Appendix 1 Summary of mode and

colour facilities

Text facilities available in different nodes
node colours available characters per line i nes
0 2 80 32
1 4 40 32
2 16 20 32
3 2 80 25
4 2 40 32
5 4 20 32
6 2 40 25
7 Tel et ext 40 25
di spl ay

Graphics facilities available in different nodes

node

GOANRFO

col ours avail abl e graphics resol ution

2
4
16
2
4

640
320
160
320
160

X
X
X
X
X

256
256
256
256
256

351

Note that there no graphics facilities in nodes 3, 6 and 7.

Menmory requirements for different nodes

node

~NOoOOA~WNEO

menory requirenents

20K
20K
20K
16K
10K
10K

8K

1K

352
Overal | col our range

There are sixteen actual colours available (on the Mdel A
or B). These colours are nunbered fromO to 15

Actual col our nunbers and correspondi ng col ours

col our nunber col our nane

bl ack

red

green

yel | ow

bl ue

magent a

cyan

white

flashing bl ack-white
flashing red-eyan

| ashi ng green-magenta
| ashi ng yel | ow bl ue

| ashi ng bl ue-yel | ow

| ashi ng magent a- gr een
| ashi ng cyan-red

| ashi ng white-bl ack

I Y e
ORWNROOONOUIRAWNRO

f
f
f
f
f
f

Col our codes in different nodes

In each node colours are referred to by code nunbers fromO
upwards (using COLOUR for text colour and GCOL for graphics
col our). The background colour is set by adding 128 to the
requi red code nunber. The code nunbers for a node can be
made to refer to any conbinati on of actual colours (using
VDU 19). There is an initial or default setting for each
nmode whi ch specifies the colour that you get if you do not
use VDU 19.

2 col our nodes (MODES 0, 3,4, 6)

col our code nunbers default actual col ours
f or egr ound backgr ound col our nunber
0 128 bl ack 0

1 129 white 7

353
4 colour node (MODES 1 and 5)

col our code nunbers default actual col ours
f or egr ound backgr ound col our nunber
0 128 bl ack 0
1 129 red 1
2 130 yel | ow 3
3 131 white 7

In the 16 col our node (MODE 2) the col our codes are
initially set to the correspondi ng actual col our nunbers.

354
Appendix 2 Bits, bytes and hex

For the nmajority of straightforward progranuni ng
applications, the user of the BBC micro need not concern
hinself with the details of how things |ike nunbers and
strings are represented inside his conputer, but for sone
advanced applications a nore detail ed know edge of the
internal representation of information is required.

Bits
Al'l information stored in a nodern digital conputer is held
in the formof 'binary digits'. In this context, the word
"binary' neans 'having two possible values', and a binary
digit can thus be set to one of two possible values. W
usual |y abbreviate the termbinary digit to "bit".

Wien we wite a bit on paper, we represent its two
possi ble values as 0 or 1. Inside a conputer, a bit mght be
represented by a magnetic field Iying in one of two possible
directions, or by an electronic voltage that can be positive
or negative. The programmer, however, need not concern
hinself with the practicalities of representing a bit
electronically or magnetically. Wen he needs to think in
terns of the binary representation of information, he can
think entirely in terns of ones and zeros.

Wth one bit, we can represent only two possibl e val ues,
0 or , and in fact scane of the information in our BBC
computer is coded using only one bit. For exanple, in MODE
4, one bit is used to code the colour of each pixel on the
screen. Each pixel can be one of two colours, colour 0 or
col our 1.

Bit patterns

Bits are usually organised into groups or 'patterns'. Wth a
group of two bits, each bit can one of two val ues giving 2x2
possi ble different patterns.

first bit second bit bit pattern
0 0 00
0 1 01
1 0 10
1 1 11

A two-bit pattern is used to code the col our of each pixel
an the screen in a four col our nbde such as MODE 5.

Wth three bits, there are 2x2x2 possible different
patterns and so on

355

no. of bits in no. of possible
pattern exanpl e differnt patters
1 0 2
2 10 4 = 2x2
3 011 8 = 2X2x2
4 1010 16 = 2X2x2x2
5 10100 32 = 2X2X2X2X2
6 011010 64 = 2X2X2X2X2X2
7 1101001 128 = 2X2X2X2X2X2X2
8 11000101 256 = 2X2X2X2X2X2X2X2

Bit nunbering

The bits in a bit pattern are usually referred to by
nunbering thenm from zero upwards fromright to left, bitO,
bitl, bit2 and so on

101101
bit5 bit4 bit3 bit2 bitl bit0

Byt es

A group of 8 bits is called a "byte'. One "word on your BBC
mcro contains one byte or one 8-bit pattern. The entire
store that is accessible to the user consists of 16, 384
words or bytes on a Mddel A and 32,768 words or bytes on a
Model B. W usually quote storage capacity in 'K where

1K = 1024 (1024 = 210)

Because we are working on a binary system everything is
organi sed behind the scenes in powers of 2. Thus we say that
a Model A has 16K bytes of store, i.e. 16*1024 bytes or
16*1024*8 bits.

8-bit integers

When we use a group of decimal digits to represent a non-
negative integer, each digit has a weight that is a
different power of 10. For exanple, with 5-digits:

7 3 9 2 4

weight 10000 1000 100 10 1

356

When we use a bit-pattern to represent a non-negative
integer, only two values are available for each digit, so we
give each digit a weight that is a power of 2. For exanple,
with a 6-bit pattern we m ght have

weight 2¥QRQXQXD Q¥DFDD 2%2%2 2*2 2 1
=32 =16 =8 =4

W use a full byte to represent an integer in this way, we
have:

bi nary deci na
00000000 = 0
00000001 = 1
00000010 = 2
00000011 = 3
01111110 = 126
01111111 = 127
10000000 = 128
11111110 = 254
11111111 = 255

W saw earlier that there are 256 different B-bit patterns
and they can be used in this way to represent integers in
the range 0 to 255. Because it contributes | east weight to
an integer, the rightnost bit, bitO, is usually called the
| east significant bit and the leftnost bit is called the
nmost significant.

8-bit positive and negative integers

If we want to use bytes to represent both positive and
negative integers, we have to define a different
correspondence between the available bit-patterns and the
val ues they represent. The representation nornally used is
kown as '2s conplenent' representation. A detailed
description of this is beyond the scope of this book, but
the next table shows how a byte woul d be used to represent
negative as well as positive integers. The bit-patterns that
were previously used to represent positive integers from 128

357

up to 255 are now usod in the same order as before to
represent the negative integers from-128 up to -1. In
particular, -1 is represented by a bit-pattern that consists
entirely of ones. This representation for negative nunbers
may seemrather strange, but it has nany advantages when the
conmputer is doing calculations that involve positive and
negati ve nunbers.

bi nary deci mal
10000000 = -128
10000001 = -127
10000010 = -126
11111110 = -2
11111111 = -1
00000000 = 0
00000001 = 1
00000010 = 2
01111110 = 126
01111111 = 127

Note that you cannot tell by |ooking at a bit-pattern
what sort of information it is being used to represent. This
is determned by the context in which it is used and by the
way it is processed by the circuits of the conputer. For
exanpl e, the same bit pattern m ght be used in different
contexts to represent an integer or a character code.

Hexadeci mal notati on

When we are working with bit-patterns, it becones very

tedi ous having to wite | ong sequences of ones and zeros
when we want to specify a particular bit-pattern. We could
abbreviate a byte by witing it as the equival ent positive
deci mal nunber, such as 179, but it is not at all obvious if
we wite 179 that we are tal king about the bit-pattern
10110011. When we want to abbreviate a bit-pattern in a way
that is not too far renmoved fromits binary form it is
usual to wite it in 'hexadecimal' notation (or hex for
short). The bit-pattern is first divided i nto groups of four
bits. There are 16 possible different patterns of four bits
and each of these possible patterns can be represented by a
single 'hexadecimal digit' as foll ows:

358

4-bit hexadeci mal 4-bit hexadeci mal
pattern digit pattern digit
0000 0 1000 8
0001 1 1001 9
0010 2 1010 A
0011 3 1011 B
0100 4 1100 C
0101 5 1101 D
0110 6 1110 E
0111 7 1111 F

We can thus wite the bit-pattern 10100011 in hex as A3:

10100011
—
A 3

In BBC BASIC, we can wite nunbers in a programin hex if we
precede the nunber by the synbol '& . Thus we wite &B3.
Here are sone ot her exanples of bytes and the corresponding
hex and deci mal nunbers:

byt e hex deci mal
00011111 &1F 31
00101110 &2E 46
01101001 &69 105
11111111 &FF 255

Note that &9 is quite different fromdecimal 69 which would
be represented by the bit-pattern:

01000101 = &85

Because one hexadecimal digit corresponds to four binary
digits, it is easy to visualize the bit-pattern
correspondi ng to a hexadeci mal nunber (provided that we are
famliar with the sixteen patterns that correspond to the
si xteen hex digits). Thus, for exanple, &B7 is easily
visual i zed as:

11010111

and &A is easily visualized as:
&FA
PN
— P
11111010

359
32-bit nunbers

A numeric variable in BASIC occupi es four conputer words

whi ch contain four bytes or 32 bits. A nunber stored in such
a variable is coded as a pattern of 32 bits. The way in
which a 32-bit pattern is used to represent positive and
negative integers is a sinple extension of the 8-bit 2s
compl enent representation introduced earlier. Note in
particular that -1 is represented by a pattern of 32 ones.
Details of how real nunbers are coded as bit-patterns are
beyond t he scope of this book.

Logi cal operations on bit-patterns

The various |ogical plotting nodes selected by GCOL (Chapter
2) use logical operations on bit-patterns when plotting new
i nfformation on the screen. For this reason al one, sone

know edge of these operations is necessary. The | ogical
operators AND, OR, EOR and NOT treat the values to which
they are applied as bit-patterns and operate on the

i ndi vidual bits of those patterns. A detailed know edge of
how t hese operations work is occasionally useful in advanced
program ng applications.

When a logical operation is applied to a bit-pattern or
to a pair of bit-patterns, the individual bits are handl ed
separately in creating the resultant bit-pattern. AND, OR
and EOR are each applied to a pair of bit-patterns of the
sanme length and the result is another bit-pattern of the
sanme length. NUT is applied to a single bit-pattern and the
result is another bit-pattern of the sanme length. W shal
illustrate the behaviour of the |ogical operations on bytes,
but they will behave in exactly the sane way on shorter or
| onger bit-patterns.

AND

Each bit in the new pattern is the result of 'anding' the
two bits in the sane position in the two given bit-
patterns according to the follow ng table:

bitl bit2 bitl AND bit2
0 0 0
0 1 0
1 0 0
1 1 1

Thus, for exanpl e:

byt el 10110100
byt e2 01100101

bytel AND byte2 00100100

360

oR
Each bit in the new pattern is the result of 'oring' the
two bits in the sane position in the given bit-patterns
according to the followi ng table:
bitl bit2 bitl OR bit2
0 0 0
0 1 1
1 0 1
1 1 1
Thus, for exanple:
byt el 10110100
byt e2 01100101

bytel OR byte2 11110101

EOR

Each bit in the new pattern is the result of 'exclusive
oring' the two bits in the sane position in the given
bit-patterns according to the followi ng table:

bitl bit2 bitl ECR bit2
0 0 0
0 1 1
1 0 1
1 1 0

The nane of the operator derives fromthe fact that it
"excl udes' the case where both bits to which it is
applied are 1. Thus, for exanple:

byt el 10110100
byt e2 01100101

byt el EOR byte2 11010001

NOT

Each bit in the new bit-pattern is the result of
‘negating' the same bit in the given bit-pattern. NOT
produces the 'logical inverse' of the given bit-pattern
by changing Gs to 1s and 1s to GCs.

361
bit NOT bit
0 1
1 0
Thus, for exanpl e:
byt e 10110100
NOT byte 01001011
Representati on of TRUE and FALSE
In BBC BASIC, the value TRUE is represented by a bit-pattern
cont ai ni ng not hi ng but ones and FALSE is represented by a
bit-pattern containing nothing but zeros. Wen these val ues

are stored in nunmeric variables, they look Iike the nuneric
val ues -1 and 0.

362

Appendix 3 Characters, ASCII codes,
control codes and Teletext
codes

ASCl | codes

A character is stored inside the conputer as an integer that
zccupies 8 bits or one byte. There is an internationally
agreed standard set of codes for the commonly used
characters. These are the ASCI| codes (Anerican Standard
Code for Information Interchange). The next table contains a
list of the commpn visible characters together with their
ASClI | codes in decimal and hex.

ASCI| characters and their codes

deci mal hex char deci nal hex deci mal hex

code code code code char code code char
32 &20 64 &40 @ 96 &80 £
33 &21 ! 65 841 A 97 &61 a
34 &22 " 66 842 B 98 &62 b
35 &23 # 67 843 C 99 &63 c
36 &24 $ 68 &44 D 100 864 d
37 &25 % 69 &45 E 101 &85 e
38 &26 & 70 846 F 102 &66 f
39 &27 ' 71 847 6 103 &67 g
40 &28 (72 848 H 104 868 h
41 &29) 73 849 | 105 &69 i
42 &2A * 74 &4A J 106 &6A]
43 &2B + 75 &4B K 107 &6B k
44 &2C , 76 &4C L 108 &6C I
45 &2D - 77 &4D M 109 &BD m
46 &2E . 78 &4E N 110 &6E a
47 &2F / 79 84F 0 111 &8F a
48 &30 0 80 &50 P 112 &70 p
49 &31 1 81 &51 Q 113 &71 q
50 &32 2 82 &52 R 114 &72 r
51 &33 3 83 &53 8 115 &73 a
52 &34 4 84 &54 T 116 &74 t
53 &35 5 85 &55 U 117 &75 u
54 &36 6 86 &56 \Y 118 &76 Y
55 &37 7 87 &57 W 119 &77 w
56 &38 8 88 &58 X 120 &78 X
57 &39 9 89 &59 Y 121 &79 y
58 &3A : 90 &5A V4 122 &?A z
59 &3B ; 91 &5B [123 &7B {
60 &3C < 92 &5C \ 124 &7C :
61 &3D = 93 &5D] 125 &7D]
62 &3E > 94 &5E * 126 &7E ~
63 &3F ? 95 &5F

363
Control codes

A nurmber of the 256 avail abl e character codes are reserved
for special purposes on the BBC conputer. Sending one of
these codes to the display hardware by using a PRINT or a
VDU statenent has a special effect. These codes are usually
referred to as 'VDU drivers'. Note that sonme of the codes
must al ways be followed by a fixed nunber of additional
codes or 'paraneters'. If these are omtted, the next few
characters printed will be taken as the m ssing paraneters.

Sumary of VDU codes

deci nmal hex paraneters ef fect
0 0 0 Does not hi ng
1 1 1 Send a character to printer only
2 2 0 Switch on printer output
3 3 0 Switch off printer output
4 4 0 Separate text and graphics cursors
5 5 0 Join text and graphi escursors
6 6 0 Enabl evntidrivers
7 7 0 Beep
8 8 0 Move cursor backonespace
9 9 0 Move cursor forwardonespace
10 &A 0 Move cursor down one |ine
11 &B 0 Move cursor up one line
12 &C 0 CLS (clear text screen)
13 &D 0 Move cursor to start of current line
14 &E 0 Page node on
15 &F 0 Page node of f
16 &10 0 CLG (cl ear graphics screen)
17 &11 1 COLOUR ¢
18 &12 2 GcaL |, ¢
19 &13 5 New actual col our for col our nunber
20 &14 0 Restore default actual col ours
21 &15 0 Di sabl e VDU drivers
22 &16 1 MODE m
23 &17 9 Create user-defined character shape
24 &18 8 Defi ne graphics w ndow
25 &19 5 PLOT k, X,y (2 bytes for x, 2 for y)
26 &1A 0 Restore default w ndows
27 &1B 0 Does not hi ng
28 &1C 4 Define text w ndow
29 &1D 4 Define graphics origin
30 &1E 0 Hove text cursor to top left
31 &1F 2 WNE x,y
127 &7F 0 Backspace and del ete

These codes can al so be sent frcan the keyboard by typing a
CONTROL character - hold down the CTRL key and type the
character. For exanple, codes 1 to 26 correpond to CONTROL-
A to CONTROL- Z.

Tel etext control codes

In Tel etext node (MODE 7), a nunber of special effects can
by switched on and off by displaying special control codes.
Remenber that one of these control codes appears as a space

364

on the screen and that its effect lasts only tor the current
screen |ine

Tel etext control codes for MODE 7

code controls ef fect

129 col our text characters in red

130 col our text characters in green

131 col our text characters in yellow

132 col our text characters in blue

133 col our text characters in magenta

134 col our text characters in cyan

135 col our text characters in white

136 flash set flashing on current line
137 flash clear flashing on current line
140 char. ht. singl e height characters

141 char. ht. doubl e hei ght characters

145 gr aphi cs graphi cs characters in red

146 gr aphi cs graphi cs characters in green
147 gr aphi cs graphi cs characters in yell ow
148 gr aphi cs graphi cs characters in blue
149 gr aphi cs graphi cs characters in nagenta
150 gr aphi cs graphi cs characters in cyan
151 gr aphi cs graphi cs characters in white
152 speci al supress di splay (hide)

153 speci al normal graphics (not separated)
154 speci al separ at ed graphics

156 col our reset background col our to black
157 col our background col our = current foreground

Tel et ext graphics characters

The Tel etext (MODE 7) graphics characters consist of 2x3
patterns of foreground and background col our. There are two
nureri ¢ codes for each of the graphics character shapes.
After a line of text has been switched to graphics node by
one of the graphics codes in the previous table, the ASClI
characters with codes 32 to 63 and 95 to 126 are displ ayed
as graphics characters. (The codes from64 to 94 are

di spl ayed as normal ASCI| characters, i.e. nuneric digits
and capital letters.)

These ASCI| codes provide a convenient way of printing a
string of graphics characters. A PRINT statenent in a
program can contain a string of the correspondi ng ASCl |
characters, and, providing an appropriate code precedes them
on the output line, they will be displayed as graphics
characters.

The graphics shapes that replace the nornmal ASCI
characters are given in the next table. Note that there is
no | ower code for a solid block of foreground col our.

Graphics characters that replace the normal ASCII characters

decimal
code

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

hex
code

&20
&21
&22
&23
&24
&25
&26
&27
&28
&29
&2A
&2B
&2C
&2D
&2E
&2F
&30
&31
&32
&33
&34
&35
&36
&37
&38
&39
&3A
&3B
&3C
&3D
&3E
&3F

ASCII
char.

space

© 00 N o OO~ W N B O = -

graﬁhics
char.

n Bu "Ru s Bla® Bu""Fu"ulu"Slun Jun"Nunaflunilaf Jui"Jadafusals J= S)= L5 NG JRSSRES, RaCNc. Jia“Ju.afi.ElEE JaE"asaan

decimal
code

95

96

97

98

99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

hex
code

&5F
&60
&61
&62
&63
&64
&65
&66
&67
&68
&69
&6A
&6B
&6C
&6D
&6E
&6F
&70
&71
&72
&73
&74
&75
&76
&77
&78
&79
&7A
&7B
&7C
&7D
&7E

ASCII
char.

(0] Q O o o

o

graphics
cﬁan

EFNLLLEL ARG G e e e o %™ e el

365

366

The ot her codes for graphics characters are 160 to 191 and
224 to 255. To print graphics characters using these codes,
the VDU statenent can be used, or CHR$ can be used to
construct a string containing graphics codes. The advant age
of these higher codes is that the order in which the codes
correspond to the graphics shapes is nore systematic. A
program (or progranmer) can nore easily calculate a code for
a given shape. W |abel the six cells in a graphics
character as foll ows:

bit0 bitl

bit2 bit3

bit4 bit6

These nunberings correspond to the bits in the one byte
character code as foll ows:

0 0 0 O

AN

bit7 hit6 bits5 bit4 bit3 bit2 bitl bit0

In the higher codes for graphics characters, bit5 and bit7
we always set to 1. The remaining bits are set to 1 for
foreground col our and too for background colour in the
correspondi ng cell. Thus, given the bit values that specify
a shape, the code for the required character can be

cal cul ated by

bitO + bitl*2 + bit2*4 + bit3*8 + bit4*16 + bit6*64
+ 32 + 128

There is no such sinple expression for calculating the | ower
codes.

367

Appendix 4 Matrix notation and
multlplication

In Chapter 3 we have nade use of matrix notation in |inear
transforns. We say that a point (x,y) transfornms to a point

(xt,yt):

xt = ax + by
yt =cx + dy

G ven that all our transformations are of this formwe can
say that the transform T can be represented by the matrix:

[a d

b d]

Now using matri x notation to represent the above operation
we rewite the equations in the form

typ=xy)[ac
b d

On the right hand side we are nultiplying a row matri x
(representing a single point in two-dinensional space) by a
2x2 matrix. The equation specified in the matrix notation is
identical in every respect to the non-matrix form of the
equation. To obtain xt fromthe matrix formmenultiply the
row matrix (x,y) by the first colum:

xt =Xy [a.
b .
=ax + by

and to obtain yt fromthe matrix formwe nmultiply the row
vector by the second col um:

vyt =xy) [. ¢
.d]
=cx +dy

The ot her context in which we used matrix nultiplication was
to concatenate transfornms together.

T1*T2

[ac [ey
bd] fh

T

]

368

- [(ae +cf) (ag + ch)
(be + df) (bg +dh)]

- [pr

q s]

pis formed by taking the sumof the products of the entries
inthe first rowof T1 with the first colum in T2. q is
fornmed by taking the sumof the products of the entries in
the second rowin T1 with the first colum in T2. Inspecting

the other two entries r and s will show how these are
simlarly derived. In the general case:

C=A*B

each entry Cj of the product is the sumof the products of
the entries of the ith row of Awth the corresponding
entries of the jth colum of B. W could easily wite a
procedure to multiply two 3x3 matrices together and this
follows. In Chapter 3 we nmultiplied matrices together
manual | y.

100 DEF PROCmmt nul t

110 FORi =1 TO 3
120 FORj =1 TO 3
130 I NPUT A(i,j)
140 NEXT j

150 NEXT i

160 FORi =1 TO 3

170 FORj =1 TO 3
180 I NPUT B(i,j)
190 NEXT i

200 NEXT j

210 FORi =1 TO 3

220 FORj =1 TO3
230 sum= 0

240 FORk =1 TO 3
250 sum = sum + A(i, k)*B(Kk,j)
260 NEXT k

270 C(i,j) = sum
280 NEXT |

290 NEXT i

300 ENDPROCC

Here we have used the usual convention when handling
matrices - the first subscript is the row nunber, the second
subscript is the colum nunber (not to be confused with the
convention for handling screen coordinates). Note that the
each matrix nmust be typed in row w se.

369
Appendix 5 The viewing transformation

The view ng transformation, V, transfornms points in the
worl d coordinate systeminto the eye coordi nate system

(xe, ye, ze, 1) = (xw, yw, zw, 1)V

X
w 7 Yw

Viewpoint

A viewpoint is given as a set of three coordi nates
specifying the viewpoint in the world coordinate system An
obj ect described in the world coordinate systemis viewed
fromthis point along a certain direction. In the eye
coordi nate system the z-axis points towards the world
systemorigin and the x-axis is parallel to the x-y plane of
the world system It is standard to adopt a | eft-handed
convention for the eye coordi nate system In the eye
coordi nate systemthe x and y-axes match the axes of the
di splay systemand the ze direction is away fromthe
viewpoint (into the display screen). Wrld coordinates are
normal |y right handed systems so that in the conputation of
a net transformation matrix for the view ng transformation
we woul d include a conversion to a | eft-handed system

We can now specify the net transformation matrix as a
series of translations and rotations that take us fromthe

370

worl d coordi nate systeminto the eye coordi nate system
given a particular viewpoint. These steps will be given as
separate transformati on matri ces and the net transformation
matrix resulting fromthe product will sinply be stated. If
you are unhappy with the derivation you can of course skip
it and accept the final result - the net transfornation
matrix required for a view ng transfornation

Now t he view ng transformation is best specified using
spherical instead of cartesian coordi nates. W specify a
vi ewpoi nt in spherical coordinates by giving a distance from
the origin (rho) and two angles (theta and phi).

Spherical
coordinates

p(p.6@)

These are related to the viewpoint's cartesi an coordi nates
as follows:

Tx=psin@cos O
Ty =psin @sin 6
Tz=pcos o

Anot her fact we require in this derivation is that to change
the origin of a systemfrom (0O, O, 0, 1) to (Tx, Ty, Tz, 1)
we use te transformation:

Note that this is the inverse of the transformation that
woul d take a point from (0, O, O, 1) to (Tx, Ty, Tz, 1).

The four transformations required to take the object from
a world ccxzrdinate systeminto an eye coordi hate system
are:

(1) Translate the world coordinate systemto (Tx, Ty, Tz),
the position of the viewpoint. Al three axes renmin

(2)

371
parallel to their counterparts in the world system

Yw

The cube in the diagramis not an object that is being
transformed, but is intended to enhance an
interpretation of the axes. Using spherical coordinate
values for Tx, Ty, and Tz the transformation is:

Ti=[1 0 0 0

0 1 0 0

0 0 1 0
—pcosBsing —psinBsing —pcos @ 1]

The next step is to rotate the coordi nate system

t hrough (90 degrees - theta) in a clockw se direction
about the z'-axis. The rotation matrices defined in
Chapter 3 were for counter-clockwi se rotation relative
to a coordinate system The transformation matrix for a
cl ockwi se rotation of the coordinate systemis the sane
as that for a counter-clockw se rotation of a point
relative to the coordinate system The x''-axis is now
normal to the plane containing rho.

372

(3)

(4)

wher e

T2=[sinp ~cos6 0
—-cos® sinp O

0 0 1

0 0 0

= O OO

]

The next step is to rotate the coordi nate system (180
degrees - phi) counter-clockw se about the x'-axis.
This makes the z'''-axis pass through the origin of the
wor |l d coordi nate system

T3=[1 0 0O o
0 -cos@ -sing O
0 sing -cosg O
0 0 0 1]

Finally we convert to a |l eft-handed system as descri bed
bove.

Or OO
= OO0OOoO

]

Mul tiplying these together gives the net transformation
matrix required for the view ng transfornmation.

V=TI*T2*T3*T4=[-sinB —cos@ -cosOsing O
cosB® -—sinBcos@-sinBsing O
0 sin @ —cos 0 0

0 0 r 1]

(xe ye ze 1)=(xw yw zw 1)*V

