20
Chapter 2 Logical processing of colour
and interactive graphics

In this chapter we exam ne in detail the uses of the |ogica
processing facilities available in the GCO.statenent. In
particular we | ook at how they can be used to create user
defi ned mappi ngs of the screen nmenory and to provide
interactive graphics facilities.

The GCOL statenent controls the way in which new val ues
are | oaded into the screen nmenory. Either a new value (or
colour) specified for a particular pixel is |loaded directly
into the appropriate position in the screen nenory:

GCOL 0, =0
Screen
memory

New value

or else a logical operation is perfornmed between the new
val ue and the current value in the screen nenory.

GCOL 1,
GCOL 2,
GCOL 3, [
o
Screen
Gc?gf)ll_ 2 I memory
Old value
New value

The type of |ogical operation is specified by the first
paraneter in the GCOL statement. Tha GCOL statenent provides

21

power ful | ogical and colour processing facilities that can
be used in a wide variety of graphics applications. Sone of
these are developed in the renmainder of this chapter and
others are utilised in the chapter on ani mati on. Wt hout
such logical facilities many advanced graphics applications
woul d be inpossible. The GCOL facilities are:

GCOL 0, col our any subsequent plotting will be in
t he specified col our

GCOL 1, col our the colour that results from
subsequent plotting is produced by
perform ng an operation between
the specified colour and the
exi sting screen colour at a pixel

GCOL 2, col our as 1 but the logical operation is
AND
GCOL 3, col our as 1 but the logical operation is

EOR (excl usive OR)

G0L 4, col our as 1 but the logical operation is
NOT (i.e. the colour at any pixel
visited is inverted)

The application of |ogical operations such as OR AND,
EOR and NOT is explained in Appendix 2. For details on the
handl i ng of foreground and background col our, consult our
compani on vol une or the User Guide. GCOL 1 and 2 have
applications in the dividing of an image into planes such as
foreground, background and m dground and GCOL 3 and 4 have
applications in interactive graphics described |ater.

2.1 Image planes (GCOL 1 and GCOL 2)

We shall start by considering nmulti-plane inmages. A nulti-
pl ane inmage is an abstraction for the conveni ence of the
programer. He can build up images independently in planes
that are (virtually) separate. This is useful in animation
(later) and in being able to deal with a conposite inmage,
where di fferent planes have a different priority, e.g.
foreground, m dground and background (below). W |ook first
at the easier problemof constructing separate planes and
swi tching between them and then at the nore general problem
of building up a conposite inmage from pl anes of different
priority.

22

Virtual inmage planes: separate inages

In a four-colour node, two bits per pixel are used in the
conputer screen nmenory. However it is up to the progranmer
how he uses them W could set up a schenme where we have two
"independent' planes or a schene where we have a foreground
and a m dground plane of the sanme inage. Consider the fornmer
schene. W can set up the two bits at a pixel in this way:

0 = 00 = imagel and i mage2 background
1 = 01 = inagel foreground
2 = 10 = i mage2 foreground
3 = 11 = inmagel and inmage2 foreground

The fourth code (3=11) is necessary to signify that for a
particul ar pixel both inagel and inmage2 planes are 'on'
Starting with the easier consideration of swtching between
pl anes (assum ng that both inages are already built up) we
woul d proceed as foll ows:

DI SPLAY i magel

VDU 19, 0, backgroundcol i magel
VDU 19, 1, foregroundcolimagel
VDU 19, 2, backgroundcol i nagel
VDU 19, 3, foregroundcolimagel

cooo
cooo
cocoo

Image2 is thus set to the background col our selected for
i magel and becones invisible.

DI SPLAY i mage?2

VDU 19, 0, backgroundcol i mage2,
VDU 19, 1, backgroundcol i magez,
VDU 19, 2, foregroundcolinage2,
VDU 19, 3, foregroundcolinmagez2,

cooo
cooo
cocoo

Now i magel is set to the background col our sel ected for
i mage2 and becones invisible.

To plot in the imagel plane, say, we have to proceed as
follows for each pixel

00 beconmes 01

01 remains 01 (point already there)

10 becones 11 (inmage2 point already there)

11 remains 11 (inage2 and i magel point already there)

WN PO

23

The third columm is produced by ORing (inclusive) 01 with
the second colum and we sinply precede any plotting
statements with the appropriate GCOL statenent:

PLOT i magel: precede PLOT statenents with GCOL 1, 1

Simlarly to plot in the inmage2 pl ane:
0 = 00 becones 10
1 = 01 becones 11
2 = 10 remains 10
3 =11 remains 11

and the appropriate GCOL is:
PLOT i mage2: precede PLOTs with GCOL 1, 2

The followi ng programbuilds up a sinple inage in each i mage
pl ane then repeatedly sw tches between them

10 MODE 5
20 PROCpl oti magel
30 PROCpl oti mage2
40 FOR screen = 1 TO 10
50 PROCdi spl ayi magel
60 PROCdel ay
70 PROCdi spl ayi mage2
80 PROCdel ay
90 NEXT screen
100 END
110 DEFPROCpI oti magel
120 Gcaln 1, 1
130 PROCdr awaci r cl e(500, 500, 125)
140 ENDPROC
150 DEFPRQCpI oti mage2
160 cGcoL 1, 2
170 PROCdr awat ri angl e(327, 400, 346)
180 ENDPROC
190 DEFPROCdi splayl magel
200 vDU 19, 0, 2, 0,0,0
210 vbU 19, 1, 1, 0,0,0
220 VDU 19, 2, 2, 0,0,0
230 vbU 19, 3, 1, 0,0,0
240 ENDPROC

24

250 DEFPROCdi spl ayi mage2

260 vDU 19, 0, 4, 0,0,0
270 vDU 19, 1, 4, 0,0,0
280 vDbU 19, 2, 0, 0,0,0
290 vbU 19, 3, 0, 0,0,0

300 ENDPROCC

310 DEFPROCdr awacircle(xc, yc, r)
320 MOVE xc + r, yc

330 FOR theta = 10 TO 360 STEP 10
340 x= r*COS(RAD(t het a))

350 y= r*SIN(RAD(t het a))

360 X= XC + X : y=yc +y

370 MOVE xc, yc : PLOT 85, X, y
380 NEXT t heta

390 ENDPRCC

390 DEFPROCdrawatri angl e(xs, ys, s)
400 MOVE xs, ys : DRAWXxs+s, ys
410 PLOT 85, xs+s/2, ys+s*0. 866
420 ENDPROC

430 DEF PROCdel ay

440 TIME =0

450 REPEAT : UNTIL TI ME>100
460 ENDPROC

In the above programnote that we are using conpletely
different colours in each inmage. Swi tching between inmage
pl anes that use the sane colour is inportant in anination
(Chapter 4).

Incidentally information common to both planes (such as
text, say), need only be plotted once using GOOL 0, 3.

Conposite imge with priority (3 planes)

Again with a choice of four colours the above schene can
easily be adapted to set up a three-plane conposite inage
(foreground, mdground and background). Using GCOL the
foreground and m dground pl anes can be i ndependently
accessed and anything drawn in the mdground plane that is
shadowed by anything drawn in the foreground plane is
automatically obscured in the conposite image. Also we can
delete fromthe foreground, delete fromthe mdground, add
to the foreground or add to the m dground and the
foreground/ m dground priority is automatically taken into
account. Common operations that we m ght want to perform
are:

Logical image planes Composite display image
(The figures are meant to be solid or filled)
Initial image—a circle in the foreground against a triangle in the midground

VAN |

/ _

Delete foreground from initial image

A\

/ _

Delete midground from initial image

Add to foreground in initial image
/\ |
Add to midground in initial image

! @ .

25

26

How this is acconplished is now expl ai ned. Suppose we are
operating in a four colour node (this allows two planes plus
background). A four col our node neans that there are two
bits per pixel, i.e. we can inmagine the i nage nenory as two
one-bit pl anes.

If the two planes have 0,0 in a pixel position, then the
di splay inage is a background point:

0 — P

A background point

If the two planes have 0,1 in a pixel position then the
di splay image is a foreground point:

_\ A foreground point

1,0 Means a m dground point:

\—\ A midground point

Finally 1,1 neans a foreground point but this tine one that
i s obscuring am dground point:

_\ An (obscuring)

foreground point

27
Thus we have

0 = 00 = background point (. in illustrations)

1 =01 = foreground point (Fin illustrations)

2 =10 = midground point (Min illustrations)

3 =11 = foreground point (F in illustrations)
n

(obscuring a nidground)

Note that we use two | ogical colour codes to represent the
foreground. This is because we can have 2 types of
foreground - a foreground point obscuring a a background
point only, and a foreground point obscuring a mi dground
point. W can now give a few exanples of 'plane' plotting
and you can generalise fromthese exanpl es.

To PLOT in the foreground

We precede any plot statements with GCOL 1,1 (inclusive OR):

GCcal 1,1
PLOT statenents to plot figures in foreground pl ane

Now because

00 OR 01 = 01
backgr ound f or eground f or eground

Background points are obscured by foreground points:

To PLOT in the nidground

We precede any plot statements with GCOL 1,2 (inclusive OR):

GCcal 1,2
PLOT statenents to plot figures in mdground pl ane

Now because

00 OR 10 = 01
backgr ound m dgr ound m dgr ound

28
and

01 oR 10 = 11
f oreground m dgr ound f oreground

background points are obscured by m dground points as you
woul d expect, but points that are are al ready foreground
remain in the foreground colour (but with code 11 indicating
that they are obscuring a mdground point). Thus to build up
information in these two planes we use GCOL 1 (inclusive

FFFFFFFFFFFFF.
FM MM . .
FEM...... MM ..

You can perhaps see fromthis that after a conposite set of
pl anes has been built up any subsequent additions to the
foreground or nidground will be incorporated into the
conposite inmage according to their respective priority.

To DELETE from f oreground and m dgr ound

Now to delete i mages or parts of inages from planes we use
GCOL 2 (AND). To delete a foreground object, we redraw the
object after using GCOL 2,2, where the second paraneter
happens to be the midground col our but is used here as a
"foreground del ete code'. To delete a mdground object, we
use GCOL 2,1. For exanple to delete fromthe foreground

GCcaL 2, 2
PLOT statenents to delete figure fromforeground plane
and the PLOT statenents will be exactly the sanme as the ones
that were used to draw the object being del eted. Now we have
00 AND 10 = 00
backgr ound backgr ound

i .e. background points remain as background

01 AND 10 = 00
f oreground backgr ound

"ordinary' foreground points revert to background

29

10 AND 10 = 10
m dgr ound m dgr ound

"ordinary' mdground points are |eft unaltered
11 AND 10 = 10

' obscured' m dground points are now reveal ed

Thus GCOL 2 (AND) can be used to delete and reveal. These
operations are now denmonstrated. The procedures are left
undefined (see earlier sections) but should include col our
fill. The following programdraws a red circle in the
foreground plane and a yellow triangle in the m dground

pl ane and any geonetrical overlap is automatically taken
care of . Note line 20; remenber that we use 2 copies for the
foreground and these of course should be the same col our.

10 MODE 5

20 vbU 19, 3, 1, 0,0,0

25 CcCca 1,1

30 PROCdrawaci rcl e(500, 500, 125)
2

40 @GCAL 1,
50 PROCdrawatri angl e(327, 400, 346)
60 END

To delete the red circle and reveal any previously hidden
parts of the yellow triangle we can add:

60 keypress = CGET
70 GCOL 2, 2
80 PROCdrawacircl e(500, 500, 125)

whi ch 'undraws' the cirele.

A convenient alternative to the above uses of GCOL 1 and
GCOL 2 is often useful. Provided that an object being
plotted in a plane does not overlap any object that is
al ready present in that plane, then GCOL 3 can be used for

30

both the drawi ng and del eti ng process. For exanple to draw
an object in inmage plane 1:

GCa. 3, 1
PLOTs etc to draw t he object

To delete the object we sinply repeat exactly the same GCOL
and PLOT statenents.

Conposite image with priority (5 planes)
On the Model B, in MODE 2, we have 4 bit col our codes (16
colours) and this gives us nmany nore possibilities. The next
programis designed to illustrate one such possibility.

In this program we have set up four planes plus
background :

foreground (white)
nmi dground (yel | ow)
rearground (red)
di stant (bl ue)

background (bl ack)

The different colour codes for a pixel together with their
significance are:

actua
code binary colour interpretation
1 0001 white fore
3 0011 white fore obscuring md
5 0101 white fore obscuring rear
7 0111 white fore obscuring rear, nd
9 1001 white fore obscuring distant
11 1011 white fore obscuring distant, md
13 1101 white fore obscuring distant, rear
15 1111 white fore obscuring distant, rear, md
2 0010 yel | ow m d
6 0110 yel | ow m d obscuring rear
10 1010 yel | ow m d obscuring distant
14 1110 yel | ow m d obscuring distant, rear
4 0100 red rear
12 1100 red rear obscuring distant
8 1000 bl ue di st ant
0 0000 bl ack backgr ound

Each bit in a colour code represents one of the four planes.
The GCOL 1 col our code for drawing contains a one in the

bit position for the plane involved and zeros in the other

bit positions. The GCOL 2 colour code for erasing contains a

31

zero bit for the plane in which erasing is taking place an
ones for the planes that are to to be unaffected. The GCOL
statenments needed for drawing or erasing in each plan

wi t hout affecting the other planes are:

dr aw erase
f or egr ound cCcan 1,1 cCcaL 2, 14
m dgr ound cGcon 1,2 cGcoL 2, 13
r ear gr ound GCal 1,4 cCcal 2,11
di st ant GCa. 1,8 Gca. 2, 7

The program repeatedly draws or erases a colour-filled
circle, in a plane specified by the user and with centre an
radi us specified by the user. A plane is specified using on
of the keys F(oreground), Midground), R(earground)
D(istant) or Quit). You should experiment with the program
and observe how the above priority system works when draw ng
and erasing overlapping circles in different planes.

10 MODE 2

20 VDU 28, 0,1, 19,0

30 VDU 24, 0;0; 1279; 963;

40 sin5=SIN(RAD(5)) : co0s5=COS(RAD(5))
Y/

50 VDU 19, 1,7, 0,0,0 DU 19, 3,7, 0,0,0
60 VDU 19, 5,7, 0,0,0
70 VvDbU 19, 9,7, 0,0,0 vbu 19, 11,7, 0,0,0
80 VDU 19, 13,7, 0,0,0 : VDU 19, 15,7, 0,0,0
90 VDU 19, 2,3, 0,0,0 : VDU 19, 6,3, 0,0,0
100 VDU 19, 10,3, 0,0,0 : VDU 19, 14,3, 0,0,0
110 VDU 19, 4,1, 0,0,0 : VDU 19, 12,1, 0,0,0
120 VDU 19, 8,4, 0,0,0
130 REPEAT : PROCcommand : UNTIL plane$="Q'

140 MODE 7 : END

150 DEF PROCcommand
160 pl ane$ = FNcommand("Which pl ane" ,"FMRDQ')

170 | F plane$="Q" THEN ENDPRCC

180 PRCCci rcl espec

190 | F pl ane$="F" THEN PROCdr awor er ase(1, 14)
200 | F pl ane$="M" THEN PROCdr awor er ase(2, 13)
210 | F pl ane$="R' THEN PROCdr awor er ase(4, 1 1)
220 | F pl ane$="D" THEN PROCdr awor er ase(8, 7)

230 ENDPRCC

240 DEF FNcommand(type$, cons$)

250 LOCAL c$

260 PRINT type$; "(";coms$;")?";

270 REPEAT : c$=GET$: UNTIL I NSTR(cons$, c$)>0
280 CLS

290 =c$

32

300 DEF PROCcircl espec

310 INPUT "Centre(x,y)",cx,cy
320 INPUT "Radius",r

330 CLS

340 ENDPRCC

350 DEF PROCdr awor er ase(dr awcode, er asecode)
360 LOCAL op$
370 op$ = FNcommand("Draw or Erase","DE")
380 | F op$="D" THEN GCOL 1, dr awcode

ELSE GCOL 2, erasecode
390 PROCcircle
400 ENDPROC

410 DEF PROCcircle

420 LOCAL ol dx, ol dy

430 MOVE cx+r ,cy

440 ol dx=r : o0ldy=0

450 FOR t=5 TO 360 STEP 5

460 x= ol dx*cos5 + ol dy*sin5
470 y= -ol dx*sin5 + ol dy*cosb
480 MOVE cx , cy

490 PLOT 81, X,y

500 ol dx=x : ol dy=y

510 NEXT t
520 ENDPROC

Anot her possibility would be to have three priority levels
pl us background with:

3 foreground col ours (spaceshi ps?)

1 m dground col our (pl anets?)
1 rearground col our (stars?)
1 background col our (sky?)

This is discussed in Exercise 5 bel ow

Exerci ses

1

Undraw a rectangle by working fromthe centre as if it
were a stage curtain being pulled to each w ng.
Underneat h detail should be reveal ed i n another col our:
| egendry that might be used in a caption sequence or
anything el se you fancy.

Pl ot two pictures using val ues from DATA statenents and
then repeatedly read a key. Depending on which key was
pressed, display the first picture or display the second
picture or display both pictures at once (w thout
redrawi ng them.

Certain patterns are used for testing for various types

33

of colour blindness. These consist of a pattern of dots
containing a large letter or nunber made up of dots in
one colour, the rest of the dots being in another col our.
Wite a programthat generates VDU 19 statenents to
switch through a sequence of col our conbinations.

4 Wite a programthat uses data to draw four graphs (on
the sanme axes) representing four year's sales and then
uses VDU 19 commands to display one, two, three or four
of the graphs in response to keys pressed by a user.

5 Modify the four-plane denonstration programso that there
are three levels of priority, foreground, m dground and
rearground, with a choice of three foreground col ours.
You coul d use the following settings for the col our

codes:
act ual
code binary colour interpretation
1 0001 red fore
2 0010 green fore
3 0011 yel | ow fore
5 0101 red fore obscuring md
6 0110 green fore obscuring md
7 0111 yel | ow fore obscuring md
9 1001 red fore obscuring rear
10 1010 green fore obscuring rear
11 1011 yel | ow fore obscuring rear
13 1101 red fore obscuring md, rear
14 1110 green fore obscuring md, rear
15 1111 yel | ow fore obscuring md, rear
4 0100 bl ue md
12 1100 bl ue m d obscuring rear
8 1000 nrmmgenta rear
0 0000 bl ack backgr ound

You will find that to plot a foreground circle, you may
first have to erase any existing foreground colour in the
circle.

2.2 Basic interaction techniques (GCOL 3 and GCOL 4)

In this section two interaction techni ques are inpl enented.
Bot h of these use the keyboard, but clearly the principles
are the same for either a keyboard or a nore convenient

device. Both interaction techniques can be used in picture

34

construction and this forns a part of npbst CAD (Conputer

Ai ded Design) systens. Such techni ques enabl e designers to
work in a two-dinmensional or picture domain. This neans for
exanpl e that an electrical engineer can work with circuit

di agrans and an architect with el evations or other

proj ections of buildings, rather than just nunbers. Now CAD
techni ques are an extensive topic by thensel ves and we shall
only be concerned here with picture or |ine-draw ng
generation. It is not out of place to exam ne just briefly
how such techniques 'fit in'" to CAD prograns. A CAD program
that accepts a picture as input has to deduce certain
information fromit. An electrical engineer may draw a
circuit diagramas input. A sinple but somewhat unrealistic
exanpl e serves to illustrate the point; say he inputs a
series parallel resistor configuration:

R2

—
R1

e
R3

Fromthis the CAD programwi || have to deduce that a
resistor is connected in series to two resistors in parallel
and that the total resistance is:

RT = Rl + R*R3/ (R2 + R3)

It can then evaluate nunerical calcul ations and out put
required information graphically or otherwi se back to the
user. The CAD programwill also be able to cope with
alterations to the diagram- additions, deletions etc.

The circuit diagramcould be built up using a technique
known as 'picking and dragging'. A user is presented with a
menu of objects and can pick a particular object and drag it
to anywhere on the screen:

a 0

€L
—

35

Ot her operations that m ght be avail abl e on objects are
magni fication and rotatation. Again in the case of an
electrical circuit diagram in parallel with the picture-
drawi ng nmodul es there will be procedures that keep track of
the spatial relationship between conponents. The CAD program
can then build up a formula reflecting sonme required
attribute or behaviour of the circuit. This mght be
transfer characteristic, frequency response, etc. The
computer program s view of the problemis nunerical or
formul a based while the engineer's view remains pictorial
This is a trenendous advantage in nost design probl ens.

In the same way an architect nay sketch in the el evations
of a house and ask for costing, insulation or sunlight
cal cul ati ons.

In the next two sections we | ook at the front end of such
CAD prograns firstly by |ooking at how we can sketch |ine
drawi ngs on the screen, and secondly how we can pick and
drag predefined sub-pictures across the screen.

Rubber band |i ne draw ng

Using this technique we can build up a sketch or |ine
drawi ng on the screen, using |line segnents whose | ength and
direection are controlled fromthe keyboard. The program
starts off by drawing an arbitrary line from(0,0) to
(0,500). By using keys R L, U and D (Right, Left, Up and
Down) as direction indicators we can nove the end point of
the Iine anywhere we want. Key F can be used to 'Fix' the
end point of the |ine.

=

Start of program
Arbitrary line drawn from
(0,0) to (500,500)

-}‘

Line endpoint can be moved
anywhere from (500,500)

36

N

Key F depressed 2nd line arbitrarily
drawn to (500,500) and 1st line
permanently drawn

This line can be moved anywhere
and key F depressed again

Thus any shape can be built up

Here is a programthat illustrates a sinple approach to
' rubber bandi ng'

10 MODE 4 : xstep =4 : ystep =4
20 xs=0: ys=0

30 x= 640 : y = 512

40 @GCAL 3, 1

50 PROCdr awor del et e

60 REPEAT

70 comuand$ = GET$

80 PROCpr ocesscomrand

90 UNTIL command$ = "Q'

100 MODE 7 : END

37

110 DEF PROCprocesscomand
120 I F INSTR("FLRUD', conmand$) =0 THEN ENDPROC
130 PROCdr awor del et e

140 | F conmand$ = "F' THEN PROCfi x

150 | F conmand$ = "L" THEN x = x - xstep
160 | F command$ = "R'" THEN x = x + xstep
170 | F command$ = "U'" THENy =y + ystep
180 |F command$ = "D' THENy =y - ystep

190 PROCdr awor del et e
200 ENDPROC

210 DEF PROCdr awor del et e
220 MOVE xs, ys : DRAWX,y
230 ENDPROC

240 DEF PROCfi x

250 REM Per nanent draw

260 GCOL 0,1 : PROCdr awor del et e
270 GCA. 3,1

280 XS =X ! ys =y

290 X= 640 : y= 512

300 ENDPROC

'xs' and 'ys' always represent the start position of the
line currently being drawn and 'x' and 'y' represent the
position of the end of the |ine being noved. The program
consi sts of a REPEAT | oop that processes conmands UNTIL the
key Q (Quit) is typed.

PROCpr ocessconmand first checks for a valid key. It then
call s PROCdrawordel ete to delete the line in its current
position. If "F" has been pressed, then the Iine currently
bei ng operated on is fixed and the coordi nates are set for a
new | ine. One of the coordinates x, y is updated if one of
the nmovenent keys (L, R U, D) has been pressed. The
coordi nate increnents, 'xstep' and 'ystep', are set to the
di mensi ons of a pixel in the node bei ng used.

PROCpr ocessccamand term nates by drawing a line to the
position now specified by the x-y coordi nates.

The critical statenent in the programis GCOL 3,1
(exclusive OR). This neans that |ines can be noved over
existing lines wthout permanently wi ping part of them out,
as would be the case without this facility.

38

Normally to del ete an object we would re-plot the object in
t he background col our but this would w pe out intersecting
parts of existing lines. Using the above nethod, an existing
line disappears only nonentarily while the current noving
Iine passes over it. Thus |ine segnent 2 (above) can be
swept over existing line segnment 1 without rubbing it out.
This can be explained by reference to the follow ng table.

1st. DRAW 2nd. DRAW
old plotting new old plotting new
0 1 1 1 1 0
1 1 0 0 1 1

You can see fromthe bottomrow of the table that plotting a
1 ontopof alinthe first DRAWresults in a zero that is
restored to a 1 by the 2nd DRAW The top row of the table
gives the effect of a normal draw and erase function. The
second DRAWthus erases or undraws, at the sane tine
restoring any holes in existing lines made by the 1st DRAW
W leave it as an exercise to work out why the behaviour is
unaltered if GCOL 3 is replaced by GCOL 4.

If you try using this sinple program you will find that
it suffers froma nunber of disadvantages. In order to nake
it nore useful as a line-drawi ng program we need to nmake a
nunber of inprovenents and extensions.

First, we will look at an inproved program structure that
wi Il speed up the rubberbandi ng process. In the above
program when the end-point of the rubberband |ine is noved
several tines in the sane direction, the line is deleted and
redrawn for each internediate position of the end-point.
Using this approach would nmake a realistic CAD (Computer
Ai ded Design) program unacceptably slow. The inproved
program structure bel ow permts the user to hold down one of
t he nmovenent keys and the end-point of the rubberband line
is noved in one step by an anpbunt that depends on the |ength
of time for which the key is pressed. The line is deleted
and redrawn only once to effect the conpl ete nove.

10 MODE 4 : xstep =4 : ystep = 4
20 xs =0 : ys =0

30 x= 640 : y = 512

40 CCAL 3, 1

50 PROCdr awor del et e

60 *FX 11,10

70 *FX 12,1

80 comuand$=CGET$

90 REPEAT

100 PROCpr ocesscomrand
110 UNTIL conmmand$ = "Q'
120 *FX 12, O

130 MODE 7 : END

39

140 DEF PROCprocesscomand

150 PRQOCcount cons

160 | F INSTR("FLRUD', conand$) = 0 THEN
command$=GET$: ENDPRCC

170 PROCdr awor del et

180 | F command$ "F' THEN PROCfi x

190 |F command$ = "L" THEN x = x - xstep*cons
200 IF command$ = "R* THEN x = x + xstep*ccrs
210 |IF command$ = "U'" THENy = y + ystep*cons
220 |IF conmmand$ = "D'" THENy =y - ystep*cons

230 PROCdr awor del et e

240 | F nextcon$="" THEN command$=GET$
ELSE conmmand$=next con$

250 ENDPRCC

260 DEF PRCOCcount cons

270 coms=0

280 REPEAT : cons=conms+1 : nextcon=I NKEY$(11)
290 UNTI L next con<>conmmand$

300 ENDPRCC

310 DEF PROCdr awor del et e
320 MOVE xs, ys : DRAWX, vy
330 ENDPROC

340 DEF PROCEi x

350 REM Per manent draw

360 GCOL 0,1 : PROCdr awor del et e
370 GCa. 3,1
380 XS = X . ys
390 X =640 : vy
400 ENDPROC

y
512

The *FX conmands at lines 60 and 70 are used to increase the
sensitivity of the keys. *FX 11 sets the delay before
repeated copies of a character are sent to the conputer by a
continually depressed key. *FX 12 sets the del ay between
subsequent repeats of a character. (Each of these 'operating
system comands' must appear on a separate nunbered |ine.)

*FX 11, 10

means that if a key is pressed for less than 10 hundredths
of a second, then only one character is sent by that key.

*EX 12,1

now neans that if a key is pressed for nore than 10
hundredt hs of a second, then repeated copies of the
character are sent by the key every 1 hundredth of a second
The program enters PROCprocesscommand having read the
next commmand character. PROCcountcons is then used to count

40

any repeats of the command character in case the conmand key
is being held dowmn. If the command key is a novenent key,
then this count is used in changing x or y by an appropriate
multiple of the basic increment.

PROCpr ocessconmand terminates (at line 160 or |ine 240)
by ensuring that 'conmand$' has been set to the next conmand
character, using GET$ if necessary, ready for the next
execution of the main | oop.

Now, even al though we have speeded it up, the programis
still slightly inmpractical - figures are constructed wi thout
the 'pen being lifted off the paper'. That is to say after a
line is fixed it is assunmed that another line is required.
This may not be the case and the easiest way to incorporate
a line on/off facility is to have another key controlling
this option:

221 | F command$ = "0" THEN |ineoff = NOT |ineoff

This |F statenent sets up a 'push on/push off' key - a
mechani smthat we shall use again. Wenever we introduce an
extra command key, we nust extend the string of pernmtted
comands:

160 | F INSTR("FLRUDO', command$) =0 THEN
command$=GET$: ENDPROC

The variable 'lineoff' is originally set to FALSE:
35 I|ineof f =FALSE

Pressing the appropriate key will change its value from
FALSE to TRUE or vice versa. PROCIrawordel ete can then be:

310 DEF PROCdr awor del et e

315 I F lineoff THEN ENDPROC
320 MOVE xs, ys : DRAWX, vy
330 ENDPROC

whi ch prevents the drawing action if the line is swtched
off. Now, for exanple, to construct two isolated rectangles
we woul d:

1. Draw the first
rectangle

L]

41

2. Draw a line to
the start of the

second Q/.

3. Switch off this
line (press 0)

L]

4. Fix the invisible
line & press 0

] e

N Y
o J

5. Draw the new
rectangle

L

Rubber band draw ng ai ds

There are two useful elaborations that we can nake to our
rubberband |ine drawing program Firstly we can include a
hori zontal and vertical cursor line to enable us to line up
different parts of a drawing. This sinply adds another two
sel ections to PROCprocessconmand:

36 hcursor = FALSE : vcursor = FALSE

160 | F I NSTR(" FLRUDOHV", command$) =0 THEN
commmand$=GET$: ENDPROCC

NOT hcur sor
NOT vcur sor

"H' THEN hcur sor
"V' THEN vcursor

225 | F command$
226 | F command$

42

This means that the H and V key functions are al so pushon/
push of f keys. PROCprocessconmand can now be further
el aborated to check if cursors have to be drawn:

170 PRCCdr awor delete : PROCcheckcursors
230 PROCdr awor del ete : PRCCcheckcursors
410 DEF PROCcheckcursors

420 | F hcursor THEN MOVE 0, y: DRAW 1279,y

430 I F vcursor THEN MOVE x, 0: DRAW x, 1023
440 ENDPROC

The next phot ograph shows the cursor being used in the
course of a construction.

Anot her useful aid is a |length nmeasuring device that
i ndicates the current length of a |line. Consider for exanple
measuring the current x projection of the line:

37 printneasure = FALSE

160 | F I NSTR(" FLRUDOHVM', conmand$)=0 THEN
command$=CGET$: ENDPROC

227 | F command$ = "M THEN
printmeasure = NOT printmeasure

235 PROCreasure

450 DEF PROCneasure
460 | F printneasure THEN
PRI NT TAB(3, 3); ABS(xs-X)
ELSE PRI NT TAB(3, 3); SPC(4)
470 ENDPROC

43

If the measure option is switched on then PROCreasure is
obeyed and prints the current x projection of the line. In
the next illlustration the hangers on the suspension bridge
were accurately positioned using this facility.

Pi cki ng and draggi ng an obj ect

W have already nentioned the use of this particular

techni que above so we'll junp straight in to doing it. In
t he next program we have set up a nenu of objects in the
right hand side of the screen. An object is selected by
typing 1, 2 or 3. In practice, if we were using this
techni que frequently, an object would be selected fromthe
menu by pointing a light pen at the appropriate position on
the screen. Wien an object is selected it is dragged into
transition and fixed as before. Instead of dragging a line
we are now draggi ng a conpl ete object.

10 MODE O : xstep = 2 : ystep = 4
20 PROCdr awrenu
30 cCA 3, 1

40 PROCpi ck

50 REPEAT

60 x=100 : y=100

70 PROCdr awor del et e(sel ecti on$)

80 *FX 11,10

90 *EX 12,1

100 comand$=CGET$

110 fixed = FALSE

120 REPEAT

130 PROCpr ocessconmand
140 UNTIL fixed

150 *EX 12,0

160 PROCpi ck

170 UNTIL selection$ = "Q'
180 MODE 7 : END

44

190
200
210
220
230
240

250

260
270
280
290
300
310

320
330
340

350
360

370
380
390
400
410
420

430

440
450
460
470
480

490
500
510
520

530
540
550
560
570

DEF PROCdr awnenu

MOVE 900, 0 : DRAW 900, 1000

PROCdr awr esi st or (1000, 600)

PROCdr awcapaci t or (1000, 400)

PROCdr awdi ode(1000, 200)

PRI NT TAB(60, 12);"1"; TAB(60, 18);"2";
TAB(60, 24); " 3"

ENDPROC

DEF PROCpi ck
PRI NT TAB(0, 0):"Pick, (1/2/3/Q":
REPEAT : sel ecti on$=CGET$
UNTIL I NSTR("123Q', sel ection$) >0
PRI NTTAB(0, 0) ; " "
ENDPRCOC

DEF PROCpr ocesscomand
PROCcount cons
I F INSTR("FLRUD', command$) =0 THEN
command$=GET$: ENDPRCC
PROCdr awor del et e(sel ecti on$)
| F command$="F" THEN
PROCfi x : fixed=TRUE : ENDPRCC
| F command$="L" THEN x X- xst ep*cons
| F command$="R' THEN x = x+xstep*cons
| F command$="U" THEN y = y+ystep*cons
| F ccnmand$="D' THEN y = y-ystep*cons
PROCdr awor del et e(sel ecti on$)
I F nextcom="" THEN command$=GET$
ELSE conmmand$=next cont
ENDPROC

DEF PRCCcount cons
conms=0
REPEAT : cons=cons+1 : nextcon®=I NKEY$(11)
UNTI L conmand$<> next cont

ENDPROC

DEF PRCCfi x
GCOL 0, 1: PROCdr awor del et e(sel ecti on$)
GCoL 3,1

ENDPROC

DEF PROCdr awor del et e(s$)
I F s$="1" THEN PROCdr awr esi st or (X, y)
| F s$="2" THEN PROCdr awcapaci t or (X, y)
| F s$="3" THEN PROCdr awdi ode(x, y)
ENDPROC

45

580 DEF PROCdraw esi stor(x,y)

590 MOVE x,y : PLOT 1,30,0

600 pPLOT 1,0,10 : PLOT 1,60,0
610 PLOT 1,0,-20 : PLOT 1,-60,0
620 PLOT 1,0,10 : PLOT 0,60,0
630 PLOT 1,30,0

640 ENDPROC

650 DEF PROCdr awcapacitor(x,y)

660 MOVE x,y : PLOT 1,30 ,0

670 pLor 0o, 0, -30 : PLOT 1,0 ,60
680 PLOT 0,20,0 : PLOT 1,0 ,-60
690 pPLOT 0,0,30 : PLOT 1,30,0

700 ENDPROC

710 DEF PROCdr awdi ode(x, y)

720 MOVE x,y : PLOT 1 ,30,0

730 pLOT 0,0, -25 : PLOT 1,0,50
740 PLOT 1,25,-25 : PLOT 1,-25,-25
750 PLOT 0,25,25 : PLOT 1,30,0

760 ENDPROC

The programto drag an object is identical to the
rubberband proyramwith

PROCCdr awor del et e
repl aced by:

PROCdr awor del et e(sel ecti on$)

Thi s procedure selects one out of the three draw ng
procedures and the selected object is drawn at a position

under control of the directional keys. The next illustration
shows the screen during execution of the above program

46

Scaling and rotating a dragged obj ect

O her comon facilities in picking and draggi ng prograns are
magni fication and rotation. For exanple in the above
draggi ng program another key option could be "M for
"Magnify' and T (turn) for rotation. The structura
alterations now required in the programare significant. In
particul ar we have to change the way in which we store shape
information. Currently this information is enbedded in the
drawi ng procedures as paraneters of the PLOT 1 statenent.
The nmost conveni ent scheme is to store the current

di spl acement coordi nate values for an object in an array.
These di splacenents will of course change as a function of
the angle of rotation. Initially we could set up an array
for a square, for exanple, as:

squar ex(1) 100 squarey(1) 0
2) 0 (2) 100
(3) -100 (3) 0

To draw the square in any (dragged) position (x,y) we need:

570 DEF PROCdrawsquare(Xx, Y)
580 MOVE X,

590 FORi =1TO3
600 PLOT 1, squarex(i), squarey(i)
610 NEXT i

620 DRAW x, vy
630 ENDPROC

This is the sane schene as we have in the conmponent draw ng
procedures (above) except that we are now storing the

di spl acenents in an array. Now to rotate an object we would
press T (turn) and nake the object rotate by a predetermn ned
angul ar increnment of, say, 10 degrees by altering the
relative displacenents. To do this we sinply use a standard
t wo- di mensi onal rotation transform (see Chapter 3):

800 DEF PRCCrotate
810 LOCAL X,y
820 si nt heta

i
W
Z
—~
e
==
N N’
N N

830 cost heta COS(RAD(

840 FORi =1 TO3

850 x = x(i) :y =y(i)

860 x(i) = x*costheta + y*sintheta
870 y(i) = -x*sintheta+ y*costheta
880 NEXT |

890 ENDPROCC

Each tinme the key is depressed new di spl acenents are

47

calcul ated {previous. Note that the figure is stationary
while it is being rotated; it cannot be rotated and dragged
at the sane tine.

Saving a |ine draw ng

An image that has been created by rubberbandi ng can be saved
as a list of coordinates and subsequently regenerated by a
simpl e programreadi ng the coordinates froma file and using
DRAW The coordi nates can be saved initially in tw parallel
arrays and when the drawing is conplete, the array contents
dunped into a file. The coordi nate saving should clearly be
part of the 'fixing process:

340 DEF PROCfi x

350 REM Per nanent dr aw

360 GCOL 0 ,1 : PROCdr awor delet e
370 GCa. 3, 1

375 line =line + 1

376 xcoord(line) = x

377 ycoord(line) =y

380 XS = X . ys =

390 X =640 : y = 512

400 ENDPROC

Simlarly an i mage that has been created by picking and
draggi ng an object can be saved, nost econonically, using
three parallel arrays. The program woul d store, for each
object, a pair of coordinates foll owed by a code indicating
the class of object drawn at that position. The program
woul d terminate by outputting the contents of the three
arrays to a file. The regenerating programwould contain the
obj ect-generating procedures again called froma shape
sel ection procedure, the appropriate procedure for each
shape being selected according to the stored code.

Exer ci ses

1 Inprove the rubberband programso that the start
coordinate is input fromthe keyboard.

2 Introduce colour so that the fixed Iines are displayed in
one col our, but the noving line appears in a contrasting
col our.

3 Consult the User Guide and change the rubberband program
so that the cursor arrow keys are used for controlling
the novenent of the endpoints of the |ine.

4 Wite a rubberband program where the permanent lines are
to be constrained to the horizontal or vertica
direction. For exanple an inperfectly drawn horizontal

48
i ne:

is to be corrected to a perfect horizontal |ine:

5 Wite a picking and draggi ng programthat picks either a
hexagon or an equilateral triangle and drags it to a
required position, fixes it there and colours it in a
colour that is selected by another key. The hexagon and
triangl e should each have the same | ength of side so that
they can be fitted together.

6 Wite a picking and dragging programthat will allow such
diagrans as the following to be constructed: Note that
this will have to contain both object draggi ng and
rotation (0 or 90 degrees only) as well as rubberband
i ne draw ng.

L

NL
.‘_

7 Incorporate the picture-filing suggestions in your
prograns.

2.3 Colour-fill - general algorithns

The triangular fill facility (PLOT 80 to 87) is generally

i nconvenient in interactive graphics. In particular figures
containing interior holes or concavities are difficult to
fill using this nethod. Also if we are drawi ng a region

49

outline using a light pen or graphics tablet it is
i nconvenient to store the coordinates of pixels on the
outline. W require a general algorithmthat will fill any
regi on already delineated on the screen. Algorithns that

fill the interior of any closed figure sonetines call ed
"flood-fill' algorithms and they work assum ng that the
region to be filled is delineated by a boundary of pixels in
a non- background col our and that the interior of the region
is '4-connected' . This neans that all pixels within the
regi on can be reached one fromthe other by a sequence of
any of the novenents up, down, left and right.

There are two approaches that we can nake to this problem
one is recursive and is described in Chapter 7; the other is
non-recursive and i s now descri bed. The algorithmbelowis
extrenely slow, but it provides a good introduction to the

i deas involved. This algorithmuses a FIFO (first in, first
out) buffer or queue. A programthat fills the area encl osed
by two concentric circles is now given.

10 INPUT "RADII",r1,r2
20 MODE 1

30 GCOL 0,1

40 PROCcircl e(r1, 640, 512)

50 PROCcircl e(r2, 640, 512)

60 PROCHi || from(640+(r1+r2)/2, 512)
70 END

90 DEF PRCCcircle(r, xc, yc)

100 LOCAL t

110 MOVE xc+r,yc

120 FOR t=10 TO 360 STEP 10

130 DRAW xc+r* COS(RAD(t)), yc+r*SI N(RAD(t))
140 NEXT t

150 ENDPROC

200 DEF PROCfillfrom(startx, starty)
210 DI M queuex(500), queuey(500)
220 first=1: last=0

230 PROCfi Il (startx, starty)

240 REPEAT

250 PROCunqueue

260 PROCE i 11 (X, y+4)
270 PROCFi Il (X, y-4)
280 PROCfi || (x+4,y)
290 PROCEi Il (x-4,Y)

300 UNTIL first=(last+1l) MOD 500
310 ENDPRCC

50

330 DEF PROCFill(X,Y)
340 | F PO NT(x,y)>0 THEN ENDPROC
350 PLOT 69, X, y

360 PROCqueue(X, y)
370 ENDPRCC

390 DEF PROCqueue(X,Y)
400 | ast =(1 ast +1) MOD500
410 queuex(l ast) =x

420 gueuey(|l ast) =y

430 ENDPROC

450 DEF PROCunqueue

460 x=queuex(first)

470 y=queuey(first)

480 first=(first+1) MOD500
490 ENDPROC

PROCfillfromis initiated froma start point and that start
point is coloured and added to a queue (by calling
PROCfilll. PROCfillfromthen repeatedly takes the first
poi nt fromthe queue and exani nes each of the nei ghbouring
N, S, E and Wpoints (by calling PROCfill for each of these
points in turn). Each time PROCfill is called, it colours
the point it is given (if it is not already col oured) and
adds that point to the end of the queue. Adding a point to
the queue I1n this way ensures that it will subsequently be
renoved fromthe queue and its nei ghbours exam ned.

The reason the queue is nmade a FIFOis to prevent it
becomi ng too large. If for exanple we nade the queue an
ordinary stack (LIFO or last in first out), as you may see
suggested in conputer graphics textbooks, it would gradually
fill up and would run out of nenory.

For the queue, we use two arrays, one for x-coordinates
and one for y-coordinates. Two variables indicate the
positions of the 'first' and 'last' itenms in the queue.

queue x queue y

first —m=

last —m|

51

The arrays are treated as circular so that when the end
of the queue reaches reaches the end of the arrays, the
queue is 'wapped around' and continues into the space that
is nowfree at the start of the arrays.

queue x queuey

last —m|

first —

PROCfillfromrepeatedly takes the next point fromthe
queue until the queue is enpty. The photograph shows the
algorithmin the course of filling. Note that the
"wavefronts' are diagonal. This is a consequence of using a
FI FO queue in this particular context.

An illustrative sequence of how the algorithmworks in
detail is now given for a sinple rectangul ar region. The
start point is the bottomleft hand corner.

52
pixel 1 is filled and added to the queue

1st cycle of REPEAT loop in PROCHillfrom
pixel 1 is renoved from queue and nei ghbouring points
exam ned

& ©
OO,
® O
@

@

HEGE
HEGE
OE®E

queue is now 6, 2
pixels 6 and 2 are filled

2nd cycle, pixel 6 renoved and nei ghbours exam ned.

& ©
® ©
® @
@ @

gueue is now 2, 11, 7
pixels 11 and 7 are also filled.

OEEE
OEE

OEEE

3rd cycle, pixel 2 renoved and nei ghbours exam ned.

SlOICI0
OO
OEEE
OEEE
OHEEHE

53

queue is now 11, 7, 3
pixel 3 is filled

4t h cycl e, pixel 11 renpved and nei ghbours exan ned.

©e®
OO
OlO]0,
HEGOE
OEEE

®©@ ® @

queue is now 7, 3, 16, 12
pi xels 16 and 12 are filled

Thi s sequence continues until the queue is enpty

Later versions of the Operating Systen1prOV|de a PLOT

command for horizontal filling of a row of pixels up to a
boundary. It is convenient to postpone discussion of this
facility until Chapter 7 (recursion).

Exer ci ses

1

Draw a checker board or ganes board pattern using col our-
fill.

As an aid to understanding the queue fill algorithm
build up on paper a sequence showi ng a shape being filled
froma central point.

Wite a rubberbandi ng programthat includes a paint
option for colouring the region containing the current
poi nt .

