
Chapter 5 Advanced uses of sound

In this chapter we look at two of the more advanced uses of
the SOUND statement. We first of all consider how to
synchronise the playing of two and three part melodies. This
is a sequential processing problem and similar problems
often occur in computer science, for example, in operating
systems.

We then look at the intriguing business of getting the
computer to generate or compose music. There are two aspects
to this. First of all we can get the computer to imitate
music of a particular style by supplying it with a
sufficient number of examples of tunes in the style that we
require to mimic. Secondly we can get the computer to
compose its own original music, by using a constrained
random number generator. Both of these methods will provide
pleasing results if sufficient thought is put into the
programming techniques.

5.1 Playing a two-voice melody
Although careful use of the ENVELOPE statement can produce
moderately pleasing effects with a single voice (single
SOUND statement), it is always obvious that the sound is
generated by a fairly basic synthesiser. A lot of the
resulting musical inadequacies can be overcome by using 2 or
3 voices or sound channels simultaneously. Before we can do
this there are queuing and synchronisation problems that
have to be overcome.

Syncrhonisation of two voices
Consider playing melodies simultaneously from parallel
arrays or separate data streams containing, for each melody
line, a pitch and duration value. We could fetch elements
alternately from each melody array and send them alternately
to two sound channels. A queuing problem arises whenever
notes of different durations appear at corresponding points
in each melody line - the usual situation in musical
arrangements. To start with we'll consider the problem with
2 voices or channels. The following example should make
things clear. A sequence of 4 minims is to be initiated in
one channel at the same time as a series of quavers in the
other channel:

152

� �� ��
� �� � � � � �� � � � � �� � � � � �� � � �

Channel 1

Channel 2

...etc

...etc

We could attempt to play the melodies by fetching a note
from the channel 1 data stream or array and sending it to
the channel 1 queue. We then fetch a note from the channel 2
data stream and send it to the channel 2 queue etc. (By
'send' we mean execute a SOUND statement.) This approach
would be perfectly satisfactory if there were a limitless
queue associated with each channel. However a channel queue
can only hold a maximum of 5 requests.

By sending notes alternately to each channel, we have
created the correspondence shown by the sloping lines. The
program will be held up when it attempts to send the seventh
minim to the channel 1 queue. The first minim will still be
sounding and the next five have filled the queue. There are
also five notes on the channel 2 queue but these are shorter
and will be dealt with more frequently than the channel 1
notes. When the first minim on channel 1 has been played,
four notes on channel 2 will have finished, leaving only two
notes in the queue. The second minim on channel 1 now starts
to play, making room for the seventh minim in the queue.
This enables one further quaver to be added to the channel 2
queue before the program is again held up on attempting to
add the eighth minim to the channel 1 queue. Thus while the
second minim is being played on channel 1, only three
quavers are available to be played on channel 2.

To solve this problem, we must arrange in this particular
case to execute SOUND statements for channel 2 more
frequently than for channel 1. Once the SOUND statement for
the first note on channel 1 has been obeyed, no further
channel 1 SOUND statements need be obeyed until SOUND
statements have been obeyed for the first four notes on
channel 2. In general, we must keep the total duration of
notes for which channel 1 SOUND statements have been
executed approximately equal to the total duration of notes
for which channel 2 SOUND statements have been executed.

One way to solve the problem is to merge the voices into
one DATA stream that contains channel numbers as well as
pitch and duration values. This, however, makes the problem
of transposition from the musical score to the DATA
statement horrendous. The complexity of the synchronisation
task has to be handled in the manual transposition process
rather than in the program.

One simple way to achieve synchronisation between two or
more voices is to keep a 'clock' running for each voice of
the melody as shown.

153

Channel 2
data

Clock 1

Channel 1
data

Clock 2

In general the current note for each channel will be in a
different position in the data streams. The clocks will tend
to show equal elapsed times. Each time a SOUND statement is
obeyed, the duration of the note is added to the clock
associated with that channel. At each step we must obey a
SOUND statement for the channel whose clock shows the least
elapsed time. We require to repeat the following operation:

IF clock1 > clock2 THEN SOUND statement for channel 2

ELSE SOUND statement for channel 1

The program then selects one out of two alternative courses
of action and this ensures that the channels free run and
are not subject to interference from each other. Effectively
we have removed the artificial connection in the parallel
data streams between notes in different channels that have
different duration values.

An alternative method of playing notes of a two-voice
melody from separate data streams is to use the function
ADVAL to test the channel queue status. For example, the
expression 'ADVAL(-6)' has a value indicating the number of
empty places on the channel 1 queue (-7 for channel 2 and -8
for channel 3). Thus, we could use:

IF ADVAL(-6)>0 AND voice 1 not yet finished THEN
SOUND statement for channel 1

IF ADVAL(-7)>0 AND voice 2 not yet finished THEN
SOUND statement for channel 2

154

This ensures that no SOUND statement is obeyed if a channel
queue is full. The end effect is exactly the same as that of
the clock algorithm. Using ADVAL, a separate test is needed
In check whether a voice has finished, whereas with the
clock method this possibility can be dealt with by setting
the clock to a large value when the last SOUND statement for
that voice is obeyed. The clock algorithm also makes it easy
In incorporate a common musical requirement - emphasis of
tho first note in every bar. Here the state of a clock could
be used to recognise the first note of a bar.

Transposing
Another tedious task to be overcome before we start getting
the machine to play arrangements is transposing from a
musical score to a set of pitch numbers and associated
notation. Transposing directly from the black dots to pitch
numbers and durations in 1/20ths of a second can be tedious
and error prone. You can write a graphics 'picking and
dragging' program to input the music onto a screen stave,
and this is a commonly adopted approach, but we have not
space for that. Instead we shall adopt a character
convention, and list the music in DATA statements using the
following tables.

code musical convention duration (for metronome 150)

t 1/32 1
���		

s 1/16 2�
ds dotted 1/16 3��
e 1/8 4

de dotted 1/8 6
�
q 1/4 8�

dq dotted 1/4 12��
h 1/2 16�

dh dotted 1/2 24��
w whole 32�

Remember that there are notes that cannot be accurately
represented at this tempo. For example a dotted 1/32 is 1.5
(only 1 or 2 can be used as a duration parameter in a SOUND
statement). Similarly a 1/16 triplet is 4/3 per note, an 1/8
triplet 8/3 per note and a 1/4 triplet 16/3 per note.

155

Pitch values arc represented using the convention :

pitch values pitch number

C (C below middle C) 5
C' (middle C) 53
C'' (C above middle C) 101
C''' 149
C'''' 197
C'# (middle C sharp) 57
C'b (middle C flat) 49
R rest 255

We do not cater for a key signature, but insert sharps and
flats explicitly.

The character codes in the DATA statements will te
converted into pitch and duration codes by the program. In
all our programs for playing two or three part music, we
shall use two two-dimensional arrays to hold up to three
voices for an arrangement. These can be pictured as:

pitch values for voice 1

pitch values for voice 2

pitch values for voice 3

duration values for voice 1

duration values for voice 2

duration values for voice 3

pitch

duration

The first program uses only the first two rows of these
arrays. There are also three one-dimensional arrays used to
record the number of notes in each voice, a count of the
notes SOUNDed for each voice and the 'clock' recording the
total duration of the notes SOUNDed for each voice.

A two-voice Bach minuet
The next program is a complete program: that can be used to
play two voices of a melody where the two voices are
supplied separately in DATA statements using the above
notation. The data in this case is a two-voice Bach minuet.

156

10 ENVELOPE 1,1,0,0,0,0,0,0,126,-4,0,-63,126,100
20 ENVELOPE 2,1,0,0,0,0,0,0,126,-4,0,-63,126,100
30 ENVELOPE 3,1,0,0,0,0,0,0,128,-4,0,-63,126,100
40 DIM pitch(3,100), duration(3,100), noofnotes(3),

nextnote(3), clock(3)
50 tempo=1
60 PROCinitialise(1)
70 PROCinitialise(2)
80 PROCplaytwovoices
90 END

200 DEF PROCinitialise(voice)
210 LOCAL note,pitch$,duration$,dur$,dur,

notename$,position,prime$,octave
220 READ noofnotes(voice)
230 FOR note = 1 TO noofnotes(voice)
240 READ pitch$, duration$
250 dur$=RIGHT$(duration$,1)
255 dur =INSTR("tseqhw",dur$)
260 duration(voice,note)=2^(dur-1)*tempo
270 IF INSTR(duration$,"d") THEN

duration(voice,note) =
duration(voice,note)*3/2

280 notename$=LEFT$(pitch$,1)
290 position=INSTR("C-D-EF-G-A-BR",notename$)
300 IF position=13 THEN pitch(voice,note)=255

ELSE pitch(voice,note)=1+4*position
310 IF RIGHT$(pitch$,1) = "#" THEN

pitch(voice,note) = pitch(voice,note) + 4
320 IF RIGHT$(pitch$,1) = "b" THEN

pitch(voice,note) = pitch(voice,note) - 4
330 prime$ = "'" : octave = 0
340 FOR j=2 TO LEN(pitch$)
350 IF MID$(pitch$,j,1) = prime$

THEN octave = octave +1
360 NEXT j
370 pitch(voice,note) = pitch(voice,note)+octave*48
380 NEXT note
390 ENDPROC

400 DEF PROCplaytwovoices
410 nextnote(1)=0 : nextnote(2)=0
420 clock(1)=0 : clock(2)=0
430 finished=0
440 SOUND &101,0,0,8 : SOUND &102,0,0,8
450 REPEAT
460 IF clock(1) > clock(2) THENPROCsound(2)

ELSE PROCsound(1)
470 UNTIL finished=2
480 ENDPROC

600 DEF PROCsound(voice)
610 LOCAL n ,envelope

157

620 nextnote(voice)=nextnote(voice)+1
630 n=nextnote(voice)
640 clock(voice)=clock(voice)+duration(voice,n)
650 IF pitch(voice,n)=255 THEN envelope=0

ELSE envelope=voice
660 SOUND voice,envelope,pitch(voice,n),

duration(voice,n)
670 IF n=noofnotes(voice) THEN

finished=finished+1 :clock(voice)=2000000
680 ENDPROC

700 DEF PROCround(leader,follower,delay)
710 LOCAL l,f
720 pitch(follower,1)=255 :duration(follower,1)=delay
730 f = 1
740 FOR l=1 TO noofnotes(leader)
750 f = f + 1
760 pitch(follower,f)=pitch(leader,l)
770 duration(follower,f)=duration(leader,l)
780 NEXT l
790 noofnotes(follower)=f
800 ENDPROC

1000 DATA 74, D'',q,G',e,A',e,B',e,C'',e,D'',q,G',e,
R,e,G',e,R,e,E'',q

1010 DATAC'',e,D'',e,E'',e,F''#,e,G'',q,G',e,R,e,
G',e,R,e,C'',q,D'',e

1020 DATA C'',e,B',e,A',e,B',q,C'',e,B',e,A',e,G',e,
F'#,q,G',e,A',e,B',e

1030 DATA G',e,B',q,A',h,D'',q,G',e,A',e,B',e,C'',e,
D'',q,G',e,R,e,G',e

1040 DATA R,e,E'',q,C'',e,D'',e,E'',e,F''#,e,G'',q,
G',e,R,e,G',e,R,e

1050 DATA C'',q,D'',e,C'',e,B',e,A',e,B',q,C'',e,
B',e,A',e,G',e,A',q

1060 DATA B',e,A',e,G',e,F'#,e,G',h,G,q
1070 DATA 37, B,h,A,q,B,dh,C',dh,B,dh,A,dh,G,dh,D',e,

R,e,B,q,G,q,D',e,R,e
1080 DATA D',e,C',e,B,e,A,e,B,h,A,q,G,q,B,q,G,q,C',dh,

B,e,R,e,C',e,B,e,A,e,G,e
1090 DATA A,h,F',q,G',h,B',q,C'',q,D'',q,D',q,G',dh

There is one further point to note in the above program. We
have started PROCplaytwovoices with statements that play two
synchronised rests, one on each of the two channels that we
being used. By the time that these rests have finished being
'played', the program will have started to obey SOUND
statements for the two voices and further use of
synchronisation parameters is rendered unnecessary by the
100% timing accuracy of the sound generator. Provided that
our two voices start in step, they will remain in step.

158

5.2 Simple canons or rounds
You can arrange the voices yourself if you have sufficient
musical knowledge, but there are many compositions that will
produce pleasing results on your micro. One particular
intriguing musical form that is easy to transpose into a
number of voices (because the second and third voices are
derivable from the theme) is the canon.

The simplest and most familiar form of canon is the round
'Frere Jacques' is a common example. A theme (called the
initiating voice or leader) enters. The second voice
identical to the theme in the case of a round) enters after
a time interval. The round is of course written in such a
way that it harmonises with itself. Thus the theme performs
two functions, firstly as a melody in its own right and
secondly as a harmony or counterpoint to itself.

Leader or first voice

Delay

Follower or second voice

Delay

Now the follower is identical to the leader in the case
of a round. In canons in general, it is mathematically
derivable from it. Thus to play two or more voices only one
theme need be transposed into a program.

A two-voice round - Frere Jacques
We can easily modify the above program to play a round. The
next program plays 'Frere Jacques' as a two voice round with
a two-bar delay. The procedure PROCround produces the two
rows of our arrays necessary to play a round on two
channels. In this procedure we effectively displace the
follower by the delay, where the delay is specified to the

procedure in multiples of the smallest possible note ().
���		

10 ENVELOPE 1,1,0,0,0,0,0,0,63,10,0,-63,63,110
20 ENVELOPE 2,1,0,0,0,0,0,0,126,-4,0,-63,126,100
30 ENVELOPE 3,1,0,0,0,0,0,0,126,-4,0,-63,126,100
40 DIM pitch(3,100),duration(3,100),

noofnotes(3), nextnote(3), clock(3)
50 tempo=1
60 PROCinitialise(1)
70 PROCround(1,2,64)
80 PROCplaytwovoices
90 END

159

.

.

.
700 DEF PROCround(leader,follower,delay)
710 LOCAL l,f
720 pitch(follower,1)=255:duration(follower,1)=delay
730 f = 1
740 FOR l=1 TO noofnotes(leader)
750 f = f + 1
760 pitch(follower,f)=pitch(leader,l)
770 duration(follower,f)=duration(leader,l)
780 NEXT l
790 noofnotes(follower)=f
800 ENDPROC

1000 DATA 32,F',q,G',q,A',q,F',q,F',q,G',q,A',q,
F',q,A',q,B'b,q,C'',h

1010 DATA A',q,B'b,q,C'',h,C'',e,D'',e,C'',e,B'b,e,
A',q,F',q,C'',e,D'',e

1020 DATA C'',e,B'b,e,A',q,F',q,F',q,C',q,F',h,F',q,
C',q,F',h

If the program doesn't sound right then you have probably
made a mistake in typing the data. To check the tune through
play a single voice only using a FOR loop:

FOR note= 1 TO noofnotes
 SOUND 1,1, pitch(1,note),duration(1,note)
NEXT note

These three lines should replace the call of
PROCplaytwovoices.

Contrasting ENVELOPES can be used to effect, and we leave
you to experiment with these. Now the theme in the above
program is rather banal and boring but it is necessary to
verify that your program works before moving on to the
serious stuff.

5.3 Synchronizing three (or more!) voices
Before moving on to morecomplex canons, we first present a
procedure to synchronise music consisting of three separate
voices. In the next program, we have replaced
PROCplaytwovoices with PROCharmonise which can organise the
playing of three voices. In fact it will organise the
playing of any number of voices from one upwards as
specified by its parameter. It could be used to play more
than three voices if we had more than three musical sound
channels available. Each execution of the REPEAT loop in
this procedure picks out a channel that has fallen behind
and issues a SOUND statement for that channel.

160

A three-voice round - Frere Jacques
The next program indicatea thc changes needed to arrange and
play a three-voice round using the same DATA as before.

10 ENVELOPE 1,1,0,0,0,0,0,0,63,10,0,-63,63,110
20 ENVELOPE 2,1,0,0,0,0,0,0,126,-4,0,-63,126,100
30 ENVELOPE 3,1,0,0,0,0,0,0,126,-4,0,-63,126,100
40 DIM pitch(3,100), duration(3,100),

noofnotes(3),nextnote(3),clock(3)
50 tempo = 1
60 PROCinitialise(1)
70 PROCround(1,2,64)
80 PROCround(2,3,64)
90 PROCharmonise(3)

100 END
...

400 DEF PROCharmonise(noofvoices)
410 LOCAL voice,slowest,sync
420 sync = (noofvoices-1)*&100
430 FOR voice=1 TO noofvoices
440 SOUND sync+voice,0,0,8
450 clock(voice)=0 : nextnote(voice)=0
460 NEXT voice
470 finished=0
480 REPEAT
490 slowest=1
500 FOR voice=1 TO noofvoices
510 IF clock(voice)<clock(slowest)

THEN slowest=voice
520 NEXT voice
530 PROCsound(slowest)
540 UNTIL finished=noofvoices
550 ENDPROC

...

5.4 Bach's 'Musical Offering'
J. S. Bach's amazing work 'The Musical Offering' contains a
number of canons of different forms. The American
mathematical philosopher Douglas Hofstader, said of the work
'All in all, the Musical Offering represents one of Bach's
supreme accomplishments in counterpoint. It is itself one
large intellectual fugue, in which many ideas and forms have
been woven together, and in which playful double meanings
and subtle allusions are commonplace. And it is a very
beautiful creation of the human intellect which we can
appreciate forever'.

161

Crab canons or canons in retograde motion
One of the rarest forms of canon is the crab canon or canon
in retrograde motion. It is a rare form presumably because
it is so difficult to write. In a crab canon there is no
delay, both themes enter simultaneously. The first voice
plays the theme from the start and the second voice plays
the same theme backwards from the end.

Leader

Follower

THEME

EMEHT

Start Finish

Finish Start

Bach's No. 9 canon frm 'The Musical Offering' is a crab
canon. It contains a theme with long duration notes followed
by a counterpoint. The theme is played against the reverse
of the counterpoint, followed by the counterpoint playing
against the reverse of the theme. This structure is obvious
when you listen to the music.

Bar 10

THEME

Start

COUNTERPOINT

Finish

Bar 10

TNIOPRETNUOC

Finish

EMEHT

Start

The next program includes a procedure to generate the
arrays for a crab canon and includes the DATA for Bach's
crab canon.

10 ENVELOPE 1,1,0,0,0,0,0,0,63 ,10,0,-63,63,110
20 ENVELOPE 2,1,0,0,0,0,0,0,126,-4,0,-63,126,100
30 ENVELOPE 3,1,0,0,0,0,0,0,126,-4,0,-63,126,100
40 DIM pitch(3,100), duration(3,100),

noofnotes(3), nextnote(3), clock(3)
50 tempo=1
60 PROCinitialise(1)
70 PROCcrab(1,2)
80 PROCharmonise(2)
90 END

.

.

.

162

700 DEF PROCcrab(voice,othervoice)
710 LOCAL n1,n2
720 n1=noofnotes(voice)
730 FOR n2=1 TO noofnotes(voice)
740 pitch(othervoice,n2)=pitch(voice,n1)
750 duration(othervoice,n2)=duration(voice,n1)
760 n1=n1-1
770 NEXT n2
780 noofnotes(othervoice)=noofnotes(voice)
790 ENDPROC

1000 DATA 90,C',h,E'b,h,G',h,A'b,h,B,h,R,q,G',h,F'#,h,
F',h,E',h,E'b,h,D',q,D'b,q,C',q,B,q,G,q,C' ,q,
F',q,E'b,h,D',h,C',h,E'b,h,G',e,F',e,G',e,C'',e,
G',e,E'b,e,D',e,E'b,e,F',e,G',e,A',e,B',e,C'',e

1010 DATA E'b,e,F',e,G',e,A'b,e,D',e,E'b,e,F',e,G',e,
F',e,E'b,e,D',e,E'b,e,F',e,G',e,A'b,e,B'b,e,
A'b,e,G',e,F',e,G',e,A'b,e,B'b,e,C'',e,D''b,e,
B'b,e,A'b,e,G',e,A',e,B',e,C'',e,D'',e,E''b,e,C'',e

1020 DATA B'b,e,A'b,e,B',e,C'',e,D'',e,E''b,e,F'',e,
D'',e,G',e,D'',e,C'',e,D'',e,E''b,e,F'',e,E''b,e,
D'',e,C'',e,B',e,C'',q,G',q,E'b,q,C',q

2 Violini

�����C

�����C
����

���� �� � � � �

(a)

�� � ���
� ��� ��
 ��
 ��
 � �

��
 ��
 ��
 � �

� � ���
� ���
 � ��
 ���
 � �

��
 ��
 ��
 � �

�� � � ���
���

���

�����

�����
����

���� � ����
 ���
 � ��
 � �
��
 ��
 ��
 � �

� �� �� ��� � �
		
 �		
 �		
 �� � �� 		
 		
 		
 �

� �� �� ��� � �
		
 		
 		
 � � �� 		
 		
 		
 �

� � �� �� ���
���

���

�����

�����
����

���� � �
		
 		
 		
 �

� �		
 		
 		
 � �
��� ��		
 �� � ��� � �		
 		
 		
 � � ��� �		
 		
 		
 �

� � ��� � �
		
 		
 		
 �

� �� 		
 		
 		
 �
�� � ���

� �� �

� �
		
 		
 		
 � � �� 		
 		
 		
 ���

10

���

���

�����

�����
����

���� � � �

� �
		
 		
 �		
 ��

� �� 		
 		
 		
 ��� � �� ��		

�� �

� ��� 		
 		
 		

� �� 		
 		
 		
 ���

�� �� �� � �

� �
		
 		
 		
 �

� �� 		
 		
 		
 ���
� �� � �

� �
		
 		
 		
 � � �

���
 � ��
 ��
 ���
���

���

�����

�����
����

���� � �� � �
� ��� ���
 ��
 ��
 � �

��
 � ��
 ��
 ��� � � ��� �
� ��� ��
 ��
 ��

� ����
 ��
 � ��
 ���� � �
� �� ��
 ��
 ��
 � �

��
 ��
 ��
 �� ���
� ��

!
"

� � � ��
!

"""
���

���

163

5.5 Mirror canons or canons in contrary motion
In this form the follower is derived from the leader by
inverting the intervals in the leader. This means that when
the leader ascends the follower descends by exactly the same
interval. A familiar tune that will work as a mirror canon
is 'Good King Wenceslas'. A time delay of half a bar is
needed between the leader and the follower.

We now look at canon No. 4 frcan the 'Musical Offering'.
This is a three-part arrangement, a variation of the 'Royal
Theme' - the centre piece of the work - providing the upper
voice. The higher canonic part enters first followed by its
exact inversion half a bar later (delay = 8 notes):

Follower (inversion of leader)

Canon leader

Royal theme

In a mirror canon there is a common note about which the
reflection occurs. In this case it is Eb (the third degree
of the C minor scale - the key of the work). Thus C in the
leader becomes G in the follower and vice versa. If all that
is a bit technical bear in mind that it is just a rule for
deriving the first note of the follower. Once the first note
of the follower is fixed we derive the remainder by
inverting the intervals in the leader. The leader in this
case starts as the sequence:

C Bb Ab G F ...

 T T S T ...

i.e. a descending sequence of tone, tone, semitone, tone,...
The follower thus begins (in the octave below):

G A B C D ...

 T T S T ...

i.e. an ascending sequence of tone, tone, semitone, tone,...
The next program contains the procedure required to generate
the arrays for the inverted part from the data for the
canon. It uses the data for the 'Royal Theme' together with
the canon data.

164

...
50 tempo=2
60 PROCinitialise(1)
70 PROCinitialise(2)
80 PROCinvert(2,3,-68,16*tempo)
90 PROCharmonise(3)

100 END...
700 DEF PROCinvert(voice,othervoice,shift,delay)
710 LOCAL n1,next1,n2,lastpitchon1,lastpitchon2
720 IF delay >0 THEN pitch(othervoice,1)=255 :

duration(othervoice,1)=delay : n2=1
ELSE n2=0 :REM n2 counts notes in other voice.

730 next1=1 :REMnext1 is next note in voice.
740 REPEAT :REM to copy rests and find first note.
750 IF pitch(voice,next1)=255 THEN

n2=n2+1:pitch(othervoice,n2)=255:
duration(othervoice,n2)=duration(voice,next1):
next1 = next1+1

760 UNTIL pitch(voice,next1)<>255
770 n2=n2+1
780 pitch(othervoice,n2)=pitch(voice,next1)+shift
790 lastpitchon1=pitch(voice,next1)
800 lastpitchon2=pitch(othervoice,n2)
810 duration(othervoice,n2)=duration(voice,next1)
820 next1=next1+1
830 FOR n1=next1 TO noofnotes(voice)
840 n2=n2+1
850 nextinterval=-(pitch(voice,n1)-lastpitchon1)
860 IF pitch(voice,n1)=255 THEN

pitch(othervoice,n2)=255
ELSE

pitch(othervoice,n2) =
lastpitchon2+nextinterval :
lastpitchon1=pitch(voice,n1) :
lastpitchon2=pitch(othervoice,n2)

870 duration(othervoice,n2)=duration(voice,n1)
880 NEXT n1
890 noofnotes(othervoice)=n2
900 ENDPROC

1000 DATA 22,C'',q,E''b,q,G'',q,A''b,q,B',q,R,e,G'',e,
F''#,q,F'',q,E'',q,E''b,dq,D'',e,D''b,e,C'',e,
B',e,A',s,G',s,C'',e,F'',e,E'',e,E''b,e,D'',q

1010 DATA 46,R,s,C'',s,B'b,s,A'b,s,G',s,F',s,E'b,s,
D',s,C',s,B,s,C',s,D',s,E'b,e,C',e,R,e,G',e,
C'',s,D'',s,C'',s,B'b,s,A',s,A,s,G,s,A,s,B,e,
G',de,G,s,A,s,B,s,C',s,D',s,E'b,s,D',s,C',e,
D',e,E'b,e,Ab,e,G,s,D',s,C',s,B,s,R,s,F',s,
E',s,D',s,C',dq

165

I Violini II

�����C

�����C

(Viola) �����C

��������

�������� # %%%% � �� ���		
���		
��		

� �� �
�		
 		
 		
 � �

%%%% � �� ���
 ��
 � � �� �� 		
 		
 		
 � �� ��		
��		
 �		
 �
� �� �		
 ����

(c)

� � � ��
����

��(
� �� �		
�� 		
 		
 �

�
		
 � %)

�*
� �� ���
 � ��
���
 �

����
����
(%
 � �� ���
 ��
 ��
�� � �� ������			
 ��			
 ��			

� �
��		
 � ����

����
����
(�� % * �� �� ����

���

���

���

�����

�����

)���

��������

�������� � �� ���
�����
��� ��� �		

� �� �
�			
�		
		

� �� ��		
�		
		
�

� �� ����			
���		
��		

� �� �
��		
		
�		

� �
�		
 		
 � ���		
 ����

�� �� � ���
 ��
 ���
 � ����

� �		
 		
 �		
 ��
� �� ��		
		
		
 %%%% �

�� �
		
�		
��

� �� ���		
��		
��		
 %%%%
� �� ���		
		
��� �
 ����

� �� ��� �		
�� �� ��
 � ��� �� � ����

��
!

 � �� ����		
���		
��		

� �� �
�		
		
		
���

+
��(��

� �� �
�		

!
���		
� �� ��		
		
		
� �� ��		
��		
�		
�

� �� �		
 ����
����
(����
����

�! � � ��
����
����
(����
����

���

���

���

Exercises
1 Arrange for the voice synchronisation procedures to

recognise the first note in a bar and emphasise it
slightly by playing it with a different envelope. (Define
envelope 4 for this purpose).

2 Animate a piece of music by drawing vertical lines at
successive x positions, one line for each note as the
note is played. The height of a line should be
proportional to the pitch of the corresponding note.

3 Animate a piece of music by displaying the notes on a
musical stave as they are played.

4 Transpose 'Good King Wenceslas' into our musical notation
and play it as a mirror canon as suggested in the text.

5 Modify PROCharmonise to handle sound channels numbered
from zero upwards. Write a procedure that generates, from
the voice I data, a set of pitch and duration values for
playing a 'drumbeat' on Channel 0. (There is room in our
arrays for these - the zero subscripts were not used.)
You can experiment with different rules for generating
the drumbeat. For example, you might have a drumbeat only
at the start of each bar, or every time the start of a
note on voice I coincides with the natural 'beat' of the
music.

166

5.6 Automatic composition
Music has been called 'a compromise between chaos and
monotony'. The next two programes provide two contrasting
examples. The first is an example of 'chaos' and the second
represents structured monotony. The first program selects a
note or pitch, channel, envelope and duration entirely at
random.

10 ENVELOPE 1,1, 0,0,0,0,0,0,
126,-4,0,-63,126,100

20 ENVELOPE 2,1, 0,0,0,0,0,0,
63,10,0,-63,63,110

30 ENVELOPE 3,1, 0,0,0,0,0,0,
126,-8,0,-10,126,50

40 FOR note=1 TO RND(100)
50 channel = RND(3)
60 envelope = RND(3)
70 pitch = RND(256)-1
80 duration=RND(32)
90 SOUND channel,envelope,pitch,duration

100 NEXT note

The second program produces a monotonous sequence, the
nature of which should be clear from a reading of the
program.

10 ENVELOPE 1,1, 0,0,0,0,0,0,
126,-4,0,-63,126,100

20 ENVELOPE 2,1, 0,0,0,0,0,0,
63,10,0,-63,63,110

30 ENVELOPE 3,1, 0,0,0,0,0,0,
126,-8,0,-10,126,50

40 FOR note = 1 TO 20
50 SOUND 1,1,53,8
60 NEXT note
70 key=GET
80 FOR pitch=53 TO 101 STEP 4
90 SOUND 1,1,pitch,8

100 NEXT pitch
110 key=GET
120 FOR phrase = 1 TO 10
130 SOUND 1,1,53,8
140 SOUND 1,1,69,8
150 SOUND 1,1,81,8
160 SOUND 1,1,101,8
170 NEXT phrase

167

In this section, we explore ways of getting the BBC micro
to compose its own music. In order for a computer to compose
interesting music, there must be some degree of randomness
involved, otherwise the music produced would be monotonous.
But the music must also satisfy certain rules that make it
recognisable as music to the listener. Incidentally, the
rules that make music acceptable vary from culture to
culture and from period to period. For example, Oriental
music sounds strange to Western ears and the music of
Beethoven (18th to 19th century) would probably have shocked
Palestrina (16th century). The ear needs educating in the
rules that are prevalent at a particular period.

Random music is not necessarily unpleasant, particularly
if the texture of the music is controlled. The next program
illustrates this point and plays music selecting two random
numbers to drive the pitch and duration in a SOUND
statement. Superimposed on this basic method we have added
three effects:

(1) An echo (Two SOUND statements referencing separate
envelopes)

(2) Insertion of a glissando or slide (de rigueur in arcade
games) at random instants, and

(3) Insertion of pitch distortion at random instants.

The net effect is not uninteresting. Note that the pitch
distortion is inserted by changing the parameters in a
single ENVELOPE statement. In this case we could have used
two ENVELOPE statements with different parameters and
selected, but the setting and resetting of ENVELOPE
parameters (PROCpitchset and PROCpitchreset) is the general
structure required for dynamically changing ENVELOPE
parameters and back again in a playing loop.

10 ENVELOPE 1,1, 0,0,0,0,0,0,
126,-4,0,0,126,100

20 ENVELOPE 2,1, 0,0,0,0,0,0,
63,-4,0,0,63,50

30 prevnote = 0
40 FOR I = 1 TO 100
50 note = RND(255)
60 IF note MOD 11 =0 THENPROCslide(prevnote,note)
70 IF note MOD 7 = 0 THENPROCpitchset
80 SOUND 1,1,note,RND(8)
90 SOUND 1,2,note,RND(8)

100 prevnote = note
110 PROCpitchreset
120 NEXT
130 END

168

140 DEF PROCslide(old,new)
150 IF old>new THEN step = -1 ELSE step = 1
160 SOUND &1001,0,0,0
170 FOR i = old TO new STEP step
180 SOUND &1001,0,0,0
190 SOUND &11,1,i,2
200 PROCpitchreset
210 NEXT
220 ENDPROC

230 DEF PROCpitchset
240 pi1 = 16:pi2 = -16: pi3 = 16
250 pn1 = 2: pn2 =4: pn3 = 2
260 ENVELOPE 1,1, pi1,pi2,pi3,pn1,pn2,pn3,

126,-4,0,0,126,100
270 ENDPROC

280 DEF PROCpitchreset
290 ENVELOPE 1,1, 0,0,0,0,0,0,

126,-4,0,0,126,100
300 ENDPROC

5.7 Generating rhythms
Rhythm is a very important component of music of all
cultures. Indeed in some primitive cultures, music consists
of rhythm and very little else. In this section, we shall
examine ways of making a computer generate a rhythmic
structure that is similar to that of a simple folk tune.

In music, rhythm is concerned with the grouping of notes
into beats, of beats into bars, bars into phrases and so on.
In the Oxford Companion to Music, the entry under 'phrase'
states that any simple four-line hymn or folk-tune falls
clearly into two halves or 'sentences'. Each sentence falls
into two phrases and each phrase normally consists of four
bars (although this is sometimes varied). We shall use this
simple model for our first attempts at automatic
composition.

To a computer scientist or linguist, the above
description suggests the use of a 'generative grammar' to
describe the structure of a piece of music. Such grammars
are used extensively by computer scientists to describe the
structure of programming languages. Such structures are, for
example, reflected in the construction of a compiler. In
this case, we might start with the rule

TUNE ::= SENTENCE SENTENCE

which we read as 'A tune consists of a sentence followed by
another sentence'. ::= is a special symbol meaning 'consists
of' or 'can be rewritten as'.

169

We could then go on to define

SENTENCE ::= PHRASE PHRASE
PHRASE ::= BAR BAR BAR BAR

or we might decide that the last bar of a phrase should have
a different structure from the other bars:

PHRASE ::= BAR1 BAR1 BAR1 BAR2

where a BAR2 will have a different definition from a BAR1.
Rules like these are usually referrexi to as 'rewrite
rules'. The left-hand side of the rule can be rewritten as
the right-hand side.

A more complicated example of a musical grammar might
start off with

PIECE ::= SONATA | RONDO | FUGUE

The sign '|' is read as 'or', thus the above rewrite rule
states that a piece is either a sonata or a rondo or a
fugue. The definition might continue with

SONATA ::= EXPOSITION DEVELOPMENT RECAPITULATION

Simple rewrite rules provide a concise notation for
describing the structure of language or music, but they have
many limitations and the system has to be 'augmented' for
more advanced applications.

Returning to our simple folk-tune example, the structure
of the rules constituting the grammar can be directly
reflected in the structure of a BASIC program that generates
a piece of music from the grammar. In the next program, the
rule defining a tune has been transcribed directly into into
a procedure that generates a tune.

DEFPROCtune Corresponds to rule
PROCsentence
PROCsentence TUNE ::= SENTENCE SENTENCE

ENDPROC

PROCsentence is defined similarly. These two procedures
could have been combined into one, a tune being defined as
four phrases, but it is always advisable to maintain a
procedure structure that reflects the structure of the
process being modelled. We may decide later that the first
sentence in a tune should have a slightly different
structure than the second. Defining a tune in terms of
sentences and a sentence in terms of phrases will make it
easier to incorporate changes like this.

PROCphrase is defined in a similar way. It makes three
identical calls of PROCbar and then a fourth call of PROCbar

170

to generate the last bar of the phrase. The type of bar to
be generated has been indicated by a parameter.

DEF PROCphrase
LOCAL bar Corresponds to rule
FOR bar=1 TO 3

PRCOCbar(minnote) PHRASE ::= BAR1 BAR1 BAR1 BAR2
NEXT bar

PROCbar(16)
ENDPROC

The parameter indicates the minimum duration permitted for
the final note of the bar and we have created the last bar
of a phrase (a BAR2) by supplying a different parameter, 16.
This indicates that the bar generated by this call should
have a final note of duration at least 16 time units, i.e. a
minim. Forcing a phrase to end with a longish note gives an
impression of rounding off the phrase. The first three bars
of a phrase are allowed to terminate with the shortest
permitted note available for the tune being composed. This
value is called 'minnote' and is input to the program as a
parameter. The value input determines the overall 'tempo' of
the piece.

The 'grammar' of a bar will depend on the number of beats
in a bar (another input parameter). For example, in 2/4
time, we could have

BAR1 ::= CROTCHETGROUP CROTCHETGROUP | MINIMGROUP

This means 'a bar can be a group of notes equivalent to a
crotchet followed by another crotchet group, or a bar can
consist of a group of notes equivalent to a minim.' We shall
not allow note groupings to cut across the 'beat' structure
of the bar. We could define

CROTCHETGROUP ::= � � � �� � � � �� �� � � � �
assuming a semiquaver as the minimum permitted note
(duration = 2). For convenience, we insist that notes in a
group all have the same duration. We do not permit

CROTCHETGROUP ::=

� � ��� �
A minim group is defined as

MINIMGROUP ::= � �� � � � �� � � �� � � � �� �� � � � � �� �� � � � �
Recall that we require a phrase to terminate with at least a
minim. With two beats to the bar, this means

BAR2 ::= �

171

The complete grammar for 2/4 time is listed next. The whole
process of generating a sequence of symbols (in this case
notes of a certain duration) using rewrite rules can be
viewed as a tree structure. Using choice where choice in
available we could generate the tree shown below. This
particular tree is just one of a large number that could be
generated from the rewrite rules. The tree structure or
hierarchy is reflected directly in the procedure hierarchy
or structure.

Tune :: = sentence sentence
Sentence :: = phrase phrase
Phrase :: = bar1 bar2 bar1 bar2
Bar 1 :: = crotchetgroup crotchetgroup/minimgroup

Phrase

� � � �� � � � �� �� � � � �Crotchetgroup :: =

� �� � � � �� � � �� � � � �� �� � � � � �� �� � � � �Minimgroup :: =

�Bar2 :: =

Bar 1 Bar 1 Bar 1 Bar 2

Minimgroup Crotchetgroup Crotchetgroup Minimgroup

� �� � � �� � �� �� � ��� � � � � � �� �

BAR1 and BAR2 would be defined slightly differently if we
had three or four (or more) beats to the bar.

The definitions of BAR1. and BAR2 are implemented in a
fairly ad hoc fashion in PROCbar in the program.

10 ENVELOPE 1,1, 0,0,0,0,0,0,
126,-8,0,-63,126,50

20 ENVELOPE 2,1, 0,0,0,0,0,0,
100,-8,0,-80,100,50

100 INPUT "Beats per bar",timesig
110 INPUT "Minimum note",minnote
120 PROCtune
130 END

200 DEF PROCtune
210 PROCsentence
220 PROCsentence
230 ENDPROC

172

240 DEF PROCsentence
250 PROCphrase
260 PROCphrase
270 ENDPROC

280 DEF PROCphrase
290 LOCAL bar
300 FOR bar=1 TO 3
310 PROCbar(minnote)
320 NEXT bar
330 PROCbar(16)
340 ENDPROC

350 DEF PROCbar(minfinish)
360 envelope = 1
370 beatsleft=timesig
380 REPEAT
390 PROCselectgroup
400 IF beatsleft=0

THEN PROCsubdividegroup(minfinish)
ELSE PROCsubdividegroup(minnote)

410 FOR note=1 TO nextgroup DIV duration
420 PROCplaynote
430 NEXT note
440 UNTIL beatsleft=0
450 ENDPROC

460 DEF PROCselectgroup
470 LOCAL g,timeleft
480 timeleft=beatsleft*8
490 IF beatsleft=1 OR timeleft=minfinish THEN

nextgroup=timeleft :beatsleft=0:ENDPROC
500 REPEAT:g=RND(beatsleft)
510 UNTIL beatsleft-g=0 OR timeleft-g*8>=minfinish
520 nextgroup=g*8
530 beatsleft=beatsleft-g
540 ENDPROC

550 DEF PROCsubdividegroup(mindur)
560 IF nextgroup=mindur OR nextgroup MOD mindur<>0

THEN duration=nextgroup:ENDPROC
570 REPEAT
580 duration=2*RND(5)
590 UNTIL nextgroup MOD duration=0ANDduration>=mindur
600 ENDPROC

610 DEFPROCplaynote
620 pitch=53
630 SOUND 1,envelope,pitch,duration:envelope = 2
650 ENDPROC

173

PROCbar repeatedly chooses a group consisting of a random
number of whole notes that in less than or equal to the
number of beats left to be played, subject to the constraint
imposed by the 'minimum last note' parameter. Each group
chosen is then split into an equal number of notes whose
duration divides into the group chosen and whose duration is
less than or equal to the minimum permitted duration. The
notes of the group are then played (all on Middle C).

One further enhancement that assists the listener's
perception of rhythm is to use a slightly louder envelope
for the first note of a bar than is used for the remaining
notes of the bar.

Listen to some of the output from this program and you
will find that the 'sentence', phrase, bar and beat
structure is usually fairly evident.

5.8 Generat1ng pitch values
We now turn our attention to the pitch of the notes played
in the tune so that we can impose a melodic sequence on the
rhythmic structure.

Playing random notes from a scale
A particular piece of music (or at least a section of a
piece of music) is usually confined to notes taken from a
set of notes that are closely related to each other in some
way. The set of notes, or 'scale', used contributes in a
large way to the 'character' of the music. We can easily
alter our 'Rhythm on Middle C' program so that it selects
random notes from a particular scale. The next program
indicates the modifications needed to do this.

10 ENVELOPE 1,1, 0,0,0,0,0,0,
126,-4,0,-63,126,100

20 ENVELOPE 2,1, 0,0,0,0,0,0,
100,-4,0,-80,100,80

30 READ scalelength
40 DIM scalenote(scalelength)
50 FOR n=1 TO scalelength
60 READ scalenote(n)
70 NEXT
80 DATA 4, 53,69,81,101

90 keynote=scalenote(1)
100 INPUT "Beats per bar" ,timesig
110 INPUT "Minimum note",minnote
120 PROCtune
130 END

200 DEF PROCtune
210 PROCsentence(FALSE)
220 PROCsentence(TRUE)
230 ENDPROC

174

240 DEF PROCsentence(finalsent)
250 PROCphrase(FALSE)
260 PROCphrase(finalsent)
270 ENDPROC

280 DEF PROCphrase(finalph)
290 LOCAL bar
300 FOR bar=1 TO 3
310 PROCbar(minnote,FALSE)
320 NEXT bar
330 PROCbar(16,finalph)
340 ENDPROC

350 DEF PROCbar(minfinish,finalbar)
360 envelope = 1
370 beatsleft=timesig
380 REPEAT
390 PROCselectgroup
400 IF beatsleft=0

THEN PROCsubdividegroup(minfinish)
ELSE PROCsubdividegroup(minnote)

410 FOR note=1 TO nextgroup DIV duration
420 PROCplaynote(note=nextgroup DIV duration AND

beatsleft=0 AND finalbar)
430 NEXT note
440 UNTIL beatsleft=0
450 ENDPROC

.

.

.

610 DEF PROCplaynote(finalnote)
620 IF finalnote THEN pitch=keynote

ELSE pitch=scalenote(RND(scalelength))
630 SOUND 1,envelope,pitch,duration
640 envelope=2
650 ENDPROC

The DATA statement at line 80 defines the number of notes
and the pitch values for the scale used, in this case a
major arpeggio.

One further addition has been made to this program. A new
parameter is passed to each of PROCsentence, PROCphrase and
PROCbar to indicate whether it is the final example of that
construction in the tune. This enables the program to
recognise the last note of the tune and constrain it to fall
on the keynote of the scale.

Try running the program with notes taken from the major
arpeggio and you will obtain a moderately pleasing if rather
monotonous effect. Then try some of the other scales listed
here.

175

Scale Interval Sequence

major 8 8 4 8 8 8 4
diminished 4 8 4 8 4 8 4 8
blues 12 8 4 4 12 8
Hindu 8 8 4 8 4 8 8
whole tone 8 8 8 8 8 8
dorian minor 8 4 8 8 8 4 8
aeolian minor 8 4 8 8 4 8 8
hamonic minor 8 4 8 8 4 12 4
pentatonic 8 8 12 8 12

In subsequent sections, we shall use notes taken from the
following extended major scale:

�� ���������������
���������������������

This is the scale of C major extended downwards by three
notes to lower G and up one note to upper D.

First order probability distribution of notes
Once the set of notes (the key) on which a tune will be
played has been determined, there are a number of further
constraints that can be applied in order to make a tune
mimic a particular style. In music of a particular style,
certain notes and combinations of notes will be more common
than others. It is fairly obvious that Mozart does not sound
like Stravinsky and this difference can be quantified to a
certain extent using the techniques now described.

One way of making our program select pitch values more
systematically is to make it use probability distributions
when selecting the pitch of a note to be played. The
simplest (and least satisfactory) type of distribution that
can be used is the first order probability distribution. The
table below shows the result of a 'first order analysis' of
9 simple well-known tunes taken from a child's recorder
tutor (Baa Black Sheep, Bobby Shaftoe, etc.).

g a b c d E F G A B C D
3.4 0.7 3.4 15.0 12.6 13.8 8.5 14.3 8.0 11.1 6.3 2.9

If we imagine all these tunes being played in C major, on
the 12 notes from lower G to upper D, then the figures in
the table give, as percentages, the relative frequency of
occurrence of each note over the nine tunes analysed. Thus,
3.4% of the notes in these tunes were bottom G, 15% of the
notes were Middle C and so on. (These percentages were part

176

of the output produced by a program which is discussed
later.)

We now explain how to generate a note so that the
probability of getting a particular note matches its entry
in the table. The tunes generated by doing this will not be
much better than those obtained by choosing a random note
from the scale, hut the basic technique used is easily
extended to deal with higher order probability distributions
discussed next.

We first set up an array containing the above
percentages. In order to select a note, we generate a random
number in the range 0 to 100 and add up values from the
array until the total exceeds the random number generated
(see below). The number of percentages added determine the
note from the scale that is selected.

3.4 0.7 3.4 15.0 12.6 13.8 8.5 14.3 8.0 11.1 6.3 2.9

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

rand=RND(1)*100 Say, for example, rand=43.5. Then the
first 6 values in freq1 are added before
we obtain a total that exceeds 43.5.
This means that we play the 6th note in
the scale.

pitch=scalenote(6)

This approach is implemented in the next program.

10 ENVELOPE 1,1, 0,0,0,0,0,0,
126,-4,0,-63,126,100

20 ENVELOPE 2,1, 0,0,0,0,0,0,
100,-4,0,-80,100,80

30 READ scalelength
40 DIM scalenote(scalelength)
50 FOR n=1 TO scalelength
60 READ scalenote(n)
70 NEXT
80 DATA 12, 33,41,49,53,61,69,73,81,89,97,101,109
90 keynote=scalenote(4)

100 PROCsetupfreqtable1
110 INPUT "Beats per bar",timesig
120 INPUT "Minimum note",minnote
130 notesplayed=0
140 PROCtune
150 END

...

177

610 DEF PROCplaynote(finalnote)
620 IF finalnote THEN pitch=keynote

ELSE PROCselectpitch1
630 SOUND 1,envelope,pitch,duration
640 notesplayed=notesplayed+1
650 envelope=2
660 ENDPROC

670 DEF PROCsetupfreqtable1
680 LOCAL lb1,l,n,fileno
690 DIM freq1(12)
700 FOR n=1 TO 12
710 READ freq1(n)
720 NEXT n
730 ENDPROC

740 DEF PROCselectpitch1
750 LOCAL rand, n, sum
760 rand=RND(1)*100
770 n=0 : sum=0
780 REPEAT
790 n=n+1 :sum=sum+freq1(n)
800 UNTIL sum>=rand
810 pitch=scalenote(n)
820 lastnoteplayed=n
830 ENDPROC

10010 DATA 3.4, 0.7, 3.4, 15.0, 12.6, 13.8,
8.5, 14.3, 8.0, 11.1, 6.3, 2.9

Note sequences are much more important in composing
melodies, and if we want to constrain the note sequences
that are chosen by our program, we must consider higher
wider probabilities.

Second order probability distributions
The use of second order probability distributions makes the
choice of a note depend on the preceding note.

The next table shows the second order distributions
resulting from an analysis of our 9 simple tunes.

 g a b c d E F G A B C D
g 42.9 0.0 0.0 28.6 14.3 7.1 0.0 7.1 0.0 0.0 0.0 0.0
a 0.0 0.0 66.7 0.0 33.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0
b 21.4 0.0 7.1 50.0 21.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0
c 0.0 0.0 12.7 40.0 14.5 18.2 10.9 3.6 0.0 0.0 0.0 0.0
d 7.7 0.0 7.7 26.9 28.8 13.5 9.6 5.8 0.0 0.0 0.0 0.0
E 0.0 3.5 0.0 17.5 26.3 21.1 14.0 17.5 0.0 0.0 0.0 0.0
F 0.0 2.9 0.0 0.0 20.0 45.7 8.6 22.9 0.0 0.0 0.0 0.0
G 0.0 0.0 0.0 3.5 1.8 15.8 21.1 22.8 31.6 0.0 1.8 1.8
A 0.0 0.0 0.0 0.0 0.0 0.0 3.0 24.2 18.2 48.5 0.0 6.1
B 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13.0 13.0 43.5 23.9 6.5
C 0.0 0.0 0.0 0.0 0.0 3.8 0.0 3.8 3.8 30.8 42.3 15.4
D 0.0 0.0 0.0 0.0 0.0 0.0 0.0 33.3 16.7 8.3 25.0 16.7

178

One row in this table corresponds to one of our notes and
the entries in a row give the percentage of occasions on
which each of the other notes followed the note to which the
row corresponds. For example, row 1 indicates that lower G
is followed by another lower 6 on 42.9% of occasions, by
Middle C on 28.6% of occasions, by D next to Middle C on
14.3% of occasions, by E on 7.1% of occasions and by upper G
on 7.1% of occasions.

The modifications to the previous program needed to
generate notes according to the second order probability
distributions are presented in the next program.

...
100 PROCsetupfreqtable1
101 PROCsetupfreqtable2

...
610 DEF PROCplaynote(finalnote)
620 IF finalnote THEN pitch=keynote

ELSE IF notesplayed=0 THEN PROCselectpitch1
ELSE PROCselectpitch2

...
840 DEF PROCsetupfreqtable2
850 LOCAL l,n
860 DIM freq2(12,l2)
870 FOR l=1 TO 12
880 FOR n=1 TO 12
890 READ freq2(l,n)
900 NEXT:NEXT
910 ENDPROC

920 DEF PROCselectpitch2
930 LOCAL rand, n, sum
940 rand=RND(1)*100
950 n=0 : sum=0
960 REPEAT
970 n=n+1 : sum=sum+freq2(lastnoteplayed,n)
980 UNTIL sum>=rand
990 pitch=scalenote(n)

1000 lastbut1=lastnoteplayed : lastnoteplayed=n
1010 ENDPROC

10010 DATA 3.4, 0.7, 3.4, 15.0, 12.6, 13.8,
8.5, 14.3, 8.0, 11.1, 6.3, 2.9

20010 DATA 42.9, 0.0, 0.0, 28.6, 14.3, 7.1,
0.0, 7.1, 0.0, 0.0, 0.0, 0.0

20020 DATA 0.0, 0.0, 66.7, 0.0, 33.3, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0
... (second order probabilities)

179

The first note of the tune is generated using first order
probabilities (there is no previous note on which to base
its selection). From then on, a note is generated using the
row of the second-order probability table that corresponds
to the previous note played. This eliminates the occasional
violent leaps in pitch that occurred with the previous
version of the program. The second-order probabilities
associated with such violent leaps are mostly 0. The use of
second order probability thus encourages the program to use
commonly acceptable pitch intervals between consecutive
notes.

Third order probability distributions
If we want the program to use commonly used sequences of
notes, we can move on to third order distributions where the
probability of choosing a note will depend on the two
previous notes played. The next table gives the results of a
third order analysis of our 9 tunes.

Each possible sequence has a probability distribution
associated with it and that distribution is used to choose
the next note. Many of the rows in a complete version of
this table would contain all zeros - if you consult the
previous table, you will see that many combinations of two
notes never occur.

The next program uses the first order distribution to
choose its starting note, the second order distributions to
choose the second note and from then on it uses the third
order distributions.

...
100 PROCsetupfreqtable1
101 PROCsetupfreqtable2
102 PROCsetupfreqtable3...
610 DEF PROCplaynote(finalnote)
620 IF finalnote THEN pitch=keynote

ELSE IF notesplayed=0 THEN PROCselectpitch1
ELSE IF notesplayed=1 THEN PROCselectpitch2
ELSE PROCselectpitch3...

1020 DEF PROCsetupfreqtable3
1030 LOCAL lb1,l,n
1040 DIM freq3(12,12,12)
1050 REPEAT
1060 READ lb1,l
1070 FOR n=1 TO 12
1080 READ freq3(lb1,l,n)
1090 NEXT n
1100 UNTIL lb1=0
1110 ENDPROC

180

Previous
two note frequency distributions of following notes
numbers

1 1 0.0 0.0 0.0 33.3 33.3 16.7 0.0 16.7 0.0 0.0 0.0 0.0
1 4 0.0 0.0 33.3 33.3 0.0 33.3 0.0 0.0 0.0 0.0 0.0 0.0
1 5 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 6 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0
2 3 0.0 0.0 50.0 50.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2 5 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3 1 66.7 0.0 0.0 33.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3 3 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3 4 0.0 0.0 0.0 50.0 16.7 16.7 16.7 0.0 0.0 0.0 0.0 0.0
3 5 33.3 0.0 33.3 0.0 0.0 0.0 33.3 0.0 0.0 0.0 0.0 0.0
4 3 28.6 0.0 0.0 42.9 28.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4 4 0.0 0.0 5.0 50.0 10.0 15.0 15.0 5.0 0.0 0.0 0.0 0.0
4 5 37.5 0.0 0.0 0.0 25.0 25.0 12.5 0.0 0.0 0.0 0.0 0.0
4 6 0.0 20.0 0.0 20.0 0.0 0.0 30.0 30.0 0.0 0.0 0.0 0.0
4 7 0.0 16.7 0.0 0.0 33.3 50.0 0.0 0.0 0.0 0.0 0.0 0.0
4 8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0
5 1 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5 3 25.0 0.0 0.0 50.0 25.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5 4 0.0 0.0 36.4 0.0 36.4 18.2 0.0 9.1 0.0 0.0 0.0 0.0
5 5 0.0 0.0 0.0 20.0 53.3 6.7 6.7 13.3 0.0 0.0 0.0 0.0
5 6 0.0 0.0 0.0 28.6 14.3 14.3 28.6 14.3 0.0 0.0 0.0 0.0
5 7 0.0 0.0 0.0 0.0 80.0 20.0 0.0 0.0 0.0 0.0 0.0 0.0
5 8 0.0 0.0 0.0 0.0 0.0 0.0 33.3 66.7 0.0 0.0 0.0 0.0
6 2 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
6 4 0.0 0.0 0.0 50.0 10.0 20.0 20.0 0.0 0.0 0.0 0.0 0.0
6 5 0.0 0.0 0.0 53.3 20.0 6.7 13.3 6.7 0.0 0.0 0.0 0.0
6 6 0.0 0.0 0.0 0.0 25.0 50.0 8.3 16.7 0.0 0.0 0.0 0.0
6 7 0.0 0.0 0.0 0.0 12.5 0.0 0.0 87.5 0.0 0.0 0.0 0.0
6 8 0.0 0.0 0.0 0.0 0.0 60.0 10.0 20.0 10.0 0.0 0.0 0.0
7 2 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
7 5 0.0 0.0 42.9 0.0 14.3 42.9 0.0 0.0 0.0 0.0 0.0 0.0
7 6 0.0 0.0 0.0 12.5 56.3 18.7 0.0 12.5 0.0 0.0 0.0 0.0
7 7 0.0 0.0 0.0 0.0 0.0 66.7 33.3 0.0 0.0 0.0 0.0 0.0
7 8 0.0 0.0 0.0 12.5 0.0 0.0 37.5 37.5 12.5 0.0 0.0 0.0
8 4 0.0 0.0 50.0 50.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
8 5 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
8 6 0.0 0.0 0.0 33.3 22.2 11.1 11.1 22.2 0.0 0.0 0.0 0.0
8 7 0.0 0.0 0.0 0.0 0.0 75.0 16.7 8.3 0.0 0.0 0.0 0.0
8 8 0.0 0.0 0.0 7.7 7.7 15.4 15.4 23.1 30.8 0.0 0.0 0.0
8 9 0.0 0.0 0.0 0.0 0.0 0.0 5.6 22.2 22.2 50.0 0.0 0.0
8 11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0
8 12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0
9 7 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0
9 8 0.0 0.0 0.0 0.0 0.0 0.0 71.4 14.3 14.3 0.0 0.0 0.0
9 9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.7 0.0 83.3 0.0 0.0
9 10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 25.0 6.3 0.0 68.8 0.0
9 12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 50.0 0.0 50.0

10 8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0
10 9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.7 33.3 33.3 0.0 16.7
10 10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.0 10.0 65.0 0.0 15.0
10 11 0.0 0.0 0.0 0.0 0.0 9.1 0.0 9.1 9.1 0.0 36.4 36.4
10 12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 66.7 0.0 0.0 33.3 0.0
11 6 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0
11 8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0
11 9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0
11 10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 37.5 62.5 0.0 0.0
11 11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 45.5 54.5 0.0
11 12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 50.0 50.0 0.0 0.0 0.0
12 8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 66.7 0.0 0.0 33.3
12 9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 50.0 0.0 0.0 0.0 50.0
12 10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0
12 11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0
12 12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0

181

1120 DEF PROCselectpitch3
1130 LOCAL rand,n,sum
1140 rand=RND(1)*100
1150 n=0 : sum=0
1160 REPEAT
1170 n=n+1
1175 sum=sum+freq3(lastbut1,lastnoteplayed,n)
1180 UNTIL sum>=rand
1190 pitch=scalenote(n)
1200 lastbut1=lastnoteplayed : lastnoteplayed=n
1210 ENDPROC

10010 ...
20010 ...
30010 DATA 1, 1, 0.0, 0.0, 0.0, 33.3, 33.3, 16.7,

0.0, 16.7, 0.0, 0.0, 0.0, 0.0
30020 DATA 1, 4, 0.0, 0.0, 33.3, 33.3, 0.0, 33.3,

0.0, 0.0, 0.0, 0.0, 0.0, 0.0
... (third-order frequencies)

The music generated by the program faithfully imitates the
banality of the source material.

5.9 A program generate prolatbility frequency tables
In case you want to analyse your own favourite type of
music, we present the following program which was used to
generate the distributions of the three frequency tables.

10 DIM freq1(12), freq2(12,12), freq3(12,12,12)
20 INPUT "Number of tunes",nooftunes
30 FOR tune=1 TO nooftunes
40 PROCanalysetune
50 NEXT tune
60 PROCstandardisetable1
70 PROCstandardisetable2
80 PROCstandardisetable3
90 PROCoutputtable1

100 PROCoutputtable2
110 PROCoutputtable3
120 END

130 DEF PROCanalysetune
140 LOCAL scale$,lastbut1$,last$,next$,

lastbut1,last,next
150 READ scale$
160 READ lastbut1$,last$,next$
170 lastbut1=INSTR(scale$,lastbut1$)
180 last=INSTR(scale$,last$)
190 freq1(lastbut1)=freq1(lastbut1)+1
200 freq1(last)=freq1(last)+1
210 freq2(lastbut1,last)=freq2(lastbut1,last)+1

182

220 REPEAT
230 next=INSTR(scale$,next$)
240 IF next=0 THEN PRINT "Error in DATA ";tune;

" ";scale$;" ";next$
250 freq1(next)=freq1(next)+1
260 freq2(last,next)=freq2(last,next)+1
270 freq3(lastbut1,last,next) =

freq3(lastbut1,last,next)+1
280 lastbut1=last:last=next
290 READ next$
300 UNTIL next$="Z"
310 ENDPROC

330 DEF PROCstandardisetable1
340 LOCAL n, total
350 total=0
360 FOR n=1 TO 12
370 total=total+freq1(n)
380 NEXT n
390 FOR n=1 TO 12
400 freq1(n)=freq1(n)*100/total
410 NEXT n
420 ENDPROC

440 DEF PROCstandardisetable2
450 LOCAL l,n
460 FOR l=1 TO 12
470 total=0
480 FOR n=1 TO 12
490 total=total+freq2(l,n)
500 NEXT n
510 IF total>0 THEN

FOR n=1 TO 12: freq2(l,n)=freq2(l,n)*100/total:
NEXT n

520 NEXT l
530 ENDPROC

540 DEF PROCstandardisetable3
550 LOCAL lb1,l,n,total
560 FOR lb1=1 TO 12
570 FOR l=1 TO 12
580 total=0
590 FOR n=1 TO 12
600 total=total+freq3(lb1,l,n)
610 NEXT n
620 IF total=0 THEN freq3(lb1,l,0)=0 ELSE

FOR n=1 TO 12:
freq3(lb1,l,n)=freq3(lb1,l,n)*100/total:

NEXT n : freq3(lb1,l,0)=100
630 NEXT l
640 NEXT lb1
650 ENDPROC

183

660 DEF PROCoutputtable1
670 LOCAL n
680 PRINT "10000 DATA ";
690 @%=&20105
700 FOR n=1 TO 12
710 PRINT ;freq1(n); :IF n<12 THEN PRINT ",";
720 NEXT n
730 PRINT
740 ENDPROC

750 DEF PROCoutputtable2
760 LOCAL l,n,lineno
770 lineno=20010
780 FOR l=1 TO 12
790 @%=5
800 PRINT lineno;" DATA ";
810 @%=&20105
820 FOR n=1 TO 12
830 PRINT ;freq2(l,n) ; : IF n<12 THEN PRINT ",";
840 NEXT n
850 PRINT
860 lineno=lineno+10
870 NEXT l
880 ENDPROC

890 DEF PROCoutputtable3
900 LOCAL lb1,l,n,lineno
910 lineno=30010
920 FOR lb1=1 TO 12
930 FOR l=1 TO 12
940 IF freq3(lb1,l,0)>0 THENPROCoutline3
950 NEXT l
960 NEXT lb1
970 @%=&90A
980 PRINT ;lineno;

" DATA 0,0, 0,0,0,0,0,0,0,0,0,0,0,0"
990 REM *** DATA terminator ***

1000 ENDPROC

1010 DEF PROCoutline3
1020 LOCAL n
1030 @%=5
1040 PRINT ;lineno;" DATA ";lb1;",";l;",";
1050 @%=&20105
1060 FOR n=1 TO 12
1070 PRINT ;freq3(lb1,l,n);:IF n<12 THEN PRINT ",";
1080 NEXT n
1090 PRINT
1100 lineno=lineno+10
1110 ENDPROC

184

1120 DATA gabcdEFGABCD, G,A,B,G,A,A,B,C,C,B,B,G,A,B,
G,A,A,B,C,D,G,D,D,C,B,A,B,C,D,A,D,D,C,B,A,B,C,
D,A,G,A,B,G,A,A,B,C,C,G,A,G,A,B,G,A,A,B,C,D,G,Z

1130 DATA defgaBCDEFGA, g,g,g,C,B,D,B,C,D,D,D,g,f,a,
f,d,g,f,g,C,B,D,B,g,a,C,a,f,g,g,B,D,B,g,B,D,B,
a,C,a,f,a,C,a,B,D,B,g,B,D,B,a,C,a,f,g,g,Z

1140 DATA defgaBCD, g,B,C,D,C,B,a,g,a,d,d,a,g,B,C,D,
C,B,a,g,a,d,d,g,B,g,g,C,B,a,g,FALSE,a,d,d,a,g,B,C,
D,C,B,a,g,a,d,d,g,Z

1150 DATA ***cdEFGABC,c,c,G,G,A,B,C,A,G,F,F,E,E,d,
d,c,G,G,G,F,F,F,E,E,E,d,G,G,G,F,G,A,F,E,d,d,c,Z

1160 DATA ***cdEFGABC,E,F,G,G,A,B,C,E,E,G,G,A,B,C,
G,C,C,B,B,A,A,G ,G,A,G,F,E,d,c,Z

1170 DATA ***gaBCDE,D,B,D,D,B,D,E,D,C,B,a,B,C,D,
g,g,g,g,g,a,B,C,D,D,a,a,C,B,a,g,Z

1180 DATA *******GABCD,B,B,B,B,B,B,B,D,G,A,B,C,C,C,
C,C,B,B,B,B,A,A,B,A,D,B, B,B,B,B,B,B,D,G,A,B,C,
C,C,C,C,B,B,B,D,C,B,A,G,Z

1190 DATA defgaBCDE,D,E,D,C,B,g,g,a,B,a,g,f,d,d,
D,E,D,C,B,g,g,B,e,f,g,B,g,C,a,B,g,g,C,e,a,g,f,
d,d,B,g,C,a,B,g,g,B,e,f,f,g,Z

1200 DATA fgabcDEF,f,b,b,b,b,b,a,b,e,c,c,c,c,c,
D,D,D,D,F,E,D,D,c,c,c,c,F,F,D,D,D,D,D,E,c,c,c,
c,F,E,D,c,b,c,c,b,a,b,b,b,b,b,Z

The string at the start of the DATA for a tune
establishes the range of notes for the tune starting three
notes below the keynote. There then follow the names of the
notes in the tune in the order in which they appear. The
program! prints the tables in the form of DATA statements
numbered from 10000 upwards that can be absorbed into
another program. To do this, type

*SPOOL "freqtables"
RUN
*SPOOL

and the DATA statentents for the tables will be stored on
cassette. These can be added to any program by typing

*EXEC "freqtables"

Note that as is stands the program does not cater for
accidentals and would have to be extended for these.

Now the question is: does using probability tables to
mimic a musical genre produce anything worth listening to.
One of the problems with this method is that you can make
music more and more 'Bach-like' or 'Mozart-like' by using
higher and higher probability orders, but as the music
becomes more and more like the target style it becomes less
and less original. In the limit if you take a high enough
order probability distribution, you are taking so much

185

information from say Bach tune that the program will
eventually generate an actual Bach tune (give or take a few
notes).

So finally we return to letting the computer do its own
thing and get it to play some 12 bar blues.

5.10 Micro blues
The next program plays or improvises on a 12 bar blues. It
does not use probability tables but selects notes from two
jazz blues scales (Bb and Eb, DATA statement 860). It
utilises a rhythmic chordal accompaniment and the three
voices are synchronised using PROCinitialise, PROCharmonise
and PROCsound which were described earlier. Voices 2 and 3
consist of a simple blues chord progression taken from DATA
statements 700 and 710. These are loaded up into rows 2 and
6 of the three row pitch and duration arrays. PROCjazz
initialises row 1 of this array by randomly selecting
starting notes for a phrase from the appropriate scale. The
rhythm for a phrase is randomly selected from a set of DATA
statements (1301 onwards).

10 ENVELOPE 1,1,0,0,0,0,0,0,63,10,0,-63,63,126
20 ENVELOPE 2,1,0,0,0,0,0,0,126,-4,0,-100,126,100
30 ENVELOPE 3,1,0,0,0,0,0,0,126,-4,0,-100,126,100
40 DIM pitch(3,200), duration(3,200),

noofnotes(3), nextnote(3), clock(3)
50 tempo = 1
60 PROCinitialise(2)
70 PROCinitialise(3)
80 PROCjazz
90 PROCharmonise(3)

100 END

200 DEF PROCinitialise(voice)
.
. as before
.

390 ENDPROC

400 DEF PROCharmonise(noofvoices)
.
. as before
.

550 ENDPROC

600 DEF PROCsound(voice)
.
. as before
.

680 ENDPROC

186

700 DATA 24,A#,h,A#,dq,A#,e,R,e,A#,e,A#,e,R,q,A#,dq,
A#,e,R,w,C'#,h,C'#,dq,C'#,e,R,w,A#,h,A#,dq,
A#,e,R,w,D'#,w,C'#,w,A#,h,A#,dq,A#,e,A#,w

710 DATA 24, D',h,D',dq,D',e,R,w,D',e,D',e,R,q,D',dq,
D',e,R,w,G,h,G,dq,G,e,R,w,D',h,D',dq,D',e,R,w,
R,w,R,w,D',h,D',dq,D',e,D',w

800 DEF PROCjazz
810 DIM Bb(13), Eb(13)
820 ii = 0
830 FOR note=1 TO 13
840 READ Bb(note)
850 NEXT note
860 DATA 45,57,65,69,73,85,93,105,113,117,121,133,14
870 FOR note = 1 TO 13
880 Eb(note) = Bb(note) + 20
890 NEXT note
900 PROCplaytheblues
910 noofnotes(1)=ii
920 ENDPROC

930 DEF PROCplaytheblues
940 PROCplaybars(4,"Bb")
950 PROCplaybars(2,"Eb")
960 PROCplaybars(6,"Bb")
970 ENDPROC

980 DEF PROCplaybars(n, key$)
990 FOR bar = 1 TO n

1000 FOR phrase = 1 TO 2
1010 PROCselectstartnote
1020 PROCselectupdown
1030 PROCselectphrase
1040 PROCplayphrase(key$)
1050 NEXT phrase
1060 NEXT bar
1070 ENDPROC

1080 DEF PROCselectstartnote
1090 startnote = RND(13)
1100 ENDPROC

1110 DEF PROCselectphrase
1120 sphrase=RND(6)
1130 restoreto = 1300 + sphrase
1140 RESTORE restoreto
1150 ENDPROC

187

1160 DEF PROCplayphrase(key$)
1170 READ noofnotes
1180 note = startnote
1190 FOR i = 1 TO noofnotes
1200 READ length
1210 ii =ii + 1: duration(1,ii) = length
1220 IF key$ = "Eb" THEN pitch(1,ii) = Eb(note)

ELSE pitch(1,ii) = Bb(note)
1230 note=note+ updown
1240 IFnote > 13 OR note < 1 THEN note=7
1250 NEXT i
1260 ENDPROC

1270 DEF PROCselectupdown
1280 IF RND(2) = 2 THEN updown= -1 ELSE updown= 1
1290 ENDPROC

1301 DATA 8,2,2,2,2,2,2,2,2
1302 DATA 4,4,4,4,4
1303 DATA 1,16
1304 DATA 1,16
1305 DATA 4,2,6,2,6
1306 DATA 11,1,2,1,2,1,2,1,2,1,2,1

Exercises
1 Select your favourite style of music, analyse a sample,

generate a set of probability frequency tables and
produce a program that composes in that style. You may
find that you need to experiment with the rhythm
generating program in order to produce rhythms that are
appropriate for your kind of music.

2 The 'creative' part of the 'micro blues' program could be
significantly improved by adding more constraints. For
example:

(a) The intervals used in the phrases are all major or
minor seconds (one step in the scale sequence - line
1220). The interval between notes could be varied.

(b) Rests or gaps of silence should be introduced, space
is very important in music.

(c) Fast note phrases used consecutively should be
followed by a long note.

(d) Repetition of a phrase should be occasionally
introduced.

(e) There are further harmonic constraints if you know
the blues progression.

188

