
Chapter 9 Difficult board games − the
beginnings of Artificial
Intelligence

In the last chapter, the games that we used as examples were
all fairly easy games with moderately sized game trees. In
this chapter, we are going to introduce the methods that are
needed for programming more difficult games. We shall
demonstrate these methods by using an ancient game called
Kalah. Kalah is somewhat easier than Chess and Draughts, but
is still very much more intellectually demanding than any of
the games that have been used so far. It is ideal for
experimentation with game playing techniques.

9.1 The game Kalah
We now present the rules for Kalah and suggest that you
familiarise yourself with these rules by finding scaneone
who will play a few games with you. (You can mark out a
board on a sheet of paper and use coins or counters for
stones.)

The Rules of Kalah
Kalah Originated as a desert game played by two people

using stones and holes made in the sand. We can imagine the
game to be played on a rectangular board:

6 5 4 3 2 1

654321

A's side pits

B's side pits

A's
kalah

B's
kalah

Direction of play

In front of him, each player has six pits numbered 1 to 6
(called his 'side' pits). To the right of his side pits,
each player has a special pit called a 'kalah'. Initially,
all the side pits contain an equal number of stones. A move
consists of taking the stones from one of one's own side

291

pits and distributing them anti-clockwise one by one into
the other pits including one's own kalah but not the
opponent's. There are two rules:

(a) Players make moves alternately except when the last
stone of a pile that a player moves lands in his own
kalah. That player then makes another move.

(b) If the last stone of a pile that a player is moving
lands in an empty pit on his own side, that stone along
with any stones in the pit opposite are placed in that
player's kalah.

The game ends when the player whose turn it is cannot make a
move (ie. all his side pits are empty). Each person's score
is the number of stones in his kalah plus the number (if
any) in his side pits. The player with the highest score is
the winner.

For a good beginner's game, start with 2 or 3 stones in
each side pit. Starting with 6 stones in each pit results in
quite a difficult garne.

9.2 Static evaluation functions

If you have run the recursive procedures for exploring the
'Last One Wins - or does he?' game tree for positions with 9
or 10 counters, you will have discovered that, even for a
trivial game like this, the computer takes a fairly long
time to do an exhaustive exploration of the game tree. For
games like Kalah, Draughts or Chess, exhaustive exploration
of the game tree is completely impossible.

The first possible alternative that we consider is to
make a program select a move by carrying out a one-level
lookahead from its current position. In order to compare the
moves available in a given position, we need some way of
comparing the new positions reached by the available moves.
Since we have ruled out the possibility of an exhaustive
minimax evaluation of these positions, we need some
alternative evaluation mechanism. One possibility is to
define a 'static evaluation function' which makes some
numerical estimate of the goodness of a position without
further exploration of moves and counter-moves. The precise
definition of the static evaluation function will of course
depend on the rules of the game.

In Kalah, we could calculate a static value (from A's
point of view) for a board position by adding up the stones
in A's pits together with his kalah and subtracting the
stones in B's pits and kalah. This simple function could be
improved upon, but it will suffice for our present purposes.

The next diagram! illustrates the process of choosing a
move by using a one-level lookahead together with a static
evaluation function.

292

1 1303330
222220 11303303

222220 4 1303023
202220 1 1410223

222220
002223
3322202 1

+2 +2 +6 +2 −2

302223
2222201 1

The program will try each move available, apply its static
evaluation function to each position reached and choose the
move that leads to the position with the best static value.

9.3 An introductory Kalah program

Before discussing improvements to the simple approach
described in the last section, we shall write a complete
Kalah program that uses a one-level lookahead to choose its
moves.

We use as our framework the procedure PROCplaygame
defined in Chapter 1. Before filling in the details by
writing the other procedures required, we must decide how te
represent a Kalah board in our program. There are various
possibilities available. One that immediately suggests
itself is a 7x2 array of integers where each integer
represents the number of stones in one of the pits. Another
possibility would be to pack a board position into two
numeric variables and represent the number of stones in one
pit by one hexadecimal digit. Such a representation would
not be very convenient from the point of view of making
moves, but it might be useful if we ever wanted to store
large numbers of board positions in a table and needed to
economise on storage space.

We shall in fact represent the Kalah board using a one-
dimensional array of 14 locations numbered 0 to 13:

5 DIM pit(l3)

Although this does not reflect the two-sided structure of
the board, it is an extremely convenient representation in
which to manipulate moves. For the purpose of making moves,
the Kalah board is circular, and moving round the board
corresponds to increasing the subscript of our one-
dimensional array. We can use the MODoperator to make sure
that the subscript goes back to zero if we reach 13:

pitno = (pitno + 1) MOD 14

The representation chosen is illustrated:

293

A

6 5 4 3 2 1

654321

B

pit (0)

pit (1)

pit (2)

pit (3)

pit (4)

pit (5)

pit (6)

pit (7)

pit (8)

pit (9)

pit (10)

pit (11)

pit (12)

pit (13)

DIM pit (13)

We first define a procedure for displaying a board
position that is represented in this way. For the time being
we simply print the number of stones in a pit as a number on
the screen. Whenever a move has been made, this procedure
will be used to display a completely new representation of
the board. We leave as an exercise the use of character
graphics to produce a more realistic display of the board.

205 DEF PROCdisplayboard
210 LOCAL p
215 @% = &0303
220 PRINT:PRINT:PRINT " (6)(5)(4)(3)(2)(1)"
225 PRINT TAB(3);
230 FOR p= 6 TO I STEP -1 : PRINT pit(p); : NEXT p
235 PRINT
240 PRINT pit(7); TAB(21); pit(0)
245 PRINT TAB(3);
250 FOR p= 8 TO 13 : PRINT pit(p); : NEXT p
255 PRINT : PRINT " (1)(2)(3)(4)(5)(6)" : PRINT
260 @% = &0A0A
265 ENDPROC

The board would be initialised by the following procedure:

294

300 DEF PROCsetupboard
310 LOCAL p, stones
320 INPUT "How many stones per pit", stones
330 FOR p = 1 TO 6
340 pit(p) = stones
350 NEXT p
360 FOR p= 8 TO 13
370 pit(p) = stones
380 NEXT p
390 pit(0) =0 : pit(7) = 0
400 INPUT "Do you want to start", reply$
410 IF LEFT$(reply$,1) = "Y" THEN turn$="B"

ELSE turn$="A"
420 ENDPROC

The next two procedures are straightforward:

500 DEF PROCtestgameover
510 LOCAL moves, start, p
520 IF turn$="A" THEN start = 1

ELSE start = 8
530 moves = 0
540 FOR p= start TO start+5
550 IF pit(p) > 0 THEN moves = moves+1
560 NEXT p
570 gameover = (moves=o)
580 ENDPROC

700 DEF PROCannouncewinner
710 LOCAL Apoints, Bpoints, p
720 Apoints = pit(7) : Bpoints = pit(0)
730 FOR p=1 TO 6 : Apoints=Apoints+pit(p) : NEXT
740 FOR p=8 TO 13 : Bpoints=Bpoints+pit(p) : NEXT

750 IF Apoints>Bpoints THEN PRINT "I win!"
ELSE IF Bpoints>Apoints THEN PRINT "You win!"
ELSE PRINT "Its a draw."

760 PRINT "Final score - ME:"; Apoints
770 PRINT " YOU:"; Bpoints
780 ENDPROC

There are a number of useful relationships that we can take
advantage of in manipulating board positions. For example,
if 'k' is the location of one player's kalah (k=0 or k=7),
then '7-k' gives the location of the other player's kalah;
if 'p' is the location of one of the pits then '14-p' is the
location of the opposite pit.

We now define the procedures for inputting and making the
program's opponent's moves.

295

900 DEF PROCplayerB
910 LOCAL pitno
920 PROCinputmove
930 PROCmakeBmove(7+pitno)
940 ENDPROC

1000 DEF inputmove
1010 PRINT"Your move, which pit do you play from";
1020 INPUT pitno
1030 IF FNlegaBmove(pitno) THEN ENDPROC

1040 REPEAT
1050 PRINT "Illegal Move. "
1060 INPUT "Try again:" pitno
1070 UNTIL FNlegalBmove(pitno)
1080 ENDPROC

1100 DEF FNlegalBmove(p)
1110 IF p<0 OR p>7 THEN =FALSE
1120 IF pit(7+p)<=0 THEN =FALSE
1130 =TRUE

It is slightly more convenient to define two different
procedures for makingmoves, one for player A and one for
player B. The two procedures will be almost identical, but
defining them separately eliminates some testing. The move-
making; procedures must decide whose turn it is next,
setting the value of 'turn$' accordingly.

1200 DEF PROCmakeAmove(p)
1210 LOCAL lastpit
1220 PROCmovestones(p ,0)
1230 IF lastpit<7 AND pit(lastpit)=1 THEN

capture = pit(14-lastpit) :
pit(14-lastpit) =0 : pit(lastpit) =0 :
pit(7) = pit(7)+capture+1

ELSE capture = -1 :REM signifies no capture
1240 IF lastpit = 7 THEN turn$="A" ELSE turn$="B"
1250 ENDPROC

1400 DEF PR0CmakeBmove(p)
1410 LOCAL lastpit
1420 PROCmovestones(p,7)
1430 IF lastpit>7 AND pit(lastpit)=1 THEN

capture = pit(14-lastpit) :
pit(14-lastpit) = 0 : pit(lastpit) =0 :
pit(0) = pit(0)+capture+1

ELSE capture = -1
1440 IF lastpit = 0 THEN turn$="B" ELSE turn$="A"
1450 ENDPROC

296

1600 DEF PROCmovestones(p, oppkalah)
1610 LOCAL s
1620 a = pit(p) : pit(p) = 0
1630 REPEAT
1640 p = (p+1) MOD 14
1650 IF p<>oppkalah THEN pit(p)=pit(p)+1 : s=s-1
1660 UNTIL s=0
1670 lastpit = p
1680 ENDPROC

We now define the procedures that carry out the one-level
lookahead from a position at which it is the program's turn
to play.

1800 DEF PROCplayerA
1810 LOCAL move
1820 move = FNbestmove
1830 PRINT "I move from pit "; move
1840 PROCmakeAmove(move)
1850 ENDPROC

2000 DEF FNbestmove
2010 LOCAL p, maxsoiar, bestmove
2020 maxsofar = -100
2030 FOR p = 1 TO 6
2040 IF pit(p)>0 THEN PROCtryAmove
2050 NEXT p
2060 =bestmove

2200 DEF PROCtryAmove
2210 LOCAL stones, v, capture
2220 stones = pit(p)
2230 PROCmakeAmove(p)
2240 v = FNstaticval
2250 IF v>ymaxsofar THEN maxsofar=v : bestmove=p
2260 PROCmoveback(p, stones, capture, 0)
2270 ENDPROC

Note the need to move the stones back to their original
positions each time a move has been tried. This is done by
PROCmoveback which needs to be told at which pit the move
started, how many stones were in the pit before the move and
how many stones, if any, were captured. At the moment, this
procedure is used only for undoing a move by player A, but
we shall shortly use it for undoing a move by B and it will
be convenient if we give the procedure a 4th parameter
telling it the location of the opponent's kalah.

297

2400 DEF PROCmoveback(p, a, capt, oppkalah)
2410 pit(p) = pit(p) + a
2420 REPEAT
2430 p = (p+1) HOD 14
2440 IF p<>oppkalah THEN

pit(p) = pit(p) - 1 : a = s-1
2450 UNTIL s=0
2460 IF capt>-1 THEN

pit(p)=pit(p)+1 : pit(14-p)=pit(14-p)+capt :
pit(7 -oppkalah) = pit(7-oppkalah)-capt-1

2470 ENDPROC

Finally, we define FNstatieval which is straightforward:

2600 DEF FNstaticval
2610 LOCAL p, points
2620 points = pit(7) - pit(0)
2630 FOR p= 1 TO 6 : points=points+pit(p) : NEXT
2640 FOR p= 8 TO 13 : points=points-pit(p) : NEXT
2650 = points

The program that we have defined so far plays an
extremely poor game of Kalah. You will find that it is quite
easily beaten. In the next few sections we shall look at
ways of improving the program's performance. We shall do
this by redefining FNbestmove and PROCtryAmove in various
ways, leaving the rest of the program unchanged.

Exercises

1 Change FNbestmove so that it considers moves in reverse
order, ie. using:

FOR p = 6 TO 1 STEP -1

Why does this improve the program's performance for games
starting with two or three counters?

2 Try to improve the program's performance by defining an
improved static evaluation function. For example, if a
large pile of stones builds up in pit 6, then these
eventually have to be distributed into one's opponent's
pits. The program could be discouraged from doing this by
making the static evaluation function give less credit
for stones in pit 6. The credit given for stones in other
pits could be varied in the same sort of way.

3 Modify the Kalah progrtun so that it does not display a
fresh copy of the board each time a move is made. It
should instead use the TAB function to ujxiate the

298

existing display changing the numbers already on the
screen in the same order as the pits; are changed while
making a move. Use time delays so that the numbers do not
change too quickly. If you are familiar with the use of
Teletext colour and large character facilities in MODE 7,
you could make use of these to enhance the display.

9.4 Looking further ahead in non-trivial games

In the last section, we saw how a simple static evaluation
function could be used by a program for evaluating and
comparing positions. The program that we produced did not
play very well. Its performance could be improved by
defining a better static evaluation function, but you will
find that the extent to which it can be improved is limited.
This is because it is difficult for a static evaluation
function to take account of the possible sequences of moves
and counter-moves that are available in the position being
evaluated. The availability of certain moves can make the
true value of a position very different from the value
obtained by a static evaluation function. For example, the
program might apply a static evaluation to a position in
which its opponent was about to make a spectacular capture.
In such circumstances, the value obtained will clearly be
misleading.

We have already decided that exhaustive exploration of
the game tree is out of the question, but a possible
compromise way of evaluating a position is to look ahead in
the game tree as far as time and space allow, perform a
static evaluation of the positions reached, and minimax with
these values in order to obtain a value for the starting
position. A static value is calculated only after a sequence
of moves and counter-moves has been tried. The value
obtained by minimaxing with static values obtained in this
way will hopefully be a better estimate of the value of the
initial position than would have been obtained by using the
static evaluation function alone. The minimax value of a
position is the static value of some position that can be
reached from the first position by a 'likely' sequence of
moves and counter-moves.

One way of limiting the extent of the lookahead would be
to impose some bound on the depth of the subtree that is to
be explored by the program.

This is illustrated in the next diagram for a
hypothetical game. The root of the subtree is a position at
which the program has to decide on a move. To do this we
have to obtain values for each of the three positions to
which moves are available. These values are obtained by
looking ahead to a further depth of 2 and minimaxing with
the static values of the positions reached. Thus the program
chooses a move by carrying a lookahead with an overall depth
of 3.

299

B
es

t m
ov

e
re

qu
ire

d
at

 th
is

 p
os

iti
on

: A
's

 tu
rn

V
al

ue
s

re
qu

ire
d

fo
r

co
m

pa
rin

g
th

es
e

po
si

tio
ns

A
1

A
5

A
7

A
3

A
3

A
2

A
−

2
A

−
1

A
3

−
2

1
0

3
5

2
7

−
2

8
1

−
2

3
1

2
−

2
−

2
−

1
−

1
−

5
3

0

R
es

t o
f t

re
e

no
t e

xp
lo

re
d

B
1

B
3

B
−

2

300

The structure of the procedure required to carry out a
minimax lookahead of the type just described will be
essentially the same as the structure of the procedures that
carried out an exhaustive minimax lookahead for 'Last One
Wins - or does he?'. We shall write two functions, FNminval
for obtaining the value of a position at which it is B's
turn and FNmaxval for a position at which it is A's turn.

In 'Last One Wins - or does he?', lookahead was
terminated when a terminal pasition of the game was reached.
In this case, lookahead will be terminated if a 'depth
bound' is reached (or earlier if a terminal position of the
game is reached). Each of our two minimax functions needs to
be given a depth parameter that can be used to test whether
or not to terminate the lookahead.

Before we define FNminval and FNmaxval, let us define a
modified version of PROCtryAmove that can be used by
FNbestmove.

2200 DEF PROCtryAmove
2210 LOCAL stones, v, capture, turn$
2220 stones = pit(p)
2230 PROCmakeAmove(p)
2240 IF turn$="B" THEN v=FNminval(1)

ELSE v=FNmaxval(1)
2250 IF v>maxsofarTHEN maxsofar=v : bestmove=p
2260 PROCmoveback(p, stones, capture, 0)
2270 ENDPROC

There are two points to note here. We have made use of the
fact that PROCmakeAmove sets 'turn$' to indicate whose turn
it is in the new position created. This information is used
to decide whether we use FNminval or FNmaxval to evaluate
the new position. The parameter, 1, given to FNminval or
FNmaxval indicates that the position to be evaluated is at
depth 1 from the position at which a move has to be made. We
shall assume in what follows that a variable 'maxdepth' has
been set to an appropriate value, say:

6 maxdepth = 2

FNminval and FNmaxval are defined as:

3000 DEF FNminval(depth)
3010 LOCALminsofar, p
3020 IF depth=maxdepth THEN=FNstaticval
3030 minsofar=100
3040 FOR p = 8 TO 13
3050 IF pit(p)>0 THEN PROCtestBmove
3060 NEXT p
3070 IF minsofar<100 THEN =minsofar ELSE =FNstaticval

301

3100 DEF PROCtestBmove
3110 LOCAL stones, v, capture, turn$
3120 stones = pit(p)
3130 PROCmakeBnove(p)
3140 IF turn$="A" THEN v=FNmaxval(depth+1)

ELSE v=FNminval(depth+1)
3150 IF v<minsofar THEN minsofar=v
3160 PROCmoveback(p,stones,capture,7)
3170 ENDPROC

3200 DEF FNmaxval(depth)
3210 LOCAL maxsofar, p
3220 IF depth=maxdepth THEN=FNstaticval
3230 maxsofar=100
3240 FOR p = 1 TO 6
3250 IF pit(p)>0 THENPROCtestAmove
3260 NEXT p
3270 IF maxsofar>-100 THEN =maxsofar ELSE =FNstaticval

3300 DEF PROCtestAmove
3310 LOCAL stones, v, capture, turn$
3320 stones = pit(p)
3330 PROCmakeAmove(p)
3340 IF turn$="B" THEN v=FNminval(depth+1)

ELSE v=FNmaxval(depth+1)
3350 IF v>maxsofar THEN maxsofar=v
3360 PROCmoveback(p,stones,capture,0)
3370 ENDPROC

Our two minimax evaluation functions, together with their
two subsidiary procedures PROCtestBmove and PROCtestAmove,
look rather more complicated than their counterparts for
'Last One Wins - or does he?'. However, you should be able
to see that they work in essentially the same way. An
activation of FNminval tests its depth and terminates it
'maxdepth' has been reached. If the maximum depth has not
been reached then FNminval tries each pit in turn and, if a
move is available from that pit, it is made (by
PROCtestBmove) and the resulting position is evaluated by
calling FNmaxval or FNminval recursively with the depth
parameter increased by 1 (line 3140). Each move that is
tried is always undone by PROCmoveback.

There is a possibility that FNminval will be called for a
position in which no moves are available. If this happens,
then all the pits will be examined (line 3050) with no moves
being tried and no recursion taking place. This possibility
is covered by the IF-statement at line 3070. If 'minsofar'
has not been set as a result of trying a move, this means
that no moves are available and the position must be
evaluated by FNstaticval.

FNmaxval and its subsidiary procedure PROCtestAmove are
identical in structure to FNminval and PROCtestBmove. You

302

will notice that PROCtestAmove is the same as PROCtryAmove
except that PROCtryAmove records 'bestmove' as well as
'maxsofar'. PROCtryAmove could have been used instead of
PROCtestAmove, but we have used two different procedures to
draw attention to the different contexts in which they are
used.

If you run this version of the program, you will find
that, with 'maxdepth' set to 3, it can take 30 seconds or
more to choose a move. With 'maxdepth' set to 4, it can take
five or six times as long. We will be looking at ways of
improving these times in the next section. However, even
with 'maxdepth' set as low as 2, the performance of the
program is considerably better than that of the version that
used only a one-level lookahead. It now tries not to leave
stones where they can be captured on the next me and it can
spot situations where gaining an extra turn gives it an
immediate capture move (for example, moving from pit 5 at
the start of the game).

Now that we have presented the structure of our minimax
lookahead procedures, it will be fairly easy to make various
improvements to these procedures. For example, the main test
as to whether the lookahead should terminate appears at the
head of FNminval and FNmaxval. This test can be easily
modified if we wish to alter the conditions for terminating
the lookahead. Stopping at a fixed depth and carrying out a
static evaluation is almost as arbitrary as stopping at
level one. A position at our maxinnam depth might be part of
a capture-recapture sequence along which the static values
fluctuate wildly. For this reason most game-playing programs
use a variable-depth lookahead. They attempt to terminate
the lookahead in 'stable' situations, even if this means
looking ahead further than the maximum depth along some
branches of the tree.

In our Kalah program, we might decide to terminate the
lookahead only if both the maximun depth has been reached
and the last move was not a capture. We can arrange this by
changing the test at the head of each of FNminval and
FNmaxval as:

3020 IF depth>=maxdepth AND capture<=0 THEN =FNstaticval

3220 IF depth>=maxdepth AND capture<=0 THEN =FNstaticval

Here, the structure of a typical lookahead tree for Kalah
using this more flexible stopping rule is compared with that
of a tree in which the lookahead stops at a fixed depth
bound.

303

Typical structure of tree explored with maxdepth = 2

Typical structure of search tree explored with maxdept = 2
and capture-recapture sequences being explored further

It might be necessary in some games to impose a second
maximum depth bound beyond which this exploration of
unstable sequences has to stop. We could do this by adding a
second stopping test at the head of our minimaxing
functions, for example:

3025 IF depth=2*maxdepth THEN =FNstaticval

3225 IF depth=2*maxdepth THEN =FNstaticval

Exercises
1 A game-playing program often allows the user to ask the

computer for help. Change the program so that the user
can ask it to recommend a move. To do this you will have
to extend the definition of PROCinputmove so that it uses
a new function, FNbestBmove.

2 Alter PROCplayerA so that it times the call of FNbestmove
and reports the exact time taken by the program to choose
its move. This alteration will be useful in the next
exercise, and later for comparing the effectiveness of

304

various tree-pruning technique.

3 In some applications, the speed of execution of part of a
program may be critical, for example in processing real-
time data or in animation. In such circumstances the
programmer may be justified in attempting to speed up
execution of the relevant sections of program by
shortening variable, function and procedure names, by
using '%' variables where possible, and even using GOTO
andGOSUB statements where appropriate. By using such
tricks, see if you can increase the speed at which the
program selects a move. Note that there is no point in
attempting to speed up procedures such as PROCplaygame,
PROCsetupboard, PROCdisplayboard, etc. Procedures that
are obeyed only once per game once per move are hardly
critical. Concentrate on FNminval, FNmaxval and any
functions and procedures used by them. Obtain some
timings for the fast program and compare these with the
timings for the original version. Are the time savings
worth the decrease in readability of the program?

Note that on the BBC computer, BASIC programs are
normally interpreted when we RUN them. In Chapter 10, we
discuss the difference between an interpreter and a
compiler. Perhaps we should state here that if our game-
playing program were being compiled before being run,
then changes like those described above would have little
or no effect on the execution time of the program.

9.5 Tree pruning

We have now described the overall approach that is used by
programs that play board games like Chess, Draughts and
Kalah. We shall devote the remainder of this chapter to
techniques for improving the structure of the lookahead tree
explored by such programs when choosing a move.

It is an fact of life that difficult games have very
'bushy' game trees. For example, Chess has an average of
about 30 moves available in each position. Each time we go
down one level in the Chess tree we find that there are 30
times as many positions as there were at the previous level.
We say that the 'branching factor' of the Chess tree is 30.

If a Chess program looks two moves ahead it could examine
1+30+900 positions in the process. An 'obvious' way of
improving the quality of the program's play is to make it
look further ahead when deciding on its move. If the program
were to look 4 moves ahead, it could exantine
1+30+900+27000+810000 positions which would take nearly 900
times as long.

In our Kalah playing program, looking 3 moves ahead can
take half a minute or more. As the program stands,
increasing 'maxdepth' would make it unusable.

Increasing the depth of a program's lookahead would be

305

quite impossible without the help of 'tree-pruning'
techniques. These allow the program to ignore certain
branches of its lookahead tree and use the time saved to
explore other branches more deeply.

Alpha beta pruning - an intoduction
No game-playing program can afford not to use the technique
known as 'alpha-beta pruning'.

Some of the pruning methods that we mention later involve
a risk that the program will ignore a move that is
superficially bad but which would have turned to be the best
move available. For example, moves in Chess that that
sacrifice material in exchange for a superior position can
be missed as a result of over enthusiastic tree pruning.

There is no such risk associated with alpha-beta pruning.
Exactly the same move will be chosen by the program whether
or not the technique is used. If it is used, it can result
in spectacular reductions in the number of positions
examined during a lookahead.

We introduce alpha-beta pruning by considering two very
simple examples of its use. In the next diagram, we
illustrate a depth 2 lookahead from the Kalah position at
the root of the subtree. For convenience we shall refer to
the 4 positions at depth 1 as positions P, Q, R and S. We
assume that a program is conducting a minimax search from
left to right as we have drawn the tree.

Position P is considered first. After the program has
considered all the moves available in position P, the value
of 'minsofar' is known to be +2 and this value is returned
to the level above as the final value for wsition P. At this
stage 'maxsofar' at the root of the tree is +2.

The program now examines position Q. The first move
considered in position Q leads to a position with a static
value of 0 and, when this position has been examined,
'minsofar' for position Q is 0. The 'minsofar' value at
position Q can only get smaller and we can see at this stage
that, even if we consider all the other moves available in
position Q, the final value of position Q must be less than
or equal to 0 which is in turn less than the value of
'maxsofar' at the root of the tree. Whatever the final value
of position Q, it cannot possibly be greater than the
current value of 'maxsofar' at the root. The value obtained
for position Q can therefore have no effect on the value
obtained for the position at the root or on the move chosen
at the root. It would thus be a waste of time considering
the other moves that are available in position Q. This is an
example of an 'alpha cut-off'. (We shall see where the term
'alpha' comes from in a moment.)

A similar thing happens in positions R and S. As soon as
the value of 'minsofar' becomes less than or equal to the
value of 'maxsofar' at the position inntediately above, an
alpha cut-off takes place and the program can stop trying
moves at the current position.

306

−
2

+
6

4
30

10
22

13
24

00

A
's

 tu
rn

m
ax

so
fa

r
=

 +
2

B
's

 tu
rn

m
in

so
fa

r
=

 +
2

B
's

 tu
rn

m
in

so
fa

r
=

 0
B

's
 tu

rn
m

in
so

fa
r

=
 +

2
B

's
 tu

rn
m

in
so

fa
r

=
 −

4

9
6

30
10

00
10

31
00

9
2

30
10

30
04

20
00

9
6

30
10

00
13

01
00

4
2

30
21

02
04

24
00

8
3

30
00

22
00

24
00

8
5

30
00

02
10

05
00

5
2

00
10

22
05

34
00

9
2

30
10

30
13

20
00

4
2

30
21

02
13

24
00

8
2

30
00

22
10

24
00

5
2

00
10

22
24

24
00

+
8

+
2

+
2

0
+

6
+

2
−

4

R
S

P
Q

A
lp

ha
cu

t-
of

f
A

lp
ha

cu
t-

of
f

A
lp

ha
cu

t-
of

f

307

In order to see a simple example of a 'beta cut-off', we
have to examine a lookahead of depth 3 or more. The diagram
on the next page illustrates part of a fixed depth lookahead
tree with 'maxdepth' set to 3.

During its attempt to obtain a value for position T (at
which it is player B's turn) the program explores the
subtree shown. Position U has a value of +4 and this
beccunes the value of 'minsofar' at position T. Position V
is then examined and the first move available at position V
leads to a value of +6. Position V now has a 'maxsofar' of
+6 and considering other values at position V can only cause
this value to get bigger. The final value obtained for
position V cannot affect the value of 'minsofar' at position
T above. A beta cut-off takes place and no other moves at
position V need be tried. A similar cut-off takes place at
position W.

Alpha-beta pruning in its complete form is rather more
general than has been indicated here. Before we complicate
matters by giving a full description, it will be useful to
implement the method as it has been described so far.

We start by considering the so-called alpha cut-off that
ocurred at position Q in the last but one diagram. This is a
position at which it is B's turn to play and it is evaluated
by FNminval. The main loop in this function tries each
possible move in turn:

3040 FOR p = 8 TO 13
3050 IF pit(p)>0 THEN PROCtestBmove
3060 NEXT p

We now have to cater for the possibility that this loop has
to terminate prematurely (because of an alpha cut-off) and
it must therefore be replaced by a REPEAT loop. (No GOTOs
jumping out of FOR-loops please!) The loop terminates either
because all possible moves have been tried or because
'minsofar' has become less than or equal to the current
maxsofar' value of a node above. This 'maxsofar' value must
be passed into FNminval as a parameter. Because this value
comes £rem a position at which it is A's turn, it has
traditionally been called an 'alpha value' (hence the term
alpha cut-off'). FNminval has to be modified as follows:

3000 DEF FNtminval(depth, alpha)
3010 LOCAL minsofar, p
3020 IF depth=maxdepth THEN =FNstaticval
3030 minsofar=l00
3040 p = 7
3050 REPEAT
3060 p = p+1
3070 IF pit(p)>0 THEN PROCtestBmove
3080 UNTIL p=13 OR minsofar<=alpha
3090 IF minsofar<100 THEN minsofar ELSE =FNstaticval

308

30
10

22
41

14
00

3
3

A
's

 tu
rn

O
th

er
 m

ov
es

 s
til

l
to

 b
e

tr
ie

d

30
10

30
41

10
00

8
3

T
B

's
 tu

rn
m

in
so

fa
r

=
 +

4

be
ta

cu
t-

of
f

be
ta

cu
t-

of
f

+
4

−
4

+
6

+
8

00
10

00
13

21
00

9
7

30
00

00
00

21
00

11
7

30
21

00
40

20
00

9
3

30
21

00
40

00
00

10
4

30
10

00
02

21
00

8
7

30
10

30
40

20
00

8
3

30
10

30
41

00
00

8
4

U
V

W
A

's
 tu

rn
m

ax
so

fa
r

=
 +

6
A

's
 tu

rn
m

ax
so

fa
r

=
 +

4
A

's
 tu

rn
m

ax
so

fa
r

=
 +

8

309

The variable-depth alteration could of course be included at
line 3020.

A similar alteration can be made, to FNmaxval to allow
for the possibility of a beta cut-off, where beta is the
'minsofar' value of a position above at which it is B's
turn.

3200 DEF FNmaxval(depth, beta)
3210 LOCAL maxsofar, p
3220 IF depth=maxdepth THEN =FNstaticval
3230 maxsofar=100
3240 p=0
3250 REPEAT
3260 p = p+1
3270 IF pit(p)>0 THEN PROCtestAmove
3280 UNTIL p=6 OR maxsofar>=beta
3290 IF maxsofar>-100 THEN =maxsofar ELSE =FNstaticval

We must now modify the procedures that call FNminval and
FNmaxval and ensure that an appropriate alpha or beta value
is always supplied as a parameter. A slight complication
occurs in the situation where the program tries a move that
entitles the player whose turn it is to another turn.
Pruning can take place only as a result of comparing a
'minsofar' value with a 'maxsofar' value or vice versa. We
must take care not to supply a 'minsofar' value to a call of
FNminval or a 'maxsofar' value to a call of of FNmaxval.
PROCtryAmove tries a move at the root of the subtree being
explored and when it has made a trial move it needs to call
FNminval or Flimaxval as follows:

2240 IF turn$="B" THEN v=FNminval(1,maxsofar)
ELSE v=FNmaxval(1,100)

The beta value of 100 given to FNmaxval simply indicates
that there is no 'minsofar' value above the position to be
evaluated. No pruning can take place at a position to be
evaluated by FNmaxval in this context. A situation in which
this occurs is illustrated on the next page.

The fourth move tried at the start position of the
lookahead tree is one that entitles player A to another
turn. The position marked 'X' therefore has a 'maxsofar'
value associated with it. At the stage reached in the
lookahead, this 'maxsofar' value is equal to the 'maxsofar'
value at the root of the tree, but this does not cause
pruning to take place. The 'maxsofar' value at position X
may easily increase as a result of trying other moves at
position X and any increase in this value will eventually
cause a change in the 'maxsofar' value at the root of the
tree.

310

X

N
o

cu
t-

of
f.

O
th

er
m

ov
es

 M
U

S
T

 b
e

tr
ie

d

11
02

00
20

01
00

10
7

12
10

01
20

01
10

8
7

20
02

01
20

11
0

8
7

01
02

01
20

01
10

9
7

11
02

00
01

01
00

10
8

11
02

00
20

00
00

10
8

12
00

01
01

01
10

8
9

20
02

01
01

01
10

8
8

01
02

00
20

01
00

11
7

+
4

+
4

0
+

2
+

4

B
's

 tu
rn

m
in

so
fa

r
=

 +
4

B
's

 tu
rn

m
in

so
fa

r
=

 0
B

's
 tu

rn
m

in
so

fa
r

=
 +

2
A

's
 tu

rn
m

ax
so

fa
r

=
 +

4

11
02

01
20

01
10

8
7

A
's

 tu
rn

m
ax

so
fa

r
=

 +
4

311

The two subsidiary procodures, PROCtestBmove and
PROCtestAmove, that are used by FNminval and FNmaxval, also
need to be changed. In PROCtestBmove we require

3140 IF turn$="A" THEN v=FNmaxval(depth+1, minsofar)
ELSE v=FNminval(depth+1, alpha)

If a move at a B-position results in player B having another
turn, the current alpha value can simply be passed on to the
new position.

Similarly, in PROCtestAmove we require

3340 IF turn$="B" THEN v=FNminval(depth+1, maxsofar)
ELSE v=FNmaxval(depth+1, beta)

Full scale alpha-beta pruning
As we have already remarked, alpha-beta pruning is rather
more general than was indicated in the last section. Cut-
offs can in fact take place as result of comparing
'minsofar' and 'maxsofar' values that are a long way apart
in the lookahead tree. For example, part of a 4-leve1
lookahead tree is illustrated:

A's turn
maxsofar = +2

Value of +2 obtained
by looking ahead from
this position.

B's turn
minsofar = +2

A's turn
maxsofar = +2

Alpha
cut-off

X Y

+1 +3 +2

B's turn
minsofar = +1

B's turn
minsofar = +2

Alpha
cut-off

Alpha
cut-off

312

We assume that the left-hand branch of this tree has
already been explored and that, as a rossult, the position
at the top of the tree has a 'maxsofar' value of +2. If the
program now explores the right-hand branch of the tree, it
will encounter position X. The first move tried at position
X gives X a 'minsofar' value of +1. We do not yet have a
'maxsofar' value for the position immediately above X, but
the position at the root of the tree, three moves above X,
does have a 'maxsofar' value of +2. Because the 'minsofar'
value at X can only decrease, the final value of X cannot
possibly affect the 'maxsofar' value (or the move chosen) at
the root of the tree. The 'maxsofar' value from a position
three moves above X can be used as an alpha value for
pruning at position X.

In general, the alpha value for a position is defined as
the maximum of all the 'maxsofar' values above that position
in the lookahead tree. Similarly, the beta value of a
position is the minimum of all the 'minsofar' values above
that position.

To implement full scale alpha-beta pruning, each of our
minimax functions must now have both an alpha and a beta
parameter. For example, FNminval needs an alpha value so
that it can test for alpha cut-offs. It also needs a beta
value that can be compared with its own 'minsofar' value
before an up-to-date beta value is passed on down the tree.
FNmaxval needs both parameters for similar reasons.

The final versions of the relevant functions and
procedures are:

2200 DEF PROCtryAmove
2210 LOCAL stones, v, capture, turn$
2220 stones = pit(p)
2230 PROCmakeAmove(p)
2240 IF turn$="B" THEN v=FNminval(1, maxsofar, 100)

ELSE v=FNmaxval(1, maxsofar, 100)
2250 IF v>maxsofar THEN maxsofar=v : bestmove=p
2260 PROCmoveback(p, stones, capture, 0)
2270 ENDPROC
3000 DEF FNminval(depth, alpha, beta)

.. as before.
3100 DEF PROCtestBmove
3110 LOCAL stones, v, capture, turn$
3120 stones= pit(p)
3130 PROCmakeBmove(p)
3140 IF turn$="A" THENv=FNmaxval(depth+1, alpha, beta)

ELSE v=FNminval(depth+1, alpha, beta)
3150 IF v<minsofar THEN minsofar=v
3155 IF minsofar<beta THENbeta=minsofar
3160 PROCmoveback(p, stones,capture,7)
3170 ENDPROC

313

3200 DEF FNmaxval(depth, alpha, beta)
.. as before.

3300 DEF PROCtestAmove
3310 LOCAL stones, v, capture, turn$
3320 stones = pit(p)
3330 PROCmakeAmove(p)
3340 IF turn$="B" THEN v=FNminval(depth+1,alpha,beta)

ELSE v=FNmaxval(depth+1,alpha,beta)
3350 IF v>maxsofar THEN maxsofar=v
3355 IF maxsofar>alpha THEN alpha=maxsofar
3360 PROCmoveback(p,stones,capture,0)
3370 ENDPROC

Exercises
1 Use the timing version of PROCplayerA, suggested earlier,

to test the effectiveness of the alpha-beta pruning
techniques that have been described.

2 Alter the minimaxing functions defined for 'Last One Wins
- or does he?' so that they use alpha-beta pruning.
Arrange for the number of positions exaniined during a
minimax search to be counted by the program. To do this,
remember that each position is examined by a call of
FNminval or FNmaxval. We therefore need the statement

count = count+1

at the start of each function. 'count' (not a LOCAL
variable) is set to zero before the start of the search.
Compare the number of positions examined by the program
during a minimax search from various starting positions

(a) without alpha-beta pruning,

(b) with alpha-beta pruning,

(c) with alpha-beta pruning, but with moves being
considered in the reverse order, ie. in the order
3,2,1, at each position.

Increasing the effectiveness of alpha-beta pruning
The effectiveness of alpha-beta pruning is highly dependent
on the order in which moves are considered in each position
in the lookahead. For example, if we use alpha-beta pruning
in exploring the 'Last One Wins - or does he?' tree, the
amount of pruning that takes place is considerably greater
if we reverse the order in which the program considers the
moves available.

314

If we look back at the diagram used to introduce alpha- beta
pruning, we can see that pruning took place at position Q
because the program had already tried a much better wve to
position P. If position P had had a much lower value, then
'maxsofar' at the root of the tree would have been lower and
no pruning could have taken place at Q. Alpha- pruning can
be further enhanced by looking first at a good move for
player B in the position at which pruning is going to take
place. For example, pruning would have taken place earlier
at position R if the second move had been considered first.

In the next diagram, pruning took place at position V
because the best move for player Bat position T had already
been tried. (Remember that high values are good for A, low
values are good for B.) Thus pruning can take place only if
a good move has already been tried at a position higher up
the tree.

When fully effective, alpha-beta pruning reduces the
branching factor of the lookahead tree explored to about the
square root of its original value. For example, the number
of positions in a Chess lookahead tree of depth 4 could, in
theory, be reduced from over 800 000 to under 2000.

The only way that such spectacular pruning could be
achieved would be if, at each position in the lookahead
tree, the first move tried by the program were in fact the
move that turned out to be best for the player whose turn it
was at that position. Unfortunately, this information is not
available until after the lookahead has been carried out!

Because of the large potential savings from alpha-beta
pruning, it is important that, when evaluating a position,
some attempt should be made to order the moves from the
point of view of the player whose turn it is in that
position. Any extra work involved in doing this will
hopefully be offset by extra pruning.

One possibility would be to decide that capture moves
tend to be good moves for the player whose turn it is. We
could replace the single loop in each of FNbestmove,
FNminval and FNmaxval, by two consecutive loops. In the
first loop the program would try only the capture moves, and
in the second it would try the other moves. This involves
extra work in recognising the capture moves, but the extra
work could be more than justified by enhanced alpha-beta
pruning.

Many game playing programs order the moves in a position
by carrying out a preliminary lookahead from each position
encountered in the main lookahead tree. This preliminary
lookahead might typically be of depth one or two. The moves
available at a position are ordered on the basis of this
preliminary lookahead and this ordering is used in
considering moves for the main lookahead. It would be
sensible if the work done generating new board positions
during a preliminary lookahead was not repeated in the main

315

lookahead. To avoid this, it would be necessary to copy and
store all the positions generated during a preliminary
lookahead so that they could be examined later in the main
lookahead.

The process of ordering moves at each position before
continuing with a lookahead is often referred to as
'plausibility analysis'. The program attempts, usually on
fairly superficial evidence, to decide which of the moves
appear most plausible.

Other tree pruning techniques
In a game like chess with an average branching factor of 30,
even with effective alpha-beta pruning, exploring a
lookahead tree of any reasonable depth is impossible without
further pruning. In the last section, we introduced the idea
of a plausibility analysis for ordering the moves in a
position before continuing the lookahead. This was done with
the aim of increasing the amount of alpha-beta pruning that
takes place.

Once a plausibility analysis has been done at a position,
the results of the analysis can be used to implement further
pruning. The program could be made to examine only the 'n'
most plausible moves when continuing the main lookahead from
that position. The value chosen for 'a' will determine how
drastic the pruning is. One possibility is to give 'n' a
fixed value at the start of the program. A more common
arrangement is for the value of 'a' to decrease as the depth
of the lookahead increases.

A plausibility analysis is usually fairly superficial. It
must be stressed that pruning on the basis of such
superficial evidence carries the risk that the program will
eliminate a move from consideration when in fact a more
detailed analysis would have shown that move to be a good
me.

There is no such risk attached to alpha-beta pruning. The
result of a lookahead with alpha-beta pruning will be
exactly the same as if alpha-beta pruning had not been used.

Exercises

1 It was suggested earlier that improved alpha-beta pruning
might be obtained if capture moves were considered first
at each position in the lookahead. A capture can be
recognised by making the move and examining the value of
the variable 'capture', but this involves moving the
pieces back if that move is not to be explored
immediately. You could alternatively try to define an
arithmetic test for recognising a capture move without
actually making it. Implement and evaluate this
modification. Two factors will be of interest: the number
of positions examined in deciding on a move and the time
taken to decide on a move. It will be interesting to see
if fewer positions are examined than with the previous

316

version of the program. However, this increased pruning
will be of only theoretical interest if the time saved by
increased pruning does not compensate for the extra time
taken to recognise capture moves.

2 If you succeeded earlier in defining an improved static
evaluation function, then incorporate this in the final
program. (If the function is too complicated, you may
find that the program is slowed down by an unacceptable
amount.)

3 Alter the program so that it keeps a complete record of
the moves made during the course of a game and gives the
user the option of seeing the game played through again
after it is over. You will need to number the moves and
use two parallel arrays to record whose turn it was at
each move alongside the number of the pit from which the
move was made.

317

