
Appendix 1 Summary of mode and
colour facilities

Text facilities available in different modes

mode colours available characters per line lines

0 2 80 32
1 4 40 32
2 16 20 32
3 2 80 25
4 2 40 32
5 4 20 32
6 2 40 25
7 Teletext 40 25

display

Graphics facilities available in different modes

mode colours available graphics resolution

0 2 640 x 256
1 4 320 x 256
2 16 160 x 256
4 2 320 x 256
5 4 160 x 256

Note that there no graphics facilities in modes 3, 6 and 7.

Memory requirements for different modes

mode memory requirements

0 20K
1 20K
2 20K
3 16K
4 10K
5 10K
6 8K
7 1K
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Overall colour range

There are sixteen actual colours available (on the Model A
or B). These colours are numbered from 0 to 15.

Actual colour numbers and corresponding colours

colour number colour name

0 black
1 red
2 green
3 yellow
4 blue
5 magenta
6 cyan
7 white
8 flashing black-white
9 flashing red-eyan

10 flashing green-magenta
11 flashing yellow-blue
12 flashing blue-yellow
13 flashing magenta-green
14 flashing cyan-red
15 flashing white-black

Colour codes in different modes

In each mode colours are referred to by code numbers from 0
upwards (using COLOUR for text colour and GCOL for graphics
colour). The background colour is set by adding 128 to the
required code number. The code numbers for a mode can be
made to refer to any combination of actual colours (using
VDU 19). There is an initial or default setting for each
mode which specifies the colour that you get if you do not
use VDU 19.

2 colour modes (MODES 0,3,4,6)

colour code numbers default actual colours

foreground background colour number

0 128 black 0
1 129 white 7
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4 colour mode (MODES 1 and 5)

colour code numbers default actual colours

foreground background colour number

0 128 black 0
1 129 red 1
2 130 yellow 3
3 131 white 7

In the 16 colour mode (MODE 2) the colour codes are
initially set to the corresponding actual colour numbers.
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Appendix 2 Bits, bytes and hex

For  t he maj or i t y of  st r ai ght f or war d pr ogr anuni ng
appl i cat i ons,  t he user  of  t he BBC mi cr o need not  concer n
hi msel f  wi t h t he det ai l s of  how t hi ngs l i ke number s and
st r i ngs ar e r epr esent ed i nsi de hi s comput er ,  but  f or  some
advanced appl i cat i ons a mor e det ai l ed knowl edge of  t he
i nt er nal  r epr esent at i on of  i nf or mat i on i s r equi r ed.

Bits
Al l  i nf or mat i on st or ed i n a moder n di gi t al  comput er  i s hel d
i n t he f or m of  ' bi nar y di gi t s ' .  I n t hi s cont ext ,  t he wor d
' bi nar y '  means ' havi ng t wo possi bl e val ues' ,  and a bi nar y
di gi t  can t hus be set  t o one of  t wo possi bl e val ues.  We
usual l y abbr evi at e t he t er m bi nar y di gi t  t o ' bi t ' .

When we wr i t e a bi t  on paper ,  we r epr esent  i t s t wo
possi bl e val ues as 0 or  1.  I nsi de a comput er ,  a bi t  mi ght  be
r epr esent ed by a magnet i c f i el d l y i ng i n one of  t wo possi bl e
di r ect i ons,  or  by an el ect r oni c vol t age t hat  can be posi t i ve
or  negat i ve.  The pr ogr ammer ,  however ,  need not  concer n
hi msel f  wi t h t he pr act i cal i t i es of  r epr esent i ng a bi t
el ect r oni cal l y or  magnet i cal l y.  When he needs t o t hi nk i n
t er ms of  t he bi nar y r epr esent at i on of  i nf or mat i on,  he can
t hi nk ent i r el y i n t er ms of  ones and zer os.

Wi t h one bi t ,  we can r epr esent  onl y t wo possi bl e val ues,
0 or  ,  and i n f act  scane of  t he i nf or mat i on i n our  BBC
comput er  i s coded usi ng onl y one bi t .  For  exampl e,  i n MODE
4,  one bi t  i s  used t o code t he col our  of  each pi xel  on t he
scr een.  Each pi xel  can be one of  t wo col our s,  col our  0 or
col our  1.

Bit patterns
Bi t s ar e usual l y or gani sed i nt o gr oups or  ' pat t er ns' .  Wi t h a
gr oup of  t wo bi t s,  each bi t  can one of  t wo val ues gi v i ng 2x2
possi bl e di f f er ent  pat t er ns.

f i r st  bi t  second bi t  bi t  pat t er n

0 0 00
0 1 01
1 0 10
1 1 11

A t wo- bi t  pat t er n i s used t o code t he col our  of  each pi xel
an t he scr een i n a f our  col our  mode such as MODE 5.

Wi t h t hr ee bi t s,  t her e ar e 2x2x2 possi bl e di f f er ent
pat t er ns and so on:
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no. of bits in no. of possible
pattern example differnt patters

1 0 2 
2 10 4 = 2x2
3 011 8 = 2x2x2
4 1010 16 = 2x2x2x2
5 10100 32 = 2x2x2x2x2
6 011010 64 = 2x2x2x2x2x2
7 1101001 128 = 2x2x2x2x2x2x2
8 11000101 256 = 2x2x2x2x2x2x2x2

Bit numbering

The bits in a bit pattern are usually referred to by
numbering thenm from zero upwards from right to left, bit0,
bit1, bit2 and so on.

. . .

. . .

1 0 1 1 0 1

bit0bit5 bit4 bit3 bit2 bit1

Bytes

A group of 8 bits is called a 'byte'. One 'word' on your BBC
micro contains one byte or one 8-bit pattern. The entire
store that is accessible to the user consists of 16,384
words or bytes on a Model A and 32,768 words or bytes on a
Model B. We usually quote storage capacity in 'K' where: 

1K = 1024 (1024 = 210)

Because we are working on a binary system, everything is
organised behind the scenes in powers of 2. Thus we say that
a Model A has 16K bytes of store, i.e. 16*1024 bytes or
16*1024*8 bits.

8-bit integers

When we use a group of decimal digits to represent a non-
negative integer, each digit has a weight that is a
different power of 10. For example, with 5-digits:

7 3 9 2 4

weight 10000 1000 100 10 1
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When we use a bit-pattern to represent a non-negative
integer, only two values are available for each digit, so we
give each digit a weight that is a power of 2. For example,
with a 6-bit pattern we might have:

1 0 1 1 0 1

weight 2 12*2*2*2*2
=32

2*2*2*2
=16

2*2*2
=8

2*2
=4

We use a full byte to represent an integer in this way, we
have:

binary decimal

00000000 = 0
00000001 = 1
00000010 = 2
00000011 = 3

. .

. .

. .
01111110 = 126
01111111 = 127
10000000 = 128

. .

. .

. .
11111110 = 254
11111111 = 255

We saw earlier that there are 256 different B-bit patterns
and they can be used in this way to represent integers in
the range 0 to 255. Because it contributes least weight to
an integer, the rightmost bit, bit0, is usually called the
least significant bit and the leftmost bit is called the
most significant.

8-bit positive and negative integers

If we want to use bytes to represent both positive and
negative integers, we have to define a different
correspondence between the available bit-patterns and the
values they represent. The representation normally used is
kown as '2s complement' representation. A detailed
description of this is beyond the scope of this book, but
the next table shows how a byte would be used to represent
negative as well as positive integers. The bit-patterns that
were previously used to represent positive integers from 128
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up to 255 are now usod in the same order as before to
represent the negative integers from -128 up to -1. In
particular, -1 is represented by a bit-pattern that consists
entirely of ones. This representation for negative numbers
may seem rather strange, but it has many advantages when the
computer is doing calculations that involve positive and
negative numbers.

binary decimal
. .

10000000 = -128
10000001 = -127
10000010 = -126

. .

. .

. .
11111110 = -2
11111111 = -1
00000000 = 0
00000001 = 1
00000010 = 2

. .

. .

. .
01111110 = 126
01111111 = 127

Note that you cannot tell by looking at a bit-pattern
what sort of information it is being used to represent. This
is determined by the context in which it is used and by the
way it is processed by the circuits of the computer. For
example, the same bit pattern might be used in different
contexts to represent an integer or a character code.

Hexadecimal notation

When we are working with bit-patterns, it becomes very
tedious having to write long sequences of ones and zeros
when we want to specify a particular bit-pattern. We could
abbreviate a byte by writing it as the equivalent positive
decimal number, such as 179, but it is not at all obvious if
we write 179 that we are talking about the bit-pattern
10110011. When we want to abbreviate a bit-pattern in a way
that is not too far removed from its binary form, it is
usual to write it in 'hexadecimal' notation (or hex for
short). The bit-pattern is first divided into groups of four
bits. There are 16 possible different patterns of four bits
and each of these possible patterns can be represented by a
single 'hexadecimal digit' as follows:
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4-bit  hexadecimal 4-bit hexadecimal
pattern  digit pattern digit

0000 0 1000 8
0001 1 1001 9
0010 2 1010 A
0011 3 1011 B
0100 4 1100 C
0101 5 1101 D
0110 6 1110 E
0111 7 1111 F

We can thus write the bit-pattern 10100011 in hex as A3:

10100011

A 3

In BBC BASIC, we can write numbers in a program in hex if we
precede the number by the symbol '&'. Thus we write &B3.
Here are some other examples of bytes and the corresponding
hex and decimal numbers:

byte hex decimal

00011111 &1F 31
00101110 &2E 46
01101001 &69 105
11111111 &FF 255

Note that &69 is quite different from decimal 69 which would
be represented by the bit-pattern:

01000101 = &85

Because one hexadecimal digit corresponds to four binary
digits, it is easy to visualize the bit-pattern
corresponding to a hexadecimal number (provided that we are
familiar with the sixteen patterns that correspond to the
sixteen hex digits). Thus, for example, &B7 is easily
visualized as:

11010111

&B7

and &FA is easily visualized as:

11111010

&FA
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32-bit numbers

A numeric variable in BASIC occupies four computer words
which contain four bytes or 32 bits. A number stored in such
a variable is coded as a pattern of 32 bits. The way in
which a 32-bit pattern is used to represent positive and
negative integers is a simple extension of the 8-bit 2s
complement representation introduced earlier. Note in
particular that -1 is represented by a pattern of 32 ones.
Details of how real numbers are coded as bit-patterns are
beyond the scope of this book.

Logical operations on bit-patterns

The various logical plotting modes selected by GCOL (Chapter
2) use logical operations on bit-patterns when plotting new
information on the screen. For this reason alone, some
knowledge of these operations is necessary. The logical
operators AND, OR, EOR and NOT treat the values to which
they are applied as bit-patterns and operate on the
individual bits of those patterns. A detailed knowledge of
how these operations work is occasionally useful in advanced
programing applications.

When a logical operation is applied to a bit-pattern or
to a pair of bit-patterns, the individual bits are handled
separately in creating the resultant bit-pattern. AND, OR
and EOR are each applied to a pair of bit-patterns of the
same length and the result is another bit-pattern of the
same length. NUT is applied to a single bit-pattern and the
result is another bit-pattern of the same length. We shall
illustrate the behaviour of the logical operations on bytes,
but they will behave in exactly the same way on shorter or
longer bit-patterns.

AND
Each bit in the new pattern is the result of 'anding' the
two bits in the same position in the two given bit-
patterns according to the following table:

bit1 bit2 bit1 AND bit2

0 0 0
0 1 0
1 0 0
1 1 1

Thus, for example:

byte1 10110100
byte2 01100101

byte1 AND byte2 00100100
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OR
Each bit in the new pattern is the result of 'oring' the
two bits in the same position in the given bit-patterns
according to the following table:

bit1 bit2 bit1 OR bit2
0 0 0
0 1 1
1 0 1
1 1 1

Thus, for example:

byte1 10110100
byte2 01100101

byte1 OR byte2 11110101

EOR
Each bit in the new pattern is the result of 'exclusive
oring' the two bits in the same position in the given
bit-patterns according to the following table:

bit1 bit2 bit1 EOR bit2

0 0 0
0 1 1
1 0 1
1 1 0

The name of the operator derives from the fact that it
'excludes' the case where both bits to which it is
applied are 1. Thus, for example:

byte1 10110100
byte2 01100101

byte1 EOR byte2 11010001

NOT
Each bit in the new bit-pattern is the result of
'negating' the same bit in the given bit-pattern. NOT
produces the 'logical inverse' of the given bit-pattern
by changing Os to 1s and 1s to Os.
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bit NOT bit

0 1
1 0

Thus, for example:

byte 10110100

NOT byte 01001011

Representation of TRUE and FALSE

In BBC BASIC, the value TRUE is represented by a bit-pattern
containing nothing but ones and FALSE is represented by a
bit-pattern containing nothing but zeros. When these values
are stored in numeric variables, they look like the numeric
values -1 and 0.
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Appendix 3 Characters, ASCII codes,
control codes and Teletext
codes

ASCII codes
A char act er  i s st or ed i nsi de t he comput er  as an i nt eger  t hat
zccupi es 8 bi t s or  one byt e.  Ther e i s an i nt er nat i onal l y
agr eed st andar d set  of  codes f or  t he commonl y used
char act er s.  These ar e t he ASCI I  codes ( Amer i can St andar d
Code f or  I nf or mat i on I nt er change) .  The next  t abl e cont ai ns a
l i st  of  t he common vi s i bl e char act er s t oget her  wi t h t hei r
ASCI I  codes i n deci mal  and hex.

ASCI I  char act er s and t hei r  codes
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deci mal  hex char
code code

32 &20 
33 &21 !
34 &22 "
35 &23 #
36 &24 $
37 &25 %
38 &26 &
39 &27 '
40 &28 (
41 &29 )
42 &2A *
43 &2B +
44 &2C ,
45 &2D -
46 &2E •
47 &2F /
48 &30 0
49 &31 1
50 &32 2
51 &33 3
52 &34 4
53 &35 5
54 &36 6
55 &37 7
56 &38 8
57 &39 9
58 &3A :
59 &3B ;
60 &3C <
61 &3D =
62 &3E >
63 &3F ?

deci mal  hex
code code char

64 &40 @
65 &41 A
66 &42 B
67 &43 C
68 &44 D
69 &45 E
70 &46 F
71 &47 6
72 &48 H
73 &49 I
74 &4A J
75 &4B K
76 &4C L
77 &4D M
78 &4E N
79 &4F 0
80 &50 P
81 &51 Q
82 &52 R
83 &53 8
84 &54 T
85 &55 U
86 &56 V
87 &57 W
88 &58 X
89 &59 Y
90 &5A Z
91 &5B [
92 &5C \
93 &5D ]
94 &5E *
95 &5F _

deci mal  hex
code code char

96 &80 £
97 &61 a
98 &62 b
99 &63 c

100 &64 d
101 &85 e
102 &66 f
103 &67 g
104 &68 h
105 &69 i
106 &6A j
107 &6B k
108 &6C I
109 &BD m
110 &6E a
111 &8F a
112 &70 p
113 &71 q
114 &72 r
115 &73 a
116 &74 t
117 &75 u
118 &76 v
119 &77 w
120 &78 x
121 &79 y
122 &?A z
123 &7B {
124 &7C ;
125 &7D j
126 &7E ~



Control codes

A number of the 256 available character codes are reserved
for special purposes on the BBC computer. Sending one of
these codes to the display hardware by using a PRINT or a
VDU statement has a special effect. These codes are usually
referred to as 'VDU drivers'. Note that some of the codes
must always be followed by a fixed number of additional
codes or 'parameters'. If these are omitted, the next few
characters printed will be taken as the missing parameters. 

Sumary of VDU codes

decimal hex parameters effect

0 0 0 Does nothing
1 1 1 Send a character to printer only
2 2 0 Switch on printer output
3 3 0 Switch off printer output
4 4 0 Separate text and graphics cursors
5 5 0 Join text and graphiescursors
6 6 0 Enablevntidrivers
7 7 0 Beep
8 8 0 Move cursor backonespace
9 9 0 Move cursor forwardonespace
10 &A 0 Move cursor down one line
11 &B 0 Move cursor up one line
12 &C 0 CLS (clear text screen)
13 &D 0 Move cursor to start of current line
14 &E 0 Page mode on
15 &F 0 Page mode off
16 &10 0 CLG (clear graphics screen)
17 &11 1 COLOUR c
18 &12 2 GCOL l,c
19 &13 5 New actual colour for colour number
20 &14 0 Restore default actual colours
21 &15 0 Disable VDU drivers
22 &16 1 MODE m
23 &17 9 Create user-defined character shape
24 &18 8 Define graphics window
25 &19 5 PLOT k,x,y (2 bytes for x, 2 for y)
26 &1A 0 Restore default windows
27 &1B 0 Does nothing
28 &1C 4 Define text window
29 &1D 4 Define graphics origin
30 &1E 0 Hove text cursor to top left
31 &1F 2 WINE x,y

127 &7F 0 Backspace and delete

These codes can also be sent frcan the keyboard by typing a
CONTROL character - hold down the CTRL key and type the
character. For example, codes 1 to 26 correpond to CONTROL-
A to CONTROL-Z.

Teletext control codes
In Teletext mode (MODE 7), a number of special effects can
by switched on and off by displaying special control codes.
Remember that one of these control codes appears as a space
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on the screen and that its effect lasts only tor the current
screen line.

Teletext control codes for MODE 7

code controls effect

129 colour text characters in red
130 colour text characters in green
131 colour text characters in yellow
132 colour text characters in blue
133 colour text characters in magenta
134 colour text characters in cyan
135 colour text characters in white

 
136 flash set flashing on current line
137 flash clear flashing on current line
    
140 char. ht. single height characters
141 char. ht. double height characters

145 graphics graphics characters in red
146 graphics graphics characters in green
147 graphics graphics characters in yellow
148 graphics graphics characters in blue
149 graphics graphics characters in magenta
150 graphics graphics characters in cyan
151 graphics graphics characters in white

152 special supress display (hide)
153 special normal graphics (not separated)
154 special separated graphics

156 colour reset background colour to black
157 colour background colour = current foreground

Teletext graphics characters
The Teletext (MODE 7) graphics characters consist of 2x3
patterns of foreground and background colour. There are two
numeric codes for each of the graphics character shapes.
After a line of text has been switched to graphics mode by
one of the graphics codes in the previous table, the ASCII
characters with codes 32 to 63 and 95 to 126 are displayed
as graphics characters. (The codes from 64 to 94 are
displayed as normal ASCII characters, i.e. numeric digits
and capital letters.)

These ASCII codes provide a convenient way of printing a
string of graphics characters. A PRINT statement in a
program can contain a string of the corresponding ASCII
characters, and, providing an appropriate code precedes them
on the output line, they will be displayed as graphics
characters.

The graphics shapes that replace the normal ASCII
characters are given in the next table. Note that there is
no lower code for a solid block of foreground colour. 
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Gr aphi cs char act er s t hat  r epl ace t he nor mal  ASCI I  char act er s

365

deci mal hex ASCI I  gr aphi cs
code code char . char .

. .32 &20  . .. .
* .33 &21 ! . .. .
. *34 &22 " . .. .
* *35 &23 # . .. .
. .36 &24 $ * .. .
* .37 &25 % * .. .
. *38 &26 & * .. .
* *39 &27 ' * .. .
. .40 &28 ( . *. .
* .41 &29 ) . *. .
. *42 &2A * . *. .
* *43 &2B + . *. .
. .44 &2C , * *. .
* .45 &2D - * *. .
. *46 &2E . * *. .
* *47 &2F / * *. .
. .48 &30 0 . .* .
* .49 &31 1 . .* .
. *50 &32 2 . .* .
* *51 &33 3 . .* .
. .52 &34 4 * .* .
* .53 &35 5 * .* .
. *54 &36 6 * .* .
* *55 &37 7 * .* .
. .56 &38 8 . ** .
* .57 &39 9 . ** .
. *58 &3A : . ** .
* *59 &3B ; . ** .
. .60 &3C < * ** .
* .61 &3D = * ** .
. *62 &3E > * ** .
* *63 &3F ? * ** .

deci mal hex ASCI I  gr aphi cs
code code char . char .

* *95 &5F _ * ** *
. .96 &60 ` . .. *
* .97 &61 a . .. *
. *98 &62 b . .. *
* *99 &63 c . .. *
. .100 &64 d * .. *
* .101 &65 e * .. *
. *102 &66 f * .. *
* *103 &67 g * .. *
. .104 &68 h . *. *
* .105 &69 i . *. *
. *106 &6A j . *. *
* *107 &6B k . *. *
. .108 &6C l * *. *
* .109 &6D m * *. *
. *110 &6E n * *. *
* *111 &6F o * *. *
. .112 &70 p . .* *
* .113 &71 q . .* *
. *114 &72 r . .* *
* *115 &73 s . .* *
. .116 &74 t * .* *
* .117 &75 u * .* *
. *118 &76 v * .* *
* *119 &77 w * .* *
. .120 &78 x . ** *
* .121 &79 y . ** *
. *122 &7A z . ** *
* *123 &7B { * *. .

124 &7C | * ** *
* .125 &7D } * ** *
. *126 &7E ~ * ** *

Graphics characters that replace the normal ASCII characters

decimal
code

hex
code

ASCII
char.

graphics
char.

32 &20

33 &21

34 &22

35 &23

36 &24

37 &25

38 &26

39 &27

40 &28

41 &29

42 &2A

43 &2B

44 &2C

45 &2D

46 &2E

47 &2F

48 &30

49 &31

50 &32

51 &33

52 &34

53 &35

54 &36

55 &37

56 &38

57 &39

58 &3A

59 &3B

60 &3C

61 &3D

62 &3E

63 &3F

decimal
code

hex
code

ASCII
char.

graphics
char.

95 &5F _

96 &60 `

97 &61 a

98 &62 b

99 &63 c

100 &64 d

101 &65 e

102 &66 f

103 &67 g

104 &68 h

105 &69 i

106 &6A j

107 &6B k

108 &6C l

109 &6D m

110 &6E n

111 &6F o

112 &70 p

113 &71 q

114 &72 r

115 &73 s

116 &74 t

117 &75 u

118 &76 v

119 &77 w

120 &78 x

121 &79 y

122 &7A z

123 &7B {

124 &7C |

125 &7D }

126 &7E ~

space

!

"

#

$

%

&

'

(

)

*

+

,

-

.

/

0

1

2

3

4

5

6

7

8

9

:

;

<

=

>

?



The other codes for graphics characters are 160 to 191 and
224 to 255. To print graphics characters using these codes,
the VDU statement can be used, or CHR$ can be used to
construct a string containing graphics codes. The advantage
of these higher codes is that the order in which the codes
correspond to the graphics shapes is more systematic. A
program (or programmer) can more easily calculate a code for
a given shape. We label the six cells in a graphics
character as follows:
 

bit0 bit1

bit2 bit3

bit4 bit6

These numberings correspond to the bits in the one byte
character code as follows:

bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0

1 0 1 0 0 0 0 0

In the higher codes for graphics characters, bit5 and bit7
we always set to 1. The remaining bits are set to 1 for
foreground colour and too for background colour in the
corresponding cell. Thus, given the bit values that specify
a shape, the code for the required character can be
calculated by

bit0 + bit1*2 + bit2*4 + bit3*8 + bit4*16 + bit6*64
+ 32 + 128

There is no such simple expression for calculating the lower
codes.
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Appendix 4 Matrix notation and
multlplication

In Chapter 3 we have made use of matrix notation in linear
transforms. We say that a point (x,y) transforms to a point
(xt,yt):

xt = ax + by
yt = cx + dy

Given that all our transformations are of this form we can
say that the transform T can be represented by the matrix:

[ a d
b d ]

Now using matrix notation to represent the above operation
we rewrite the equations in the form:

(xt, yt) = (x, y) [ a c
b d ]

On the right hand side we are multiplying a row matrix
(representing a single point in two-dimensional space) by a
2x2 matrix. The equation specified in the matrix notation is
identical in every respect to the non-matrix form of the
equation. To obtain xt from the matrix formwemultiply the
row matrix (x,y) by the first column:

xt = (x, y) [ a .
b . ]

= ax + by

and to obtain yt from the matrix form we multiply the row
vector by the second column:

yt = (x, y) [ . c
. d ]

= cx + dy

The other context in which we used matrix multiplication was
to concatenate transforms together.

T = T1*T2
= [ a c [ e g

b d ] f h ]
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- [ (ae + cf) (ag + ch)
(be + df) (bg + dh) ]

- [ p r
q s ]

p is formed by taking the sum of the products of the entries
in the first row of T1 with the first column in T2. q is
formed by taking the sum of the products of the entries in
the second row in T1 with the first column in T2. Inspecting
the other two entries r and s will show how these are
similarly derived. In the general case: 

C = A*B

each entry Cij of the product is the sum of the products of
the entries of the ith row of A with the corresponding
entries of the jth column of B. We could easily write a
procedure to multiply two 3x3 matrices together and this
follows. In Chapter 3 we multiplied matrices together
manually.

100 DEF PR0Cmatmult
110 FOR i = 1 TO 3
120 FOR j = 1 TO 3
130 INPUT A(i,j)
140 NEXT j
150 NEXT i

160 FOR i = 1 TO 3
170 FOR j = 1 TO 3
180 INPUT B(i,j)
190 NEXT i
200 NEXT j

210 FOR i = 1 TO 3
220 FOR j = 1 TO 3
230 sum = 0
240 FOR k = 1 TO 3
250 sum = sum + A(i,k)*B(k,j)
260 NEXT k
270 C(i,j) = sum
280 NEXT j
290 NEXT i
300 ENDPROC

Here we have used the usual convention when handling
matrices - the first subscript is the row number, the second
subscript is the column number (not to be confused with the
convention for handling screen coordinates). Note that the
each matrix must be typed in row-wise.
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Appendix 5 The viewing transformation

The viewing transformation, V, transforms points in the
world coordinate system into the eye coordinate system:

(xe, ye, ze, 1) = (xw, yw, zw, 1)V

zw

x w ze

ye
yw

xe
Viewpoint

A viewpoint is given as a set of three coordinates
specifying the viewpoint in the world coordinate system. An
object described in the world coordinate system is viewed
from this point along a certain direction. In the eye
coordinate system, the z-axis points towards the world
system origin and the x-axis is parallel to the x-y plane of
the world system. It is standard to adopt a left-handed
convention for the eye coordinate system. In the eye
coordinate system the x and y-axes match the axes of the
display system and the ze direction is away from the
viewpoint (into the display screen). World coordinates are
normally right handed systems so that in the computation of
a net transformation matrix for the viewing transformation
we would include a conversion to a left-handed system.

We can now specify the net transformation matrix as a
series of translations and rotations that take us from the
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world coordinate system into the eye coordinate system,
given a particular viewpoint. These steps will be given as
separate transformation matrices and the net transformation
matrix resulting from the product will simply be stated. If
you are unhappy with the derivation you can of course skip
it and accept the final result - the net transformation
matrix required for a viewing transformation.

Now the viewing transformation is best specified using
spherical instead of cartesian coordinates. We specify a
viewpoint in spherical coordinates by giving a distance from
the origin (rho) and two angles (theta and phi).

θ
ρ θ φp ( , , )

Spherical
coordinates

z

y
x

φ

ρ

These are related to the viewpoint's cartesian coordinates
as follows:

Tx = ρ sin φ cos θ
Ty = ρ sin φ sin θ
Tz = ρ cos φ

Another fact we require in this derivation is that to change
the origin of a system from (0, 0, 0, 1) to (Tx, Ty, Tz, 1)
we use te transformation:

[ 1 0 0 0
0 1 0 0
0 0 1 0

–Tx –Ty –Tz 1 ]

Note that this is the inverse of the transformation that
would take a point from (0, 0, 0, 1) to (Tx, Ty, Tz, 1). 

The four transformations required to take the object from
a world ccxzrdinate system into an eye coordinate system
are:

(1) Translate the world coordinate system to (Tx, Ty, Tz),
the position of the viewpoint. All three axes remain
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parallel to their counterparts in the world system.

zw

z'

y'

Yw

xw
x'

The cube in the diagram is not an object that is being
transformed, but is intended to enhance an
interpretation of the axes. Using spherical coordinate
values for Tx, Ty, and Tz the transformation is:

T1 = [ 1 0 0 0
0 1 0 0
0 0 1 0

–ρ cos θ sin φ –ρ sin θ sin φ –ρ cos φ 1 ]

(2) The next step is to rotate the coordinate system
through (90 degrees - theta) in a clockwise direction
about the z'-axis. The rotation matrices defined in
Chapter 3 were for counter-clockwise rotation relative
to a coordinate system. The transformation matrix for a
clockwise rotation of the coordinate system is the same
as that for a counter-clockwise rotation of a point
relative to the coordinate system. The x''-axis is now
normal to the plane containing rho.

x''

y''

z'
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T2 = [ sin ρ cos θ 0 0
–cos θ sin ρ 0 0

0 0 1 0
0 0 0 1 ]

(3) The next step is to rotate the coordinate system (180
degrees - phi) counter-clockwise about the x'-axis.
This makes the z'''-axis pass through the origin of the
world coordinate system.

T3 = [ 1 0 0 0
0 –cos φ –sin φ 0
0 sin φ –cos φ 0
0 0 0 1 ]

z'''

x''

y'''

(4) Finally we convert to a left-handed system as described
bove.

T4 = [ -1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1 ]

Multiplying these together gives the net transformation
matrix required for the viewing transformation.

V = T1*T2*T3*T4 = [ –sin θ –cos φ –cos θ sin φ 0
cos θ –sin θ cos φ–sin θ sin φ 0

0 sin φ –cos θ 0
0 0 r 1 ]

where

(xe  ye  ze  1) = (xw  yw  zw  1)*V
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