
Chapter 4 Animation techniques

The commonest animation technique that you are likely to use
on your BBC micro will be character animation, where objects
are moved about the screen by printing and reprinting
characters. In any of the graphics modes, a character shape
can be displayed by a PRINT statement in considerably less
time than it would take to draw the same shape using
graphics commands. This is because of the fast techniques
used to fill the area of the screen memory that is to be
occupied by the character. In MODE 7, character printing is
even faster than in the graphics modes.

We shall see later in the chapter how to define our own
character shapes but for the time being, the objects being
moved will be strings of standard characters. Such simple
animation of words and numbers is a powerful tool in
computer-assisted learning systems as we shall demonstrate
shortly.

Although the use of DRAW and PLOT facilities for
nnimation is limited by lack of speed, towards the end of
the chapter we shall look into techniques for the animation
of simple line drawings such as stick figures.

4.1 Word animation and computer-assisted learning
Displaying character information on a screen in a way that
is interesting and informative finds applications in many
branches of interactive computing. Currently one of the more
exotic of these is to replace the conventional
electromechanical instrumentation in large complex passenger
aircraft with a single animated computer display.

Here as a case study of word animation we look at
animating the control flow in a program of reasonable
complexity. Explaining to someone how a complicated program
works has always been a problem, and in this section, we
look at ways of animating a character display to bring a
programming technique to life. The technique we shall
animate is a simple sort method. Sorting techniques are
discussed in Chapter 6, but here we use one of the simplest
approaches to sorting a list into order - a simple exchange
sort. The program that we wish to animate is presented
first. It reads ten items into an array from DATA statements
and sorts the items into order. We could think of the data
as representing, say, a simple stocklist. Each item is a

107

st r i ng consi st i ng of a char act er (a ' depar t ment code)
f ol l owed by a 3- di gi t i nt eger (a ' s t ock number ') . The i t ems
ar e sor t ed i n t he ar r ay so t hat t he number s ar e I n ascendi ng
numer i cal or der .

100 noof i t ems=10
110 DI M i t em$(noof i t ems)
120 PROCset upt abl e
130 PROCexchsor t
140 FOR i =1 TO noof i t ems: PRI NT i t em$(i) : NEXT
150 END

200 DEF PROCset upt abl e
210 LOCAL i
220 FOR i =1 TO noof i t ems
230 READ i t em$(i)
240 NEXT i
250 DATA G 291, D 251, H 123, C 243
260 DATA C 523, L 145, H 391, L 265
270 DATA H 367, H 443
280 ENDPROC

300 DEF PROCexchsor t
310 LOCAL i , posnsmal l est
320 FOR i = 1 TO noof i t ems- 1
330 PROCf i ndsmal l est ent r yf r om(i)
340 PROCswop(i , posnsmal l est)
350 NEXT i
360 ENDPROC

400 DEF PROCf i ndsmal l est ent r yf r om(i)
410 LOCAL next
420 posnsmal l est = i
430 FOR next = i +1 TO noof i t ems
440 I F RI GHT$(i t em$(next) , 3)

< RI GHT$(i t em$(posnsmal l est) , 3)
THEN posnsmal l est =next

450 NEXT next
460 ENDPROC

500 DEF PROCswop(k, 1)
510 LOCAL t emp$
520 t emp$=i t em$(k) : i t em$(k) =i t em$(1) : i t em$(1) =t emp$
530 ENDPROC

What we shal l do now i s modi f y t he pr ogr am so t hat whi l e
t he cont ent s of t he ar r ay ar e bei ng sor t ed, t he cont ent s of
t he ar r ay ar e al so di spl ayed on t he scr een, and val ues bei ng
moved ar ound i n st or e ar e al so moved ar ound on t he scr een.

The i ni t i al l ayout of t he di spl ay t hat we shal l use i s
i l l ust r at ed i n t he f i r st phot ogr aph.

108

The program will run in MODE 7 using Teletext codes to
obtain colour effects and Teletext graphics characters to
draw the boxes. (For a summary of these codes, see Appendix
A. For further information on Teletext consult the User
Guide.) Note that a Teletext colour or graphics effect is
otained by 'printing' a special character code just before
the characters that are to be affected. These special codes
appear on the screen as spaces. Their effect lasts only for
the line on which they appear. We assume that these codes
have been given names at the start of our animation program:

10 red$=CHR$(129) : green$=CHR$(130)
20 yellow$=CHR$(131):white$=CHR$(135)
30 blue$=CHR$(132): cyan$=CHR$(134)
40 gb$=CHR$(148) : f1ash$=CHR$(136)

where 'gb$' stands for 'graphics blue code'. The other codes
will be used for changing the colours of words on the
screen, so as to draw attention to them during animation.
For example a common technique to animate a scan through a
list is to display the list and change the colour of each
Item to a highlight colour and back again. The highlight
colour then appears to move down the list.

The array 'item$' and the variable 'temp$' together with
their contents are initially displayed by PROCsetupdisplay.

600 DEF PROCsetupdisplay
610 LOCAL y
620 CLS
630 VDU 23;8202;0;0;0;
640 midx= 16 : leftx=3
650 basey=(24-noofitems) DIV 2
660 tempx=30 : tempy = basey + noofitems DIV 2

109

670 PRINT TAB(leftx,basey-1);blue$;"items"
680 PRINT TAB(tempx,tempy-2);blue$;"temp"
690 PRINT TAB(tempx-2,tempy-1);gb$;"h,,,,,,,4";
700 PROCbars(tempx,tempy)
710 PRINT TAB(tempx-2,tempy+1);gb$;"*,,,,,,,%"
720 PRINT TAB(leftx-2,basey);gb$;"h,,,,,,,4";
730 FOR y=1 TO noofitems
740 PROCdisplayrec(y,white$)
750 NEXT y
760 PRINT TAB(leftx-2,basey+noofitems+1) ;

gb$; "*,,,,,,,%"
770 ENDPROC

800 DEF PROCbars(x,y)
810 PRINT TAB(x-2,y);gb$;"j";TAB(x+6,y);gb$;"5"
820 ENDPROC

840 DEF PROCdisplayrec(r,c$)
850 PRINT TAB(leftx-2,basey+r) ;

gb$; "j"; c$; item$(r); gb$; "5"
860 ENDPROC

In order to animate our sort method, we must move a
string in our display whenever it is moved in store. To do
this, we shall use a procedure PROCmove called in PROCswop.

500 DEF PROCswop(k,l)
510 LOCAL temp$
512 LOCAL sk$,sl$
514 sk$=yellow$+item$(k) : sl$=yellow$+item$(l)
520 temp$=item$(k):item$(k)=item$(l):item$(l)=temp$
522 PROCmove(sk$,leftx,basey+k,tempx,tempy)
524 PROCmove(sl$,leftx,basey+l,leftx,basey+k)
526 PROCmove(sk$,tempx,tempy,leftx,basey+l)
530 ENDPROC

PROCmove requires 5 parameters. The first pararameter is
the string that is to be moved on the screen. We have
arranged for the moving string to be highlighted in yellow
by including a yellow control code in the string when the
procedure is called, the next two are the coordinates of the
start position of the string (where it is already displayed)
and the final two parameters are the coordinates of the
final position of the string.

The most convenient way to arrange for the movement of
strings in this type of animation is to establish a highway
in the centre of the screen and break all movements down
into three stages: horizontal, vertical and horizontal
again. The second photograph shows a string in the process
of moving up the central highway. In detail, we must:

110

(1) Move the string horizontally on to the central
(vertical) highway.

(2) Move the string up or down the highway to its final
vertical position.

(3) Move the string horizontally into its final position.

This approach eliminates the problem of calculating
'trajectories' for the movement between two points and also
eliminates the possibility of a moving string wiping out
other information that is already on the screen.

Here is the definition of PROCmove together with
subsidiary procedures for horizontal and vertical movement.
PROCbars is used for restoring the bars at the sides of the
array or variable when they have been wiped out by a string
moving horizontally into or out of one of the boxes.

900 DEF PROCmove(s$,x1,y1,x2,y2)
910 LOCAL x,y,xdir,ydir
920 xdir = SGN(midx-x1)
930 FOR x=x1 TO midx-xdir STEP xdir
940 PROCstepx(s$,x,y1,xdir)
950 NEXT x
960 PROCbars(x1,y1)
970 IF y1<>y2 THEN ydir=SGN(y2-y1) :

FOR y=y1 TO y2-ydir STEP ydir :
PROCstepy(s$,midx,y,ydir) :

NEXT y
980 xdir = SGN(x2-midx)
990 FOR x = midx TO x2-xdir STEP xdir

1000 PROCstepx(s$,x,y2,xdir)
1010 NEXT x
1020 PROCbars(x2,y2)
1030 ENDPROC

1040 DEF PROCstepx(s$,x,y,xdir)
1050 PRINT TAB(x+xdir-1,y);" ";s$;" ";
1060 PROCdelay(1)
1070 ENDPROC

1080 DEF PROCstepy(s$,x,y,ydir)
1090 PRINT TAB(x,y);" ";TAB(x,y+ydir);s$;
1100 PROCdelay(1)
1110 ENDPROC

1120 DEF PROCdelay(d)
1130 LOCAL t
1140 t=TIME+d
1150 REPEAT:UNTIL TIME>t
1160 ENDPROC

111

The vertical and horizontal movement procedures each require
a parameter indicating the direction of the movement. For
example in the caae of PROCstepx, the parameter 'xdir' will
have the value 1 for movement from left to right and -1 for
movement from right to left.

We can further improve the instructive value of the
display by adding text explaining what is happening during
the sort and by highlighting information in the array in
different colours to signify its status as the sort
proceeds. For example, once a value has been moved to its
correct position, we can highlight it in red. Here are
PROCexchsort and PROCfindsmallestentryfrom rewritten to use
these facilities.

300 DEF PROCexchsort
310 LOCAL i, posnsmallest
315 PROCheading("Exchange Sort")
320 FOR i = 1 TO noofitems-1
325 go=GET:PROCexplain("Find next smallest")
330 PROCfindsmallestentryfrom(i)
335 go=GET:PROCexplain("Swop with correct position"
340 PROCswop(i, posnsmallest)
345 PROCcolourrec(posnsmallest,white$)
346 PROCcolourrec(i,red$)
350 NEXT i
355 go=GET:PROCexplain("Sort completed")
356 PROCcolourrec(noofitems ,red$):go=GET
360 ENDPROC

400 DEF PROCfindsmallestentryfrom(i)
410 LOCAL next
420 posnsmallest = i
425 PROCcolourrec(posnsmallest,yellow$)
430 FOR next = i+1 TO noofitems
435 PROCcolourrec(next,green$):PROCdelay(10)
436 PROCcolourrec(next,white$)
440 IF RIGHT$(item$(next),3)

< RIGHT$(item$(posnsmallest),3)
THEN PROCcolourrec (posnsmallest,white$) :

posnsmallest=next :
PROCco1ourrec(next,yellow$)

450 NEXT next
460 ENDPROC

PROCheading and PROCexplain position a given string in an
appropriate place on the screen and PROCcolour simply prints
the required colour code before a string at the position
specified.

112

1200 DEF PROCheading(s$)
1210 PRINT TAB(13,1);white$;s$
1220 ENDPROC

1230 DEF PROCexplain(s$)
1240 LOCAL spaces
1250 PRINT TAB(leftx+8,basey+noofitems+l);white$;s$;
1260 spaces = 30-leftx-LEN(s$)
1270 PRINT STRING$(spaces," ");
1280 ENDPROC

1290 DEF PROCcolourrec(r,c$)
1300 PRINT TAB(leftx,basey+r);c$
1310 ENDPROC

Any sort algorithm can be animated using this technique and
the following procedure animates a bubble sort. Again this
sort method is explained fully in Chapter 6.

1400 DEF PROCbubble
1410 LOCAL i,last
1420 PROCheading("Simple bubble sort")
1430 FOR last = noofitems TO 2 STEP -1
1440 go=GET
1450 PROCcolourrec(1,yellow$)
1460 PROCexplain("Bubble scan")
1470 FOR i = 2 TO last
1480 PROCco1ourrec(i,yellow$)
1490 IF RIGHT$(item$(i),3) < BIGHT$(item$(i-1),3)

THEN PROCswop(i,i-1)
ELSE PROCdelay(10)

1500 PROCcolourrec(i-1,white$)
1510 NEXT i
1520 PROCcolourrec(last,red$)
1530 PROCexplain("Last "+STR$(noofitems-last+1)+

" now in position")
1540 NEXT last
1550 go=GET
1560 PROCcolourrec(1,red$)
1570 PROCexplain("Sort completed")
1580 go=GET
1590 ENDPROC

Exercises

1 Design an animated sequence to illustrate the behaviour
of the BASIC statement

y=x

113

The sequence should stress the fact that the contents of
'y' are not changed, but are copied into 'x'.

2 Animate the sequence of BASIC statement s for exchange
the contents of two variables:

temp = x
 x = y
 y = temp

3 When you have read Chapter 6, animate some of the
techniques described there; for example, sifting sort,
binary search, hash table access and so on.

4.2 User-defined characters

In modes 0, I, 2, 4 and 5, the screen is divided up into a
number of 'pixels'. For example, in modes 1 and 4, there are
320x256 pixels.

In modes 3 and 6, the screen is divided into horizontal
strips of pixels which are separated by strips of background
colour. Each strip is 8 pixels deep.

In any of modes 0 to 6, printing a character has the
effect of filling an 8x8 group of pixels with a pattern of
foreground and background colour. For example, the pattern
for "A" is:

Also associated with each character is an ASCII code number
in the range O to 255. This code is used inside the computer
to refer to the character. The ASCII code for "A" is 65.
When the character whose code number is 65 is to be
displayed on the screen by a PRINT statement, the above
pattern of foreground and background colour is inserted into
the screen memory where information is stored about what is
currently displayed on the screen.

The user is normally free to define the character shapes
that are associated with ASCII code numbers 224 to 255, and
this is particularly useful when creating shapes for use in

114

animation. In fact, on lster versions of the operating
system (OS 1.2 onwards), it is possible for the user to
define shapes for a much greater range of ASCII codes. We
shall explain how to do this shortly.

Once a new character shape has been defined, it can be
displayed on the screen at the same speed as the predefined
characters that we have used so far in this chapter.

The use of user-defined character shapes has two
advantages over the use of PLOT instructions to draw shapes.
Firstly, as we have already seen, a character shape is
dislayed on the screen at a much greater speed than can be
achieved by using PLOT facilities. Secondly, the sequence of
PLOT statements needed to draw a complex shape such as a
spaceship would be rather lengthy.

Single character shapes
Let us demonstrate the process of defining new character
shapes by defining some Greek letters. These could be useful
to a scientist or a mathematician wishing to display
muthematical equations. The shape required for alpha is

Note that in MODES 2 and 5, a pixel (and therefore a
character) is elongated horizontally. Each row in the 8x8
pattern can be viewed as a byte (eight bits - see Appendix
2), and each byte can be written as an integer in the range
0 to 255. Thus the above pattern can be described as a list
of 8 bytes or a list of 8 integers:

bytes integers

00000000 0
00000000 0
00100010 34
01010100 84
01001000 72
01010100 84
00100010 34
00000000 0

A byte can also be written in the form of two hexadecimal

115

di gi t s. Four bi t s cor r espond t o one hexadeci mal di gi t as
descr i bed i n Appendi x 2. Because of t hi s cor r espondence, i t
i s usual l y easi er t o wr i t e a pat t er n of 8 bi t s i n hex t han
t o conver t i t i nt o an i nt eger :

byt es hex

00000000 0
00000000 0
00100010 &22
01010100 &54
01001000 &48
01010100 &54
00100010 &22
00000000 0

I n or der t o def i ne our new char act er shape, we must choose
t he ASCI I code t hat we ar e goi ng t o use f or t he char act er
and we must t hen cal cul at e t he sequence of 8 i nt eger s (i n
deci mal or hex) t hat descr i bes i t s shape. The ASCI I code i s
associ at ed wi t h t he r equi r ed shape by usi ng t he VDU 23
command. For exampl e, i f we want ASCI I char act er number 224
t o appear on t he scr een as t he above shape, we can use

10 VDU 23, 224, 0, 0, &22, &54, &48, &54, &22, 0

We coul d equal l y descr i be t he shape by wr i t i ng t he byt es i n
deci mal :

10 VDU 23, 224, 0, 0, 34, 84, 72, 84, 34, 0

We can di spl ay t hi s char act er i n t he cent r e of t he scr een
i n MODE 4 by:

20 MODE 4
30 PRI NT TAB(20, 10) ; CHR$(224)

or by:

20 al pha$ =CHR$(224)
30 PRI NT TAB(20, 10) ; al pha$

or we can i ncor por at e i t i n st r i ngs:

20 al pha$ = CHR$(224)
30 par t i c l e$ = al pha$ + " —par t i c l e"
40 r ay$ = al pha$ + " —r ay"
50 PRI NT r ay$; " s consi st of a st r eam of " ;

par t i c l e$; " s. "

116

Here are some further VDU 23 statements for defining the
next three letters in the Greek alphabet.

20 VDU 23, 225, 0, 0, &1E, &12, &3C, &24, &7C, &40
30 VDU 23, 226, 0, 0, &42, &24, &18, &24, &24, &18
40 VDU 23, 227, &C, &10, &10, &8, &3C, &44, &38, 0

Composite character shapes
We can build up bigger objects by defining a number of
different character shapes that can be printed together to
make up the overall shape of the object. For example, let us
define a vintage car for use in MODE 1 or 4. We use a row of
three characters for the basic car shape:

The three characters required are defined by the bit
patterns:

00000000 01001000 00000000
11111100 01000100 00000000
11111110 11100100 00011110
10000111 11111111 11100001
10110111 11111111 11101101
01111011 11111111 11011110
01111000 00000011 11011110
00110000 00000000 00001100

Here is a program that uses these characters together with
some other groups of user-defined characters.

117

10 MODE 1 : VDU 23;8202;0;0;0;
20 VDU 19,2,2,0,0,0
30 PROCdefineshapes
40 PROCbackground
50 COLOUR 2 : PRINT TAB(1,3)tree$
60 y=3
70 COLOUR 1 : PRINT TAB(2,y)car$

80 FOR x=2 TO 31
90 SOUND 0,-10,6,1 : SOUND 0,-11,7,1

100 TIME=0 : REPEAT:UNTIL TIME>10
110 COLOUR1 : PRINT TAB(x,y)" ";car$
120 NEXT x

130 x=32
140 FOR y=4 TO 22
150 PRINT TAB(x,y-1)" "
160 PRINT TAB(x,y)car$
170 NEXT y

180 PRINT TAB(x,22)" "
190 VDU 28, 31,25, 39,21
200 PRINT TAB(RND(7),RND(5));CHR$224;
210 PRINT TAB(RND(7),RND(5));CHR$225;
220 PRINT TAB(RND(7),RND(5));CHR$226;
230 SOUND 0, -10 ,6 ,20
240 K=GET : MODE 7
250 END

260 DEF PROCdefineshapes
270 VDU 23, 224, 0,&FC,&FE,&87,&B7,&7B,&78,&30
280 VDU 23, 225, &48,&44,&E4,&FF,&FF,&FF,3,0
290 VDU 23, 226, 0,0,&1E,&E1,&ED,&DE,&DE,&C
300 car$=CHR$224 + CHR$225 + CHR$226
310 VDU 23, 227, 0,&77,&42,&72,&12,&12,&72,0
320 VDU 23, 228, 0,&77,&55,&57,&54,&54,&74,0
330 st$=CHR$227 + CHR$228
340 VDU 23, 240, 0,0,0,0,0,0,&38,&FE
350 VDU 23, 241, &3,&F,&3F,&FF,&FF,&FF,&F,1
360 VDU 23, 242, &FF,&FF,&FF,&FF,&FF,&FF,&FF,&FF
370 VDU 23, 243, &C0,&F0,&FC,&FF,&FF,&FF,&F0,&80
380 VDU 23, 244, &3C,&3C,&3C,&3C,&3C,&3C,&7E,&7E
390 tree$=CHR$244 +CHR$8 +CHR$8 +CHR$11 +

CHR$241 +CHR$242 +CHR$243 +
CHR$8 +CHR$8 +CHR$11 + CHR$

400 ENDPROC

410 DEF PROCbackground
420 PROCrocks
430 PRINT TAB(29,3)st$
440 ENDPROC

118

450 DEF PROCrocks
460 GCOL 0 ,3
470 MOVE 0,888
480 DRAW 999,888
490 DRAW 999,200
500 DRAW 1020,300
510 PLOT 85,1060,200
520 DRAW 1100,310
530 PLOT 85,1120,200
540 DRAW 1160,270
550 PLOT 85,1180,200
560 DRAW 1220,350
570 PLOT 85,1220,200
580 ENDPROC

We have moved the car horizontally and vertically in exactly
the same way as we moved words in Section 4.1. There are a
number of other interesting features in this program:

(1) The string 'tree$' has been made up of a combination of
user-defined characters, backspace characters (CHR$ 8)
and 'up' characters (CHR$ 11).

(2) The 'stop' sign consists of two user-defined characters
- we can obtain small letters in modes whose normal
characters are too large.

(3) The crash is simulated by printing the three separate
characters constituting the car at random positions in
a text window drawn round the rocks. The text window is
created by the VDU 28 statement at line 190.

Designing characters on paper is a tedious process and it is
sometimes useful to have a computer program that assists us
in the design process. A listing of such a program appeared
in our earlier book (The BBC micro book: BASIC, Sound and

119

Graphics) and this program (with others) is also available
on cassette. The use of mult-frame character images was
extensively covered in the earlier book and we will not go
into it here. However, we shall be using user defined
characters in various contexts in the rest of this chapter.

' Expl odi ng' t he space f or user - def i ned char act er s
Under normal circumstances, the user can define up to 32 of
his own character shapes for ASCII codes 224 to 255 (&E0 to
&FF). The bit patterns defining the shapes of these
characters are stored by the operating system at store
locations &C00 to &CFF. Actually, codes 128 to 255 all
initially refer to this space, four codes corresponding to
each character shape. For example, once character 224 has
been defined, characters 128, 160 and 192 (&80, &A0 and &C0)
all produce the same shape as character 224. When
constructing large numbers of frames for large multi-
character images, more than 32 new character shapes may need
to be defined. The space used by the operating system for
storing character shapes can be extended or 'exploded' by
using the ccmmand

*FX 20, 1

After this ccxmnand has been obeyed, all the character codes
from 32 up to 255 can be redefined. However, the operating
system stores the bit pattern defining most of these shapes
at the bottom of the storage area that is normally occupied
by the user's BASIC program and the above command must be
issued before any program that uses this facility is loaded.
The system must then be told to load the program above the
space needed for character definitions by changing the value
of the system variable PAGE which contains the address of
the storage location at which the user's BASIC program is
stored. PAGE must be increased by an amount which depends on
the character codes that are going to be redefined.

character codes increase in PAGE
to be defined

128-159 (&80-&9F) no change needed
160-191 (&AO-&BF) PAGE = PAGE + &100
192-223 (&C0-&DF) PAGE = PAGE + &200
224-255 (&E0-&FF) PAGE = PAGE + &300
 32-63 (&20-&BF) PAGE = PAGE + &400
 64-95 (&40-&5F) PAGE = PAGE + &500
96-127 (&60-&9F) PAGE = PAGE + &600

Exer ci ses

1 Add some more sound effects to the car program, for
example a squeal of brakes.

120

2 Add an extra tree in the middle of the car's route
towards the cliff edge. When the car has passed in front
of the tree, the tree trunk will need to be redrawn.

3 Arrange for the 'stop' sign to fall down the cliff with
the car and break up on the rocks.

4.3 Arcade game animation
The really elaborate commercial arcade games are programmed
in assembly code and take anything from two to six man
months to write. Features of the computer that are not
easily accessible to BASIC programmers are employed. Another
important factor is speed. An assembly code program executes
more quickly than its equivalent written in BASIC. This is
because it is generally more efficient and also when a BASIC
program is being executed the interpreter is executed at the
same time. Such speed is important in animated games in
general but particularly so in games where many animated
events are (apparently) taking place simultaneously at
different points on the screen.

As long as we are not too ambitious we can write
interesting games in BASIC, but we must take care that the
techniques we use in our programs are as efficient as
possible. In this section, we shall look at two aspects of
nuch games - keeping track of the status of a number of
moving objects and keeping track of where moving objects are
allowed to go (for example, in a Pacman type maze).

Even if we were going to do serious arcade game
programming in assembly language, we would need techniques
similar to those that we are going to describe, and these
techniques are best introduced in BASIC.

Keeping track of moving objects
Arcade game animation of any complexity usually involves two
representations of the objects being moved. First of all
there is the screen display, which is represented inside the
computer by the contents of the screen memory. A code stored
in the screen memory indicates the colour of the
corresponding pixel on the screen. Such a representation is
not convenient for keeping track of the position and status
of an object such as a spaceship, which would occupy more
than one pixel on the display. We usually have to store
separately additional information about an object: for
example, coordinates, direction of motion, orientation, etc.
It is this information that is repeatedly examined by the
program when deciding what action to take next and the
number of objects that can be handled in a BASIC arcade game
depends on the speed at which this information can be
examined and updated. The choice of representation is often
critical, making the difference between a slow-moving and
uninteresting game, and a fast-moving successful one. We

121

shall illustrate this point with a simple space invader
game.

Moving groups of objects - a fleet of space invaders
There are two approaches to the problem of keeping track of
a number of objects. Where objects are scattered about the
screen, there is no alternative but to store a list of their
coordinates, this list being updated each time the objects
are moved. The number of separate objects that can be
handled quickly enough in this way in a BASIC program is
fairly small.

In the case of a group of objects such as a fleet of
'space invaders' which are moving in unison in a tight
formation, it is often more convenient to handle the group
as if it were a single object. We can use a single string to
represent each row of invaders (or indeed a single string to
represent the whole fleet). Here is a simple introductory
program that moves a small fleet of 'spaceships' backwards
and forwards across the screen, each pass bringing them a
step closer to the bottom of the screen.

10 MODE 5
20 VDU 23,1,0;0;0;0;
30 VDU 23,224,&18,&18,&18,&3C,&7E,&C3,&7E,&3C
40 VDU 23,225,0,&24,&7E,&5A,&7E,&7E,&FF,&C3
50 VDU 23,226,&A5,&FF,&FF,&18,&DB,&99,&FF,0
60 DIM fleet$(3)
70 fleet$(0)=" "+CHR$(224)+" "+CHR$(224)+" "
80 fleet$(1)=" "+CHR$(225)+" "+CHR$(225)+" "+

CHR$(225)+" "+CHR$(225)+" "
90 fleet$(2)=fleet$(1)

100 fleet$(3)=" "+CHR$(226)+" "+CHR$(226)+" "+
CHR$(226)+" "

110 fleetx%=0: fleety%=0:fleetdir%=1
120 PROCprintfleet
130 REPEAT
140 PROCmovefleet
150 UNTIL fleety%=27
160 END

300 DEF PROCprintfleet
310 LOCAL r%
320 FOR r%=0 TO 3
330 COLOUR r% MOD 2 + 1
340 PRINT TAB(fleetx%,fleety%+r%);fleet$(r%)
350 NEXT r%
360 ENDPROC

122

400 DEF PROCmovefleet
410 fleetx%=fleetx%+fleetdir%
420 IF fleetx%>10 OR fleetx%<0 THEN

fleetdir%=-fleetdir% :
fleetx%=fleetx%+fleetdir% :
PRINT TAB(fleetx%,fleety%);" " :
fleety%=fleety%+1

430 PROCprintfleet
440 ENDPROC

Grouping the spaceships into strings in this way makes the
animation considerably more convenient (and faster) than it
would be if the coordinates for each ship were stored
separately and each ship moved in turn.

An interesting alternative to the use of the COLOUR
statement at line 330 would be to include colour control
codes in the strings representing the fleet. For example,
printing the string:

CHR$(17) + CHR$(1)

is exactly equivalent to obeying the statement:

COLOUR 1

(see Appendix 3). Strings like the above could be added to
the start of each row of the fleet.

Removing ships from the fleet
There are various types of arcade games that could be
developed from the previous program. For example, we shall
shortly introduce a 'gunsight' controlled by a user at the
keyboard whose aim is to destroy the invading fleet. If one
of the invaders is destroyed, then clearly it must be
replaced by a space in the string in which it is stored. A
further elaboration appears in games of the 'Galaxian'
family where spaceships are repeatedly selected from the
main fleet to launch an individual attack on the user and
his gun. This involves searching through the fleet to find
such an attacker, deleting it from the fleet and then
keeping a separate record of its subsequent movements.

Changing individual characters in a BASIC string is a
fairly cumbersome process. For example, to remove the second
invader from the third row of the fleet, we could use

fleet$(3) = LEFT$(fleet$(3),4) +" "+ RIGHT$(fleet$(3),4)

As well as being cumbersome, this process is slow - the
whole string is copied as a result of obeying the above
statement. All that really needs to be done is to overwrite
one character in the string and we now introduce an
alternative method of storing a string that makes changing

123

an individual character in tho string easier and quicker.

Indirection operators - $ and ?
The BBC computer store consists of a sequence of numbered
storage locations or 'words' where each word contains one
byte (see Appendix 2). A string simply consists of a
sequence of bytes (character codes) stored in consecutive
words of computer store. When we store a string in a BASIC
string variable, we do not have access to the individual
bytes, except by using the MID$ function. We cannot easily
change one of the characters in the string without copying
the whole string.

An alternative method for storing a string of fixed size is
to allocate a block of storage locations in which we can
store the character codes of our string. We use an ordinary
BASIC variable in which to record the number or 'address' of
the storage location at the start of the block. The block of
store is allocated by a variant of the DIM statement. For
example,

DIM s% 5

allocates a block of store containing 6 locations and stores
the address of the start of the block in the variable 's%'.
For instance, the computer might allocate a block of store
starting at location 4504

4504

4505

4506

4507

4508

4509

Block of store
set aside by
DIM statement

s% 4504

We can now store a string of up to 5 characters in this
block by using, for example:

$ s% = "ASTMS"

The $ operator is called a 'string indirection' operator and
it means that the string is to start in the computer word

124

whose address is held in 's%'. The end of the string is
marked by an additional character code 13.

4504

4505

4506

4507

4508

4509

s% 4504

65

83

84

77

83

13

We can print the string by:

PRINT $ s%

Storing the string in this way allows us to change
Individual characters in the string without copying the rest
of the string. To do this we can use the indirection
operator '?'. The '?' can be used either as a unary operator
or as a binary operator. For example,

PRINT ? s%

would print 65. The '?' causes the computer to refer to the
storage location whose address is the value of 's%'. This
corresponds to the use of PEEK operations in other BASIC
dialects. The same effect could be obtained by

PRINT ? 4504

but it is better not to rely on the computer allocating the
same storage locations every time the program is run. We can
change the first character by

? s% = ASC("B")

which corresponds to the POKE operation in other BASIC
dialects. In order to access the third character in the
string, we could use

PRINT ? (s% + 2)

125

In this case the computer refers to the storage locations
whose address is the value of the expression on follow the
'?'. However, the '?' can be used bn binary operator and the
above is equivalent to

PRINT s% ? 2

Now we can access the ith code in our string by

PRINT s% ? i

and change it by, for example

s% ? i = 32

which sets the ith. character to ASCII code 32 which
represents a space.

The next program illustrates various ways of using the
above facilities.

Shooting down space invaders
This program is the kernel of a space invaders or Galaxian
type program for you to experiment with. The program moves
the same fleet of invaders down the screen and the user at
the keyboard controls a 'gunsight' (a letter A) that moves
left and right at the bottom of the screen. Pressing the
space-bar causes a 'laser' to fire at the invading fleet.

As it stands, it is quite easy to shoot down the invaders,
but there are many ways in which the program could ae
improved. Some of these are suggested as exercises below.
There are a number of important points illustrated in this

126

program and these are explained below.

10 MODE 5
20 VDU 23,1,0;0;0;0;
30 VDU 23,224,&18,&18,&18,&3C,&7E,&C3,&7E,&3C
40 VDU 23,225,0,&24,&7E,&5A,&7E,&7E,&FF,&C3
50 VDU 23,226,&A5,&FF,&FF,&18,&DB,&99,&FF,0
60 DIM fleet$(3)
70 fleet$(0)=" "+CHR$(224)+" "+CHR$(224)+" "
80 fleet$(1)=" "+CHR$(225)+" "+CHR$(225)+" "+

CHR$(225)+" "+CHR$(225)+" "
90 fleet$(2)=fleet$(1)

100 fleet$(3)=" "+CHR$(226)+" "+CHR$(226)+" "+
CHR$(226)+" "

110 DIM f%(3)
120 DIM s% 49
130 $s% = "*********"
140 FOR r%=0 TO 3
150 f%(r%) = s%+(r%+1)*10
160 NEXT
170 PROCinitialise
180 REPEAT
190 PROCgun
200 PROCmovefleet
210 UNTIL fleety%=27 OR invaders=0
220 *FX 12,0
230 MODE 7 : END

300 DEF PROCinitialise
310 *FX 11,5
320 *FX 12,5
330 FOR r%=0 TO 3
340 $f%(r%) = fleet$(r%)
350 NEXT
360 fleetx%=0 : fleety%=0 : fleetdir%=1
370 fdelay%=10 : ftime%=fdelay% : TIME = 0
380 invaders = 13
390 PROCprintfleet
400 gx%=10 : gy%=31 : gun$="A"
410 PRINT TAB(gx%,gy%);gun$;
420 invaders% = 13
430 b$=CHR$(11) + CHR$(11) + "|" + CHR$(8)
440 e$=CHR$(11) + CHR$(11) + " " + CHR$(8)
450 ENDPROC

500 DEF PROCprintfleet
510 LOCAL r%
520 FOR r%=0 TO 3
530 COLOUR r%MOD 2 + 1
540 PRINT TAB(fleetx%, fleety%+r%);$f%(r%)
550 NEXT r%
560 ENDPROC

127

600 DEF PROCmovefleet
610 IF TIME<ftime% THEN ENDPROC
620 ftime% = TIME + fdelay%
630 fleetx%=fleetx%+fleetdir%
640 IF fleetx%>10 OR fleetx%<0 THEN

fleetdir%=-fleetdir% :
fleetx%=fleetx%+fleetdir% :
PRINT TAB(fleetx%,fleety%);" " :
fleety%=fleety%+1

650 PROCprintfleet
660 ENDPROC

700 DEF PROCgun
710 LOCAL k$, nx%
720 k$=INKEY$(0)
730 IF k$=" " THEN PROCfire: ENDPROC

ELSEIF k$="Z" THEN nx%=gx%-1
ELSEIF k$="X" THEN nx%=gx%+1 ELSE ENDPROC

740 IF nx%<0 THEN nx%=0 ELSE IF nx%>18 THEN nx%=18
750 PRINT TAB(gx%,gy%);" "; TAB(nx%,gy%);gun$;
760 gx%=nx%
770 *FX 15,1
780 ENDPROC

800 DEF PROCfire
810 LOCAL r%
820 PROCtesthit
830 PROCtrack(r%,b$)
840 PROCtrack(r%,e$)
850 PRINT TAB(gx%,r%);" ";
860 *FX 15 ,1
870 ENDPROC

900 DEF PROCtesthit
910 LOCAL p%, y%
920 IF gx%<=fleetx% THEN r%=0:ENDPROC
930 IF gx%>fleetx%+7 THEN r%=0:ENDPROC
940 p%=f%(3)+gx%-fleetx%+10 : y%=fleety%+4
950 REPEAT : p%=p%-10 : y%=y%-1
960 UNTIL ?p%>32
970 IF ?p%=42 THEN r%=0: ENDPROC
980 ?p%=32 : invaders=invaders-1 : r%=y%
990 ENDPROC

1000 DEF PROCtrack(r%,s$)
1010 LOCAL y%
1020 PRINT TAB(gx%,gy%);
1030 FOR y%= 29 TO r% STEP -2
1040 PRINT s$;
1050 NEXT y%
1060 ENDPROC

128

As before, the array 'fleet$' contains the strings
representing the complete fleet, but in this program these
strings are copied into a separate block of store for use
during animation. The statement:

120 DIM s% 49

allocates a block of 50 locations and this block is divided
up into 5 sub-blocks. The first string (accessed as '$ s%')
contains 9 stars and the reason for this is explained
shortly. The next four groups of 10 locations each contain
one row of the fleet (9 characters plus character code 13).
The four addresses of these sub-blocks are stored in the
locations of the array f%. Before the attack, the fleet is
copied (by PROCinitialise) into the four sub-blocks. (lines
330 to 350). We can picture the representation of the fleet
as:

s%

9 "*"s

character codes
for first row
of the fleet

second row

third row

fourth row

of the fleet

of the fleet

of the fleet

f% (0)

f% (1)

f% (2)

f% (3)

The movement of the fleet is organised in exactly the same
way as before. the only difference now is that row 'r%' of
the fleet is printed by

540 PRINT TAB(fleetx%,fleety%+r%);$f%(r%)

which tells the computer to print the string contained in
the block of store whose address is contained in f%(r%). One

129

advantage of storing the fleet in this way is that we can
scan rapidly through a sequence of the locations that
contain the fleet by using the '?' operator. The way in
which we have taken advantage of this in the program is in
the check to see whether an invader has been hit when the
'gun' is fired (PROCtesthit).

If the x-coordinate of the gun is within the appropriate
range, we must examine the fleet locations in the line of
fire and find the invader (if any) that is closest to the
gun. PROCtesthit thus calculates an address 10 beyond the
location to be checked in the fourth row of the fleet (at
line 940). By repeatedly subtracting 10 from the address we
examine all the locations of the fleet that are in the line
of fire. The REPEAT loop terminates (line 960) if a location
is found with a character code greater than 32. Thus it
stops when an invader is found, or when it reaches one of
the "*"s (code 42) which were put there for that very
purpose. We can be sure that the loop will terminate at a
"*" even if there are no invaders in the line of fire. Using
a block of markers in this way eliminates the need for an
additional test to see if we have reached the start of the
fleet.

Once PROCtesthit has calculated the range (r%) of the
laser shot, the laser effect is created by very rapidly
printing a column of dashes up the screen and then equally
rapidly deleting them (with spaces). This is done by
PROCtrack called twice by PROCfire.

Another interesting aspect of this program is the way in
which the movement of the fleet has been slowed down. This
has been done in a way that does not create unwanted side
effects on the speed of any other objects being moved by the
program. If, for example, a delay loop was inserted at line
205 this would not only slow the fleet down, but would make
the response to the keys controlling the gunsight very
sluggish. A much better approach is to keep a record of the
next time (ftime%) that the invaders are to be moved and if
this time has not yet ben reached, then PROCmovefleet exits
immediately. When the fleet is moved, 'ftime%' is increased
by 'fdelay%', the time delay that is required between fleet
movements. Changing the value of 'fdelay%' changes the speed
of the fleet without having any effect on the behaviour of
other objects being moved by the program. Of course we
cannot increase the speed of the fleet indefinitely. We are
limited by the speed at which the BASIC interpreter can
cycle through the main loop in the program.

Finally note the way that the command

*FX 15, 1

is used after a key has been processed. This command flushes
any waiting characters that are queued up in the input
buffer and simply avoids a build-up of unprocessed input

130

characters. The other two *FX commands used are

*FX 11, 5
*FX 12, 5

which changes the 'auto-repeat' timings of the keys and
makes them more responsive.

*FX 12, 0

changes the 'auto-repeat' behaviour back to normal. (See the
User Guide for details if you are not familiar with this
facility.)

Exercises
1 As the space invaders program stands, it is quite easy to

shoot down the invaders by holding down the fire button.
Arrange for a forced delay, or 'reload time' after each
firing. The fire button should have no effect during this
period.

2 Structure the program so that it repeats the game after
each player has finished. Record the time taken or
calculate a score for each player and keep a league table
similar to that used in the 'multiplication competition'
(Chapter 1).

3 Experiment with different techniques for creating the
effect of a 'laser shot'. For example, drawing and
deleting a dotted line would be quicker than printing and
deleting a large number of characters. Now try the effect
of obeying the two statements

VDU 19, 0,7, 0,0,0
VDU 19, 0,0, 0,0,0

The instantaneous change of actual background colour from
black to white and back again creates a 'gunflash'
effect.

4 Arrange for an 'explosion' when an invader is hit. The
explosion could be represented by two or three user-
defined characters displayed in quick succession.

5 Arrange for the invaders to send out an occasional
'missile' which drifts down the screen towards the
player's gun, forcing him to take avoiding action.

6 Add sound effects to your program.

131

4.4 Controlling movement within a maze
Many arcade games involve movement that is restricted te
part of the screen. The commonest example of this type of
game is the extremely popular 'Pacman'. Here movement takes
place within a maze. A program controlling such animation
needs to keep a record of which regions of the screen am
prohibited and this record must be kept in such a way that
the program can recognise very quickly that a particular
character position is out of bounds. We could very easily
represent a maze on the screen (in MODE 1 or 4 say) marking
the walls of the maze with one character and the paths with
another. The program could then store a record of the shape
of the maze in a two-dimensional array with one location for
each character position on the area of the screen being
used. (We shall omit the bottom line of the screen from our
maze as this makes it easier to avoid accidental scrolling.)
The array declaration is:

DIM maze%(39, 30)

Each location in this array could contain a value (TRUE or
FALSE say) indicating whether or not the corresponding
character position was part of a path or part of the maze
walls. However, although simple, this representation is
rather wasteful of memory space. It occupies 1240 BASIC
variables, each of which occupies 4 memory locations -
nearly 5K of memory altogether.

A much more appropriate representation for this sort of
information is a bit map where the status of each character
position on the screen is recorded as a single bit. Each
BASIC variable occupies four 8-bit words, 32 bits in all,
and so we can pack the information about one column of
character positions into a single BASIC variable. We can
represent the complete maze by a one-dimensional array:

DIM bitmap%(39)

where each location in this array will contain information
about one column of character positions. This representation
of the maze occupies only 160 bytes of memory - a
considerable saving. Of course, such a saving would lose
some of its value if it slowed down the process of
recognizing the status of a character position on the
screen. However, by careful use of logical operations (see
below) we can avoid too much loss of speed.

Manual construction of maze
We can construct a maze by hand and code it up as a pattern
of ones and zeroes where we use ones to represent the maze
wall, and zeros to represent the paths. For example

132

Remember that one column of the binary representation of the
maze is to to be stored in a single word of our 'bitmap'
array.
We have included a row of zeros corresponding to the bottom
row of the screen which is not used. The easiest way of
inputting the above maze to a program is to code each column
reading from bottom to top in hex (Appendix 2). A pattern of
32 bits can be represented as a group of 8 hexadecimal
digits. Thus 39 8-digit hexadecimal numbers, one for each
column of the maze, can be supplied to a program in DATA
statements. Here is a short program to draw a maze from such
data.

10 MODE 1
20 VDU 23,224,&FF,&FF,&FF,&FF,&FF,&FF,&FF,&FF
30 VDU 23;8202;0;0;0;
40 DIM bitmap%(39),mask%(30)
50 PROCsetmasks
60 PROCdrawmaze
70 K=GET : END

133

80 DEF PROCsetmasks
90 mask%(0)=1

100 FOR m=1 TO 30
110 mask%(m)=mask%(m-1)*2
120 NEXT m
130 ENDPROC

140 DEF PROCdrawmaze
150 LOCAL x,y,path$,wall$
160 path$=" " : wall$=CHR$(224)
170 FOR x=0 TO 39:READ bitmap%(x) :NEXT
180 COLOUR 1
190 FOR y = 0 TO 30
200 FOR x=0 TO 39
210 IF bitmap%(x) AND mask%(y) THEN PRINT wall$;

ELSE PRINT path$;
220 NEXT:NEXT
230 ENDPROC

1000 DATA &7FFFFFFF, &7F707E07, &601743F7, &4ED55800,
 &685557AB, &6B155029, &4FD45FFF, &68D74001,

&6AD47FFD, &62D70001, &7AD7DFAF, &7A9558A1,
&42B55A3D, &5EB40381, &42A5DABF, &7E8FF83B,
&40FFFFE1, &57F4002D, &5015FFA5, &5FF50BB5

1010 DATA &58152895, &4BD5EED5, &5BD40855, &5257FB55,
&5B500255, &4B57FF55, &5B47FD45, &5B7C006D,
&490DFFED, &5D6C0025, &5563FFB5, &557801B5,
&557FFCB5, &554007B5, &501F7635, &57F012E5,
&5FFFF68D, &400006FD, &7FFFFE01, &7FFFFFFF

This program uses a logical AND operation at line 210 to
test whether position x,y in the maze is marked with a 1
sepresenting the maze wall.

Bitmap % (x)

AND

mask % (y)

32 bits

AND

The AND operation ‘masks out’
bit y from bitmap%(x)

0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 ? 0 0 0 0 0 0

134

To do this we need to test whether bitmap%(x) has a 1 in bit
position y. This is done by 'making' bitmap%(x) with a bit-
pittern or 'mask' that contains only a single 1 in position
y and zeros everywhere else. The result of the AND operation
between bitmap%(x) and mask%(y) is non-zero only if there is
a 1 in position y of bitmap%(x).

The array containing the masks needed in the above
operation is initialised by PROCsetmasks which makes use of
the fact that multiplying an integer by 2 corresponds to
shifting the corresponding bit-pattern along one place.

A maze design program
Before we look at the problem of moving objects around
within the maze, here is a program that will make it easier
to design a maze. It starts with a screen full of colour
(the maze wall colour). You can move around the screen with
keys L(eft), R(ight), U(p) and D(own). Switch to path
drawing mode with P, switch to wall drawing mode with W and
switch to nuzve mode (where you can move around without
changing the maze) with M. To set a bit to 1 in the bit map,
the maze design program uses an OR operation with the
appropriate mask and to set a bit tot) in the bit map, an
AND NOT operation is performed. These both appear at line
490. See Appendix 2 for further details on logical
operators.

10 MODE 1
20 VDU 23,224,&FF,&FF,&FF,&FF,&FF,&FF,&FF,&FF
30 VDU 19,2,11,0,0,0
40 VDU 23;8202;0;0;0;
50 DIM bitmap%(39) ,mask%(30)
60 PROCsetmasks
70 PROCconstructmaze
80 MODE 7 :PRINT "10000 DATA &";~bitmap%(0);
90 FOR i=1 TO 19:PRINT ",&";~bitmap%(i);:NEXT

100 PRINT' "10010 DATA &";~bitmap%(20);
110 FOR i=21 TO 39:PRINT ",&";~bitmap%(i);:NEXT
120 PRINT: END
130
140 DEF PROCsetmasks
150 mask%(0)=1
160 FOR m=1 TO 30
170 mask%(m)=mask%(m-1)*2
180 NEXT m
190 ENDPROC

210 DEF PROCconstructmaze
220 COLOUR 129
230 VDU 28,0,30,39,0 : CLS : VDU 28,0,31,39,0
240 COLOUR 128
250 FOR y = 0 TO 39 : bitmap%(y)=&FFFFFFFF : NEXT
260 x=0:y=0:wall=FALSE:moving=TRUE

135

270 star$ = "*" + CHR$(8)
280 wall$ = CHR$(224) + CHR$(8)
290 path$ = " " + CHR$(8)
300 COLOUR 2 :PRINT TAB(x,y);star$; :COLOUR 1
310 REPEAT
320 command$=GET$
330 PROCprocess(command$)
340 UNTIL command$="F"
350 ENDPROC

370 DEF PROCprocess(c$)
380 IF INSTR("LRUDWPM",c$)=0 THEN ENDPROC
390 IF bitmap%(x) ANDmask%(y) THEN PRINT wall$;
400 IF c$="L" THEN IF x>0 THEN x=x-1
410 IF c$="R" THEN IF x<39 THEN x=x+1
420 IF c$="U" THEN IF y>0 THEN y=y-1
430 IF c$="D" THEN IF y<30 THEN y=y+1
440 IF c$="W" THEN wa11=TRUE :moving=FALSE
450 IF c$="P" THEN wal1=FALSE:moving=FALSE
460 IF c$="M" THEN moving=TRUE
470 COLOUR 2:PRINT TAB(x,y); star$;:COLOUR 1
480 IF moving THEN ENDPROC
490 IF wall THEN

bitmap%(x)=bitmap%(x) OR mask%(y)
ELSE bitmap%(x)=bitmap%(x) AND NOT mask%(y)

500 ENDPROC

A maze-running mouse
We now present a program that draws the same maze as before
and controls a mouse as he runs about exploring the maze.

0

1

2

3

CHR$(226)CHR$(228)

CHR$ (225)

CHR$(227)

136

In applications like this, it is often necessary to design
more than one user-defined character for the object being
animated so as to be able to display the object in different
orientations. In this case we have defined four versions of
the mouse pointing in the four different directions in which
he can move. These directions are numbered 0, 1, 2, and 3.

The mouse starts in the middle and its position and
orientation are represented by its x-y coordinates ('mx%',
'my%') and a direction code (mdir%) which is set to 0, 1, 2
or 3.

The program makes the mouse explore the maze by
repeatedly calling PROCmove and it is the definition of this
procedure that determines the mouse's general behaviour. In
the first version of the program (lines 470 to 510), at each
step the mouse takes, this procedure counts in 'n%' the
number of directions in which the mouse can move (excluding
the direction from which it has just come). The possible
directions are listed in the array 'possdir%'. The value of
n% determines the action taken. If n% = 0, then it has
reached a dead end and must turn back the way it came. If n%
= 1 then it moves in that one direction, otherwise it makes
a random choice from the directions available. Note the use
of arrays 'xinc%' and 'yinc%' which are used to quickly
convert direction codes (0, 1, 2 or 3) into x and y
increments for a direction.

0

1

2

3

–1

0

1

0

0

1

0

–1

x inc% y inc%

An attempt has been made to make the behaviour of the
mouse more realistic by inserting time delays at appropriate
points. For example it pauses when it has a choice of
routes. The position and duration of such delays is worth
experimenting with.

10 MODE 1
20 VDU 23,224,&FF,&FF,&FF,&FF,&FF,&FF,&FF,&FF
30 VDU 23,225,&10,&38,&38,&7C,&38,&10,&10,&10
40 VDU 23,226,0,8,&1E,&FF,&1E,8,0,0
50 VDU 23,227,&10,&10,&10,&38,&7C,&38,&38,&10
60 VDU 23,228,0,&10,&78,&FF,&78,&10,0,0
70 VDU 23;8202;0;0;0;
80 DIM bitmap%(39) ,mask%(30)
90 DIM xinc%(3), yinc%(3), possdir%(3)

137

100 xinc%(0)=0 : xinc%(1)=1 : xinc%(2)=0 : xinc%(3)=-1
110 yinc%(0)=-1 : yinc%(1)=0 : yinc%(2)=1 : yinc%(3)=0
120 PROCsetmasks
130 PROCdrawmaze
140 PROCputmouseinmiddle
150 PROCexplore
160 K=GET
170 END

180 DEF PROCsetmasks
190 mask%(0)=1
200 FOR m=1 TO 30
210 mask%(m)=mask%(m-1)*2
220 NEXT m
230 ENDPROC

240 DEF PROCdrawmaze
250 LOCAL x,y,path$,wall$
260 path$=" " : wall$=CHR$(224)
270 FOR x=0 TO 39 :READ bitmap%(x):NEXT
280 COLOUR 1
290 FOR y = 0 TO 30
300 FOR x=0 TO 39
310 IF bitmap%(x) AND mask%(y) THEN PRINT wall$;

ELSE PRINT path$;
320 NEXT:NEXT
330 COLOUR 3
340 ENDPROC

350 DEF PROCputmouseinmiddle
360 mx%=20 : my%=15 : mdir%=0
370 mouse$=CHR$(225)
380 PRINT TAB(mx%,my%); mouse$
390 ENDPROC

400 DEF PROCexplore
410 REPEAT
420 PROCmove
430 UNTIL my%=0
440 ENDPROC

450 DEF PROCmove
160 LOCAL fromdir%,newdir%,n%,d%
170 fromdir% = (mdir%+2) MOD 4
180 n% = 0
190 FOR d%=0 TO 3
500 IF d%<>fromdir% THEN

IF (bitmap%(mx%+xinc%(d%))
AND mask%(my%+yinc%(d%))) = 0
THEN n%=n%+1 : possdir%(n%)=d%

510 NEXT d%

138

520 IF n%=0 THEN newdir%=fromdir%
ELSE IF n%=1 THEN newdir%=possdir%(1)
ELSE PROCdelay(20) : newdir%=possdir%(RND(n%))

530 PROCturn(newdir%)
540 PROCstep
550 ENDPROC

560 DEF PROCturn(d%)
570 IF d%=mdir% THEN ENDPROC
580 mdir%=d% : mouse$=CHR$(225+d%)
590 PRINT TAB(mx%,my%);mouse$;
600 PROCdelay(10)
610 ENDPROC

620 DEF PROCstep
630 LOCAL nx%, ny%
640 nx%=mx%+xinc%(mdir%)
650 ny%=my%+yinc%(mdir%)
660 PRINT TAB(mx% ,my%); " "; TAB(nx%,ny%);mouse$;
670 mx%=nx% : my%=ny%
680 ENDPROC

690 DEF PROCdelay(d)
700 LOCAL t
710 t=TIME+d
720 REPEAT : UNTIL TIME>t
730 ENDPROC

1000 DATA ... as before

The next photograph shows part of the maze in which the area
explored by the mouse has been marked with 'droppings'.

139

A straightforward modification to the program was used to
obtain this display.

74 VDU 23,229,0,0,0,&18,&l8,0,0,0
76 dropping$ = CHR$(229)...

660 PRINT TAB(mx%,my%); dropping$;
TAB(nx%,ny%); mouse$;

We have simply replaced the space used to delete the mouse
when it is being moved by a character consisting of a white
spot.

Marking dead ends
The only use made of the bit map so far is to mark the
position of the walls of the maze. However, we could easily
wake the program extend the prohibited region, while the
program was running, by adding ones to the bit map on paths
that have been found to be dead ends. We recognise a dead
end at line 520 (n% = 0) and can set a variable 'deadend%'
to TRUE. When there is a choice of paths (n% > 1) we can set
deadend%' to FALSE. We then modify PR0Cstep so that if
deadend%' is TRUE, then the square being nxsved from is
marked in the bit map as prohibited. Because 'deadend%'
remains TRUE until a choice of paths is encountered, all
squares down the dead end will be marked on the way out. We
ran also modify the program so that the 'droppings' are left
only in the dead ends.

75 VDU 19,2,2,0,0,0...
520 IF n%=0 THEN deadend% = TRUE:newdir%=fromdir%

ELSEIF n%=1 THEN newdir%=possdir%(1)
ELSE deadend%=FALSE : PROCdelay(20):

newdir%=possdir%(RND(n%))...
630 LOCAL nx%,ny%,dropcol%
635 IF deadend% THEN

bitmap%(mx%) = bitmap%(mx%) OR mask%(my%) :
dropcol%=2

ELSE dropcol%=0...
660 COLOUR dropcol% : PRINT TAB(mx%,my%);dropping$;
661 COLOUR 3 : PRINT TAB(nx%,ny%);mouse$;

140

The spot is now printed in COLOUR 2 to mark dead ends, or in
COLOUR 0 elsewhere. Printing a character in COLOUR 0 (the
background colour) has the same of feet as printing a space.

Exercises

1 Experiment with time delays in the mouse program to make
him appear hesitant in different places.

2 Make the mouse look down each direction that is
recognised as a possibility when he is considering which
way to go.

3 Add sound effects to the mouse program, for example a
'frustrated squeak' when it hits a dead end and an
'excited squeak' if it reaches the exit. (Perhaps the
exit could be made more interesting by adding a a user-
defined character to represent a piece of cheese.)

4 The mouse frequently returns to his 'den' in the centre
after exploring part of the maze. Make him curl up and
sleep in the corner of the den whenever this happens.
(You will need to define one or two characters to
represent a sleeping mouse.)

5 Change the mouse program so that the mouse is controlled
from the keyboard with keys telling it to turn left,
right, up or down. Record the time taken by a user at the
keyboard to find the way out of the maze. (Note that we
have defined PROCdelay in such a way that it does not
alter the variable TIME.)

141

4.5 Animating line drawings
Up to now we have looked at animation using characters and
this is the most commonly used mechanism in microcomputer
animation. It has spawned a vast industry of computer games,
and such character animation techniques must be the moat
commonly viewed computer image. In many applications,
however, the use of character animation is inconvenient and
we may wish to compose 'frames' of an animated sequence by
drawing lines. This may be because we wish to animate a
sequence that is mathematically defined (the cross section
of a piston engine driving a crankshaft, for example), or
because we want to animate using frames that have been drawn
by hand on a graphics tablet. In either case the source
material will be a list of coordinates and the most
convenient tool to deal with a list of coordinates is the
PLOT statement.

When film cartoons are made by hand, animated effects are
created by drawing and photographing a large number of
frames which are then displayed by a projector at a speed
that gives the impression of continuous movement.

Computer animation packages now exist that help the
cartoon artist to create animated films. Such a package
typically includes programs that help the artist to design
scenes from the film, using commands for interactively
drawing lines and colouring regions. An animation package
also includes programs for carrying out tasks such as 'in-
betweening', a tedious and time-consuming job carried out by
the 'in-betweeners' or junior artists of the cartoon film
industry. Here, the main frames of a film are created on the
screen by an artist and the hundreds of in-between frames
that bridge the gaps between the main frames are generated
by the animation package, each frame being photographed as
it is created.

If you have the facilities for making films and wish to
use your BBC micro for creating cartoons, then the full
power of the graphics facilities can be used in drawing each
frame of the film. The time taken to change the image on the
screen is not critical as each frame of the film will be
photographed only when the changes on the screen are
complete. It can take many hours of program runs to create a
few seconds of film in this way.

In this section we will look at techniques for animating
tine drawings. Although the graphics facilities on the BBC
micro are extremely powerful and versatile, they are
generally too slow for the animation of large objects drawn
with line drawing and colour fill facilities. However, line
drawings such as simple stick figures can be fairly
successfully animated in real time.

142

Frames for animating a stick man
In order to animate a line drawing we need to draw a
sequence of separate frames representing the object in
different stages of movement. There are many ways in which
these frames could be presented to the computer, but, in our
Illustrative example of line drawing animation, we shall
present each frame in the form of a DATA statement
vontaining a list of coordinates that describe a stick man.
We shall animate the man so that he appears to walk across
the screen. The frames that we shall use are displayed
simultaneously in the first photograph.

There are in fact only five different frames, which are
displayed repeatedly. In the interests of brevity, we have
omitted the arms. We will create the required walking effect
by displaying and then deleting successive representations
of the man, each one being displayed a little further across
the screen than the previous one. Note that the vertical
height of the head varies depending on the way in which the
legs are bent. This effect is exaggerated in the second
photograph and such exaggeration could be used to put more
of a 'spring' in his step.

Representing frames for stick figures
The DATA statement for a frame will contain 9 values. The
first is a y-increment to give the rise and fall of the body
from frame to frame. The back is always in the same
orientation and so it need not be specified for each frame.
The next 8 values in a frame DATA statement represent four
x-y pairs. These are

(1) the coordinates of the first knee relative to the top
of the leg,

(2) the coordinates of the first foot relative to the first
knee,

(3) the coordinates of the second knee relative to the top

143

of the leg, and

(4) the coordinates of the second foot relative to the
second knee.

We use the following nomenclature:

2 user - defined
characters for head 64

200

f1y

f1x

k1y

k2x

f2x

f2y

k2y

k1x

y inc

In the program, values representing the five frames will
be stored in parallel arrays, where the frames are numbered
0 to 4. The 'yinc' values for a frame is not stored but is
used to calculate a y-coordinate for starting to draw the
frame and a y-coordinate for the top of the legs. It is
these two values that are stored along with the other
coordinates £ran the DATA statement for a frame. The head is

144

drawn by printing two user-defined characters. We use the
VDU 5 statement to arrange that characters are printed at
the current graphics position.

Designing frames for stick figures
When calculating coordinates for stick figures, it is
necessary to bear in mind that distances between joints
shuld not vary from frame to frame. The possible knee
coordinates relative to the top of the leg were constructed
by marking the top of the leg on a piece of graph paper and
using that point as the centre of a circle whose radius was
the distance from the top of the leg to the knee.

Possible foot positions
for a given knee position
on this arc (1 used for
every knee position)

Top of leg

Possible knee positions
on this arc (5 used)

Associated with each knee position is a set of possible foot
positions. These can also be obtained by drawing a circle of
appropriate radius centred on the required knee position.

Animation by repeated deleting and drawing
Here is a first attempt at a program that makes the stick
man walk across the screen. It works by repeatedly deleting
and redrawing the man. Deletion is achieved by 'drawing' in
the background colour. The flickering effect which is the
main drawback of this program will be rectified shortly.

10 DIM k1x%(4), k1y%(4), f1x%(4), f1y%(4),
k2x%(4), k2y%(4), f2x%(4), f2y%(4),
hy%(4), ly%(4)

20 y% =600
30 FOR f=0 TO 4
40 READ yinc%, k1x%(f), k1y%(f), f1x%(f), f1y%(f),

k2x%(f), k2y%(f), f2x%(f), f2y%(f)
50 hy%(f)=y%+yinc% : ly%(f)=hy%(f)-264
60 NEXT f

145

70 VDU 23,224,0,0,0,0,&FF,&81,&81,&81
80 VDU 23,225,&81,&81,&81,&81,&81,&81,&81,&FF
90 head$=CHR$(224)+CHR$(8)+CHR$(10)+CHR$(225)

100 MODE 1 : VDU 5
110 x%=16 : xinc%=16
120 frame%=0
130 PROCdrawman(0,x%,0,3)

140 REPEAT
150 nx%=x%+xinc%
160 PROCdrawman(frame%,x%,0,0)
170 frame%=(frame%+1) MOD 5
180 PROCdrawman(frame%,nx%,0,3)
190 x%=nx%
200 UNTIL x%>1200
210 VDU 4
220 MODE 7
230 END

300 DEF PROCdrawman(f%,x%,l%,c%)
310 LOCAL ly%
320 GCOL l%,c%
330 MOVE x%-16,hy%(f%)
340 PRINT head$; : PLOT 0,-16,-32
350 DRAW x%,ly%(f%)
360 PLOT 1,k1x%(f%),k1y%(f%) :

PLOT 1,f1x%(f%),f1y%(f%)
370 MOVE x%,ly%(f%)
380 PLOT 1,k2x%(f%),k2y%(f%) :

PLOT 1,f2x%(f%),f2y%(f%)
390 ENDPROC

1000 DATA -10,40,-92, -8,-98,-10,-99,-50,-90
1010 DATA -14,50,-86,0,-100,-20,-98,-70,-68
1020 DATA -6,25,-97,-25,-97,-20,-98,-70,-68
1030 DATA 0,0,-100,0,-100,-8,-100,-20,-95
1040 DATA 0,25,-97,-25,-97,0,-100,0,-100

The man is drawn (or deleted) by PROCdrawman which accesses
one of the sets of values stored in the 'frame arrays'. The
first parameter of the procedure selects the frame to be
drawn. The second parameter specifies the x-coordinate (the
y-coordinate is stored as part of the frame). The remaining
two parameters specify the logical plotting operation and
colour code to be used in drawing the man. In this program,
the colour is either 3 (for draw) or 0 (for delete). The
logical plotting operation is always 0, but this parameter
is needed in the next version of the program.

146

Image plane switching
The flickering effect exhibited by tho above program was due
In the fact that we could see the man being erased and
rvdrawn. In order to eliminate this flickering effect, we
noed to arrange for the erasing and redrawing process to
take place invisibly. To do this, we need to work with two
neparate 'image planes' and display one plane on the screen
while the erasing and redrawing process is being carried out
In the other plane.

In MODE 1, the colour of each pixel is coded as a two-bit
number. We saw in Chapter 2 that, instead of treating the
screen as a single image plane in which each pixel is one of
four colours, we can treat it as two separate image planes
In which each pixel is one of two colours. In each MODE 1
pixel, one of the two bits is taken to represent the colour
of a pixel in one plane and the other bit is taken to
represent the colour of the corresponding pixel in the other
plane. The alternative significance of each two-bit colour
code is given by the following table:

Single image plane Two separate image planes

colour code bit pattern plane 1 plane 2
0 00 0 0
1 01 1 0
2 10 0 1
3 11 1 1

To switch between planes 1 and 2, we use VDU 19 statements
to associate different combinations of actual colours with
our four colour codes. For example, if we want 0 to be the
background colour code and 1 to be the foreground colour
code in each of planes 1 and 2, then we can selectively
display one of the two planes by selecting one of the two
actual colour combinations given in the following table:

Colour code Actual colour settings

plane 1 displayed plane 2 displayed
plane 2 hidden plane 1 hidden

0 background background
1 foreground background
2 background foreground
3 foreground foreground

If we are using the same background and foreground colours
in plane 1 as in plane 2, colour code 0 is always set to the
background colour and colour code 3 is always set to the
foreground. If the background colour is black and the
foreground colour is white, then the colour codes 0 and 3
are correctly initialised in MODE 1. To switch plane 1 on

147

and plane 2 off, we need only use:

VDU 19, 1,7, 0,0,0
VDU 19, 2,0, 0,0,0

and to switch plane 1 off and plane 2 on, we use

VDU 19, 1,0, 0,0,0
VDU 19, 2,7, 0,0,0

A new shape can be plotted in plane 1 by preceding the
plotting instructions by

GCOL 1,1

A shape can be erased from plane 1 by replotting it after

GCOL 2,2

(see Chapter 2). Similarly, a shape can plotted in plane 2
by preceding the plotting instructions by

GCOL 1,2

and erased by redrawing the shape after

GCOL 2,1

The following is an outline of how we use the above
technique to conceal the deleting and redrawing process
while an object is being moved about the screen:

Set x,y to the initial position of the object
Switch plane 1 on, plane 2 off
Draw first fraurs in plane 1

REPEAT
Calculate newx,newy
Draw next frame at newx,newy in off plane
Switch planes
Erase frame at position x,y in plane that is now off
x=newx : y=newy

UNTIL final position reached

The next program fills in the details needed to make our man
walk across the screen. Note that the speed at which the man
walks can be varied by changing the x-increment (xinc%)
between frames. (For very fast or slow motion, it may be
necessary to change the stride length in the 5 basic frames
used.) An alternative way of slowing him down is, of course,
to insert a delay loop.

148

.

.

.
110 x$=16 : xinc%=16
120 frame%=0
130 PROCswitchon(1)
140 PROCdrawman(0,x%,1,on%)
150 REPEAT
160 nx%=x%+xinc% : nf% = (frame%+1) MOD 5
170 PROCdrawman(nf%,nx%,1,off%)

: REM hidden draw in new position
180 PROCswitchon(off%)
190 PROCdrawman(frame%,x%,2,on%)

: REM hidden delete in off frame!
200 x% = nx% : frame% = nf%
210 UNTIL x%>1200
220 VDU 4
230 k=GET : MODE 7
240 END

300 DEF PROCdrawman(f%,x%,l%,c%)..
as before..

390 ENDPROC

400 DEF PR0Cswitchon(screen%)
410 on% = screen% : off% = 3-on%
420 VDU 19, on%, 7, 0,0,0
430 VDU 19, off%,0, 0,0,0
440 ENDPROC...

Exercises
1 Extend The DATA statements used to represent the frames

for our stick man so that arm positions can be specified.
Extend PROCdrawman accordingly.

2 Add feet to the stick man.

3 Multiply the y-increment values by a 'bounce factor' and
experinment with the effects obtained.

4 Give the man a dog on a lead.

5 Assign a set of frames for a stick-horse and make it
walk, trot or gallop across the screen.

149

4.6 Palette changing
The 'palette' of actual colours associated with the colour
codes for a mode can be changed instantaneously with the VDU
19 statement and we have already used this statement in
several programs in this chapter as well as in Chapter 2. In
'The BBC Micro Book' we demonstrated how palette changing
could be used to animate, spinning disks, for example. We
finish the present chapter with a further demonstration of
the use of this technique to create the illusion of
movement. We shall use the same stick man as we used in the
last section, but this time we shall create an army of stick
men marching across the screen. To produce this effect, we
need to have available a colour for each different frame
well as a background colour. In this case, we need at least
six colours and we must therefore run the program in MODE 2.
(This causes a slight change in the shape of the man because
af the different resolution.)

The program starts by setting colours 0 to 5 to black,
selecting colour 5 as the background colour (GCOL 0, 133)
and clearing the screen. The program then cycles frames 0 to
1 as before, drawing them at success positions on the
screen, but this time frame 0 is drawn in colour 0, frame 1
in colour 1 and so on. At this stage the men are invisible.
The animation effect is now created by cycling through the
colours 0 to 4, at each step using VDU 19 statements to
switch the previous colour to black and the next colour to
white. This creates the impression that a succession of men
is continually marching across the screen.

. ..
70 VDU 23,224,0,0,0,0,&F,9,9,9
80 VDU 23,225,9,9,9,9,9,9,9,&F
90 head$=CHR$(224)+CHR$(8)+CHR$(10)+CHR$(225)

100 MODE 2 : VDU 5
110 x%=16 : xinc%=48
120 FOR c=0 TO 5:VDU 19,c,0,0,0,0:NEXT
130 GCOL 0,133 : CLG

140 frame%=0
150 REPEAT
160 PROCdrawman(frame%,x%,0,frame%)
170 frame%=(frame%+1) MOD 5
180 x%=x%+xinc%
190 UNTIL x%>1220

150

200 frame%=0
210 REPEAT
220 nf%=(frame%+1) MOD 5
230 VDU 19,frame%,0,0,0,0
240 VDU 19,nf%,7,0,0,0
250 PROCdelay(10)
260 frame%=nf%
270 UNTIL INKEY$(0)=" "
280 VDU 4 : K=GET : MODE 7 : END

300 DEF PROCdrawman(f%,x%,l%,c%)..
as before..

390 ENDPROC

400 DEF PROCdelay(d)
410 LOCAL t
420 t=TIME+d
430 REPEAT : UNTIL TIME>t
440 ENDPROC

..
DATA as before..

Exercises

1 Create the effect of a bouncing ball by drawing a number
of balls in different vertical positions (non-
overlapping) and in different colours, and then using
palette changing.

2 Create the effect of a rotating sphere by first drawing a
circle and then drawing lines of longitude in different
colours. Then use palette changing to reveal each line of
longitude in turn.

151

