
MASTER 512:

TECHNICAL INFORMATION
AND MONITOR DOCUMENTATION

Acorn
The choice of experience

Customer Support and Services
Acorn Computers Ltd
Fulbourn Road
Cherry Hinton
Cambridge CB1 4JN
TeIephone 817875 ACORN G
Fax No 0223 210685

Introduction

The information contained in this application note is designed to allow a programmer using the Master 512 to access
the standard MOS calls of the Master 128 using the software interrupts provided. It details the calls, error trapping, etc
which are necessary to write a program that is either to run under DOS+, or as a stand-alone application in place of DOS
+.

Operating System calls

Some of the operating system calls of the Master 128 may be accessed from the 80186 coprocessor by using the 80186
software interrupts. There are 256 software interrupts supported and each one has a corresponding 4-byte vector in the
first 1 kbyte of the 80186 memory.

Interrupts 040H to 04CH are reserved for the 13 MOS calls supported on the coprocessor. All the operating system
calls take parameters in the 80186 registers AL, BH and BL, corresponding to the 6502 registers A, X and Y. The
operating system calls are explained below:

Summary of Master 128 MOS calls

Routine Interrupt Address Function
OSFIND 040H 0100H OPEN OR CLOSE A FILE
OSGBPB O41H 0104H MULTIPLE PUT/GET BYTES
OSBPUT 042H 0108H WRITE A SINGLE BYTE TO A FILE
OSBGET 043H 010CH READ A SINGLE BYTE FROM A FILE
OSARGS 044H 0110H LOAD/SAVE FILE PARAMETERS
OSFILE 045H 0114H SAVE A COMPLETE FILE
OSRDCH 046H 0118H READ CHARACTER PROM INPUT STREAM

OSASCI 047H 011CH WRITE CHAR TO OUTPUT STREAM (&D GIVES CR & LF)
OSNEWL 048H 0120H WRITE CR & LF TO SCREEN
OSWRCH 049H 0124H WRITE CHARACTER TO OUTPUT STREAM
OSWORD 04AH 0128H VARIOUS MULTI-BYTE CALLS
OSBYTE 04BH 012CH VARIOUS SINGLE BYTE CALLS
OSCLI 04CH 0130H INTERPRET COMMAND LINE

NOTE - The Master 128 MOS calls OSRDSC, OSWRSC, OSEVEN, GSINIT and OSREAD are not supported by the
80186 but OSWORD with AL = 0FAH provides the functions of OSRDSC and OSWRSC.

OSRDSC OSWORD AL = 0FAH READ BYTE FROM SCREEN OR PAGED ROM
OSWRSC OSWORD AL = 0FAH WRITE BYTE TO SCREEN OR PAGED ROM

Description of Master 128 MOS calls

OSFlND

Open a file for reading and writing.

On entry:

AL specifies the operation.
AL = 0 File is to be closed
AL = 40H File to be opened for input only
AL = 80H File to be opened for output only
AL = C0H File to be opened for random access
DS:BX contain a pointer to the filename
Filename must be terminated by carriage return (&0D)

On exit

AL contains the file handle or 0 if file has been closed or could not be opened.
Flags: undefined

OSGBPB

Read/Write block of bytes from/to a specified open file.

On entry:

AL specifies operation type from the following:
AL = 1 Put bytes to media using sequential pointer
AL = 2 Put bytes to media ignoring sequential pointer
AL = 3 Get bytes from media using sequential pointer
AL = 4 Get bytes from media ignoring sequential pointer
AL = 5 Get media title and boot option
AL = 6 Read currently selected directory and device

AL = 7 Read currently selected library and device
AL = 8 Read filenames from currently selected directory
DS:BX point to a control block in the form:

00 File handle
01 Pointer to data in either I/O processor or tube processor (low byte first)
02
03
04
05 Number of bytes to be transferred (low byte first)
06
07
08
09 Pointer value to be used for transfer (low byte first)
0A
0B
0C

On exit

AL contains a return value where:

AL = 0 Operation attempted
AL = entry value Call not supported in this filing system
Flags:

CF = reset Transfer completed
CF = set End of file reached before transfer complete

OSBPUT

Write a single byte to a specified open file at the point in the file designated by the sequential pointer.

On entry

AL contains the byte to be written
BH contains the file handle provided by OSFIND)

On exit

No exit values

Flags: undefined

OSBGET

Read a single byte from a specified open file at the point in the file designated by the sequential pointer.

On entry

BH contains the file handle (provided by OSFIND)

On exit

AL contains the byte read from the file

Flags:

CF is set if an attempt is made to read past the end of the file

OSARGS

Load/save file parameters to/from the specified open file

On entry

AL contains file operation type (see below)
AH contains the file handle (provided by OSFIND) or 0
BX points to a 4-byte attribute block

If AH = 0

AL = 0 Returns the current filing system in AL
AL = 1 Returns the address of the rest of the command line in the base page control block
AL = &FF Update all files onto the media (make sure memory buffer saved)

If AH <= 1

AL = 0 Read sequential pointer of file
AL = 1 Write sequential pointer of file
AL = 2 Read length of file

On exit

AL contains the filing system number when entered with AL = 0, AH = 0

AL =
0

No filing system

AL = 1 1200 baud cassette

AL =
2

300 baud cassette

AL =
3

ROM FS

AL =
4

DFS

AL =
5

ANFS/NFS

AL = 6 TFS

AL = 8 ADFS

Note 1: The control block always remains in the I/0 processor memory not the 80186 processor memory.

Note 2: If AL = 1 and AH = 0 on entry, the address of the remainder of the last command line is returned in a four byte
zero page block pointed to by BX. This address always points to the l/O processor and should therefore be read using
OSWORD 5. The text making up the remainder of the last command line always terminates with a carriage return
character (13H).

OSFILE

Read/write a complete file or catalogue information

On entry

AL Contains the operation type:

AL = 0 Save a block of memory as a file

AL = 1 Write the information in the parameter block to the catalogue for an existing file

AL = 2 Write the load address for an existing file

AL = 3 Write the execution address for an existing file

AL = 4 Write the attributes for an existing file

AL = 5 Read a files catalogue info with the file type returned in AL and the info returned in the
parameter block

AL = 6 Delete the named file

AL= &FF Load the named file

DS:BX Point to a control block in the form:

00
01

Address of filename terminated by CR (&0D)

02
03
04
05

Load address of file (low byte first)

06
07
08
09

Execution address (LOW byte first)

0A
0B
0C
0D

Start address of data for save (low byte first)

0E
0F
10
11

End address of data for save (low byte first) or file attributes (see below)

The file attributes are stored in four bytes the most significant 3 bytes are filing system specific. The LSB
has the following meanings where the relevant bit is set:

0 No read access to owner (i.e. filename /WR)

1 No write acess owner (i.e. filename LR/)

2 Not executable by owner (i.e. filename LR/)

3 Not deletable by owner (i.e. filename L)

4 No public read access

5 No public write access

6 Not executable with public access

7 Not deletable with public access

On exit

AL contains the file type:

AL = 0 File not found

AL = 1 File found

AL = 2 Directory found

AL= &FF Protected file

Flags: undefined

OSRWCH

Read a character from the currently selected input stream

On entry

No entry parameters

On exit

AL contains the character or an error code

Flags:

CF = reset Valid character read Error condition (value in AL)

CF = set Error condition (value in AL)

OSWRCH

Write a character to the currently selected output stream

On entry

AL contains the character to be written

On exit

No exit parameters

Flags: undefined

OSASCI

Write a character to the currently selected output stream, but do a CR and LF if character is CR (&0D)

On entry

AL contains the character to be written

On exit

No exit parameter

Flags: Undefined

OSNEWL

Write CR and LF to currently selected output stream

On entry

No entry parameters

On exit

No exit parameters

Flags: undefined

OSWORD

Various functions using a control block

On entry

AL contains the OSWORD type (see list of OSWORD calls in the Master reference manual part 1)

DS:BX point to the control block which is call dependent (see Master reference manual part 1)

On exit

Parameters returned in control block are call dependent

Flags: undefined

OSBYTE

Various functions using registers

On entry

AL contains the OSBYTE type (see list of OSBYTE/*FX calls in the Master reference manual part 1)
BL first OSBYTE parameter
BH second OSBYTE parameter (if needed)

On exit

BL contains the first return parameter BH contains the second return parameter

Flags:

CF value is call dependent

OSCLI

Send a string to the command line interpreter, which decodes and executes any recognised command

On entry

DS:BX point to the string

On exit

No exit parameters

Flags: undefined

For example setting up DS:BX to point to the string "cat" would produce a catalogue of the currently selected filing
system directory.

Note: With this form of using OSCLI, you cannot pass variables with the string as you can from within BBC BASIC on
the 65C12. Unrecognised commands will produce an error, which will be returned by the 80186 error routine, unless
trapped.

Commands that can be passed to the command line, are the star (*) commands that are listed in response to a *help
(OSCLI "help") command or *help application (OSCLI "help application"). i.e.

oscli equ 04ch
cr equ 13
 xor al,al ; clear al
 mov bx,offset my_string
 int osci my_string:
 ds "help mos"
 db cr

Note that the string must be terminated with a Carriage Return (13).

Block data transfer on the 80186

The 80186 ROM implements an additional OSWORD call with AL = 0FAH to allow efficient transfer of blocks of data
between the 80186 processor and the host 65C12 processor. This OSWORD call is used by setting up the following
control block which must be pointed to by DS:BX. The format of the control block is:

0 Number of parameters sent to I/O processor (0DH or 0EH)

1 Number of parameters read from I/O processor (01H)

2 LSB of I/O processor address

3

4

5 MSB of I/O processor address

6 LSB of 80186 offset address

7 MSB of 80186 offset address

8 LSB of 80186 segment address

9 MSB of 80186 segment address

A LSB of length of transfer

B MSB of length of transfer

C Operation type (see below)

D 65C12 memory access control

The operation type specifies the type of transfer as follows:

0 Write to 65C12 at 24 us/byte

1 Read from 65C12 at 24 us/byte

2 Write to 65C12 at 26 us/pair of bytes

3 Read from 65C12 at 26 us/pair of bytes

6 Write to 65C12 at 10 us/byte using 256 byte blocks

7 Read from 65C12 at 10 us/byte using 256 byte blocks

The memory access control byte allows access to the paged ROMs, paged RAM and shadow RAM in the host machine
and is laid out as follows:

7 6 5 4 3 2 1 0

x sm m/s c pr3 pr2 pr1 pr0

Where the bits have the following functions.

x Unused

sm If 8000H <i/o address < 8000H sm=1 use screen memory regardless of state of 'shadow - overrides bit 5

m/s 0 Use main screen memory if screen address specified
1 Use shadow screen memory if screen address

c Specified if 8000H <i/o address C000H
If c = 0 use specified ROM number,if c = 1 use currently selectedROM

pr3-pr0 Paged ROM number

The memory access byte is only used if the first byte of the control block is set to 0EH it is otherwise ignored. Use of
the memory access byte allows paged ROM software to be copied and therefore should be restricted to system use. This
however would prevent access to the shadow RAM which is not used by the system and cannot be legally accessed by
other means.

A small example of the call is now given. This assumes that the control block has been setup correctly and is located in
the first 64K segment. A contiguous 36 Kbyte area of memory is being used as a buffer for data written from
2000:1000 in the 80186. The host buffer starts at 3000H and extends to BFFFH. 3000H to 7FFFH is specified as
shadow screen memory and 8000H to BFFFH is specified as paged RAM in bank 5.

osword equ 04ah
transfer equ 0fah
 sub ax,ax ; points ds:bx at control block
 mov ds,ax
 mov bx, offset transfer_block

 mov al, transfer ; set up osword type
 int osword

transfer_block:
 db 0ch
 db 01h
 dw 3000h,0 ; base address in 65C12
 dw 1000h,2000h ; base address in 80186
 dw 9000h ; length =36K
 db 6 ; fast 256 byte blocks
 db 025h ; use shadow and paged RAM

Error handling by the 80186 monitor

When an error is generated by the host processor the error number and string are passed across the Tube to the 80186
under interrupt The error number and string are then placed in the error buffer of the 80186 and a pointer is initialised
to point to the error number. The error string is terminated by a null byte (00H). The 80186 Tube code then jumps to
the error handler, this prints out the error before returning control to the 80 186 monitor.

The locations of the error handler vector and error pointer are given below:

0000:05F4 Error pointer offset
0000:05F6 Error pointer segment
0000:05FS Error handler vector offset
0000:05FA Error handler vector segment

Error handling by stand-alone applications

The error handling provided by the 80186 monitor is not suitable for stand alone languages, that is languages which
only use MOS functions and the host machines filing systems, not the DOS+ operating system; as control is returned to
the monitor by the default error handler. When the language is started up it should initialise the error handler vector to
point to its own error handler, which should then be able to deal with the error in an appropriate way and return control
to a suitable point within the language.

An example is now given to illustrate a typical error handler. This assumes that the language is running at 0000:8000.
The example is written using the Digital Research RASM86 assembler format.

cseg 0
org 08000h
osnewl equ 048h
oswrch equ 049h
error_pointer_offset equ .05f4h
error_pointer_segment equ .05f6h
error_handler_offset equ .05f8h
error_handler_segment equ .05fah

; initialise error handler to point to my error handler
 sub ax,ax

 mov ds:ax
 mov ax, offset my_error_handler
 mov error_handler_offset,ax
 mov ax,seg my_error_handler
 mov error_handler_segment,ax

my_error_handler:
 lds si, dword ptr error_pointer_offset
 int osnewl ; new line
 inc si ; skip error number
 cld ; set forward direction

my_error_loop:
 lodsb ; get error string from buffer
 int oswrch ; and write it out
 test al,al ; end of string?
 jnz my_error_loop ; no - get next character
 jmp my_command_loop ; yes - jump to command loop

80186 Error Messages

Errors can also be generated by the 80186 using interrupt 04FH and following it with the error number and the error
string, terminated with a null byte (00H). The error pointer will be initialised as for 65C12 errors and the same error
handler will be used as given by the error handler vector.

An example is given below to illustrate the use of 80186 errors. In the following example a test is being made for the
presence of a file before attempting to load it. The example assumes that the file name is in the current data segment

; Set up parameters
error equ 04fh ; the error interrupt number
osfind equ 040h

open_for_input equ 040h
not_found_error equ 06dh
cr equ 13
cseg
look_for_file:
mov al, open_for_jnput
mov bx, offset my_file_name
int osfind
or al,al
jnz load_the_file
int error
db not_found_error, 'cannot find file', 0

; note no return after writing out error
; file loaded here if present

load_the_file:

dseg

my_file_name:

db '$.myfile', cr
; end

Escape Processing

When an escape condition is detected by the 65C12, the top bit of the escape flag at 0000:05f2H on the 80186 is set
under interrupt. An escape condition should be tested for by checking this escape flag. If an escape condition exists the
escape must be acknowledged using OSBYTE with AL = 07EH and an optional 80186 error message can be generated.
The escape flag should not be set or reset directly, as the change will not be reflected on the host side of the Tube.
OSBYTE calls with AL = 07CH or 07DH should be used to set or reset the escape condition.

The 80186 monitor

After enabling the coprocessor and either pressing ESCAPE before loading DOS+, or pressing BREAK from within
DOS+ you should get the following displayed on the screen:

Acorn Tube 80186 512K
Acorn ADFS
BASIC
*

The start prompt indicates that the 80186 monitor has been entered and is waiting for commands to send to the
command line interpreter on the 80186 or the 65C12. In addition to the standard MOS and filing system commands.
The 80186 recognises the following monitor commands:

Name Function

*D Memory dump in hex and ASCII

*DOS Boot DOS+ from hard disc or floppy

*F Fill memory with a byte or word

*GO Jump to a specified address

*MON Re-enter the monitor

*S Alter memory using hex or ASCII

*SR Search memory for a specified text string

*TFER Transfer blocks of memory between 80186 and 65C12

Note that from within the monitor you cannot run 65C12 languages such as BASIC, but 65C12 utilities such as
Advanced Disc Toolkit will work.

You cannot use the monitor from the 80186 under DOS+ by using the STAR utility, you will in fact find that the
monitor is not resident and will not appear on the *HELP table from under DOS+.

The above commands are now explained in more detail. Where <offset> is used it refers to the hexadecimal offset
address which can be entered as 1 to 4 digits - leading zeros (0) can be omitted i.e. 7A can be entered as 7A, 07A or
007A. If more than 4 hex digits are entered the most significant digits will be truncated i.e. 12345 will be treated as
2345. Where <segment> is used it refers to the 80186 segment address which can also be entered as above, but must be
followed immediately by a colon (:) to indicate that it is a segment address, i.e. 23:.

In all relevant commands below if no segment address is specified then the most recently specified value will be used.
If no previous value has been specified then the value should be 0. For all commands any leading spaces or asterisks or
trailing spaces will be ignored. Items enclosed in <> brackets indicate parameters that the command uses, those that are
also enclosed in 0 brackets indicate optional parameters that do not need to be specified. None of these commands are
case sensitive, so both upper and lower case or a mixture of both may be used.

*D Memory dump

Syntax

*D (<segment:>) (<start offset>) (<end offset>)

Function

This command produces a memory dump from the 80186 memory between the specified addresses in hex and ASCII,
showing the addresses in segment:offset form. Characters outside the ASCII range 20H to 7EH are shown as a full stop
on the ASCII list with their corresponding hex value in the hex list. All of the parameters in this command are optional,
if the segment address is omitted the last used segment value wilt be used. If the start and end offsets are omitted the
last end address + 010H is used as the start address and the last end address + 080H is used as the end address, if just
the end address is omitted then the start address + 080H is used.

For example:

*D 0000:8000 8050
0000:8000 04 48 BA 6D 01 8B F0 05 50 00 3D 64 00 72 03 2D .H.m....P.=D.R.-
0000:8010 64 00 50 33 DB B9 0C 00 3B 97 E4 1A 76 05 83 C3 d.P3....;...v...
0000:8020 02 E2 F5 D1 EB 53 4B D1 E3 8B C6 8B CF 83 FB 02sk.........
0000:8030 75 0F A9 03 00 75 0A D1 E8 D1 E8 40 3B C1 75 01 U....U.....@;.U.
0000.8040 42 2B 97 E4 1A 58 8A F0 59 58 C3 BB C2 1A EB 0F B+...X..YX......
0000:8050 80 3E 00 0F 00 74 05 B2 01 E8 7B EE BB B4 1A 8B .>...T....{.....

*DOS

Syntax

*DOS

Function

Re boot DOS+

Allows DOS to be booted without CTRL+BREAK i.e. from stand-alone languages or applications, or restart DOS after
pressing BREAK to leave DOS. This command will try to boot DOS from a hard disc if one is present or from floppy.

*F Fill memory with a constant

Syntax

*F (<segment>) <start offset> <end offset> <fill byte word>

Function

This command fills the 80186 memory within the specified range with the specified constant. The constant used can be
specified as a byte or word value. The end offset specified is the end address + 1 used by the fill command i.e.

*F 1000 1010 55

Will fill bytes 1000H to 100FH inclusive with the value 55H

F1000 1010 1234

Will fill bytes 1000H to 100FH inclusive with the word 1234H with the lsb written first i.e. 1000H will be 34, 1001H
will be 12, 1002H will be 34. etc.

An end offset of 0 can be used to specify a fill operation to the last address in the specified segment

*GO Jump to a specified address

Syntax

*G0 (<segment:>) <offset>

Function

This command calls and transfers control to a piece of code that is resident at the specified address in the 80186. This
command should be used with care, as calling an address which does not contain any executable code could cause the
machine to hang or crash.

*MON Enter the 80186 monitor

Syntax

*MON

Function

Allows the monitor to be re-entered from stand-alone languages or applications without pressing BREAK, or from
within other routines.

*S Edit memory contents

Syntax

*S (<segment:>) <start offset>

Function

This utility allows the memory contents of the 80186 to be examined and altered if required. A line of 16 bytes of
memory is displayed in hex and ASCII formats initially with the cursor positioned under the least significant digit of
the first byte specified. The cursor movement and data entry is controlled using the following keys:

Cursor left Move Left - if at far left display previous 16 bytes
Cursor right Move Right - if at far right next 16 bytes
Cursor up Display next 16 bytes
Cursor down Display previous 16 bytes
Shift+CR left Move Cursor to far left of current field
Shift+CR right Move Cursor to far right of current field
Copy Toggle between hex and ASCII entry

The display consists of two 16-byte fields which are the hex display and the ASCII display. The copy key is used to
switch between the two.

For example:

*S 0040
SEG:OFFSET HEX FIELD ASCII FIELD
0000:0040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0000:0030 00 D6 1F 00 F0 00 00 00 00 00 00 00 00 00 00 00
0000:0020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0000:0010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0000:0020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0000:0030 00 D6 1F 00 F0 00 00 00 00 00 00 00 00 00 00 00

While the cursor is in the hex field data is entered in hex digits, each digit being shifted in from the right as they are
entered, i.e. to enter 23 you would move to the hex entry for the required address and type in the number 2 giving 02
then 3 which would cause the 2 to move left giving 23. If you now enter 4 then the 3 will move left replacing the 2 and
tile 4 will be entered giving 34.

If the cursor is in the ASCII field data is entered as ASCII bytes, i.e. characters from the keyboard, including control
characters (CTRL+ char). To advance the cursor to the next byte, the cursor keys are used in the hex field, but it is done
automatically in the ASCII field. When text is entered into the last field on the right, the cursor is advanced to the first
field or the next 16 bytes.

This command is terminated by pressing ESCAPE

*SR Search memory for a text string

Syntax

*SR (<segment:>) <start offsets <end offset> <"string">

Function

Search memory for a specified text string reporting all occurrences in the segment:offset form. i.e.

*SR 0000 0200 "AAAA33'
0000:0040
0000:00C6
0000:011C

The address given is of the first byte of the matching string. The search string must be enclosed in double quotes (*)
and can be up to 72 characters in length (the maximum length of a command line is 80 characters). The end offset
specified is the end address +1 of the search area, so to allow the search to continue right up to the end of a segment an
end address of 0 can be specified i.e.

*SR 40000 "fred"

This will search from 4000H up to FFFFH inclusive. The condition for a string to be found is that it must be completely
contained within the search area, i.e. if the string "fred" lives at 03FFDH then

*SR 0 4000 "fred"

will not report it but if our string "fred" lives at 03FFCH then the above search will find it. Any 8 bit character string
can be searched for using escape sequences to allow control codes and characters above 07FH to be specified. The |
character is used to denote an escape sequence i.e. "|@" is ASCII 0 and 0 is ASCII7. |? Is ASCII 7F and characters over
80H as preceded by |!.

Any escape sequences that are not recognised are reduced to the argument alone, i.e. "I1" is reduced to "1". Any surplus
operators are ignored, i.e. "|!|!|@" is reduced to "I!I@".

*TFER Transfer blocks or memory between 80186 and 65C12

Syntax

*TFER <I/O address> (<segment:>) <offset <length> R/W>

Function

This utility allows fast block transfer of memory between the 80186 co-processor and the 65C12 host processor. The
direction of transfer is specified by the final parameter, which must be R (read) or W (write). W indicates a write to
65C12 memory from 80186 memory. R indicates a read from 65C12 memory to 80186 memory. The transfer is
implemented using OSWORD 0FAH (described below) and is optimised to use fast transfer types 6 and 7 (10 us/byte)

where possible. If the transfer length is not a multiple of 256 (FFH) bytes any remaining bytes are transferred using
types 0 and 1 (24 us/byte).

References

Detailed technical information on the 80186, including the extensions to the instruction set over the 8086 can be found
in the 80186 or the 80C186 data sheet, which is available from Intel.

A large amount of technical information on the Master 512 can be found in the Dab Hand Reference Guide to the
Master 512, by Robin Burton.

Technical documents are available on the Tube interface and how it works. These are available from The Acorn
Customer services dept.

DABS PRESS, 76 GARDNER RD. PRESTWICH, MANCHESTER
GLENTOP PUBLISHERS LTD, STANDFAST HOUSE, BATH PLACE, BARNET, HERTS, EN5 5XE
DIGITAL RESEARCH, OXFORD HOUSE, OXFORD STREET, NEWBURY, BERKS, RG13 1JB
INTEL UK LTD, PIPERS WAY, SWINDON WILTS, SN3 1RJ

FOR REPAIRS

RCS, Headway House, Christy Estate, Ivy Rd. Aldershot Hants, GU12 4TX. Tel: 0252 333575
Eltec Services, Campus Rd, Listerhills Science Park, Bradford, BD7 1HR. Tel: 0274 722512
Gosling Electronics, Hadleigh Rd, Ipswich, IP2 0ER. Tel: 0473 230075

FOR SPARES

DRAM ELECTRONICS LTD, UNIT 12, KINGSTON MILL, CHESTERGATE STOCKPORT SK3 0AL

INFORMATION IS SUBJECT TO CHANGE WITHOUT NOTICE.
NO RESPONSIBlLITY CAN BE TAKEN FOR ANY ERRORS OR OMISSIONS CONTAINED WITHIN THIS
DOCUMENT, OR THE APPLICATIONS DESCRIBED. THE MASTER IS NOT A PC CLONE SO NO
RESPONSIBlLITY CAN BE TAKEN FOR ANY APPLICATIONS WHICH DO NOT WORK IN ACCORDANCE
WITH THEIR PUBLISHED INSTRUCTIONS

DOS+ and GEM are trademarks of Digital Research. Acorn, Tube, Master 128 and Master 512 are trademarks of Acorn
Computers Ltd. 80186 is a trademark of Intel Inc.

	512
	MASTER 512: Technical Information

