
Contents

Preface vi

Chapter 1 Programming style for BBC BASIC
1.1 Control statements in BBC BASIC 1
1.2 Stepwise refinement and program design 10

Chapter 2 Logical processing of colour and interactive graphics
2.1 Image planes (GCOL 1 and GCOL 2) 21
2.2 Basic interaction techniques (GCOL 3 and GCOL 4) 33
2.3 Colour-fill − general algorithms 48

Chapter 3 Three-dimensional graphics
3.1 Two-dimensional transformations and matrix notation 55
3.2 Three-dimensional graphics − general transformations 71
3.3 Three-dimensional graphics − viewing and perspective transformations74
3.4 Constructional techniques 81
3.5 Hidden line removal 96

Chapter 4 Animation techniques
4.1 Word animation and computer assisted learning 107
4.2 User-defined characters 114
4.3 Arcade game animation 121
4.4 Controlling movement within a maze 132
4.5 Animating line drawings 142
4.6 Palette changing 150

Chapter 5 Advanced uses of sound
5.1 Playing a two-voice melody 152
5.2 Simple canons or rounds 159
5.3 Synchronizing three (or more!) voices 160
5.4 Bach's ‘Musical Offering’ 161
5-5 Mirror canons or canons in contrary motion 164
5.6 Automatic composition 167
5.7 Generating rhythms 169
5.8 Generating pitch values 174
5.9 A program to generate probability frequency tables 182

5.10 Micro blues 186

Chapter 6 Stor ing, sor ting, searching and indexing
6.1 Tables 191
6.2 Searching a table - linear search 192
6.3 Ordered data − sorting 196
6.4 Ordered data − binary chopping 201
6.5 Direct access 203
6.6 Direct access to a subtable 206
6.7 Open hash tables 209
6.8 Indexing and pointers 214
6.9 Adventure games − an example of the use of pointers 220

Chapter 7 Introduction to recursion
7.1 Some easy recursive programs 227
7.2 How it works 231
7.3 Towersoffianoi 235
7.4 Recursive patterns and curves 237
7.5 Towers offianoi revisited − state space representation 247
7.6 Problems with recursion 249
7.7 Divide and conquer − merge sorting 254

Chapter 8 Board games and game trees
8.1 Game trees 259
8.2 Using recursion to generate a game tree 262
8.3 Manipulating board positions during recursion 270
8.4 Minimaxing 271
8.5 A recursive function for minimaxing 278
8.6 Mutually recursive functions for minimaxing 280
8.7 Choosing a move in a ‘small’ game 282

Chapter 9 Difficult board games − the beginnings of Ar tificial Intelligence
9.1 The game Kalah 291
9.2 Static evaluation functions 292
9.3 An introductory Kalah program 293
9.4 Looking further ahead in non-trivial games 299
9.5 Tree pruning 305

Chapter 10 Langunge processors − LOGO Interpreter
10.1 Language processors − an illustrative sample 321
10.2 A simple LOGO interpreter 326
10.3 Interpreting loops 332
10.4 Defining and interpreting simple LOGO procedures 334
10.5 Parameters and variables 337
10.6 A program compacter 342

Appendix1 Summary of mode and colour facilities 351

Appendix2 Bits, bytes and hex 354

Appendix3 Characters, ASCII codes, control codes and Teletext codes 362

Appendix4 Matr ix notation and multiplication 367

Appendix5 The viewing transformation 369

Index 373

Preface

Ten t o f i f t een year s ago machi nes wi t h t he memor y s i ze and
pr ocessi ng capabi l i t y of t he BBC mi cr o woul d have cost many
t housands of pounds and wer e t he excl usi ve domai n of
comput er pr of essi onal s. Nowadays power f ul comput er s ar e i n
t he hands of t he home user and t hi s book ai ms t o br i ng t he
t ool s of t he t r ade of t he comput er sci ent i st t o t he mi cr o
user .

The book i s a pr act i cal i nt r oduct i on t o advanced t opi cs
i n comput er sci ence. Rat her t han adopt t he f or mal appr oach
f ound i n most comput er sci ence t ext s, we have i nt r oduced
each t echni que pr act i cal l y, by usi ng si mpl e pr ogr am modul es
t hat act as bui l di ng bl ocks. Each t opi c i s cover ed at
suf f i c i ent dept h so t hat f or a non- pr of essi onal t he wat er s
ar e nei t her f at homl ess nor so shal l ow as t o be t r i v i al .

The t echni ques sel ect ed f or i ncl usi on i n t hi s t ext f or m
t he f oundat i on st one of advanced comput er gr aphi cs,
ar t i f i c i al i nt el l i gence, aut omat i c musi cal composi t i on,
dat abases, ar cade game pr ogr ammi ng, boar d game pr ogr ammi ng,
advent ur e game pr ogr ammi ng, comput er assi st ed l ear ni ng,
comput er ai ded desi gn and l anguage pr ocessi ng.

Wi t h t he except i on of Chapt er 3 t he book cont ai ns no
di f f i cul t mat hemat i cs and per sever ance wi t h t he mat er i al
wi l l compensat e f or a l ack of knowl edge of t he hi gher
echel ons of mat hemat i cs. Even t he mat hemat i cs i n Chapt er 3
can be i gnor ed wi t h i mpuni t y and a sound under st andi ng of
t he mat er i al der i ved f r om usi ng t he pr ocedur es.

The t ext i s suppor t ed by a consi der abl e number of pr ogr am
f r agment s, pr ocedur es and compl et e pr ogr ams t oget her wi t h
suggest i ons on pr oj ect s t hat you can under t ake your sel f .

An essent i al pr er equi s i t e i s a knowl edge of BASI C, ei t her
f r om our compani on vol ume, ' The BBC Mi cr o, BASI C, Sound and
Gr aphi cs ' , or f r ont exper i ence of ot her BASI C di al ect s. I f
your exper i ence i s on anot her machi ne, you wi l l need access
t o a BBC Mi cr o ' User Gui de' . For t he sake of compl et eness
some mat er i al f r om our compani on vol ume i s r epeat ed i n
Chapt er 2.

St r uct ur ed pr ogr ammi ng t echni ques ar e used t hr oughout t he
t ext and we have at t empt ed t o make t he pr ogr ams r eadabl e.
The pr ogr ammi ng st y l e adopt ed i s descr i bed i n Chapt er 1 and
i t makes ext ensi ve use of t he BBC BASI C cont r ol st r uct ur es
and pr ocedur e f aci l i t i es. Apar t f r om a si ngl e unavoi dabl e
occur r ence t her e i s no use of GOTO or GOSUB anywher e i n t he
t ext .

A mastery of the matorial In this book will make you an
expert micro-programmer. If you can creatively expand and
develop the ideas herein then ring ACORNSOFT and ask for a
job.

How to use this book

This book need not be read sequentially, you can if you
prefer dip into the topics in any order.

Some chapters are self contained and others can be read
only after earlier material has been understood. The
following table is a guide to how the book can be used.

Chapter no. Prerequisite

1 Some knowledge of standard BASIC

2 A knowledge of the basic graphics
facilities of the BBC Micro. (See our
companion volume)

3 As for chapter 2

4 Chapter 2

5 A knowledge of the basic sound
facilities of the BBC micro. (See our
companion volume)

6 Chapter 1

7 Chapter 1

8 Chapters 1 and 7

9 Chapters 1, 7 and 8

10 Chapters 1 and 7

Are you a slow typist?

You can experiment with the programs described in this book
without having to type them. All the programs of any length
are available on a computer cassette.

Some of the larger programs are useful utilities in their
own right and others provide the foundations for fairly
elaborate programming projects in sound, graphics, animation
and games.

Programs are also available on cassette for the companion
volume by the same authors:

The BBC Micro Book: BASIC, Sound and Graphics

Books and cassettes are available from your bookseller or
direct from

Addison-Wesley Publishers Ltd.,
53 Bedford Square,
London, WC1B 3DZ.

Chapter 1 Programming style
for BBC BASIC

Apart from the powerful graphics and sound facilities, BBC
BASIC provides a number of 'control statements' that are not
usually available in other dialects of BASIC. A control
statement is a statement that is used to control the order
in which a program is obeyed and examples of the control
statements that are available in standard BASIC are FOR
statements, IF-GOTO statements, GOTO statements and GOSUB
statements.

It has long been recognised by computer scientists that
programs written using combinations of the above statements
tend to be difficult to write, difficult to read and
difficult to debug. This is because of heavy reliance on the
use of GOTO and GOSUB statements. Excessive use of these
statements results in programs whose possible execution
pathways are so intertwined that the control structure of a
program is obscured.

The number of control structures that are needed to cover
the majority of programming situations is very small and BBC
BASIC provides control statements for implementing most of
the commnon constructions without using GOTOs or GOSUBS. If
you are used to programming in 'standard' BASIC it needs a
certain amount of self-discipline to learn to use these new
statements and abandon old programming habits, but the
effort is well worthwhile. The result will be more readable
programs. The programmer will also have a much clearer idea
of the structure of his programs and will find them easier
to debug and alter. Programs are not less efficient as some
of the 'GOTO diehards' would have us believe. In many cases,
the use of the appropriate control statements instead of a
messy combination of GOTO statements results in a more
efficient program.

1.1 Control statements in BBC BASIC
In this section, we briefly introduce and illustrate the use
of the novel control statements in BBC BASIC, and, in
subsequent sections, we discuss ways of using these
statements to improve our programming style. Note that there
are some dialects of BASIC that provide some, but not all,
of the facilities described in this chapter.

1

Loops
As well as the FOR-NEXT construction available in standard
BASIC, BBC BASIC provides a REPEAT-UNTIL construction for
use in implementing a so-called 'non-deterministic' loop. A
non-deterniinistic or conditional loop is a loop where the
computer cannot calculate in advance how many times to obey
the loop and a section of program is to be obeyed repeatedly
until some condition has been satisfied. For example, a
simple ccnnputer-assisted learning program might repeatedly
set multiplication questions and input the answers from the
keyboard until one of the questions is answered wrongly:

10 questions = 0
20 REPEAT
30 questions = questions+1
40 a = RND(11) + 1 : b = RND(11) + 1
50 PRINT a; "x"; b; "=";
60 INPUT answer
70 UNTIL answer <> a*b
80 PRINT "Wrong! "
90 PRINT "You got "; questions-1; " questions right"

The REPEAT statement introduces a section of program that is
to be obeyed repeatedly and the UNTIL statement indicates
the extent of the loop, and specifies the condition for
stopping the repetition. The REPEAT statetment and an
equivalent construction using a GOTO statement are shown
below:

REPEAT loop Equivalent GOTO loop

20 REPEAT
. 30 .
. .
. .

70 UNTIL condition 70 IF NOT condition GOTO 30

IF statements
The IF statement in BBC BASIC can have the form of the
'standard' logical IF:

IF condition THEN one or more statements

The statements after THEN are obeyed only if the condition
is TRUE. The other form of IF statement is

IF condition THEN one or more statesnents
ELSE one or more statements

2

In this ense, if the condition is TRUE, the statements after
THEN are obeyed, otherwise the statements after ELSE are
obeyed. A simple example of a program involving an IF-THEN
statement is:

10 INPUT bankbalance, withdrawal
20 bankbalance = bankbalance - withdrawal
30 IF bankba1ance<0 THEN

bankbalance=bankbalance-0.20 : PRINT "Overdrawn!":
PRINT "Send this customer a letter from manager"

40 PRINT "Balance is now "; bankbalance

Note that an IF statement constitutes a single numbered line
of a BBC BASIC program. (A single numbered line can occupy
up to 240 characters and may occupy several screen lines.)
You must type the complete IF statement without pressing
RETURN. The RETURN key is pressed only when a numbered line
is complete. If an IF statesnent does not fit into 240
characters, then it is almost certain that your program
would be better structured using procedures (see below).

When more than one statement is typed after THEN, the
statements must be separated from each other by colons and
these statements are either all obeyed or all ignored. The
name rule applies to multiple statenents following the ELSE.

To illustrate the use of an IF-THEN-ELSE statement, we
could extend our 'multiplication program':

100 IF questions>20 THEN
PRINT "Well done! That was very gwd. "

ELSE PRINT "You must brush up on your tables."

or even

100 IF questions>20 THEN
PRINT "Well done!"

ELSE IF questions>10 THEN
 PRINT "Room for improvement"
ELSE PRINT "Learn your tables!"

questions>20

PRINT

PRINT PRINT

TRUE FALSE

"Well done!" questions>10

TRUE FALSE

3

In the second case, the statement after the ELSE is a
further IF statement which will be obyed only if the
condition 'questions>20' was FALSE. Only one of the three
PRINT statenents will be selected and obeyed. The program is
selecting one out of three alternative courses of action as
illustrated in the tree diagram.

We can compare an IF-THEN statement with an equivalent
GOTO construction:

10 IF condition THEN 10 IF NOT condition GOTO 20

statements . statements (numbered)
.

20 carry on 20

Here is an IF-THEN-ELSE statement together with an
equivalent GOTO construction:

10 IF condition THEN 10 IF NOT condition GOTO 16
.
statements . statements (numbered)
.
ELSE 15 GOTO 20
.
statements . statements (numbered)
.

20 carry on 20 carry on

In one of the examples above, we 'nested' one IF statement
inside another. Unfortunately, the extent to which we can
nest IF-statements in BBC BASIC is limited in several ways.
For example, unexpected effects can be obtained if we use an
IF-THEN-ELSE after the THEN of another IF statement. (You
will find that the computer can not decide to which IF the
ELSE belongs.) We are also limited by the restriction that
our complete nested IF statement must fit into 240
characters (6 lines inM0DE 7). We suggest that the use of
nested IF statements is limited to the use of IF after ELSE
as illustrated above.

The standard way of implenenting more complex IF
structures in BASIC is to use the GOTO statement. However,
the use of procedures described below will enable us to
program complex nested control structures without resorting
to the use of GOTO.

4

Simple procedures
A procedure in BBC BASIC provides a facility for giving a
name to a section of program. The programmer can then write
the name of the procedure wherever he wants that section of
program to be obeyed. This has two main advantages:

Firstly, if the named operation has to be carried out at
several different places in a large program we avoid writing
out the same section of program in full at each place.

Secondly, and just as important, careful use of
procedures can make a large program easier to write and
simpler for other people to read.

The first advantage can, of course, be obtained in
standard BASIC by using GOSUB statements and the second
advantage can be obtained, to a certain extent, by careful
annotation of standard BASIC subroutines with REM
statements. However, the use of named procedures makes it
easier to obtain these advantages and encourages the writing
of more readable programs. Here is a short BBC BASIC program
that involves a procedure:

10 PRINT "Type first 10 numbers"
20 PROCaddtenumbers
30 PRINT "Type next 10 numbers"
40 PROCaddtennumbers
50 END

100 DEF PROCaddtennumbers
110 LOCAL i, next, total
120 total = 0
130 FOR i = 1 TO 10
140 INPUT next
150 total = total + next
160 NEXT i
170 PRINT "Total = "; total
180 ENDPROC

The section of program from line 100 onwards constitutes a
procedure definition and the procedure is referred to or
'called' at line 20, and again at line 40, by writing the
name of the procedure. Calling a procedure in this way tells
the computer to go and obey the procedure definition and
come back when it encounters an ENDPROC statement.

In the program above, we have specified that the
variables 'i', 'next', and 'total' are 'local' to the
procedure. These variables are available for use only while
PROCaddtennumbers is being obeyed. Variables declared at the
start of a procedure in this way can not be used after
ENDPROC has been obeyed. It is recommended that any variable
which is used only within a particular procedure should be
declared locally to that procedure. The computer will then

5

ensure that the programmer does not accidentally use the
same variable for conflicting purposes in different parts of
a large program. A variable with the same name can be used
elsewhere in the program and its value will automatically be
held in a different storage location, thus eliminating any
possibility of confusion. The same program could have been
written in standard BASIC using GOSUB statements:

10 PRINT "Type first 10 umbers"
20 GOSUB 120
30 PRINT "Type next 10 numtx;rs"
40 GOSUB 120
50 END

120 T = 0
130 FOR I = 1 TO 10
140 INPUT N
150 T = T + N
160 NEXT i
170 PRINT "Total = "; T
180 RETURN

In the above BBC BASIC program, a section of program
given a name and this name was used (twice) to tell the
computer to obey that section of program. As we shall
discuss later, it is good programming practice to give a
name to any logically separate section of program, even if
that section of program is obeyed only once.

Procedures with parameters
A simple procedure can be used to enable a program to carry
out the same operation at different parts in a program. A
common requirement is for similar, but not necessarily
identical, operations to be carried out at different points
in a program.

As a somewhat contrived example, the procedure of the
last section could have been given a 'parameter' indicating
how many numbers were to be added up.

10 PRINT "Type 5 umbers"
20 PROCaddnumbers(5)
30 PRINT "Now type 10 numbers"
40 PROCaddnumbers(10)
50 END

The parameter in brackets after the name of the procedure is
a piece of information that is to be tranenitted to the
proocedure that is being called. In this case, the intention
is that the number in brackets tells the procedure how many

6

values to add up. The first time the procedure is called it
is to add up 5 numbers and the second time it is to dd up 10
numbers.

The procedure must now be defined in terms of a named
variable that will be given a value each time the procedure
is called.

100 DEF PROCaddnumbers(howmany)
110 LOCAL i, next, total
120 total = 0
130 FOR i = 1 TO howmany
140 INPUT next
150 total = total + next
160 NEXT i
170 PRINT "Total = "; total
180 ENDPROC

When this procedure is called line line 20, the procedure
definition is obeyed with:

howmany = 5

and when it is called from line 40, the procedure definition
is obeyed with:

hownany = 10

As another example, here is a program that is given a sum of
money and which works out how many coins of each available
denomination are required to make up that sum of money.

10 INPUT "Change", change
20 PROChownany(50) : PROChowmany(20)
30 PROChowmany(10) : PR(Ehownany(5)
40 PROChomnany(2) : PROChowmany(1)
50 END

100 DEF PROChowmany(denomination)
110 LOCAL noofcoins
120 noofcoins = change DIV denomination
130 change = change MOD denomination
140 PRINT "No of "; denomnination; "s "; noofcoins
150 ENDPROC

The program first works how many 50p pieces can be fitted
into the given sum and works out how much change is left
then that has been done. It then does the same, with the
remaining change, for 20p pieces, and so on. A procedure is

7

used to work out how many coins of a given denomination fit
into the change that is currently loft. PROChowmany is the
name of a procedure that is used six times. Each time the
procedure is called, it is supplied with a parameter in
brackets telling it which denomination of coin to deal with
next. The operators DIV and MOD are useful in this context.
DIV gives the result of dividing two integers or whole
numbers, ignoring any remainder. MOD gives the remainder
obtained on dividing two integers.

A procedure can have a parameter that is a string and it
can also have more than one parameter. These features will
be illustrated as and when we need them.

In other programming languages, it is usually possible to
pass information out of a procedure by changing the value of
one of its parameters while the procedure is being obeyed.
In BBC BASIC, parameters can only be used for passing
information into a procedure and these parameters are
sometimes known as input parameters. If information
calculated in a procedure is to be used outside that
procedure, the information must be placed in a global
variable - any variable that is not a parameter or a local
variable. For example, in the program at the beginning of
this section the global variable 'change' is altered by each
call of the procedure. In fact this global variable is used
to transfer information both into and out of the procedure.

Functions
If the result of some process is a single value then a
function is sometimes an elegant alternative to a procedure.

First let us look at the ways in which a function differs
from a procedure. Certainly, they are both separate modules
of program text referred to by name, but they differ in the
way in which they are called. Functions are called by using
them in expressions - that is the first difference. The
second difference is that the result of obeying the function
is a single value which replaces the function call in the
originating expression. Let us illustrate this by
considering the use of one of the standard functions:

y = x + SQR(2)

When this statement is being obeyed, the computer obeys the
definition of the function SQR, and a number - the result of
obeying the function - replaces the subexpression SQR(2). In
the case of a standard function like SQR, the definition of
the function is already stored as part of the BASIC system,
but it is also possible for the programmer to define his own
functions. In BBC BASIC, the programmer defines a function
in a way that is very similar to the way in which a
procedure is defined. A function defined in this way can be
used in exactly the same way as the standard functions.

This program reads 3 pairs of numbers and adds the larger

8

of the first pair, the larger of the second pair and the
larger of the third pair. A function is used to find the
larger of two numbers.

10 INPUT a,b, p,q, x,y
20 PRINT FNmax(a,b) + FNmax(p,q) + FNmax(x,y)
30 END

40 DEF FNmax(first,second)
50 IF first > second THEN = first

ELSE = second

The effect of calling a function is the calculation of a
single result. Since calling a function produces a single
result, we must indicate, somewhere in the function
definition, what this result is to be. Instead of ENDPROC,
the function terminates when a statement of the form:

= expression

is obeyed. The value of this expression is returned as the
value of the sub-expression used to call the function.

When the above program is obeyed, evaluation of the sub-
expression 'FNmax(a,b)' causes the function definition to be
obeyed with 'first' set to the value of 'a' and 'second' set
to the value of 'b'. If the function is called when we have
the situation

a = 4.79
b = 5.64

then the function definition is obeyed with

first = 4.79
second = 5.64

and the statement

= second

is obeyed as a result of obeying the IF-statement. The value
of the sub-expression 'FNmax(a,b)' will therefore be 5.64
and this is the value which will be used in subsequent
evaluation of the larger expression:

FNmax(a,b) + FNmax(p,q) + FNmax(x,y)

Apart from the need to return a particular value as its
result, the definition of a function in BBC BASIC is very
similar to the definition of a procedure. A function

9

definition can use as many statements as we like in order to
calculate the value that is to be the result of the
function. More complicated function definitions will
beintroduced when they are required.

1.2 Stepwise refinement and program design
In the remainder of this chapter, we demonstrate the well-
known programming technique called 'stepwise refinement'.

The first step in writing a complex program should be to
sketch an outline of what the program is going to do without
getting bogged down in the detailed BASIC instruction
required. Using procedures for the logically distinct
operations in a program allows us to write our initial
outline in BASIC where we invent procedure names to describe
operations that we have not yet programmed in detail. Only
when we have a clear idea of what each named procedure is to
do and how it fits into the overall program do we go on to
define each procedure in detail.

In a complicated program, writing one of the procedures
may itself be a difficult programming task and a procedure
can itself be defined in terms of other procedures.

We shall illustrate this approach to programming by
writing two moderately complicated programs.

CAL structures - a multiplication compestition
The next program is an example of a Computer Assisted
Learning program. It could be used to encourage children to
learn their multiplication tables by organising a
multiplication competition. Once the program is running, the
children will take turns to sit at the keyboard and do a
tables test. The program will keep a league table of the top
ten scores obtained during a run of the program and this
table will be printed after each test is completed.

We can outline the process that the program will carry
out :

10 CLS
20 PRINT "Multiplication Competition"
30 PROCinitialise
40 REPEAT
50 PROCnextcompetitor
60 PROCprinttopten
70 INPUT "Anyone else to play (Y/N)", reply$
80 UNTIL reply$="N"
90 END

Note that this outline does not involve any tremendously
complicated control structure. It contains only a simple
REPEAT loop and writing an outline like this should not
present any difficult programming problems.

Now that we have the overall structure of the program
clear in our minds, we can introduce a little more detail by

10

defining the procedures used in our outline.
Most programs require variables or arrays to be set to

starting values and such 'initialisation' is best tidied
away into a special procedure. In this case, PROCinitia1ise
will set up a 'top scores' table to contain ten zero scores.
The table will consist of two parallel arrays, one array to
maintain the names of the top ten players, and the other
their scores.

100 DEF PROCinitialise
110 LOCAL slot
120 DIM topname$(10), topscore(10)
130 FOR slot = 1 TO 10
140 topscore(slot) =0
150 topname$(slot) = "--------"
160 NEXT slot
170 ENDPROC

We can now concentrate on the problem of defining
PROCnextcompetitor which will set a single multiplication
test and handle the results. Writing this procedure can be
viewed as a separate programming problem that is a little
easier than the problem with which we started. We use the
same approach to writing PROCnextcompetitor as we used in
approaching the original problem - we write an outline
description of what the procedure will do using further
named procedures to describe operations that will be
programmed in detail later. This process can be continued
and we can have procedures within procedures within
procedures etc. Very complex tasks can be implemented in
this way.

200 DEF PROCnextcompetitor
210 INPUT "What's your name" , name$
220 PRINT "Hello, "; name$
230 PRINT : PRINT "Ready"
240 PRINT : PRINT "Go! " : PRINT
250 PROCgivetest
260 PROCupdatetable(name$, score)
270 ENDPROC

We have already written a short program that sets a
multiplication test and we use a variation of this program
as our definition of PROCgivetest. We introduce a further
constraint so that a test is terminated either if a question
is answered wrongly or if a time limit is exceeded. The
special BBC BASIC variable TIME is automatically increased
by 1 every one hundredth of a second and we use this

11

variable to time the test.

300 DEF PROCgivetest
310 LOCAL questions, a, b, answer
320 TIME = 0
330 questions = 0
340 REPEAT
350 questions = questions+1
360 a = RND(11) + 1 : b = RND(11) + 1
370 PRINT a; "x"; b; "=";
380 INPUT answer
390 UNTIL answer<>a*b OR TIME>3000
400 IF answer <>a*b THEN

 PRINT "Wrong!" : score = questions - 1
ELSE score = questions

410 ENDPROC

PROCupdatetable is probably the trickiest procedure to
write. We need to check first of all whether the new score
should be in the top ten. If it is not, the procedure should
terminate immediately. If the new score is in the top ten,
then we need to find the position at which it should be
inserted, move the other scores and names down to make room
and insert the new score and name in the table.

500 DEF PROCupdatetable(n$, score)
510 LOCAL slot, position
520 IF score <= topscore(10) THEN ENDPROC

530 REM find slot for new top score
540 slot = 0
550 REPEAT
560 slot = slot + 1
570 UNTIL score>topscore(slot)

580 REM move old scores down
590 FOR position = 9 TO slot STEP -1
600 topscore(position+1) = topscore(position)
610 topname$(position+1) = topname$(position)
620 NEXT position

630 topscore(slot) = score
640 topname$(slot) = n$
650 ENDPROC

Finally we define the procedure for displaying the league
table on the screen.

12

700 DEF PROCprinttopten
710 LOCAL p
720 CLS
730 PRINT "Last score: "; score : PRINT
740 PRINT "TOP TEN" : PRINT : PRINT
750 FOR p = 1 TO 10
760 PRINT topname$(p); TAB(20); topscore(p)
770 NEXT p
780 ENDPROC

Exercises
1 If you are familiar with the BBC BASIC SOUND statement,

modify the multiplication contest program so that it
plays a short 'tension building' tune before each test.

2 We could have applied a further stage of stepwise
refinement to PROCupdatetable by defining it in terms of
two further procedures, PROCfindslot and PROCinsert. Do
this.

3 If a test is terminated because of a wrong answer, the
message indicating that the answer was wrong does not
remain on the screen long enough for it to be read.
Insert a time delay at the appropriate point in the
program.

4 As it stands, the program could ask the same question
twice during the course of the same test. Modify the
program so that it records the questions asked and
ensures that the same question is not asked twice.

5 Change the program so that a test is terminated only when
a time limit is exceeded. If a wrong answer is typed, the
test should continue, but a message should of course be
displayed. Only correct answers should be counted towards
the score.

Program structure for playing a board game
In Chapters 8 and 9, we shall be looking at some of the
techniques needed to write program that play 'board' games.
Examples of the kind of game that we have in mind are NIM,
Noughts and Crosses (or Tic-Tac-Toe), Kalah, Go-Moku, Go,
Draughts (or Checkers) and Chess.

Programming techniques used for board games are
completely different from those required for 'reaction'
games like Space Invaders or Pacman where the machine is
simply logging the user's reaction speeds and looking for
coincidence of objects. In such arcade games, most of the
programming effort goes into producing exotic animated
displays.

13

 Her e we pr esent t he out l i ne st r uct ur e of a pr ogr am t hat
pl ays a boar d game f or t wo pl ayer s. The obvi ous possi bi l i t y
i s t hat t he comput er (or , t o be mor e pr eci se, par t of t he
pr ogr am) wi l l act as one pl ayer and someone seat ed at t he
keyboar d wi l l act as i t s opponent . However , as we shal l see,
t hi s i s not t he onl y possi bi l i t y and t he same over al l
pr ogr am st r uct ur e wi l l al l ow f or ot her usef ul combi nat i ons.
The essent i al r equi r ement f or a boar d game pr ogr am i s t hat
i t shoul d r epeat edl y pr ocess one pl ayer ‹ s move, ei t her i t s
own or i t s opponent ‹ s. The most conveni ent way of or gani s i ng
t hi s i s out l i ned i n t he pr ocedur e PROCpl aygame.

10 PROCpl aygame
20 END

100 DEF PROCp1aygame
110 PROCset upboar d : REM and deci de who st ar t s.
120 PROCdi spl ayboar d
130 gameover = FALSE
140 REPEAT
150 I F t ur n$ = " A" THEN PROCpl ayer A

ELSE PROCpl ayer B
160 PROCdi spl ayboar d
170 PROCt est gameover
180 UNTI L gameover
190 PROCannouncewi nner
200 ENDPROC

I n or der t o show how ver sat i l e t hi s st r uct ur e i s, we
descr i be f our s i t uat i ons i n whi ch i t coul d be used:

(a) The pr ogr am wi l l act as pl ayer A, usi ng PROCpl ayer A t o
choose i t s move. Someone seat ed at t he keyboar d act s as
t he pr ogr am' s opponent and PROCp1ayer B wi l l or gani se
t he i nput of t hi s pl ayer ' s move.

(b) Two human pl ayer s seat ed at t he keyboar d can use t he
comput er as a boar d and scor ekeeper . PROCpl ayer A i s
used t o i nput one pl ayer ' s move and PROCpl ayer B i s used
t o i nput t he ot her ' s.

(c) Two r i val pr ogr ammer s want t o ccnnpar e t hei r game
pr ogr ammi ng ski l l s . One pr ogr amnger can wr i t e
PROCpl ayer A t o choose a move and t he ot her can wr i t e
PROCpl ayer B t o choose a move hi s way. The comput er can
t hen be made t o pl ay t hr ough one or mor e games by
i t sel f i n or der t o deci de whose pr ocedur e i s bet t er .

(d) The ser i ous st udent of a game such as chess may want t o
st or e r ecor ds of i nt er est i ng games (on casset t e or di sk
f i l es) and have t he pr ogr am pl ay t hr ough t hese game

14

under his control so that he can analyse them. If, as
is quite likely, the chess analyst wanted the program
to go back to an earlier stage in the game and replay a
sequence of moves or if he wanted to experiment with
alternatives to the recorded moves, some slight
adjustment to our outline program structure might be
necessary.

We now convert our outline program into a complete program
for a very simple game. The game we use is called 'Last One
Wins' and the rules are:

The 'board' is a pile of counters.
Two players take turns at removing at least one and not
more than three counters frcun the pile.
The player who removes the last counter is the winner.

The computer will play against an opponent. The opponent is
to be allowed to decide how many counters there will be at
the start of the game and who makes the first move. The
following program plays this game very stupidly (by making
completely random moves) but the program will serve to
illustrate a number of points. This game and the program
developed in this section will be extensively referred to in
chapter 8.

10 PROCplaygame
20 END

100 DEF PROCplaygame
.
.
.

200 ENDPROC

300 DEF PROCsetupboard
310 INPUT "How many counters", counters
320 INPUT "OK. Do you want to start", reply$
330 IF INSTR("Yy" ,LEFT$(reply$,1))

THEN turn$ = "B" ELSE turn$ = "A"
340 ENDPROC

400 DEF PROCdisplayboard
410 PRINT
420 PRINT "There are "; counters; " counters left."
430 ENDPROC

500 DEF PROCtestgameover
510 gameover = (counters = 0)
520 ENDPROC

15

600 DEF PROCannouncewinner
610 IF turn$ = "A" THEN PRINT "You win."

ELSE PRINT "I win."
620 ENDPROC

700 DEFPROCplayerA
710 PRINT "My turn."
720 PROCcheckmovesavailable
730 IF movesavailable=1 THEN move=1

ELSE move= RND(movesavailable)
740 PRINT "I take "; move; " counters."
750 counters = counters - move
760 turn$ = "B"
770 ENDPROC

800 DEF PROCcheckmovesavailab1e
810 IF counters<3 THEN movesavailable = counters

ELSE movesavailable = 3
820 ENDPROC

900 DEF PROCplayerB
910 PROCinputmove
920 counters = counters-move
930 turn$ = "A"
940 ENDPROC

1000 DEF PROCinputmove
1010 PROCcheckmovesavailable
1020 INPUT "Your turn. How many do you take", move
1030 IF move>0 AND move<=movesavailable THEN ENDPROC
1040 REPEAT
1050 PRINT "At least one and not more than three."
1060 INPUT "Try again:" move
1070 UNTIL move >0 AND move <= movesavailable
1080 ENDPROC

As the program stands, some of the procedures contain
only one or two instructions and you may wonder why we
bother to use so many procedures. The advantage of breaking
the program up into procedures in this way is that if we
want to change or improve any particular aspect of the
program's behaviour, we can concentrate our attention on the
procedure that controls that aspect. For example, as it
stands the prograni plays rather stupidly, but all the
stupidity is confined to one procedure, PR0CplayerA. If we
wanted the program to play a better games we would
concentrate on reprogramming this procedure. (There is in
fact a very simple rule that can be used for choosing a good
move in this game - think about it.) As another example of
the sort of improvement that could be made, we might want to
use graphics facilities to produce a pictorial

16

representation of the pile of counters, the display being
changed after each move. The changes to enable the program
to do this could be concentrated in PROCdisplayboard.

Exercises
1 Change the above program so that it displays a pictorial

representation of the pile of counters on the screen. The
display should be updated after each move.

2 Change the program so that, after a game, it asks the
program's opponent if he would like another game and
terminates only if he says NO.

3 Write a program that plays Noughts and Crosses by making
completely random moves. Use the structure introduced in
the last section as a framework on which to build your
program.

Experiment with different board representations. Three
possibilities are:

(a) A 3x3 two-dimensional array.

(b) A one-dimensional array of 9 locations.

(c) (Rather difficult) - A single number that is
handled by the program as a bit-pattern. The nine
least significant bits indicate the position of
the X's and the next nine indicate the position
of the O's. Thus:

board =000001100001010O00

might represent the position
X

X O
O

You are free to decide which bits represent which
squares. Individual bits can be isolated from a
number by using DIV and logical operations. This
opens up the possibility of very efficient
testing for winning positions. We can test for
the presence of the winning pattern by comparing
the 'board' with the bit-pattern

X
X

X
by comparing the 'board' with the bit-pattern

.....00000000000l0l0lO0 (ie. &54 in hex)

17

as follows:

IF (board AND &54)=&54 THEN ..,,.

Placing an X in the top left-hand corner square
involves

board = board OR &100

The bit-patterns corresponding to each possible
move and each possible winning pattern could be,
stored in a lookup table or could be calculated
as powers of 2.

Binary and hexadecimal notation, and the application of
logical operations to bit-patterns are described in Appendix
2. If you get the third version working, you will learn a
great deal about binary and hexadecimal representation of
numbers.

18

