ {which also clear the words)

* CLEAR, when in a putlic data editor or no editor

¥ QUIT

¥ entering or accessing data in an editor that does not recognise
the data type

In particular, the data is NOT cleared on:
* running the user program
* loading and entering an editor that recognises the data type

* using any Main Menu editor (since they don't use public data)
* use of NEW

53

6 Editor module management

using loaded editor data

When you load a program, any editor data savecd with it reappears
ready for immediate use. If you are in the appropriate editor at
the time, you can access it immediately. Ir <he case of a screen
editor such as TEDIT or IEDIT, the data wii. nct be visible on

screen until, for example, you press TAB to enter edit mode.

I1f you reload a program while in an editor tha: does not recognise

the data type and then try to edit it, the datz wil. be cleared the
first time the editor accesses it - when you press TiE for example.
If you want to retain the data you have loaded, vcu cuid use SHOW
to check the type of the data, and then enter the aporeorrizs

editor before trying to access the data.

-~

&

54

7 SideMod sideways RAM module store

SideMod adapts any System Disc to store the user's selection of
modules in Master sideways RAM, from where they are loaded
automatically when required. This gives faster access to editors
and removes the need to keep the Studio 5000 System Disc in the
drive once the system has been started. If the user includes also
the Toolbox modules, then these become available at all times,
independently of the Toolbox System Disc.

SideMod also makes more efficient use of space on the Studio 5000
System Disc by leaving more catalogue entries free for user files.

SideMod works only on the BBC Microcomputer Master 128. Sideways
RAM must not have been disabled (the computer is shipped with it
enabled, set by internal links). SideMod is not compatible with
the Econet, so there must be no Econet fitted, or if Econet is
fitted, it must not be in use.

licence for use

Like AMPLE Toolbox package itself, SideMod is supplied for use
with the AMPLE Nucleus ROM identified on the inside front cover of

this User Guide, and nc cther. SideMod may only be used to adapt
System Discs for use with this particular ROM.

preparing a Studio 5000 System Disc

SideMod makes permanent changes to the System Disc, so to be safe
you should make a copy of the System Disc and use the copy.

If you are using standard DFS discs on a dual drive,
¥ insert your Studio 5000 System Disc in drive 0
¥ insert a blank formatted disc in drive 1
¥ enter
¥BACKUP 01

If you are using standard DFS discs on a single drive,

* have ready your Studio 5000 System Disc
and a blank formatted disc

55

7 SideMod sideways RAM module store

* enter

*¥BACKUP 00 . o

LN
and follow the instructions that appear on the screen.

If you have made an ADFS version of the Studio 5000 System Disc,
you may use this instead, provided the the modules are in
directory $.M, and directory $.C also exists.

including Toolbox modules

You will normally want to include also the Toolbox modules in
sideways RAM. To do this, you must copy them from the Toolbox
System Disc to the Studio 5000 System Disc copy you have prepared.

In the case of a 40-track Studio 5000 System Disc, there may be
insufficient free disc space for the Toolbox modules, so you
should first maximise the available space by removing all
non-essential files, including the example files, from the copy
you have prepared. To do this, enter:

¥DESTROY *
and answer 'Y' to each question that appears.

If this still does nct give sufficient space, there is no simple

alternative but to include a smaller number of Toolbox modules.

&)

To copy the Toclbox modules. if you are using standard DFS discs

on a dual drive,

¥ insert your Toolbox System Disc in drive C

¥ leave the copy of your Studic 5000 Syster Disc in drive 1
¥ enter
¥COPY 01 M.*

If you are using standard DFS discs on a single drive,
*¥ have ready your Toolbox System Disc
and the copy of your Studio 5000 System Disc
¥ enter

¥COPY 00 M.*

and follow the instructions that appear on the screen.

56

7 SideMod sideways RAM module store

carrying out the adaptation

To carry out the adaptation, have ready the Toolbox System Disc
and the copy of your Studioc 5000 System Disc, and

¥ insert the Toolbox System Disc into the disc drive
(if there are two slots, into drive 0)

* tap the BREAK key while holding down SEIFT

¥ select the SideMod option from the menu

If you have already started from trne StuZic 5000 System Disc, you
may alternatively:

¥ save your program
¥ insert the Toolbox

(if there are tw:
* ensure you are in
¥ select the SideMo

:t: the disc drive

e

r the Main Menu, and press 9

~y
vl

M O O

C' [2N A

L

3

Follow the instructions givern or the screen. When you are asked
to insert the System Disc s» <c be adapted, you should
insert the copy made for t! SideMod automatically

senses the type of drive (duzl cr rz.e) and number of tracks (40
or 80) and type of disc (IZFS cr LITS

After asking for ycur Sys:tem Iisc., SideMod will show you a list of
all the modules on it. Thcse 3tudic 2000 modules that are
normally loaded from disc during use of the system are already
marked 'selected' for translerrz. tc sideways RAM (those that are

loaded once on start-ug
change the selection ¢f
and down and pressing RcT

want to make is to select =

At this point you can

=, oy moving to its name with up
Tre only change you are likely to
oo.poX modules you have added.

In special cases, you might want to unselect certain rarely-used
modules to reduce the amournt of sideways RAM used by SideMod. Any
module not selected for transferra. to sideways RAM is left on the
disc, from where it will be icaded as normal when reguired.

Once you have confirmed the seliection of modules, SideMod proceeds
to transfer all selected module files into a single large sideways
RAM image file. It also modifies the !BOOT file so that upon
starting the System Disc, this sideways RAM image file is loaded
and the system is directed to search sideways RAM for each module
before looking for it on disc.

Once SideMod completes sucessfully, your adapted System Disc is
ready for use.

57

7 SideMocd sidewavs RAM module store

testing

To test the adapted Studio 5000 System Disc, use it to start the
system as normal. Don't worry that the list of start-up commands
is slightly different, but watch out for any error messages -
lines starting with '!'.

When the Main Menu appears, remove the System Disc from the drive
and select each of the editors in turn - they should appear
without attempting to access the disc drive.

If you included the Toolbox modules, test them in the same way,
removing the Toolbox System Disc after its jukebox appears.

fault finding

If the computer's sideways RAM is not available, during adaptation
of the Syster Disc or use of the adapted System Disc, an error
message will appear.

'Y Bad Address' means that one or more of the sideways REM banks

needed has beer 2:izatled by changing the settings of internal

links 18 and/cr "% Vou must re-enatle the sidewavs EiM - refer

to the in=*ﬁuvv: fcllowed when you disabled the sidewavs
re Mzaster Reference Manual. 1 REM

computer znd :r_

If you mus:t
image in sice
by the adapted S
these are at the en

The error message '! Not found' means that the disc has the wrong
directory structure, most probably caused during copying onto
ADFS. You should ensure that the modules are in directory M,
directory C exists, and $.!BOOT exists. If you continue to have
problems, make a copy of your original Studio 5000 System Disc,
adapt it with SideMod, and only then carry out your copying to
ADFS or other modification.

The error message '! Disc full' suggests that you are using a
40-track Studio 5000 System Disc with extra files on it. You
should try again with a copy of your System Disc from which all
non-essential files, including the example files, have been

58

7 SideMod sideways RAM module store

removed by using the command:
*¥*DESTROY *
and answering 'Y' to each question that appears.

If the adapted System Disc fails to work, or gives unpredictable
errors from 0OS commands for example, your computer probably has
Econet installed and enabled. You can check this by entering the
command *ROMS ~ if the display shows 'ANFS' opposite ROM 8, the
Econet is active, at least in part. You should disable the Econet
as follows:

* enter:

®*UNPLUG 8
¥ while holding down CTRL, tap EBFEAK
¥ start up your System Disc as cefore

Tiritely, even

zrt tc restore

* enter:
*INSERT 8

~oT

¥ while holding down CTEL,

using the adapated System Disc

The adapted System Disc's use of sideways RAM is entirely
automatic, so there are no special ins:iructions you need to know
to use the adapted disc (unless you neec to switch filing systems
- see below).

Once you have started the system from the adapted System Disc and
the Main Menu has appeared, you may remove the System Disc,
replacing it only when you need to load an example file from it.

If when you adapted the disc you included the Toolbox modules in
the selection, you will now be able to load them using MLOAD
without having to insert the Toolbox System Disc. If you still
prefer to use the Toolbox jukebox, you can load it from the
Toolbox System Disc as before, or more conveniently, transfer it
to your own working discs.

If you unselected any of the modules that SideMod suggested, these

59

7 SideMod sideways RAM module store

and any others not included in sideways RAM will be loaded from
disc when required as normal. You are still free to change the
MPREFIX string.

selecting filing systems

If you select a filing system with, for example, the *DISC or
*ADFS commands, loading from sideways RAM will be disengaged. To
re-engage it you should enter the command:

*¥/C.RCode

The file 'C.RCode' is present on the adapted DFS System Disc, so
if you are in the DFS, you should make sure the System Disc is in
the current drive. If you want to be able to re-engage sideways
RAM while in another filing system, you should copy this file to
the new filing system. You can then re-engage sideways RAM fro
the new filing system by entering the command as normal.

60

8 AREC program recoverer

AREC is a utility that recovers AMPLE programs from DFS or ADFS
floppy discs. Since it does not rely on any catalogue
information, it can recover programs that have been deleted or
lost due to corruption of the disc catalogue.

starting AREC

To use AREC, have ready the disc containing the lost programs (the
source disc). If you want to keep any recovered programs, also
have ready a disc to receive them (the destination disc). This
should be of the same type (DFS or ADFS) as the source disc. If
you are using a double-sidecd drive and DFS, you may alternatively
use the other side of the first disc as the destination.

If you just want to examine the source disc and not keep any
recovered programs, you will not need a destination disc.

Now,

¥ insert the Toolbox System Disc into the disc drive
(if there are two siots, into drive 0)

® tap the BREAK key while holding down SHIFT

¥ select the AREC option from the menu

If you have already started from the Studio 5000 System Disc, you
may alternatively:

* save your program if you want to keep it
¥ insert the Toolbox System Disc into the disc drive
(if there are two slots, into drive 0)
% ensure you are in command mode or the Main Menu, and press f9
* select the AREC option from the menu —

using AREC

AREC asks you a number of questions before starting work. Each
one shows a bracketed list of allowed answers, which may be
different for DFS and ADFS. You may either type in one of these
answers and press RETURN, or just press RETURN to use the first
answer in the list. The questions are as follows:

DFS, ADFS or quit (D/A/Q):

61

8 AREC program recoverer

Select the filing system appropriate to the source and destination
discs.

DFS: Disc size (no. of tracks; 40/80):

ADFS: Disc size (S/M/L/40/80/160):

Enter the number of tracks on the source disc. If you enter 40
(or press RETURN), only the first 40 tracks will be searched,
regardless of the number actually on the disc.

DFS: Source drive no. (0/1/2/3):
ADFS: Source drive no. (0/1/4/5):

Enter the number of the drive containing the source disc.

DFS: Destination drive no. (1/0/2/3/X):
ADFS: Destination drive no. (1/0/4/5/X):

Enter the number of the drive containing the destination disc, or
if you don't want to keep any recovered programs, enter X. If
you're using a single drive and separate source and destination
discs, enter the same drive number as you did fcr tre source -
AREC will then ask you to swap discs when requireZ. 17 you enter
a different drive number, AREC will not give you = chance to swap
discs.

DFS and ADFS: Destination directory ($/name):

Enter the name of the directory you want the recovered programs to
be stored under. Eemember that on the IFS, crnly a single
character is allowed, and under the ADFS, the director
already exist. If vou answered X to the previous guestion, this
question is not asked.

AREC now searches the disc, displaying the number of each sector
it searches and the start sector number and length of any AMPLE
program it finds. Unless you entered X as the destination drive,
when a program is found in a recoverable state, you will see a
message telling you that it is being saved (if necessary AREC will
ask you to swap discs). Each program is saved on the destination
disc under the destination directory with a name consisting of
'rec' followed by its start sector number in hex, for example,
rec002, or recO1A.

If AREC finds the start of a program but then before the end of
the program finds an unreadable sector or the start of another

program, it aborts recovery of the first program since anything
but a complete AMPLE program is not usable.

62

8 AREC program recoverer

using recovered programs

In almost all cases, the fact that a program has been recovered is
an indication of complete success - the recovered program is
identical to the original, except for its name, and you can load
and use it in the normal way. Very occasionally, AREC may find
and recover something that looks like an AMPLE program but is not,
so when you try to load it, you will get the '! Bad program'
message.

63

9 Summary of key controls

This chapter gives a summary of the key controls of TEDIT, IEDIT
and UTILS BROWSE, for quick-reference use.

TEDIT text editor edit mode

TAB go to command mode
left/right/up/down move by one character
SHIFT up/down move up/down by half a screenfull
SHIFT left/right move left/right by one word
CTRL up/down move to start/end of text
CTRL left/right move to start/end of line
RETURN split line
DELETE delete back/join line to previous
COPY delete forward/join line to next
SHIFT COPY delete end of line
CTRL COPY delete whoie line
CTRL SHIFT COPY start character copying

CoPY copy character

RETURN end character copying

IEDIT image editor

TAB go to command mode
left/right/up/down move by one character =
SHIFT up/down/left/right copy character ('paint')
CTRL up/down move to top/bottom of screen
CTRL left/right move to start/end of line
RETURN move to start of next line
DELETE delete back, replacing by space
COPY set marker
SHIFT COPY copy block
fo call-up menu

(code help info get put swap)
1 next alpha (text) colour
f2 next graphics colour
f3 insert new background
4 insert black background
5 enter graphics block
6 insert line
£7 delete line
8 insert character
f9 delete character forward, closing up

65

9 Summary of key controls

IEDIT image editor

TAB go to command mode
left/right /up/down move by one character
SHIFT up/down/left/right copy character ('paint')
CTRL up/down move to top/bottom of screen
CTRL left/right move to start/end of line
RETURN move to start of next line
DELETE delete back, replacing by space
COPY set marker
SHIFT COPY copy block
fo call-up menu

(code help info get put swap)
1 next alpha (text) colour
fe next graphics colour
3 insert new background
4 insert black background
5 enter graphics block
6 insert line
£7 delete line
8 insert character
9 delete character forward, closing up
SHIFT f1 toggle flashing/steady
SHIFT f2 toggle double/normal height
SHIFT 3 toggle separated/contiguous
SHIFT f4 toggle hold/release graphics
SHIFT 5 insert conceal display
SHIFT f6 insert column
SHIFT f7 delete coiumn forward, closing up

toggle graphics pixel

UTILS BROWSE

TAB return to % prompt
up/down move up/down the list
right enter the current word
left exit the current word
RETURN display the definition of the
current word
RETURN in 40-column modes, restore

structure display

66

Index

$+
A

ABBREV

ADD command in IEDIT

ADD command in TEDIT

AMPLE

AMPLE Nucleus Programmer Guide
APPEND command in LEDIT

AREC

B

'! Bad address' error
batch files

BROWSE

BROWSE keys

c

CLEAR

clearing editor data

control codes in IEDIT
controls, key, summary of
commands issued from programs
COMPILE

COPY in IEDIT

copying in IEDIT

copying in TEDIT

D

data, public, storage of
deleting unused words

'! Disc full' error
DISCOMPILE

E

Econet

editing keys in TEDIT

editing lines in LEDIT
editing text in TEDIT

67

44

34
30
14
53
6,44 49
41
61

58
43
34
66

53
53
19

44
35
25
22
13

52
38
58
36

59

40
12

10 Index

editor module management
editors

entering an editor
entering lines in LEDIT
equipment

errors

F

fault-finding
filing systems

G

GET command in IEDIT
GET command in LED2IT
GET command in TEDIT
graphics characters in IZEDIT

H
help in IEDIT
I

IEDIT

IEDIT commands

IEDIT edit-mode kevs
image words

image buffer

image storage in IEDIT
image word format
importing images
installation
introduction

issue disc

K
key controls, summary of
L

LOAD

LEDIT

LEDIT commands
licence for use
line numbers
loading editor data
loading IEDIT

68

49
50,52
50
39

37

21
41
13
20

21

17
18
66
21, 23

31
26
27

65

53
38
39
55
39
54
17

loading modules

loading modules directly
loading TEDIT

loading UTILS

M

Main Menu modules
MAKE command in IEDIT
MAKE command in LEDIT
MAKE command in TEDIT
making a system disc
markers

MCAT

MDELETE

MERGE

MLOAD

modules

module loading by menu

N

NAME command in IEDIT
NAME command in LEDIT
NAME command in TEDIT
NEW

'! Not found' error

P

painting in IEDIT
passcode

program-controlled editing
program management commands

program recovery
program structure display
public data storage

Q

QTIME
QUIT

R

't RAM occupied' error
recovering programs
REPORT

ROM ID

69

49
50

33

o RS L N S AR L BN B . A I =
~] =\ - O O W

OO0 O

20
40
11
53
58

22

4y
34
61
34
52

58
61
37

51

10 Index

10 Index

S

screen mode in TEDIT
selecting filing systems
selecting modules in SideMod
SHIFT COPY in IEDIT

showing unused words

SideMod

sideways RAM module storage
SPAREDELETE

SPARESHOW

specifiying the image area
storage of public data
summary of key controls
swait example

switching between editors
synchronising images with music
system disc

T

TMAKE

TEDIT

TEDIT commands
TEDIT edit-mode kevs
testing

text files

text in IEDIT

text in TEDIT

text storage in LETIT
text storage in 7E
texual form of im

U

unloading modules
unloading modules directly
unused words

UTILS

W

windowed images

70

O (N -

ny

49
51
37

28

38

	Image01.tif
	Image02.tif
	Image03.tif
	Image04.tif
	Image05.tif
	Image06.tif
	Image07.tif
	Image08.tif
	Image09.tif
	Image10.tif
	Image11.tif
	Image12.tif
	Image13.tif
	Image14.tif
	Image15.tif
	Image16.tif
	Image17.tif
	Image18.tif
	Image19.tif
	Image20.tif
	Image21.tif
	Image22.tif
	Image23.tif
	Image24.tif
	Image25.tif
	Image26.tif
	Image27.tif
	Image28.tif
	Image29.tif
	Image30.tif
	Image31.tif
	Image32.tif
	Image33.tif
	Image34.tif
	Image35.tif
	Image36.tif
	Image37.tif
	Image38.tif
	Image39.tif
	Image40.tif
	Image41.tif
	Image42.tif
	Image43.tif
	Image44.tif
	Image45.tif
	Image46.tif
	Image47.tif
	Image48.tif
	Image49.tif
	Image50.tif
	Image51.tif
	Image52.tif
	Image53.tif
	Image54.tif
	Image55.tif
	Image56.tif
	Image57.tif
	Image58.tif
	Image59.tif
	Image60.tif
	Image61.tif
	Image62.tif
	Image63.tif
	Image64.tif
	Image65.tif
	Image66.tif
	Image67.tif

