

SOLIDISK ADVANCED DISC FILING SYSTEM

 1. INTRODUCTION TO THE ADFS

 2. IMPORTANT CONCEPTS IN THE ADFS.

 Glossary of new terms
 The Drive numbers, Hard Discs and Floppies.
 Objects and Paths.
 Wildcards.
 Directories and the Currently Selected Directory.
 Libraries and the Currently Selected Library (CLS).
 Changing the Current Filing System.

 3. SUMMARY OF THE ADFS COMMANDS.

 4. THE ADFS COMMANDS IN DETAIL.

 5. TECHNICAL INFORMATION ON THE ADFS.

 File handling using BASIC.
 Filing System Tasks.
 Osfile, Osfind and Osargs
 Osbget, Osbput and Osgbpb
 Oswords &70, &71, &72 and &73

 6. THE ADFS ERROR MESSAGES

 7. THE DFS 2.0 ROM

 Features of the DFS 2.0
 The DFS 2.0 and Second Processors

 8. SUMMARY OF DFS UTILITIES COMMANDS.

 9. DFS UTILITIES IN DETAIL.

 10. TECHNICAL INFORMATION ON THE DFS 2.0

1. INTRODUCTION TO THE STL ADFS

 The STL ADFS has many improvements over the STL DDFS, especially in the
field of file handling (up to ten channels may be open at one time, and each
file may be up to 512 MB) and Disc space management (both of the sides of
the ADFS disc are treated as a single logical surface). The latter feature
is probably the most important, because - as frequent observation shows -
most 80 track double-sided discs are hardly ever used on side two.

 However, in addition to formatting over 160 tracks, the STL
implementation allows you the options of formatting your disc on single
sides - with 80 or even 40 tracks. This allows two double-sided drives to be
used as four logical drives (as with the original DFS) as well as the use of
single-sided 80 or 40 track drives with the ADFS.

 File names can now be up to ten characters long. Also, if you try to
extend a file, the ADFS will automatically relocate the file elsewhere, so
you will never get the message 'Can't Extend'.

 The Directory system now has a Tree structure, allowing you to organise
the disc logically, i.e. into Topics and Sub-Topics, etc.

 Up to 47 entries can be made to each Directory, and they can be files or
Sub-Directories. Each Sub-Directory can then accept up to 47 entries, and so
on. The total number of entries is only limited by the Disc size. Also you
can copy files from one Directory to another Directory, even if they are on
the same Disc. Lastly, the ADFS will control both Winchester and Floppy disc
drives.

 In addition, the STL ADFS has many more advanced features and commands,
then the Acorn ADFS (as implemented on the Electron Plus 3 and the Acorn
Winchester Disc System). The STL ADFS is designed to work with the STL DFS
2.1 - with the latter providing both complete DFS (and DDFS) facilities and
various utilities which are common to both. Some of the added commands are
*BACKUP, *DZAP, *FORMAT, *OPEN, *PASSWORD, *VERIFY etc.

 This manual should therefore be read in conjunction with that entitled
"Solidisk Disk Filing System" (which has a pink cover) - particularly
regarding the installation of Floppy Disc Interfaces and of ROM chips.
However, when installing both the ADFS and the DFS 2.1 ROMs, the DFS chip
should be to the right - in a higher priority socket.

 Floppy discs and hard discs that are formatted on the Acorn ADFS, may be
used directly on BBC Micro and Electron computers equipped with the Solidisk
ADFS hardware and software, and vice-versa. The only exception is when the
disc is protected by the STL password option - which can be set on any
directory.

 2

2: IMPORTANT CONCEPTS IN THE STL ADFS

2.1 Glossary of new terms

 FILE: A file is an assembly of bytes stored in sequence on the disc.
Files may be regarded as the leaves of a tree, with each leaf being
connected to a branch or Directory by its entry in the Directory.

 NAMES: Filenames are similar to those in the old DFS, but names in the
ADFS can be up to ten characters long, and can consist of any Alphabetical
character, except a space, and any other characters except the # (hash
character), the * (asterisk), the $ (dollar), : (colon), . (period), ,
(comma) or the & (ampersand) character. You are allowed to name both 'files'
and directories. If one of these characters were used, then many disc
operations would not work properly. E.g. If you have a file called 'FRED'
and a file called 'FRED2', and you typed LOAD "FRED*", it would load any
file with 'FRED' as the first four characters.

 DIRECTORY: A directory is a defined structure, stored on five consecutive
sectors on the disc, and containing entries for files or sub-directories. A
directory is very similar to a branch in that it can have leaves and other
branches connected to itself. It always contains the Disc Address of its
PARENT, which is the branch from whence it came.

 ROOT DIRECTORY: If you try to go from a Directory to its Parent, then
from this Directory to its own Parent, and so on, you will find a Directory
which has a Parent, which points to itself. This is called the ROOT
directory. It has a fixed position on the disc. (Sector 000002) and has a
fixed title - '$' (dollar) - which is why you are not allowed to use the '$'
character for a directory name.

 PASSWORD: The STL ADFS has a feature that allows you to protect your
Directories with an eight letter password. This password is then stored in
the Directory in a scrambled form, so access to unauthorised users is made
as difficult as possible.

 TITLES: Titles are similar to the 'Disc Title' in the old DFS, but can be
up to nineteen characters long. Titles can be given to any Directory on the
ADFS disc, with the command *TITLE <Title>. Such titles are not used by the
system, but are for reference by the user of the system.

 DISC ADDRESS: The Disc Address (DA) is a three-byte pointer, that is used
by the ADFS to find the records. It is expressed in units of sectors, each
of which can contain up to 256 bytes of recorded data. The Disc Address has
a range of &1FFFFF sectors, or 512 MBytes. A secondary Disc Address - known
as the Logical Unit Number (LUN, with a value of zero to seven) - extends
this range even further - to 4 Gigabytes. It is for identifying multiple
logical drives within one physical drive.

 FREE SPACE MAP: The free space (FS) map, is displayed by *MAP. It
occupies the first two sectors of the disc, and consists of a list of Disc
Addresses and the sizes of all the free spaces on the Disc.

 SASI: (Shugart Associates Standard Interface). All of the SASI hard disc
controller boards are made in such a way that they are 'Pin compatible' i.e.
one board can be used on several Winchester systems, but some of these
boards are capable of more functions than others. The Solidisk XD20-40
controller board is fitted with the Western Digital WD1002-SHD interface
chip.

 ALTERNATE TRACKS. The XD20-40 Winchester system has six hundred and
twelve tracks, but only six hundred are normally used. The remaining tracks
are reserved as alternate tracks so, if in the formatting process a normal
track is found to be faulty, then the XD20-40 will automatically write an
'illegal access code' on this track, and set a pointer to one of the free
reserved tracks. In practice though, you will not be aware of the existence
of the reserved tracks.

 3

2.2 THE DRIVE NUMBERS - HARD DISC AND FLOPPY DISC

 In the STL DFS, Drive numbers are from 0 to 3 for Floppy discs, and 4 for
the Silicon disc, but in the ADFS, Drive numbers from 0 to 7 (or A to H),
are possible for either mechanical or Silicon discs.

 Normally, the hardware only allows you to use four numbers for mechanical
drives, and these are 0, 1, 4 and 5 (or A, B, E and F). The ADFS will check
for the presence of the hard disc, by reading location &FC40. If positive,
then the Hard disc is given priority over the Floppy discs. The drives are
then numbered as follows:-

 Winchester connected to socket J2 = Drive 0 or A
 Winchester connected to socket J3 = Drive 1 or B
 Floppy disc configured as drive 0 = Drive 4 or E
 Floppy disc configured as drive 1 = Drive 5 or F

 If the STL Winchster controller card, (the XD20-40) is not connected to
your system, then the ADFS will check to see if the WD1770 floppy disc
controller (FDC) is present. If it is, the Floppy drives will default to
numbers 0 to 3 (or A to D). If the 1770 is not connected, then the filing
system will default to the system present in your machine - e.g. to a DFS
using an 8271 (FDC) or to cassette tape.

2.3 OBJECTS AND PATHS

 The ADFS contains entries for files ('Leaves') and for sub-directories,
('sub-branches') - both of which are referred to as 'Objects'. An object is
therefore a record describing a unique entry in the directory. When an
Object is stored on to the disc, certain information is also stored with it.
This 'Parameter' block will contain the name, the access code, the load
address, the execution address, the length of the file, the disc address,
and the sequence number. These are called the 'Object Specification' or
'Object spec'.

 When a program, or data, is saved on to the disc, they are stored in such
a way that they are treated like a leaf on a tree. i.e. each file is
connected to a sub-directory, and each directory can be connected to another
sub-directory and so on. So when you wish to load a file, or open a file, or
to perform a data manipulation, then the ADFS needs to know its 'Object
specification'. The ADFS will follow all indications that you supply, to
find the Object, and the route it takes is called a path.

 With the ADFS - as on a real tree - you could take a pen, and mark a
continuous line, from the branch where you are, to another branch, then
another branch, and so on, until you reach the 'leaf' or object that you
require. Hence the line has to be continuous, passing only over the branches
that you specify. Along the path, when the ADFS finds a . (period), it means
that it must take a new 'branch', the name to the left of the . (period) is
the 'parent' of the name to the right of the . (period), and so on. So this
shows that the system is organised in descending (or hierarchical) order.

 The path will and at the last 'object' specified, and this is usually the
file itself except in the special case of *DIR and *LIB which refer to
directories. If, when you specify a path, you include an object in the
middle of the path, then you will get the 'Bad path' error message, but if
you include the name of a directory that is not found, then you will get the
message 'Not found'.

 Paths are usually indicated as <*Obspec*>, and the two Asterisks ('*')
are to indicate that you are allowed to use Wildcards.

 4

2.4 WILDCARDS

 Wildcards in the ADFS are identical to those used in the original DFS,
i.e. the # (hash character), represents any one character, whereas the *
(asterisk) represents any number of characters. Therefore 'FRED##' could
mean the files called 'FRED1' or 'FRED99', but not 'FRED100' - because of
non-matching - while '*D*' would mean any file with the letter 'D' present
in the file name.

 Thus, if you wanted to chain a program called 'DESIGN', in a sub-
directory called 'SPRITE', in a directory called 'WORK', on drive '0', you
might have to type in:

 CHAIN":0.$.WORK.SPRITE.DESIGN"

 But, using wildcards, you might be able to type:

 CHAIN":0.$.W*.SP*.DES*"

 In the above example, the ADFS will find, in each instance, the first
Directory that contains the specified character. Hence you must take care to
supply enough characters to avoid ambiguity in each instance.

 Some of the ADFS commands - such as *DESTROY or *COPY - can operate on a
collection of objects in one go - e.g.

 DESTROY @. where '@' signifies the Currently Selected Directory

and '*' is the multiple wildcard character.

 whereupon the computer will display the objects in the CSD and ask:-

 'Are you sure (Y/N) ?'

 If you answer 'YES' [or 'Y'], any directory that is empty and any file
that is not open, and is not locked, will be deleted.

 If you enter 'NO' (or anything except 'YES') then they will not be
harmed.

2.5 DIRECTORIES AND THE CURRENTLY SELECTED DIRECTORY

 The STL DFS 2.1 has a single, large directory that contains only file
objects. This directory is divided into pages, each holding up to 31 files.
Each page also has a pointer to the next page, or catalogue. So if you have
a file called 'FRED251', then the DFS 2.1 will have to search from the first
file to the last file, and check to see if the file is found.

 This is how the DFS 2.1 directory is organised:

 CATALOGUE 1: (pointer to cat' 2)

 FRED001
 FRED002
 -
 FRED031

 CATALOGUE 2: (pointer to cat' 3)

 ????? (cat 1 protected)
 FRED032
 FRED033
 -
 FRED061

 CATALOGUE 3: (pointer to cat' 4)

 ????? (cat 2 protected)

 5

 FRED062
 -
 etc....

 Multiple directories, linked in a hierarchy, are the powerhouse behind
the ADFS. They are treated as branches of a tree, i.e. they may contain
other smaller branches or leaves, so that a Directory will consist
principally of a list of entries, of different objects.

 The is an example of an ADFS Directory - named 'WORK'.

 !BOOT (WR) Commands (WR)
 DEMO (WR) Header (WR)
 Part1 (WR) Part2 (WR)
 Solicomms (DLR) Solimon (DLR)
 Spricode (WR) Sprite (DLR)
 STLToolkit (DLR) z80 (WR)

 So if you wish to use the program called 'DESIGN', then you could enter
something like this:

 CHAIN"$.WORK.SPRITE.DESIGN"

 To the beginner, it might appear difficult to access a file quickly, but
in reality things are much simpler. The ADFS lends itself to logical
organisation of your files. You could re-group them all into a few topics,
such as WORDPROCESSOR, DATABASE, SPREADSHEET, GRAPHICS, GAMES, PROGRAMMING,
etc. These topics could then be sub-divided into smaller topics, and so on.
So if you need to work on the 'SPRITE.DESIGN' program, then you could start
by selecting SPRITE as your Currently Selected Directory.

 When the ADFS is first entered, the ROOT directory ('$') is selected by
default.

 You may specify any directory as the Currently Specified Directory (CSD)
by typing *DIR <*Object specification*> - where this particular 'Object
specification' is known as a 'path', and must end in a directory, not in a
file.

 Issuing *DIR alone means the CSD becomes the ROOT directory, by default.

 The pathname usually starts from - i.e. is relative to - the Currently
Selected Directory. This method is called 'Relative Object Referencing'. For
example, if the CSD is called 'ACCOUNTS', you could issue:

 *DIR 1985.MAY

 However, you can also reference it to the ROOT directory. For example:

 *DIR $.ACCOUNTS.1985.MAY

 Without the 'Relative Object Referencing', most of the programs which
refer to files that they wish to open, would not work. The Currently
Selected Directory concept will let you run a program that was written for
the original DFS, on the ADFS, without changing it.

 If you need to go frequently to the program called 'DESIGN', it is
possible to build up a !BOOT file in the ROOT directory, to set the CSD for
you, and then CHAIN the program, i.e.

 *BUILD !BOOT

 0001 *DIR WORK.SPRITE
 0002 CHAIN "DESIGN"
 0003 <Escape>

 The ADFS will keep track of the path leading to the CSD, and will let you
go back up any number of levels or directories, by using the '^'

 6

(circumflex) key. This is on the top row of dark keys, fourth from the
right.

Example:
 If you have previously set the Currently Selected Directory with:

 *DIR :4.$.BADDEBTS.FRIEND.FRED.JANUARY

 And then need to go back to the directory called FRIEND, you can type:

 *DIR ^^^

 Of course, if you want to go back to the directory $ - the 'root'
directory - you can just type *DIR.

2.5.1 DIRECTORY STRUCTURE

 A directory is an object containing a list of up to 47 entries, and each
entry represents, and describes another object - a sub-directory or a file.
Each entry will contain 26 bytes, and these are used as follows:

 LOCATION 00 10 bytes NAME and ACCESS STATUS
 LOCATION 0A 4 bytes LOAD Address (in memory)
 LOCATION 0E 4 bytes EXECUTION Address (in memory)
 LOCATION 12 4 bytes LENGTH (in bytes)
 LOCATION 16 4 bytes DISC Address (in sectors, on the disc)
 LOCATION 19 4 bytes SEQUENCE number

 TOTAL: 26 bytes * 47 entries = 1222 bytes

 The remaining 58 bytes are used to store directory name, Title, Password
and other object information. The directory is normally loaded into memory
from &1200 to &16FF, with the first entry found at location &1205.

2.5.2 DIRECTORY PASSWORD

 If you enter:

 *CDIR MYWORK (<Password>)

 The directory name will be MYWORK, while the password for this directory
is called (<Password>). If a directory is protected by a password, then you
can only access it (and hence any of its contents) by entering it with the
correct password, i.e.

 *DIR MYWORK (<Password>)

 *DIR MYWORK will result in the message 'Password Required'

 A directory password is stored within the directory concerned, and
protects a user's domain from being accessible by other users who are
sharing the same disc.

 In contrast, the Write Protect Password is stored in the FS (Free Space)
map, and prevents unauthorised persons from copying from, or writing into,
any portion of the disc. Operations such as *DELETE, *RENAME, *COPY, *SAVE
etc... will result in the message 'Write protected' - although you can still
load and run any program.

2.6 LIBRARIES, THE CURRENTLY SELECTED LIBRARY

 The library is a special directory which is intended to contain utility
program. It acts as an extension for the CSD, since the CSD can only contain
up to 47 objects, and this number may be insufficient.

 7

 If the ROOT directory has a sub-directory whose name begins with LIB -
such as LIB10/30 - then this directory will be used as the Currently
Selected Library. Otherwise, you may set any directory to be the Currently
Selected Library by *LIB <*Obspec*>.

 For example:

 *LIB :1.$.ALLMYROMS

 The Currently Selected Library is very useful for storing disc images of
Sideways ROMs, or overlay code for a large program. If you *RUN a program
which is not on the Currently Selected Directory, the ADFS will try to find
it on the Currently Selected Library. For example, if you have Sideways RAM,
and you need to use the PRINTER BUFFER prgoram, then you can type *PRINTER,
instead of *$.LIB10/30.PRINTER. Most of the time you can leave the Currently
Selected Library "unset".

2.7 CHANGING THE CURRENT FILING SYSTEM

 The ADFS may be selected as the current filing system by the command
*ADFS, or by holding the CTRL key and the A key, while the BREAK key is
pressed, in which case the Currently Selected Directory is reloaded.

 For example:

 *TAPE
 LOAD "MYPROGRAM"
 *ADFS
 SAVE "MYPROGRAM"

 The STL ADFS will keep track of the path, and of the Disc Address of the
CSD all the time. It will even keep track of them while the ADFS is not the
current filing system, so that when you re-enter the ADFS, the same CSD will
be re-selected. This feature is of particular value when transferring
objects between filing systems - e.g. between the DFS and the ADFS.

 You can also use the command *FADFS, which will then select the ADFS
without reloading the Currently Selected Directory. This command is very
useful if you need to change the disc or drive number when changing between
filing systems. For example:

 *TAPE
 LOAD ""
 *FADFS
 *MOUNT 5
 SAVE "MYPROG2"

 If you need to switch from the ADFS to the original DFS, you could either
use the command *DISC (or *DDFS, for the STL double density mode), or hold
down the CTRL and D keys, and then press the BREAK key.

 Other Filing systems may be selected by the usual commands - e.g. *NET,
*TAPE3, TAPE12, *TELESOFT or *ROM.

 8

3. SUMMARY OF STL ADFS COMMANDS

 The STL ADFS contains the following commands:

 Command Minimum Abbreviation

 ACCESS <List Spec> (L) (W) (R) (E) A.
 ADFS
 BACK BAC.
 BACKUP (<Drive>) (<Drive>) BACKU.
 BYE BY.
 CDIR <Object Spec> CD.
 CLOSE CL.
 COMPACT CO.
 COPY <List Spec> <*Object Spec*> COP.
 DELETE <Object Spec> DE.
 DESTROY <List Spec> DES.
 DIR <Object Spec> DIR
 DISMOUNT (<Drive>) DISM.
 EX <*Object Spec*> EX
 FADFS
 FORM160 (<Drive>)
 FORM80 (<Drive>)
 FORM40 (<Drive>)
 FREE FR.
 INFO <List Spec> I.
 LCAT LC.
 LEX LE.
 LIB <*Object Spec*> LIB
 MAP MA.
 MOUNT (<Drive>) MOU.
 OPEN <No. of files> OP.
 PASSWORD <Password> PASS.
 REMOVE <Object Spec> RE.
 RENAME <Object Spec> <Object Spec> REN.
 TITLE <Title> TI.
 VERIFY (<Drive>) V.

 Full details of the above are given in the next section.

 In addition, the STL ADFS is designed to make use of a number of
utilities contained in the STL DFS 2.1. These are listed in section 8 and
set out in detail in section 9.

 9

4. STL ADFS COMMANDS IN DETAIL

*ACCESS <listspec> (E) (L) (W) (R)

Purpose

 To prevent an object from being accidentally overwritten or deleted, an
object is said to have certain 'attributes' which control the way it can be
accessed. For instance:

 E - Execute only. The E attribute is used to protect files containing
machine code programs that the author wants left untouched. If the E
attribute is set, then the file cannot be *LOADed, also all OSFILE calls
except call 6 (delete file) are prevented - as in the display of object
information by the *INFO and *EX commands. The only commands which can
affect a file with the E attribute set are:

 *RUN <filename, *<filename>, *DELETE, *REMOVE, *DESTROY, *ACCESS

 When the E attribute is set, *ACCESS can only be used to set or unset the
L attribute and the R and W attributes are prevented.

 L - Lock. If the L attribute is set, the object cannot be deleted or
overwritten. This applies to both files and directories.

 R - Read access. This must be set for reading or loading to be allowed.

 W - Write access. This must be set for writing or updating to be allowed.

Examples.

 ACCESS $.TOOLKIT. E

 This command would set the Execute only attribute, to all the files in
the directory called TOOLKIT, so they can only be accessed with *ACCESS,
*DELETE, *DESTROY or *REMOVE

 *ACCESS HELP L

 This command will Lock the file called HELP in the currently selected
directory.

 *ACCESS *.* R

 This command will allow all the files in the currently selected directory
to be read or loaded.

 ACCESS LETTER LR

 This command will Lock and set the read access attribute to all the files
beginning with LETTER in the currently selected directory.

Description

 Sets the attribute string of a list of objects to that given.

Notes

 The last attribute - D - is only set if the object is a directory. The D
attribute cannot be changed or set.

 It is not necessary to specify attributes when an object or a file is
first created. The filing system does this for you by setting the default
attributes. These are:-

 For a file - WR (Read and Write access)
 For a directory - DLR (Directory, Locked and Read access)

 10

 If a file is Locked, then certain commands capable of writing to the
file, or its entry in the directory, will not affect the file and the
message: 'Locked' will be produced. These commands are:

 *SAVE, *DELETE, *DESTROY, *RENAME

 If a file is Locked, it can still be erased if a FORMAT command is
issued, but the only way to remove the L attribute is by using the *ACCESS
command without the L attribute being set.

 If the R attribute is not set then a file cannot be read, and any attempt
to use the commands: *LOAD or *COPY would result in the message:

 Access violation

 being printed. Also, if the R attribute is missing and an attempt to use
the BASIC command 'OPENIN' or the 'OSFIND' command in an assembly listing,
or if the W attribute is not set on a file and an attempt to open the file
for update, then the same message 'Access violation' will occur.

 11

*ADFS

Purpose

 To enter the ADFS from another filing system.

Associated commands

*DISMOUNT, *FADFS, *MOUNT

Note

 The same effect may be had by pressing BREAK while holding down CTRL and
'A' or CTRL and the right arrow key.

 Alternatively, pressing BREAK while holding down just 'A' will enter the
ADFS without resetting the Currently Selected Directory to '$' (the 'root').

 12

*BACK

 This command will return to the previously selected directory (PSD). The
directory selected before the last *DIR or *BACK command becomes current,
and the PSD is set to the old CSD. Thus if you repeatedly typed *BACK, you
could switch between the two frequently used directories.

Example

 *DIR $.LETTER Selets directory LETTER as the Currently

Selected Directory

 *DIR $.WORK Selects WORK as the CSD, and LETTER as the PSD

 *BACK LETTER is now the 'CSD' and WORK is the 'PSD'
 *BACK WORK is now the 'CSD' and LETTER is the 'PSD'

Description

 *BACK will make the previously selected directory into the currently
selected directory

Associated commands

*DIR, *CDIR

 13

*BACKUP (<Drive>) (<Drive>)

Purpose

 This command is for backing up from one drive to another - including the
ability to handle files longer than a single disc.

Examples

*BACKUP 0 1 would back up all the data from drive 0 to drive 1 - as might be
used in a system having only floppy disc drives.

*BACKUP 0 4 would back up all the data from drive 0 (a Winchester) to drive
4 (a floppy drive)

Note

 This command assumes that all the floppy discs used have been formatted
with 160 tracks over both sides as one logical drive - of 640K capacity.

 Unlike the corresponding DFS command, *BACKUP is intelligent - in that it
only backs up as far as the highest occupied address on the source disc.

 It will recognise when a Winchester is the source drive and calculate how
many floppies (of 640K each) will be required to hold all the data. Before
carrying out the backup operation, it prompts you for confirmation with 'Are
you sure (Y/N)'.

 When backing up a Winchester, because of the number of floppies that may
be involved, you should label them carefully.

 To restore the data from the backup discs to the original drive, you
simply issue the *BACKUP command again with the drive numbers in the reverse
order.

 14

*BYE

Purpose

 This is for use when ending a session of using the Winchester disc unit.
This command MUST be used before moving the Winchester Disc. It will close
all open files, copy all the RAM buffers to disc, and - most importantly -
move the READ / WRITe head to the Shipping Zone.

Associated commands

*CLOSE

 15

*CAT (<*Object Specification*>)

Purpose

 This command will display a catalogue of the specified directory on the
currently selected output unit (Screen, Printer). This consists of a
directory 'header' and a list of the objects in the directory. If the
specified directory is not found, then the error 'Not Found' is returned. If
the <*Object specification*> is not supplied, then the currently selected
directory is catalogued.

 The objects in the directory are listed in alphanumerical order, with
their attributes and their sequence numbers.

Examples

 *CAT

 WORK (08)
 Drive: 0 Option 00 (Off)
 CSD: Memo CSL: "unset"

 MEMO1 WR (04) MEMO2 LWR (05)
 PAPERS LWR (07) SUPPLIES WR (08)

 The title of the currently selected directory is WORK and the number in
brackets following the directory title is the Master Sequence Number (MSN)
for this directory. When a new object is added to the directory, or when an
object is modified and then stored back on disc, then the sequence number of
the new object is set equal to the MSN, unless an object exists with the
same number as the MSN, in which case the MSN is incremented by one, and the
new object is given the new value of the MSN.

 The MSN is a decimal number, which goes from 00 to 99, and then starts
again at 00.

Description

 Displays the catalogue of a directory.

Associated commands

 *ACCESS, *DIR, *EX, *LEX, *INFO, *OPT 4, (<option number>), *TITLE

 16

*CDIR <*Object Specification*>

Purpose

 To create a new directory. A new, empty directory is created with the
specified name. The name is allocated as the directory title (as the
default) and the Master Sequence Number is set to 00.

Example

 *CDIR ACCOUNTS

 which creates a new directory called ACCOUNTS in the Currently Selected
Directory.

 *CAT ACCOUNTS

 ACCOUNTS (00)
 Drive: 0 Option 00 (Off)
 CSD: $ CSL: Library1

 This shows that ACCOUNTS is an empty directory, and the currently
selected directory is the root directory of drive 0.

Description

 Creates a new directory.

Associated commands

 *CAT, *., *DIR, *EX, *LEX, *TITLE

 17

*CLOSE

Purpose

 To close all open files and ensure that all disc buffers in RAM are
placed back onto the disc. *CLOSE is equivalent to CLOSE #0 in BASIC.

Example

 *CLOSE

Description

 Closes all open files.

 18

*COMPACT (<Start-Page> <Length-in-Pages>)

Purpose

 To compact the information on the disc drive so that free space may be
gathered into larger contiguous blocks. This improves speed for accessing
the drive and the error messages: 'Compaction required' or 'Map full' are
avoided. The area of RAM used to temporarily hold disc information, while
the compaction is taking place, is the current screen memory unless
specified otherwise.

 <Start-Page> and <Length-in-Pages> are optional, and both are Hexadecimal
numbers. <Start-Page> is the start page and <Length-in-Pages> is the length
in pages of the area of memory to be used by the command.

 There must be RAM in the area specified for the command to work
correctly.

 This command will corrupt the RAM contents, so if there is information
that you wish to keep then SAVE it first.

Examples

 *COMPACT 30 40

 which will use memory between &3000 and &7000 inclusively.

Description

 This command will compact the drive, and gather up the free space.

Associated commands

 *FREE, *MAP

Notes

 The command causes each object on the disc to be examined, and if there
is sufficient free space just before, the object is copied into the free
space - using the specified area of memory as a buffer. Thus objects tend to
move towards sector zero on the disc and free space tends to move towards
the end of the disc - thus gathering together in larger blocks.

 If neither <Start-Page> nor <Length-in-Pages> are issued, i.e. you just
type in *COMPACT, then the Current screen memory up to &7FFF will be used.

 As a further example, consider the following:

 *MAP is a command which lists the free space on the disc. Hence, if you
type *MAP then the output could be:

 Address : Length
 000420 : 0000A0
 000A4D : 000060

 Then if you typed *COMPACT and then *MAP the result would be:

 Address : Length
 000E54 : 000004
 000CD4 : 00FFD2

 The information has now been shifted to reduce the number of free spaces
on the disc, with the result that the first free space is now at a higher
address.

 19

*COPY <list specification> <*object specification*>

Purpose

 To copy a list of files into another directory. All the files referred to
by the <List specification> are copied into the directory specified by
<*Object specification*>. Memory from the start of the BASIC user RAM area
up to the start of screen memory is used, so you will find that a *COPY is
more efficient in Mode 7 than it is in Mode 0.

 Any data or programs in memory are lost.

Example

 COPY @. $.WORK

 will copy all the files in the current directory to the directory called
WORK.

 COPY $.WORK.MEMO $.WORK2

 will copy all files in directory WORK which start with MEMO. into the
directory called WORK2.

 COPY $.WORK. @

 will result in all the files in the directory called WORK being copied to
the currently selected directory.

Description

 For copying multiple objects within the currently selected filing system
- here the ADFS.

Notes

 For copying between two different filing systems, see the utilities
*MVADFS and *MVDFS.

 For backing up the contents of whole directories or drives - e.g. from a
Winchester to floppies - see the command *BACKUP.

 20

*DELETE <Object specification>

Purpose

 To delete a single object from the disc. The space that was occupied by
the object then becomes available for other information. Once an object has
been deleted you cannot retrieve it, unless you use *DZAP, or *RECOVER.

Examples

 *DELETE MEMO45

 would delete the file called MEMO45 from the currently selected
directory.

 *DELETE $.WORK.MEMO50

 would delete the file or object called MEMO50 from the directory WORK.

Description

 Deletion of a single object.

Notes

 The currently selected directory, the current library or open files
cannot be deleted.

 If you try to delete a file that has the L attribute ('Locked') then the
message 'Locked' would be printed and the file would be left intact.

 A directory or file with the L attribute can only be deleted by resetting
the L attribute with the *ACCESS command, and if the directory is empty.

Associated commands

*DESTROY, *REMOVE

 21

*DESTROY <List specification>

Purpose

 This command will remove a number of objects from the disc in a single
operation. A list of the objects which are to be removed is displayed,
followed by the message 'To be destroyed. Are you sure?'. If you want to
delete the objects or files then type in 'Y' but if you do not, then type
'N' or any other key.

Example

 DESTROY WORK deletes all objects in the currently selected directory
that begin with 'WORK'.

Description

 Deletion of multiple objects.

Associated commands

*ACCESS, *DELETE

Note

 The operation will not be performed if the object is 'Locked' - you will
get an error message "Locked".

 22

*DIR (<*object specification*>)

Purpose

 This command will make the Directory specified in <*Object
specification*> the currently selected directory. If the <*Object
specification*> is not specified, then the ROOT directory is selected.

 When the system is first activated, or after the CTRL and BREAK keys are
held down together, then the Currently Selected Directory is set to the ROOT
directory.

Example

 *DIR WORK will select the directory called WORK as the CSD.

 *DIR will select the ROOT directory as the CSD.

 *DIR :1.$.WORK will select drive 1 as the current drive and WORK as

the CSD. The '$' (dollar) sign, signifying the 'root'
directory, may be omitted - as it is understood.

 *DIR ^ will select the parent of the CSD as the new CSD.

Associated commands

*CDIR, *LIB.

Note

 Unlike under the DFS, a directory must be created explicitly (with *CDIR)
before it can be set as the Currently Selected Directory (CSD).

 23

*DISMOUNT (<Drive number>)

Purpose

 To ensure that all open files have been closed, and all the Buffer pages
are empty. It is intended for use before changing dismountable media -
either floppy discs or Winchester drives with interchangeable discs.

Examples

 *DISMOUNT will close all open files on the Currently Selected

Drive

 *DISMOUNT 1 will close all open files on drive 1.

Notes

 *DISMOUNT only closes the files on drive specified (or on the currently
selected drive, if none is specified)

 After a drive has been *DISMOUNTed, both the Currently Selected Directory
and the Currently Selected Library are "unset". If the next disc command
requires a drive and a directory to be specified explicitly (e.g. as part of
an object specification), then "No directory" will be returned. If however
the command has a default drive and directory (i.e. drive :0. directory
'root') - as does *CAT, then it will work accordingly.

 The CSD and CSL may be set using the *DIR and *LIB commands.

Associated commands:

*BYE, *MOUNT

 24

*EX (<*Object specification*>)

Purpose

 This command will display information about the length and location of
objects in the directory named, or the Currently Selected Directory. The
information is displayed (in Hexadecimal) in a set order across the screen,
i.e.

Object Attributes Sequence Load Execution Length Start
Name Number Address Address in bytes Sector
 in Sectors in Sectors

Example

 *EX WORK could result in:

WORK (19)
Drive: 0 Option 03 (exec)
CSD: 0 CSL: 0

!BOOT WR (04) 00000000 FFFFFFFF 00000065
MEMOS DLR (02) 0000004D
MEMO WR (07) 00000000 00000000 000002B8

 If the *EX command is issued without the <*Object specification*> then
the Currently Selected Directory is examined, and if the object is a
directory then only the start sector is displayed.

 If the E attribute is set for a file or object then only the attribute
string and the generation number is shown. For example if the file called
!BOOT had the E attribute set then, after an *EX command had been issued,
the screen would show:-

!BOOT E (04)

Description

 Displays information about directory contents.

Associated commands

*CAT, *INFO

 25

*EXEC (<*object specification*>)

 The *EXEC command reads from the specified file, one byte at a time, and
places it into the keyboard buffer.

Example

 *EXEC !BOOT

 will take the contents of the file called !BOOT, read them one character
at a time, as if it was being typed in at the keyboard, and act on any
commands.

Associated commands

*BUILD, *WORD (Both of which are utilities)

 26

*FADFS

Purpose

 The *FADFS command will start up the Advanced Disc Filing System (ADFS).
Unlike *ADFS, this command will set the currently selected directory and the
currently selected library to the "unset" state.

Example

 If you type in *FADFS and then type in *CAT then the screen might look
something like:

 $ (19)
 Drive : 0 Option 00 (Off)
 CSD: "Unset" CSL: "Unset"

Associated commands

*ADFS, *DISMOUNT, *MOUNT

Note

 The same effect may be had by pressing BREAK while holding down CTRL and
'F'.

 Unlike the Acorn implementation, when the next disc command is issued,
the STL ADFS automatically loads drive :0 directory 'root' as the Currently
Selected Directory and Currently Selected Library - by default. These
defaults can be overridden with *MOUNT <drive> and *DIR <*object
specification*>.

 27

*FREE

Purpose

 This command is issued to display the amount of free space that is left
on the disc - measured in disc sectors (hexadecimal), and in bytes
(decimal).

Example

 If you typed in *FREE then the screen might show:

 00AF83 Sectors - 11502336 Bytes Free
 00827D Sectors = 8551680 Bytes Used

Description

 The *FREE command will show the amount of free space left on the disc.

Associated commands:

*MAP

 28

*HELP (<Keyword>)

 This command will display useful information about the ROMs that are
inside your system. If no Keyword is given, a list of all the ROMs is
returned. If a Keyword is given, more information about that ROM is
returned.

 For instance, information about the Advanced Disc Filing System can be
shown if you type:

 *HELP ADFS

 The screen will look like:

 STL ADFS 2.1
 ACCESS <List Spec> (L)(W)(R)(E)
 ADFS
 BACK
 BYE
 CDIR <Ob Spec>
 CLOSE
 COMPACT <SP> <LP>
 COPY <List Spec>
 DELETE <Ob Spec>
 DESTROY <List Spec>
 DIR <Ob Spec>
 DISMOUNT (<Drive>)
 EX <*Ob Spec*>
 FADFS
 FORM160 (<Drive>)
 FORM80 (<Drive>)
 FORM40 (<Drive>)
 FREE
 INFO <List Spec>
 LCAT
 LEX
 LIB
 MAP
 MOUNT (<Drive>)
 PASSWORD <Password>
 REMOVE <Ob Spec>
 RENAME <Ob Spec><Ob Spec>
 TITLE <Title>
 VERIFY (<Drive>)

 OS 1.20

Note

 Certain commands are not included in the list because they are not ADFS
commands. Some originate from the Machine Operating System and include *CAT,
*EXEC, *LOAD, *OPT, SAVE, *SPOOL and some are utilities which are common to
both the STL DFS and the STL ADFS. They will be shown in response to *HELP
UTILS and are summarised in Section 8 and detailed in Section 9.

 29

*INFO <List Specification>

Purpose

 This command will display information about a list of objects. It
consists of the Object name, Attribute string, Sequence Number, Load
address, Execution address, Length of the file and the Disc Sector address.

Example

 INFO MEMO

 This will display information about all the objects in the currently
selected directory that begins with MEMO.

 INFO WORK.

 This will display information about all the objects in the Directory
called WORK.

Description

 The *INFO command will return detailed information about a set of
objects.

Associated Commands:

*CAT, *EX, *LEX

 30

*LCAT

 The *LCAT command will catalogue the current library, and the result is
in the same format as the *CAT command.

Example

 *LCAT might result in:

 $ (47)
 Drive:0 Option 03 (Exec)
 CSD: WORK2 CSL: $

 !BOOT LWR (17) MENU LWR(19)

 This shows that the currently selected library is the ROOT directory,
and the currently selected directory is called WORK2.

Associated commands

*CAT, *LIB

 31

*LEX

Purpose

 The *LEX command will examine the currently selected library, and
returns the same result as the *EX command on other directories.

Example

 *LEX

 $ (47)
 Drive:0 Option 00 (Off)
 CSD: WORK2 CSL: $

 !BOOT LWR (17) 00000000 FFFFFFFF 00000047 000056
 MENU LWR (19) FFFF1900 FFFF8023 00000C75 000208
 MEMO1 LR (22) 00000000 FFFFFFFF 00000013 0001AB

 In the above example, the currently selected directory is called WORK2,
and the currently selected library is the ROOT directory.

Associated commands

*EX, *LIB

 32

*LIB (<*Object specification*>)

Purpose

 This command will set the library to the specified drive number, and the
specified directory.

Example

 If the command *LIB $.WORK is entered, then it will select the directory
called WORK in the ROOT as the current directory, and after this, if you
type:

 *<filename>

 it will first search the CSD, and if not found, then in the directory
called WORK for the named file. If it is found, it will be loaded into
memory and executed, just as if you had typed *RUN WORK.<filename>.

Description

 Sets the directory that is to hold the library.

Associated commands

*LCAT, *LEX, *RUN

Notes

 When the ADFS is first entered, the library directory is set to $,
Unless there is a directory with a filename beginning with $.'LIB', in which
case this latter directory would be allocated as the library. A directory
will not be retained as the currently selected library following a HARD
BREAK from ADFS, unless its name begins with the filename $.LIB.

 The Library directory can only be deleted from the disc by allocating
another directory as the library. E.g. if you type *LIB then the ROOT would
be set as the library directory, and the 'old' library directory can then be
deleted.

 The library is usually used to contain machine code utility programs,
which you may want to *RUN whichever is the Currently Selected Directory.

 The library also provides a means of having more objects "on tap" than
can be held in a single directory (i.e. 47 under the ADFS).

 33

*LOAD <*Object Specification*> (<Reload Address>)

Purpose

 This command reads the named file from the disc into memory, either at
the address specified in the *LOAD command, or at the reload address with
which it was *SAVEd.

Examples

 *LOAD MENU

 will read the file called MENU and load it into memory starting at the
reload address with which it was *SAVEd.

 *LOAD MENU 2000 will read the file called MENU and load it into
address &2000 upwards.

 *LOAD Newdrives FFFE3000 will load into (screen) shadow RAM on the B+.

 *LOAD TOOLKIT FF0A8000 will load into sideways RAM. [bank 8 ?] on the
B+.

Description

 Loads a file into memory.

Associated commands:

*EX, *INFO, *SAVE

Notes

 You should not try to *LOAD programs into memory below the default
setting of PAGE because the ADFS uses this area to keep track of the disc,
and to manage the drive.

 Under the STL ADFS, the value of PAGE varies with the number of file
channels *OPENed:

 - from the default of &1900 for one file channel open
 to &1D00 for five file channels open
 and to &2200 for ten file channels open.

 Since only one open file channel is required in many cases, this gives
maximum compatibility for programs written for the original DFS.

 In the Acorn implementation, PAGE is set at &1D00. This is higher than
for the DFS and the STL ADFS for 1 to 5 channels open but lower than the
latter for 6 to 10 channels open. However, this is only achieved by swapping
the contents of channels temporarily out to disc - which greatly slows any
operations which use more than 5 channels.

 34

*MAP

Purpose

 This command will display a map of the free space that is available for
use on the disc. The format is a list of numbers that are paired in the
form:

 <Sector Address> : <Length in Sectors>

 If there is a large number of entries in the free space map, and the
disc is becoming fragmented, then certain commands, such as SAVE, *CDIR,
*COPY, etc might cause the error message 'Compaction required' to be
displayed. If you do get this message, then you are advised to *COMPACT the
disc. You are allowed up to eighty entries in the free space list, but if
the *MAP command gives more than sixty-five, then you are advised to
*COMPACT the disc.

Example

 *MAP

 Address : Length
 0000A4 : 000001
 000207 : 000001
 000216 : 0007EA

Description

 Displays the available free space map.

Associated commands

*FREE

 35

*MOUNT (<Drive number>)

Purpose

 This command is for use with dismountable media - either floppy discs or
Winchester drives with interchangeable discs.

 The command initialises a Winchester drive (by forcing the controller to
do a 'hard reset') and reads the Free Space map into RAM. You should issue a
*MOUNT command after a disc error has occurred.

Example

 *MOUNT 1

 will initialise drive number 1.

Description

 Initialises a drive.

 36

*MVADFS

Purpose

 To move objects from the ADFS to the DFS.

 37

*MVDFS

Purpose

 To move objects from the DFS to the ADFS.

 38

*OPEN <Number of file channels>

Purpose

 To set the number of open file channels - each of which raises PAGE by
&100. The minimum is 1 and the maximum is 10.

Notes

 Under the STL ADFS, the value of PAGE varies with the number of file
channels *OPENed:

 - from the default of &1900 for one file channel open
 to &1D00 for five file channels open
 and to &2200 for ten file channels open.

 Since only one open file channel is required in many cases, this gives
maximum compatibility for programs written for the original DFS.

 In the Acorn implementation, PAGE is set at &1D00. This is higher than
for the DFS and the STL ADFS for 1 to 5 channels open but lower than the
latter for 6 to 10 channels open. However, this is only achieved by swapping
the contents of channels temporarily out to disc - which greatly slows any
operations which use more than 5 channels.

 This command must be followed by CTRL-BREAK, since PAGE and the ADFS
private workspace must be reset.

 All file operations require at least 1 channel open, but few require
more than 2. One instance where more may be needed is when maintaining
multiple indexes up to date, while amending the records in certain database
programs - such as VIEWSTORE. With up to 10 open channels being possible,
and 1 being needed for the datafile, up to 9 indexes may be maintained up to
date while amending records.

 39

*OPT 1 (number)

Purpose

 This command enables or disables the system which controls the
displaying of information (the same as the *INFO command).

 *OPT 1,0 will stop the information from being displayed.

 *OPT 1,1 will give short messages.

 *OPT 1,2 will display extended information about files.

Note

 There must be a comma or a space between the *OPT 1 and its argument
(number).

 40

*OPT 4 (number)

Purpose

 This command will set the auto start option. There are four possible
options - 0, 1, 2 and 3. Each of them initiates a different action when you
hold the SHIFT key while pressing BREAK. The computer will either do nothing
or automatically *LOAD, *RUN or *EXEC a file called !BOOT which is in the
Currently Selected Directory.

Examples

 *OPT 4,0 will turn the autostart option off
 *OPT 4,1 will *LOAD a file called !BOOT
 *OPT 4,2 will *RUN a file called !BOOT
 *OPT 4,3 will *EXEC a file called !BOOT

Description

 This command sets the start-up option for the directories.

Note

 *OPT 4 is one of the MOS commands and is not shown in the *HELP screen
on the ADFS. It is passed onto the ADFS by the OSFSC call.

 If the option is set to 1, 2 or 3, and if you press SHIFT-BREAK, then
the DFS will search for a file called !BOOT, but if the file called !BOOT is
not present, then the message 'Not found' will be produced.

 The Acorn implementation only allows a single !BOOT file, in the ROOT
directory. The STL ADFS however, allows !BOOT files in any directory -
including the ROOT directory.

 41

*PASSWORD <Password>

Purpose

 To limit access to the objects in any directory for any purpose other
than *LOADing and *RUNning files, to only those knowing the password. The
main purpose is to afford privacy to multiple users of a Winchester disc.

Example

 If the directory 'MINE' is protected by a password, and you type *DIR
MINE, "Password required" is returned. The correct response is *PASSWORD
<Password>, otherwise access is limited to *LOADing and *RUNning files.

Notes

 Password protection may be applied to the Currently Selected Directory,
by running the program called 'PROTECT', which is on the Utility disc
(Number 9). It may only be removed by running 'PROTECT' again - and using
the <Password> !

 This facility can also be used from within a program or an *EXEC file.

 42

*REMOVE <Object specification>

Purpose

 This command will delete a single object or file from the disc. The
*REMOVE command works exactly the same way as the *DELETE command, but if
the file does not exist, then the message 'Not found' will not be produced.
This can be an advantage when calling it from a program - for example, to
avoid upsetting a screen format.

Example

 *REMOVE MEMO45

 will remove the file called MEMO45 from the currently selected
directory, but if the file is not present, no error message is given.

Description

 The *REMOVE command is used for object or file deletion without error
reporting.

Associated commands

*DELETE, *DESTROY

 43

*RENAME <Old object specification> <New object specification>

Purpose

 This command will change the object name, and move it to another
directory if need be.

Example

 *RENAME MEMO45 MEMO46

 would rename the file called MEMO45 in the currently selected directory,
and change its name to MEMO46 in the same directory.

 *RENAME $.WORK.MEMO32 $.BACKUP.OLDDEMO

 would remove the entry of 'MEMO32' from the directory called WORK, and
add a new entry to the directory called BACKUP, and with a new name
'OLDMEMO'.

 If the <New name for file> already exists, or the source file is locked,
then an error message 'Bad rename' will be produced.

Note

 The operation consists of removing a directory entry, and changing its
name if necessary, then adding the entry to the same, or a new directory.

 Do not use Wildcards in a *RENAME command.

 When renaming a directory, the root name (i.e. '$') may not be used as
either the old or the new name.

 A directory cannot be renamed so as to refer to itself. You must first
*COPY it and then *DELETE the original.

 44

*RUN <*Object specification*> (<Optional parameters>)

 The *RUN command is used to run machine code programs. It loads a file
into memory and then jumps to its execution address, unless the execution
address is &FFFFFFFF, in which case the file is *EXECed (as a text file)
into the KEYBOARD buffer.

Example

 *RUN SHIFTER

 will load the file called SHIFTER from the currently selected directory,
into memory at its reload address, and execute it at its execution address,
with which it was *SAVEd.

Description

 Loads and runs a machine code file, or *EXECs a file if the execution
address is set to &FFFFFFFF

Notes

 *RUN is a MOS command - not part of the ADFS

 The *RUN command will not work with BASIC programs

 Also typing *<filename> or *<*object specification>, or */<*object
specification> is equal to *RUN <*object specification>.

 If the (<optional parameters>) are entered with the command, then the
program will load into that address.

 45

*SAVE <Object specification> <Start address> <Finish address> (<Execution
address>) (<Reload address>)
 or
*SAVE <Object specification> <Start address + Length> (<Execution address>
(<Reload address>))

Purpose

 This command should not be confused with the BASIC command SAVE, because
they are quite different. This command takes a copy of the specified memory
inside the computer, and saves it to the disc (or other filing system). The
main purpose of this command is to save machine code routines or graphic
screens.

Examples

 File Start Finish Execute Reload
 Name Address Address Address Address
 --

 *SAVE PROGRAM FFFF2000 FFFF4000 FFFF2003 FFFF2000

 File Start Finish Execute Reload
 Name Address Address Address Address
 --

 *LOAD PROGRAM FFFF2000 +FFFF2000 FFFF2003

Notes

 The Execute and Reload addresses may be omitted - in which case they are
taken to be the same as the Start address.

 As an enhancement on the Acorn implementation, the STL version of *SAVE
can be made to save to disc any Sideways ROM - and not only that of the
currently selected filing system. This is done by including the ROM socket
number (in hexadecimal) just before the 4-digit start address (normally
8000). Thus:

 *SAVE <filename> FF088000 +2000 D9CD will save the sideways ROM in
socket number 8 onto the disc.

 This is designed to work only with floppy drives, as the file could be
corrupted - which would be too dangerous for a Winchester.

 46

*SPOOL (<Object specification>)

Purpose

 This command will open a file to the disc with the name specified, and
then sends all the text that is 'Printed' (on the screen) to the file.

 If no name is specified then the last *SPOOL file is closed.

Example

 To produce a text file for a file called MENU type:

 LOAD "MENU"

 *SPOOL MENU2

 LIST

 *SPOOL

 This will cause the tokenised BASIC program called MENU to be converted
into an ASCII file called MENU2.

Description

 This command will spool all subsequent output to the screen, to the
named file. The file is closed by issuing the command *SPOOL on its own.

Notes

 SPOOL (i.e. ASCII text) files are much less specific to a given type of
computer than are e.g. tokenised BASIC programs. This can therefore be one
step in transferring such programs between machines of different types.

 47

*TITLE <Title>

Purpose

 This command sets the title of the Currently Selected Directory. The
specified title may be up to nineteen characters long, and all characters to
the right of the command (leading spaces are ignored) up to the RETURN
character or double quotes (inverted commas) are copied into the title field
of the currently selected directory.

 The title is distinct from the directory name and is not used by the
ADFS, but is stored for reference by the user. However, the directory name
will be used as the directory title by default until you change it with a
new *TITLE command.

Example:

 *CAT might produce:

 $ (22)
 Drive:0 Option 00 (Off)
 CDS: $ CSL: $

 !BOOT WRL(14) MENU WRL(14)

 If you then type *TITLE NEWMENU and then type *CAT again, the screen
would show:

 NEWMENU (22)
 Drive:0 Option 00 (Off)
 CDS: $ CSL: $

 !BOOT WRL(14) MENU WRL(14)

 48

5. TECHNICAL INFORMATION ON THE STL ADFS

5.1 FILE HANDLING USING 'BASIC'.

 This is documented in the User Guide pg 395 and the Advanced Disk User
Guide pg. 269.

5.2 FILE HANDLING USING ASSEMBLY LANGUAGE

 Disc drives are usually considered as an extended part of the computer
memory, and the Disc Filing System as providing a software interface between
the Disc drive hardware and the program, through seven vectors called
'Filing System Tasks'. They are:

 OSFILE (&FFDD), OSFIND (&FFCE), OSARGS (&FFDA), OSBGET (&FFD7), OSBPUT
(&FFD4), OSGBPB (&FFD1) and OSWORD (&FFF1).

 All but the last are well-documented elsewhere:

 - The User Guide, pg. 451.
 - The Advanced User Guide, pg. 335.
 - The Advanced Disk User Guide, pg. 121

and so will be covered only briefly below.

 The last - OSWORD - is not documented elsewhere, and is therefore
covered in more detail below.

 When you move data between the computer and the disc, the ADFS normally
issues the request (also called the Reason Code) in the A register, and then
jumps to the required subroutine.

 Although the way these tasks are performed is quite different between
one filing system and another, the result is always the same, e.g. the data
is saved.

 When a file is accessed it is presumed that it is in the Currently
Selected Directory, unless the Correct pathname is used, i.e.

 *LOAD :4.UTILS.SILEX 6000 will load the file called SILEX, from the
directory called UTILS, starting at address &6000.

 A simple program to use this Load function is:

 10 DIM Q% 100, FCB 16, Name 20:OSFILE=&FFDD
 20 &Name=":4.UTILS.SILEX"
 30 !FCB=Name
 40 !(FCB+2)=&FFFF6000
 50 X%=FCB MOD 256:Y%=FCB DIV 256:A%=&FF
 60 CALL OSFILE

 49

5.2.1 OSFILE (&FFDD)

 X (Load Address) and Y (High Address) will point to the FCB (File
Control Block). A holds the function to be performed:

 A=0 *SAVE the specified file
 A=1 Write/update the directory entry of the specified file
 A=2 Write the load Address
 A=3 Write the Execution Address
 A=4 Write the File Access Attributes
 A=5 Read the file information from its directory entry.
 On return, A=1 (file object) or A=2 (directory object), or
 A=0 if not found.
 A=6 *DELETE the specified file
 A=7 Add a new entry to the directory. i.e. dummy *SAVE
 A=&FF *LOAD the specified file

 Note. The 'Reason code 7' was not implemented on the original DFS, but
on the ADFS, it lets you initialise a large datafile, without having to fill
the file with 00's.

5.2.2 OSFIND (&FFCE)

 OSFIND is used to open or close a file. Note that the ORARGS &FF calls
and the OSFSC6 call will also close the file.

 A=0, Y=channel : CLOSE #channel
 A=0, Y=0 CLOSE #0

 A=&40, &80 or &C0: a file is to be opened. X (low address) and Y (high
address) point to the filename. On return, A contains the channel number (32
to 41 with the ADFS), if A=0 then the file could not be found, or its access
is forbidden.

5.2.3 OSARGS (&FFDA)

 If Y=channel number (From 32 to 41):

 A=0 (Pointer) = PTR # channel
 A=1 PTR # channel = (Pointer)
 A=2 (Pointer) = EXT # channel
 A=&FF Close # channel

 If Y=0,

 A=0 On return, A=4 for the DFS and A=8 for the ADFS
 A=1 On return, the pointer contains the address of the * command
 A=&FF Close All files

 50

5.2.4 OSBGET (&FFD7)

 When this routine is called, Y is equal to the channel number, and on
exit, A contains the Byte that was read, and PTR#channel will then be
incremented automatically. The carry flag is set if the end of the file was
reached.

5.2.5 OSBPUT (&FFD4)

 On entry, the Y register, contains the channel number, and the
Accumulator contains the Byte to be written.

5.2.6 OSGBPB (&FFD1)

 On entry, X and Y point to a file control block in memory. A defines the
information to be transferred to or from the open file.

5.2.7 OSWORD (&FFF1)

 There are several important hardware features which can be of interest
to a programmer, such as OSWORD &70 for use with Telesoft, OSWORD &7F with
the original DFS and OSWORD &72 with the ADFS.

 51

6. THE ADFS ERROR MESSAGES

 The STL ADFS error messages are given below, preceded by the
corresponding error codes. These are not shown on the screen, but may be
incorporated in error-trapping routines in your own programs.

&92 Aborted
 The response to the question 'Destroy' has been other than 'YES' (or
'yes' etc), following a *DESTROY command.

&BD Access violation
 An attempt has been made to read or load a file with the R attribute not
set, or to write to a file with the W attribute not set.

&C2 Already open
 An attempt has been made to delete (or overwrite - by saving a new
version of) a file which is open. This message also occurs if an attempt is
made to open a file that is already open (unless both "opens" are for input
only, using e.g. OPENIN in BASIC II).

&C4 Already exists
 An attempt has been made to create an object with the same name as an
existing object. The logic protects - and hence the message can occur with -
*CDIR and *RENAME, but not *SAVE or SAVE in BASIC.

&AA Bad checksum
 The computer memory has become corrupted, which prevents the ADFS from
being able to read or write to a file, or to close it. The computer must be
reset using CTRL-BREAK.

&FE Bad command
 The last command was not recognised by the ADFS, nor by any other
Service ROM, nor was it found (e.g. as a machine code utility) in the
currently selected directory or current library of the currently selected
filing system.

&A9 Bad FS Map
 A bad Free Space map means that either the computer memory or sectors 0
and 1 of the current disc are corrupted. The computer must be reset using
CTRL-BREAK.

&CC Bad name
 An illegal filename was used - e.g. one including a : (colon) or $
(dollar), when not referring to a root directory, or other special
characters, such as ^ (circumflex) or @ (commercial 'at') or even a "null"
object - as implied by .. (two periods) adjacent to each other.

&CB Bad opt
 An invalid argument has been supplied with a *OPT command.

&94 Bad parms
 Invalid address parameters were supplied when specifying the memory to
be used by *COMPACT.

&B0 Bad rename
 A directory cannot be renamed in this way - e.g. so that the new object
specification embodies the old object.

&A8 Broken directory
 The directory has been corrupted. This should be a very rare occurrence
- particularly with a Winchester disc. One course of action is to reformat
the disc and restore the contents using your backups!

&96 Can't delete CSD
 You are not allowed to delete the currently selected directory. You must
set another directory as the currently selected directory before deleting
the old one.

 52

&97 Can't delete library
 You are not allowed to delete the current library. You must set another
directory as the current library before deleting the old one.

&DE Channel
 A sequential file operation has been attempted with an invalid file
handle - e.g. the file has not been opened.

&98 Compaction required
 Writing to the disc has been attempted when the free space is too
fragmented - e.g. more than 80 free spaces or none large enough.

&B3 Dir full
 You can only have 47 objects in a single ADFS directory. You may be able
to put some machine code files into the library, or you can create another
directory alongside or below the present one.

&B4 Dir not empty
 You are not allowed to delete a directory until you have deleted all the
objects in it.

&C8 Disc changed
 The disc has been changed and you should issue *MOUNT <drive> to read in
the free space map.

&C7 Disc error
 During the last disc operation, the controller found a fault on the
disc.

&C6 Disc full
 There is insufficient space for the operation requested. These include
the creation of directories (with *CDIR) and of files (with *SAVE and SAVE
in BASIC), the opening of files for writing (which have a default size of
256 sectors = 64Kbytes) and extending existing files.

&C9 Disc protected
 The (floppy) disc has a write-protect tab in place.

&CD Drive not ready
 The drive is not yet up to speed (e.g. soon after starting). If this
persists, the drive may be faulty.

&11 Escape
 The Escape key has been pressed.

&DF EOF
 Two attempts have been made to read beyond the End of a File. The
failure of the first attempt is shown by the contents of the C flag
following an OSBGET or OSGBPB command

&C3 Locked
 You are not allowed to delete, rename or overwrite an object which is
locked.

&99 Map full
 The free space map is full - e.g. it contains 80 entries. The disc
should be *COMPACTed in order to allow further information to be saved to
it.

&A7 No directory

&D6 Not found
 The object referred to has not been found.

&C1 Not open for update
 An attempt has been made to write to a random access file that is only
open for reading. You should issue OPENUP in place of OPENOUT (or the
equivalent in assembler).

 53

&B7 Outside file
 An attempt has been made to set the pointer of a file (which is only
open for reading) to a value beyond the end of the file.

&95 Too many defects
 Too many media defects were found during formatting. For example, a
Winchester disc may expect to have 600 tracks, and have only 12 available as
alternates for any that are defective.

&C0 Too many open files
 An attempt has been made to open more files than there are channels
open. In the STL ADFS, you may have from one to ten channels open, set by
the *OPEN command.

&FD Wildcards
 A wildcard character - '*' (asterisk) or '#' (hash) has been found where
a full, unambiguous object specification is required - e.g. in a *CDIR,
*SAVE, *DELETE or *REMOVE command.

&93 Won't
 An attempt has been made to *RUN a file, the load address of which is
&FFFFFFFF. While files that are *RUN are normally machine code programs,
this address is reserved for text files (often sequences of commands), which
are *EXECed - i.e. read in as if being typed at the keyboard.

 54

7. FEATURES OF THE STL DFS 2.1

 The new STL DFS 2.1 is capable of replacing any version of the Acorn
DFS, including the DNFS, with the DFS 1.2. When selected, the 2.0 ROM will
identify itself by one of the following messages:

 DFS 2.1 (1770) or DFS 2.1 (8271)
 BASIC BASIC
 > >

The DFS 2.1 also has a very extensive list of commands available, to provide
users with the outstanding features detailed below and the most friendly
error-trapping and correction mechanism. It also has a neat way of avoiding
clashes with commands of the same name in any other ROM.

The STL DFS 2.1 ROM has a built-in mini word processor (*WORD) but if you
require a full-blown version, we can supply it on a separate disk. This
contains the WP word processor program (around 5K of machine code) and
SILEX, the spelling checker, and comes with a 70-page manual - at a nominal
cost of £3.00 inclusive of VAT, postage and packing. The WP disk is normally
available in both 40- and 80-track formats. Please specify when ordering.

7.1 STL DFS COMMAND IDENTIFY LETTER

All Solidisk DFS commands may be made unique to avoid name clashing with
other ROMs in your BBC, by prefixing the command with an identity letter.
The Solidisk identity letter is lower case 'z'.

For example, if Computer Concepts Disc Doctor ROM is present in a higher
priority (i.e. higher numbered) socket, and you type in *RECOVER, it will be
passed to Disc Doctor. If however, you type in *zRECOVER, it will always be
passed to the Solidisk DFS ROM.

7.2 UNLIMITED FILENAMES

When the number of filenames on the first (or current) catalogue reaches 31,
a new catalogue will be created automatically.

Issuing *CAT will print on the screen:

320 Total Sectors Disc1-JAN (40)
Drive:0 Option:3 (EXEC)
Directory:0.$ Library:0.$
--
 !BOOT MENU
 etc... .etc...

Press any key to continue-

Press the space bar and you should see:

Catalogue 2

 !BOOT FRED
 etc... .etc...

This process is completely transparent to the user.

The Operating System and Disc Filing System (*) commands - LOAD, SAVE,
RENAME, INFO, SPOOL, DUMP, TYPE, LIST, OPENIN, OPENOUT, OPENUP, BGET, BPUT,
etc.. will work exactly as usual.

7.2.2. STORED CATALOGUES AND CURRENT CATALOGUE

 55

When more than one catalogue is present on the disc, the last one (as
returned by *CAT) is the current catalogue. All other catalogues are stored.

7.2.3 DELETE FILE

*DELETE <fsp> and *WIPE <fsp> work as usual on any catalogue. If the file is
on the current catalogue, they actually remove it, but if it is on a stored
(other than current) catalogue, they simply mark it 'File Deleted' by
changing its directory letter to &FF (the ASCII code for Backspace and
Delete).

You may use *DZAP to restore a file that has been 'deleted' in this way, but
remember that, if the same name is being used in another catalogue, you
should rename that file first.

7.2.4 *COMPACT

*COMPACT works as usual on the current catalogue, but will not operate on
stored catalogues.

If you need to tidy the entire disc when several catalogues are present, one
way of doing it is to *COPY *.* (all files) to another disc.

7.3 RUNNING PROTECTED DISCS

The 2.0 DDFS ROM will allow many protected discs, made for operation on the
8271 Floppy Disc Controller, to run on the 1770 FDC.

The way that this is done is by including in the 2.0 DDFS ROM code that
allows a 1770 to emulate an 8271 in certain respects. The discs now supplied
by Acornsoft, Micro Power and Island Logic are compatible with the Solidisk
DDFS so the emulation is only intended to enable the running of other games
discs. Most disc-based business software - including Clares Database - will
run perfectly with a 1770 FDC.

Please check with your dealer to ensure that you have the latest versions of
any discs produced by the above firms.

7.3.1 ELITE

ELITE runs perfectly without any special attention, unless you have an early
copy of the game.

Early versions of ELITE can be made to run with the 2.0 DDFS ROM by holding
the SHIFT key while switching on the computer. If the computer hangs up at
this stage, try *MASKOFF then, then restart by SHIFT-BREAK. If this is still
not effective, then try *MASKOFF then *SSTEP followed by SHIFT-BREAK. This
time the program will more than likely run. However, if it still fails, then
enter *MASKOFF and press SHIFT-BREAK again until it runs.

7.3.2 MINI OFFICE

To run MINI OFFICE, it is necessary to type in *ENABLE 80 (RETURN), followed
by *MASKOFF (RETURN). Once this has been done, press SHIFT-BREAK and the
program should run. If any problems are encountered, type in *FX 200,3
(RETURN), press the BREAK key and repeat the above procedure.

7.3.3 CASTLE QUEST

CASTLE QUEST requires you to enter *ENABLE 80 (if you are using an 80-track
disc drive), followed by *MASKOFF (RETURN) - exactly as MINI OFFICE does.

 56

7.3.4 OTHER PROTECTED DISCS

Most leading software producers are now well aware of the increasing number
of DDFS users, and do make a real effort to make their products compatible.

 57

7.4 THE STL DFS 2.0 AND SECOND PROCESSORS
--
The Solidisk DFS 2.0 ROM is capable of speeding up operations on the Acorn
6502 and Z80 Second Processors, for which disc accessing becomes even more
important as the bottleneck. Even compared with the Acorn 1.2 DFS, the
Solidisk 2.0 ROM can often double the speed of your programs.

However, along with such great enjoyment, there are some minor problems.

With the 6502 Second Processor, Robocom Bitstick is not wholly compatible
with the STL DFS 2.1 in its present form. The reason is that the DFS 2.1 and
Bitstick compete for some zero page locations.

To boot up with the Z80 Second Processor, proceed as follows:

Switch on the BBC and the Z80. Insert a system disc (or the Utilities disc)
and do a CTRL-BREAK. If the system refuses to boot, press BREAK. Type *.
then repeat CTRL-BREAK. It should now boot the system disc in just 2
seconds.

To format discs for use with the Z80:

Do not use the PREPARE or FORMAT programs since, although they will run if
you have the 8271 FDC, they are slow.

It is quicker in the long run to prepare a master disc, formatted and
holding several of the most frequently used files, such as PIP.COM, STAT.COM
and BBCBASIC.COM, and to copy it in BBC mode.

The following procedure is valid for use with the 8271, but works even
better with the 1770:

1) Switch off the Z80. Insert a blank disc in Drive B (i.e. 1/3) and format

it for 80-tracks, single density on both sides (by *ENABLE S and *F80 1
then *ENABLE S and *F 80 3).

2) Place a system disc (or Utilities No 1 disc) in Drive A and backup side

0 (Drive A) to side 1 (Drive B) (by *ENABLE and *BACKUP 0 1). The disc
in Drive B now contains CP/M system and directory tracks.

3) Switch on the Z80 and press CTRL-BREAK to boot CP/M.

4) Type in B: (RETURN) then ERA *.* and to the question "Erase all?",

answer 'Y'. The disc in Drive B is now formatted but completely empty of
files.

5) Type in PIP B:=A:PIP.COM
 PIP B:=A:STAT.COM
 PIP B:=A:BBCBASIC.COM

 and any other programs that you may wish to be copied onto every working

disc.

If you REN (rename) BBCBASIC.COM as BOOT.COM, every time you boot up CP/M
you will be in BBC BASIC (Z80).

The disc in drive B is now your MASTER disc and can be duplicated without
even switching on the Z80.

To make a copy as a working disc, repeat steps 1 and 2 above, using the
MASTER disc in place of the Utilities No 1. It will save you a lot of time!

Solidisk plan to produce a new BIOS for CP/M, allowing the use of double
density (MFM) recording - giving 640K per disc in place of 400K. The new
BIOS disc will also contain other programs, such as a disassembler for the
Z80 and a disc sector editor and should cost about £5.00.

 58

8. A SUMMARY OF THE STL DFS UTILITIES COMMANDS

 The STL ADFS is designed to make use of a number of utilities contained
in the STL DFS 2.1:

 BUILD <fsp>
 DCOPY <src drv> <dest drv>
 DDFS
 DISC
 DISK
 DOWNLOAD <fsp>
 DSTEP
 DUMP <fsp>
 DZAP <trk> <sctr>
 ENABLE 40 80 D S V
 LIST <fsp>
 LOADTAPE <fsp>
 MASKOFF
 MVADFS <afsp> <afsp>
 MVDFS <afsp> <afsp>
 MZAP <add>
 RECOVER <trk> <sctr> <scrts> <add>
 RESTORE <trk> <sctr> <scrts> <add>
 RTRACK <drv> <trk>
 SPEED
 SSTEP
 TAPEDISC <fsp>
 TAPESAVE <fsp>
 TYPE <fsp>
 WORD <fsp>
 WTRACK

Full details of these are given in the next section.

 59

9. THE STL DFS UTILITIES IN DETAIL

*BUILD <file specification>, *DUMP <file specification>, *LIST <file
specification> and *TYPE <file specification>.

 These utility commands are available both to the STL DFS and the STL
ADFS. In the Acorn ADFS implementation, they are provided as disc-based
utilities.

 60

*DCOPY <source drive> <destination drive>

 This command allows the user to make backup copies of disks with non-
standard (non-Acorn) formats. *DCOPY works on one track at a time, copying
first the format and then the data.

 In the case of the 8271 Floppy Disc Controller (FDC) (as fitted by
Acorn), up to 10 sectors per track are possible, whereas with the 1770 FDC
(as used by STL), up to 16 sectors per track are catered for.

 However, there are a few limitations when using the 1770 to copy certain
disks. This is because the 1770 cannot format any sector with an
identification number (ID) over &F6. To get round this problem, a mask is
used with any sector or track number greater than &F0. This mask has the
value of &EF and is inserted automatically during *DCOPY when the 1770 is
used.

 At the beginning of the *DCOPY routine, the user is asked whether the
sector lengths should be normalised or not. This is because some discs use a
false sector length, which will cause the 1770 to crash out with a Cyclic
Redundancy Check (CRC) error. This may be avoided by answering Y for yes to
the question about normalising the sector lengths. This will then set all
sectors encountered to a length of 256 bytes (the standard on the BBC
Micro).

 61

*DDFS, *DISC and *DISK

 These are for entering the original disc filing system - the DFS. This
has a single file catalogue, which can hold only 31 files - although these
may be distinguished or grouped into directories having single character
names.

*DISC (or *DISK, in America) enters it in the single density, FM recording
mode, which has 10 sectors per track, and hence a 40-track disc surface
provides 100K and an 80-track disc surface provides 200K.

 This single density mode is the Acorn standard, and is the only one
possible when using the 8271 Floppy Disc Controller.

*DDFS enters it in a "double density" MFM recording mode, which has 16
sectors per track. Hence a 40-track disk surface provides 160K and an 80-
track disc surface provides 320K.

 Both the single density and double density modes are possible when using
e.g. the 1770 Floppy Disc Controller.

 62

*DSTEP and *SSTEP

 These two commands are used to tell the computer whether to single- or
double-step the heads of any disc drives. DSTEP will have to be used if you
are using an 80-track drive to read 40-track discs (assuming that you do not
have, or use, a 40/80 track switch on the drive), DSTEP only has to be
issued once at the start of each session.

 Some protected discs will require one of these commands to be issued
before running and some will even require it to be issued twice, if they
hang up on SHIFT-BREAK. The correct sequence depends upon the size of the
drive and on the disc, and will have to be found by trial and error.

 63

*DZAP (<track>) (<sector>)

 This is a utility to enable the contents of a disc to be examined and,
if necessary, to be altered. If just *DZAP is typed, then both the track and
sector will default to zero. If any others are required, then just type in
the track, followed by a space and then the sector number - both in
hexadecimal.

 A display of the required sector will be given on the screen in rows,
hexadecimal on the left, and ASCII on the right.

 You can toggle the cursor between hex and ASCII by pressing the TAB key,
and the current setting is shown at the top right of the screen.

 This information may now be altered in either hex or ASCII. The cursor
may be moved around the display by means of the arrow and shifted-arrow
keys, data is entered at the cursor position, which is incremented after
each change.

 The sector and track position is changed by means of the CTRL-arrow
keys. The current position is displayed at the top of the screen.

 If a disc error is encountered, the error type is displayed below the
status line. If the data was able to be recovered from the disc, then it may
be modified and restored to the disc.

 The current sector may be saved by pressing ESCAPE, whereupon a flashing
prompt "SAVE Y/N ?" is displayed. If you require that sector to be saved to
the disc, type "Y". Any other character will exit from DZAP without saving
the sector.

 64

*ENABLE can be used with various arguments, as follows:

*ENABLE 40 will make the machine single step on both 40- and 80-track discs,
and is useful when using one 40- and one 80-track drive on the same
computer.

*ENABLE 80 is similar to DSTEP, in that it informs the machine that 80-track
drives are being used, and it should double step on 40-track discs.

*ENABLE D: Similar to entering *DDFS. It enables Double Density (MFM)
recording before formatting (either with *F40 or *F80).

*ENABLE S: Similar to *DISC or *DISK. It enables Single Density (FM)
recording before formatting

*ENABLE V: Enables Verify before formatting or backup - to be carried out
immediately afterwards.

Suppose you want to format and verify a disc to 40-track, single density in
an 80-track (non-switchable) drive, you should enter:

*ENABLE 80 (RETURN)
*ENABLE S (RETURN)
*ENABLE V (RETURN)
*F40 (RETURN)

 65

*MVADFS <source *object specification*><destination *object specification*>
and
*MVDFS <source *object specification*><destination *object specification*>

 These utility commands are for moving objects - i.e. directories and
files - between the original DFS (in both the standard single density and
the STL DDFS double density mode) and the ADFS.

*MVADFS is for moving FROM the ADFS
and *MVDFS is for moving FROM the DFS.

 66

*MZAP <address>

 The MZAP command is another utility, similar to DZAP in operation.
However, it operates on the memory of the BBC Micro, rather than on a disc.

 The start address of MZAP defaults to 0000, but another address may be
specified if required (in hex), e.g. *MZAP 1900 for a start address of
&1900.

 Cursor movement is again controlled by the arrow and unshifted arrow
keys, and data entered at the current cursor position.

 Again the cursor may be toggled between hex and ASCII displays, with the
status being indicated at the top right of the screen.

 67

*RECOVER <track> <sector> <sectors> <address>
and *RESTORE <track> <sector> <sectors> <address>

 These commands are used to recover data from - and then to restore it to
- the disc. The information needed to direct these commands to the
appropriate location on the disc is the track number, followed by the first
sector required and the number of sectors. Finally, to define an area in
memory where the data may be looked at and worked on, a single start address
must be given. All of these numbers must be in hexadecimal and separated by
spaces.

 For example, to recover 5 sectors starting at sector 2 of track 0 to
address 1900, you enter:

 *RECOVER 0 2 5 1900

 Data so recovered may be worked on with MZAP (which see) or may be saved
as a separate file or restored to the disc.

 The *RESTORE command uses the same information as *RECOVER but will
transfer the data in the opposite direction - from the computer memory to
disc.

 These two commands are useful for recovering and/or repairing programs
and other data from corrupted discs.

 *RESTORE requires *ENABLE to be issued beforehand.

 For example, to restore 5 sectors starting at sector 2 of track 0 from
address 1900, you enter:

 *ENABLE
 *RESTORE 0 2 5 1900

 68

*RTRACK <drive> <track> and *WTRACK

 The *RTRACK command allows the user to recover all the sectors from a
chosen track on the disc.

 The ID fields are transferred to memory address &1800 upwards and the
data fields to &4000 upwards. If the 1770 FDC is being used, the track
information - exactly as read from the disc - is placed at &5000 upwards.
Once the data is in memory, it may be examined and altered with the *MZAP
command (which see).

 Using the *WTRACK command will restore the ID fields to the disc,
followed by the data field - exactly as seen in the memory from &4000 - by
just loading the drive head and writing to the same physical track. *ENABLE
must be issued before the *WTRACK command.

 Using these two commands may sometimes enable damaged tracks to be
completely recovered. They work automatically.

 Another use is the alteration of ID or data fields.

Example

 Assume that the drive number is 4.

 First do *VERIFY to find the corrupted track - e.g. it stops at track 5.
Then do *RTRACK 4 5

 The *RTRACK command should correct any CRC error - which at least makes
the data readable. If you like, you can also use *MZAP to correct the data,
before writing it back to the track.

 Finally, type *ENABLE (RETURN), *WTRACK (no arguments).

 69

*SPEED

 The SPEED command has been included to allow the changing of the track
stepping time of the disc drive, independently of the keyboard switch or
link settings. Permanent speed settings can be obtained by soldering 1 or 2
jumpers at the (former) keyboard switch location, at the lower right hand
corner.

 There are four possible speeds available and the exact result depends
upon the type of floppy disc controller chip in use. The speeds are as
follows:

 FDC SPEED STEP SETTLE LOAD LINKS

 1770 0 30 ms 0 ms 0 ms 3, 4
 1770 1 20 0 0 4
 1770 2 12 0 0 3
 1770 3 6 0 0 NONE

 8271 0 24 20 64 3, 4
 8271 1 6 50 32 4
 8271 2 6 16 0 3
 8271 3 4 16 0 NONE

 70

*TAPEDISC (<file specification>)

 The TAPEDISC utility allows most tape-based programs to be transferred
to disc. This includes programs that are "Locked".

 The program may be run be entering *TAPEDISC <fsp>. <fsp> may be the
name of a specific file or just RETURN.

 If a filename is specified, the program will look for and transfer just
that one file. If however only the RETURN key was pressed, then the program
will stay in a continuous loop and transfer as many files as it can find,
either until the end of the tape or until the disc is full. To exit at any
time from this mode, it will be necessary to press the BREAK key.

 Once transferred to disc, many tape programs will run correctly.
However, any containing portions of machine code will have to have these
relocated to the correct start address - usually &0E00.

 This can be done by using *DOWNLOAD <filename> (which see), down to
&0E00. The program must then be started by a call to the original execution
address, which will be displayed during the tape to disc transfer. Thus if
the start address is &0E46, then the program must be started by typing in
CALL&0E46.

 Many tape programs call the next program on the tape with CHAIN"" or
LOAD"". For them to run on disc, the "" must be replaced by appropriate
filenames. A further point to remember is that [under the DFS], disc
filenames can only be up to 7 characters long, whereas tape filenames may be
up to 10 characters long. This will often lead to the filenames being
truncated on transfer to disc, and these may need to be renamed in order to
distinguish them and to ensure that they are called in the correct order.

 Occasionally, files are found on tape which have no name. In this
instance, the file sent to disc will be called "No-name", and once more may
be renamed at any time.

*LOADTAPE <file specification>, *TAPESAVE <file specification> and *DOWNLOAD
<file specification>

*LOADTAPE and *TAPESAVE are almost identical to *TAPEDISC, but will save
everything on the tape to disc, regardless of the status of the tape block
flag. These commands are used to recover certain protected tapes.

 The *LOADTAPE command is issued first - to recover the data from the
tape. When enough of the tape has been loaded, press ESCAPE to exit from the
load routine. Once this has been done, use the TAPESAVE command to save the
recovered file to disc.

 *DOWNLOAD can be used to load BASIC or machine code programs which were
originally written for tape. This it does by loading them at the current
value of PAGE - e.g. &1900 - and then shifting them down in memory to the
value of PAGE that they were written for - e.g. &0E00. For example:

If you type: *DOWNLOAD GAME1 (RETURN)
The computer will reply: "To &- "
Answer with an appropriate address (but not below 200 hex), such as 0E00.

 If it is a BASIC program, you may run it by entering:

 PAGE=&E00 (RETURN>
 RUN (RETURN)

 If it is in machine code, you will have to CALL the execution address,
which can be found by entering: *INFO GAME1.

 71

*WORD <file specification>

 This is a simple word processor. It is not "fully featured" but is
better than *BUILD!

 To create a new document, simply enter *WORD <filename>

 To edit an old document (e.g. FRED), you should enter: *WORD FRED. There
must be a space between *WORD and FRED.

 This causes the word processor to load the old document (FRED) into
memory, and no alteration is made to the copy on your disc.

 The last step in any word processing is to save the edited version to
disc. A filename must be specified, otherwise an error will result. If you
want to keep the old file (FRED), you should save it to a new file (e.g.
JIM) thus:

 !S JIM (RETURN)

 If however you no longer want the earlier version, you can use the same
name (FRED) again. The contents of the old file FRED will then be
overwritten by those of the newly edited version.

 In between editing the word processor and saving the document, you may
enter any amount of text or editing commands (up to the memory limit).
Whereas loading and saving operate on the whole document however, the
editing commands work only on the CURRENT PARAGRAPH. A paragraph is defined
as being preceded and ended by RETURN and may be up to 253 characters in
length.

 *WORD works in all screen modes and provides automatic word-wrap at the
ends of lines, but it does not justify the right-hand edge.

 You will see below that all *WORD commands are prefixed by the
exclamation mark (or "pling") '!'. Only the first letter of the command is
significant, so you do not have to type the command in full. You do not even
need to end with a full stop (or period) - as when abbreviating commands in
other programs. Some commands also take a number as argument. In this case,
the number must be typed immediately after the first letter of the command.

 The screen displays two dashed lines - usually with some text between
them. This is the currently edited paragraph - which you can think of as a
window.

 *WORD works just like the BASIC line editor - with an entry line at the
bottom and the current (and some previous or subsequent) paragraph(s) above.

f0 UP:

This will move the current paragraph "window" up one.

f1 DOWN:

This will move the current paragraph "window" down one.

!Q (QUICK):

This will move the current paragraph to the end of the text and the lower
dashed line will then disappear completely. This will happen when you first
create a new document or when you are adding more text to the end of an
existing document.

 In this mode, text is automatically inserted into/added to the document
without you having to enter !I (INSERT). See below.

!D (DELETE):

 72

 This will delete the current paragraph. You may delete (the last) 1 to 9
paragraphs (including the current one) by adding a number immediately after
!D. For example:

 !D5 (RETURN) will delete the last five paragraphs.

!I (INSERT):

 This will insert an extra paragraph just above the current one. The
newly-inserted paragraph then becomes the current paragraph.

 You may insert 1 to 9 paragraph(s) by adding a number immediately after
!I. For example:

 !I5 (RETURN) will insert 5 lines (which may each be expanded into
paragraphs).

!* (SYSTEM):

 This enables System (*) commands to be issued, such as *CAT, *EXEC and
*MZAP etc.

 With the exception of f0 and f1, the function keys may be programmed by
you for the insertion of repeated words or phrases. For example:

 *KEY 5 This phrase is needed repeatedly.

*WORD * RESTART WORD PROCESSOR

 If an error occurs while you are using a System (*) command, you will
lose no text if you proceed as follows:

1) Press the BREAK key
2) Enter *WORD * (RETURN), taking care to include the space before the

second *.

LEAVING THE WORD PROCESSOR:

 After saving the document e.g. with !S JIM (RETURN), press the BREAK key
to leave the word processor.

PRINTING

 To print the document, ensure that you are in BASIC (by typing *B. if
necessary) and then enter:

 VDU 2,12:*TYPE JIM (RETURN)

 73

10. TECHNICAL INFORMATION ON THE STL DFS 2.1

10.1 FILING SYSTEM COMMANDS

 This is of particular importance to those wishing to write their own
disc software. Even if you are only interested in using existing programs, a
quick read-through will still be beneficial.

 The filing system is part of the Machine Operating System (MOS) ROM,
which is fitted as standard in every machine. It deals with the storage of
data and programs - e.g. on tape, disc and network systems.

 The MOS ROM itself controls the tape filing system, but leaves the disc
and network filing systems to additional software in a DFS or DNFS ROM.

 A convention is then required so that the MOS can work with a DFS -
whether from Acorn or someone else, such as Solidisk. This convention is now
explained in some detail.

1) Unknown commands.
2) Seven file tasks - OSFILE (&FFDD), OSARGS (&FFDA), OSBGET (&FFD7),

OSBPUT (&FFD4), OSGBPB (&FFD1), OSFIND (&FFCE) and OSFSC (&FF2A).
3) Unknown OSWORDs.

Let's start with the easy points of unknown commands.

10.1.1 UNKNOWN COMMANDS

 All system commands going through OSCLI (entry point at &FFF7) will be
either serviced by the MOS or, if unknown to the MOS, offered to other ROMs.

 On the first pass, the unknown command is offered with service call 4.
The Solidisk DDFS will check it against the list that is printed on *HELP
UTILS. If nothing matches the command word, it will return the call to the
MOS, which then passes it on to the other ROMs.

 If unknown to the ROMs, it will be passed on to the current filing
system.

10.1.2 OSFILE, OSBGET, OSBPUT, OSGBPB, OSARGS, OSFIND and OSFCV:

Some information about the use of these filing system tasks may be found in:

- the User Guide, pages 452 to 455.
- the Advanced User Guide, Chapter 16, pages 333 to 345. (Beware of the

error on pg 335; the OSFILE entry point is &FFDD, not as printed!)
- the Advanced Disk User Guide, pages 121 to 263

The Solidisk Software package - specifically the Utilities disc - contains
example programs showing the practical use of these filing system functions.

One important point about OSGBPB 8: This function returns a specified number
of filenames in a specified directory - as used in many 'MENU' programs. The
STL DFS 2.0 implementation however, will work with multiple catalogues.

Example:

 10 REM Program to read n filenames from disc directory $
 20 *DIR $
 30 HIMEM=&2000: fcb=&2000: OSGBPB=&FFD1: n=1000
 40 ?fcb=0: REM Set up file control block, directory
 50 !(fcb+1)=&2100: REM Data storage
 60 !(fcb+5)=n: REM choose n as large as you like
 70 !(fcb+5)=0: REM start from the beginning
 80
 90 X%=0: Y%=&2000: A%=8: CALL OSGBPB
100 *MZAP 2100: Inspect result

 74

10.1.3 UNKNOWN OSWORDS

Three OSWORDs are dealt with by the Solidisk DFS.

OSWORD 7D
 This OSWORD supplies the 'Cycle Number' of the requested disk.

 To use this OSWORD, you must designate some free memory, into which the
DFS can return the result.

For example:

 10 HIMEM = &2000:REM Make some memory free above &2000
 20 A%=&7D:X%=0:Y%=&20:CALL &FFF1: REM This last calls OSWORD 7D [with
parameter block at &2000.
 30 PRINT ?&2000:END

This program will read and then print the Cycle Number - i.e. the number of
times that the disc has been written to since being formatted. The number is
in hex/decimal, and only goes up to 99 before starting again at 0.

The Cycle Number is often used as a way of detecting whether someone has
been tampering with the disc. For example, it is used by *WIPE *.* to detect
whether you have removed the disc during the questions about deleting each
(unlocked) file.

OSWORD 7E
 This OSWORD returns the disc size - in sectors, as a hexadecimal number.
For example:

 10 HIMEM=&2000: REM Make some memory free
 20 A%=&7E:X%=0:Y%=&20:CALL &FFF1:REM This last calls OSWORD 7E with
parameter block at &2000
 30 PRINT "Disc size in bytes = &";?&2002;?&2001;?&2000

The Solidisk DFS replies with three bytes - low, mid, high.
The same number is then shown in the top left corner of the disc directory
[header] - see after *CAT.

OSWORD 7F

 This is the most complicated command that the Solidisk DFS has to deal
with.

 Firstly, if the 1770 Floppy Disk Controller (FDC) is being used, the
Solidisk DFS will translate the command code and results to match the
response of the 8271 FDC (which is the standard for the BBC machine).

 If the 8271 is being used, 40-track discs are checked for, and double-
stepping performed as required.

The general format for OSWORD 7F is as follows:

Parameter Block: Location Contents

 0 Drive number (0-3 or FF if same)
 1 Data Address low
 2 Data Address high
 3 High order (FF or 00 if I/O only)
 4 High order (as above)
 5 Number of details (0-3)
 6 Command code (see table below)
 7 First detail if any (usually track number)
 8 Second detail if any (usually sector number)
 9 Third detail if any (usually sector size + number of sectors
involved)

 75

NEXT LOCATION Result

Note that the location for the result is not fixed. E.g. if 3 details are
supplied, the next location will be Parameter Block +10, but if no details
is given (as for Read Status), the next location will be Parameter Block +8.

If you wish to use OSWORD 7F in your programs, here is an example:

 10 HIMEM=&2000: REM Make some memory free
 20 INPUT "Read from Track= "track
 30 INPUT "and from Sector= "sector
 40 INPUT "How many sectors (1 to 10)= "n: REM No more than 10 sectors
 50 REM Build parameter block
 60 block=&2000:?block=&FF: REM same drive
 70 block!1=&FFFF2100: REM Data will be sent to &2100
 80 block?6=&53: REM Read command
 90 block?7=track: REM Starting from
100 block?8=sector
110 size=&20: REM 256 bytes/sector
120 block?9=n + size
130 A%=&7F:X%=0:Y%=&20:CALL &FFF1: REM Do OSWORD 7F
140 IF block?10: GOTO 130: REM Retry if result is bad
150 *MZAP 2100: REM Inspect data read

You can also use OSWORD 7F on a double density disc (when you can specify up
to 16 sectors)

Remember

1) Deal with one track at a time.
2) Check the result. If it is not zero, repeat the last command (i.e.
retry).

OSWORD 7F COMMAND TABLE

Command Code Details (e.g. other parameters)
--
Seek &69 Track number
Read Status &6C None
Write Spec Reg &5A Reg No, data
Read Spec Reg &5D Reg No
Read Sectors &53 Track, Sector, No of sectors to be read
Read deleted &5B Track, Sector, No of sectors to be read
Read ID &5B Number of IDs
Verify sectors &5F Track, Sector, No of sectors to be verified
Format &4B Track, Gap3-6, Size/No of sector, Gap5-6,
 Gap 1-6

NOTES

Seek = This moves the drive head to the specified track.

Status = This is the FDC status. The bit pattern is as follows:

D7 D6 D5 D4 D3 D2 D1 D0
--
0 RDY1 WRTFAULT INDEX WRTPROT RDY0 TRACK0 0

When working with the WD1770, the STL DFS will return &44 for 'Drive Ready'
as the WD1770 does not require a 'drive up to speed' signal.

Special Registers:

The 8271 has 14 special registers, but the WD1770 has none. However, when
working with the WD1770, the STL DFS maintains 4 pseudo special registers
(the current track registers) - to emulate the 8271.

Read Data and Read Deleted Data.

 76

Each sector on the disc is composed of an ID field and a data field.
The ID field contains 6 bytes - as displayed when using *RTRACK.
The data field can contain 128 or 256 bytes.
The sector can also be marked deleted - as shown by the data mark &C8.
The STL DFS will read both (non-deleted) and deleted data.
The deleted data flag (&20) will be returned to the result byte.

Format:
 Although the STL DFS has a built-in formatter, optimised for both 8271
(2 sector skew) and WD1770 (1 sector skew), you may want to run special disc
copy programs, with their own formatter. Such programs will only work if you
have the 8271 chip. The WD1770 cannot format tracks or sectors greater than
&F5. The sector mask (&EF) will then be used automatically to permit
formatting, but the resulting disc will not work satisfactorily.

 To use OSWORD 7F efficiently, you will need the complete specifications
on the Intel 8271 FDC. This is available from Intel, 3065 Bowers Ave., Santa
Clara, California, USA. Tel: 408) 987 8080.

 A new standard - OSWORD 72 - has been introduced for the Acorn ADFS -
for use with double density (MFM) floppies (as on the Electron) and with the
Winchester drives.

 77

