107
Chapter 4 Animation techniques

The conmonest aninmation technique that you are likely to use
on your BBC nmicro will be character animation, where objects
are noved about the screen by printing and reprinting
characters. In any of the graphics nodes, a character shape
can be displayed by a PRINT statenent in considerably |ess
time than It would take to draw the sane shape using
graphi cs commands. This is because of the fast techniques
used to fill the area of the screen nenory that is to be
occupi ed by the character. In MODE 7, character printing is
even faster than in the graphics nodes.

We shall see later in the chapter how to define our own
character shapes but for the tinme being, the objects being
nmoved will be strings of standard characters. Such sinple
ani mati on of words and nunbers is a powerful tool in
comput er - assi sted | earning systens as we shall denonstrate
shortly.

Al t hough the use of DRAWand PLOT facilities for
nnimation is limted by |ack of speed, towards the end of
the chapter we shall |ook into techniques for the ani nation
of sinple line drawi ngs such as stick figures.

4.1 Word ani mation and conputer-assisted | earning

Di spl ayi ng character information on a screen in a way that
is interesting and informative finds applications in many
branches of interactive conmputing. Currently one of the nore
exotic of these is to replace the conventiona
el ectronmechani cal instrunentation in |arge conpl ex passenger
aircraft with a single ani mated conputer display.

Here as a case study of word animation we | ook at
animating the control flowin a program of reasonable
conpl exity. Explaining to soneone how a conplicated program
wor ks has al ways been a problem and in this section, we
| ook at ways of animating a character display to bring a
programmi ng technique to life. The techni que we shall
animate is a sinple sort nethod. Sorting techni ques are
di scussed in Chapter 6, but here we use one of the sinplest
approaches to sorting a list into order - a sinple exchange
sort. The programthat we wish to animate is presented
first. It reads ten items into an array from DATA statenents
and sorts the items into order. We could think of the data
as representing, say, a sinple stocklist. Each itemis a

108

string consisting of a character (a 'departnent code)
followed by a 3-digit integer (a 'stock nunber'). The itens
are sorted in the array so that the nunbers are In ascending
nureri cal order.

100 noofitens=10

110 DIMitens(noofitemns)

120 PRCCset upt abl e

130 PROCexchsort

140 FOR i=1 TO noofitens: PRINT iten®(i):NEXT
150 END

200 DEF PRCCset upt abl e
210 LOCAL i

220 FOR i =1 TO noofitens
230 READ i t enss(i)

240 NEXT |

250 DATA G 291, D 251, H 123, C 243
260 DATA C 523, L 145, H 391, L 265
270 DATA H 367, H 443

280 ENDPROC

300 DEF PROCexchsort
310 LOCAL i, posnsnal | est

320 FORi =1 TO noofitens-1

330 PROCf i ndsmal | estentryfron(i)
340 PROCswop(i, posnsmall est)
350 NEXT i

360 ENDPROCC

400 DEF PROCfindsnall estentryfron(i)

410 LOCAL next

420 posnsmallest =i

430 FOR next = i+1 TO noofitens

440 |F RIGHT$(itent(next), 3)
< RIGHT$(iten(posnsnal | est), 3)
THEN posnsnmal | est =next

450 NEXT next

460 ENDPROC

500 DEF PROCswop(k, 1)

510 LOCAL tenp$

520 temp$=itend(k):itenB(k)=itenB(1l):itend(l)=tenmp$
530 ENDPROC

VWhat we shall do nowis nodify the programso that while
the contents of the array are being sorted, the contents of
the array are al so di splayed on the screen, and val ues bei ng
noved around in store are al so noved around on the screen.

The initial layout of the display that we shall use is
illustrated in the first photograph.

109

Exchange Sort

1}
H
C
L
H
L
H
H

The programwi Il run in MODE 7 using Tel etext codes to
obtain colour effects and Tel etext graphics characters to
draw t he boxes. (For a summary of these codes, see Appendi X
A. For further information on Tel etext consult the User
Quide.) Note that a Tel etext colour or graphics effect is
otained by 'printing' a special character code just before
the characters that are to be affected. These special codes
appear on the screen as spaces. Their effect lasts only for
the line on which they appear. W assume that these codes
have been given names at the start of our ani mation program

10 red$=CHR$(129) : green$=CHR$(130)
20 yel | ow=CHR$(131) : whi t e$=CHR$(135)
30 bl ue$=CHR$(132): cyan$=CHR$(134)
40 gh$=CHR$(148) : flash$=CHR$(136)

where 'gb$' stands for 'graphics blue code'. The other codes
will be used for changing the colours of words on the
screen, so as to draw attention to them during ani mation.
For exanple a common technique to aninmate a scan through a
list is to display the Iist and change the col our of each
Itemto a highlight colour and back again. The highlight
col our then appears to nove down the |ist.

The array 'iten$' and the variable 'tenp$ together with
their contents are initially displayed by PROCset updi spl ay.

600 DEF PROCset updi spl ay

610 LOCAL y

620 CLS

630 VDU 23;8202; 0; 0; O;

640 mdx= 16 : leftx=3

650 basey=(24-noofitens) DV 2

660 tempx=30 : tenpy = basey + noofitens DV 2

110

670 PRI NT TAB(Il eftx, basey-1); bl ue$;"itens"
680 PRI NT TAB(tenpx,tenpy-2); bl ue$;"tenp”

690 PRI NT TAB(tenpx-2,tenpy-1);gb$;:"h,,,,,,,4";
700 PROCbar s(tenpx,tenpy)

710 PRINT TAB(tenpx-2,tenpy+1);gb$;"*,,,,,,. %
720 PRINT TAB(!|eftx-2, basey);gb$;"h,,,,,,,4";

730 FOR y=1 TO noofitens

740 PROCdi spl ayrec(y, white$)

750 NEXT y

760 PRI NT TAB(I| eftx-2, basey+noofitens+1) ;
ghs; "*,,,,,,. %W

770 ENDPROC

800 DEF PROCbars(x,y)
810 PRI NT TAB(x-2,y);gb$;"j"; TAB(x+6,y); gh$; " 5"
820 ENDPROC

840 DEF PROCdi spl ayrec(r, c$)
850 PRI NT TAB(| ef t x- 2, basey+r) :

gb$; "j"; c$%; itend(r); gb$; "5"
860 ENDPRCC

In order to animate our sort nethod, we nust nove a
string in our display whenever it is noved in store. To do
this, we shall use a procedure PROCrove call ed in PROCswop.

500 DEF PROCswop(Kk, 1)

510 LOCAL tenp$

512 LOCAL sk$,sl $

514 sk$=yel | ows+i tenb(k) : sl $=yel |l ons+i tens(l)

520 tenmp$=itent(k):itenb(k)=itenb(l):itenb(l)=tenmp$
522 PROCnove(sk$, | ef t x, basey+k, t enpx, t enpy)

524 PROCnove(sl $, | ef t x, basey+l , | ef t x, basey+k)

526 PROCnove(sk$, t enpx, t empy, | ef t x, basey+l)

530 ENDPRCC

PROCrove requires 5 parameters. The first pararaneter is
the string that is to be noved on the screen. W have
arranged for the noving string to be highlighted in yell ow
by including a yellow control code in the string when the
procedure is called, the next two are the coordi nates of the
start position of the string (where it is already displayed)
and the final two paraneters are the coordi nates of the
final position of the string.

The nbst convenient way to arrange for the novenent of
strings in this type of animation is to establish a highway
in the centre of the screen and break all moverments down
into three stages: horizontal, vertical and horizontal
agai n. The second photograph shows a string in the process
of moving up the central highway. In detail, we nust:

111

(1) Move the string horizontally on to the central
(vertical) highway.

(2) Move the string up or down the highway to its final
vertical position.

(3) Mve the string horizontally into its final position.

Thi s approach elimnates the problem of calcul ating
"trajectories' for the novenent between two points and al so
elimnates the possibility of a noving string w ping out
other information that is already on the screen.

Here is the definition of PROCnhove together with
subsi di ary procedures for horizontal and vertical movement.
PROChars is used for restoring the bars at the sides of the
array or variable when they have been w ped out by a string
nmovi ng horizontally into or out of one of the boxes.

900 DEF PROCnove(s$, x1,y1l, x2,y2)
910 LOCAL x,y,xdir,ydir
920 xdir = SGN(m dx-x1)
930 FOR x=x1 TO mi dx-xdir STEP xdir
940 PROCst epx(s$, x, y1, xdir)
950 NEXT x
960 PROCbhar s(x1, y1)
970 | F yl<>y2 THEN ydir=SG\(y2-y1) :
FOR y=yl1 TO y2-ydir STEP ydir
PROCst epy(s$, mi dx, y, ydir)
NEXT 'y
980 xdir = SGN(x2-ni dx)
990 FOR x = midx TO x2-xdir STEP xdir
1000 PRCCst epx(s$, x, y2, xdir)
1010 NEXT x
1020 PROChar s(x2, y2)
1030 ENDPROC

1040 DEF PRCCst epx(s$, x,y, xdir)

1050 PRI NT TAB(x+xdir-1,y);" ";s$" ";
1060 PROCdel ay(1)
1070 ENDPROC

1080 DEF PROCst epy(s$, x,y, ydir)

1090 PRI NT TAB(X,Y):" " TAB(X, y+ydir); s$;
1100 PROCdel ay(1)

1110 ENDPROC

1120 DEF PROCdel ay(d)
1130 LOCAL t

1140 t=TI ME+d

1150 REPEAT: UNTI L TI ME>t
1160 ENDPROC

112

The vertical and horizontal novenent procedures each require
a paraneter indicating the direction of the novenent. For
exanple in the caae of PROCstepx, the paraneter 'xdir' will
have the value 1 for novenent fromleft to right and -1 for
movenment fromright to left.

We can further inprove the instructive value of the
di spl ay by addi ng text explaining what is happening during
the sort and by highlighting information in the array in
different colours to signify its status as the sort
proceeds. For exanple, once a value has been noved to its
correct position, we can highlight it in red. Here are
PROCexchsort and PROCfi ndsnal |l estentryfromrewitten to use
these facilities.

300 DEF PROCexchsort
310 LOCAL i, posnsnal | est
315 PROCheadi ng(" Exchange Sort™")

320 FORi =1 TO noofitens-1

325 go=CET: PROCexpl ai n("Fi nd next smallest")

330 PROCf i ndsnal | estentryfron(i)

335 go=CET: PROCexpl ai n("Swop with correct position"
340 PROCswop(i, posnsmall est)

345 PROCcol ourrec(posnsnal | est, white$)

346 PROCcol ourrec(i,red$)

350 NEXT i

355 go=CET: PROCexpl ai n("Sort conpl et ed")
356 PRCCcol ourrec(noofitens ,red$): go=CGET
360 ENDPRCC

400 DEF PROCfindsnall estentryfron(i)

410 LOCAL next

420 posnsnal | est = i

425 PRCCcol ourrec(posnsmal | est, yel | ow$)

430 FOR next = i+1 TO noofitens

435 PROCcol ourrec(next, green$) : PROCdel ay(10)

436 PROCcol our r ec(next, whi t e$)

440 | F R GHT$(iten(next), 3)
< RICGHT$(itenB(posnsmall est), 3)

THEN PROCcol ourrec (posnsnall est, white$)

posnsnal | est =next :
PROCcolourrec(next, yel | ow$)

450 NEXT next

460 ENDPROC

PROCheadi ng and PROCexpl ain position a given string in an
appropriate place on the screen and PROCcol our sinply prints
the required colour code before a string at the position
speci fi ed.

1200 DEF PRCCheadi ng(s$)
1210 PRI NT TAB(13,1);white$;s$
1220 ENDPROC

1230 DEF PRCCexpl ai n(s$)
1240 LOCAL spaces

113

1250 PRI NT TAB(! ef t x+8, basey+noofitens+l); white$;s$;

1260 spaces = 30-1eftx-LEN(s$)
1270 PRI NT STRI NGH(spaces,"” ");
1280 ENDPROC

1290 DEF PROCcol ourrec(r, c9)
1300 PRI NT TAB(| eft x, basey+r);c$
1310 ENDPROC

Any sort algorithmcan be animated using this techni que and

the follow ng procedure ani mates a bubble sort. Again this
sort nmethod is explained fully in Chapter 6.
1400 DEF PROCbubbl e
1410 LOCAL i, | ast
1420 PROCheadi ng(" Si npl e bubbl e sort")
1430 FOR [ast = noofitems TO 2 STEP -1
1440 go=CET
1450 PROCcol ourrec(1, yel | ow$)
1460 PROCexpl ai n("Bubbl e scan")
1470 FORi =2 TO | ast
1480 PROCcolourrec(i, yel |l ow$)
1490 IF RIGHTS$(itent(i),3) < BIGHT$(itent(i-1), 3)
THEN PROCswop(i,i-1)
ELSE PROCdel ay(10)
1500 PROCcol ourrec(i-1,white$)
1510 NEXT i
1520 PROCcol ourrec(l ast, red$)
1530 PRQCexpl ai n("Last "+STR$(noofitemns-|ast+1)+
" now in position")
1540 NEXT | ast
1550 go=CET
1560 PRCCcol ourrec(1,red$)
1570 PROCexpl ai n("Sort conpl eted")
1580 go=CET
1590 ENDPROC
Exerci ses
1 Design an aninmated sequence to illustrate the behaviour

of the BASI C st at enent

y=x

114

The sequence should stress the fact that the contents of

'y' are not changed, but are copied into 'x'.

2 Animate the sequence of BASIC statenent s for exchange
the contents of two variabl es

tenp
X

y = tenp

3 When you have read Chapter 6, aninmate sone of the
techni ques described there; for exanple, sifting sort,
bi nary search, hash table access and so on

< X

4.2 User-defined characters

In nodes O, I, 2, 4 and 5, the screen is divided up into a
nunber of 'pixels'. For exanple, in nobdes 1 and 4, there are
320x256 pi xel s.

In nodes 3 and 6, the screen is divided into horizontal
strips of pixels which are separated by strips of background
colour. Each strip is 8 pixels deep

In any of nodes O to 6, printing a character has the
effect of filling an 8x8 group of pixels with a pattern of
foreground and background col our. For exanple, the pattern
for "A" is:

Al so associated with each character is an ASCI| code nunber
in the range Oto 255. This code is used inside the conputer
to refer to the character. The ASCI| code for "A" is 65
When the character whose code nunmber is 65 is to be
di spl ayed on the screen by a PRINT statenment, the above
pattern of foreground and background colour is inserted into
the screen nenory where information is stored about what is
currently displayed on the screen

The user is normally free to define the character shapes
that are associated with ASCI|I code nunbers 224 to 255, and
this is particularly useful when creating shapes for use in

115

animation. In fact, on Ister versions of the operating
system (OS 1.2 onwards), it is possible for the user to
define shapes for a much greater range of ASCI| codes. W
shal |l explain howto do this shortly.

Once a new character shape has been defined, it can be
di spl ayed on the screen at the same speed as the predefined
characters that we have used so far in this chapter.

The use of user-defined character shapes has two
advant ages over the use of PLOT instructions to draw shapes.
Firstly, as we have already seen, a character shape is
di sl ayed on the screen at a nmuch greater speed than can be
achi eved by using PLOT facilities. Secondly, the sequence of
PLOT statenents needed to draw a conpl ex shape such as a
spaceshi p woul d be rather |engthy.

Si ngl e character shapes

Let us denonstrate the process of defining new character
shapes by defining some Geek letters. These could be usefu
to a scientist or a mathematici an wi shing to display

mut hemati cal equations. The shape required for alpha is

Note that in MODES 2 and 5, a pixel (and therefore a
character) is elongated horizontally. Each row in the 8x8
pattern can be viewed as a byte (eight bits - see Appendi x
2), and each byte can be witten as an integer in the range
0 to 255. Thus the above pattern can be described as a |ist
of 8 bytes or a list of 8 integers:

byt es i nt egers
00000000 0
00000000 0
00100010 34
01010100 84
01001000 72
01010100 84
00100010 34
00000000 0

A byte can also be witten in the formof two hexadeci nmal

116

digits. Four bits correspond to one hexadecinmal digit as
described in Appendi x 2. Because of this correspondence, it
is usually easier to wite a pattern of 8 bits in hex than
to convert it into an integer:

byt es hex
00000000 0
00000000 0
00100010 822
01010100 &54
01001000 &48
01010100 &54
00100010 &22
00000000 0

In order to define our new character shape, we nust choose
the ASCI|I code that we are going to use for the character
and we nust then cal cul ate the sequence of 8 integers (in
deci mal or hex) that describes its shape. The ASCI|I code is
associ ated with the required shape by using the VDU 23
command. For exanple, if we want ASCI| character nunber 224
to appear on the screen as the above shape, we can use

10 VDU 23, 224, 0, 0, &22, &54, &48, &54, &2, 0

W coul d equal Iy describe the shape by witing the bytes in
deci mal :

10 VDU 23, 224, 0, 0, 34, 84, 72, 84, 34, O

We can display this character in the centre of the screen
in MODE 4 by:

20 MODE 4
30 PRINT TAB(20, 10); CHR$(224)

or by:

20 al pha$ =CHR$(224)
30 PRINT TAB(20, 10); al pha$

or we can incorporate it in strings:

20 al pha$ = CHR$(224)

30 particle$ = al pha$ + "—particle”

40 ray$ = al pha$ + "—ray"

50 PRINT ray$; "s consist of a streamof";
particle$; "s."

117

Here are sone further VDU 23 statenents for defining the
next three letters in the G eek al phabet.

20 VDU 23, 225, 0, 0, &lE, &12, &3C, &24, &7C, &40
30 VDU 23, 226, 0, 0, &42, &24, &18, &24, &24, &18
40 VDU 23, 227, &C, &10, &10, &8, &3C, &44, &38, 0

Conposite character shapes

We can build up bigger objects by defining a nunber of

di fferent character shapes that can be printed together to
make up the overall shape of the object. For exanple, let us
define a vintage car for use in MODE 1 or 4. W use a row of
three characters for the basic car shape

The three characters required are defined by the bit
patterns:

00000000 01001000 00000000
11111100 01000100 00000000
11111110 11100100 00011110
10000111 11111111 11100001
10110111 11111111 11101101
01111011 11111111 11011110
01111000 00000011 11011110
00110000 00000000 00001100

Here is a programthat uses these characters together with
sone ot her groups of user-defined characters.

118

10
20
30
40
50
60
70

80
90
100
110
120

130
140
150
160
170

180
190
200
210
220
230
240
250

260
270
280
290
300
310
320
330
340
350
360
370
380
390

400

410
420
430
440

MODE 1 : VDU 23; 8202; 0; 0; 0;
vDU 19,2,2,0,0,0
PROCdef i neshapes

PROCbackgr ound
COLOUR 2 : PRINT TAB(1,3)tree$
y=3

COLOUR 1 : PRINT TAB(2,y)car$

FOR x=2 TO 31
SOUND 0, -10,6,1 : SOUND O, -11,7,1
TIME=0 : REPEAT: UNTIL TI ME>10

COLOURL : PRINT TAB(X,y)" ";car$

NEXT X

x=32
FOR y=4 TO 22
PRINT TAB(X,y-1)" "
PRI NT TAB(x,y)car$
NEXT y

PRI NT TAB(x,22)" "

VDU 28, 31,25, 39,21

PRI NT TAB(RND(7), RND(5)) ; CHR$224;
PRI NT TAB(RND(7), RND(5)) ; CHR$225;
PRI NT TAB(RND(7), RND(5)) ; CHR$226;
SOUND 0, -10 ,6 ,20

K=GET : MODE 7

END

DEF PROCdef i neshapes
VDU 23, 224, 0, &FC, &FE, &87, &B7, &7B, &78, &30
VDU 23, 225, &48, &44, &E4, &FF, &FF, &FF, 3, 0
VDU 23, 226, 0,0, &lE, &1, &ED, &DE, &DE, &C
car $=CHR$224 + CHR$225 + CHR$226
VDU 23, 227, 0,&77,8&42,&72,8&12,&12,&72,0
VDU 23, 228, 0, &77, &5, &57, &54, &54, &74, 0
st $=CHR$227 + CHR$228
vDU 23, 240, 0,0,0,0,0,0, &38, &E
VDU 23, 241, &3, &F, &3F, &FF, &FF, &FF, &F, 1
VDU 23, 242, &FF, &FF, &FF, &FF, &FF, &FF, &FF, &FF
VDU 23, 243, &CO, &F0, &FC, &FF, &FF, &FF, &FO0, &80
VDU 23, 244, &3C, &3C, &3C, &3C, &3C, &3C, &7E, &7E
tree$=CHR$244 +CHR$8 +CHR$8 +CHR$11l +
CHR$241 +CHR$242 +CHR$243 +
CHR$8 +CHR$8 +CHR$11 + CHR$
ENDPROC

DEF PROCbackgr ound
PROCr ocks
PRI NT TAB(29, 3)st$
ENDPROC

119

450 DEF PROCrocks

460 GCoL 0,3

470 MOVE 0, 888

480 DRAW 999, 888

490 DRAW 999, 200

500 DRAW 1020, 300
510 PLOT 85, 1060, 200
520 DRAW 1100, 310
530 PLOT 85, 1120, 200
540 DRAW 1160, 270
550 PLOT 85, 1180, 200
560 DRAW 1220, 350
570 PLOT 85, 1220, 200
580 ENDPROCC

W have nmoved the car horizontally and vertically in exactly
the sane way as we noved words in Section 4.1. There are a
nunber of other interesting features in this program

(1) The string 'tree$ has been nade up of a conbination of
user-defined characters, backspace characters (CHR$ 8)
and 'up' characters (CHR$ 11).

(2) The 'stop' sign consists of two user-defined characters
- we can obtain small letters in nodes whose nornma
characters are too |arge

(3) The crash is sinulated by printing the three separate
characters constituting the car at random positions in
a text wi ndow drawn round the rocks. The text windowis
created by the VDU 28 statenent at |ine 190.

Desi gni ng characters on paper is a tedious process and it is
sonetines useful to have a conmputer programthat assists us
in the design process. Alisting of such a program appeared
in our earlier book (The BBC mcro book: BASIC, Sound and

120

Graphics) and this program (with others) is also avail able
on cassette. The use of mult-frane character inmages was
extensively covered in the earlier book and we will not go
into it here. However, we shall be using user defined
characters in various contexts in the rest of this chapter.

' Expl odi ng' the space for user-defined characters

Under normal circunstances, the user can define up to 32 of
his own character shapes for ASCI| codes 224 to 255 (&EO to
&FF). The bit patterns defining the shapes of these
characters are stored by the operating systemat store

| ocations & 00 to &CFF. Actually, codes 128 to 255 al
initially refer to this space, four codes corresponding to
each character shape. For exanple, once character 224 has
been defined, characters 128, 160 and 192 (&80, &A0 and &Q0)
al |l produce the sane shape as character 224. \Wen
constructing large nunbers of frames for large multi-
character imges, nore than 32 new character shapes may need
to be defined. The space used by the operating systemfor
storing character shapes can be extended or 'exploded by
usi ng the ccmmand

*FX 20, 1

After this ccxmmand has been obeyed, all the character codes
from 32 up to 255 can be redefined. However, the operating
system stores the bit pattern defining nost of these shapes
at the bottomof the storage area that is normally occupied
by the user's BASIC program and the above conmand nust be

i ssued before any programthat uses this facility is |oaded.
The system nust then be told to | oad the program above the
space needed for character definitions by changing the val ue
of the system variabl e PAGE which contains the address of
the storage | ocation at which the user's BASIC programi s
stored. PAGE nust be increased by an anount which depends on
the character codes that are going to be redefined.

character codes i ncrease in PAGE
to be defined
128- 159 (&80- &9F) no change needed
160- 191 (&AOC- &BF) PAGE = PAGE + &100
192- 223 (&CO- &DF) PAGE = PAGE + &200
224- 255 (&EO- &FF) PAGE = PAGE + &300
32-63 (&20- &BF) PAGE = PAGE + &400
64- 95 (&40- &5F) PAGE = PAGE + &500
96- 127 (&60- &9F) PAGE = PAGE + &600
Exer ci ses

1 Add sone nore sound effects to the car program for
exanpl e a squeal of brakes.

121

2 Add an extra tree in the mddle of the car's route
towards the cliff edge. \Wen the car has passed in front
of the tree, the tree trunk will need to be redrawn.

3 Arrange for the 'stop' sign to fall down the cliff with
the car and break up on the rocks.

4.3 Arcade gane ani mation

The really el aborate comerci al arcade ganes are progranmmed
in assenbly code and take anything fromtwo to six nan
months to wite. Features of the computer that are not
easily accessible to BASIC programrers are enpl oyed. Anot her
i mportant factor is speed. An assenbly code program executes
more quickly than its equivalent witten in BASIC. This is
because it is generally nore efficient and al so when a BASIC
programis being executed the interpreter is executed at the
same tinme. Such speed is inportant in aninmated ganes in
general but particularly so in games where nmany ani mat ed
events are (apparently) taking place simultaneously at
different points on the screen

As long as we are not too anbitious we can wite
interesting games in BASIC, but we nust take care that the
techni ques we use in our prograns are as efficient as
possible. In this section, we shall look at two aspects of
nuch ganes - keeping track of the status of a nunber of
novi ng obj ects and keeping track of where nmoving objects are
allowed to go (for exanple, in a Pacman type naze).

Even if we were going to do serious arcade gane
programm ng in assenbly | anguage, we woul d need techni ques
simlar to those that we are going to describe, and these
techni ques are best introduced in BASIC.

Keepi ng track of noving objects

Arcade gane ani mation of any conplexity usually involves two
representations of the objects being noved. First of al
there is the screen display, which is represented inside the
computer by the contents of the screen nmenmory. A code stored
in the screen nenory indicates the col our of the
correspondi ng pi xel on the screen. Such a representation is
not conveni ent for keeping track of the position and status
of an object such as a spaceship, which would occupy nore
than one pixel on the display. W usually have to store
separately additional information about an object: for
exanpl e, coordinates, direction of notion, orientation, etc
It is this information that is repeatedly exam ned by the
program when deci di ng what action to take next and the
nunber of objects that can be handled in a BASIC arcade gane
depends on the speed at which this information can be

exam ned and updated. The choice of representation is often
critical, nmaking the difference between a sl ow noving and
uni nteresting gane, and a fast-noving successful one. W

122

shall illustrate this point with a sinple space invader
gane.

Movi ng groups of objects - a fleet of space invaders

There are two approaches to the probl em of keeping track of
a nunber of objects. Wiere objects are scattered about the
screen, there is no alternative but to store a list of their
coordi nates, this list being updated each time the objects
are noved. The nunber of separate objects that can be
handl ed qui ckly enough in this way in a BASIC programi s
fairly small.

In the case of a group of objects such as a fleet of
'space invaders' which are noving in unison in a tight
formation, it is often nore convenient to handl e the group
as if it were a single object. W can use a single string to
represent each row of invaders (or indeed a single string to
represent the whole fleet). Here is a sinple introductory
programthat noves a small fleet of 'spaceships' backwards
and forwards across the screen, each pass bringing thema
step closer to the bottom of the screen

10 MODE 5

20 VDU 23,1,0;0;0;0;

30 VDU 23, 224, &18, &18, &18, &3C, &7E, &C3, &7E, &3C

40 VDU 23, 225, 0, &4, &7E, &5A, &T7E, &7E, &FF, &C3

50 VDU 23, 226, &A5, &FF, &FF, &18, &DB, &99, &FF, 0

60 DIMfleet$(3)

70 fleet$(0)=" "+CHR$(224) +" "+CHR$(224) +" "

80 fleet$(1l)=" "+CHR$(225)+" "+CHR$(225)+" "+
CHR$(225) +" "+CHR$(225)+" "

90 fleet$(2)=fleet$(1)

100 fleet$(3)=" "+CHR$(226)+" "+CHR$(226)+" "+
CHR$(226) +" "

110 fleetx%0: fleety%0:fleetdird%l

120 PROCprintfl eet

130 REPEAT

140 PROCnovef | eet

150 UNTIL fleety%27

160 END

300 DEF PROCprintfleet

310 LOCAL r%

320 FOR r9e=0 TO 3

330 COLOUR r%oMOD 2 + 1

340 PRI NT TAB(fleetx%fleety%r;fleet$(r%
350 NEXT r %

360 ENDPRCC

123

400 DEF PROCnpvef | eet

410 fleetx%fl eet x%fleetdir%

420 IF fleetx%10 OR fl eet x¥%0 THEN
fleetdir%-fleetdir% :
fl eet x%f| eet x%fl eetdir%:
PRI NT TAB(fl eetx%fleety%;"
fleety%fl eety%l

430 PROCpri ntfl eet

440 ENDPROC

Groupi ng the spaceships into strings in this way nakes the
ani mati on considerably nore convenient (and faster) than it
woul d be if the coordinates for each ship were stored
separately and each ship noved in turn

An interesting alternative to the use of the COLOUR
statement at line 330 would be to include colour contro
codes in the strings representing the fleet. For exanple,
printing the string:

CHR$(17) + CHR$(1)
is exactly equivalent to obeying the statenent:
COLOUR 1

(see Appendix 3). Strings |like the above could be added to
the start of each row of the fleet.

Rermovi ng ships fromthe fleet
There are various types of arcade ganes that could be
devel oped fromthe previous program For exanple, we shall
shortly introduce a 'gunsight' controlled by a user at the
keyboard whose aimis to destroy the invading fleet. If one
of the invaders is destroyed, then clearly it nust be
replaced by a space in the string in which it is stored. A
further el aboration appears in ganmes of the 'Gal axi an
fam |y where spaceships are repeatedly selected fromthe
main fleet to |aunch an individual attack on the user and
his gun. This involves searching through the fleet to find
such an attacker, deleting it fromthe fleet and then
keeping a separate record of its subsequent novenents
Changi ng i ndividual characters in a BASIC string is a
fairly cunbersone process. For exanple, to renove the second
i nvader fromthe third row of the fleet, we could use

fleet$(3) = LEFTS(fleet$(3),4) +" "+ R GHTS(fleet$(3), 4)

As wel |l as being cunbersone, this process is slow - the
whol e string is copied as a result of obeying the above
statement. Al that really needs to be done is to overwite
one character in the string and we now introduce an
alternative nethod of storing a string that nmakes changi ng

124
an individual character in tho string easier and quicker

Indirection operators - $ and ?

The BBC computer store consists of a sequence of nunbered
storage locations or 'words' where each word contai ns one
byte (see Appendix 2). A string sinply consists of a
sequence of bytes (character codes) stored in consecutive
words of computer store. When we store a string in a BASIC
string variable, we do not have access to the individua
bytes, except by using the MD$ function. W cannot easily
change one of the characters in the string w thout copying
t he whol e string.

An alternative nmethod for storing a string of fixed size is
to allocate a block of storage locations in which we can
store the character codes of our string. W use an ordi nary
BASIC variable in which to record the nunber or 'address' of
the storage location at the start of the block. The bl ock of
store is allocated by a variant of the DI M statenent. For
exanpl e,

DM s%5

al l ocates a bl ock of store containing 6 |ocations and stores
the address of the start of the block in the variable 's%.
For instance, the conputer mght allocate a block of store
starting at |ocation 4504

——— 4504

4505

s% 4504 4506 Block of store
set aside by
4507 DIM statement
4508

4509

We can now store a string of up to 5 characters in this
bl ock by using, for exanple:

$ s% = "ASTM"

The $ operator is called a 'string indirection' operator and
it means that the string is to start in the conputer word

125

whose address is held in 's%. The end of the string is
mar ked by an additional character code 13.

— 4504 65
4505 83
4507 77
4508 83
4509 13

We can print the string by:
PRINT $ s%

Storing the string in this way allows us to change

I ndi vi dual characters in the string without copying the rest
of the string. To do this we can use the indirection
operator '?'. The '?'" can be used either as a unary operator
or as a binary operator. For exanple,

PRINT ? s%

woul d print 65. The '?'" causes the conmputer to refer to the
storage | ocation whose address is the value of 's%. This
corresponds to the use of PEEK operations in other BASIC

di al ects. The sane effect could be obtained by

PRI NT ? 4504
but it is better not to rely on the conputer allocating the
sane storage |ocations every time the programis run. W can
change the first character by

? s% = ASC("B")
whi ch corresponds to the POKE operation in other BASIC
dialects. In order to access the third character in the
string, we could use

PRINT ? (s% + 2)

126

In this case the computer refers to the storage |ocations
whose address is the value of the expression on follow the
"?'. However, the '?' can be used bn binary operator and the
above is equivalent to

PRINT s% ? 2

Now we can access the ith code in our string by
PRI NT s% ?

and change it by, for exanple
s%?i = 32

which sets the ith. character to ASCI1 code 32 which
represents a space.

The next programillustrates various ways of using the
above facilities.

Shooti ng down space invaders

This programis the kernel of a space invaders or Gl axian
type programfor you to experinment with. The program noves
the same fleet of invaders down the screen and the user at
t he keyboard controls a 'gunsight' (a letter A) that noves
left and right at the bottom of the screen. Pressing the
space-bar causes a 'laser' to fire at the invading fleet.

As it stands, it is quite easy to shoot down the invaders,
but there are many ways in which the program could ae

i mproved. Sone of these are suggested as exercises bel ow.
There are a nunber of inmportant points illustrated in this

127
program and these are expl ai ned bel ow.

10 MODE 5
20 VDU 23,1,0;0;0;0;
30 VDU 23, 224, &18, &18, &18, &3C, &7E, &C3, &7E, &3C
40 VDU 23, 225, 0, &4, &7E, &5A, &7E, &7E, &FF, &C3
50 VDU 23, 226, &A5, &FF, &FF, &18, &DB, &99, &FF, 0
60 DIMfleet$(3)
70 fleet$(0)=" "+CHR$(224)+" "+CHR$(224)+" "
80 fleet$(1)=" "+CHR$(225)+" "+CHR$(225)+" "+
CHR$(225) +" " +CHR$(225) +" "
90 fleet$(2)=fleet$(1)
100 fleet$(3)=" "+CHR$(226)+" "+CHR$(226)+" "+
CHR$(226) +" "
110 DI M f 9% 3)
120 DIM s% 49
130 $S%: LIS SR O I O O L
140 FOR r%0 TO 3
150 fo%r% = s%-(r%1)*10
NEXT

160

170 PRCCinitialise
180 REPEAT

190 PROCgun

200 PROChovef | eet

210 UNTIL fleety%27 OR i nvaders=0
220 *FX 12,0

230 MODE 7 : END

300 DEF PROCinitialise

310 *FX 11,5

320 *FX 12,5

330 FOR r9%0 TO 3

340 $F%rY = fleet$(re

350 NEXT

360 fleetx%0 : fleetyd%0 : fleetdir%l
370 fdelay%10 : ftinme%fdelay%: TIME = 0
380 invaders = 13

390 PROCprintfleet

400 gx%10 : gy%31 : gun$="A"

410 PRI NT TAB(gx% gy% ; gun$;

420 invaders% = 13

430 b$=CHR$(11) + CHR$(11) + "|" + CHR$(8)
440 e$=CHR$(11) + CHR$(11) + " " + CHR$(8)
450 ENDPROC

500 DEF PROCprintfleet

510 LOCAL r%

520 FOR r%0 TO 3

530 COLOUR r9%vcD 2 + 1

540 PRINT TAB(fleetx% fleety%r%,; $f%r%
550 NEXT r%

560 ENDPRCC

128

600
610
620
630
640

650
660

700
710
720
730

740
750
760
770
780

800
810
820
830
840
850
860
870

900
910
920
930
940
950
960
970
980
990

1000
1010
1020
1030
1040
1050
1060

DEF PROCrovef | eet
I F TIME<ftime% THEN ENDPROC
ftime% = TIME + fdel ay%
fleetx%fl eet x%fleetdir%
IF fl eetx%10 OR fl eet x%0 THEN
fleetdir%-fleetdir%:
fleetx%fl eet x%fleetdir%:
PRI NT TAB(fleetx%fleety%;" "
fleety%fl eety%l

PROCpri ntfl eet
ENDPROC

DEF PROCgun
LOCAL K$, nx%

k$=1 NKEY$(0)
| F k$=" " THEN PROCfire: ENDPROC
ELSEI F k$="Z" THEN nx%gx% 1
ELSEI F k$="X" THEN nx%gx%-1 ELSE ENDPROC
| F nx%0 THEN nx%0 ELSE |F nx%18 THEN nx%18
PRI NT TAB(gx%gy% ;" "; TAB(Nnx% gy% ; gun$;
gx%nx%
*FX 15,1
ENDPROC

DEF PROCfire

LOCAL r%
PROCt est hi t
PROCt r ack(r % b$)
PROCt r ack(r % e$)
PRI NT TAB(gx%r%;" ";
*FX 15 ,1

ENDPRCC

DEF PROCt est hi t

LOCAL p% y%
| F gx%<=f | eet x% THEN r %=0: ENDPROC
| F gx%f | eet x%-7 THEN r %0: ENDPROC
p%f 9% 3) +gx% f | eet x%10 : y%fl eety%4
REPEAT : p%p% 10 : y%y% 1

UNTI L ?p%32

| F ?p%42 THEN r %0: ENDPROCC

?p%=32 : invaders=invaders-1 : r%y%
ENDPROC

DEF PROCtrack(r% s$)
LOCAL y%
PRI NT TAB(gx% gy% ;
FOR y% 29 TO r % STEP -2
PRI NT s$;
NEXT y%
ENDPROC

129

As before, the array 'fleet$ contains the strings
representing the conplete fleet, but in this programthese
strings are copied into a separate bl ock of store for use
during ani mation. The statenent:

120 DI M s% 49

al | ocates a bl ock of 50 |ocations and this block is divided
up into 5 sub-blocks. The first string (accessed as '$ s%)
contains 9 stars and the reason for this is explained
shortly. The next four groups of 10 | ocations each contain
one row of the fleet (9 characters plus character code 13).
The four addresses of these sub-blocks are stored in the

| ocations of the array f% Before the attack, the fleet is
copied (by PROC nitialise) into the four sub-blocks. (lines
330 to 350). We can picture the representation of the fleet
as:

s% %

f% (1) for first row
1% (2) of the fleet

% (3)

second row
of the fleet

third row
of the fleet

% (0)
character codes

fourth row
of the fleet

The nmovenent of the fleet is organised in exactly the sane
way as before. the only difference nowis that row 'r% of
the fleet is printed by

540 PRINT TAB(fleetx%fleety%r%; $f%r%

which tells the conputer to print the string contained in
the bl ock of store whose address is contained in f%r%. One

130

advantage of storing the fleet in this way is that we can
scan rapidly through a sequence of the locations that
contain the fleet by using the '?" operator. The way in
whi ch we have taken advantage of this in the programis in
the check to see whether an invader has been hit when the
‘gun' is fired (PROCtesthit).

If the x-coordinate of the gun is within the appropriate
range, we nust exanmine the fleet locations in the line of
fire and find the invader (if any) that is closest to the
gun. PROCtesthit thus cal cul ates an address 10 beyond the
| ocation to be checked in the fourth row of the fleet (at
line 940). By repeatedly subtracting 10 fromthe address we
exanmine all the locations of the fleet that are in the line
of fire. The REPEAT loop term nates (line 960) if a location
is found with a character code greater than 32. Thus it
stops when an invader is found, or when it reaches one of
the "*"s (code 42) which were put there for that very
purpose. W can be sure that the loop will terminate at a
"*" even if there are no invaders in the line of fire. Using
a block of markers in this way elimnates the need for an
?Fditional test to see if we have reached the start of the

eet.

Once PROCtesthit has calculated the range (r% of the
| aser shot, the |laser effect is created by very rapidly
printing a columm of dashes up the screen and then equally
rapidly deleting them (with spaces). This is done by
PROCtrack called twice by PROCfire.

Anot her interesting aspect of this programis the way in
whi ch the novenent of the fleet has been slowed down. This
has been done in a way that does not create unwanted side
effects on the speed of any other objects being noved by the
program |f, for exanple, a delay |oop was inserted at |ine
205 this would not only slow the fleet down, but woul d nake
the response to the keys controlling the gunsight very
sl uggi sh. A nuch better approach is to keep a record of the
next tine (ftime% that the invaders are to be noved and if
this time has not yet ben reached, then PROCnovefleet exits
i medi ately. When the fleet is noved, 'ftime% is increased
by 'fdelay%, the time delay that is required between fl eet
nmovenents. Changi ng the val ue of 'fdelay% changes the speed
of the fleet wi thout having any effect on the behavi our of
ot her objects being noved by the program O course we
cannot increase the speed of the fleet indefinitely. W are
limted by the speed at which the BASIC interpreter can
cycle through the main loop in the program

Finally note the way that the command

*FX 15, 1
is used after a key has been processed. This command fl ushes

any waiting characters that are queued up in the input
buffer and sinply avoids a build-up of unprocessed | nput

131
characters. The other two *FX conmands used are

*FX 11, 5
*FX 12, 5

whi ch changes the 'auto-repeat' timngs of the keys and
makes them nore responsive

*FX 12, O

changes the 'auto-repeat' behaviour back to norrmal. (See the
User Quide for details if you are not famliar with this
facility.)

Exerci ses

1 As the space invaders programstands, it is quite easy to
shoot down the invaders by hol ding down the fire button
Arrange for a forced delay, or 'reload tine' after each
firing. The fire button should have no effect during this
peri od.

2 Structure the programso that it repeats the gane after
each player has finished. Record the tinme taken or
calcul ate a score for each player and keep a | eague table
simlar to that used in the "nultiplication conpetition'
(Chapter 1).

3 Experinent with different techniques for creating the
effect of a 'laser shot'. For exanple, draw ng and
deleting a dotted line would be quicker than printing and
del eting a | arge nunber of characters. Now try the effect
of obeying the two statenents

vbU 19, 0,7, 0,0,0
vbu 19, 0,0, 0,0,0

The i nstantaneous change of actual background col our from
black to white and back again creates a 'gunflash’
effect.

4 Arrange for an 'explosion' when an invader is hit. The
expl osion could be represented by two or three user-
defi ned characters displayed in quick succession.

5 Arrange for the invaders to send out an occasional
"missile' which drifts down the screen towards the
pl ayer's gun, forcing himto take avoidi ng action.

6 Add sound effects to your program

132

4.4 Controlling novenent within a naze

Many ar cade games involve novenent that is restricted te
part of the screen. The commonest exanple of this type of
game is the extrenely popular 'Pacrman’ . Here novenent takes
pl ace within a naze. A program controlling such anination
needs to keep a record of which regions of the screen am
prohibited and this record rmust be kept in such a way that
the program can recogni se very quickly that a particul ar
character position is out of bounds. W could very easily
represent a maze on the screen (in MODE 1 or 4 say) marking
the walls of the naze with one character and the paths with
anot her. The program could then store a record of the shape
of the nmaze in a two-di nensional array with one location for
each character position on the area of the screen being
used. (We shall omt the bottomline of the screen from our
maze as this nmakes it easier to avoid accidental scrolling.)
The array declaration is:

DI M maze% 39, 30)

Each location in this array could contain a value (TRUE or
FALSE say) indicating whether or not the correspondi ng
character position was part of a path or part of the maze
wal | s. However, although sinple, this representation is
rat her wasteful of nmenmory space. It occupies 1240 BASIC
vari abl es, each of which occupies 4 nenory |ocations -
nearly 5K of menory altogether.

A much nore appropriate representation for this sort of
information is a bit map where the status of each character
position on the screen is recorded as a single bit. Each
BASI C vari abl e occupies four 8-bit words, 32 bits in all,
and so we can pack the informati on about one col um of
character positions into a single BASIC variable. W can
represent the conplete maze by a one-di mensi onal array:

DI M bi t map% 39)

where each location in this array will contain information
about one columm of character positions. This representation
of the maze occupies only 160 bytes of nmenmory - a

consi derabl e saving. O course, such a saving would | ose
sone of its value if it slowed down the process of
recogni zi ng the status of a character position on the
screen. However, by careful use of |ogical operations (see
bel ow) we can avoid too nuch | oss of speed

Manual construction of maze

We can construct a naze by hand and code it up as a pattern
of ones and zeroes where we use ones to represent the nmaze
wal |, and zeros to represent the paths. For exanple

133
a
BEHEHAPREH H %}HE:EE*HE:EH:EE:HE:EH:E
BH B R R Y £]
HH B BiElEER RN A H Y HUHMHHM A
BEAHEEREANR R AN AHHA Ab:a
B8 B8 o) %] 2] B8
AU A AHEBA HEHA HHH HiEAEER
(ol B el bt P e R HHHHUH 8 A A
B9 AR 9 He He e Haeze:el e U eabdde
PR AR EA AR AEA HAEAEHA
BiAE A 8 ABHUA A BB ABH EeRA %]
pdpi e A : 8 8l el e Al HEAUE
A BiA A BEHHHBE R A A AR A
AHBHHBABBHE EB%BE bl e e
8 o) B BHRER REAERER 88
TR L BEARERER SRR ARREA
A B8 A A BB AR AEaER A
B HUHBER. BHe 2] BB ANR BEeER R
<] A B AREA
HAHHHUHHEE U HEE B HE S BB Y B ERERER
2] E) E o)
5] p BiEEEuEzEU N A A HM:EEEA
A AHEHA: Al A A B8
1 @ 8 Odoonbopppbbg B
4] aBa RNl ol R g b g R
A B8 HHBHUHB: A
2] R L : B8
A PR R ANA A HAPAEA
BHUHHEEE: E AEAEA H ThE: a
aia BHE AHHEHREEHAEHE 8
HHB BB HY HHH U BB EE BB

Remenber that one columm of the binary representation of the
maze is to to be stored in a single word of our 'bitmap'
array.

We have included a row of zeros corresponding to the bottom
row of the screen which is not used. The easiest way of
inputting the above maze to a programis to code each col um
reading frombottomto top in hex (Appendix 2). A pattern of
32 bits can be represented as a group of 8 hexadeci nal
digits. Thus 39 8-digit hexadeci mal nunbers, one for each
columm of the maze, can be supplied to a programin DATA
statenments. Here is a short programto draw a maze from such
dat a.

10 MODE 1

20 VDU 23, 224, &FF, &FF, &FF, &FF, &FF, &FF, &FF, &FF
30 VDU 23;8202; 0; 0; 0;

40 DI M bi t map% 39), mask% 30)

50 PRCCset masks

60 PROCdr awaze

70 K=GET : END

134

80 DEF PRCCset nasks

90 mask% 0) =1

100 FOR mr1 TO 30

110 masko{ m =mask% m 1) *2
120 NEXT m

130 ENDPROC

140 DEF PROCdr awmmaze

150 LOCAL x,y, path$, wall$

160 pat h$=" " : wal | $=CHR$(224)

170 FOR x=0 TO 39: READ bi t map%{ x) : NEXT

180 COLOUR 1

190 FORy = 0 TO 30

200 FOR x=0 TO 39

210 | F bi t map% x) AND mask%y) THEN PRI NT wal | $;
ELSE PRI NT pat h$;

220 NEXT: NEXT

230 ENDPRCC

1000 DATA &7FFFFFFF, &7F707E07, &601743F7, &4ED55800,
&685557AB, &6B155029, &4FDASFFF, &68D74001,
&GADATFFD, &62D70001, &7AD7DFAF, &7A9558A1,
&42B55A3D, &5EB40381, &42A5DABF, &7E8FF83B,
&A0FFFFELl, &57F4002D, &5015FFA5, &5FF50BB5

1010 DATA &58152895, &4BD5SEED5, &5BD40855, &5257FB55,
&5B500255, &4B57FF55, &5B47FD45, &5B7C006D,
&490DFFED, &5D6C0025, &5563FFB5, &557801B5,
&557FFCB5, &554007B5, &501F7635, &57F012E5,
&FFFF68D, &400006FD, &7FFFFEO1l, &7FFFFFFF

This programuses a |l ogical AND operation at line 210 to
test whether position x,y in the maze is marked with a 1
sepresenting the maze wall.

32 bits

N
r R

Bitmap % (x)

AND AND

mask % (y)

e e e 00606 0000001000000 ®e e e o o ‘

® o 0060606 0)00000?20000006e e o

The AND operation ‘masks out’
bit y from bitmap%(x)

135

To do this we need to test whether bitmap%x) has a 1 in bit
position y. This is done by 'making' bitmp%x) with a bit-
pittern or 'mask’ that contains only a single 1 in position
y and zeros everywhere else. The result of the AND operation
bet ween bit map%{ x) and nask%y) is non-zero only if there is
alin positiony of bitmp%x).

The array contai ning the nmasks needed in the above
operation is initialised by PROCset masks whi ch makes use of
the fact that nultiplying an integer by 2 corresponds to
shifting the corresponding bit-pattern along one pl ace.

A maze design program

Before we | ook at the problem of noving objects around
within the maze, here is a programthat will make it easier
to design a maze. It starts with a screen full of col our
(the maze wall colour). You can nove around the screen with
keys L(eft), R(ight), U(p) and D(own). Switch to path

drawi ng node with P, switch to wall draw ng node with Wand
switch to nuzve node (where you can nove around wi t hout
changing the maze) with M To set a bit to 1 in the bit map,
the maze design program uses an OR operation with the
appropriate mask and to set a bit tot) in the bit map, an
AND NOT operation is perfornmed. These both appear at |ine
490. See Appendix 2 for further details on | ogical
oper at ors.

10 MODE 1
20 VDU 23, 224, &FF, &FF, &FF, &FF, &FF, &FF, &FF, &FF
30 VDU 19,2,11,0,0,0
40 VDU 23;8202; 0; 0; 0;
50 DI M bitmap% 39) , mask% 30)
60 PRCCset nasks
70 PROCconstructmaze
80 MODE 7 :PRINT "10000 DATA &"'; ~bitmap%0);
90 FOR i=1 TO 19:PRINT ", &"; ~bi t map%i) ; : NEXT
100 PRINT" "10010 DATA &"; ~bit map% 20) ;
110 FOR i=21 TO 39: PRINT ", &"; ~bi t map%i); : NEXT
120 PRI NT: END
130
140 DEF PRCCset nasks
150 mask%{ 0) =1
160 FOR nr1 TO 30
170 mask%{ m =mask% m 1) * 2
180 NEXT m
190 ENDPRCC

210 DEF PRCOCconstructmaze

220 COLOUR 129

230 vDU 28,0, 30,39,0 : CLS : VDU 28,0, 31,39,0

240 COLOUR 128

250 FORyYy =0 TO 39 : bitmap%y)=&FFFFFFFF : NEXT
260 x=0: y=0: wal | =FALSE: novi ng=TRUE

136

270 star$ = "*" + CHR®(8)
280 wal | $ = CHR$(224) + CHR$(8)
290 path$ = " " + CHR$(8)

300 COLOUR 2 : PRINT TAB(X,y);star$; :COLOUR 1
310 REPEAT

320 conmmand$=GET$

330 PROCpr ocess(comand$)

340 UNTI L command$="F"

350 ENDPROC

370 DEF PROCpr ocess(c9)

380 | F I NSTR(" LRUDWPM', ¢$) =0 THEN ENDPROC

390 | F bitmap% x) ANDmask%y) THEN PRI NT wal | $;
400 IF c$="L" THEN I F x>0 THEN x=x-1

410 IF c$="R' THEN | F x<39 THEN x=x+1

420 IF c$="U" THEN | F y>0 THEN y=y-1

430 IF c¢$="D' THEN | F y<30 THEN y=y+1

440 |E c¢$="W THEN wall=TRUE : novi ng=FALSE
450 | F c¢$="P" THEN wal 1=FALSE: novi ng=FALSE

460 | F ¢$="M THEN novi ng=TRUE

470 COLOUR 2: PRINT TAB(x,y); star$;:COLOUR 1
480 | F novi ng THEN ENDPRCC
490 | F wal | THEN
bi t map% x) =bi t map%{ x) OR nask%y)
ELSE bi t map% x) =bi t map%{ x) AND NOT mask%y)
500 ENDPRCC

A meze-runni ng nouse
V& now present a programthat draws the sane naze as before
and controls a nouse as he runs about exploring the maze.

CHRS$ (225)

\l
CHR$(228) ‘@f \/Ci}\ CHR$(226)
M

CHR$(227)

137

In applications like this, it is often necessary to design
nore than one user-defined character for the object being
animated so as to be able to display the object in different
orientations. In this case we have defined four versions of
the nmouse pointing in the four different directions in which
he can nove. These directions are nunbered 0, 1, 2, and 3.

The nouse starts in the mddle and its position and
orientation are represented by its x-y coordinates (' nx%,
"my%) and a direction code (ndir% which is set to 0, 1, 2
or 3.

The program nakes the nobuse explore the naze by
repeatedly calling PROChove and it is the definition of this
procedure that determ nes the nouse's general behaviour. In
the first version of the program (lines 470 to 510), at each
step the nouse takes, this procedure counts in 'n% the
nunber of directions in which the nouse can nove (excl uding
the direction fromwhich it has just cone). The possible
directions are listed in the array 'possdir%. The val ue of
n% deternines the action taken. If n% =0, then it has
reached a dead end and nust turn back the way it cane. If n%
= 1then it noves in that one direction, otherwi se it makes
a random choi ce fromthe directions available. Note the use
of arrays 'xinc% and 'yinc% which are used to quickly
convert direction codes (0, 1, 2 or 3) into x and y
increments for a direction.

’—‘ X inc% y inc%
0 0 -1
3 f’ 1 0
1
0 1
2
»> -1 0

An attenpt has been made to make the behavi our of the
mouse nore realistic by inserting tine delays at appropriate
points. For exanple it pauses when it has a choice of
routes. The position and duration of such delays is worth
experinenting wth.

10 MODE 1

20 VDU 23, 224, &FF, &FF, &FF, &FF, &FF, &FF, &FF, &FF
30 VDU 23, 225, &10, &38, &38, &7C, &38, &10, &10, &10
40 VDU 23, 226, 0, 8, &1E, &FF, &1E, 8,0, 0

50 VDU 23, 227, &10, &10, &10, &38, &7C, &38, &38, &10
60 VDU 23, 228, 0, &10, &78, &FF, &78, &10, 0,0

70 VDU 23; 8202; 0; 0; 0;

80 DI M bitmap% 39) , nask% 30)

90 DIMXincY3), yinc¥3), possdir%3)

138

100
110
120
130
140
150
160
170

180
190
200
210
220
230

240
250
260
270
280
290
300
310

320
330
340

350
360
370
380
390

400
410
420
430
440

450
160
170
180
190
500

510

XincY0)=0 : xinc¥1l)=1: xinc%2)=0 : xinc%3)=-
yinc%0)=-1: yinc%1)=0 : yinc%2)=1 : yinc% 3)=
PROCset masks

PROCdr awnaze

PROCput mousei nmi ddl e

PROCexpl or e

K=CGET

END

DEF PROCset masks
mask%{ 0) =1
FOR mr1 TO 30
mask%{ m =mask% m 1) * 2
NEXT m
ENDPROC

DEF PRCCdr awraze
LOCAL Xx,y, pat h$, wal | $

path$=" " : wal | $=CHR$(224)
FOR x=0 TO 39 : READ bi t map% x) : NEXT
COLOWR 1

FORy = 0 TO 30
FOR x=0 TO 39
| F bitmap% x) AND nmask%y) THEN PRI NT wal | $;
ELSE PRI NT pat h$;
NEXT: NEXT
COLOUR 3
ENDPROC

DEF PROCput nousei nm ddl e
mx%=20 : ny%15 : ndir %0
nmouse$=CHR$(225)

PRI NT TAB(mx% ny% : nouse$

ENDPROC

DEF PROCexpl ore
REPEAT
PROCnove
UNTIL my%-0
ENDPROC

DEF PROCnove
LOCAL frondir% newdi r % n% d%
fromdir% = (ndir%2) MOD 4
n% =0
FOR d%0 TO 3
I F d%<>frondi r % THEN
I F (bitmap% mx%xi nc% d%)
AND mask%{ my%+yi nc{d%)) = 0
THEN n%n%+1 : possdir% n% =d%
NEXT d%

139

520 I F n%0 THEN newdi r %f r ondi r %
ELSE | F n%1 THEN newdi r %=possdi r % 1)
ELSE PROCdel ay(20) : newdir %possdi r % RND(n%)
530 PROCt ur n(newdi r %9
540 PRCCst ep
550 ENDPRCC

560 DEF PROCt ur n(d%

570 | F d%ndi r % THEN ENDPROC

580 mdi r %d% : nmouse$=CHR$(225+d%
590 PRI NT TAB(mx% nmy%) ; nouse$;

600 PROCdel ay(10)

610 ENDPRCC

620 DEF PRCCstep
630 LOCAL nx% ny%

640 NX%&=mx%-xi nc% ndi r %

650 ny %=y %yi nc% ndi r %

660 PRI NT TAB(mx% ,my%; " "; TAB(nx% ny%) ; nouse$;
670 nX%nx% : ny%ny%

680 ENDPROC

690 DEF PROCdel ay(d)

700 LOCAL t

710 t=TI ME+d

720 REPEAT : UNTIL TI ME>t
730 ENDPROC

1000 DATA ... as before

The next phot ograph shows part of the maze in which the area
expl ored by the nouse has been marked with ' droppings'.

140

A straightforward nodification to the programwas used to
obtain this display.

74 VDU 23, 229,0,0,0, &18,8& 8,0,0,0
76 droppi ng$ = CHR$(229)

660 PRI NT TAB(mx% ny% ; dr oppi ng$;
TAB(nx% ny%) ; mouses;

We have sinply replaced the space used to del ete the nouse
when it is being noved by a character consisting of a white
spot .

Mar ki ng dead ends

The only use nade of the bit map so far is to mark the
position of the walls of the maze. However, we could easily
wake the program extend the prohibited region, while the
program was runni ng, by adding ones to the bit nmap on paths
that have been found to be dead ends. W recogni se a dead
end at line 520 (n% = 0) and can set a variable 'deadend%
to TRUE. When there is a choice of paths (n% > 1) we can set
deadend% to FALSE. We then nodify PROCstep so that if
deadend% is TRUE, then the square being nxsved fromis
marked in the bit map as prohibited. Because ' deadend%
remains TRUE until a choice of paths is encountered, all
squares down the dead end will be nmarked on the way out. W
ran also nodify the program so that the 'droppings' are left
only in the dead ends.

75 VDU 19,2,2,0,0,0

520 | F n%0 THEN deadend% = TRUE: newdi r %=f r ondi r %
ELSEI F n%1 THEN newdi r %=possdi r % 1)
ELSE deadend%FALSE : PROCdel ay(20):
newdi r %=possdi r % RND(n%))

630 LOCAL nx% ny% dr opcol %
635 | F deadend% THEN
bi t map% mx% = bit map% nx% OR mask%{ nmy%)
dr opcol %2
ELSE dr opcol %0

660 COLOUR dropcol % : PRI NT TAB(nx% ny% ; dr oppi ng$;
661 COLOUR 3 : PRI NT TAB(nx% ny% ; nouse$;

141

The spot is now printed in COLOUR 2 to mark dead ends, or in
COLOUR O el sewhere. Printing a character in COLOUR O (the
background col our) has the sanme of feet as printing a space

Exerci ses

1

Experiment with tine delays in the nouse programto nake
hi m appear hesitant in different places.

Make the nouse | ook down each direction that is
recogni sed as a possibility when he is considering which
way to go.

Add sound effects to the nouse program for exanple a
"frustrated squeak' when it hits a dead end and an
"excited squeak' if it reaches the exit. (Perhaps the
exit could be nade nore interesting by adding a a user-
defined character to represent a piece of cheese.)

The nouse frequently returns to his "den' in the centre
after exploring part of the maze. Make himcurl up and
sleep in the corner of the den whenever this happens.
(You will need to define one or two characters to
represent a sl eeping nouse.)

Change t he nmouse program so that the nmouse is controlled
fromthe keyboard with keys telling it to turn left,
right, up or down. Record the time taken by a user at the
keyboard to find the way out of the maze. (Note that we
have defined PROCdel ay in such a way that it does not
alter the variable TIME.)

142

4.5 Animating |ine draw ngs

Up to now we have | ooked at ani mati on using characters and
this is the nost commonly used nechani smin m croconputer
animation. It has spawned a vast industry of conputer ganes,
and such character aninmation techniques nust be the npat
commonly vi ewed conputer inmage. In nmany applications,
however, the use of character animation is inconvenient and
we may wish to conpose 'frames' of an ani mated sequence by
drawi ng lines. This may be because we wish to animate a
sequence that is mathematically defined (the cross section
of a piston engine driving a crankshaft, for exanple), or
because we want to animate using franes that have been drawn
by hand on a graphics tablet. In either case the source
material will be a |list of coordinates and the nost
convenient tool to deal with a list of coordinates is the
PLOT st at enent.

When filmcartoons are made by hand, aninated effects are
created by drawi ng and photographing a | arge nunber of
franes which are then displayed by a projector at a speed
that gives the inpression of continuous novenent.

Conput er ani nmati on packages now exi st that help the
cartoon artist to create animated filns. Such a package
typically includes prograns that help the artist to design
scenes fromthe film using conmands for interactively
drawi ng lines and colouring regions. An ani nati on package
al so includes progranms for carrying out tasks such as 'in-
bet weening', a tedious and time-consuming job carried out by
the '"in-betweeners' or junior artists of the cartoon film
i ndustry. Here, the main frames of a filmare created on the
screen by an artist and the hundreds of in-between franes
that bridge the gaps between the main frames are generated
by the ani mati on package, each frame bei ng photographed as
it is created.

If you have the facilities for nmaking filns and wish to
use your BBC micro for creating cartoons, then the ful
power of the graphics facilities can be used in drawi ng each
frane of the film The tinme taken to change the image on the
screen is not critical as each frane of the filmw Il be
phot ogr aphed only when the changes on the screen are
complete. It can take many hours of programruns to create a
few seconds of filmin this way.

In this section we will ook at techniques for aninating
tine drawi ngs. Although the graphics facilities on the BBC
mcro are extrenely powerful and versatile, they are
generally too slow for the animation of |arge objects drawn
with line drawing and colour fill facilities. However, line
drawi ngs such as sinple stick figures can be fairly
successfully animated in real tine.

143

Frames for animating a stick man

In order to animate a line drawing we need to draw a
sequence of separate franes representing the object in

di fferent stages of nobvenent. There are nmany ways in which
these frames could be presented to the conmputer, but, in our
Illustrative exanple of |ine drawi ng animati on, we shal
present each frame in the formof a DATA statenent
vontaining a |ist of coordinates that describe a stick man.
We shall animate the man so that he appears to wal k across
the screen. The franes that we shall use are displ ayed
simul taneously in the first photograph.

There are in fact only five different frames, which are

di spl ayed repeatedly. In the interests of brevity, we have
omtted the arns. W will create the required wal ki ng effect
by di spl ayi ng and then del eti ng successive representations
of the man, each one being displayed a little further across
the screen than the previous one. Note that the vertica

hei ght of the head varies depending on the way in which the
Il egs are bent. This effect is exaggerated in the second

phot ograph and such exaggeration could be used to put nore
of a 'spring" in his step.

Representing franes for stick figures

The DATA statement for a frame will contain 9 values. The
first is a y-increment to give the rise and fall of the body
fromframe to frame. The back is always in the sane
orientation and so it need not be specified for each frane.
The next 8 values in a frame DATA statenent represent four
X-y pairs. These are

(1) the coordinates of the first knee relative to the top
of the Iegq,

(2) the coordinates of the first foot relative to the first
knee,

(3) the coordinates of the second knee relative to the top

144
of the leg, and

(4) the coordinates of the second foot relative to the
second knee.

We use the follow ng normencl ature:

"
|
2 user - defined ! I
characters for head o > 64
3
' 200
k1x
s J
kly k2y
k2x
>
fly foy
>
fix f2x
<«

In the program values representing the five franmes will
be stored in parallel arrays, where the franes are nunbered
0 to 4. The 'yinc' values for a frane is not stored but is
used to calculate a y-coordinate for starting to draw the
frane and a y-coordinate for the top of the legs. It is
these two val ues that are stored along with the other
coordi nates £ran the DATA statenent for a frame. The head is

145

drawn by printing two user-defined characters. W use the
VDU 5 statenent to arrange that characters are printed at
the current graphics position.

Designing franes for stick figures

When cal cul ating coordinates for stick figures, it is
necessary to bear in mnd that distances between joints
shuld not vary fromframe to franme. The possible knee
coordi nates relative to the top of the | eg were constructed
by marking the top of the leg on a piece of graph paper and
using that point as the centre of a circle whose radi us was
the distance fromthe top of the leg to the knee

Top of leg

Possible knee positions
on this arc (5 used)

Possible foot positions
for a given knee position
on this arc (1 used for
every knee position)

Associ ated with each knee position is a set of possible foot
positions. These can al so be obtained by drawing a circle of
appropriate radius centred on the required knee position.

Ani mati on by repeated del eti ng and draw ng

Here is a first attenpt at a programthat makes the stick
man wal k across the screen. It works by repeatedly deleting
and redrawi ng the man. Deletion is achieved by 'drawing' in
t he background col our. The flickering effect which is the
mai n drawback of this programw |l be rectified shortly.

10 DIM k1x%4), klyu%4), fixu4), fly%4),
k2x9%{ 4), k2yv%4), f2x%4), f2yn4),
hyog4), |y%4)
20 y% =600
30 FOR f=0 TO 4
40 READ vyinc% k1x%f), kly%f), fixuf), fly%f),
k2xogf), k2yougf), f2xuf), f2y%f)
50 hy%{f)=y%yinc%: |y%f)=hy%f)-264
60 NEXT f

146

70
80
90
100
110
120
130

140
150
160
170
180
190
200
210
220
230

300
310
320
330
340
350
360

370
380

390

1000
1010
1020
1030
1040

The man is drawn (or del eted) by PROCdrawran whi ch accesses
one of the sets of values stored in the 'frame arrays'.

first parameter of the procedure selects the frame to be
drawn. The second paraneter specifies the x-coordinate (the
y-coordinate is stored as part of the frane).
two paraneters specify the |ogical
col our code to be used in drawi ng the man.

VDU 23, 224, 0, 0, 0, 0, &FF, &81, &81, &81

VDU 23, 225, &81, &81, &81, &81, &81, &81, &81, &FF
head$=CHR$(224) +CHR$(8) +CHR$(10) +CHR$(225)
MODE 1 : VDU 5

X%16 : Xinc%16

frane%=0

PROCdr awnman(0, x% 0, 3)

REPEAT
NX%=Xx%+xi nc%
PROCdr awman(f rane% x% 0, 0)
frame%(frame%: 1) MOD 5
PROCdr awman(f r ane% nx% 0, 3)
X%nx%

UNTI L x%1200

VDU 4

MODE 7

END

DEF PROCdr awran(f % x% | % c%
LOCAL | y%
GCOL | % c%
MOVE X% 16, hy%{ f %
PRI NT head$; : PLOT 0, -16, -32
DRAW X% | yo{ f %)
PLOT 1, k1x%f9%,kly%f%
PLOT 1,f1x%f9%,fly%f%
MOVE X% | y%{ f %
PLOT 1, k2x%{f % , k2y% f %
PLOT 1,f2x%f%,f2y%f%
ENDPROC

DATA -10, 40,-92, -8,-98,-10,-99,-50, -90
DATA - 14, 50, - 86, 0, -100, - 20, - 98, - 70, - 68
DATA -6, 25, -97, - 25, -97, - 20, -98, - 70, - 68
DATA 0, 0, -100, 0, - 100, -8, -100, - 20, - 95
DATA 0, 25,-97,-25,-97,0, -100, 0, -100

the colour is either 3 (for draw) or O (for delete).

| ogi cal

plotting operation is always 0, but this paraneter

is needed in the next version of the program

The remai ni ng
plotting operation and
In this program

147

I mage pl ane switching

The flickering effect exhibited by tho above program was due
In the fact that we could see the man being erased and
rvdrawn. In order to elinmnate this flickering effect, we
noed to arrange for the erasing and redrawi ng process to
take place invisibly. To do this, we need to work with two
neparate 'inmage planes' and di splay one plane on the screen
while the erasing and redrawi ng process is being carried out
In the other plane.

In MODE 1, the col our of each pixel is coded as a two-bit
number. We saw in Chapter 2 that, instead of treating the
screen as a single image plane in which each pixel is one of
four colours, we can treat it as two separate inage pl anes
In which each pixel is one of two colours. In each MODE 1
pi xel, one of the two bits is taken to represent the col our
of a pixel in one plane and the other bit is taken to
represent the colour of the correspondi ng pixel in the other
pl ane. The alternative significance of each two-bit col our
code is given by the follow ng table:

Singl e i nage pl ane Two separate i nage pl anes
col our code bit pattern pl ane 1 pl ane 2

0 00 0 0

1 01 1 0

2 10 0 1

3 11 1 1

To switch between planes 1 and 2, we use VDU 19 statenents
to associate different conbinations of actual colours with
our four colour codes. For exanple, if we want 0 to be the
background col our code and 1 to be the foreground col our
code in each of planes 1 and 2, then we can selectively
di splay one of the two planes by selecting one of the two
actual col our conbinations given in the follow ng table:

Col our code Actual colour settings
pl ane 1 di spl ayed pl ane 2 di spl ayed
pl ane 2 hi dden pl ane 1 hi dden
0 backgr ound backgr ound
1 f oreground backgr ound
2 backgr ound f oreground
3 f or eground f or eground

If we are using the same background and foreground col ours
in plane 1 as in plane 2, colour code 0 is always set to the
background col our and col our code 3 is always set to the
foreground. |If the background colour is black and the
foreground colour is white, then the col our codes 0 and 3
are correctly initialised in MODE 1. To switch plane 1 on

148
and plane 2 off, we need only use:

vDU 19, 1,7, 0,0,0
vDU 19, 2,0, 0,0,0

and to switch plane 1 off and plane 2 on, we use

vbu 19, 1,0, 0,0,0
vDU 19, 2,7, 0,0,0

A new shape can be plotted in plane 1 by preceding the
plotting iInstructions by

GCal 1,1
A shape can be erased fromplane 1 by replotting it after
GCaL 2,2

(see Chapter 2). Simlarly, a shape can plotted in plane 2
by preceding the plotting instructions by

GCa. 1,2
and erased by redrawi ng the shape after
GCaL 2,1

The following is an outline of how we use the above
techni que to conceal the deleting and redraw ng process
whil e an object is being noved about the screen:

Set x,y to the initial position of the object
Switch plane 1 on, plane 2 off
Draw first fraurs in plane 1

REPEAT
Cal cul at e newx, newy
Draw next frame at newx, newy in off plane
Swi tch pl anes
Erase frane at position x,y in plane that is now off
X=Newx : y=newy
UNTIL final position reached

The next programfills in the details needed to make our man
wal k across the screen. Note that the speed at which the man
wal ks can be varied by changing the x-increnment (xinc%

bet ween franes. (For very fast or slow notion, it may be
necessary to change the stride length in the 5 basic franes
used.) An alternative way of slow ng himdown is, of course
to insert a delay |oop

149

110 x%$=16 : xinc%16
120 franme%0
130 PROCswi t chon(1)
140 PROCdrawman(0, x% 1, on%
150 REPEAT
160 nxX%=x%xi nc% : nf% = (frame%1l) MDD 5
170 PROCdr awman(nf % nx% 1, of f %9

. REM hi dden draw in new position
180 PROCswi t chon(of f 9%
190 PROCdr awman(f rane% x% 2, on%

REM hi dden delete in off frane!

200 X% = nx%: frame% = nf%
210 UNTIL x9%1200

220 VDU 4

230 k=GET : MODE 7

240 END

300 DEF PROCdrawman(f % x% | % c%
as' bef ore
390 ENDPROC

400 DEF PROCsw t chon(screen%

410 on% = screen%: off% = 3-o0n%
420 VDU 19, on% 7, 0,0,0

430 VDU 19, off% 0, 0,0,0

440 ENDPRCOC

Exerci ses

1 Extend The DATA statenents used to represent the franes
for our stick man so that arm positions can be specifi ed.
Ext end PROCdr awman accordingly.

2 Add feet to the stick man.

3 Miltiply the y-increnent values by a 'bounce factor' and
experinnent with the effects obtained.

4 Gve the man a dog on a | ead.

5 Assign a set of franes for a stick-horse and nmake it
wal k, trot or gallop across the screen.

150

4.6 Pal ette changing

The 'palette' of actual colours associated with the col our
codes for a node can be changed instantaneously with the VDU
19 statement and we have already used this statement in
several prograns in this chapter as well as in Chapter 2. In
' The BBC M cro Book' we denonstrated how pal ette changi ng
could be used to animate, spinning disks, for exanple. W
finish the present chapter with a further denonstration of
the use of this technique to create the illusion of
novenent. W shall use the sanme stick man as we used in the
| ast section, but this time we shall create an arnmy of stick
men marchi ng across the screen. To produce this effect, we
need to have available a colour for each different frane
wel | as a background colour. In this case, we need at | east
six colours and we nust therefore run the programin MODE 2.
(This causes a slight change in the shape of the man because
af the different resolution.)

The program starts by setting colours 0 to 5 to bl ack
sel ecting colour 5 as the background col our (GCCOL 0, 133)
and clearing the screen. The programthen cycles frames 0 to
1 as before, drawing them at success positions on the
screen, but this tine frame O is drawn in colour 0O, frane 1
in colour 1 and so on. At this stage the nmen are invisible.
The aninmation effect is now created by cycling through the
colours 0 to 4, at each step using VDU 19 statenents to
switch the previous colour to black and the next colour to
white. This creates the inpression that a succession of nen
is continually marching across the screen

70 VDU 23,224,0,0,0,0,&F,9,9,9

80 VDU 23,225,9,9,9.9,9,9,09, &

90 head$=CHR$(224) +CHRS(8) +CHR$(10) +CHR$(225)
100 MODE 2 : VDU 5

110 x%16 : xinc%48

120 FOR c=0 TO 5:VDU 19, ¢, 0, 0, 0, 0: NEXT

130 GOOL 0,133 : CLG

140 frame%0

150 REPEAT

160 PROCdr awman(franme% x% 0, frame%
170 frane%(frame%1l) MOD 5

180 X%=X%+Xi Nc%

190 UNTIL x%1220

151

200 frame%0

210 REPEAT

220 nf % (frame% 1) MOD 5

230 VDU 19, frane% 0,0, 0,0

240 vDU 19,nf% 7,0,0,0

250 PROCdel ay(10)

260 frame%=nf %

270 UNTIL | NKEY$(0)=" "

280 VDU 4 : K=GET : MODE 7 : END

300 DEF PROCdrawman(f % x% | % c%
as' bef ore

390 ENDPROC

400 DEF PROCdel ay(d)

410 LOCAL t

420 t =TI ME+d

430 REPEAT : UNTIL TI ME>t
440 ENDPROC

DA:I'A as before

Exerci ses

1

Create the effect of a bouncing ball by drawi ng a nunber
of balls in different vertical positions (non-
overlapping) and in different colours, and then using
pal ette changi ng.

Create the effect of a rotating sphere by first drawing a
circle and then drawing lines of longitude in different
colours. Then use palette changing to reveal each line of
[ongitude in turn.

