226
Chapter 7 Introduction to recursion

In computing, a recursive process is one that is 'described
in terms of itself'. Recursion is viewed with suspicion
beginners - how on earth cab an operation be defined in
terms of itself? One of our students recently remarked that
writing a recursive program seemed like an act of faith.
However, once mastered, recursion is a powerful tool should
not be neglected. There are many programming problems where
a recursive solution is elegant and easy to write and the
non-recursive solution is difficult and tricky. Many human
problem-solving activities are recursive in nature. For
example, let us consider the problen of planning a route for
walking through London from Trafalgar Square to the British
Museum. One way of solving this problem might be to pick an
intermediate point such as Covent Garden and break our
original problem down into the problean of getting from
Trafalgar Square to Covent Garden and from Covent Garden to
the British Museum. A problem of navigation has been broken
down into two easier subproblems, also of navigation.

This is the essence of recursion. The solution to a
problem is described in terms of solutions to easier or
smaller versions of the same problem. We could (rather
fancifully) describe how to find a route between two points
as:

100 DEF PROCfind route between(a, b)

110 IF getting from a to b is 'easy' (one street say)
THEN PROCprint_ route(a, b) : ENDPROC

120 n = a point midway between a and b

130 PROCfind route between(a, n)

140 PROCfind route between(n, b)

150 ENDPROC

We shall not expand this into a complete BASIC program. In
order to do so we would need to store a street map of
London, lists of landmarks and their locations, a definition
at what we mean by an 'easy' problem: and so on. However,
this outline procedure describes a process with which we are
all subconsciously familiar. It also exhibits the essential
features of a recursive procedure.

When a procedure is called, the particular problem to be

227

specified by means of its parameters:
PROCfind route between ("Trntalgar Square", "British Museum")

The first thing the procedure does is to decide whether the
problem represented by its parameters can be solved directly
without breaking it down into further subproblems. If this
can be done, no recursion takes place. This is essential,
otherwise the process of breaking the problem down into
subproblems would never stop.

Finally if the problem to be solved by the call of the
procedure is not an easy one, it breaks it down into easier
subproblems and requests the solution to each of these
subproblems in turn. The solutions to the subproblems are
requested by calling the same procedure, but with different
parameters. You might find it easier to think of the
subproblems being solved by different copies of the
procedure, although it does not happen like this behind the
scenes. This is the classic 'divide and conquer' approach to
problem solving, so important in areas like Artificial
Intelligence.

Learning to use recursion successfully means learning to
recognise when a problem can be broken down into easier, or
smaller, versions of itself and remembering to start a
recursive procedure with a test that recognises when a given
problem does not need to be further broken down. It is
usually easier to write a recursive procedure without
worrying in detail about what the exact sequence of
operations will be when the procedure is called (an 'act of
faith' if you like). Just remember the two basic ingredients
- the stopping condition and the breakdown into easier
subproblems.

It is of course interesting to understand what does
happen when we call a recursive procedure. In fact, when a
program does not work as intended, such an understanding is
essential. Later, we shall explain in detail how recursive
programs work, but first let us write some simple programs
that use recursion.

7.1 Some easy recursive programs
Many of the programs presented in this section could very
easily be written without recursion using simple loops.
However, such 'inappropriate' use of recursion provides a
useful introduction to the subject using problems with which
we are familiar.

The first example simply prints the positive integers
from 1 to n using a procedure that can be called by:

10 INPUT n
20 PROCprintupto(n)
30 END

228

We shall break down the process of printing the numbers up
to a into the problem of printing the numbers up to n-1
followed by the use of a PRINT statement to print n. Of
course 1f n = 0, then there are no values to be printed and
this is the condition that we shall use to terminate the
recursion.

100 DEF PROCprintupto (n)

110 IF n =0 THEN ENDPROC
120 PROCprintupto (n-1)
130 PRINT n

140 ENDPROC

In the next section we shall discuss in detail what happens
when this program is obeyed. For the time being we shall
take on trust the fact that a recursive program works!

An interesting variation on this program is to change it
so that it prints the integers up to n, but in reverse
order. In this case, the breakdown into an easier subproblem
gives

PRINT n
print numbers up to n-1 in reverse order.

The only change that needs to be made to the previous
program is to switch lines 120 and 130.

100 DEF PROCprintupto (n)

110 IF n=0 THEN ENDPROC
120 PRINT n
130 PROCprintupto (n-1)

140 ENDPROC

The above two programs are examples of what is sometimes
called 'unary recursion' - a problem is broken down into one
easier version of itself together with straightforward
operations such as PRINT.

A simple example of 'binary recursion', where a problem
is broken down into two simpler versions of itself, is
provided by an alternative approach to printing the first a
integers. We can define a procedure that prints the integers
in a given range. For example,

PROCprintbetween (3, 7)
will print the integers 3, 4, 5, 6, 7.

PROCprintbetween (4, 4)

229

will print the single integer 4. This procodure could be
used to print the positive integers up to n by calling

PROCprintbetween(1,n)

PROCprintbetween can be defined using binary recursion if we
break down the problem of printing a given sequence into:

print the first half of the sequence
print the second half of the sequence

If only one value is to be printed, then this breakdown will
not be needed.

10 INPUT max
20 PROCprintupto (max)
30 END

100 DEF PROCprintupto (n)
110 PROCprintbetween(l, n)
120 ENDPROC

130 DEFPROCprintbetween (i, 3j)

140 LOCAL mid

150 IF i=j THEN PRINT i : ENDPROC
160 mid = (i+j) DIV 2

170 PROCprintbetween (i, laid)

180 PROCprintbetween (mid+1, 7j)
190 ENDPROC

Again, we leave a detailed study of what happens when this
program is run until the next section. For the time being,
note that it is vital when writing recursive program that
variables should be declared to be LOCAL wherever
appropriate. The reasons for this are discussed in the next
section.

The problem of printing the first n integers is, of
course, a rather trivial problem. We finish this section
with a simple recursive program that could not be so easily
written without recursion. The problem we consider is that
of printing a given positive integer in binary. For example,

PROCbinaryprint (5)
should display

101
and

PROCbinaryprint (179)

230

should display
10110011

The easiest way to convert an integer into binary is keep
dividing by 2 and collect all the remainders. The remainders
represent the bits required, but they are generated in
reverse order.

remainders

remainders in
reverse order
give
10110011

22
a4
89
179

NNNNNNDNN
[y
[EN
RPRPOORROR

One way of programming this process without recursion
would be to store the reanainders in an array and print them
out only when the repeated division has terminated with
zero. With recursion, the solution is considerably simpler.
We break down the problem of printing the number n in
binary:

print n DIV 2 in binary
PRINT ; n MOD 2;

where n MOD 2 is the last bit of the number.

10 INPUT "Integer to te expressed in binary", int
20 PROCbinaryprint (int)
30 END

100 DEFPROCbinaryprint (n)

110 IF n<2 THEN PRINT ;n ; : ENDPROC
120 PROCbinaryprint(n DIV 2)

130 PRINT ; n MOD 2;

140 ENDPROC

You might like to experiment with the effect of omitting
some of the semicolons in the above program. Changing line
110 affects only the first bit of the number printed while
changing line 130 affects all the other bits apart from the
first one.

Another experiment worth trying is to replace the
stopping condition at line 110 with

231

110 IF n=0 THEN ENDPROC

The program will then work correctly in all cases except whn
the original input value is 0. Taking no action on a zero
parameter is correct if the case 'n=0' arises as a
'subproblem'. We do not want to print a leading zero at the
start of a non-zero number. However, if the original number
is zero, then this number must be printed. We must ensure
that our procedure correctly handles the case where the
dstopping condition is true on the first call of the
procedure as well as the case where it is true for a
subproblem.

7.2 How it works

We start this section by introducing a model - the 'tree of
procedure calls' - that will be valuable in understanding
the behaviour of recursive programs. To introduce this
model, we first look at a program that involves procedures,
but no recursion. This program draws a simple house.

10 height=600:width=1000
20 MODE 4

30 PROCdrawhouse

40 k=GET : MODE 7

50 END

60 DEF PROCdrawhouse
70 PROCdrawfront
80 PROCdrawroof

90 ENDPROC

100 DEF PROCdrawfront

110 PROCdrawbox (0, 0,width, height)
120 PROCdrawwindows
130 PROCdrawdoor

140 ENDPROC

150 DEF PROCdrawwindows

160 LOCAL ww ,wh

170 ww=2*width/10 : wh=height/3
180 PROCdrawbox (ww/2,wh, ww, wh)
190 PROCdrawbox (7*ww/2,wb, ww, wh)

200 ENDPROC

210 DEF PROCdrawdoor
220 PROCdrawbox (4*width/10,0,width/5,height*2/3)
230 ENDPROC

232
240 DEF PROCdrawbox(x,y,w,h)

250 MOVE x,y
260 PLOT 1,0,h:PLOT 1,w,0
270 PLOT 1,0,-h:PLOT 1,-w,0

280 ENDPROC

290 DEFPROCdrawroof

300 MOVE 0,height
310 PLOT 1,width/2,height/3
320 PLOT 1,width/2,-height/3

330 ENDPROC
The process of drawing a house is broken down into the
process of drawing a 'front' and then drawing a roof. We can
illustrate this by

PROCdrawhouse

////\\\\

First: PROCdrawfront Then: PROCdrawroof

PROCdrawroof is defined in terms of primitive operations,
MOVE and DRAW, but PROCdrawfront is broken down into further
'subproblems'.

PROCdrawfront

e Sy

First: PROCdrawbox (0,0,1000,600) Then: PROCdrawwindows Then: PROCdrawdoor

PROCdrawbox is primitive, but PROCdrawwindows and
PROCdrawdoor are themselves defined in terms of other
procedure calls. We can represent all this information as a
complete 'tree of procedure calls' for the program, together
with arrows representing the 'flow of control' through the
program.

PROCdrawhouse

PROCdrawfront PROCdrawroof

e N

PROCdrawbox (0,0,1000,600) PROCdrawwindows PROCdrawdoor

PROCdrawbox (100,200,200,200) PROCdrawbox (700,200,200,200) PROCdrawbox(400,0,200,400)

233

We shall often abbreviate such a diagram by using single
lines in place of the double arrows and by omitting the word
PROC.

Notice in this example that PROCdrawbox is obeyed on
several different occasions with different sets of
parameters. Each time it is used, this procedure behaves
differently. However one call of PROCdrawbox is terminated
before another is activated.

Now let us consider the behaviour of the first recursive
program of the last zzection. We can illustrate the
behaviour of this program for a call of

PROCprintupto (3)

by the following 'tree' of procedure calls.

PROCprintupto (3)

%

PROCprintupto (2)

PROCprintupto (1)

4

PROCprintupto (0)

(The tree has only one branch at each level because we are
using unary recursion.) Like PROCdrawbox, PROCprintupto is
called at several points with a different parameter each
time. The only difference is that successive calls of
PROCprintupto take place before the previous call has
finished. The easiest way to understand what is happening is
to imagine a separate copy of the procedure being created
each time it is called. Of course, such copying would be
extremely wasteful of computer store (and time) and
recursion is organised much more efficiently behind the
scenes. Only the storage space for parameters and local
variables need be copied when a procedure is called.
However, in appreciating how a recursive procedure works, it
is convenient to imagine the whole procedure being copied.
We shall refer to these copies of a procedure as
'activations' of the procedure. We can expand the above tree
of procedure calls in more detail:

234

PROCprintupto (3)
END

DEF PROCprintupto (3)
PROCprintupto (2)
PRINT 3
ENDPROC

DEF PROCprintupto (2)
PROCprintupto (1)
PRINT 2

ENDPROC

DEF PROCprintupto (1)
PROCprintupto (0)
PRINT 1.

ENDPROC

DEF PROCprintupto (0)
ENDPROC

Now let us consider the behaviour of PROCprintbetween the

procedure that used binary recursion. In this program, a
call of

PROCprintupto (5)

results in a call of
PROCprintbetween(1,5)

This executes the following:
mid = (1+5) DIV 2 i.e. mid = 3

PROCprintbetween (1, 3)
PROCprintbetween (4,5)

printbetween (1,5)

md=3
printbetween (1,3) printbetween (4,5)
/mi/dzi\ mid = 4
printbetween (1,2) printbetween (3,3) printbetween (4,4) printbetween (5,5)
mid =1 PRINT 3 PRINT 4

PRINT 5

N

printbetween (1,1) printbetween (2,2)
PRINT 1 PRINT 2

235

Each of the two recursive calls of PROCprintbetween behave
in a similar way. You should be able to follow the arrows
through the tree and see exactly how the sequence of
procedure calls results in the numbering printed in the
required order.

Note the importance of declaring 'mid' to be LOCAL to
PROCprintbetween. This results in each recursive call of the
procedure having its own private variable called 'mid'.
Changing the value of this variable does not affect the
current value of 'mid' in other activations or copies of the
procedure. Thus, for example, when the activation
PROCprintbetween(1l,3) is terminated, control returns to
PROCprintbetween(1,5) and the value of 'mid' in that
procedure activation is still set to 3. The other procedure
activations that have been obeyed since setting that wvalue
each used different storage locations for holding their
LOCAL value for 'mid'. The value mid = 3' is needed in
PROCprintbetween(1l,5) for calculating the first parameter of
the next recursive call (at line 180 of the program) .

7.3 Towers of Hanoi

In this section we shall discuss the classic 'Towers of
Hanoi' puzzle. The puzzle has been used as an illustration
of recursion in the User Guide, but without explanation. The
puzzle consists of three pegs mounted on a base together
with a number of disks, all of different diameter. The disks
have holes in them which allow them to e slipped on and off
the pegs. The initial state is:

PEG1 PEG2 PEG3

n

Disc 1
Disc 2
Disc 3

Towers of Hanoi puzzle

The problem is to find a sequence of moves that transfers
the piles of disks from PEGl to PEG2 subject to the
following rules.

(1) Only one disk can be moved at a time.

(2) No disk can ever rest on a disk that is smaller
than itself

PEG3 can be used during the transfer as temporary resting
place for disks. Here is a solution to the three disk
problem.

236

Move DISK1l from PEG1l to PEG2
Move DISK2 from PEG1l to PEG3
Move DISK1l from PEG2 to PEG3
Move DISK3 tram PEG1l to PEG2
Move DISK1l from PEG3 to PEG1
Move DISK2 from PEG3 to PEG2
Move DISK1l from PEG1l to PEG2

In order to produce a recursive procedure for printing a
solution to the problem, we can reason as follows. At some
stage during the solution, we must move DISK3 (the largest)
from PEGl to PEG2. In order to do this, all the other disks
must be out of the way on PEG3 Thus, we must first solve the
easier problem of transferring 2 disks to PEG3 (using PEG2
as the spare peg if necessary). While this subproblem is
being solved, DISK3 can be treated as part of the fixed
base. After this subproblem has been solved, and DISK3 has
been moved to PEG2, we need to transfer the 2 disks on to
PEG2, DISK3 being treated as part of the base.

To solve this é é

Then move
disc 3 to peg 2

First solve this Then solve this

\
F AR N IV U P Y S g U

This breakdown can be generalised to the n-disk problem:

To transfer a tower of n disks from one peg to another peg
given a spare peg:

First transfer a tower of n-1 disks from the 'from peg'
to the spare peg using the 'to peg' as a spare.

Then move disk n to the 'to peg'.
Then transfer the tower of n-1 disks from the spare peg

to the 'to peg' using the 'from peg' as a spare.

This can be implemented directly as a BASIC procedure.

237
100 DEF PROCtransfer (n, frompeg, topeg, sparepeg)

110 IF n=0 THEN ENDPROC

120 PROCtransfer (n-1, frompeg, sparepeg, topeg)

130 PRINT "Move DISK " ;n; " from PEG " ;frompeg;
" to PEG ";topeg

140 PROCtransfer (n-1, sparepeg, topeg, frompeg)

150 ENDPROC
which can te called by:

10 INPUT"Number of disks" ,noofdisks
20 PROCtransfer (noofdisks,1,2,3)
30 END

We leave it as an exercise for the reader to draw the
complete tree of procedure calls that takes place in the
cases for n = 3 and n = 4.

7.4 Recursive patterns and curves

There are many complex patterns and curves that can easily
be drawn recursively and recursion is a useful tool in
computer graphics and computer generated art.

Recursive squares

The simplest recursive pattern is one in which a basic shape
is drawn together with recursive copies of smaller versions
of the ccanplete patttern. For example, the next program
creates a pattern of recursive squares. The pattern consists
of a square, together with a recursive half-size copy of the
complete pattern centered on each corner of the main square.

10 INPUT "radius" ,r

20 MODE 1

30 PROCsquare (640,512, r)
40 k=GET :MODE7

50 END

100 DEFPROCsquare (xc,yc,r)
110 IF r<10 THEN ENDPROC

120 LOCAL x1,x2,y1l,y2

130 X1=XC-Y:X2=XC+T

140 yl=yc-r:y2=yc+r

150 MOVE x1,vy1l

160 DRAW x1,y2 : DRAW x2,y2
170 DRAW x2,yl : DRAW x1,vy1l
180 PROCsquare (x1,y1,r/2)
190 PROCsquare (x1,y2,1r/2)
200 PROCsquare (x2,y2,r/2)
210 PROCsquare (x2,y1,r/2)
220 ENDPROC

238

The photographs show the three stages in the build-up for
r = 192, together with the complete pattern. For example,
the first photograph illustrates the situation when the
following procedure calls have been activated.

square (640,512,192)

square (448,320,96)

/

square (352,224,48)

/

square (304,176,24)

/

square (280,152,12)

square (268,140,6)

239

The last procedure call triggers the stopping condition (r <
10) und terminates without drawing a square.

At the stage reached in the second photograph, the tree
procedure calls that have been obeyed and terminated,
together with the procedure calls that are still active, has
the following shape. (The active procedure calls are down
the right hand branch.)

square(690,512,192)

ACTIVE

square(448,320,96) square(448,704,96)

W

Space-filling curves
There is a large variety of patterns that crane into the
category of 'space filling curves'. These curves are such
that they can usually be drawn as a single continuous line
or curve in some well defined way. We shall illustrate the
technique involved by using the so-called 'Sierpinski
curves'.

The next set of photographs shows the Sierpinski curves
of orders 1 to 4.

It is convenient to define a Sierpinski curve of order 0
which consists of a diamond:

Notice that each of these curves could be drawn as a
continuous line, without lifting pencil from paper. We shall
look at two ways of drawing these curves, where the second
method draws the curve as a continuous line.

The first method is conceptually a little easier and for
this approach, we must first recognise that the Sierpinski
curve of order 1 consists of four order 0 curves 'joined' at
the centre. Similarly the order 2 curve consists of four
order I curves joined at the centre. In general, an order n
curve consists of four order n-1 curves joined at the
centre. Note that when four subcurves are joined, this
involves deleting four diagonal lines from the subcurves and
joining the subcurves with two horizontal and two vertical
lines. This suggests the following outline for a recursive
procedure to draw a Sierpinski curve of order n, centred at
X, Y).

100 DEF PROCsierpinski(n, x, y)

110 IF n =0 THEN draw a diamond

120 k = horizontal and vertical distance to
the centres of the four subcurves

130 PROCsierpinski (n-1, x-k, y-k)

140 PROCsierpinski (n-1, x-k, y+k)

150 PROCsierpinski (n-1, x+k, y+k)

160 PROCsierpinski (n-1, x+k, y-k)

170 ENDPROC

241

In order to fill out thin procedure, we need to examine the
geometrical details fairly carefully. Any curve of order 1
or more consists of repeated coppies of the same basic shape
and we shall name the various dimensions of this basic shape
as follows:

h is the smallest increment that will be required in our
DRAW or MOVE statements. Thus the statements needed to draw
a curve of order 0 (a diamond) centred at (x, y) are:

MOVE x-h, vy
DRAW x, y+h : DRAW x+h, vy
DRAW x, y-h : DRAW x-h, vy

The distance from the centre of a curve of order n to the
centre of one of its subcurves of order n-1 is 2*n*h. To
convince yourself of this, you should mark the various
distances on curves of different orders.

Finally the situation at the centre of a curve of order
n, when the four subcurves of order n-1 have been drawn, can
be illustrated as:

Curve of Curve of
order n-1 order n-1
Vi ’ -t N /
’ N\
\/ .

P

N 2h \
Curve of T e Curve of
order n-1 / h \ order n-1

We need to delete the four dotted diagonal lines and draw
the dotted vertical and horizontal lines. This can be easily
accomplished by drawing round the dotted polygon using
alternate PLOT 9 and PLOT 11 commands. These are relative

242

plots, in the foreground and background colour respectively,
which do not affect the last point visited on the line. Here
is the complete program.

10 INPUT"Order" ,order
20 size=(2"order-1)*4+2
30 h=INT(600/size)

40 h2=h*2

50 MODE O

100 PROCsierpinski (order, 640,512)
110 key=GET:MODE 7

120 END

130 DEF PROCsierpinski (n,x,y)

140 LOCAL k

150 IF n=0 THEN MOVE x-h,y:DRAW x,y+h:DRAW x+h,y:
DRAW x,y-h:DRAW x-h,y:ENDPROC

160 k=2"n*h

170 PROCsierpinski (n-1,x-k,y-k)

180 PROCsierpinski (n-1,x-k,y+k)

190 PROCsierpinski (n-1,x+k,y+k)

200 PROCsierpinski (n-1,x+k,y-k)

210 MOVE x-h2,y-h

220 PLOT 9,0,h2 : PLOT 11,h,h

230 PLOT 9,h2,0 : PLOT 11,h,-h

240 PLOT 9,0,-h2 : PLOT 11,-h,-h

250 PLOT 9,-h2,0 : PLOT 11,-h,h

260 ENDPROC

Note the use of INT at line 30 which ensures that increment,
h, used in all the PLOTs is an integer. In programs that
involve sequences of relative plots, it always advisable to
ensure that the increments usexd are integers as the
graphics 'current point' is recorded internally as a pair of
integer coordinates. Use of real increments in relative
plots can result in an accumulation of errors that cause
misalignments in the display produced. You can see this
effect by reviewing INT at line 30. An even better
alternative would be to use an integer variable (with a %)
throughout the program.

It is interesting to look at an alternative approach to
drawing the Sierpinski curves by drawing the curve as a
continuous line. This is the approach that would have to be
used 1f the curve were to be drawn on a hard copy device
(where lines cannot be deleted). This method is based on an
algorithm described by Wirth (the inventor of the
programming language PASCAL) .

We first observe that a curve of order n consists of four
components connected at the corners - a left component, a
top component, a right component and a bottom canponent:

243

Tpp of

(//N\ order n SN
N RN
N - y

N === ’
\ /
\ /
\\ /
Leftof ! | Right of
ordern | 1 ordern
1
! \
/ \
// N
\

’ - -

- - N
Q\v’/ Bottom of \\V/)

order n

For example, in the case of the order 1 curve, we have:

The procedure for drawing a Sierpinski curve of order n will
te defined in terms of procedures for drawing its four
components

90 DEF PROCsierpinski (n)

100 PROCleft (n) : PLOT 1,h,h
110 PROCtop (n) :PLOT 1,h,-h
120 PPROCright (n) : PLOT 1,-h,-h
130 PROCbottom(n) :PLOT 1,-h,h

140 ENDPROC

Now an order n component is made up of a sequence of order
n-1 ccanponents joined in a well-defined way. For example, a
left component of order n consists of:

left component of order n-1
diagonal line

top component of order n-1
vertical line

component of order n-1
diagonal line

left component order n-1

JURS VIR RO

244
For example, with n = 2,

If n = 0, the components are empty - joining four empty
components diagonally at the corners gives a diamond shape.
This gives the following procedure for drawing a left
component of order n.

150 DEF PROCleft (n)

160 IF n=0 THEN ENDROC

170 PROCleft (n-1) :PLOT 1,h,h
180 PROCtop (n-1) : PLOT 1,0,h2
190 PROCbottom(n-1) : PLOT 1,-h,h
200 PROCeft (n-1)

210 ENDPROC

A similar breakdown can be achieved for the top, right and
bottom components and this gives the following complete
program

10 MODE 0

20 INPUT "Order ",order

30 size=(2"order-1)*4+2

40 h=INT (600/size) :h2=h*2
50 MOVE 300,200+h

60 PRROCsierpinski (order)
70 K=GET :MODE7

80 END

90 DEF PROCsierpinski (n)

100 PROCeft (n) : PLOT 1,h,h

110 PRROCtop (n) :PLOT 1,h,-h
120 PRROCright (n) : PLOT 1,-h,-h
130 PROCbottom(n) : PLOTT 1,-h,h

140 ENDPROC

245
150 DEF PROCleft (n)

160 IF n=0 THEN ENDPROC

170 PROCleft (n-1) : PLOT 1,h,h
180 PROCtop (n-1) : PLOT 1,0,h2
190 PROCbottom(n-1) : PLOT 1,-h,h
200 PROCleft (n-1)

210 ENDPROC

220 DEF PROCtop (n)

230 IF n=0 THEN ENDPROC

240 PROCtop (n-1) : PLOT 1,h,-h
250 PROCright (n-1) : PLOT 1,h2,0
260 PROCleft (n-1) :PLOT 1,h,h
270 PROCtop (n-1)

280 ENDPROC

290 DEF PROCright (n)

300 IF n=0 THEN ENDPROC

310 PROCright (n-1) : PLOT 1,-h,-h
320 PROCbottom(n-1) : PLOT 1,0, -h2
330 PROCtop (n-1) :PLOT 1,h,-h

340 PROCright (n-1)

350 ENDPROC

360 DEF PROCbottom(n)

370 IF n=0 THEN ENDPROC

380 PROCbottom(n-1) :PLOT 1, -h, h
390 PROCleft (n-1) : PLOT 1,-h2,0
400 PROCright (n-1) : PLOT 1,-h,-h
410 PROCbottom (n-1)

420 ENDPROC

You should notice that there are two types of recursion
involved in the last program. There is straightforward
recursion where, for example, PROCeft calls PROCleft. There
is also 'hidden' or 'mutual' recursion where, for example,
PROCeft calls PROCtop which in turn calls PROCleft.

You should run both Sierpinski programs and observe the
differences in their behaviour. Other well-known space
filling curves are the 'C-curve' and the 'dragon curve'.
Programs drawing these curves are presented in 'Creative
Graphics' published by Acornsoft.

Exercises

1 Animate a program for solving the 'Towers of Hanoi'
puzzle. The program should display a picture of the pegs
and disks, and, instead of printing a move, should move
the appropriate disk in the display.

2 The family of patterns, of which the following is an
example, can be described recursively.

246

Write a program that generates patterns like this.

3 Write a program that generates patterns like those of the
last exercise, but using diamonds instead of squares.

4 The next photographs show a family of curves (due ta
Wirth) called W-curves.

247

Write a program that draws a W-curve of order n as a
continuous line.

7.5 Towers of Hanoi revisited - state space representation

Many non-numerical problems can be represented by a large
(possibly infinite) set of 'problem states' together with a
set of moves, or operators, each of which transforms one
state into another. The definition of an operator may
include restrictions on the states to which it can be
applied.

For example, we could represent the complete set of 1-
disk Tower of Hanoi states with a single triangle. There are
three states in the 1 disk problem - the disk can be on one
of three pegs. Each vertex of the triangle represents a
state. The lines connecting vertices represent a possible
move from one state to another.

Ll
4] /\ 1L

In the state space for the 2—disk problem we have three such
triangles, one for each possible position of the larger
disk. The three triangles are joined together by lines
representing the three different ways of moving the larger
disk from one peg to another.

ESNN

Lil Ll

e |+]
L1 LAl

Similarly the 3-disk state-space diagram contains three 2-
disk state-space diagrams. The block of photographs show the
state space diagrams for the 3-, 4-, 5- and 6-disk problem.

248

We can write a recursive program to generate these
diagrams:

10 base = 800

30 xleft=(1280-base)/2 : xright = 1280-xleft
40 xtop=xleft+base/2

50 root3=SQR(3)

60 height= base*root3/2

65 vybottesn= (1024-height) /2

66 ytop = 1024-ybottom

70 INPUT "No. of disks",n

80 arclength=base/ (2"n-1)

90 MODE 0

100 VDU 5

110 PROCdrawgraph (n,xleft,xright, ybottom,xtop, ytop)
120 k=GET:MODE 7:END

249

140 DEF PROCdrawgraph (n,xl,x2,vy12,x3,vy3)
150 LOCAL subside, subheight

160 IF n=0 THEN ENDPROC

170 subside = (2" (n-1)-1)*arclength

180 subheight = root3*subside/2

190 PROCdrawgraph (n-1,x1,xl+subside,yl2,xl+subside/2,
yl2+subheight)

200 PROCdrawgraph (n-1,x2-subside, x2,y12,x2-subside/2,
y1l2+subheight)

210 PROCdrawgraph (n-1,x3-subside/2,x3+subside/2,
y3-subheight, x3;y3)

220 MOVE xl+subside,yl2

230 DRAW x2-subside,yl2

240 MOVE xl+subside/2,yl2+subheight

250 DRAW x3-subside/2,y3-subheight

260 MOVE x2-subside/2,yl2+subheight

270 DRAW x3+subside/2,y3-subheight

280 ENDPROC

7.6 Problems with recursion

In this section, we shall illustrate two problems that can
arise when using recursion. To do this, we revisit the
problem of colour filling a region that is defined by
boundaries that have already teen drawn on the screen. A
non-recursive algorithm for accomplishing this was presented
in Chapter 2.

Simple recursive colour till - excessive recursive depth
Recall that the colour fill algorithm of Chapter 2 started
from an arbitrary point in the region and worked outwards
from that point to adjacent points, eventually visiting the
whole region. We can very easily describe a recursive
procedure for colour filling a 4-connected region:

200 DEF PROCfillfrom(x,y)

210 IF POINT (x,y)>0 THEN ENDPROC
220 PLOT 69 ,X,y

230 PROCfillfrom(x,y+4)

240 PROCfillfrom(x,y-4)

250 PROCfillfrom(x+4,y)

260 PROCfillfrom(x-4,y)

270 ENDPROC

This is certainly much shorter than the equivalent
procedures in the program in Chapter 2. Now that we are
familiar with recursion, the recursive version is also
conceptually easier. If, however, you insert the above
procedure in a program and run it, you will find that it

250

will work only for very small regions. For larger regions
the program will terminate with the error message 'No room!'
This is because a long sequence of recursive procedure calls
has been entered and not yet terminated. To see how this
happens, look at the following configuration of pixels.

®
®
®
®
® O

If we start the fill process by calling PROCfillfrom with
parameters that specify pixel 1, then the following tree of
procedure activations is created.

/
fillfrom ()

This process will continue, and as the pixels in the region
are visited, the tree of procedure activations will get
deeper and deeper. A procedure call will be terminated only
when a dead end is encountered, for example at pixel 4. Each
time a procedure is activated, storage space is used up for
holding parameters, local variables and a record of where to
return to when the procedure is terminated. This space is
freed only when the procedure terminates. There is thus a
limit to the depth to which the recursion can be extended,
and for a region of any size the limit will soon be
encountered. Notice also that, in this example, when a long

251

chain in of recursive calls is eventually terminated, most
of the other recursive calls that then take place will be
unnecessary and will terminate immediately. This redundancy
is, however, necessary if thv algorithm is to cater for a
convoluted region. On a large processor with virtually
unlimited storage space, the simple recursive algorithm
might be usable, but on a micro, it is rather
unsatisfactory.

The general point illustrated by this example is that
recursion must not be allowed to proceed to any great depth.

Using horizontal £fill - hidden loop nesting

As we have already seen in the last section the simple
recursive approach to colour-fill leads to problems
involving the depth of the recursion and the queue method
introduced in Chapter 2 is obviously preferable. In this
section an alternative recursive approach is examined.
Although this also involves a common problem with recursion,
this new problem can be easily overcome.

A common provision in graphics systems that operate with
a raster scan display is a horizontal fill facility. Such a
facility will typically be given the (x,y) coordinates of a
point and will colour-£fill pixels to the left and right of
the given pixel as long as these pixels are in the
background colour.

On the BBC micro, the first issue of the operating system
(0S 0.1) did not provide such a facility, but this omission
was rectified in later versions with a new set of PLOT
instructions.

First of all, we present a BASIC procedure that
implements a horizontal fill. At first, we shall not use the
new PLOT commands and will implement the horizontal £fill
without them. Anyone who still has the first issue of the
operating system will need to do it this way. The method can
also be seen as an explanation of the version using the new
PLOT facilities which are presented later.

300 DEF PROCfillalong(x,y)
310 LOCAL nextx

320 PROCdirectionfill (x,y,xstep)
330 rightx=nextx-xstep

340 PROCdirectionfill (x,y, -xstep)
350 leftx=nextx+xstep

360 ENDPROC

370 DEF PROCdirectionfill (x,y,dir)

380 nextx = x

390 REPEAT

400 PLOT 69,nextx,y

410 nextx=nextx+dir

420 UNTIL POINT (nextx,y) >0

430 ENDPROC

252

A call of PROCfillalong will first colour-fill to the right
of the given pixel until a non-background point is
encountered. The same thing is done to the left. Both scans
are carried out using the subsidiary procedure
PROCdirectionfill whose parameter 'dir' indicates the
direction of the scan. As a result of calling PROCfillalong,
the two non-local variables 'leftx' and 'rightx' are set to
values indicating the extent of the strip that was filled
The value of 'xstep' will indicate the width of a pixel and
this will depend on the mode being used. For example, MODE
1, 'xstep=4'. We now present a recursive version of
PROCfillfrom which could be used in place of previous
versions of the same procedure, but which makes use of
horizontal fill. The procedure will be given a point, and
starts by filling the horizontal strips in which the point
specified by its parameters lies. It then calls itself
recursively to fill from each pixel above and below the
strip that has just been filled. A first attempt at this
procedure is:

200 DEFPROCfillfrom(x,y)
210 LOCAL leftx,rightx, scanx

220 IF POINT(x,y)>0 THEN ENDPROC

230 PROCfillalong (x,V)

240 FOR scanx = leitx TO rightx STEP xstep
250 PROCfillfrom(scanx,y+ystep)

260 PROCfillfrom(scanx,y-ystep)

270 NEXT scanx

280 ENDPROC

Note that 'yetep' is the height of a pixel. In MODE 1,
'ystep=4'. It we run our colour filling program with this.
version of PROCfillfrom, we again find that it will only
work for small regions. With larger regions the program
terminates with the message - 'Too many FORs'. This usually
means that too many FOR statements have teen nested inside
each other. A common cause of this error message is the
omission of a NEXT statement. In our case, there are no
explicitly nested FOR statements, but because the recursive
procedure calls appear inside a FOR statement, any FOR
statement entered during a recursive call behaves as if it
were inside the outer FOR statement. The limit on the number
of nested FOR statements is 10 and if the recursive depth
goes beyond 10, as it will for a larger region, then the
program will terminate. Unfortunately the only satisfactory
solution is to replace the FOR loop with an equivalent GOTO
loop:

253

200 DEF PROCfillfrom(x,vy)
210 LOCAL leftx,rightx, scanx

220 IF POINT (x,y)>0 THEN ENDPROC
230 PROCfillalong (x,y)

240 scanx=leftx

250 PROCfillfrom(scanx,y+ystep)
260 PROCfillfrom(scanx,y-ystep)
270 scanx=scanx+xstep

280 IF scanx<=rightx GOTO 250

290 ENDPROC

The algorithm described above could be considerably
improved. Notice that many of the recursive calls will be
completely unnecessary. For example, once a line of pixels
has been filled, the first recursive call of PROCfillfrom on
the adjacent row will in most cases be sufficient and the
remaining recursive calls will terminate immediately. Any
additional recursive call from the adjacent row will only
occasionally be necessary. For example, in the following
situation:

@ Boundary @

This row has just been filled

At least two recursive calls at pixels marked X are
necessary on the row above the one that has just been
filled, so as to initiate filling of the two concavities
opening off the lower row. Similarly many recursive calls
involve looking back at pixels in rows already visited and
again this is only occasionally necessary.

An interesting adjustment to the program which will allow
you to see which points are being visited for a second or
third time, is to replace the line that recognises points
that need not te filled by:

220 IF POINT(x, y) > 0 THEN PLOT 70, x, y : ENDPROC

This will invert the colour of any pixel that is already
colour-filled and you will be able to observe the progress
of the algorithm not only as it fills the background region,
but also as it makes unnecessary recursive calls in areas
that have already been filled. The improvements required to
avoid this unnecessary work are fairly tricky and we will
not go into them here.

Finally, here is an alternative version of PROCfillalong

254
that uses the PLOT 77 command for horizontal f£ill.

300 DEF PROCfillalong(x,y)

310 PLOT 77 ,x,V¥

320 X%=CPblock : %$=CPblock DIV 256
330 A%=&0D : CALL &FFF1

340 leftx=(!CPblock AND 65535)

350 rightx=(! (CPblock+4) AND 65535)

360 ENDPROC

The PLOT 77 statement at line 310 scans left and right fom
the pixel specified by x and y until it reaches the last
background point in both directions. A line is drawn be the
two points reached. The rightmost point becomes the 'current
graphics point' and the leftmost point becomes the previous
graphics point. We now need to set 'leftx' to x-coordinate
of the previous graphics point and 'rightx' the x-coordinate
of the current graphics point. To do this we use the OSWORD
call at lines 320 to 330. This uses block of store declared
at the start of the program by:

5 DIM CPblock 8

You do not need to understand the details of how OSWORD
calls work in order to use this 'recipe'. The above version
of PROCfillalong is exactly equivalent to that described
earlier. It is of course much faster.

It is worth mentioning briefly another PLOT command that
could be used to speed up execution of the loop in
PROCfillfrom (lines 250 to 280). The statement

PLOT 92, x, V¥

searches pixels to the right of (x,y) for a background point
and sets the last non-background point reached as current
graphics position. We leave the reader to think about how
this could be used.

Finally, note that all recursive colour filling
algorithms can run out of room for large or highly
convoluted regions. The horizontal fill methods described
here could all be reorganised to use a queue similar to that
used in Chapter 2.

7.7 Divide and conquer - merge sorting

Yet another approach to sorting (a number of algorithms were
introduced in the last chapter) is the merge sort algorithm,
one of the most efficient sort algorithms available. This
algorithm is tricky to implement without recursion. It
illustrates one of the most important recursive approaches
to a problem - that of divide and conquer. We sort the list

255

by sorting each half and merging the two halves - merging is
a fast process. Each half is sorted by dividing it into two
and sorting each quarter. Each quarter is sorted by dividing
it into two - in other word divide and conguer.

A program implementing a recursive merge sort,
PROCmergesort, is now given.

10 DIM number (100)

20 INPUT "No. of items",noofitems
30 FOR i=1 TO noofitems

40 INPUT number (i)

50 NEXT i

60 PROCmergesort (noofitems)

70 FOR i=1 TO noofitems

80 PRINT number (i)

90 NEXT 1

95 END

100 DEF PROCmergesort (n)
110 DIM aux(n)

120 PROCsubsort (1,n)

130 ENDPROC

150 DEF PROCsubsort (i, Jj)
160 LOCAL mid
170 IF i>=j THEN ENDPROC

190 mid=(i+j)DIV 2

200 PROCsubsort (1i,mid)

210 PROCsubsort (mid+1, j)

220 PROCmerge (i, mid, mid+1, j)

230 ENDPROC

250 DEF PROCmerge (beginl, endl,begin2, end2)
260 LOCAL i,next,firstfinished, secondfinished

270 FOR i=beginl TO endl:aux(i)=number (i) :NEXT i
280 next = beginl

290 firstfinished=FALSE : secondfinished=FALSE
300 REPEAT

310 IF aux(beginl)<number (begin2)

THEN PROCtakelfromfirsthalf
ELSE PROCtakelfromsecondhalf

320 next=next+1
330 UNTIL firstfinished OR secondfinished
340 IF secondfinished THEN
FOR i=next TO end2 : number (i)=aux(beginl)

beginl = beginl+l : NEXT i
350 ENDPROC

256

370 DEF PROCtakelfromfirsthalf
380 number (next) =aux (beginl)
390 IF beginl=endl THEN
firstfinished=TRUE
ELSE beginl=beginl+l
400 ENDPROC

420 DEF PROCtakelfromsecondhalf
430 number (next) =number (begin2)
440 IF begin2=end2 THEN
secondfinished=TRUE
ELSE begin2=begin2+1
450 ENDPROC

PROCsubsort (i,j) sorts the list of elements from
number (i) to number (j). Note that the recursion terminates
on a call of subsort(i,j) where i = j, a list of one item is
already sorted. In order to ccanplete the above procedure,
we need to define the procedure 'merge' which is used to
combine the two separate sorted sequences in

number (i) to number (mid)
and number (mid+1l) to number (j)

into one sorted sequence in number (i) to number(j).

Merging two sublists that are already sorted is a fast
operation although it is not easy to do in situ as required
in the present context. We have defined:

PROCmerge (beginl, endl, begin2, end2)

which first copies the contents of number (beginl) to
number (endl) into an auxiliary array 'aux' in locations
aux (beginl) to aux(endl) .

The procedure will then repeatedly select an item from
one of, our two subsequences and insert it into the next
available location of the area that is to contain the merged
sequence.

If the items of the first subsequence are exhausted then
any remaining items in the second subsequence are in their
correct positions. If the items in the second subsequence
are exhausted, then any remaining items in the first
subsequence must be copied from 'aux' into their new
locations in 'number'. (Any items from the second
subsequence that were previously there must already have
teen copied up into their new positions.)

The situation after one of the subsequences has been
copied into the auxiliary array, but before merging starts,
is illustrated in the next diagram.

aux (beginl) || number (beginl)[—| firstitem of

257

aux number

e o o o
.
J

location for

merged sequence

1st subsequence
of sorted items

area of 'number’

aux (endl) [| number (and1)[| for merged sequence

. number (begin2)
. .
: * || 2nd subsequence
. : of sorted items
. .
N number (end2) [» |
. .
. .

Exercises

1 Use the text animation procedures defined in Chapter 4,

Section 4.1, to animate a merge sort. You will need to
organise the display differently from the way it was
organised for the other sort methods - display the two
arrays involved, 'number' and 'aux' at either side of the
screen.

The process of binary search presented in Chapter 6
(Section 6.4) can te described recursively. Do this, and
write a recursive procedure to carry out a binary search
on a suitable table.

The sorting method known as 'quicksort' can be described
as follows:

To sort a table of n items:

Select a random entry (the first say)

Split the table into two sub-tables - the entries
that should come before the selected entry and
the entries that should come after the selected
entry.

Sort each of the two sub-tables (recursively).

The two sub-tables with the selected entry in the
middle give the final sorted table.

Write a recursive procedure that implements 'quicksort'
on a table of numbers.

