
Chapter 10 Language processors
− a LOGO interpreter

When a computer is designed, it is organised so that it will
respond to instructions in a very primitive programming
language known as machine code. A machine code instruction
consists of a bit pattern (Appendix 2) and, when such an
instruction is obeyed, it is sent (as a pattern of
electrical impulses) to a circuit in the computer which
decodes the instruction and activates other circuits to
carry out the the fundamental operation represented by the
bit pattern. Such instructions may cause the machine to
perform an arithmetic operation between two operands, or it
may cause the transfer of a unit of information from one
part of the machine to the other. A machine code program
consists of a sequence of such bit patterns which are sent
one after the other from the memory, in which the program
resides, to the control unit to be decoded and obeyed.

Programming in machine code is extremely tedious and
error prone, and before a computer can be easily programmed
it has to be provided with software that enables it to be
programmed in higher level languages.

For a particular machine a variety of languages maybe
available. Some languages are general purpose and some are
problem oriented. The current lingua franca of
microcomputers is BASIC and this is supposed to be a general
purpose high level language.

A high level language is designed with two aims in mind.
First of all it should be machine independent and this is
true, to a greater or lesser extent, of languages such as
BASIC, PASCAL, FORTRAN and COBOL. BBC BASIC is a new
language incorporating significant extensions to 'standard'
BASIC and is thus machine dependent, but it could be said
that the designers are attempting to set a new standard. The
other aim of a high level language is that it should buffer
the user from having to know anything about how the machine
works, and, should supply him with the tools that enable him
to implement his algorithms with ease. Whether this is
achieved with standard BASIC is perhaps a matter for some
discussion that we will not go into here.

Programming in low level languages is still sometimes
necessary and so that we do not have to write in actual
machine code, the lowest level language that is used for
practical programming is assembly code. Assembly code is a
mnemonic version of machine code that uses characters and

318

words rather than bit patterns. Progrmming may be necessary
in assembly code when access is required ton machine
facility that is not available through BASIC, or when high
program running speed is essential. For example, many of the
arcade games sold for your BBC micro are written in assembly
language (although they are translated into machine code
before being sold). The program that translates assembly
code into machine code is called an assembler.

program

used as data by

which outputs an equivalent

assembly code
program

assembler

machine code

BASIC is either compiled or interpreted (the difference is
explained fully later in the chapter).

OR

used as data by

BASIC program

interpreter

program

used as data by

which outputs an equivalent

machine code
program

compiler

BASIC program

Superimposed on this basic language scheme of a single high
level language and an assembly language we may have
'vertical' and 'horizontal' expansion. Vertical expansion
means having a higher level language than BASIC or one that
is more problem oriented. Say, for example, we wished to
have a house design graphics package to be used by

319

architects. The architect ta only interested in house design
and does not want to be concerned with all the tedious
details involved in programming graphics tn BASIC. Rather
than writing long programs containing BASIC constructs
controlling PLOT statements, he wishes to write such things
as:

drawfrontelevation(wallfinish, doorstyle, windowstyle)

He does not need the full generality of BASIC and uses a
specific problem oriented language or package. This may well
be itself written in BASIC.

program

used as data by

which outputs an equivalent

House design
program

BASIC program

House design
translator

The house design translator will output a BASIC program
that can then be handled by the BASIC interpreter just like
any normal BASIC program. Now although the house design
program will be easier to use (for designing houses) than
BASIC, its use is restricted to a particular problem
environment. The generality and the tedium of BASIC have
been traded for an easier to use but more specific language.

The other cominon feature of language systems modern
machines is horizontal expansion. Here a number of languages
may exist at around the same level. They each have their own
interpreter or compiler. A family of general purpose
scientifically oriented languages is:

FORTRAN
language
processor

FORTRAN

PASCAL
language
processor

PASCALBASIC

BASIC
language
processor

320

These different languages exist because, although they all
offer a common subset of programming constructs, user
preference has caused a proliferatton.

Other languages exist 'hortzontally' because they are not
general purpose but are meant for particular applications.
For example, LISP for list processing and artificial
intelligence and COBOL for commercial data processing. Here
the programming constructs are designed for the problem
environment in which the language is used.

In this chapter we shall be looking at how you can design
language processors in BASIC that will accept commands in
another language and arrange for the computer to obey these
comnands.

10.1 Language processors - an illustrative example

A language processor that enables a computer to be
programmed in a new programming language can take one of two
forms. A program in the new language may be stored in the
computer and 'interpreted' by an 'interpreter' which scans
the program being interpreted and carries out the operations
indicated by the instructions being scanned. Alternatively,
the language processor may take the form of a translation
program that translates a program in the new language into
an equivalent program, in a language that the computer can
handle already. If the language into which programs are
translated is machine code the translation program is called
a 'compiler', otherwise it is called a translator.

We shall demonstrate the difference between these two
approaches by writing both an interpreter and a translator
for a rather trivial 'programmning language' that we shall
call SKETCH. The symbols in this language are the letters N,
8, E and W and a 'program' in this language consists of a
single line containing a sequence of these symbols in any
order. This defines the 'syntax' of the language. We must
also define the meaning or 'semantics' of programs in our
language. We shall say that a program! represents an
instruction to draw a line, starting in the centre of the
screen, where the letter N indicates that the line should be
extended by four units 'North', E indicates that the line
should be extended by four units 'East' and so on. Thus, for
example, the program:

NNNNEEEESSSSWWWW

will draw a small square; and:

NENENENENENENENE

will draw a short diagonal line.

321

An interpreter for SKETCH

First we shall write, in BASIC, an interpreter for SKETCH
programs. The interpreter wilt accept as input a SKETCH
program and will carry out the operations specified by the
sequence of symbols constituting the SKETCH program.

supplied as input to

program in SKETCH

interpreter program in BASIC

which carries out commands
specified by the SKETCH program.

The main loop in the interpreter program will have the form:

REPEAT
PROCprocesscommand

UNTIL end of program encountered

We shall store the prograsn to be interpreted in a string
and the interpreter will maintain an integer variable 'next'
indicating the point reached so far in the SKETCH program.
The complete program is:

10 INPUT LINE program$
20 MODE 4
30 MOVE 640, 512
40 length=LEN(program$)
50 next=1
60 REPEAT
70 command$=MID$(program$,next,1)
80 next=next+1
90 PROCprocesscomand

100 UNTIL next>length
110 END

120 DEF PROCprocesscommand
130 IF conmand$="N" THEN PLOT 1, 0 ,8
140 IF co:mand$="E" THEN PLOT 1, 8, 0
150 IF conmand$="S" THEN PLOT 1, 0,-8
160 IF command$="W" THEN PLOT 1,-8, 0
170 ENDPROC

322

PROCprocesscommand examines the next symbol in the input
'program' and interprets immediately by drawing a short line
in the direction indicated by the symbol. In order to
execute a program using an interpreter, it is the
interpreter that must be obeyed. The main characteristic of
an interpreter is that each instruction in the program being
interpreted is analysed and the operation specified by the
analysed instruction is carried out immediately.

At the risk of obscuring the ideas present above, it is
interesting to note that the BASIC system on the BBC
computer is an interpreter. The BASIC programs typed in by
the user are stored in random access memory (RAM). A user's
BASIC program is not stored completely in character form -
the BASIC keywords are stored as integer codes, or 'tokens'
as they are sometimes called. This economises on program
storage space and also speeds up recognition of the keywords
while the program is being interpreted. The interpreter is a
largish machine code program permanently stored in 'read
only memory' (ROM) and when the user types RUN, it is this
interpreter that is obeyed. Thus when the SKETCH interpreter
presented above is RUN, this interpreter is itself being
interpreted by the BASIC interpreter! If you find this
complication confusing, you can simplify matters by ignoring
the existence of the BASIC interpreter and imagine your BBC
micro as a 'black box' that can obey BASIC programs.

A translator for SKETCH
In this section, we shall write a BASIC program that will
translate a SKETCH program into an equivalent BASIC program.
Note that there are three programs involved in this process,
apart from the BASIC interpreter. The program that carries
out the translation process is called the translator. The
program that is being translated is usually called the
'source program' and the program being output by the
translator is called the 'object program'.

fed as input to

which produces as output

which can then be RUN

TRANSLATOR program

SOURCE program in SKETCH

OBJECT program in BASIC

323

We now have the problem of deciding whom to put the
translated version of the SKETCH program as it is generated
by the translator. Clearly this program must be stored
somewhere if it is eventually to be RUN. For the moment, we
shall ignore this problem and shall simply assume that we
want the translated program displayed on the screen. It will
be quite an easy task to divert this output to a cassette or
disc file by using the *SPOOL facility.

Part of the task carried out by a translator is very
similar to that carried out by an interpreter. Both programs
have to carry out an analysis of the input or source program
and recognise the instructions contained in the source
program. The differences between an interpreter and a
translator manifest themselves only after this syntax
analysis has been carried out. Once a particular instruction
in the source program! has been recognised, an interpreter
will carry out the instruction immediately whereas a
branslator outputs one or more object program instructions
that are equivalent in meaning to the source program
instruction just analysed. For this reason the main loop in
our translator is identical to the main loop in our
interpreter. Instead of switching to MODE 1 and moving to
the centre of the screen, the translator must output
instructions to carry out these operations. It must also
arrange to number the subsequent lines in the object program
that it outputs. Finally, each command in the source program
causes an equivalent PLOT statement to be output. Each
output PLOT statement is numbered and the variable 'lineno'
is used to keep count of these line numbers.

10 INPUT LINE program$
20 PRINT "10 MODE 4"
30 PRINT "20 MOVE 640, 512"
40 lineno = 20
50 length=LEN(program$) : next=1
60 REPEAT
70 command$=MID$(program$,next,1) : next=next+1
90 PROCprocesscommand

100 UNTIL next>length
110 END

120 DEF PROCprocesscommand
130 IF command$="N" THEN PROCoutline("PLOT 1, 0, 8")
140 IF command$="E" THEN PROCoutline("PLOT 1, 8, 0")
150 IF command$="S" THEN PROCoutline("PLOT 1, 0,-8")
160 IF command$="W" THEN PR0Coutline("PLOT 1,-8, 0")
170 ENDPROC

200 DEFPROCoutline(line$)
210 lineno=lineno+10
220 PRINT ;lineno; " "; line$
230 ENDPROC

324

Here PROCprocesscommand examines the next symbol in the
input program and 'translates' it into a PLOT statement for
drawing a line in the appropriate direction. If we run the
SKETCH translator and input, tor example,

NNNNEEEE

then the translator will display the object progrant.

10 MODE 1
20 MOVE 640, 512
30 PLOT 1, 4, 0
40 PLOT 1, 4, 0
50 PLOT 1, 4, 0
60 PLOT 1, 4, 0
70 PLOT 1, 0, 4
80 PLOT 1, 0, 4
90 PLOT 1, 0, 4

100 PLOT 1, 0, 4

In order to run the program, it must somehow be RUN by the
BASIC system. A translator would normally build up the
object program in a file or in a separate area of the
computer store. A simple way of outputting our object
program to a file is to leave our translator exactly as it
is and issue a *SPOOL command before running the translator.
This diverts a copy of every character that subsequently
appears on the screen to a named file, and, the BASIC
program in that file can subsequently be loaded using the
*EXEC command the complete sequence would be:

> *SPOOL "Program"
> RUN
? NNNNEEEE

.

.
object program appears on screen
(and in file)

.
.
> *SPOOL
> NEW
> *EXEC "Program"
> RUN

The second *SPOOL command closes the file. This sequence of
actions is extremely cumbersome and you may well wonder if
there is ever any point in using a translator (or compiler)
instead of an interpreter. The answer lies in the fact that
once we have gone through the above process, we can run the
object program as often as we like. In the case of SKETCH

325

this is not much of an advantage but tor a more realistie
and complex language, a translator or compiler could have
considerable advantages.

The process of syntax analysis carried out by a language
processor (an interpreter or a compiler) can be very time
consuming if the source language is of any complexity and
the source program is of any length. For a source program
that is to be obeyed many times, it is advantageous to
analyse it once and for all and then run the translated
version whenever required. If a compiler is available for
the source language, then the object program is in machine
code and would be handled directly by the computer hardware.
When using an interpreter, every time a program is run it is
re-analysed.

A second advantage of the use of a translator or compiler
concerns the the memory requirement. Using an interpreter,
both the source program and the interpreter have to be in
memory at the same time. In the case of a translator, it can
usually be arranged for the source program to be supplied
from a file, a small fragment at a time and during the
translation phase only the translator program needs to
occupy space. The object program is output to a file as it
is generated. During the execution phase of the object
program, the translator is no longer required and only the
object program needs to occupy space in memory. These
considerations are very important when large programs are
handled and no doubt you have already encountered space
problems in your experience with the BBC micro.

10.2 A simple logo interpreter
Most of the remainder of this chapter will be devoted to a
case study - developing a translator for a real language -
LOGO. This will be used to illustrate the techniques
involved in writing a language processor.

Writing a translator or a compiler requires similar
techniques. This is because all types of language processors
share the need to analyse the structure of the source
program.

An introduction to LOGO
The progratnning language LOGO is widely used for
introducing young children to the ideas involved in computer
progrannting. LOGO was originally conceived as a language
for controlling a 'turtle graphics system'. A turtle is a
small wheeled vehicle containing a pen that can be raised or
lowered. A LOGO program contains commands that control the
actions of the turtle and make it draw a picture. The turtle
system is usually replaced by a graphics screen on which the
pictures are drawn, but the behaviour of a LOGO program is
still explained in terms of an imaginary turtle moving about
the screen drawing a picture.

The basic LOGO interpreter usually operates on a line by

326

line basis. A line of instruction is typed by the user and
that line is interpreted immediately by the system, the
current picture being extended if appropriate. The turtle
always starts in the centre of a blank screen facing the top
of the screen.

We begin by introducing a number of simple commands. The
following commands each consist of just a single word.

comamnd effect

PENDOWN press pen down onto paper (i.e.
switch on the plot)

PENUP lift pen off the paper (i.e.
switch off the plot)

CLEARSCREEN clear the screen and move the
turtle to its start position

The following commands each need to be followed by a single
numeric parameter.

command effect

FORWARD move the turtle forward a
specified distance

BACK move the turtle back a specified
distance

LEFT Turn the turtle anti-clockwise
through a specified number of
degrees.

RIGHT Turn the turtle clockwise through
a specified number of degrees

Thus the following sequence of LOGO commands will draw a
square.

PENDOWN
FORWARD 100
LEFT 90
FORWARD 100
LEFT 90
FORWARD 100
LEFT 90
FORWARD 100

This LOGO program could be typed one statement to a line, as
above, each line being interpreted as it is typed.
Alternatively, several statements can be included on a
single line, for example:

327

PENDOWN FORWARD 100
LEFT 90 FORWARD 100
LEFT 90 FORWARD 100
LEFT 90 FORWARD 100

or

PENDOWN FORWARD 100 LEFT 90 FORWARD 100
LEFT 90 FORWARD 100 LEFT 90 FORWARD 100

Note that there is no statement separator. This small subset
of LOGO stateanents will suffice for introductory purposes
and we shall write a simple interpreter to handle these
statemants. In later sections, we shall introduce LOGO loops
and procedures and show how the interpreter can te extended
to handle such constructs. For the time being, we also
assume that the numeric parameters for our simple statements
can only be numeric constants.

Lexical analysis
Most computer programming languages have a more elaborate
syntax than the simple language SKETCH that was used in the
preceding sections. Before we mve on to the problem of
'syntax analysis', we first look at another problem: that
must be considered - that of 'lexical analysis'.

A computer program is usually presented to the computer
as a string of characters. The syntax (or grammar), on the
other hand, is usually defined in terms of 'symbols' where a
symbol may consist of more than one character. A language
processor must analyse the sequence of characters with which
it is presented and must break it up into the separate-
symbols to which the syntax analysis will be applied. The
purpose of lexical analysis is to do this, generally
ignoring spaces (these are used arbitrarily by a programmer
for layout). In the case of the BBC BASIC interpreter,
reserved words (FOR, PRINT, etc.) are compressed by lexical
analysis into single numeric codes, but we will not do this
in the LOGO interpreter. In our LOGO interpreter, lexical
analysis will be carried out by PROCgetnextsymbol which will
be called whenever the interpreter is ready to examine the
next symbol in the LOGO program being interpreted. It will
scan through the characters from the point reached so far
until a complete symbol has been found and will extract that
symbol in the form of a string. A symbol may be a word like
PENUP or FORWARD, it may be a number such as 100 or it may
be a single character symbol such as '[' or ']' or ':'. (We
shall see what square brackets and colons are used for in
later sections.) The largest unit handled by our simple
interpreter will be a line, each line being interpreted when
it has been typed.

The line of LOGO program currently being interpreted will

328

always be held in a variable 'line$'. A variable 'linep'
(short for line pointer) will indicate the position in the
line at which the search for the next symbol should start

We shall always ensure that a line is terminated by a
recognisable symbol by adding such a symbol to each line
before it is processed by the interpreter. The symbol we
shall use for this purpose is the single character '!'. Here
is the definition of PROCgetnextsymbol.

100 DEFPROCgetnextsymbol
110 LOCAL j
120 IF MID$(line$,linep,1)=" " THEN

REPEAT : linep=linep+1 :
UNTIL MID$(line$,linep,1)<>" "

130 IF INSTR("[!]:",MID$(line$,linep,1)) THEN
symbol$=MID$(line$,linep,1) :
linep=linep+1 : ENDPROC,

140 j=linep
150 REPEAT
160 j=j+1
170 UNTIL INSTR("[!]:",MID$(line$,j,1))
180 symbol$=MID$(line$,linep,j-linep)
190 linep=j
200 ENDPROC

Note that the rules concerning separation of symbols are
built into this procedure, for example, at line 170.

Syntax analysis
We shall not adopt a very formal or mathematical approach to
syntax analysis. There are whole text books on syntax
definition and syntax analysis. In Chapter 5, a brief
presentation of a notation for the precise definition of the
syntax of music rhythms was given. Similar notation can be
used for the precise definition of the syntax of a
programming language, but we shall not do this here.
Instead, we move straight to syntax analysis and adopt the
pragmatic (and effective) approach of writing a procedure to
handle each construction in the language.

An introductory LOGO interpreter
An interpreter that handles the set of simple LOGO
statements that have been described is now presented. A text
window of four lines at the botttom of the screen is used
for displaying the input lines of the program and any error
messages. The remainder of the screen constitutes the
graphics area for the turtle.

329

10 MODE 4
20 PROCinitialise
30 REPEAT
40 PROCprocessline
50 UNTIL FALSE
60 END

.

.

.
300 DEF PROCinitialise
310 VDU 24,0;128;1279;1023;
320 VDU 28,0,31,39,28
330 PROCclearscreen
340 ENDPROC

360 DEFPROCclearscreen
370 CLG
380 x=642 : y=578 : MOVE x,y
400 xdir=0 : ydir=1 : angle=90 : penup=TRUE
430 ENDPROC

500 DEF PROCprocessline
510 PROCgetline("Line: ")
520 linep=1 : PROCgetnextsymbol
530 PROCprocessgroup("!")
540 ENDPROC

550 DEF PROCgetline(prompt$)
560 REPEAT : PRINT prompt$; : INPUT LINE ""line$
570 UNTIL line$<>""
580 line$=line$+"!"
590 ENDPROC

600 DEF PROCprocessgroup(terminator$)
610 failed=FALSE
620 REPEAT
630 PROCprocesscommand
640 PROCgetnextsymbol
650 UNTIL symbol$=terminator$ OR failed
560 ENDPROC

700 DEF PROCprocessconmand
710 IF symbol$="PENDOWN" THEN penup=FALSE :ENDPROC
720 IF symbol$="PENUP" THEN penup=TRUE :ENDPROC
730 IF symbol$="CLEARSCREEN" THEN

PROCclearscreen:ENDPROC
740 IF symbol$="FORWARD" THEN PROCforward:ENDPROC
750 IF symbol$="BACK" THEN PROCback :ENDPROC
760 IF symbol$="LEFT" THEN PROCleft :ENDPROC
770 IF symbol$="RIGHT" THEN PROCright :ENDPROC
780 PROCfail(1)
790 ENDPROC

330

900 DEF PROCforward
910 LOCAL d
920 d=FNgetvalue
930 IF failed THEN ENDPROC
940 x=x+d*xdir
950 y=y+d*ydir
960 IF penup THEN MOVE x,y ELSE DRAW x,y
970 ENDPROC

1000 DEF PROCback
1010 LOCAL d
1020 d=FNgetvalue
1030 IF failed THEN ENDPROC
1040 x=x-d*xdir
1050 y=y-d*ydir
1060 IF penup THEN MOVE x,y ELSE DRAW x,y
1070 ENDPROC

1100 DEF PROCleft
1110 LOCAL a
1120 a=FNgetvalue
1130 IF failed THEN ENDPROC
1140 angle=(angle+a) MOD 360
1150 xdir=COS(RAD(angle))
1160 ydir=SIN(RAD(angle))
1170 ENDPROC

1200 DEF PROCright
1210 LOCAL a
1220 a=FNgetvalue
1230 IF failed THEN ENDPROC
1240 angle=(angle-a)MOD 360
1250 xdir=COS(RAD(angle))
1260 ydir=SIN(RAD(angle))
1270 ENDPROC

1300 DEF FNgetvalue
1310 PROCgetnextsymbol
1320 value=VAL(symbol$)
1330 IF value=0 THEN PROCfail(2)
1340 =value

1400 DEF PROCfail(errorno)
1410 PRINT"Error ";errorno
1420 PRINT LEFT$(line$,LEN(line$)-1)'TAB(linep-2);""
1430 failed=TRUE
1440 ENDPROC

Although the main unit handled by our interpreter is a line
(PROCprocessline), we have defined PROCprocessline in terms
of a separate procedure for processing a 'group' of
statements, PROCprocessgroup. This procedure takes a

331

parameter indicating the symbol that is expected to
terminate the group. For the time being, a group of
statements is just a line of statements, but it will be
convenient to have a separate procedure PROCprocessgroup
when we come to interpret LOGO REPEAT loops, where it will
be necessary to repeatedly process a group of statements up
to a loop terminator.

Error handling
It is appropriate at this point to make a few remarks about
the problem of 'error handling'. What should the interpreter
do it' it encounters a symbol that it does not recognise or
does not expect? Clearly an error message should be
displayed and our procedure PROCerror displays an error
number indicating the type of error encountered.

Error 1 : Unrecognised symbol at the start of a statement

Error 2 : Illegal parameter

The line containing the error is displayed with a marker in
the next line pointing to the symbol that caused the
problem.

Once an error message has been displayed, our interpreter
simply sets a logical variable 'errorfound' to TRUE and this
causes interpretation of the current line to be abandoned.
It would be rather risky for the interpreter to attempt to
continue execution of the line after an error has been
detected, as there is no way of knowing which of many
possible events caused the error. For example, a symbol may
have been misspelt, a symbol may have been omitted, or an
extra symbol may have been typed.

A translator or compiler will often attempt to continue
its syntax analysis after an error has been encountered with
a view to finding all the errors in the program in one go.
Whether or not this is useful will depend on how good the
translator's 'error recovery' system is. The translator must
make some assumption about the likely cause of the error and
continue the syntax analysis process on the basis of that
assumption. An interpreter cannot easily do this.

10.3 Interpreting loops

We now extend our subset of LOGO to include simple loops. A
LOGO loop takes the form

REPEAT number_of_times [...any nuinber of statements...]

For example, we can abbreviate the instructions for drawing
a square to

PENDOWN REPEAT 4 [FORWARD 100 LEFT 90]

332

Here we two more examples:

Line: PENDOWN
Line: REPEAT 36 [FORWARD 30

Line:
LEFT 10]

Line: PENDOWN
Line: REPEAT 10[FORWARD 300

Line:
LEFT 108]

(These photographs, and the others displayed in this
chapter, were obtained using LOGO interpreter that is
developed in this chapter.) To deal with such a
construction, we must extend PROCprocesscommand to recognise
the word REPEAT and take appropriate action.

772 IF sytnbol$="REPEAT" THEN PROCrepeat :ENDPROC

To process the loop, the interpreter must evaluate the
repeat count, check for the symbol '[', record the point
reached in the current line and then repeatedly obey the
following group of statements up to the symbol ']' setting
'linep' to point to the start of this group each time round.
If an error occurs, execution of the loop should be
abandoned.

1500 DEF PROCrepeat
1510 LOCAL start,no,loop
1520 no=FNgetvalue
1530 IF failed THEN ENDPROC
1540 PROCgetnextsymbol
1550 IF symbol$<>"[" THEN PROCfail(3)
1560 start=linep:loop=0
1570 REPEAT
1580 loop=loop+1
1590 linep=start
1600 PROCgetnextsymbol
1610 PROCprocessgroup("]")
1620 UNTIL loop=no OR failed
1630 ENDPROC

Note that there is hidden recursion here: PROCprocessline
calls PROCprocessgroup which may call PROCrepeat which calls

333

PROCprocessgroup.
The above alterations will also handle loops within

loops: such as

REPEAT 4 [REPEAT 4 [DRAW 100 LEFT 90] RIGHT 90]

which draws a pattern of four squares (a 'window pane'
pattern). Here are two more examples:

Line: PENDOWN
Line: REPEAT 10[REPEAT 10

Line: _
FORWARD 100 LEFT 36]
[FORWARD 20 LEFT 36]

Line: LEFT 90 FORWARD 300
Line:

Line:
PENUP BACK 50]

RIGHT 10]
REPEAT 36[FORWARD 30

REPEAT 10[PENDOWN

Such constructs will cause further recursion in the
interpreter. PROCprocessgroup calls PROCrepeat which calls
PROCprocessgroup which calls PROCrepeat which calls
PROCrocessgroup. Note that the use of LOCAL in these
procedures is essential (see Chapter 7). The activation of
PROCrepeat for the inner loop must have its own local
variable for recording information about the loop, so as not
to destroy the corresponding information for the outer loop.

10.4 Defining and interpreting simple LOGO procedures

A LOGO procedure definition is started by a line containing
the word TO followed by the name of the procedure. For
example

TO DRAWSQUARE
PENDOWN
REPEAT 4 [FORWARD 100 LEFT 90]

END

This definition will be stored by the LOGO system and the
LOGO prograrmner can subsequently type lines such as

DRAWSQUARE
DRAWSQUARE RIGHT 90 DRAWSQUARE
REPEAT 4 [DRAWSQUARE RIGHT 90]

which draws the 'window pane' pattern. Here is another call

334

of DRAWSQUARE and the pattern produced:

Line: REPEAT 12 [DRAWSQUARE

Line: _

]
LEFT 30

In order to implement such a facility, we require to use
some form of look-up table in which a procedure name can be
stored together with its definition. Whenever the system is
processing a command that starts with a symbol that is not
one of the LOGO primitive symbols, then that symbol must be
looked up in the table. If it is found there, the procedure
definition associated with the symbol must be returned and
obeyed. If it is not found then the system must report an
unrecognised symbol as before.

For the purposes of illustration, we shall use simple
linear search for finding procedure names in our table.
Associated with each procedure name will be two 'index
entries' that point to the start and finish of the procedure
definition in an array of strings that contains the lines of
all the procedures stored. For example, the next diagram
shows the state of the table when it contains two simple
procedure definitions.

DRAWSQUARE

DRAWHOUSE

1

3

2

5

"PENDOWN"

"REPEAT 4 [FORWARD 100 LEFT 90]"

"DRAWSQUARE FORWARD 100!"

"LEFT 30 FORWARD 200!"

"LEFT 30 FORWARD 200!"

lastproc

PROCname $ start finish procline $

2

335

Because DRAWHOUSE appears in slot 2 of 'procname$, this
means that 'start(2)' and 'finish(2)' indicate the position
in 'procline$' of the first and last lines of the definition
of DRAWHOUSE. These arrays are declared and initialised by:

304 DIM procname$(10),start(10),finish(10),
procline$(100)
.
.
.

306 lastproc=0: lastline=0

We now need to arrange for a procedure definition to be
added to the above table when a procedure heading is
encountered. We insist that the TO heading for the
definition of a procedure appears by itself on a line and it
is therefore appropriate to alter PROCprocessline so that it
can recognise the start of a LOGO procedure definition and
act accordingly:

530 IF symbol$="TO" THEN PROCdefineproc
ELSE PROCprocessgroup("!")

PROCdefineproc will read the rest of the procedure
definition a line at a time and add it to the above data
structure :

1700 DEF PROCdefineproc
1710 PROCgetnextsymbol
1720 lastproc=lastproc+1
1730 procname$(lastproc)=symbol$
1740 start(lastproc)=lastline+1
1750 PROCget1ine("TO line: ")
1760 REPEAT
1770 lastline=1astline+1
1780 procline$(lastline) = line$
1790 PROCgetline("TO line: ")
1800 UNTIL line$="END!"
1810 finish(lastproc)=lastline
1820 ENDPROC

PROCprocesscommand now needs to be extended to cover the
possibility that the symbol at the start of a command is in
the procedure table:

705 LOCAL procfound, proc
.
.
.

774 PROClookup
776 IF procfound THEN PROCcall(proc):ENDPROC

336

Finally, PROClookup and PROCcallproc are defined:

1900 DEF PROClookup
1910 IF lastproc=0 THEN procfound=FALSE : ENDPROC
1920 proc=0
1930 REPEAT
1940 proc=proc+1
1950 procfound = procname$(proc)=symbol$
1960 UNTIL procfound OR proc=lastproc
1970 ENDPROC

2000 DEF PROCcall(proc)
2010 LOCAL line$,linep,count
2020 count=start(proc)
2030 REPEAT
2040 line$=procline$(count)
2050 linep=1 : PROCgetnextsymbol
2060 PROCprocessgroup("!")
2070 count = count+1
2080 UNTIL count>finish(proc) OR failed
2090 ENDPROC

The declaration of LOCAL variables 'line$' and 'nextp' in
PROCcall is absolutely essential. The new variables with
these names are used for holding successive lines of the
LOGO procedure as they are being interpreted. The previous
variables with these names are restored when PROCcall
terminates and interpretation can then continue on the line
that contained the LOGO procedure call. You will also find
that, for similar reasons, the LOCAL declaration at line 705
is essential if one LOGO procedure is to be allowed to call
another.

10.5 Parameters and variables

In this section we shall demonstrate how our interpreter can
be extended to handle procedure parameters. A parameter is
simply a local variable that is given a value when a
procedure is called and similar techniques to those
described here could be used to extend our LOGO interpreter
to handle variables of all kinds.

Here is an example of a LOGO procedure to draw a
rectangle whose length and width are specified as
parameters. The turtle ends up in the same position and
pointing the same way as it was when it started.

337

TO DRAWRECTANGLE :LENGTH :WIDTH
PENDOWN
FORWARD :LENGTH LEFT 90
FORWARD :WIDTH LEFT 90
FORWARD :LENGTH LEFT 90
FORWARD :WIDTH LEFT 90

END

Note that a LOGO variable or parameter name is always
preceded by a colon. This procedure could be called by, for
example,

DRAWRECTANGLE 200 100
RIGHT 90 DRAWRECTANGLE 100 75
RIGHT 90 PENUP FORWARD 100
DRAWRECTANGLE 200 50

or :

Line: REPEAT 8

Line:

LEFT 45]

DRAWRECTANGLE 200 100

Line: REPEAT 6 [

Line:

LEFT 30]

DRAWRECTANGLE 100 200

DRAWRECTANGLE 200 100
LEFT 30

There are two aspects to the problem of handling
parameters. Firstly, additional information has to be stored
in the procedure table described earlier, so that when a
procedure is called, the interpreter knows how many
parameters to expect after the procedure name, each time it
is used. Secondly, when a procedure is called, the value
supplied for each parameter must be associated with the name
of the pararneter so that when the name is encountered in a
statement being obeyed, its current value can obtained. To
handle the first problem, we extend our procedure table to
include the number of parameters each procedure takes
together with an index pointer to an array that contains the
parameter names. The arrays 'start', 'finish' and
'procline$' are set up as before. We need the additional
statements:

338

305 DIM pnrams(10), paramstart(10), paramname$(30)
307 lastpn = 0

procname $

"DRAWRECTANGLE"

params paramstart paramname$

"LENGTH"

"WIDTH"

2 6

When a procedure definition is processed, the heading must
be analysed in more detail, in case it includes parameters.
The alterations to PROCdefineproc to add
parameter information to the procedure table are as follows.

1735 PROCgetparamnames
.
.

2200 DEF PROCgetparamnames
2210 params(lastproc)=0
2220 PROCgetnextsymbol
2230 IF symbol$<>":" THEN ENDPROC
2240 paramstart(lastproc)=lastpn+l
2250 REPEAT
2260 params(lastproc)=params(lastproc)+1
2270 PROCgetnextsymbol
2280 lastpn=lastpn+1
2290 paramname$(lastpn)=symbol$
2300 PROCgetnextsymbol
2310 UNTIL symbol$<>":"
2320 ENDPROC

When a procedure call is processed and the procedure name is
found in the table, the extra information is used to
determine how many parameter values to search for. These
values must then be paired with the corresponding parameter
names. For this purpose, we will use a parameter or variable
value table, or 'stack' as it is more usually called. This
stack will consist of two parallel arrays containing

339

parameter (or variable) names and corresponding values. A
variable 'stackp' points to the last entry in the table.
When a procedure is called, for example, by:

DRAWRECTANGLE 200 100

two new pairs of values will be added to the stack as
follows:

Previous value
of stackp

New value
of stackp

var $ val

200

100

"LENGTH"

"WIDTH"

The stack is initialised by:

303 DIM var$(l00), val(100)
...

308 stackp = 0

PROCcallproc must in extended to add this infornnation to
the variable stack.

2005 PROCgetparamvals:IF failed THEN ENDPROC
...

2400 DEF PROCgetparamvals
2410 LOCAL pa,nextpn,v
2420 IF params(proc)=0 THEN ENDPROC
2430 pn=paramstart(proc)
2440 nextpn=pn+params(proc)
2450 REPEAT
2460 v=FNgetvalue
2470 stackp=stackp+1
2480 var$(stackp)=paramname$(pn) : val(stackp)=v
2490 pn=pn+1
2500 UNTIL pn=nextpn OR failed
2510 ENDPROC

340

Note the position of line 2005 within PROCcall. The LOGO
parameter values must bv obtained from the line of LOGO that
contains the procedure call being obeyed. Only when this has
been done can the LOCAL versions of 'line$' and 'nextp' be
declared. When a procedure call terminates, the parameter
information can be removed from the stack as follows:

2085 stackp=stackp-params(proc)
:REM clears parameters from stack

When the procedure is being obeyed, the above table can now
be used to look up a named value encountered while a line of
the procedure is being interpreted. When a name is being
searched for in the variable stack, we must search through
the stack in reverse order. We want to find the most recent
occurrence of the variable whose name has been encountered.
There may be two currently active procedure calls, each with
a parameter of the same name and, when that name is
encountered, it is the value supplied with the most recent
procedure activation that must be used. FNgetvalue needs to
be extended.

1315 IF symbol$=":" THEN =FNvarvalue
.
.
.

2600 DEF FNvarvalue
2610 LOCAL varfound,sp
2620 PROCgetnextsymbol
2630 IF stackp=0 THEN PROCfail(5): =0
2640 sp=stackp+1 : varfound=FALSE
2650 REPEAT
2660 sp=sp-1
2670 varfound = var$(sp)=symbol$
2680 UNTIL varfound OR sp=1
2690 IF varfoundTHEN =val(sp)
2700 PROCfail(5)
2710 =0

Exercises

1 Arrange for our LOGO interpreter to output meaningful
error messages instead of error numbers.

2 In our LOGO interpreter, the only expressions that can be
used for representing parameter values are single integer
constants or single variable names. Extend the
interpreter so that it will accept expressions involving
+ and -. The easiest way to do this is to insist that an
expression is always enclosed in round brackets. If this
restriction is not imposed, you will have to restructure

341

the way in which the interpreter calls PROCgetnextsymbol.

3 A LOGO IF statement has the form

IF condition THEN [...list of statements...]

where a 'condition' is an expression involving =, <, >,
etc. Extend the interpreter to handle IF statements. You
may again prefer to insist that expressions (conditions)
are always enclosed in round brackets and you could
restrict the operators permitted in a condition.

4 The LOGO STOP statement has the same effect as an ENDPROC
statement in BASIC. Implement this. You should now find
that your interpreter can handle recursive procedures
such as:

TO SPIRALRECTANGLES :LENGTH :WIDTH
IF (:WIDTH<4) THEN [STOP]
DRAWRECTANGLE :LENGTH :WIDTH
LEFT 10
SPIRALRECTANGLES (:LENGTH-4) (:WIDTH-4)

END

10.6 A program compacter

In this final section on language processors, we present an
extremely useful utility program that can be used to process
the BASIC programs that you write. The program compacts
BASIC programs and this is useful for two reasons. Firstly
throughout this book we have been fairly extravagant with
our use of long variable names, extra spaces, remarks and
the insertion of redundant progranl features such. as the
control variable after NEXT. All of these deivices
contribute towards the readability of a program and this is
extremely important when developing a program of any
complexity or indeed when writing a book on programming
techniques. However, because BASIC is an interpreted
language, all these features occupy extra storage space.
This may mean that there is not enough user memory space (or
RAM) available for the program, its variables and arrays and
the screen memory needed to run the program in a high
resolution graphics mode such as MODE 0.

We can, however, adopt the strategy of developing the
program in a low resolution mode such as MODE 4 and
eventually run the program in a high resolution mode by
compacting it. Once the program development is complete and
the program is ready for regular use, the readable version
has served its purpose and we can remove all the redundant
spaces shorten our variable names and so on. Of course this
strategy is not guaranteed to work - a program may still be

342

too long after compaction.
Depending on the style of programming that you adopt a

compacted program will occupy some fraction of the storage
space occupied by the uncompacted version. Programs in this
book can be compacted by around 50 per cent so you can see
that the savings are worthwhile. For example the f(x,y)
hidden line removal algorithm in Chapter 3 (Section 3.5)
must be compacted before it can be run in MODE 0. Another
incidental advantage in using compacted programs is that the
loading tine is also reduced in the same proportion. A
disadvantage with compacted programs is that they are by
definition not amenable to further development and you
should always keep a copy of the uncompacted version in case
further development is necessary.

The second reason for presenting a program compacter in
this chapter is that it gives further insight into the way
in which BASIC programs are represented in store. The next
diagram illustrates the line by line organisation of a BASIC
program which is normally stored by the computer in memory
locations &E00 onwards (in a cassette based system).

PAGE = &E00

255
13

line number coded as two bytes

byte count for first lie

bytes representing first line

end of line marker

line number

byte count for second line

bytes representing last line

end of program marker

13

13

Within a line, each BASIC keyword is represented as a single
one-byte code or 'token'. For example REM is coded as 244 or
&F4. NEXT is coded as &ED. Apart from keywords, (and a
special coded representation for labels) each character in a
user's program is stored as the corresponding ASCII code.

343

The above inforntation should enable you to understand
our explanation (below) of how the compacter program works.
The program to be compacted should be loaded with PAGE set
to its normal value (PAGE = &E00 for a cassette system). The
compacter itself must be loaded with

PAGE = &5000

and run with PAGE set to this value. When the compacter has
been run, change PAGE back to &E00 to use the compacted
program.

10 putp=&E00:lookp=&E00
20 DIM var$(100)
30 lastvar=-1
40 PROCcopycode
50 REPEAT
60 PROCline
70 UNTIL ?lookp=255
80 PROCcopycode
90 END

100 DEF PROCline
110 LOCAL chars,countp
120 chars=0
130 PROCcopycode
140 PROCcopycode
150 countp=putp
160 PROCcopycode
170 PROCskipspaces
180 IF ?lookp=42 OR ?lookp=&DC THEN

PROCcopyline
ELSE IF ?lookp<>13 THEN

REPEAT:PROCcheckcode:UNTIL ?lookp=13
190 PROCcopycode
200 ?countp=chars
210 IF chars=4 THEN putp=putp-4
220 ENDPROC

230 DEF PROCcopycode
240 ?putp=?lookp:putp=putp+1
250 lookp=lookp+1:chars=chars+1
260 ENDPROC

270 DEF PROCcheckcode
280 IF ?lookp=32 THEN lookp=lookp+1:ENDPROC
290 IF ?lookp=34 THEN PROCcopystring:ENDPROC
300 IF ?lookp=&F4 THEN PROCrem:ENDPROC
310 IF (?lookp>64 AND ?lookp<91) OR

(?lookp>96 AND ?lookp<123) OR ?lookp=95
THEN PROCvariable:ENDPROC

344

320 IF ?lookp>47 AND ?lookp<58 THEN
PROCnumber:ENDPROC

330 IF ?lookp=38 THEN PROChex : ENDPROC
340 IF ?lookp=&ED THEN PROCnext :ENDPROC
350 IF ?lookp=141 THEN

PROCcopycode:PROCcopycode :PROCcopycode:
ENDPROC
:REM 141 is code that precedes a label.

360 IF ?lookp=42 AND (?(putp-1)=58 OR
?(putp-1)=&BE OR ?(putp-1)=&8C)

THEN PROCcopyline:ENDPROC
370 PROCcopycode
380 ENDPROC

390 DEF PROCcopystring
400 REPEAT
410 PROCcopycode
420 UNTIL ?lookp=34
430 PROCcopycode
440 ENDPROC

450 DEF PROCrem
460 REPEAT
470 lookp=lookp+1
480 UNTIL ?lookp=13
490 ENDPROC

500 DEF PROCvariable
510 LOCAL name$,position
520 name$=""
530 REPEAT
540 IF FNvarchar THEN

name$=name$+CHR$(?lookp):lookp=lookp+1
550 UNTIL NOT FNvarchar
560 IF LEN(name$)=1 AND

ASC(name$)>64 AND ASC(name$)<91
THEN PROCputvar(name$):ENDPROC

570 position=FNlookup
580 newname$=FNmakename(position)
590 PROCputvar(newname$)
600 PRINT name$;TAB(20);newname$
610 ENDPROC

620 DEF PROCputvar(n$)
630 LOCAL i
640 FOR i=1 TO LEN(n$)
650 ?putp=ASC(MID$(n$,i,1))
660 putp=putp+1:chars=chars+1
670 NEXT i
680 PROCskipspaces
690 IF FNvarchar THEN

?putp=32:putp=putp+1:chars=chars+1
700 ENDPROC

345

710 DEF FNlookup
720 LOCAL i
730 i=-1
740 REPEAT
750 i=i+1
760 found=(var$(i)=name$)
770 UNTIL found OR i>lastvar
780 IF found THEN =i
790 lastvar=lastvar+1
800 var$(lastvar)=name$
810 =lastvar

820 DEF FNmakename(no)
830 letter$=CHR$(no MOD 26 + 97)
840 IF no<26 THEN =letter$
850 =letter$+CHR$(no DIV 26 + 96)

860 DEF PROChex
870 LOCAL hexchar,ch
880 PROCcopycode
890 REPEAT
900 ch=?lookp
910 hexchar=(ch>47 AND ch<58) OR (ch>64 AND ch<71)
920 IF hexchar THEN PROCcopycode
930 UNTIL NOT hexchar
940 ENDPROC

950 DEF PROCnext
960 PROCcopycode
970 PROCskipspaces
980 REPEAT
990 IF ?lookp=44 THEN

?putp=58:putp=putp+1:?putp=237:putp=putp+1:
lookp=lookp+1:chars=chars+2 :PROCskipspaces

1000 REPEAT
1010 IF FNvarchar THEN lookp=lookp+1
1020 UNTIL NOT FNvarchar
1030 PROCskipspaces
1040 UNTIL ?lookp<>44
1050 ENDPROC

1060 DEF FNvarchar
1070 LOCAL ch
1080 ch=?lookp
1090 =(ch>64 AND ch<91) OR (ch>96 AND ch<123) OR

(ch>47 AND ch<58) OR ch=95

1100 DEF PROCskipspaces
1110 REPEAT
1120 IF ?lookp=32 THEN lookp=lookp+1
1130 UNTIL ?lookp<>32
1140 ENDPROC

346

1150 DEF PROCcopyline
1160 REPEAT
1170 PROCcopycode
1180 UNTIL ?lookp=13
1190 ENDPROC

1200 DEF PROCnumber
1210 PROCcopynumber
1220 PROCskipspaces
1230 IF FNvarchar THEN

?putp=32:putp=putp+1 :chars=chars+1
1240 ENDPROC

1250 DEF PROCcopynumber
1260 REPEAT
1270 PROCcopycode
1280 UNTIL ?lookp<48 OR ?lookp>57
1290 ENDPROC

The compacter operates with two addresses 'lookp' and
'putp'. 'lookp'contains the address of the next byte in the
uncompacted program and 'putp' contains the address for the
next byte in the compacted program. These pointers both
start at &E00, but they will soon get out of step as spaces,
REMs and blank lines are eliminated, and variable names are
shortened.

Note the special cases that have to be checked for by
PROCcheckcode. We will deal with the handling of variables
(line 310) in a moment. A space in the source program is
simply ignored. There are a number of other special cases
that also have to be dealt with.

Characters between quotation marks must be copied exactly
as they stand (including spaces) or the behaviour of the
compacted program could change. If the character code for a
quotation mark (34) is encountered, then PROCcopystring is
called. This copies characters from the source program to
the object program until the next question mark is
encountered.

If the word REM (token &F4) is encountered, the rest of
the line in the source program is skipped by PROCrem.
Decimal numbers and hex numbers are copied character for
character (PROCnumber and PROChex). Any variable after the
word NEXT (token &ED) is omitted (PROCnext).

A label is stored in a program in a special coded form
(code 141 followed by two bytes) which has to be copied
(line 350).

Operating system commands (statements starting with a *)
or DATA statements (token &DC) cause the rest of the current
line in the source program to be copied (lines 180 and 360).

Variable names are replaced with shortened names as they
are encountered. This is done by PROCvariable (called at
line 310). Clearly, if the same name is encountered at

347

several points in the source program, it must always be
replaced by the same shortened name in the object program.
This is achieved by building up a table of the variable
names encountered in the source program. A name is added to
the table only if it is not already there (see FNlookup).
The position of a name in this table determines the
shortened name to be used (see FNmakename). The first 26
entries in the table are given the single letter names 'a',
'b', 'c', ..., 'z'. The remainder are given the nanies 'aa',
'ba', 'ca', ..., 'za', 'ab', 'bb', 'cb', ... Single capital
letter variable names are left unaltered - some of these,
such as X%, Y%, A%, P% and so on, have special significance
in some programs.

Here is an example of a compacted program (the hidden
line removal algorithm of Chapter 3, Section 3.5).

 10INPUTa,b,c,d
 20PROCe(a,b,c)
 30MODE4:VDU29,640;512;
 32PROCf
 40FORg=360TO-360STEP-20
 50PROCh(g,-360,FNi(g,-360)):MOVEj,k
 55l=(640+j)DIVm:n=k
 60FORo=-340TO360STEP20
 70PROCh(g,o,FNi(g,o)):PROCp
 80NEXT
 90NEXT
 100q=GET:MODE7:END
 110DEFFNi(r,s)=100*(COS(RAD(r))+COS(RAD(s)))
 120DEFPROCh(r,s,t)
 130LOCALu,v,w
 140PROCx(r,s,t)
 150PROCy(u,v,w,d)
 160ENDPROC
 300DEFPROCf
 310LOCALz
 320m=4:aa=1279DIVm
 330DIMba(aa),ca(aa)
 340FORz=0TOaa
 350ba(z)=512:ca(z)=-512
 360NEXT
 370ENDPROC
 400DEFPROCp
 410LOCALda,ea,fa,z
 420da=(j+640)DIVm
 430IFda=lTHENPROCga(da,k)
 440ha=(k-n)/(da-l)
 450fa=n
 460FORz=lTOda
 470fa=fa+ha
 480PROCga(z,fa)
 490NEXT

348

 500l=da:n=k
 510ENDPROC
 520DEFPROCga(z,s)
 530LOCALr:r=z*m-640
 540IFz<0ORz>aaTHENMOVEr,s:ENDPROC
 550IFs<ca(z)ANDs>ba(z)THENMOVEr,s:ENDPROC
 560IFs<ba(z)THENba(z)=s
 570IFs>ca(z)THENca(z)=s
 580DRAWr,s
 590ENDPROC
 1000DEFPROCe(a,b,c)
 1010LOCALia,ja,ka,la
 1020ia=SIN(RAD(b)):ja=COS(RAD(b))
 1030ka=SIN(RAD(c)):la=COS(RAD(c))
 1040ma=-ia:na=ja
 1050oa=-ja*la:pa=-ia*la
 1060qa=ka
 1070ra=-ja*ka:sa=-ia*ka
 1080ta=-la:ua=a
 1090ENDPROC
 1100DEFPROCx(r,s,t)
 1110u=ma*r+na*s
 1120v=oa*r+pa*s+qa*t
 1130w=ra*r+sa*s+ta*t+ua
 1140ENDPROC
 1150DEFPROCy(u,v,w,d)
 1160j=d*u/w
 1170k=d*v/w
 1180ENDPROC

It is interesting to note that the compacted program
could not be typed in the form in which it appears here.
Extra spaces would have to be inserted between variable
names and keywords so that the system could distinguish
them. However, a keyword is stored as a single recognisable
token and these spaces can be omitted in the internal
version of a program.

Exercises

1 Try applying the compacter to itself! First load the
compacter with PAGE=&E00. Then set PAGE=&5000, load the
compacter again and run it. Set PAGE=&E00 and you should
find a compacted compacter.

2 The compacter runs rather slowly. This is partly due to
the complexity of the task that it has to carry out, but
its operation on a large source program could be speeded
up by using a more efficient table look-upt method. Do
this.

349

3 A further saving in program size could be made by joining
consecutive lines of program into a single line (with
extra colons inserted). Each time two consecutive lines
are joined, three further bytes of memory space are
saved. Note the following points:

(a) Any line that includes IF statements must not be
joined onto the next line.

(b) Any line starting with DEF must not be joined onto
the previous line.

(c) Any line referred to by a label elsewhere in the
program must not be joined onto the previous line.
Your program will need to build up a list of labels
by doing a preliminary scan through the source
program.

4 Our LOGO interpreter was not written with efficiency of
storage use in mind. Devise a scheme for storing LOGO
programs that is similar to that used for storing BASIC
programs. For example, invent single one-byte codes for
the LOGO keywords and store these in place of the
keywords.

350

