189
Chapter 6 Storing, sorting, searching
and indexing

The general term 'data structures' is given to any way of
organising information handled by a program. Simple data
structures that you will have met already are one-
dimensional arrays and two-dimensional arrays. One-
dimensional arrays facilitate random access to a list of
numbers or strings. Two-dimensional arrays also allow random
access and impose an organisation on the data that reflects
the reality of a two-dimensional data source. For example a
population map is a two-dimensional table of integers where
each integer is the population of, say, a square mile zone
of a geographical area. It is natural to retain this two-
dimensional ordering within the program and it makes for
easier and more natural programming.

The material in this chapter is concerned with building
more complex data structures using combinations of arrays.
The first raison d'etre of data structures is to retain a
'natural' organisation and thus ease the task of the
programmer. This is very important as easy and natural
programming structures make for correct programs.

The second reason for organising data into structures is
that individual 'entries' may vary considerably in size.
Allocating the same space for each entry, i.e. space large
enough for the largest entry, would be wasteful. Instead we
may allow the entries to occupy exactly the storage space
that they require, and set up a table that 'points' to the
start of each entry.

The third important reason for using data structures is
that if our collection of data is very large, the imposition
of a data structure may to necessary to enable efficient
searching. A related consideration here is the amount of
memory space available. It may be that only part of the data
set, held on disk say, can be brought into the memory at any
time.

The information stored in connection with a particular
application is called a data set, data base or data bank. A
useful concept is that the data structure mirror-images a
natural or artificial organisation of data in the real
world. We may for example initialise, first thing in the
morning, the main memory data structures of a stock control
program and organise a sequential file into a series of
departments, articles, classes etc. This data may be changed
during the day, as stock levels change, for example, and be

190

dumped back into a sequential filre to sleep in its
'unstructured' form overnight. This in not the whole story
because the disk files may themselves be subject to an
organisational framework. This is certainly the case when
the main store data structure is such that it can only hold
a very small part of the data set. In this case the files
themselves will be organised to reflect the organisational
framework of the data, and the data structure in this case
resides in the file structure. The general topic of
structured files and data structures has come to be known as
database organisation. In this chapter we will be concerned
with the simpler problem of main memory data structures.
These may contain information that is built up by a program
while it is running, or they may be initialised from a
sequential file where all of the file is taken into the data
structure.

The distinguishing features of these cases can be
illustrated. Consider first of all a small index for a book.
This may have to undergo transformations such as addition of
a new entry, sorting, checking for duplicate entries etc.
The length of each entry is short and there may only be a
few entries. The entire index could be held in a sequential
file, and, providing each entry is de-limited, read into an
array of strings. The array can then be randomly accessed
and otherwise manipulated by the program. The whole of the
data base is contained in the main memory data structure.

sequential (unstructured) file

actual parameters:154*alternatives:48,61*arithmetic
expressions:24*arrays:119*assign...........

memory data

read into main
structure

index(1) | actual parameters:154
index(2) | alternatives:48,61
index(3) | arithmetic expressions:24
index(4) | arrays:119

Now if we intend to store and manipulate an English
dictionary the situation is completely different. The data
base cannot be held in main memory and the required
structures will be set up on disk. The disk file(s) will be
subject to an imposed framework.

191

indexfile
start Qf "a" start Pf "b" start Pf "c"
ﬁ ﬁ]
file of entries file of entries file of entries

Depending on the manipulation that has to be performed by
the program such a simple structure may be inadequate and
the hierarchy may have to be 'deepened'

indexfile 1
start of "g" entries start of "b" entries
inde‘xfile2 inde>!fi|e3
start of "aa" entries start of "ba" entries
J ®
start of "ab" entries start of "be" entries
» ®
start of "ac" entries start of "bh" entries
) J
6.1 Tables

Many computer applications involve storing a table of
information where each entry in the table consists of
several related values. For example we may want to store a
stock table, where each entry in the stock table consists of
a stock number, a price and a department name. An
appropriate data structure could be constructed in Basic
from three parallel arrays.

192

stock no price deptname$

table
enty ———» >

Any three corresponding elements in these arrays will then
be referred to as a table entry. Each element of a table
entry will be referred to as a field of that entry. A
program that reads a stock list from an input file into this
structure, and which at the same time prints out a short
list for the items sold in the food department might be:

10 DIM stockno(100), price(100), deptnames (100)
20 indata = OPENIN("stockdata")

30 INPUT# indata, noofitemsinstock

40 FOR item = 1 TO noofitemsinstock

50 INPUT# indata, stockno(item),
price(item), deptnames (item)
60 IF deptname$ (item) = "food" THEN

PRINT stocknotitem), price(item)
70 NEXT item
80 CLOSE# indata

For the purpose of illustrating a technique, or in cases
where a fairly small table of constant values is required by
a program, the table could be read from DATA statements.
Although this is convenient, it suffers from the
disadvantage that storage space is allocated twice for the
data; once as part of the program in the DATA statements and
again when the program is run and space is allocated for the
arrays.

In the following examples we will omit the details
concerning the initialisation of a data structure from a
file or DATA statement if this is simply a sequential
transfer of information to arrays.

6.2 Searchinga table - linear search

Having seen how to set up or organise a simple table we will
now look at some common operations that are performed on
tables. Searching a table for a particular entry is a common
problem. An example is a Basic interpreter, the program that
processes and obeys your Basic programs. An interpreter
program builds up a table of variable names. Each entry in
the table consists of the variable name together with a

193

memory address that the interpreter allocates to that name
the first time it encounters it.

variable memory

names addresses
4123
4127
4131

Each time a variable name is encountered the interpreter
has to access the table for a memory address. The statement:

X = (x + y)/(a*a + b)

would involve six accesses to this table. Interpreting a
program may involve thousands of table accesses and the
method used for the search becomes critically important in
such applications. Now when we are searching tables we
usually have given one field of an entry and the point of
the search is to find the other field(s) associated with
this 'key' field. For example in the stocklist we may be
using the stock number entry as a key. The problem is then:
given a particular stock number, find the associated price.

stock no price deptname$

givenstockno

194

Table searching methods are concerned with organising the
table in such a way that finding the field or fields
associated with a key is quick and efficient. The simplest
approach to organising such a table is to store the entries
in the table in the order in which the information was
originally presented to the program. Subsequently, when the
price of an item with a given stock number is required, the
technique known as linear search can be used to find the
entry containing that stock number. This involves scanning
through the table from location 1 onwards until the required
entry is found.

400 DEF PROCfindprice (givenstockno)

410 LOCAL probe

420 probe = 0

430 REPEAT

440 probe = probe + 1

450 UNTIL stockno (probe) = givenstockno
460 requiredprice = price (probe)

470 ENDPROC

(We have here assumed that the given stock number will be
found in the table.) Consider now a complete customer order
consisting of a list of stock numbers for the items a
customer requires. Let us assume that he requires only one
of each type of item. The total number of items required is
indicated at the start of the order. The cost of his order
can be calculated by:

10 DIM stockno(100), price(100)

20 PROCsetupstocktable :REM from file or DATA
30 totalcost = 0 : INPUT "No of items",items
40 FOR item= 1 To items

50 INPUT "Stock no:"givenstockno

60 PROCfindprice (givenstockno)

70 totalcost = totalcost + requiredprice
80 NEXT item

90 PRINT "Total cost is "; totalcost

100 END

In fact linear search could be carried out on the DATA
statements, without the need for the stock table to be
transferred to arrays. RESTORE would be used prior to each
search. However, this could not be done for the more
efficient search methods introduced later.

If there are n records in a table, linear search
involves, on average, the examination of n/2 entries before
a required record is found. For example if the stocklist is
1000 items long and each order to be processed contains on

195

average 350 items, then processing an order involves
examning 175000 entries. In most applications, particularly
where n is large, this unacceptable. In the following
sections, we shall be discussing different ways of
organising the information in a table, usually with a view
to finding an entry containing a given key more quickly than
is possible with linear search. To facilitate more efficient
methods of searching we first look at sorting.

Exercises

1 Write a program that repeatedly accepts input of a French
word and responds with the equivalent English word. Use a
fairly small dictionary for the exercise and initialise
it from DATA statements. Assume that each word has a
unique translation. If a given word is not found in the
dictionary, the program should report this. The program
should use linear search to look for a dictionary entry.

2 Modify the previous program so that the user can specify
whether he requires translation of a word from French to
English or English to French.

3 Write a program that will analyse a short piece of
English text and report the total number of different
words used in the text and the number of times each word
was used. The text should be read from a file (write a
separate program to set up the file). As it reads the
text, the program will have to build up a table of words
encountered, together with a count of the number of
occurrences of each word so far. Differences between
upper and lower case letters can be ignored by converting
all lower case letters into upper case.

4 Use the animation procedures developed in Chapter 4
(Section 4.1) to animate a linear search for a particular
entry. Each entry should be highlighted in a different
colour as it is examined and the required entry should be
highlighted in a flashing colour when it has been found.

5 The membership list for a society consists of an integer
n followed by a list of n entries where each entry
consists of a person's name (surname first) and a
membership number (an integer). Write a program that will
read and store the membership list in an appropriate
table. The program should then input an integer m
followed by m membership numbers. For each number
presented, the program should find and print out the name
of the member with that number.

196

6.3 Ordered data - sorting

It is often more convenient or even necessary for the
entries involved in an application to be stored in some
specified order. This ordering is usually determined by or
of the entry fields. For example, we can organise a set of
entries so that a particular string field appears in
alphabetic order. Alternatively we may organise them so that
a numeric field appears in increasing or decreasing order We
can then refer to a table as being sorted on a particular
field.

As an example, we consider the problem of sorting the
stock entries used previously so that the stock numbers are
in increasing numerical order. We present three of the
simplest sort algorithms that can be used to sort the
entries stored in an array into a required order. Let us
assume that initially we have a records stored in the
stocklist arrays used previously.

Simple exchange sort

A simple exchange sort is perhaps the easiest algorithm to
describe. It is also the least efficient. For a simple
exchange sort we can describe the algorithm, using the
stocklist example:

find the entry with the smallest stock no.
swop it with the first entry (stockno(l), price(l) etc.)
find the entry with the second smallest stock no.

(at this stage we need only look at 2nd entry onwards)
swop it with the second entry
find the entry with the third smallest stock no.

(at this stage we need only look at 3rd entry onwards)

etc.

In other words:

10 DIM stockno(100), price(100)

20 PROCsetupstocktable

30 PROCsortstocktable (noofitemsinstock)
40 PROCoutputstocktable

50 END

400 DEF PROCsortstocktable (n)
410 LOCAL 1

420 FOR i = I TO n-1

430 PROCfindsmallestentryfrom(i)
440 PROCswop (i, posnsmallest)
450 NEXT 1

460 ENDPROC

197

500 DEF PROCfindsmallestantryfrom(i)
510 LOCAL next

520 posnemallest = 1

530 FOR next = i+l TO n

540 IF stockno(next) < stockno(posnsmallest) THEN
posnemallest = next
550 NEXT next

560 ENDPROC

600 DEF PROCswop (i, 7)

610 LOCAL temp
620 temp = stockno (i)
630 stockno (i) = stockno(j)
640 stockno (j) = temp
650 temp = price(i)
660 price(i) = price(3j)
(j) = temp

670 price
etc. for all other fields in the entry
680 ENDPROC

PROCsetsupstocktable will initialise the arrays from a file
or DATA statements and PROCoutputstocktable will print the
arrays.

Bubble sort

Depending on the state of the data a bubble sort can be
considerably more efficient than an exchange sort. Sometimes
data is already partially ordered and in such a context a
bubble sort is preferred. Consider the following program
fragment:

FOR 1 = 2 Ton
IF stockno(i) < stockno(i-1) THEN PROCswop(i,i-1)
NEXT 1

If this is executed once, the entry with the largest stock
number is picked up and carried to the end of the arrays,
and in the process some of the other entries are moved
closer to their correct position in the ordering. If we
execute the same fragment of program again, but this time
using:

FOR i = 2 TO n-1

the entry with the second largest stock no. will be carried
to the second last position in the arrays.

Repeated application of this process eventually sorts the
entries into order:

198

400 DEF PROCsortstocktable (n)
410 LOCAL i, last

420 FOR last = n TO 2 STEP -1

430 FOR 1 = 2 TO 1last

440 IF stockno(i) < stockno(i-1) THEN
PROCwop (1,1i-1)

450 NEXT i

460 NEXT last

470 ENDPROC

This first approximation can be considerably improved. Fact
time lines 430-450 are obeyed, not only is one entry carried
to its correct position, but other entries may also be moved
closer to their final positions. Thus lines 430-450 may not
have to be obeyed n-1 times before the entries are in order.
If at some stage, obeying lines 430-450 does not move any
entries then they must already be in order and the process
can be terminated. This is an occurrence that that is more
and more likely to happen as n increases.

Secondly, in the process of obeying lines 430-450, we may
find that 'stockno(last)' is already in its correct
position. This can be detected while lines 430-450 are being
obeyed by keeping a note of the number of the last record
moved down. Thus we have:

400 DEF PROCsortstocktable (n)
410 LOCAL i, last, lastonemoveddown

420 last = a

430 REPEAT

440 lastonernoveddown =0

450 FOR 1 = 2 TO last

460 IF stockno(i) < stockno(i-1) THEN
PROCswop (i, 1-1) : lastonemoveddown = i-1

470 NEXT i

480 last = lastonemoveddown

490 UNTIL last < 2

500 ENDPROC

Sifting sort

Finally we modify the central idea used in the bubble sort
algorithm and introduce the algorithm known as 'sifting'.
When two entries are found to be in the wrong order, instead
of simply exchanging them, we move the second one back past
all the entries which should came after it, moving all these
entries forward one place to make rom for it. The first
operation to be performed in this algorithm is to look for
the first out of sequence number and store it temporarily.

199

stockno stockno

3 3

81 81 temp 7
92 92

95 95

103 103

7 | out of sequence «——— store in 'temp’

ati=6

The next step is to 'sift' until we find the correct
position in the sequence for the contents of 'temp'.

81 81
PRl
DY " es 95 95

103 103 103 103

Finally the contents of 'temp' are inserted back into
'stockno!'.

3

7

81 temp
92
95

The process is best imagined in the illustrations as the
'white space' made 'empty' by storing the number to be
repositioned in 'temp', sifting backwards. The program is:

200

400 DEF PROCsortstocktable (n)
410 LOCAL 1

420 FOR 1 = 2 TO n

430 IF stockno(i) < stockno(i-1) THEN
PROCsiftfrom(i)

440 NEXT 1

450 ENDPROC

500 DEF PROCsiftfrom(i)
510 LOCAL j, tempno, tempprice, stopsifting
520 tempno = stockno (i) : tempprice = price (i)
... etc for other fields
530 j = 1-1 : stopsifting = FALSE
540 REPEAT

550 stockno (j+1) = stockno(j)
560 price(j+1) = price(j)
... etc. for other fields
570 IF j = 1 THEN stopsifting = TRUE

ELSE IF tempno > stockno(j-1) THEN
stopsifting = TRUE
ELSE j = j-1
580 UNTIL stopsifting
590 stockno(j) = tempno : price(j) = tempprice
610 ENDPROC

Exercises

1

Write a program that reads the society membership list
used earlier. The list should be stored in a table and
the program should use 'bubble sort' to sort these
records into alphabetical order according to the member's
names. The list should then be printed with the names in
order.

The stock list for a small department store consists of a
list of records, where each record contains three items:

department code (1 character)
stock number (an integer)
price (a real number)

For the purposes of this exercise you can either
construct a sample stocklist in DATA statements or write
a short program that inputs a sample stocklist and saves
it in a file. Write a program that prints the stock list
in such a way that the department codes are in
alphabetical order and, within each department, the stock
numbers are in ascending numerical order. Two approaches
are possible.

EITHER define a FNinorder (recordnol, recordno2) and use
this to compare two records during sorting,

201

OR sort the stock twice, firstly on the stock
numbers and then on the department codes, making
sure that two records with the same department
code remain in order determined previously by
their stock numbers.

6.4 Ordered data - binary chopping
Now that we have examined techniques that sort entries into
order we can return to the problem of table searching. If
the information in a table is already ordered on a
purticular field, or can be sorted before further processing
takes place, then the technique known as 'logarithmic
search' or 'binary search' can be used for finding the entry
that contains a given key in that field. Use of this search
algorithm requires the examination of approximately log2n
entries in order to find the entry containing a given key.
This algorithm starts by examining the entry
approximately in the middle of the table. The given key is
compared with the appropriate field of this middle entry and
if they are the same, the search is terminated successfully.
if the given key comes before the value in this field, the
first half of the table must be searched, otherwise the last
half of the table must be searched. The same process is
repeated on the first half or the last half of the table,
the area in which the required key is known to lie being
repeatedly halved in this way until the key has been found.
In the program that implements this technique, the
variable 'probe' has as its final value the number of the
entry containing the given stock number. The entries in the
table are assumed to be in ascending order of stock number.

10 DIM stockno(100), price(100)
20 PROCsetupstocktable
30 PROCsortstocktable (noofitemsinstock)

700 DEF PROCfindprice (givenstockno)
710 LOCAL first,last, stopsearching, found

720 first = 1

730 last = noofitemsinstock

740 stopsearching = FALSE : found = FALSE

750 REPEAT

760 PROCchoptable

770 UNTIL stopsearching

780 IF found THEN requiredprice = price(mid)

ELSE PRINT "Entry does not exist. "

requiredprice = 0

790 ENDPROC

202

800 DEF PROCchoptable

810 mid = (first + last) DIV 2

820 IF stockno(mid) = givenstockno THEN
stopsearching =TRUE found = TRUE ENDPROC

830 IF stockno(mid) > givenstockno THEN
last = mid — 1 ELSE first = mid + 1

840 IF first > last THEN stopsearching = TRUE

850 ENDPROC

The process can be illustrated for a particular arbitrary

sequence

key
compare
and chop
table
key
compare
and chop
table
key
compare
and chop
table

It is interesting to compare the
required by a linear search in a
average number of steps required

for different values of n:

7 7
9 9
21 21
35 EE— 35
61 61
81 81
99 99
107
206
301
330
341
652
703
777
891
7 7
9 —> 9
21 21
35
61
81
99
7
9
21 | J—>[a1]

average number of steps
table of n records with the
by a logarithmic search,

203

number of entries linear search logarithmic search

averagv no. of average no. of

steps is n/2 steps is log2n
4 2 2
16 8 4
128 64 7
1024 512 10
8192 4096 13

It must be remembered that sorting algorithms are themselves
fairly time consuming and this must be balanced against the
subsequent saving in look-up time. If also, new data is to
be continually added to the table, it would be very
inconvenient to have to keep moving the information already
in the table in order to insert a new entry in its correct
position. However, there are applications in which all the
entries in the table are present in advance and where the
table needs to be sorted for some other reason: for example,
so that an ordered listing of the table can be generated for
reference by a human user.

Other techniques are available for organising and accessing
tables in cases where the table does not need to be ordered
or where new entries are continually being added. Such
techniques are described later.

Exercises

1 Write a program that sorts the French-English dictionary
used earlier so that the French words are stored in
alphabetical order.

2 Modify the earlier French-English word translator program
so that it uses binary search to find a French word in
the ordered table produced by the previous exercise.

3 Use the procedures of Chapter 4, Section 4.1, to animate
a sifting sort.

6.5 Direct access

If the keys to be looked up in a table are such that we can
define a function that calculates a unique value from each
possible key and the values calculated by the function are
In a suitably small range, then this function can be used
for deciding where in a table to insert an entry associated
with a given key and where to find it later.

Consider the problem of storing in a table the name of
mach animal kept in a zoo together with the name of the
keeper assigned to look after each animal. Let us impose the
highly artificial restriction that all the animals kept have

204

names beginning with different letters. We require a program
which, given the name of the animal, prints the name of the
keeper assigned to look after that animal (or an error
message indicating that no animal of that description is
kept). We can use the initial letter of an animal's name te
determine the location in the table in which the animal's
entry is to be stored.

We need two parallel arrays and it is convenient in this
case to number the locations of these arrays from 0 to 25.

10 DIM animals$ (25), keepers (25)

Remember that the locations in a BASIC array are numbered
from 0 upwards, but location 0 is often ignored. Here we
will use slot 0 for the animal whose name begins with "a". A
number in the range 0 to 25 can be easily calculated from a
given 'firstletter$':

entryno = ASC(firstletters) - ASC("a")
animal$ keeper$
entryno
"dingo" »[3 | —»| dingo Jones

This table can be initialised from DATA statements:

200 DEF PROCsetupzootable

210 LOCAL noofanimals, i, entryno
220 READ noofanimals

230 FOR i = 1 TO nooiianimals

240 READ nextanimal$, nextkeeper$

250 firstletter$ =LEFTS (nextanimals,1)

260 entryno = ASC(firstletter$) - ASC("a")
270 animals (entryno) = nextanimals

280 keepers$ (entryno) = nextkeeper$

290 NEXT i

300 ENDPROC

After the DIM statement at line 10 has been obeyed, all
array locations contain the empty string. If fewer than 26
animals are kept, then after the table has been initialised
some of the animal fields will still have an empty string

205

stored in them. An empty string indicates that there is no
animal whose name begins with the corresponding letter.

To respond to an inquiry about a particular animal we
need:

400 DEF PROCfindkeeper (givenanimals$)
405 LOCAL entryno

410 entryno = ASC(LEFTS (givenanimal$,1l)) - ASC("a")
420 IF animal$ (entryno) = givenanimalS$THEN
PRINT "Keeper is "; keeper$ (entryno)

ELSE PRINT "There is no animal of that name."
430 ENDPROC

There is now no searching required to find the entry
containing information about the animal with a given name,
hence the term 'direct access'.

As another example of direct access, consider the stock
table used previously. If the stock numbers are such that
The last two digits of each number uniquely identify an item
we could use these two digits to directly access the stock
table. We can initialise the stock table with:

10 DIM stockno(99), price(99)
200 DEF PROCsetupstocktable

210 LOCALnoofotemsinstock, i, entryno
220 READ noofiteinsinstock

230 FOR i = 1 TO noofitemsinstock
240 READ nextstockno, nextprice

250 entryno = nextstockno MOD 100
260 stockno (entryno) = nextstockno
270 price (entryno) = nextprice

280 NEXT i

290 ENDPROC

Again there will be empty space in the table if we have
fewer than 100 items in stock. Since numeric array locations
are initialised to 0, the unused locations still contain 0
after the stock list has been read. Now for a given stock
number, the location (if any) containing the associated
price is 'price(givenstockno MOD 100)'.

In general, if the function f is to be used for direct
access to a table of entries, we can picture f being used as
follows:

206

INPUT givenkey
f(gi>a?key)

table(f(givenkey)) entry
%] required

In the first example the function was:

f (givenkey$) = ASC(LEFTS (givenkey$,1)) - ASC("a")
and in the second example

f (givenkey) = givenkey MOD 100

The first function has 26 possible values and the second
100, so 26 entries can be stored in the first case and 100
in the second.

6.6 Direct access to a subtable

Even if we cannot define a function that calculates a unique
table subscript for each key, we can easily extend the ideas
introduced in the previous section to the situation where
more than one key gives rise to the same function value. One
way of doing this involves allocating a subtable to hold the
entries corresponding to one value of the access function.
Given a particular key we evaluate f (key) and use this value
to tell us in which subtable the entry with that key is
stored.

In the zoo-keeper example, we will allow for up to 10
animals whose names begin with each initial letter. We will
thus allow for a maximum of 260 animals, some of which have
names beginning with the same letter. Associated with each
subtable is an integer value indicating the number of
entries in that subtable. We can use linear search for
storing and accessing entries within one such subtable. The
complete table, then, will consist of 26 of these subtables,
one for each initial letter.

In general, we can picture the process of accessing the
table as:

207

subtable(0) noofentries

]

f(key) subtable(1) noofentries

]

subtable(f(key)) noofentries

-

subtable(n) noofentries

L

We can set up this data structure for the zoo table using
three arrays (or more if there were more fields associated
with each animal): a one-dimensional array containing the
'noofentries' wvalues, and two two-dimensional arrays to
store the subtables:

10 DIM noofentries(25), animal$(25,10), keeper$ (25,10)

noofentries animal$ keeper$
3 aardvark adder agama Bloggs Jones Smith
1 baboon Brown
2 camel coyte Smith Watt

We can initialise the structure from DATA statements

208

containing animal-keeper pairs (although initialisation from
a file would be more realistic).

200 DEF PROCsetupzootable
210 LOCAL noofanimals, i,
nextanimal$, nextkeeper$, entryno

220 READ noofanimals

230 FOR 1 = 1 TO noofanimals

240 READ nextanimal$, nextkeeper$

250 subtable = ASC(LEFTS (nextanimal$,1)) - ASC("a")
260 noofentries (subtable) =noofentries (subtable) +1
270 entryno=noofentries (subtable)

280 animals (subtable, entryno) = nextanimals

290 keepers$ (subtable, entryno) = nextkeeper$

300 NEXT 1

310 ENDPROC

Additional statements would of course be needed if we wanted
the program to recognise when a subtable became full.

To find a given entry in the table we could call the
following procedure:

400 DEF PROCCfindkeeper (givenanimals$)
410 LOCALsubtable, examined, found, there

420 subtable = ASC(LEFTS (givenanimal$,1)) - ASC("a")
430 examined = 0 : found = FALSE : there = TRUE
440 REPEAT
450 examined = exanrined + 1
460 IF examined > noofentries (subtable) THEN
there = FALSE
ELSE
IF animals (subtable, examined) = givenanimal$
THEN found = TRUE
470 UNTIL found OR NOT (there)
480 IF found THEN PRINT "Animal's keeper is ";

keepers$ (subtable, examined)
ELSE PRINT "This animal is not in the zoo."
490 ENDPROC

This example illustrates a simple case of a 'hierarchical'
table-access method. We use one method (direct access in
this case) to find the appropriate subtable in which a given
key could be found and then proceed to search for the given
key in that subtable. In the above example we used linear
search in the subtables, but in general any of the methods
discussed could be used for organising and accessing the
information within a subtable. In fact a subtable might
itself be subdivided into further hierarchies of subtables.
Such hierarchical methods are extremely important when a

209

complete table is too large to be held main menwry. The
subtables can be held on disk file, and only when a program
has selected a particular subtable would that subtable be
copied into main memory.

6.7 Open hash tables

The method of the previous section suffers from the
disadvantage of breaking down as soon as one of the
subtables is full. It is also rather uneconomical in terms
of the amount of memory space used. It is surely unrealistic
in the zoo-keeper example to allocate the same amount of
space for animals whose names begin with X, Q or Z as for
those whose names begin with B, say.

An open hash table provides a widely used method for
dealing with the situation where we cannot define a function
that converts each key into a unique value. The method makes
more flexible use of available storage space than does the
method described in the previous section.

An open hash table consists of a single table similar to
that used in the direct access method. The range of values
produced by the access function (or 'hash function')
corresponds to the range of the subscripts for the table,
but we accept the possibility that several keys may result
in the sane hash function value.

We describe first the simplest form of access mechanism
for an open hash table. To find the location in which to
insert the entry containing a given key, the hash value for
that key is calculated and the entry is inserted in the
first empty location from that point onwards. To find the
entry in the table containing a given key, we evaluate the
hash function and conduct a linear search in the table from
that point onwards. The table is treated as being circular,
i.e., 1f a search reaches the end of the table, the search
carries on from the start of the table.

As a simple example, let each entry consist of a single
integer and let us illustrate the process of inserting a
sequence of these integers in a hash table, 'table'. We
define the hash function value for a given key as:

h(key) = key MOD 10 (i.e. the last digit in the integer)

In general, the use of a hash function of the form 'key MOD
n' is known as division hashing. Remember that this is an
unrealistically small table used merely to introduce the
technique. The point of the method is to speed up access to
a large table using an access function that may map
different keys into the saute value, without the need to
allocate a separate table for each possible access function
value. We can use the 0 values that are inserted initially
in all BASIC array locations to recognise 'empty' locatione.

210

insert 194 insert 269 insert 54 insert 25 insert 239
0 239 | =
1
2
3

>4 194 194 194 194 194
5 1 54 54 54
6 —LV 25 25
7
8
9 —» | 269 269 T 269

As a general rule, when inserting a new value in any table,
we should check that it is not already there, and when
searching for a given key in a table we should cater for the
possibility that it is not there. These two processes are
easily combined for our open hash table:

10 DIM table(9)

110 INPUT givenkey
120 probe = givenkey MOD 10 : there=TRUE : found=FALSE
130 REPEAT

140 IF table(probe) = givenkey THEN found = TRUE
ELSE IF table(probe) = 0 THEN there = FALSE
ELSE probe = (probe + 1) MOD 10

150 UNTIL NOT (there) OR found
160 IF found THEN PRINT "Given key is already there."
ELSE table(probe) = givenkey :
PRINT "Key has been inserted in table.™"

Say, in the zoo-keeper example, we wish to allow for up to
26 animals, but we may have more than one beginning with the
same letter. We can use the same table as was used for
direct access:

10 DIM animals$(25), keepers (25)

This time we organise it as an open hash table. The same

211

search algorithm can be used to find an empty alot in which
to insert a new animal, or to find the slot containing a
given animal. The following procudurv carries out the search
process required:

500 DEF PROCsearchfor (givenanimals)
510 LOCAL probe, found, there

520 probe = ASC(LEFTS (givenanimal$,1)) - ASC("a")
530 found = FALSE : there =TRUE
540 REPEAT
550 IF animals (probe) = givenanimal$ THEN
found = TRUE
ELSE IF animal$ (probe) = "" THEN
there = FALSE
ELSE probe = (probe+l) MOD 26
560 UNTIL found OR NOT (there)

570 requiredslot = probe : animalfound = found
580 ENDPROC

Each time this procedure is called, it transmits information
out to where it was called via the two variables
'requiredslot' and 'animaliound'. A sequence of animal-
keeper pairs could be inserted in the table with:

200 DEF PROCsetupzootable
210 LOCAL noofanimals, i, nextanimal$,nextkeepers$
220 READ noofanimals

230 FOR 1 = 1 TO noofanimals
240 READ nextanimal$, nextkeepers$
250 PROCsearchfor (nextanimals)
260 IF animalfound THEN
PRINT nextanimal$; " is there already."

ELSE animals$ (requiredslot)=nextanimal$
keepers$ (requiredslot) =nextkeepers
270 NEXT i
280 ENDPROC

To answer an inquiry about who looks after a particular
animal, we could use:

400 DEF PROCfindkeeper (givenanimal$)

410 PROCsearchfor (givenanimal$)
420 IF animalfound THEN
PRINT keeper$ (requiredslot); " looks after ";
ELSE PRINT "We don't keep ";
430 PRINT givenanimal$; "s."

440 ENDPROC

212

animal$
This is what the table
would look like after 0| antelope
inserting the sequence 1| bear
2| coyote
coyote 3| buffalo
fox 4| elephant
wolf 5| fox
bear 6 yak
warthog 7| cougar
antelope 8| bison
ocelot 9
elephant 10
lion 11| lion
zebra 12
yeti 13
buffalo 14| ocelot
yak 15
cougar 16
bison 17
18
19
20
21
22| wolf
23| warthog
24| vyeti
25| zebra

The keeper information is omitted to aid clarity in the
diagram.

Note the tendency for the names to bunch together in
particular areas of the table. This can result in very long
search lengths for some names. A simple approach like this
would be even more likely to cause bunching in other
application areas, for example in storing an interpreter
variable table: programmers tend to invent names for their
variables in some systematic way - x, y, z, a, b, ¢, rootl,
root2, root3, etc. We usually ccunbine two approaches to
solving this problem.

Firstly, we should attempt to define a hash function that
results in as wide a spread of values as possible over the
subseripts of the table. The function need not be
particularly meaningful. We could, for example, select an
arbitrary subset of the bit pattern representation of a key
and transform this in any way we like to give a hash wvalue.

Secondly we can modify the simple linear search used
above to find a location in the table. In the first example
considered above, we calculate an initial value for probe (p
say) and proceed to examine locations p, p+l, p+2,..., all
values being taken MOD 10. We could, in general, examine
locations p, p+d(l), p+d(2),..., where d is some

213

displacement function. Tho simplest such function is a
linear one, d(i) = ki and in the above we used k = 1. A
value of k > 1 can give us a better spread of the
information in the table and shorten search lengths. With k
= 7 we would examine locations p, p+7 , p+1l4, ..., (all MOD
the size of the table).

Modifying the zoo-keeper example in this way produces:

Using k = 7 and animal$
inserting the
same name$ as 0| antelope
before 2| bear
3| warthog
coyote 4| elephant
fox 5| fox
wolf 6
bear 7
warthog 8| buffalo
antelope 9| cougar
ocelot 10
elephant 11/ lion
lion 12| yak
zebra 13
yeti 14| ocelot
buffalo 15| bison
yak 16
cougar 17
bison 18
19
20
21
22 | wolf
23|
24| yeti
25| zebra

Search lengths up to 9 were necessary in the previous table,
but here the longest search length involves only 3
comparisons.

Note that if n is the size of the table, then k and n
must ire coprime, otherwise not all the locations of the
table will be available for any given hash value. Consider
n=12 and k=4. For hash wvalue 7, only locations 7, 11 and 3
are visited by the algorithm and only these locations are
available for storing keys with hash value 7.

The theory tells us that for a table of size n containing
m records, use of a linear displacement function results in
an average search length of (1-r/2)/(l1-r), where r= m/n. In
order to obtain the best time/space trade-off, the table
should not get more than 2/3 to 3/4 full.

Improved search times can be obtained by using non-linear

214

displacement functions, but we will not discuss this here.

Finally, note that in real-life implementations, greatest
efficiency is achieved by using a table of size n, where a
is a power of 2. Calculations MOD n can then be performed by
ANDing with a computer word containing a sequence of bits
all set to 1. The hash function can be calculated
efficiently in a similar way. In data processing jargon,
hashing is sometimes known as 'randomising' and is an
example of an 'address generating' access method.

Exercises

1 Write a program that reads the stock list for the small
department store described in an earlier exercise. The
program should store the stock list in an open hash table
using the stock numbers as keys. This table should then
be used in repeatedly processing price enquiries.

2 Modify the French-English word translation program so
that it uses an open hash table for storing the
dictionary.

3 Use the procedures of Chapter 4, Section 4.1, to animate
the process of building up an open hash table. In the
strings manipulated in Chapter 4, the last three
characters represented a stock number. A suitable hash
function that would allow the table to fit on the screen
could be calculated by:

VAL (RIGHTS (nextitem$,3)) MOD 20

This gives values in the range 0 to 19 and we would
therefore use a table where locations were numbered 0 to
19. The table would be better displayed at the right of
the screen, the value that is to enter the table being
displayed with its hash value at the left of the screen.
Use colour to highlight the locations of the table being
examined during the search for an empty location.

6.8 Indexing and pointers

In this section we introduce the idea of storing and
manipulating indirect references to the information being
handled by a program. We describe two applications of this
idea.

Indexed access to a table - introduction

Here we return to the idea of hierarchical access methods.
Let us consider the problem of storing our animal records in
a table which we shall divide into 26 subtables as before,
one for the animals beginning with A, one for the animals
beginning with B, and so on. As discussed above, this
permits a two level access method, firstly to find the

215

subtable in which tho required entry lies, and then to
search that subtable. Rememember that this will in general
require less effort than the march of a single large table.
Here we shall make our division into subtables more flexible
than it was before. For example, we might want to allow 4
locations for animals beginning with A, 7 locations for
animals beginning with B, ... 2 locations for X, 4 for Y and
2 for Z. We allocate one large table in which the animal
entries are to be stored:

DIM animal$ (150), keeper (150)

We shall store information in an 'index table' which
Indicates where in the, main table to find information about
animals beginning with each letter.

DIM noofentries (25), index(25)

The intention is that, for example, 'noofentries(i)' and
"index (i)' should contain two integers, the first indicating
how many animals beginning with the ith letter of the
alphabet are stored, and the second indicating where in the
main table the first animal beginning with the ith letter is
stored. (Letters are numbered from 0 as before.) Entries for
all animals beginning with a certain letter are to be stored
in consecutive locations of the main table. For example:

noofentries(1) index(1) —» animal$(1) antelope
1 1 R —

noofentries(2) index(2)
3 5 —

L p animal$(5) bear

(6) buffalo
(7 bison

We can think of the entries in the index array as 'pointers'
to information in the main table. One way of indicating to
the program how large to make the subtables for each letter
would be to supply these 26 sizes in a DATA statement:

DATA 4, 7, ..., 2, 4, 2

216

The next precdure sets up the table from DATA statements.
Lines 220-260 initialise an empty table and the remainder
the procedure adds each animal to the appropriate subtable.

200 DEF PROCsetupzootable

210 LOCAL next,letter,size, 1i,entryno,location,
nextanimal$, nextkeepers$

220 next = 1

230 FOR letter =0 TO 25

240 noofentries(letter)=0 : index(letter)=next

250 READ size : next = next + gize

260 NEXT letter d

270 READ noofanimals J

280 FOR i=1 TO noofanimals

290 READ nextaninial$, nextkeeper$

300 letterno=ASC (LEFTS (nextanimal$, 1)) -ASC("a")

310 location=index (letterno) +noofentries (letterno)

320 noofentries(letterno) =noofentries(letterno)+1

330 animal$ (location) = nextanimalS$+1l

340 keepers$ (location) = nextkeepers$

350 NEXT 1

360 ENDPROC

The index table is accessed directly using the first letter
of an animal's name as a key and the subtables of the main
table are accessed by linear search. To find a given animal
name in the table we would use:

400 DEF PROCfindkeeper (givenanimals$)
410 LOCAL letterno, start,finish, found, there, probe
420 letterno = ASC(LEFTS (givenanimnals,1)) - ASC("a")
430 start = index(letterno)
440 finish = start + noofentries(letterno) - 1
450 found =FALSE : there =TRUE : probe = start
460 REPEAT
470 IF probe > finishTHEN there =FALSE
ELSE IF animal$ (probe) = givenanimal$ THEN
found = TRUE
ELSE probe = probe + 1
480 UNTIL found OR NOT (there)
490 IF found THEN PRINT "Keeper is "; keepers (probe)
ELSE PRINT "Given name not found."
500 ENDPROC

Indexed sequential access

In the above example, the keys used to access the table were
the animal names, and the main table in which the keys were
stored was to a certain extent ordered on these keys.
Whenever the main table is ordered on the keys, access to

217

the main table can be easily accomplished via an index. In
the above example, entries in the index table were found by
direct access, but in genernl the distributton of the keys
will not permit this. It would be silly to have index
entries for animals beginning with A, B, C, ..., Z if we
only have animals beginning with B and C, say. In such cases
some of the keys theaselves could be stored in the index
table. For example:

bear Area containing
animals with name
<= 'bear'

buffalo

cow <="buffalo’
< ='cow'

In these situations, entries in the index table could be
found by linear search or binary search.

If the number of records involved is very large,
resulting in a large index, an index to the index can be
used, resulting in a three level access method.

In data processing applications where the records are
usually held on disk, sequential files with indexes
constitute the most common form of addressing. This is
because most data processing applications involve a mixture
of random access to a file (e.g. find the entry for a given
employee) and sequential access to the file (e.g. print out
the names of all employees in alphabetical order). For
random access the index is used and for sequential access
the main file itself can be scanned in order. These
techniques are therefore known as 'indexed sequential
access' methods.

Sorting an index table

Another area in which use of an index table is advantageous
is in sorting when each table entry is large, perhaps
spanning a number of parallel arrays. For example:

218
personal record

dateofbirth$ name$ taxcode department$ salary

It may be desirable to sort or otherwise re-order these
entries from time to time. The amount of work involved can
be considerably reduced by re-ordering the entries in an
index table and leaving the entries in the main table
undisturbed. Say we start with the following situation:

index entry no. personal record
salary taxcode ...etc...
@)1 — =1 11530
@ 2] — 2 10670
® |3 — 3 14680
@ 4] — 4 9375

and we wanted to sort the entries into increasing order of
salary. We can move the numbers or pointers in the index
table until 'index(1l)' contains the entry number for the
entry with the lowest salary, 'index(2)' contains the entry
number for the entry with the next lowest salary etc.

index salary
1) 11530
(2 15 10670
3) 14680
4) 9375

Here is a program that uses a simple exchange sort to sort
the same stock list as was used in Section 6.3. In this
case, we rearrange only the items in the index array to
indicate the new ordering. You should refer back to the
previous exchange sort and note the differences. Here,
whenever we want to refer to the stock number for item i, we
need to use:

stockno (index (i))

219

and to swap items i and j in the ordering, we need only move

the contents of 'index (i)' and 'index(j)'.
10 DIM stockno(100), price(100), index(100)
20 PROCsetupstocktable
30 PROCsortstocktable (noofitemsinstock)
40 PROCoutputstocktable
50 END
200 DEF PROCsetupstocktable
210 LOCAL i
220 READ noofitemsinstock
230 FOR i = 1 TO noofitemsinstock
240 READ stockno(i), price(i)
250 index (i) = 1
260 NEXT 1
270 ENDPROC
400 DEF PROCsortstocktable (n)
410 LOCAL i
420 FOR i = 1 TO n-1
430 PROCfindsmallestentryfrom(i)
440 PROCswop (1, posnsmallest)
450 NEXT i
460 ENDPROC
500 DEF PROCfindsmallestentryfrom(i)
510 LOCAL next
520 posnsmallest = i
530 FOR next = i+1 TO n
540 IF stockno (index (next))
< stockno (index (posnsmallest))
THEN posnsmallest = next
550 NEXT next
560 ENDPROC
600 DEF PROCswop (i, 7)
610 LOCAL temp
620 temp = indext (i)
630 index (i) = index(3j)
640 index (j) = temp
650 ENDPROC
700 DEF PROCoutputstocktable
710 LOCAL i
720 FOR i = 1 TO noofitemsinstock
730 PRINT stockno (index(i)), price(index (1))
740 NEXT i
750 ENDPROC

220

Exercises

1 Set up two parallel arrays containing tho French-English
dictionary used earlier. Now initialise two index tables
each of which should contain pointers to all the
locations in the dictionary. The entries in the first
index table should be sorted so that they point to
entries in alphabetical order of English words. The
second table should then be sorted on the French words.
Check that the program now works by using the index
tables to print out the dictionary once with the English
words in order and again with the French words in order.

2 Use the index tables created by the last exercise in a
program that translates a given word from French into
English or from English into French. The program should
use binary search in the appropriate index table.

6.9 Adventure gamess - an example of the use of pointers

An interesting possible use of indexing techniques is an
adventure game. These games were originally developed on a
mainframe computer and despite the fact that they are
dialogue games, using no graphics facilities, they have
became very popular.

In an adventure game the player 'moves' from one
geographical state to another. When in a particular state a
transition to another state is only possible by moving in a
predetermined direction. For example, the transitions for an
extremely simple nine-state game are shown by arrows in the
'map’':

1 2 3
4 ! 5 6
A

7 8 9

'‘Geographical' states 1-9 and
possible transitiona

221

Both the allowed directions and movement through the states
can be controlled by a two dlmcmnional array of indices or
pointers. We could represent thaw by using rows of four
elements. Each item in a row represents a possible
transition path in the directions N,E,S, or W, say.

Array 1)
transiton

— = Directions

@)
©)
4)

ol ol o funNO|O | N |m
ol ol o N o|u|o |
ol ol oo |r |O|=s

States

o | O Al W N[O\ O| O | O |z

©
o | o
w | O

%9 0

Transitions stored as
pointers in a two-dimensional
array

We could 'move' through these states by using the
following structure. This structure or something equivalent
forms the kernel of all adventure game programs.

10
20
30
40
50
60

70

PROCsetupdatastructures
position = 3
REPEAT
INPUT direction$
dir = INSTR("NESW", directions$)
IF transition(dir, position) =0 THEN
PRINT "can't move"
ELSE position = transition(dir, position)
UNTIL FALSE

The important statement is the one that follows the ELSE. If
we started with 'position' equal to 1 and typed the sequence
E,S,N, W, we would 'move' from state I to states 2 and 5
back to state 1.

The player of the game must explore and attempt to
construct his own map for the game.

222

Now another array is needed to store a description of
each place so that the player/computer dialogue can be set

»loO| O %i c;i>
2

E

w x

Nl |s
B

E

0 0

0 0

0o 0 6

0o 5 7
—2] 6 0

‘Travelling through' the states
in response to the sequence

E, S, N,

W.

in a particular environment, say:

description$

The kernel can then be enhanced to include

array.

in a shrubbery
in a conservatory
outside a glocunyhouse

in
in
in
in
in
in

a

a
a
a
a
a

dark tunnel
library

dingy hallway
smuggler's cave
wizard' s lair
dark passage

indexing to this

223

60 IF transition(dir, position) = 0 THEN
PRINT "can't move"
ELSE position = transition(dir, position):
PRINT "You are now "; description$ (position)

Now the point of the game is to reach a particular
destination or goal. The instructions telling the player
which state he is in needs to be part of a procedure that
checks to see if the goal state has been reached.

20 position = 3 : goalachieved ="FALSE
30 REPEAT

40 INPUT direction$
50 dir = INSTR("NESW", direction$)
60 IF transition(dir, position) =0 THEN

PRINT "can 't move"
ELSE position = transition(dir, position)
PROCcheckgoalreaehed
70 UNTIL goalachieved

So far so good, but it still isn't a very interesting game.
The game is made more difficult by making a transition
conditional on factors other than direction, such as
possession of a particular object and avoiding various
pitfalls. For example a lamp may be required to pass through
a 'dark' state or a weapon may be required to deal with a
state containing an enemy. Failure to cope with these
pitfalls by non-possession of the requisite object or not
taking the appropriate action with the object finishes the
game.

30 REPEAT

50 TUNTIL goalachieved OR dead
60 IF goalachieved THEN PRINT "well done!"
ELSE PRINT "hard luck"

The objects and the initial states that they appear in can
be stored in two parallel arrays.

objects (1) lamp objectpostn (
2) emerald (
3) sword (
4) axe (
5) ogre (
6) serpent (

Ok g0 Ju

224

Additional commands might now be included for 'getting' or
'dropping' objects, post tion code 0 bel ng uaod to indicate
that the player is carrying an objvet. The validity of a
move might now be checked by calling a procedure such as:

100 DEF PROCcheckcanmove

110 IF transition(direction, dir) =0 THEN
PRINT "can't move" : ENDPROC

120 1IF position = 6 AND objectpostn(l) <>0 THEN
PRINT "You have fallen into a bottcanless pit":
dead = TRUE : ENDPROC

more pitfall checks

130 position = transition(dir, position)
140 ENDPROC

The implication of the first pitfall check is that in state
4 you must possess the lamp. Further elaborations can easily
be added so that a sufficient level of detail is achieved to
produce an intriguing game. For example, the lamp may be
required to be 1lit.

The initialisation for the string arrays and the numeric
arrays can originate from DATA statements or more usually
froma file. Another important point is that a well-written
pogram structure can be imposed on alternative data.
Changing the string initialisations (and the numeric
initialisation if required) produces a completely different
game. The data would be a simple example of a database.

Exercises

1 Design a map for a simple adventure game and implement
this as a transition table in a complete program which
moves from one state to another in response to commands
N, S, E, W. The main loop should repeatedly call a
procedure PROCobeycommand:

goalachieved = FALSE : dead = FALSE
REPEAT

INPUT commands$s

PROCobeycommand
UNTIL goalachieved OR dead

At each step, the program should either print a message
indicating that the move is not allowed or print the
number of the new state reached. Do not attempt to add
any frills until you are sure that the basic transition
process is working and the program is moving around the
map as expected. At first there will be no statements in
the program for changing 'goalachieved' or 'dead' and you

225
will have to terminate the program with the ESCAPE key.

Now invent a verbal description for each state and set up
an description array of strings. Use this to print a
description of each state reached.

Make up a short list of objects, decide on their initial
position and set up two parallel arrays containing a
description and a position for each object. Implement a
new command L (for look) which prints a list of objects
that are at the current position.

Implement new commands G (for Get), D (for Drop) each of
which is followed by an object name. The object name will
have to be looked up in the object description array and
the corresponding object position code changed
appropriately. Implement a command I (for Inventory)
which prints a list of objects currently held.

Decide on a goal for your game. For example the purpose
could be to find one of the objects and transfer it to a
particular place. PROCobeycommand can be extended to test
whether the goal has been achieved and set the variable
'goalachieved' accordingly.

Add some pitfalls to your program and test for these in a
move-making procedure setting 'dead' accordingly.

