
Chapter 2 Logical processing of colour
and interactive graphics

In this chapter we examine in detail the uses of the logical
processing facilities available in the GCOLstatement. In
particular we look at how they can be used to create user
defined mappings of the screen memory and to provide
interactive graphics facilities.

The GCOL statement controls the way in which new values
are loaded into the screen memory. Either a new value (or
colour) specified for a particular pixel is loaded directly
into the appropriate position in the screen memory:

Screen
memory

GCOL 0,

New value

or else a logical operation is performed between the new
value and the current value in the screen memory.

GCOL 3
GCOL 2

GCOL 1

GCOL 1,
GCOL 2,
GCOL 3,

Old value

New value

Screen
memory

The type of logical operation is specified by the first
parameter in the GCOL statement. Tha GCOL statement provides

20

powerful logical and colour processing facilities that can
be used in a wide variety of graphics applications. Some of
these are developed in the remainder of this chapter and
others are utilised in the chapter on animation. Without
such logical facilities many advanced graphics applications
would be impossible. The GCOL facilities are:

GCOL 0, colour any subsequent plotting will be in
the specified colour

GCOL 1, colour the colour that results from
subsequent plotting is produced by
performing an operation between
the specified colour and the
existing screen colour at a pixel

GCOL 2, colour as 1 but the logical operation is
AND

GCOL 3, colour as 1 but the logical operation is
EOR (exclusive OR)

GC0L 4, colour as 1 but the logical operation is
NOT (i.e. the colour at any pixel
visited is inverted)

The application of logical operations such as OR, AND,
EOR and NOT is explained in Appendix 2. For details on the
handling of foreground and background colour, consult our
companion volume or the User Guide. GCOL 1 and 2 have
applications in the dividing of an image into planes such as
foreground, background and midground and GCOL 3 and 4 have
applications in interactive graphics described later.

2.1 Image planes (GCOL 1 and GCOL 2)
We shall start by considering multi-plane images. A multi-
plane image is an abstraction for the convenience of the
programmer. He can build up images independently in planes
that are (virtually) separate. This is useful in animation
(later) and in being able to deal with a composite image,
where different planes have a different priority, e.g.
foreground, midground and background (below). We look first
at the easier problem of constructing separate planes and
switching between them, and then at the more general problem
of building up a composite image from planes of different
priority.

21

Virtual image planes: separate images
I n a f our - col our mode, t wo bi t s per pi xel ar e used i n t he
comput er scr een memor y. However i t i s up t o t he pr ogr ammer
how he uses t hem. We coul d set up a scheme wher e we have t wo
' i ndependent ' pl anes or a scheme wher e we have a f or egr ound
and a mi dgr ound pl ane of t he same i mage. Consi der t he f or mer
scheme. We can set up t he t wo bi t s at a pi xel i n t hi s way:

0 = 00 = i magel and i mage2 backgr ound
1 = 01 = i mage1 f or egr ound
2 = 10 = i mage2 f or egr ound
3 = 11 = i magel and i mage2 f or egr ound

The f our t h code (3=11) i s necessar y t o s i gni f y t hat f or a
par t i cul ar pi xel bot h i magel and i mage2 pl anes ar e ' on' .
St ar t i ng wi t h t he easi er consi der at i on of swi t chi ng bet ween
pl anes (assumi ng t hat bot h i mages ar e al r eady bui l t up) we
woul d pr oceed as f ol l ows:

DI SPLAY i mage1:

VDU 19, 0, backgr oundcol i mage1, 0, 0, 0
VDU 19, 1, f or egr oundcol i mage1, 0, 0, 0
VDU 19, 2, backgr oundcol i mage1, 0, 0, 0
VDU 19, 3, f or egr oundcol i mage1, 0, 0, 0

I mage2 i s t hus set t o t he backgr ound col our sel ect ed f or
i mage1 and becomes i nvi s i bl e.

DI SPLAY i mage2:

VDU 19, 0, backgr oundcol i mage2, 0, 0, 0
VDU 19, 1, backgr oundcol i mage2, 0, 0, 0
VDU 19, 2, f or egr oundcol i mage2, 0, 0, 0
VDU 19, 3, f or egr oundcol i mage2, 0, 0, 0

Now i magel i s set t o t he backgr ound col our sel ect ed f or
i mage2 and becomes i nvi s i bl e.

To pl ot i n t he i mage1 pl ane, say, we have t o pr oceed as
f ol l ows f or each pi xel :

0 = 00 becomes 01
1 = 01 r emai ns 01 (poi nt al r eady t her e)
2 = 10 becomes 11 (i mage2 poi nt al r eady t her e)
3 = 11 r emai ns 11 (i mage2 and i magel poi nt al r eady t her e)

22

The third column is produced by ORing (inclusive) 01 with
the second column and we simply precede any plotting
statements with the appropriate GCOL statement:

PLOT image1: precede PLOT statements with GCOL 1, 1

Similarly to plot in the image2 plane:

0 = 00 becomes 10
1 = 01 becomes 11
2 = 10 remains 10
3 = 11 remains 11

and the appropriate GCOL is:

PLOT image2: precede PLOTs with GCOL 1, 2

The following program builds up a simple image in each image
plane then repeatedly switches between them.

10 MODE 5
20 PROCplotimage1
30 PROCplotimage2
40 FOR screen = 1 TO 10
50 PROCdisplayimage1
60 PROCdelay
70 PROCdisplayimage2
80 PROCdelay
90 NEXT screen

100 END

110 DEFPROCplotimage1
120 GCOL 1, 1
130 PROCdrawacircle(500, 500, 125)
140 ENDPROC

150 DEFPROCplotimage2
160 GCOL 1, 2
170 PROCdrawatriangle(327, 400, 346)
180 ENDPROC

190 DEFPROCdisp1ayimage1
200 VDU 19, 0, 2, 0,0,0
210 VDU 19, 1, 1, 0,0,0
220 VDU 19, 2, 2, 0,0,0
230 VDU 19, 3, 1, 0,0,0
240 ENDPROC

23

250 DEFPROCdisplayimage2
260 VDU 19, 0, 4, 0,0,0
270 VDU 19, 1, 4, 0,0,0
280 VDU 19, 2, 0, 0,0,0
290 VDU 19, 3, 0, 0,0,0
300 ENDPROC

310 DEFPROCdrawacirc1e(xc, yc, r)
320 MOVE xc + r, yc
330 FOR theta = 10 TO 360 STEP 10
340 x= r*COS(RAD(theta))
350 y= r*SIN(RAD(theta))
360 x= xc + x : y = yc + y
370 MOVE xc, yc : PLOT 85, x, y
380 NEXT theta
390 ENDPROC

390 DEFPROCdrawatriangle(xs, ys, s)
400 MOVE xs, ys : DRAW xs+s, ys
410 PLOT 85, xs+s/2, ys+s*0.866
420 ENDPROC

430 DEF PROCdelay
440 TIME = 0
450 REPEAT : UNTIL TIME>100
460 ENDPROC

In the above program note that we are using completely
different colours in each image. Switching between image
planes that use the same colour is important in animation
(Chapter 4).

Incidentally information common to both planes (such as
text, say), need only be plotted once using GC0L 0, 3.

Composite image with priority (3 planes)
Again with a choice of four colours the above scheme can
easily be adapted to set up a three-plane composite image
(foreground, midground and background). Using GCOL the
foreground and midground planes can be independently
accessed and anything drawn in the midground plane that is
shadowed by anything drawn in the foreground plane is
automatically obscured in the composite image. Also we can
delete from the foreground, delete from the midground, add
to the foreground or add to the midground and the
foreground/midground priority is automatically taken into
account. Common operations that we might want to perform
are:

24

Logical image planes Composite display image

(The figures are meant to be solid or filled)

Initial image−a circle in the foreground against a triangle in the midground

Delete foreground from initial image

Delete midground from initial image

Add to foreground in initial image

Add to midground in initial image

25

How this is accomplished is now explained. Suppose we are
operating in a four colour mode (this allows two planes plus
background). A four colour mode means that there are two
bits per pixel, i.e. we can imagine the image memory as two
one-bit planes.

If the two planes have 0,0 in a pixel position, then the
display image is a background point:

0

0

B

A background point

If the two planes have 0,1 in a pixel position then the
display image is a foreground point:

0

1
F

A foreground point

1,0 Means a midground point:

1

0

A midground point

M

Finally 1,1 means a foreground point but this time one that
is obscuring amidground point:

1

1

An (obscuring)

F

foreground point

26

Thus we have

0 = 00 = background point (. in illustrations)
1 = 01 = foreground point (F in illustrations)
2 = 10 = midground point (M in illustrations)
3 = 11 = foreground point (F in illustrations)

(obscuring a midground)

Note that we use two logical colour codes to represent the
foreground. This is because we can have 2 types of
foreground - a foreground point obscuring a a background
point only, and a foreground point obscuring a midground
point. We can now give a few examples of 'plane' plotting
and you can generalise from these examples.

To PLOT in the foreground

We precede any plot statements with GCOL 1,1 (inclusive OR):

GCOL 1,1
PLOT statements to plot figures in foreground plane

Now because

00 OR 01 = 01
background foreground foreground

Background points are obscured by foreground points:

.....................

...FFFFFFFFFFFFF.....

...F.................

...F.................

...FFFFFFFFFFF.......

...F.................

...F.................

...F.................

.....................

To PLOT in the midground

We precede any plot statements with GCOL 1,2 (inclusive OR):

GCOL 1,2
PLOT statements to plot figures in midground plane

Now because

00 OR 10 = 01
background midground midground

27

and

01 OR 10 = 11
foreground midground foreground

background points are obscured by midground points as you
would expect, but points that are are already foreground
remain in the foreground colour (but with code 11 indicating
that they are obscuring a midground point). Thus to build up
information in these two planes we use GCOL 1 (inclusive
OR).

.....................

...FFFFFFFFFFFFF.....

...FM.........MM.....

...F.M.......M.M.....

...FFFFFFFFFFF.M.....

...F...M...M...M.....

...F....M.M....M.....

...F.....M.....M.....

.....................

You can perhaps see from this that after a composite set of
planes has been built up any subsequent additions to the
foreground or midground will be incorporated into the
composite image according to their respective priority.

To DELETE from foreground and midground

Now to delete images or parts of images from planes we use
GCOL 2 (AND). To delete a foreground object, we redraw the
object after using GCOL 2,2, where the second parameter
happens to be the midground colour but is used here as a
'foreground delete code'. To delete a midground object, we
use GCOL 2,1. For example to delete from the foreground:

GCOL 2, 2
PLOT statements to delete figure from foreground plane

and the PLOT statements will be exactly the same as the ones
that were used to draw the object being deleted. Now we have

00 AND 10 = 00
background background

i.e. background points remain as background

01 AND 10 = 00
foreground background

'ordinary' foreground points revert to background

28

10 AND 10 = 10
midground midground

'ordinary' midground points are left unaltered

11 AND 10 = 10

'obscured' midground points are now revealed

.....................

...M...........M.....

...MM.........MM.....

...M.M.......M.M.....

...M..M.....M..M.....

...M...M...M...M.....

...M....M.M....M.....

...M.....M.....M.....

.....................

Thus GCOL 2 (AND) can be used to delete and reveal. These
operations are now demonstrated. The procedures are left
undefined (see earlier sections) but should include colour
fill. The following program draws a red circle in the
foreground plane and a yellow triangle in the midground
plane and any geometrical overlap is automatically taken
care of. Note line 20; remember that we use 2 copies for the
foreground and these of course should be the same colour.

10 MODE 5
20 VDU 19, 3, 1, 0,0,0
25 GCOL 1,1
30 PROCdrawacircle(500, 500, 125)
40 GCOL 1, 2
50 PROCdrawatriangle(327, 400, 346)
60 END

To delete the red circle and reveal any previously hidden
parts of the yellow triangle we can add:

60 keypress = GET
70 GCOL 2, 2
80 PROCdrawacircle(500, 500, 125)

which 'undraws' the cirele.
A convenient alternative to the above uses of GCOL 1 and

GCOL 2 is often useful. Provided that an object being
plotted in a plane does not overlap any object that is
already present in that plane, then GCOL 3 can be used for

29

both the drawing and deleting process. For example to draw
an object in image plane 1:

GCOL 3, 1
PLOTs etc to draw the object

To delete the object we simply repeat exactly the same GCOL
and PLOT statements.

Composite image with priority (5 planes)
On the Model B, in MODE 2, we have 4 bit colour codes (16
colours) and this gives us many more possibilities. The next
program is designed to illustrate one such possibility.

In this program, we have set up four planes plus
background :

foreground (white)
midground (yellow)
rearground (red)
distant (blue)
background (black)

The different colour codes for a pixel together with their
significance are:

actual
code binary colour interpretation

1 0001 white fore
3 0011 white fore obscuring mid
5 0101 white fore obscuring rear
7 0111 white fore obscuring rear, mid
9 1001 white fore obscuring distant

11 1011 white fore obscuring distant, mid
13 1101 white fore obscuring distant, rear
15 1111 white fore obscuring distant, rear, mid

2 0010 yellow mid
6 0110 yellow mid obscuring rear

10 1010 yellow mid obscuring distant
14 1110 yellow mid obscuring distant, rear

4 0100 red rear
12 1100 red rear obscuring distant

8 1000 blue distant
0 0000 black background

Each bit in a colour code represents one of the four planes.
The GCOL 1 colour code for drawing contains a one in the

bit position for the plane involved and zeros in the other
bit positions. The GCOL 2 colour code for erasing contains a

30

zero bit for the plane in which erasing is taking place an
ones for the planes that are to to be unaffected. The GCOL
statements needed for drawing or erasing in each plan
without affecting the other planes are:

draw erase

foreground GCOL 1,1 GCOL 2,14
midground GCOL 1,2 GCOL 2,13
rearground GCOL 1,4 GCOL 2,11
distant GCOL 1,8 GCOL 2, 7

The program repeatedly draws or erases a colour-filled
circle, in a plane specified by the user and with centre an
radius specified by the user. A plane is specified using on
of the keys F(oreground), M(idground), R(earground)
D(istant) or Q(uit). You should experiment with the program
and observe how the above priority system works when drawing
and erasing overlapping circles in different planes.

10 MODE 2
20 VDU 28, 0,1, 19,0
30 VDU 24, 0;0; 1279;963;
40 sin5=SIN(RAD(5)) : cos5=COS(RAD(5))
50 VDU 19, 1,7, 0,0,0 : VDU 19, 3,7, 0,0,0
60 VDU 19, 5,7, 0,0,0
70 VDU 19, 9,7, 0,0,0 : VDU 19, 11,7, 0,0,0
80 VDU 19, 13,7, 0,0,0 : VDU 19, 15,7, 0,0,0
90 VDU 19, 2,3, 0,0,0 : VDU 19, 6,3, 0,0,0

100 VDU 19, 10,3, 0,0,0 : VDU 19, 14,3, 0,0,0
110 VDU 19, 4,1, 0,0,0 : VDU 19, 12,1, 0,0,0
120 VDU 19, 8,4, 0,0,0
130 REPEAT : PROCcommand : UNTIL plane$="Q"
140 MODE 7 : END

150 DEF PROCcommand
160 plane$ = FNcommand("Which plane" ,"FMRDQ")
170 IF plane$="Q" THEN ENDPROC
180 PROCcirclespec
190 IF plane$="F" THEN PROCdraworerase(1,14)
200 IF plane$="M" THEN PROCdraworerase(2,13)
210 IF plane$="R" THEN PROCdraworerase(4,l1)
220 IF plane$="D" THEN PROCdraworerase(8,7)
230 ENDPROC

240 DEF FNcommand(type$,coms$)
250 LOCAL c$
260 PRINT type$; "(";coms$;")?";
270 REPEAT : c$=GET$: UNTIL INSTR(coms$,c$)>0
280 CLS
290 =c$

31

300 DEF PROCcirclespec
310 INPUT "Centre(x,y)",cx,cy
320 INPUT "Radius",r
330 CLS
340 ENDPROC

350 DEF PROCdraworerase(drawcode,erasecode)
360 LOCAL op$
370 op$ = FNcommand("Draw or Erase","DE")
380 IF op$="D" THEN GCOL 1,drawcode

 ELSE GCOL 2,erasecode
390 PROCcircle
400 ENDPROC

410 DEF PROCcircle
420 LOCAL oldx,oldy
430 MOVE cx+r ,cy
440 oldx=r : o1dy=0
450 FOR t=5 TO 360 STEP 5
460 x= oldx*cos5 + oldy*sin5
470 y= -oldx*sin5 + oldy*cos5
480 MOVE cx ,cy
490 PLOT 81,x,y
500 oldx=x : oldy=y
510 NEXT t
520 ENDPROC

Another possibility would be to have three priority levels
plus background with:

3 foreground colours (spaceships?)
1 midground colour (planets?)
1 rearground colour (stars?)
1 background colour (sky?)

This is discussed in Exercise 5 below.

Exercises
1 Undraw a rectangle by working from the centre as if it

were a stage curtain being pulled to each wing.
Underneath detail should be revealed in another colour:
legendry that might be used in a caption sequence or
anything else you fancy.

2 Plot two pictures using values from DATA statements and
then repeatedly read a key. Depending on which key was
pressed, display the first picture or display the second
picture or display both pictures at once (without
redrawing them).

3 Certain patterns are used for testing for various types

32

of colour blindness. These consist of a pattern of dots
containing a large letter or number made up of dots in
one colour, the rest of the dots being in another colour.
Write a program that generates VDU 19 statements to
switch through a sequence of colour combinations.

4 Write a program that uses data to draw four graphs (on
the same axes) representing four year's sales and then
uses VDU 19 commands to display one, two, three or four
of the graphs in response to keys pressed by a user.

5 Modify the four-plane demonstration program so that there
are three levels of priority, foreground, midground and
rearground, with a choice of three foreground colours.
You could use the following settings for the colour
codes:

actual
code binary colour interpretation

1 0001 red fore
2 0010 green fore
3 0011 yellow fore

5 0101 red fore obscuring mid
6 0110 green fore obscuring mid
7 0111 yellow fore obscuring mid

9 1001 red fore obscuring rear
10 1010 green fore obscuring rear
11 1011 yellow fore obscuring rear

13 1101 red fore obscuring mid, rear
14 1110 green fore obscuring mid, rear
15 1111 yellow fore obscuring mid, rear

4 0100 blue mid
12 1100 blue mid obscuring rear

8 1000 magenta rear

0 0000 black background

You will find that to plot a foreground circle, you may
first have to erase any existing foreground colour in the
circle.

2.2 Basic interaction techniques (GCOL 3 and GCOL 4)
In this section two interaction techniques are implemented.
Both of these use the keyboard, but clearly the principles
are the same for either a keyboard or a more convenient
device. Both interaction techniques can be used in picture

33

construction and this forms a part of most CAD (Computer
Aided Design) systems. Such techniques enable designers to
work in a two-dimensional or picture domain. This means for
example that an electrical engineer can work with circuit
diagrams and an architect with elevations or other
projections of buildings, rather than just numbers. Now CAD
techniques are an extensive topic by themselves and we shall
only be concerned here with picture or line-drawing
generation. It is not out of place to examine just briefly
how such techniques 'fit in' to CAD programs. A CAD program
that accepts a picture as input has to deduce certain
information from it. An electrical engineer may draw a
circuit diagram as input. A simple but somewhat unrealistic
example serves to illustrate the point; say he inputs a
series parallel resistor configuration:

R1

R2

R3

From this the CAD program will have to deduce that a
resistor is connected in series to two resistors in parallel
and that the total resistance is:

RT = R1 + R2*R3/(R2 + R3)

It can then evaluate numerical calculations and output
required information graphically or otherwise back to the
user. The CAD program will also be able to cope with
alterations to the diagram - additions, deletions etc.

The circuit diagram could be built up using a technique
known as 'picking and dragging'. A user is presented with a
menu of objects and can pick a particular object and drag it
to anywhere on the screen:

C

R

L

34

Other operations that might be available on objects are
magnification and rotatation. Again in the case of an
electrical circuit diagram, in parallel with the picture-
drawing modules there will be procedures that keep track of
the spatial relationship between components. The CAD program
can then build up a formula reflecting some required
attribute or behaviour of the circuit. This might be
transfer characteristic, frequency response, etc. The
computer program's view of the problem is numerical or
formula based while the engineer's view remains pictorial.
This is a tremendous advantage in most design problems.

In the same way an architect may sketch in the elevations
of a house and ask for costing, insulation or sunlight
calculations.

In the next two sections we look at the front end of such
CAD programs firstly by looking at how we can sketch line
drawings on the screen, and secondly how we can pick and
drag predefined sub-pictures across the screen.

Rubberband line drawing
Using this technique we can build up a sketch or line
drawing on the screen, using line segments whose length and
direection are controlled from the keyboard. The program
starts off by drawing an arbitrary line from (0,0) to
(0,500). By using keys R, L, U, and D (Right, Left, Up and
Down) as direction indicators we can move the end point of
the line anywhere we want. Key F can be used to 'Fix' the
end point of the line.

Start of program
Arbitrary line drawn from
(0,0) to (500,500)

Line endpoint can be moved
anywhere from (500,500)

35

Thus any shape can be built up

Key F depressed 2nd line arbitrarily
drawn to (500,500) and 1st line
permanently drawn

This line can be moved anywhere
and key F depressed again

Here is a program that illustrates a simple approach to
'rubberbanding' .

10 MODE 4 : xstep =4 : ystep =4
20 xs= 0 : ys= 0
30 x= 640 : y = 512
40 GCOL 3, 1
50 PROCdrawordelete
60 REPEAT
70 command$ = GET$
80 PROCprocesscommand
90 UNTIL command$ = "Q"

100 MODE 7 : END

36

110 DEF PROCprocesscommand
120 IF INSTR("FLRUD",command$)=0 THEN ENDPROC
130 PROCdrawordelete
140 IF command$ = "F" THEN PROCfix
150 IF command$ = "L" THEN x = x - xstep
160 IF command$ = "R" THEN x = x + xstep
170 IF command$ = "U" THEN y = y + ystep
180 IF command$ = "D" THEN y = y - ystep
190 PROCdrawordelete
200 ENDPROC

210 DEF PROCdrawordelete
220 MOVE xs, ys : DRAW x,y
230 ENDPROC

240 DEF PROCfix
250 REM Permanent draw
260 GCOL 0,1 : PROCdrawordelete
270 GCOL 3,1
280 xs = x : ys = y
290 x= 640 : y= 512
300 ENDPROC

'xs' and 'ys' always represent the start position of the
line currently being drawn and 'x' and 'y' represent the
position of the end of the line being moved. The program
consists of a REPEAT loop that processes commands UNTIL the
key Q (Quit) is typed.

PROCprocesscommand first checks for a valid key. It then
calls PROCdrawordelete to delete the line in its current
position. If "F" has been pressed, then the line currently
being operated on is fixed and the coordinates are set for a
new line. One of the coordinates x, y is updated if one of
the movement keys (L, R, U, D) has been pressed. The
coordinate increments, 'xstep' and 'ystep', are set to the
dimensions of a pixel in the mode being used.
PROCprocessccamnand terminates by drawing a line to the
position now specified by the x-y coordinates.

The critical statement in the program is GCOL 3,1
(exclusive OR). This means that lines can be moved over
existing lines without permanently wiping part of them out,
as would be the case without this facility.

1 2

37

Normally to delete an object we would re-plot the object in
the background colour but this would wipe out intersecting
parts of existing lines. Using the above method, an existing
line disappears only momentarily while the current moving
line passes over it. Thus line segment 2 (above) can be
swept over existing line segment 1 without rubbing it out.
This can be explained by reference to the following table.

1st. DRAW 2nd. DRAW
old plotting new old plotting new
0 1 1 1 1 0
1 1 0 0 1 1

You can see from the bottom row of the table that plotting a
1 on top of a 1 in the first DRAW results in a zero that is
restored to a 1 by the 2nd DRAW. The top row of the table
gives the effect of a normal draw and erase function. The
second DRAW thus erases or undraws, at the same time
restoring any holes in existing lines made by the 1st DRAW.
We leave it as an exercise to work out why the behaviour is
unaltered if GCOL 3 is replaced by GCOL 4.

If you try using this simple program, you will find that
it suffers from a number of disadvantages. In order to make
it more useful as a line-drawing program, we need to make a
number of improvements and extensions.

First, we will look at an improved program structure that
will speed up the rubberbanding process. In the above
program, when the end-point of the rubberband line is moved
several times in the same direction, the line is deleted and
redrawn for each intermediate position of the end-point.
Using this approach would make a realistic CAD (Computer
Aided Design) program unacceptably slow. The improved
program structure below permits the user to hold down one of
the movement keys and the end-point of the rubberband line
is moved in one step by an amount that depends on the length
of time for which the key is pressed. The line is deleted
and redrawn only once to effect the complete move.

10 MODE 4 : xstep = 4 : ystep = 4
20 xs = 0 : ys =0
30 x= 640 : y = 512
40 GCOL 3, 1
50 PROCdrawordelete
60 *FX 11,10
70 *FX 12,1
80 command$=GET$
90 REPEAT

100 PROCprocesscommand
110 UNTIL command$ = "Q"
120 *FX 12, 0
130 MODE 7 : END

38

140 DEF PROCprocesscommand
150 PROCcountcoms
160 IF INSTR("FLRUD",comand$) = 0 THEN

command$=GET$: ENDPROC
170 PROCdrawordelete
180 IF command$ = "F" THEN PROCfix
190 IF command$ = "L" THEN x = x - xstep*coms
200 IF command$ = "R" THEN x = x + xstep*ccms
210 IF command$ = "U" THEN y = y + ystep*coms
220 IF command$ = "D" THEN y = y - ystep*coms
230 PROCdrawordelete
240 IF nextcom$="" THEN command$=GET$

 ELSE command$=nextcom$
250 ENDPROC

260 DEF PROCcountcoms
270 coms=0
280 REPEAT : coms=coms+1 : nextcom$=INKEY$(11)
290 UNTIL nextcom$<>command$
300 ENDPROC

310 DEF PROCdrawordelete
320 MOVE xs, ys : DRAW x, y
330 ENDPROC

340 DEF PROCfix
350 REM Permanent draw
360 GCOL 0,1 : PROCdrawordelete
370 GCOL 3,1
380 xs = x : ys = y
390 x = 640 : y = 512
400 ENDPROC

The *FX commands at lines 60 and 70 are used to increase the
sensitivity of the keys. *FX 11 sets the delay before
repeated copies of a character are sent to the computer by a
continually depressed key. *FX 12 sets the delay between
subsequent repeats of a character. (Each of these 'operating
system commands' must appear on a separate numbered line.)

*FX 11,10

means that if a key is pressed for less than 10 hundredths
of a second, then only one character is sent by that key.

*FX 12,1

now means that if a key is pressed for more than 10
hundredths of a second, then repeated copies of the
character are sent by the key every 1 hundredth of a second.

The program enters PROCprocesscommand having read the
next commmand character. PROCcountcoms is then used to count

39

any repeats of the command character in case the command key
is being held down. If the command key is a movement key,
then this count is used in changing x or y by an appropriate
multiple of the basic increment.

PROCprocesscommand terminates (at line 160 or line 240)
by ensuring that 'command$' has been set to the next command
character, using GET$ if necessary, ready for the next
execution of the main loop.

Now, even although we have speeded it up, the program is
still slightly impractical - figures are constructed without
the 'pen being lifted off the paper'. That is to say after a
line is fixed it is assumed that another line is required.
This may not be the case and the easiest way to incorporate
a line on/off facility is to have another key controlling
this option:

221 IF command$ = "0" THEN lineoff = NOT lineoff

This IF statement sets up a 'push on/push off' key - a
mechanism that we shall use again. Whenever we introduce an
extra command key, we must extend the string of permitted
commands:

160 IF INSTR("FLRUDO",command$)=0 THEN
command$=GET$: ENDPROC

The variable 'lineoff' is originally set to FALSE:

35 lineoff=FALSE

Pressing the appropriate key will change its value from
FALSE to TRUE or vice versa. PROCdrawordelete can then be:

310 DEF PROCdrawordelete
315 IF lineoff THEN ENDPROC
320 MOVE xs, ys : DRAW x, y
330 ENDPROC

which prevents the drawing action if the line is switched
off. Now, for example, to construct two isolated rectangles
we would:

1. Draw the first
rectangle

40

2. Draw a line to
the start of the
second

3. Switch off this
line (press 0)

4. Fix the invisible
line & press 0

5. Draw the new
rectangle

Rubberband drawing aids
There are two useful elaborations that we can make to our
rubberband line drawing program. Firstly we can include a
horizontal and vertical cursor line to enable us to line up
different parts of a drawing. This simply adds another two
selections to PROCprocesscommand:

36 hcursor = FALSE : vcursor = FALSE

160 IF INSTR("FLRUDOHV",command$)=0 THEN
command$=GET$: ENDPROC

225 IF command$ = "H" THEN hcursor = NOT hcursor
226 IF command$ = "V" THEN vcursor = NOT vcursor

41

This means that the H and V key functions are also pushon/
push off keys. PROCprocesscommand can now be further
elaborated to check if cursors have to be drawn:

170 PROCdraworde1ete : PROCcheckcursors

230 PROCdrawordelete : PROCcheckcursors

410 DEF PROCcheckcursors
420 IF hcursor THEN MOVE 0,y:DRAW 1279,y
430 IF vcursor THEN MOVE x,0:DRAW x,1023
440 ENDPROC

The next photograph shows the cursor being used in the
course of a construction.

Another useful aid is a length measuring device that
indicates the current length of a line. Consider for example
measuring the current x projection of the line:

37 printmeasure = FALSE

160 IF INSTR("FLRUDOHVM",command$)=0 THEN
 command$=GET$: ENDPROC

227 IF command$ = "M" THEN
 printmeasure = NOT printmeasure

235 PROCmeasure

450 DEF PROCmeasure
460 IF printmeasure THEN

 PRINT TAB(3,3); ABS(xs-x)
 ELSE PRINT TAB(3,3); SPC(4)

470 ENDPROC

42

If the measure option is switched on then PROCmeasure is
obeyed and prints the current x projection of the line. In
the next illlustration the hangers on the suspension bridge
were accurately positioned using this facility.

Picking and dragging an object
We have already mentioned the use of this particular
technique above so we'll jump straight in to doing it. In
the next program we have set up a menu of objects in the
right hand side of the screen. An object is selected by
typing 1, 2 or 3. In practice, if we were using this
technique frequently, an object would be selected from the
menu by pointing a light pen at the appropriate position on
the screen. When an object is selected it is dragged into
transition and fixed as before. Instead of dragging a line
we are now dragging a complete object.

10 MODE 0 : xstep = 2 : ystep = 4
20 PROCdrawmenu
30 GCOL 3, 1
40 PROCpick
50 REPEAT
60 x=100 : y=100
70 PROCdrawordelete(selection$)
80 *FX 11,10
90 *FX 12,1

100 command$=GET$
110 fixed = FALSE
120 REPEAT
130 PROCprocesscommand
140 UNTIL fixed
150 *FX 12,0
160 PROCpick
170 UNTIL selection$ = "Q"
180 MODE 7 : END

43

190 DEF PROCdrawmenu
200 MOVE 900,0 : DRAW 900,1000
210 PROCdrawresistor(1000,600)
220 PROCdrawcapacitor(1000,400)
230 PROCdrawdiode(1000,200)
240 PRINT TAB(60,12);"1"; TAB(60,18);"2";

TAB(60,24);"3"
250 ENDPROC

260 DEF PROCpick
270 PRINT TAB(0,0);"Pick, (1/2/3/Q)";
280 REPEAT : selection$=GET$
290 UNTIL INSTR("123Q",selection$)>0
300 PRINTTAB(0,0);" ";
310 ENDPROC

320 DEF PROCprocesscommand
330 PROCcountcoms
340 IF INSTR("FLRUD",command$)=0 THEN

 command$=GET$: ENDPROC
350 PROCdrawordelete(selection$)
360 IF command$="F" THEN

 PROCfix : fixed=TRUE : ENDPROC
370 IF command$="L" THEN x = x-xstep*coms
380 IF command$="R" THEN x = x+xstep*coms
390 IF command$="U" THEN y = y+ystep*coms
400 IF ccmmand$="D" THEN y = y-ystep*coms
410 PROCdrawordelete(selection$)
420 IF nextcom="" THEN command$=GET$

 ELSE command$=nextcom$
430 ENDPROC

440 DEF PROCcountcoms
450 coms=0
460 REPEAT : coms=coms+1 : nextcom$=INKEY$(11)
470 UNTIL command$<> nextcom$
480 ENDPROC

490 DEF PROCfix
500 GCOL 0,1:PROCdrawordelete(selection$)
510 GCOL 3,1
520 ENDPROC

530 DEF PROCdrawordelete(s$)
540 IF s$="1" THEN PROCdrawresistor(x,y)
550 IF s$="2" THEN PROCdrawcapacitor(x,y)
560 IF s$="3" THEN PROCdrawdiode(x,y)
570 ENDPROC

44

580 DEF PROCdrawresistor(x,y)
590 MOVE x,y : PLOT 1,30,0
600 PLOT 1,0,10 : PLOT 1,60,0
610 PLOT 1,0,-20 : PLOT 1,-60,0
620 PLOT 1,0,10 : PLOT 0,60,0
630 PLOT 1,30,0
640 ENDPROC

650 DEF PROCdrawcapacitor(x,y)
660 MOVE x,y : PLOT 1 ,30 ,0
670 PLOT 0, 0, -30 : PLOT 1 ,0 ,60
680 PLOT 0,20,0 : PLOT 1,0 ,-60
690 PLOT 0,0,30 : PLOT 1,30,0
700 ENDPROC

710 DEF PROCdrawdiode(x,y)
720 MOVE x,y : PLOT 1 ,30,0
730 PLOT 0,0, -25 : PLOT 1,0,50
740 PLOT 1,25,-25 : PLOT 1,-25,-25
750 PLOT 0,25,25 : PLOT 1,30,0
760 ENDPROC

The program to drag an object is identical to the
rubberband proyram with

PROCCdrawordelete

replaced by:

PROCdrawordelete(selection$)

This procedure selects one out of the three drawing
procedures and the selected object is drawn at a position
under control of the directional keys. The next illustration
shows the screen during execution of the above program.

45

Scaling and rotating a dragged object
Other common facilities in picking and dragging programs are
magnification and rotation. For example in the above
dragging program, another key option could be "M" for
'Magnify' and T (turn) for rotation. The structural
alterations now required in the program are significant. In
particular we have to change the way in which we store shape
information. Currently this information is embedded in the
drawing procedures as parameters of the PLOT 1 statement.
The most convenient scheme is to store the current
displacement coordinate values for an object in an array.
These displacements will of course change as a function of
the angle of rotation. Initially we could set up an array
for a square, for example, as:

squarex(1) 100 squarey(1) 0
(2) 0 (2) 100
(3) -100 (3) 0

To draw the square in any (dragged) position (x,y) we need:

570 DEF PROCdrawsquare(x, y)
580 MOVE x, y
590 FOR i = 1 TO 3
600 PLOT 1, squarex(i), squarey(i)
610 NEXT i
620 DRAW x, y
630 ENDPROC

This is the same scheme as we have in the component drawing
procedures (above) except that we are now storing the
displacements in an array. Now to rotate an object we would
press T (turn) and make the object rotate by a predetermined
angular increment of, say, 10 degrees by altering the
relative displacements. To do this we simply use a standard
two-dimensional rotation transform (see Chapter 3):

800 DEF PROCrotate
810 LOCAL x,y
820 sintheta = SIN(RAD(10))
830 costheta = COS(RAD(10))
840 FOR i = 1 TO 3
850 x = x(i) : y = y(i)
860 x(i) = x*costheta + y*sintheta
870 y(i) = -x*sintheta+ y*costheta
880 NEXT i
890 ENDPROC

Each time the key is depressed new displacements are

46

calculated {previous. Note that the figure is stationary
while it is being rotated; it cannot be rotated and dragged
at the same time.

Saving a line drawing
An image that has been created by rubberbanding can be saved
as a list of coordinates and subsequently regenerated by a
simple program reading the coordinates from a file and using
DRAW. The coordinates can be saved initially in two parallel
arrays and when the drawing is complete, the array contents
dumped into a file. The coordinate saving should clearly be
part of the 'fixing' process:

340 DEF PROCfix
350 REM Permanent draw
360 GCOL 0 ,1 : PROCdraworde1ete
370 GCOL 3, 1
375 line = line + 1
376 xcoord(line) = x
377 ycoord(line) = y
380 xs = x : ys = y
390 x = 640 : y = 512
400 ENDPROC

Similarly an image that has been created by picking and
dragging an object can be saved, most economically, using
three parallel arrays. The program would store, for each
object, a pair of coordinates followed by a code indicating
the class of object drawn at that position. The program
would terminate by outputting the contents of the three
arrays to a file. The regenerating program would contain the
object-generating procedures again called from a shape
selection procedure, the appropriate procedure for each
shape being selected according to the stored code.

Exercises

1 Improve the rubberband program so that the start
coordinate is input from the keyboard.

2 Introduce colour so that the fixed lines are displayed in
one colour, but the moving line appears in a contrasting
colour.

3 Consult the User Guide and change the rubberband program
so that the cursor arrow keys are used for controlling
the movement of the endpoints of the line.

4 Write a rubberband program where the permanent lines are
to be constrained to the horizontal or vertical
direction. For example an imperfectly drawn horizontal

47

line:

is to be corrected to a perfect horizontal line:

5 Write a picking and dragging program that picks either a
hexagon or an equilateral triangle and drags it to a
required position, fixes it there and colours it in a
colour that is selected by another key. The hexagon and
triangle should each have the same length of side so that
they can be fitted together.

6 Write a picking and dragging program that will allow such
diagrams as the following to be constructed: Note that
this will have to contain both object dragging and
rotation (0 or 90 degrees only) as well as rubberband
line drawing.

7 Incorporate the picture-filing suggestions in your
programs.

2.3 Co1our-fi11 - general algorithms
The triangular fill facility (PLOT 80 to 87) is generally
inconvenient in interactive graphics. In particular figures
containing interior holes or concavities are difficult to
fill using this method. Also if we are drawing a region

48

outline using a light pen or graphics tablet it is
inconvenient to store the coordinates of pixels on the
outline. We require a general algorithm that will fill any
region already delineated on the screen. Algorithms that
fill the interior of any closed figure sometimes called
'flood-fill' algorithms and they work assuming that the
region to be filled is delineated by a boundary of pixels in
a non-background colour and that the interior of the region
is '4-connected'. This means that all pixels within the
region can be reached one from the other by a sequence of
any of the movements up, down, left and right.

There are two approaches that we can make to this problem:
one is recursive and is described in Chapter 7; the other is
non-recursive and is now described. The algorithm below is
extremely slow, but it provides a good introduction to the
ideas involved. This algorithm uses a FIFO (first in, first
out) buffer or queue. A program that fills the area enclosed
by two concentric circles is now given.

10 INPUT "RADII",r1,r2
20 MODE 1
30 GCOL 0,1
40 PROCcircle(r1,640,512)
50 PROCcircle(r2,640,512)
60 PROCfillfrom(640+(r1+r2)/2,512)
70 END

90 DEF PROCcircle(r,xc,yc)
100 LOCAL t
110 MOVE xc+r,yc
120 FOR t=10 TO 360 STEP 10
130 DRAW xc+r*COS(RAD(t)),yc+r*SIN(RAD(t))
140 NEXT t
150 ENDPROC

200 DEF PROCfillfrom(startx,starty)
210 DIM queuex(500), queuey(500)
220 first=1 : last=0
230 PROCfill(startx,starty)
240 REPEAT
250 PROCunqueue
260 PROCfi1l(x,y+4)
270 PROCfill(x,y-4)
280 PROCfill(x+4,y)
290 PROCfill(x-4,y)
300 UNTIL first=(last+1) MOD 500
310 ENDPROC

49

330 DEF PROCfill(x,y)
340 IF POINT(x,y)>0 THEN ENDPROC
350 PLOT 69,x,y
360 PROCqueue(x,y)
370 ENDPROC

390 DEF PROCqueue(x,y)
400 last=(last+1)MOD500
410 queuex(last)=x
420 queuey(last)=y
430 ENDPROC

450 DEF PROCunqueue
460 x=queuex(first)
470 y=queuey(first)
480 first=(first+1)MOD500
490 ENDPROC

PROCfillfrom is initiated from a start point and that start
point is coloured and added to a queue (by calling
PROCfilll. PROCfillfrom then repeatedly takes the first
point from the queue and examines each of the neighbouring
N, S, E and W points (by calling PROCfill for each of these
points in turn). Each time PROCfil1 is called, it colours
the point it is given (if it is not already coloured) and
adds that point to the end of the queue. Adding a point to
the queue in this way ensures that it will subsequently be
removed from the queue and its neighbours examined.

The reason the queue is made a FIFO is to prevent it
becoming too large. If for example we made the queue an
ordinary stack (LIFO or last in first out), as you may see
suggested in computer graphics textbooks, it would gradually
fill up and would run out of memory.

For the queue, we use two arrays, one for x-coordinates
and one for y-coordinates. Two variables indicate the
positions of the 'first' and 'last' items in the queue.

queue x

first

last

queue y

50

The arrays are treated as circular so that when the end
of the queue reaches reaches the end of the arrays, the
queue is 'wrapped around' and continues into the space that
is now free at the start of the arrays.

queue x queue y

first

last

PROCfillfrom repeatedly takes the next point from the
queue until the queue is empty. The photograph shows the
algorithm in the course of filling. Note that the
'wavefronts' are diagonal. This is a consequence of using a
FIFO queue in this particular context.

An illustrative sequence of how the algorithm works in
detail is now given for a simple rectangular region. The
start point is the bottom left hand corner.

51

pixel 1 is filled and added to the queue

1st cycle of REPEAT loop in PROCfillfrom
pixel 1 is removed from queue and neighbouring points

examined

1 2 3 4 5

109876

11 12 13 14 15

2019181716

queue is now 6, 2
pixels 6 and 2 are filled

2nd cycle, pixel 6 removed and neighbours examined.

1 2 3 4 5

109876

11 12 13 14 15

2019181716

queue is now 2, 11, 7
pixels 11 and 7 are also filled.

3rd cycle, pixel 2 removed and neighbours examined.

1 2 3 4 5

109876

11 12 13 14 15

2019181716

52

queue is now 11, 7, 3
pixel 3 is filled

4th cycle, pixel 11 removed and neighbours examined.

1 2 3 4 5

109876

11 12 13 14 15

2019181716

queue is now 7, 3, 16, 12
pixels 16 and 12 are filled

This sequence continues until the queue is empty.
Later versions of the Operating System provide a PLOT

command for horizontal filling of a row of pixels up to a
boundary. It is convenient to postpone discussion of this
facility until Chapter 7 (recursion).

Exercises

1 Draw a checker board or games board pattern using colour-
fill.

2 As an aid to understanding the queue fill algorithm,
build up on paper a sequence showing a shape being filled
from a central point.

3 Write a rubberbanding program that includes a paint
option for colouring the region containing the current
point.

53

