Contents

Preface

Chapter 1
11
12

Chapter 2
2.1

22
2.3

Chapter 3
31
3.2
33
34
35

Chapter 4
41
4.2
4.3
4.4
45
4.6

Vi
Programming stylefor BBC BASIC
Control statementsin BBC BASIC 1
Stepwise refinement and program design 10
Logical processing of colour and interactive graphics
Image planes (GCOL 1 and GCOL 2) 21
Basic interaction techniques (GCOL 3 and GCOL 4) 33
Colour-fill — general algorithms 48
Three-dimensional graphics
Two-dimensional transformations and matrix notation 55
Three-dimensional graphics — general transformations 71
Three-dimensional graphics — viewing and perspective transformations74
Constructional techniques 81
Hidden line removal 96
Animation techniques
Word animation and computer assisted learning 107
User-defined characters 114
Arcade game animation 121
Controlling movement within a maze 132
Animating line drawings 142

Pal ette changing 150

Chapter 5

55

5.10

Chapter 7
7.1
7.2
7.3
7.4
75
7.6
7.7

Chapter 8
8.1
8.2
8.3
8.4
85
8.6
8.7

Chapter 9
9.1
9.2
9.3
9.4
95

Advanced uses of sound

Playing a two-voice melody

Simple canons or rounds

Synchronizing three (or more!) voices
Bach's ‘Musical Offering’

Mirror canons or canons in contrary motion
Automatic composition

Generating rhythms

Generating pitch values

A program to generate probability frequency tables
Micro blues

Storing, sorting, searching and indexing

Tables

Searching atable - linear search

Ordered data — sorting

Ordered data - binary chopping

Direct access

Direct accessto a subtable

Open hash tables

Indexing and pointers

Adventure games — an example of the use of pointers

Introduction to recursion

Some easy recursive programs

How it works

Towersoffianoi

Recursive patterns and curves

Towers offianoi revisited — state space representation
Problems with recursion

Divide and conquer — merge sorting

Boar d games and gametrees

Game trees

Using recursion to generate agame tree
Manipulating board positions during recursion
Minimaxing

A recursive function for minimaxing
Mutually recursive functions for minimaxing
Choosing amoveina‘smal’ game

Difficult board games - the beginnings of Artificial Intelligence

The game Kalah

Static evaluation functions

An introductory Kalah program

Looking further ahead in non-trivial games
Tree pruning

152
159
160
161
164
167
169
174
182
186

191
192
196
201
203
206
209
214
220

227
231
235
237
247
249
254

259
262
270
271
278
280
282

291
292
293
299
305

Chapter 10
10.1
10.2
10.3
10.4
10.5
10.6
Appendix1
Appendix2
Appendix3
Appendix4
Appendix5

Index

Langunge processors — LOGO Interpreter
Language processors — an illustrative sample

A simple LOGO interpreter

Interpreting loops

Defining and interpreting simple LOGO procedures
Parameters and variables

A program compacter

Summary of mode and colour facilities

Bits, bytes and hex

Characters, ASCII codes, control codesand Teletext codes
Matrix notation and multiplication

Theviewing transformation

321
326
332
334
337
342
351
354
362
367
369

373

Preface

Ten to fifteen years ago nmachines with the nenory size and
processing capability of the BBC micro would have cost many
t housands of pounds and were the exclusive domain of
comput er professionals. Nowadays powerful conputers are in
t he hands of the home user and this book ains to bring the
tools of the trade of the conputer scientist to the mcro
user.

The book is a practical introduction to advanced topics
in conputer science. Rather than adopt the fornmal approach
found in npst conputer science texts, we have introduced
each technique practically, by using sinple program nodul es
that act as building blocks. Each topic is covered at
sufficient depth so that for a non-professional the waters
are neither fathom ess nor so shallow as to be trivial

The techni ques selected for inclusion in this text form
the foundation stone of advanced computer graphics,
artificial intelligence, automatic nusical conposition,
dat abases, arcade ganme programing, board game progranmi ng,
adventure gane programm ng, conputer assisted |earning,
conput er ai ded desi gn and | anguage processi ng.

Wth the exception of Chapter 3 the book contains no
difficult mathematics and perseverance with the materi al
wi Il conpensate for a | ack of know edge of the higher
echel ons of mathematics. Even the mathematics in Chapter 3
can be ignored with impunity and a sound understandi ng of
the material derived fromusing the procedures.

The text is supported by a considerabl e nunber of program
fragments, procedures and conpl ete progranms together wth
suggestions on projects that you can undertake yourself.

An essential prerequisite is a knowl edge of BASIC, either
from our conpani on volune, ' The BBC Mcro, BASIC, Sound and
Graphics', or front experience of other BASIC dialects. If
your experience is on another machine, you will need access
to a BBC Mcro 'User CGuide'. For the sake of conpleteness
sone material fromour conpanion volume is repeated in
Chapter 2.

Structured programm ng techni ques are used throughout the
text and we have attenpted to nake the prograns readabl e.
The programing style adopted is described in Chapter 1 and
it nakes extensive use of the BBC BASIC control structures
and procedure facilities. Apart froma single unavoi dable
occurrence there is no use of GOTO or GOSUB anywhere in the
text.

A mastery of the matorial In this book will nake you an
expert mcro-progranmer. |f you can creatively expand and
devel op the ideas herein then ring ACORNSOFT and ask for a
j ob.

How to use this book

Thi s book need not be read sequentially, you can if you
prefer dip into the topics in any order.

Sone chapters are self contained and others can be read
only after earlier material has been understood. The
following table is a guide to how the book can be used.

Chapt er no. Prerequisite
1 Sone know edge of standard BASIC
2 A knowl edge of the basic graphics

facilities of the BBC Mcro. (See our
compani on vol une)

3 As for chapter 2
4 Chapter 2
5 A know edge of the basic sound

facilities of the BBC mcro. (See our
conpani on vol une)

Chapter 1
Chapter 1
Chapters 1 and 7

© 00 N O

Chapters 1, 7 and 8
10 Chapters 1 and 7

Are you a slow typist?

You can experinent with the prograns described in this book
wi t hout having to type them Al the prograns of any |ength
are available on a conputer cassette.

Some of the larger prograns are useful utilities in their
own right and others provide the foundations for fairly

el aborate programm ng projects in sound, graphics, animation
and ganes.

Prograns are al so avail able on cassette for the conpanion
vol ume by the sane authors

The BBC M cro Book: BASIC, Sound and G aphics

Books and cassettes are avail able from your bookseller or
direct from

Addi son- Wesl ey Publishers Ltd.,
53 Bedford Square,
London, WC1B 3DZ.

Chapter 1 Programming style
for BBC BASIC

Apart fromthe powerful graphics and sound facilities, BBC
BASI C provides a nunber of 'control statenents' that are not
usual ly available in other dialects of BASIC. A control
statement is a statement that is used to control the order
in which a programis obeyed and exanpl es of the control
statements that are available in standard BASIC are FOR
statements, |F-GOTO statenments, GOTO statenents and GOSUB

st at ement s.

It has |l ong been recogni sed by conputer scientists that
programs witten using conbinations of the above statenents
tend to be difficult to wite, difficult to read and
difficult to debug. This is because of heavy reliance on the
use of GOTO and GOSUB st atenents. Excessive use of these
statenents results in prograns whose possible execution
pat hways are so intertwined that the control structure of a
programis obscured

The nunber of control structures that are needed to cover
the magjority of programmng situations is very small and BBC
BASI C provi des control statenents for inplenmenting nost of
the conmmon constructions without using GOTCs or GOSUBS. |f
you are used to programming in 'standard’ BASIC it needs a
certain anpunt of self-discipline to learn to use these new
statenments and abandon ol d programm ng habits, but the
effort is well worthwhile. The result will be nore readable
programs. The programmer will al so have a much cl earer idea
of the structure of his prograns and will find them easier
to debug and alter. Prograns are not |ess efficient as sone
of the 'GOTO di ehards' would have us believe. In many cases,
the use of the appropriate control statenents instead of a
messy comnbi nation of GOTO statenments results in a nore
efficient program

1.1 Control statenents in BBC BASIC

In this section, we briefly introduce and illustrate the use
of the novel control statenents in BBC BASIC, and, in
subsequent sections, we discuss ways of using these
statements to inmprove our programm ng style. Note that there
are sone dialects of BASIC that provide sone, but not all

of the facilities described in this chapter.

2

Loops

As well as the FOR-NEXT construction available in standard
BASI C, BBC BASI C provides a REPEAT-UNTIL construction for
use in inmplenenting a so-called 'non-determnistic' [oop. A
non-deterniinistic or conditional |oop is a | oop where the
comput er cannot cal culate in advance how nmany tines to obey
the I oop and a section of programis to be obeyed repeatedly
until some condition has been satisfied. For exanple, a
simpl e ccnnput er - assi sted | earni ng program ni ght repeatedly
set nultiplication questions and input the answers fromthe
keyboard until one of the questions is answered w ongly:

10 questions =0

20 REPEAT

30 guestions = questions+1

40 a =RND(11) + 1 : b = RND(11) + 1

50 PRINT a; "x"; b; "=";

60 I NPUT answer

70 UNTIL answer <> a*b

80 PRINT "Wong! "

90 PRINT "You got "; questions-1; " questions right"

The REPEAT statenent introduces a section of programthat is
to be obeyed repeatedly and the UNTIL statement indicates
the extent of the | oop, and specifies the condition for
stopping the repetition. The REPEAT statetnent and an

equi val ent construction using a GOTO statenent are shown

bel ow

REPEAT | oop Equi val ent GOTO | oop
20 REPEAT
) 30
70 UNTIL condition 70 I F NOT condition GOTO 30

| F statenents
The | F statenent in BBC BASIC can have the form of the
‘standard' logical IF:

| F condition THEN one or nore statenents

The statenments after THEN are obeyed only if the condition
is TRUE. The other formof IF statenent is

IF condition THEN one or nobre statesnents
ELSE one or nore statenents

3

In this ense, if the condition is TRUE, the statenents after
THEN are obeyed, otherwi se the statenments after ELSE are
obeyed. A sinple exanple of a programinvol ving an | F-THEN
statenent is:

10 I NPUT bankbal ance, wi t hdrawal
20 bankbal ance = bankbal ance - wi t hdr awal
30 | F bankbalance<O0 THEN
bankbal ance=bankbal ance-0.20 : PRI NT "Overdrawn!":
PRI NT "Send this custonmer a letter from manager"
40 PRI NT "Bal ance is now "; bankbal ance

Note that an | F statenent constitutes a single nunbered line
of a BBC BASIC program (A single nunbered |ine can occupy
up to 240 characters and may occupy several screen |ines.)
You nust type the conmplete |IF statenent wi thout pressing
RETURN. The RETURN key is pressed only when a nunbered |ine
is complete. If an | F statesnent does not fit into 240
characters, then it is alnbst certain that your program
woul d be better structured using procedures (see bel ow).

When nore than one statenent is typed after THEN, the
statenments nust be separated from each other by col ons and
these statenents are either all obeyed or all ignored. The
nane rule applies to multiple statenents follow ng the ELSE

To illustrate the use of an | F-THEN ELSE st atenent, we
could extend our 'multiplication program :

100 | F questions>20 THEN
PRI NT "Wel| done! That was very gwd. "
ELSE PRI NT "You must brush up on your tables.”

or even

100 | F questions>20 THEN
PRI NT "Wl | done!™"
ELSE | F questi ons>10 THEN
PRI NT "Room for inmprovenent"”
ELSE PRI NT "Learn your tables!"
questi ons>20

TRUE FALSE
* '
PRI NT
"Well done!" questi ons>10
TRUE * FALSE

PRI NT PRI NT

4

In the second case, the statement after the ELSE is a
further I'F statenent which will be obyed only if the
condition 'questions>20'" was FALSE. Only one of the three
PRI NT statenents will be selected and obeyed. The programis
sel ecting one out of three alternative courses of action as
illustrated in the tree di agram

We can conpare an | F-THEN statenent with an equival ent
GOTO construction:

10 IF condition THEN 10 IF NOT condition GOTO 20
statenments . statenents (nunbered)

20 éarry on 20

Here is an | F- THEN- ELSE st atenent together with an
equi val ent GOTO constructi on:

10 IF condition THEN 10 |IF NOT condition GOTO 16
statenments . statenents (nurber ed)
ELSE 15 GOTO 20
statements . statements (nunber ed)

20 c'arry on 20 carry on

In one of the exanpl es above, we 'nested' one |F statenent

i nside another. Unfortunately, the extent to which we can
nest IF-statenents in BBC BASICis limted in several ways.
For exanple, unexpected effects can be obtained if we use an
| F- THEN- ELSE after the THEN of another IF statenment. (You
will find that the conputer can not decide to which IF the
ELSE belongs.) W are also linted by the restriction that
our conplete nested IF statenment nust fit into 240
characters (6 lines inMIDE 7). W suggest that the use of
nested I F statenents is linmted to the use of IF after ELSE
as illustrated above.

The standard way of inplenenting nore complex IF
structures in BASICis to use the GOTO statenment. However,
the use of procedures described below will enable us to
program conpl ex nested control structures w thout resorting
to the use of GOTO

Si npl e procedures

A procedure in BBC BASIC provides a facility for giving a
name to a section of program The programer can then wite
the nane of the procedure wherever he wants that section of
programto be obeyed. This has two mai n advant ages:

Firstly, if the naned operation has to be carried out at
several different places in a |arge programwe avoid witing
out the same section of programin full at each pl ace

Secondly, and just as important, careful use of
procedures can nake a |l arge programeasier to wite and
simpler for other people to read

The first advantage can, of course, be obtained in
standard BASI C by using GOSUB statenents and the second
advant age can be obtained, to a certain extent, by careful
annot ati on of standard BASI C subroutines with REM
statenents. However, the use of naned procedures nmkes it
easier to obtain these advantages and encourages the witing
of nore readable prograns. Here is a short BBC BASI C program
that involves a procedure:

10 PRINT "Type first 10 nunbers”
20 PROCaddt enunbers

30 PRINT "Type next 10 numnbers"
40 PROCaddt ennumnbers

50 END

100 DEF PROCaddt ennunbers
110 LOCAL i, next, total

120 total = 0

130 FORi =1 TO 10

140 | NPUT next

150 total = total + next
160 NEXT i

170 PRINT "Total = "; total

180 ENDPRCC

The section of programfromline 100 onwards constitutes a
procedure definition and the procedure is referred to or
"called at line 20, and again at line 40, by witing the
nane of the procedure. Calling a procedure in this way tells
the conputer to go and obey the procedure definition and
cone back when it encounters an ENDPRCC st at enent .

In the program above, we have specified that the
variables "i', '"next', and 'total' are 'local' to the
procedure. These variables are available for use only while
PROCaddt ennunbers i s bei ng obeyed. Variables declared at the
start of a procedure in this way can not be used after
ENDPROC has been obeyed. It is recommended that any variable
which is used only wthin a particular procedure should be
declared locally to that procedure. The conmputer will then

6

ensure that the progranmer does not accidentally use the
sane variable for conflicting purposes in different parts of
a large program A variable with the sane name can be used
el sewhere in the programand its value will automatically be
held in a different storage |ocation, thus elimnating any
possibility of confusion. The sane program coul d have been
written in standard BASI C usi ng GOSUB st at enent s:

10 PRINT "Type first 10 unbers”
20 GOsuB 120
30 PRINT "Type next 10 nuntx;rs"
40 (GOsSUB 120

50 END

120 T =20

130 FOR1 =1 TO 10

140 I NPUT N

150 T=T+N

160 NEXT i

170 PRINT "Total ="; T
180 RETURN

In the above BBC BASI C program a section of program
given a name and this nane was used (twice) to tell the
computer to obey that section of program As we shall
di scuss later, it is good progranm ng practice to give a
nane to any logically separate section of program even if
that section of programis obeyed only once.

Procedures with paraneters
A simpl e procedure can be used to enable a programto carry
out the same operation at different parts in a program A
common requirenent is for simlar, but not necessarily
i dentical, operations to be carried out at different points
in a program

As a somewhat contrived exanple, the procedure of the
| ast section could have been given a 'paranmeter' indicating
how many nunbers were to be added up.

10 PRINT "Type 5 unbers”

20 PROCaddnunber s(5)

30 PRINT "Now type 10 nunbers"”
40 PROCaddnunber s(10)

50 END

The paraneter in brackets after the name of the procedure is
a piece of information that is to be tranenitted to the

proocedure that is being called. In this case, the intention
is that the nunmber in brackets tells the procedure how nmany

7

values to add up. The first tinme the procedure is called it
is to add up 5 nunbers and the second tinme it is to dd up 10
numbers.

The procedure nust now be defined in terns of a naned
variable that will be given a value each tinme the procedure
is called.

100 DEF PROCaddnunber s(howrany)
110 LOCAL i, next, total
120 total = 0

130 FOR i = 1 TO howrany
140 I NPUT next

150 total = total + next
160 NEXT i

170 PRINT "Total = "; total

180 ENDPRCC

When this procedure is called line line 20, the procedure
definition is obeyed wth:

howrany = 5

and when it is called fromline 40, the procedure definition
i s obeyed with:

hownany = 10

As anot her exanple, here is a programthat is given a sum of
money and whi ch wor ks out how many coi ns of each avail abl e
denomi nation are required to make up that sum of noney.

10 I NPUT "Change", change

20 PRCChownany(50) : PROChowrany(20)
30 PRCChownmany(10) : PR(Ehownany(5)
40 PROChommany(2) : PROCChowmany(1)
50 END

100 DEF PROChowmany(denomi nati on)
110 LOCAL noof coi ns

120 noof coi ns = change DI V denomi nati on
130 change = change MOD denomi nation
140 PRINT "No of "; denommination; "s "; noofcoins

150 ENDPROC

The program first works how rmany 50p pi eces can be fitted
into the given sum and works out how nmuch change is |eft
then that has been done. It then does the same, with the
remai ni ng change, for 20p pieces, and so on. A procedure is

8

used to work out how many coins of a given denomination fit
into the change that is currently |oft. PROCChowrany is the
nane of a procedure that is used six times. Each tine the
procedure is called, it is supplied with a paranmeter in
brackets telling it which denom nation of coin to deal with
next. The operators DIV and MDD are useful in this context.
DIV gives the result of dividing two integers or whole
numbers, ignoring any remai nder. MOD gives the renainder
obtai ned on dividing two integers.

A procedure can have a paraneter that is a string and it
can al so have nore than one paraneter. These features wll
be illustrated as and when we need them

In other programm ng | anguages, it is usually possible to
pass informati on out of a procedure by changi ng the val ue of
one of its parameters while the procedure is being obeyed
In BBC BASIC, paraneters can only be used for passing
information into a procedure and these paraneters are
soneti nmes known as input paraneters. |f information
calculated in a procedure is to be used outside that
procedure, the information nmust be placed in a gl obal
variable - any variable that is not a paraneter or a |oca
vari able. For exanple, in the program at the begi nning of
this section the global variable 'change' is altered by each
call of the procedure. In fact this global variable is used
to transfer information both into and out of the procedure.

Functi ons
If the result of some process is a single value then a
function is sonetinmes an elegant alternative to a procedure
First let us ook at the ways in which a function differs
froma procedure. Certainly, they are both separate nodul es
of programtext referred to by name, but they differ in the
way in which they are called. Functions are called by using
themin expressions - that is the first difference. The
second difference is that the result of obeying the function
is a single value which replaces the function call in the
originating expression. Let us illustrate this by
considering the use of one of the standard functions:

y = x + SQR(2)

When this statenent is being obeyed, the conmputer obeys the
definition of the function SQR, and a nunber - the result of
obeying the function - replaces the subexpression SQR(2). In
the case of a standard function like SQR the definition of
the function is already stored as part of the BASIC system
but it is also possible for the programer to define his own
functions. In BBC BASIC, the programer defines a function
in awy that is very sinmlar to the way in which a
procedure is defined. A function defined in this way can be
used in exactly the same way as the standard functions.

This programreads 3 pairs of nunbers and adds the |arger

of the first pair, the larger of the second pair and the
| arger of the third pair. A function is used to find the
| arger of two nunbers.

10 INPUT a,b, p,q, X,y
20 PRINT FNmax(a,b) + FNmax(p,q) + FNrmax(x,y)
30 END

40 DEF FNmax(first, second)
50 IF first > second THEN = first
ELSE = second

The effect of calling a function is the calculation of a
single result. Since calling a function produces a single
result, we nust indicate, sonmewhere in the function
definition, what this result is to be. Instead of ENDPROC
the function term nates when a statenent of the form

= expression

i s obeyed. The value of this expression is returned as the
val ue of the sub-expression used to call the function.

When the above programis obeyed, evaluation of the sub-
expression ' FNmax(a, b)' causes the function definition to be
obeyed with "first' set to the value of 'a' and 'second set

to the value of 'b'. If the function is call ed when we have
the situation

a=4.79

b = 5.64

then the function definition is obeyed with

first = 4.79
second = 5. 64

and the statenent

= second
is obeyed as a result of obeying the |IF-statenment. The val ue
of the sub-expression 'FNmax(a,b)' will therefore be 5.64
and this is the value which will be used in subsequent
eval uation of the |arger expression

FNmax(a, b) + FNmax(p,q) + FNmax(x,y)

Apart fromthe need to return a particular value as its

result, the definition of a function in BBC BASIC is very
simlar to the definition of a procedure. A function

10

definition can use as nany statenents as we like in order to
calculate the value that is to be the result of the
function. More conplicated function definitions wll

bei ntroduced when they are required.

1.2 Stepwi se refinenment and program design

In the renmai nder of this chapter, we denonstrate the well -
known programr ng technique called 'stepw se refinenent'.

The first step in witing a conplex program should be to
sketch an outline of what the programis going to do wi thout
getting bogged down in the detailed BASIC instruction
required. Using procedures for the logically distinct
operations in a programallows us to wite our initial
outline in BASIC where we invent procedure nanes to describe
operations that we have not yet progranmed in detail. Only
when we have a clear idea of what each nanmed procedure is to
do and how it fits into the overall programdo we go on to
define each procedure in detail

In a conplicated program witing one of the procedures
may itself be a difficult programm ng task and a procedure
can itself be defined in ternms of other procedures.

We shall illustrate this approach to progranmm ng by
witing two noderately conplicated prograns.

CAL structures - a nultiplication conpestition

The next programis an exanple of a Conmputer Assisted
Learning program It could be used to encourage children to
learn their multiplication tables by organising a

mul tiplication conpetition. Once the programis running, the
children will take turns to sit at the keyboard and do a
tables test. The programw || keep a | eague table of the top
ten scores obtained during a run of the programand this
table will be printed after each test is conpleted.

We can outline the process that the programwll carry
out :

10 CLS

20 PRINT "Multiplication Conpetition”

30 PROCinitialise

40 REPEAT

50 PROCnext conpetit or

60 PROCpri nttopten

70 INPUT "Anyone else to play (YYN", reply$
80 UNTIL reply$="N'

90 END

Note that this outline does not involve any trenendously
conplicated control structure. It contains only a sinple
REPEAT | oop and writing an outline like this should not
present any difficult progranm ng probl ens.

Now t hat we have the overall structure of the program
clear in our mnds, we can introduce a little nore detail by

11

defining the procedures used in our outline.

Most programs require variables or arrays to be set to
starting values and such '"initialisation' is best tidied
away into a special procedure. In this case, PROC nitialise
will set up a "top scores' table to contain ten zero scores.
The table will consist of two parallel arrays, one array to
mai ntain the nanes of the top ten players, and the other
their scores.

100 DEF PROGi nitialise

110 LOCAL sl ot

120 Dl M t opnanme$(10), topscore(10)
130 FOR slot = 1 TO 10

140 topscore(slot) =0

150 topname$(slot) = "-------- "
160 NEXT sl ot

170 ENDPRCC

W can now concentrate on the probl em of defining
PRQCnext conpetitor which will set a single multiplication
test and handle the results. Witing this procedure can be
viewed as a separate programrming problemthat is a little
easier than the problemw th which we started. W use the
same approach to writing PROCnextconpetitor as we used in
approaching the original problem- we wite an outline
description of what the procedure will do using further
naned procedures to describe operations that will be
programmed in detail later. This process can be conti nued
and we can have procedures within procedures within
procedures etc. Very conplex tasks can be inplenmented in
this way.

200 DEF PRQCnext conpetitor

210 I NPUT "What's your nanme" , nanme$
220 PRINT "Hello, "; name$

230 PRINT : PRI NT "Ready"

240 PRINT : PRINT "Go! " : PRINT

250 PROCgi vet est
260 PROCupdat et abl e(nane$, score)
270 ENDPROC

W have already witten a short programthat sets a
multiplication test and we use a variation of this program
as our definition of PROCgi vetest. W introduce a further
constraint so that a test is termnated either if a question
is answered wongly or if atinme limt is exceeded. The
special BBC BASIC variable TIME is automatically increased
by 1 every one hundredth of a second and we use this

12
variable to tinme the test.

300 DEF PROCgi vet est

310 LOCAL questions, a, b, answer
320 TIME =0

330 gquestions = 0

340 REPEAT

350 questions = questions+1
360 a =RND(11) + 1 : b = RND(11) + 1
370 PRINT a; "x"; b; "=";
380 I NPUT answer
390 UNTI L answer <>a*b OR TI ME>3000
400 | F answer <>a*b THEN
PRINT "Wong!" : score = questions - 1

ELSE score = questions
410 ENDPROC

PROCupdat et abl e i s probably the trickiest procedure to
wite. W need to check first of all whether the new score
should be in the top ten. If it is not, the procedure should
termnate inmediately. |If the new score is in the top ten,
then we need to find the position at which it should be
inserted, nove the other scores and nanmes down to rmake room
and insert the new score and name in the table.

500 DEF PROCupdat et abl e(n$, score)
510 LOCAL slot, position
520 | F score <= topscore(10) THEN ENDPRCC

530 REM find slot for new top score
540 slot =0
550 REPEAT

560 slot = slot + 1

570 UNTI L score>topscore(slot)

580 REM nove ol d scores down

590 FOR position = 9 TO slot STEP -1

600 topscore(position+l) = topscore(position)
610 t opnanme$(positi on+l) = topnanme$(position)
620 NEXT position

630 topscore(slot) = score

640 topnane$(slot) = n$

650 ENDPRCC

Finally we define the procedure for displaying the | eague
tabl e on the screen.

13

700 DEF PROCprinttopten

710 LOCAL p

720 CLS

730 PRI NT "Last score: "; score : PRINT

740 PRINT "TOP TEN' : PRINT : PRI NT

750 FORp =1 TO 10

760 PRI NT topnane$(p); TAB(20); topscore(p)
770 NEXT p

780 ENDPROC

Exerci ses

1 |If you are famliar with the BBC BASI C SOUND st at enent,
nodi fy the multiplication contest programso that it
pl ays a short 'tension building' tune before each test.

2 W could have applied a further stage of stepw se
refinement to PROCupdatetable by defining it in terns of
two further procedures, PROCfindslot and PROC nsert. Do
this.

3 If atest is term nated because of a wong answer, the
nessage indicating that the answer was w ong does not
remain on the screen |long enough for it to be read
Insert a tine delay at the appropriate point in the
program

4 As it stands, the program could ask the sane question
twice during the course of the sane test. Mdify the
programso that it records the questions asked and
ensures that the same question is not asked twi ce.

5 Change the programso that a test is terninated only when
atin limt is exceeded. If a wong answer is typed, the
test should continue, but a nessage should of course be
di spl ayed. Only correct answers shoul d be counted towards
the score

Program structure for playing a board gane

In Chapters 8 and 9, we shall be |ooking at some of the
techni ques needed to wite programthat play 'board ganes.
Exanpl es of the kind of gane that we have in nmind are NI M
Noughts and Crosses (or Tic-Tac-Toe), Kalah, Go-Mku, Co,
Draughts (or Checkers) and Chess.

Pr ogranm ng techni ques used for board ganes are
completely different fromthose required for 'reaction'
ganmes |i ke Space Invaders or Pacnan where the machine is
simply logging the user's reaction speeds and | ooking for
coi nci dence of objects. In such arcade games, nobst of the
programm ng effort goes into producing exotic ani mated
di spl ays.

14

Here we present the outline structure of a programthat
pl ays a board game for two players. The obvious possibility
is that the conmputer (or, to be nore precise, part of the
program) will act as one player and soneone seated at the
keyboard will act as its opponent. However, as we shall see
this is not the only possibility and the sanme overal
program structure will allow for other useful conbinations.
The essential requirenent for a board game programis that
it should repeatedly process one player<s nmove, either its
own or its opponent<s. The npbst convenient way of organising
this is outlined in the procedure PROCpl aygane.

10 PROCpl aygane
20 END

100 DEF PROCplaygarme

110 PROCset upboard : REM and deci de who starts.
120 PROCdi spl ayboard

130 ganeover = FALSE

140 REPEAT

150 IF turn$ = "A" THEN PROCpl ayer A
ELSE PROCpl ayer B

160 PROCdi spl ayboard

170 PROCt est ganeover

180 UNTI L ganeover

190 PROCannouncew nner

200 ENDPROC

In order to show how versatile this structure is, we
descri be four situations in which it could be used:

(a) The programwi |l act as player A, using PROCpl ayerA to
choose its nove. Soneone seated at the keyboard acts as
the program s opponent and PROCplayerB will organise
the input of this player's nove.

(b) Two human pl ayers seated at the keyboard can use the
conputer as a board and scorekeeper. PROCpl ayerA is
used to input one player's nove and PROCpl ayerB i s used
to input the other's.

(c) Two rival programrers want to ccnnpare their game
progranm ng skills. One programmger can wite
PROCpl ayer A to choose a nbve and the other can wite
PROCpl ayerB to choose a nove his way. The conputer can
then be nade to play through one or nore ganes by
itself in order to decide whose procedure is bhetter.

(d) The serious student of a game such as chess nay want to
store records of interesting games (on cassette or disk
files) and have the program play through these gane

15

under his control so that he can analyse them If, as
is quite likely, the chess anal yst wanted the program
to go back to an earlier stage in the game and replay a
sequence of nobves or if he wanted to experinment wth
alternatives to the recorded noves, sone slight
adjustnment to our outline programstructure mnight be
necessary.

W now convert our outline programinto a conplete program
for a very sinple gane. The ganme we use is called 'Last One
Wns' and the rules are:

The 'board' is a pile of counters.

Two players take turns at renoving at | east one and not
nore than three counters frcun the pile.

The player who renpbves the | ast counter is the wi nner.

The conputer will play against an opponent. The opponent is
to be allowed to decide how many counters there will be at
the start of the ganme and who nekes the first nove. The
foll owi ng program plays this game very stupidly (by making

compl etely random noves) but the programw || serve to
illustrate a nunber of points. This gane and the program
developed in this section will be extensively referred to in
chapter 8.

10 PROCpl aygane
20 END

100 DEF PROCpl aygame

200 ENDPROC
300 DEF PRCCset upboard

310 I NPUT "How many counters", counters
320 INPUT "OK. Do you want to start", reply$
330 I F INSTR("Yy" ,LEFT$(reply$, 1))

THEN turn$ = "B" ELSE turn$ = "A"
340 ENDPRCC

400 DEF PROCdi spl ayboard

410 PRI NT

420 PRINT "There are "; counters; " counters left."
430 ENDPROC

500 DEF PROCt est ganeover
510 ganmeover = (counters = 0)
520 ENDPRCC

16

600 DEF PROCannouncew nner

610 IF turn$ = "A" THEN PRINT "You win."
ELSE PRINT "I win."

620 ENDPROC

700 DEFPROCpl ayer A
710 PRINT "My turn."

720 PROCchecknovesavai |l abl e

730 | F novesavai | abl e=1 THEN nove=1
ELSE nove= RND(npbvesavail abl e)

740 PRINT "I take "; nove; " counters."

750 counters = counters - npbve

760 turn$ = "B"
770 ENDPROC

800 DEF PROCchecknpvesavail able

810 | F counters<3 THEN npvesavail abl e = counters
ELSE novesavail able = 3

820 ENDPROC

900 DEF PROCpl ayer B

910 PROCI nput nove

920 counters = counters-nove
930 turng = "A"

940 ENDPROC

1000 DEF PROC nput nobve
1010 PROCchecknovesavai | abl e

1020 I NPUT "Your turn. How nmany do you take", nove
1030 I F nbove>0 AND nopve<=npvesavai | abl e THEN ENDPRCC
1040 REPEAT

1050 PRINT "At | east one and not nore than three."
1060 INPUT "Try again:" nove

1070 UNTIL nove >0 AND npbve <= npvesavail abl e
1080 ENDPROC

As the program stands, sone of the procedures contain
only one or two instructions and you may wonder why we
bot her to use so many procedures. The advantage of breaking
the programup into procedures in this way is that if we
want to change or inprove any particul ar aspect of the
program s behavi our, we can concentrate our attention on the
procedure that controls that aspect. For exanple, as it
stands the prograni plays rather stupidly, but all the
stupidity is confined to one procedure, PROCplayerA. If we
wanted the programto play a better ganmes we woul d
concentrate on reprogranmm ng this procedure. (There is in
fact a very sinple rule that can be used for choosing a good
move in this gane - think about it.) As another exanple of
the sort of inprovenent that could be made, we might want to
use graphics facilities to produce a pictoria

17

representation of the pile of counters, the display being
changed after each nove. The changes to enable the program
to do this could be concentrated i n PROCdi spl ayboard.

Exerci ses

1

Change t he above programso that it displays a pictoria
representation of the pile of counters on the screen. The
di spl ay shoul d be updated after each nove

Change the programso that, after a gane, it asks the
program s opponent if he would |ike another gane and
termnates only if he says NO

Wite a programthat plays Noughts and Crosses by naking
conpl etely random nmoves. Use the structure introduced in
the last section as a franework on which to build your
program

Experiment with different board representations. Three
possibilities are:

(a) A 3x3 two-di nensional array.
(b) A one-dinensional array of 9 |ocations.

(c) (Rather difficult) - A single nunmber that is
handl ed by the programas a bit-pattern. The nine
| east significant bits indicate the position of
the X's and the next nine indicate the position
of the Os. Thus:

board = 000001100001010000
m ght represent the position
X
X|C

O

You are free to decide which bits represent which
squares. Individual bits can be isolated froma
nunber by using DIV and | ogical operations. This
opens up the possibility of very efficient
testing for wnning positions. W can test for
the presence of the winning pattern by conparing
the 'board” with the bit-pattern

X

X

X
by comparing the 'board" with the bit-pattern

..... 000000000001 OI OI OO0 (ie. &54 in hex)

18

as fol |l ows:
| F (board AND &54)=&54 THEN ..,,.

Placing an X in the top |l eft-hand corner square
i nvol ves

board = board OR &100

The bit-patterns corresponding to each possible
nove and each possible winning pattern could be,
stored in a | ookup table or could be cal cul ated
as powers of 2.

Bi nary and hexadeci mal notation, and the application of

| ogi cal operations to bit-patterns are described in Appendi x

2. |If you get the third version working, you will learn a

great dea
nunbers.

about bi nary and hexadeci mal representation of

