
Chapter 3 Three-dimensional graphics

This chapter looks at handling three-dimensional solids in
computer graphics systems. Four important aspects are dealt
with. First of all we look at the mathematical techniques
for transforming (enlarging, rotating etc.) such models and
we shall pave the way for this by looking at analogous
operations on two-dimensional models. Secondly we consider
how to display such solid bodies on a two-dimensional
display or screen system. Thirdly we shall look at how
models can be generated mathematically, that is how we can
specify the three-dimensional shape of, for example, a
cylinder to the computer. Finally we shall dip gently into a
classic problem in computer graphics - hidden line removal.

This chapter contains a good deal of fairly
straightforward mathematics involving matrix manipulation
(mainly multiplication). A lot of the mathematical detail is
in Appendices 4 and 5. The transformation procedures,
particularly those for creating a screen image from a three-
dimensional object, can easily be used as a tool without
understanding how they were derived. The procedures used in
this chapter will give you most of the tools you require to
delve into three-dimensional computer graphics. If, however,
you wish to develop your own software, or alter the given
procedures, then obviously an understanding of the
mathematics is desirable.

Currently there are two main methods for representing
three-dimensional solids on computer graphics display
devices. The first is the wire frame model. Here the model
is defined as a list of vertices together with connectivity
information. A two-dimensional representation of this model
as seen from a particular viewpoint can then be drawn by
using line graphics to join the vertices together. Hidden
line removal may also be employed in such models. A more
elaborate and more realistic display involves surface
modelling. This is much closer to visual reality and here an
attempt is made to create an image on the screen rather than
a vertex model. Hidden surfaces are removed in the
representation and visible surfaces are shaded, taking into
account such factors as assumed position of the light
source, surface textural characteristics that define
reflectivity, etc. Colour graphics is used in such modelling
and the end result can be uncannily real.

54

Courtesy Boeing Corporation

Now with the BBC micro we are limited by practical
considerations to wire frame models. In MODE 0 even although
the spatial resolution (640x256) is reasonable, each pixel
at this resolution is 1 bit in the screen memory. This can
only be used to define a surface using lines for its
boundaries or by filling it in one uniform colour. To do
realistic surface modelling we would need to have say 8
bits/pixel. In MODE 1 four colours are available and this is
still insufficient for surface modelling. Colours can be
mixed using a technique called 'dithering' or 'super-
pixeling' but this results in a further decrease in
resolution. However, we can still explore a variety of
fascinating techniques used in three-dimensional graphics
with wire frame models.

3.1 Two-dimensional transfomations and matrix notation
The easiest two-dimensional transformation to implement and
one that you have probably used already is translation or
movement in one direction. Translation is one of a set of
linear transformations that we can apply to a set of
coordinates that specify the vertices or corners of a
piecewise linear figure.

In the more general case a set of points S is operated on
by a transformation T to produce the set S'. This means that

55

a mathematical operation is carried out on all the points in
S, changing their coordinate values to produce points in S'.

T

S, a set of
4 points

S', the points
after transformation T

Depending on the operation used this may change the shape of
a figure that is defined by drawing straight lines between
the points. Consider a set of coordinate points representing
a piecewise linear bird. To draw the six seagulls shown
below from a single set of (x,y) coordinates in DATA
statements we could use the next program.

10 MODE 0
20 VDU 29, 640; 512;
30 FOR i = 0 TO 100 STEP 20
40 PROCdrawseagull(i)
50 NEXT i
60 k=GET : MODE 7 : END

70 DEF PROCdrawseagull(i)
80 RESTORE
90 READ noofpoints

100 READ x, y : MOVE x+i, y
110 FOR j = 2 TO noofpoints
120 READ x, y : DRAW x+i, y
130 NEXT j
140 ENDPROC

56

150 DATA 17,-110,70
160 DATA -120 ,90, -110,100, -90,100, -30,70
170 DATA 100,240, 300,160, 130,180, 40,0
180 DATA 140,-60, 60,-130, 0,-40, -140,-130
190 DATA -220,-390, -200,-70, -70,30, -110,70

The program effects five simple transformations of the
coordinate set in the DATA statements. To change the
translation such that, for example, a diagonally displaced
gull was displaced, we could change lines 100 and 120:

100 READ x, y : MOVE x+i, y+i

120 READ x, y : DRAW x+i, y+i

This is, however, an approach that would lead us into a
different programming notation for each transformation that
is used - a rather unsatisfactory state of affairs.

What we will now proceed to develop is a mathematical
technique that allows us to specify any transformation as a
set of four parameters. We can then have a single procedure
that operates on the data set, using these parameters and
producing the desired transformation. (We will then find
that this system has certain deficiencies that can be
overcome by using six parameters.)

To start with we will ignore translation and consider the
other two common transformations, rotation and scaling. To
rotate a point (x,y) through a clockwise angle, theta, about
the origin, the transformation is:

yt =
xt =

–x sin

x cos + y sin
+ y cos

and scaing is given by:

x1 = xS1

y1 = yS2

The xt and yt are the transformed values of x and y. S1 is
the scaling factor in the x direction and S2 the scaling
factor in the y direction. For example, to magnify a figure
uniformly we would use S1 = S2 = 3, say. Now we can make the
two sets of equations look like each other by re-expressing
the scaling equations as:

xt = xS1 + y × 0

yt = x × 0 + yS2

This enables us to write the operations using matrix
notation. (Details on matrix notation and matrix

57

manipulation are to be found in Appendix 4.) Firstly
rotation clockwise:

(xt, yt) = (x, y) cos
sin cos

–sin

and scaling:

(xt, yt) = (x, y) S1 0
0 S2

and this is just a different way of writing the operations
expressed as equations above. The notation used for
expressing such transformations in matrix form is not
standard but is, for better or worse, the de-facto standard
in computer graphics. We can now represent various linear
transformations as 2x2 matrices:

cos
sin cos

–sin

1) Identity (no effect) 1 0
0 1

2) Rotation (clockwise)

3) Rotation (counter-clockwise) cos sin
cos–sin

4) Scaling

5) Reflection (about the x-axis)

6) Reflection (about the y-axis)

7) Y Shear

8) X Shear

S1 0
0 S2

1 0
0 –1

–1 0
10

1 S
10

1 0
1S

Note that we cannot define translation using this system, a
point we shall return to in a moment.

Here is a program that will accept the four parameters
defining a transformation, using the terminology:

a c
b d

for the transformation matrix.

58

10 MODE 0
20 VDU 29, 640; 512;
30 PROCdrawaxes
40 PRINT '"a c"''"b d"; TAB(6,3); "?"
50 INPUT TAB(9,2)a, TAB(14,2)c, TAB(9,4)b, TAB(14,4)d
60 READ noofpoints
70 READ x, y : PROCtransform(x,y)
80 MOVE xt, yt
90 FOR i = 2 TO noofpoints

100 READ x , y
110 PROCtransform(x, y)
120 DRAW xt , yt
130 NEXT i
140 k=GET : MODE 7 : END
150 DATA 5, 0,0, 180,0, 180,300, 0,300, 0,0

200 DEF PROCdrawaxes
210 MOVE -640,0 : DRAW 640,0
220 MOVE 0,-512 : DRAW 0,512
230 ENDPROC

300 DEF PROCtransform(x, y)
310 xt = a*x + b*y
320 yt = c*x + d*y
330 ENDPROC

Note that we have just one procedure and two lines of
calculation to perform any of the above transformations. The
illustrations show, for both a rectangle and the more
complex seagull, the effect of the transformations.

1
0

0
1Identity

Rotation 30 degrees anticlockwise 0.866
–0.500

0.500
0.866

59

Scaling 2 0
0 0.5

Reflection –1 0
0 –1

Reflection –0 0
0 1

1 1
0 1

Y shear

60

Now bear in mind that this is only a demonstration
program and that normally we would not calculate cosines and
sines before supplying these as program input. Rather
cos(theta) and sin(theta) would be calculated in the course
of execution of a program.

Homogeneous coordinates
The above system for effecting two-dimensional
transformations has a number of drawbacks. Firstly it
excludes important transformation (translation). Secondly
all the transformations are centred at the origin, (0,0).
This is fine in the above examples where the seagull was
centred over the origin and one vertex of the rectangle was
centred at the origin. Consider a rectangle not centred at
the origin and subject to a 30 degree rotation.

or to a scaling:

Because the rotation is centred on the origin the rectangle

61

both rotates and translates. When we are rotating a
geometrical figure it is far mere likely that we require
rotation about an arbitrary point, for example, any one of
the vertices of the rectangle, or the intersection of it
diagonals. Such a transformation is not available in the
above system. Similarly reflections are through the x-axis
or the y-axis. Reflections through other lines are not.
available.

Perhaps most absurd of all is scaling. This also involves
a translation. The second illustration shows the rectangle
offset from the origin and subject to a shrinking. Again it,
is highly unlikely that we should ever require scaling
complicated by a translation proportional to the magnitude
of the scaling. Rather we may require 'pure' scaling about a
centre point or vertex.

A homogenous coordinate systean is a notation that
overcomes these difficulties. In a homogeneous coordinate
system a point (x,y) becomes (x/r, y/r, r). It is convenient
to make r = 1, avoiding division, giving the representation
of a point as (x, y, 1). Because a point is now a three
element row matrix, transformation matrices are now 3x3.
This system has the immediate advantage that we can now
represent the translation transformation with a 3x3 matrix,
We can now write down seven common transformation matrices:

1) Translation 1 0 0

0 1 0
Tx Ty 1

where Tx is the translation in the x direction and Ty is the
translation in the y direction. To check that this works let
us translate the point (1, 1, 1) through a distance of 2 in
the x direction:

(1, 1, 1) 1 0 0
0 1 0

2 0 1

= ((1 × 1 + 1 × 0 + 1 × 2),
(1 × 0 × 1 × 1 + 1 × 0),

(1 × 0 + 1 × 0 + 1 × 1))

In other words

(x, y, 1) 1 0 0
0 1 0

Tx Ty 1

= (x + Tx, y + Ty, 1)

Some of the other transformations in our new system are:

2) Rotation (clockwise)

0 0 1
sin cos 0

cos – sin 0

62

sin cos 0
cos sin 0

0 0 1

3) Rotation (anti-clockwise)

These rotations are still centred on the origin.

Sx 0 0

0 Sy 0
0 0 1

0 –1 0

1 0 0

0 0 1

1 0 0
S 1 0
0 0 1

4) Scaling

5) Reflection (x-axis)

6) X Shear

To test that these are exactly the same as we had before we
can alter the demonstration program to input 6 parameters
and perform the matrix multiplication:

40 PRINT ''"a d"''"b e"''"c f";TAB(6,4); "?"
50 INPUT TAB(9,2)a, TAB(14,2)d,

TAB(9,4)b, TAB(14,4)e,
TAB(9,6)c, TAB(14,6)f

300 DEF PROCtrans£orm(x, y)
310 xt = a*x + b*y + c
320 yt = d*x + e*y + f
330 ENDPROC

where the input parameters represent six of the coefficients
of a 3x3 transformation matrix:

a
b

c

d
e

f

0
0

1

So what have we achieved? Very little as yet! Certainly we
have represented translation in a matrix system, but we now
need 9 matrix coefficients instead of 4 to achieve the same
result. (Actually we have only used 6 of the 9 above, but
you will see shortly that nine are convenient when
combinations of transformations are considered.) However,
the fact that we have included translation in our system now
gives us a major advantage - we need no longer restrict
ourselves to transformations at the origin. Thus homogeneous
coordinates provide a rather roundabout way of adding
constants to the transformed x and y values. The advantage
of this notation is that transformations can still be

63

represented as matrices which will be useful when
considering combinations of transformations.

Generalized two-dimensional transformations
Consider the problem of rotation about any point. Say, for
example, we wish to rotate a rectangle, in any position, 30
degrees counter-clockwise about its bottom LH vertex. We can
easily do this now:

1) Original rectangle at P(Tx,Ty)

P

2) Translate to the origin

3) Rotate about the origin

30°

4) Translate to P(Tx,Ty)

64

The three operations would be:

–Tx Ty 1

0 1 0
1 0 0

cos 30 sin 30 0
– sin 30 cos 30 0

0 0 1

T1 = translate =

R = rotate =

T2 = translate =

0 1 0
1 0 0

Tx Ty 1

Now instead of multiplying each point (x,y,1) by three
matrices we can multiply the matrices together to obtain a
'net transformation matrix' (Details on matrix
multiplication plus a procedure to perform the
multiplication are contained in Appendix 4).

net transformation matrix = T1*R*T2

and then multiply each point (x,y,1) by this matrix. A net
transformation matrix is always of the form:

a
b

c

d
e

f

0
0

1

and in this case

T1*R*T2 =

Tx(1 – cos 30) + Ty sin 30

–sin 30
cos 30

Ty(1 – cos 30) – Tx sin 30

cos 30
sin 30

1

0
0

The same approach can be used for scaling. Say we wanted to
shrink the rectangle about its centre point:

1) Original rectangle at P(Tx,Ty)

P

65

2) Translate to origin

3) Shrink

4) Translate to P(Tx,Ty)

P

The rectangle has shrunk within itself - the desired
transformation. This should be compared with the 2x2 system
shrinking illustration (earlier) where the effect of.
applying a shrink transformation was also to translate the
rectangle 'outside itself'.

The net transform matrix for scaling is:

Tx(1 – S1)
0
S1

Ty(1 – S2)
S2
0

1
0
0

A similar approach can be adopted for the other
transformations. Any arbitrary combination of translation
scaling and rotation will result in a net transformation
matrix. For example we could combine the following
transformations into a net transformation matrix:

66

POriginal

Translation

P

Scaling

Rotation

Translation

67

Now in general transformations are not commutative - the
order in which the individual matrices are multplied to form
a net transformation matrix is important. T1*R*T2 is not the
same as T1*T2*R.

Because net transformation matrices are always of the
form:

a d 0
b e 0
c f 1

The multiplication

a d 0
b e 0
c f 1

(xt, yt, 1) = (x, y, 1)

and this is implemented as:

a d
b e
c f

(xt, yt) = (x, y, 1)

300 DEF PROCtransform(x, y)
310 xt = a*x + b*y + c
320 yt = d*x + e*y + f
330 ENDPROC

which is identical to the procedure we used above to test
the basic transformation matrices. Thus what we have
achieved with our 3x3 system is a method for producing a net
transformation matrix from a series of 3x3 transformation
natrices. The process is sometimes called concatenating
(joining together) transformations. We need the 3x3 system
to perform the concatenation. Concatenation is clearly
advantageous because we need only multiply the matrices
together once to obtain the net transformation matrix and
then multiply each point in the data set by this matrix. As
we have seen this final multiplication reduces to just 4
products and 4 additions. Such efficiency considerations are
critically important in real time animation computers such
as flight simulators.

Finally as an example of the use of these transformations
we return to our seagull. Say we have a seagull drawn at
(0,0) and wish to rotate it in steps of 10 degrees, and at
the same time shrink it into itself.

68

The net transformation matrix for a 10 degree rotation is
given by:

S*R =

= S cos 10 S sin 10 0
–S sin 10 S cos 10 0

0 0 1

S 0 0
0 S 0
0 0 1

–sin 10
0

cos 10
cos 10

0

sin 10
0
1

0

giving the implementation:

a = s*COS(RAD(10)) : d = s*SIN(RAD(10))
b=-d : e=a : c=0 : f=0

Remember that our seagull data set is already centred on the
origin. If it were not centred at the origin we would apply
the net transformation matrix T1*S*R*T2, to scale and rotate
the figure.

The program makes repeated application of the rotation
and scaling transformation, for different angles and scaling
factors. Note that within the main program loop we reduce
the scaling and increment 'theta'. The reduction in scale
gives the spiral effect and and makes the image easier to
interpret.

Now this program contains the three main elements of
mathematically generated pictures: a process (FOR loop) to
control the repetition of a drawing process; a drawing
procedure that can either generate a data set
mathematically, or operate with a supplied data set; and a
net transformation matrix operating on the data set.

69

10 MODE 0
20 VDU 29, 640; 512;
30 PROCdrawaxes
40 s = 1 : theta = 0
50 FOR bird = 1 TO 10
60 RESTORE 200
70 a = s*COS(RAD(theta)) : d = s*SIN(RAD(theta))
80 b=-d : e=a : c=0 : f=0
90 READ noofpoints

100 READ x, y : PROCtransform(x, y)
110 MOVE xt, yt
120 FOR p= 2 TO noofpoints
130 READ x, y
140 PROCtransform(x, y)
150 DRAW xt, yt
160 NEXT p
170 s = s*0.85: theta = theta + 10
180 NEXT bird
190 k=GET : MODE 7 : END

200 DEF PROCdrawaxes
210 MOVE -640,0 : DRAW 640,0
220 MOVE 0,-512 : DRAW 0,512
230 ENDPROC

300 DEF PROCtransform(x, y)
310 xt = a*x + b*y + c
320 yt = d*x + e*y + f
330 ENDPROC

340 DATA ...

Exercises
1 Write a utility program for constructing net

transformation matrices. The individual transformations
to be concatenated could be specified as matrices, or by
a sequence of commands specifying translation, scaling,
rotation and so on.

2 Write a series of programs that generate designs
involving the seagull. The illustrations show some
suggestions. The first illustration involves scaling
only. The second uses scaling, rotation and (non-linear)
translation. The third and fourth illustrations just
involve translation and a single scale adjustment. They
were produced by drawing instances of the seagull at
equal angular increments around the circumference of a
circle. Changing the radius of the circle, the scale of
the seagull and the size of the angular increment will
produce literally hundreds of different designs.

70

3 Repeat these programs but this time use a motif of your
own design. This is most conveniently planned out using
graph paper.

3.2. Three-dimensional graphics - general transformations
In this section we extend the techniques used in the two-
dimensional transformations for translation, scaling,
rotation etc. to deal with three-dimensional objects. Bear
in mind that we are dealing with three-dimensional
coordinates (x,y,z) that transform under scaling, rotation
or whatever to other three-dimensional coordinates
(xt,yt,zt) and that we are not yet ready to display a two-
dimonsional image of a three-dimensional object on the
screen. We will thus restrict this section to a short
discussion on extending two-dimensional transformations to
three-dimensional transformations without developing any
programs. The three-dimensional transformation techniques
are required before we can deal with the transformation into
two dimensions for viewing.

The three-dimensional transformations using homogeneous
cordinates (to enable the calculation of net transformation

71

matrices) are all of the form:
(xt, yt, zt, 1) = (x, y, z, 1) a e i 0

b f j 0

1d h l

c g k 0

where the basic transformation matrices are:
1) Scaling Sx 0 0 0

0 Sy 0 0

0 0 Sz 0
0 0 0 1

Overall magnification or shrinking is achieved by:

Magnification S 0 0 0

0 S 0 0
0 0 S 0
0 0 0 1

Rotation is easily arrived at by again extending the two-
dimensional rotation matrix. To rotate counter-clockwise in
two-dimensions about the origin, we used:

0

cos

– sin
0

sin

cos

0

0
1

and in the three-dimensional case if we consider the z-axis
coming out of the paper, we have:

2) Rotation about th z-axis cos
– sin

0
0

sin
cos

0
0

0
0

0
1

0
0

0
1

which produces rotation counter-clockwise about the z-axis.
That this is a rotation about the z-axis can be seen,
informally, from the fact that the matrix multiplication
only affects the x and y coefficients. This observation can
then be used to write down the other 2 rotation
transformations:

3) Rotation about the x-axis 1 0 00

0 sin 0cos
0 cos 0– sin
0 0 10

4) Rotation about the y-axis
cos 0 – sin 0

0 1 0 0
sin 0 cos 0

0 0 0 1

72

5) Translation 1 0 0 0

0 1 0 0
0 0 1 0

Tx Ty Tz 1

Again we can derive net transformation matrices and, for
example, if we wanted to rotate a body about a line parallel
to the z-axis which passes through point (Tx, Ty, 0) we
would use:

T1*R*T2 =

=

=

1 0 0 0

0 1 0 0
0 0 1 0

–Tx –Ty 0 1

cos sin 0 0
0– sin cos 0

10 0 0

0 0 0 1

1
0
0

Tx

0
1
0

Ty

0
0
1
0

0
0
0
1

1
cos sin– Tx + Ty sin cos– Tx – Ty 0 1

0 0 0
– sin cos 0 0
cos sin 0 0 1

0
0

Tx

0
1
0

Ty

0
0
1
0

0
0
0
1

–Tx + Ty + Txcos sin sin cos–Tx – Ty + Ty 0 1

0 0 1 0
– sin cos 0 0
cos sin 0 0

This would be implemented as:

xt = x*costheta-y*sintheta-Tx* costheta+Ty*sintheta+Tx
yt = x*sintheta+y*costheta-Tx *sintheta-Ty*costheta+Ty
zt = z

where of course the third equation is redundant because the
rotation is about the z-axis and the z coordinate is
unchanged for all points.

This transformation is effected for the case shown in the
following illustration. Since we are not yet ready to
actually plot these objects on a display screen the output
from the program is shown as a coordinate list.

The transformation is:

theta = 45, Tx = Ty = 3

i.e. rotate 45 degrees counter-clockwise about the vertical
line (3,3)

73

Input coordinates

vertex x y z

1 3 3 3
2 4 3 3
3 4 4 3
4 3 4 3
5 3 3 4
6 4 3 4
7 4 4 4
8 3 4 4

Output coordinates

vertex x y z

1 3.000 3.000 3.000
2 3.707 3.707 3.000
3 3.000 4.414 3.000
4 2.293 3.707 3.000
5 3.000 3.000 4.000
6 3.707 3.707 4.000
7 3.000 4.414 4.000
8 2.293 3.707 4.000

3.3 Three-dimesional graphics - viewing and perspective
transformations

Three-dimensional graphics would be a simple extension of
two-dimensional graphics - all our 3x3 transformations would
become 4x4 transformations and that would be the end of the
matter - if we had access to a three-dimensional display
device. Of course the display device is two-dimensional and
the external complication in three-dimensional graphics
comes frcun the need to map the three-dimensional
coordinates of the object to be displayed into the two-
dimensional coordinates of the display system. It is
convenient to express this as a combination of two
transformations - the viewing transformation and the
perspective transformation. This is needed in addition to
any other of the transformations described above such as
scaling, rotation and translation of the three-dimensional
object.

We shall specify the coordinates of a three-dimensional
object in a so called world coordinate system:

74

z

x

1
2

3

4

5
6

7

8

x

y

z

5 8

6
7

2 3

xw y w

z w

World coordinate
system

A house with a pyramidal roof could be specified in this
system as a list of 9 (x,y,z) points in the world coordinate
system.

Our intuition and visual experience with such
abstractions as the wire frame model shown above enables us
to realise the shape of the solid body that the model
represents. Just as we would see different views of the real
object as we moved our viewpoint around the sides and over
the top, so we can construct two-dimensional representations
of these different views from the original wire frame model.

The views can be constructed from the original object by
specifying a viewpoint in relation to the object. The so-
called 'viewpoint transformation' converts the coordinates
expressed in the world coordinate system into 'eye'
coordinates expressed in a coordinate system centred at the
viewpoint.

Having applied the viewpoint transformation we are
stillleft with a list of three-dimensional coordinates. The
transformation that produces a list of two-dimensional or
screen coordinates from the viewpoint list is called the
perspective transformation.

75

The process can be illustrated:

World coordinates

vertex xw yw zw
1 100 0 0
2 100 100 0
3 0 100 0
4 0 0 0
5 100 0 100
6 100 100 100
7 0 100 100
8 0 0 100
9 50 50 150

This is a coordinate list for the wire frame house shown
above. After application of a particular viewpoint
transformation:

Eye coordinates

vertex xe ye ze

1 -42 -69 1442
2 48 -102 1415
3 91 -32 1473
4 0 0 1500
5 -42 -5 1365
6 48 -38 1338
7 91 32 1396
8 0 64 1423
9 24 46 1342

This transformation takes us from world coordinates to eye
coordinates and specifies the object in three dimensions as
it would be seen from the specified viewpoint.

After application of a perspective transformation we
have:

Screen coordinates

vertex xs ys

1 -88 -144
2 103 -216
3 185 -66
4 0 0
5 -93 -11
6 108 -84
7 195 69
8 0 135
9 54 102

76

1

2

3

4
5

6

7

8

9

ys

xs

Now it is important to bear in mind that both the the
viewpoint transformation and the perspective transformation
are particular transformations, arbitrarily chosen for this
example. There is an infinity of viewpoint transformations
because there is an infinity of viewpoints. There is a large
set of perspective transformations depending on the
particular criteria that we wish to adopt to transform or
map a three-dimensional point into a two-dimensional point.

The viewing transformation
The viewing transformation, V, transforms points in the
world coordinate system into the eye coordinate system. The
required operation is:

(xe, ye, ze, 1) = (xw, yw, zw, 1)V

where

V= cos– cos sin– cos 0– sin
cos– sin sin– sin 0cos

sin – cos 00
0 10

where rho, theta and phi together specify the viewpoint. The
mathematics although not difficult requires a firm
appreciation of movements (rotations etc.) in three-
dimensional space. The mathematics that lead to this result,
together with diagrams illustrating the significance of rho,
theta and phi, is given in Appendix 5. If you wish, you can
simply accept this result and use the following BASIC
implementation:

1000 DEF PROCinitviewtransform(rho, theta, phi)
1010 LOCAL sintheta,costheta,sinphi,cosphi
1020 sintheta=SIN(RAD(theta)):costheta=COS(RAD(theta))
1030 sinphi =SIN(RAD(phi)) : cosphi =COS(RAD(phi))
1040 va = -sintheta : vb= costheta
1050 ve = -costheta*cosphi : vf = -sintheta*cosphi
1060 vg = sinphi
1070 vi = -costheta*sinphi : vj = -sintheta*sinphi
1080 vk = -cosphi : vl = rho
1090 ENDPROC

1100 DEF PROCviewtransform(x, y, z)
1110 xe = va*x + vb*y
1120 ye = ve*x + vf*y + vg*z
1130 ze = vi*x + vj*y + vk*z +vl
1140 ENDPROC

PROCinitviewtransform would be called once for a given
viewpoint and PROCviewtransform would then be called once
for each vertex in the object being viewed.

77

Now as we have already mentioned this transformation will
give us a list of three-dimensional coordinates in the eye
coordinate system. What we now need is a perspective:
transformation that will produce screen coordinates. This
considerably easier to derive than the viewing
transformation.

Perspective transformation
The perspective transformation from the eye coordinate
system to the screen coordinate system can be illustrated:

y

x

p´

p
z

x

y
e

e

e

s

s

Point p is a point in the eye system, p' is its mapping into
the screen coordinate system and d is the distance of the
eye from screen. If we look at the illustration normal to
the ye,ze plane we have:

d

p´

p

y

y

ze

s

e

and it is easily seen that:

ys = d*ye/ze

Similarly

xs = d*xe/ze

78

79

We can imagine the process an follows The screen is a plane
parallel to the (xe,ye) plane. For every vertex in the
object - a collection of points in the eye coordinate system
- we can use a line to join the vertex to the origin (the
eye). Where each line intersects the screen plane gives us
the mapping from the vertex into the screen plane.

There is a family of perspective transformations
available but this particular one is the easiest to compute
and use, so we will restrict ourselves to it. It is
categorised by having a single vanishing point and the xs
and ys axes are parallel to the xe and ye axes. The
perspective transformation is implemented by:

1150 DEF PROCperspecttransform(xe, ye, ze, d)
1160 xs = d*xe/ze
1170 ys = d*ye/ze
1180 ENDPROC

The procedures for carrying out the viewing and perspective
transformations will be needed by all the remaining programs
in this chapter.

An example using using and perspective transformations
Here we turn to that hoary old chestnut - the wire frame
cube. This is not so much lack of imagination, as the fact
that a wire frame cube is such an intuitively obvious shape.
The way in which the parameters input to the program affect
the outcome of the program is then easier to understand.

The variables controlling the view are 'd' - the viewing
distance, 'rho', 'theta' and 'phi' the spherical coordinates
specifying a viewpoint (see Appendix 5). 'theta' is
controlled by a FOR loop and the other three parameters are
typed in. This means that we 'fly round' the cube at a
constant elevation.

10 DIM sx(8), sy(8)
20 INPUT "rho",rho, "phi",phi, "screen dist, d",d
30 MODE 0
40 VDU 29, 640; 512;
50 FOR theta = 0 TO 90 STEP 10
60 PROCinitviewtransform(rho, theta, phi)
70 RESTORE
80 FOR vertex = 1 TO 8
90 READ xw, yw, zw

100 PROCviewtransform(xw, yw, zw)
110 PROCperspecttransform(xe, ye, ze, d)
120 sx(vertex) = xs : sy(vertex) = ys
130 NEXT vertex
140 CLG
150 PROCdrawcube
160 NEXT theta
170 k=GET : MODE 7 : END

79

180 DATA 100,0,0, 100,100,0, 0,100,0, 0,0,0
190 DATA 100,0,100, 100,100,100, 0,100,100, 0,0,100
200 DEF PROCdrawcube
210 MOVE sx(1), sy(1)
220 FOR vertex = 2 TO 4
230 DRAW sx(vertex), sy(vertex)
240 NEXT vertex
250 DRAW sx(1), sy(1)
260 DRAW sx(5), sy(5)
270 FOR vertex = 6 TO 8
280 DRAW sx(vertex), sy(vertex)
290 NEXT vertex
300 DRAW sx(5), sy(5)
310 FOR vertex = 2 TO 4
320 MOVE sx(vertex+4), sy(vertex+4)
330 DRAW sx(vertex), sy(vertex)
340 NEXT vertex
350 ENDPROC

The illustration shows the cube from two different
viewpoints. For each, the cube is displayed for two
consecutive values of 'theta'. Now admittedly it's not a
flight through a wire frame model of Chicago (a recent
unbitious example of computer graphics), but you can begin
to see the principles involved. The extra complexity in a
flight through Chicago program would reside in the
techniques necessary to cope with the vast number of
vertices necessary to specify the model.

Now there are no checks in this program and certain input
values will produce nonsense. Suggested values to start with
are:

phi = 50 degrees
rho = 400 units
d = 900 units

80

Now make rho = 300 and see how the views increase in size
because the viewpoint has moved closer to the world
coordinnate system origin. (Incidentally note what happens
if you move the viewpoint inside figure.) Changing the value
of 'phi' will alter the elevation of the view. For example
try 'phi = 0'. You should be able to understand why we do
not get a rotating square from this viewpoint. Now, keeping
'rho' constant, decrease the value of 'd'. This not only
makes the object smaller but increases the perspective.

Exercises
1 Using the two-dimensional seagull of Section 3.1, assume

that each vertex of the bird has a zero z-coordinate. We
can then treat it as if it were a cardboard cut-out
hanging in three-dimensional space. Write a program that
will generate displays of the bird as seen from different
viewing positions.

2 Organise a 'fly round' a house shape. Include a few
windows and doors in the three-dimensional specification
of the house.

3 Organise a 'fly round' any other three-dimensional shape
with which you are familiar.

4 Select a particular viewpoint and modify the wire frame
cube program so that it draws only three 'visible' faces.
Ornament each face of this display with an appropriately
scaled two-dimensional seagull. The seagull must of
course be in the same plane as the face it is
ornamenting.

3.4 Constructional techniques
Now that we have developed a viewing and perspective
transform that allows us to display, on a two-dimensional
screen, a mapping of a three-dimensional object, we can turn
our attention to simple techniques for constructing wire
frame and other models. Of course not all models that we may
wish to construct can be defined mathematically, or at least
it may be exceedingly difficult to so specify them. Such
models, car body shapes for example, may be built up as data
files from perhaps diverse sources that may include some
mathematical modelling together with interaction from a
device such as a light pen or a graphics tablet.

In this section we will consider generating surfaces
specified mathematically as functions of two variables
(f(x,y)). We will also look at generating simple convex
bodies made up of plane faces.

81

Display of f(x,y)
Functions of two variables can be generated and displayed
plotting variations along lines of constant x, constant y,
or both. The illustration shows the function

f(x,y) = cos(x) + cos(y)

plotted along lines of constant x:

The program is:

10 INPUT rho, theta, phi, d
20 PROCinitviewtransform(rho, theta, phi)
30 MODE0 : VDU 29, 640; 512;
40 FOR xw = 360 TO -360 STEP -20
50 PROCscreen(xw, -360, FNf(xw,-360)) : MOVE xs,ys
60 FOR yw= -340 TO 360 STEP 20
70 PROCscreen(xw, yw, FNf(xw,yw)) : DRAW xs,ys
80 NEXT yw
90 NEXT xw

100 k=GET : MODE 7 : END

110 DEF FNf(x,y) = 100*(COS(RAD(x)) + COS(RAD(y)))

120 DEF PROCscreen(x,y,z)
130 LOCAL xe ,ye ,ze
140 PROCviewtransform(x, y, z)
150 PROCperspecttransform(xe, ye, ze, d)
160 ENDPROC

To plot in the other direction the control variables in the
FOR loops can be reversed. Note that when displaying
functions of two variables the viewpoint position can be
critical if the features of the function are to be visually

82

recognisable. The illustrations ahown were produced with

rho = 1500
theta = 30
phi = 45
 d = 2000

The high values of 'rho' and 'd' are necessary because we
have arbitrarily scaled the function by 100 (otherwise a
value in the range -2 to 2 would have been produced). The
function itself is composed of humps and valleys
symmetrically disposed about the origin. You can see that
the tips of the peaks and valleys are confused by
'crossovers'. These can be removed by a fairly easy hidden
line removal algorithm for plots of f(x,y) (see the last
section in this chapter). The result of applying a hidden
line algorithm is shown in the second photograph. If such a
hidden line removal algorithm is to be applied then the
function lines must be plotted in the order of decreasing x.
(i.e. the one nearest to the viewpoint is plotted first.)

Finally the interpretation of f(x,y) may be assisted by
drawing the world coordinate axes on the plot. This is
easily accomplished by:

35 PROCdrawaxes

170 DEF PROCdrawaxes
180 PROCscreen(-360,0,0) : MOVE xs,ys
190 PROCscreen(360,0,0) : DRAW xs,ys
200 PROCscreen(0,-360,0) : MOVE xs,ys
210 PROCscreen(0, 360,0) : DRAW xs,ys
220 PROCscreen(0,0,-360) : MOVE xs,ys
230 PROCscreen(0,0, 360) : DRAW xs,ys
240 ENDPROC

Generating wire frame models
A number of commonly used convex bodies can be generated by
sweeping a plane or a line through 360 degrees. The simplest
figure in this class is a cylinder. In the next program 74
vertices on the top and bottom circumferential edges of a
cylinder are generated by sweeping the line (i.e the line
end-points)

-100, 0, 100
.-100, 0, 0

through 360 degrees at 10 degree increments.

10 noofpoints=2 : nootvertices*37*noofpoints
20 DIM object(3,noofvertices),cylinder(2,noofvertices)
30 MODE 0 : VDU 29, 640; 512;

83

40 INPUT "rho" ,rho, "theta" ,viewtheta,
"phi" ,phi, "screen dist ,d" ,d

50 PROCinitialise
60 PROCinitviewtransform(rho, viewtheta, phi)
70 PROCworldtoscreen : PROCplotcylinder
80 k=GET : MODE 7 : END

200 DEF PROCinitialise
210 LOCAL sintheta,costheta, theta, p,v
220 v = 0
230 FOR theta = 0 TO 360 STEP 10
240 RESTORE
250 sintheta = SIN(RAD(theta))
260 costheta =COS(RAD(theta))
270 FOR p = 1 TO noofpoints
280 v = v + 1
290 READ x, y, z
300 object(1, v) = x*costheta + y*sintheta
310 object(2, v) = -x*sintheta + y*costheta
320 object(3, v) = z
330 NEXT p
340 NEXT theta
350 ENDPROC
360 DATA -100,0,0, -100,0,100

400 DEF PROCworldtoscreen
410 LOCAL v
420 FOR v = 1 TO noofvertices
430 PROCviewtransform(object(1,v),

object(2,v),object(3,v))
440 PROCperspecttransform(xe,ye,ze,d)
450 cylinder(1,v) = xs
460 cylinder(2,v) = ys
470 NEXT v
480 ENDPROC

500 DEFPROCplotcylinder
510 LOCAL v
520 MOVE cylinder(1, 1), cylinder(2, 1)
530 FOR v = 3 TO noofvertices STEP 2
540 DRAW cylinder(1,v), cylinder(2,v)
550 NEXT v
560 MOVE cylinder(1,2), cylinder(2,2)
570 FOR v = 4 TO noofvertices STEP 2
580 DRAW cylinder(1,v), cylinder(2,v)
590 NEXT v
500 FOR v = 1 TO noofvertices STEP 2
610 MOVE cylinder(1,v), cylinder(2,v)
620 DRAW cy1inder(1,v+1), cylinder(2,v+1)
630 NEXT v
640 ENDPROC

84

The transformation required to rotate the line about the zw
axis is

0
0
0
1

cos – sin 0
sin cos 0

0 0 1
0 0 0

and this is applied 37 times in the program for values of
'theta' of 0, 10, 20,...,360. Thus 74 vertices are generated
and stored in the array 'object'. This array is then
processed by PROCworldtoscreen that produces the screen
coordinates. PROCworldtoscreen repeatedly uses the two
procedures PROCviewtransform and PROCperspecttransform. The
screen coordinates are stored in array 'cylinder' and this
array is plotted by PROCplotcylinder. The cylinder vertices
we loaded into array 'cylinder' as follows:

1 3
5

7

2
4

6

8

Cylinder (1, i)

xs (vertex 1)

xs (vertex 2)

xs (vertex 3)

Cylinder (2, i)

ys (vertex 1)

ys (vertex 2)

ys (vertex 3)

85

This structure is reflected in the structure of the
procedure that plots the cylinder.

It is easy to see that the same effect could be achieved
by sweeping a circle (a regular polygon) along the long axle
of the cylinder.

z

Sweep

x y

This method is called translational sweeping to distinguish
from the previous method - rotational sweeping. Just as
rotational sweeping can be used to generate any solid with
rotational symmetry (a cooling tower for example)
translational sweeping can be used to generate any solid
with translational symmetry.

Sweep

x
y

z

86

When you execute the last program note the speed of
plotting from the calculated screen coordinate array,
compared with the speed of calculation of these coordinates.
You can genera models and store the vortex arrays in files
of DATA statements, but this will, of course, give an
instance of the model from one viewpoint only.

This structure can be used to generate related figures.
Changing one vertex in the DATA statement will cause the
program to generate cones instead of cylinders. Using a
function definition rather than DATA statements can enable
spheres (rotating a semicircle) and cooling towers (rotating
segment of a hyperbola) for example, to be generated.

Exercises
1 Edit the above program so that it generates the other

common 'mathematical solids' such as a cone, a truncated
cone and a sphere.

2 Write a program to generate a wire frame model of a body
with rotational symmetry. The program should allow the
user to generate a profile using the rubberband
techniques described in Chapter 2. (An example of this
process is shown in the first illustration.) By recording
each vertex in the rubber band profile the program should
then generate a rotationally symmetric wire framemcxiel.
This is simply a matter of generating circles of
appropriate radius at each vertex. The 'vertical' wire
frame lines are constructed by joining points on the
circumferences of these circles at equal angular
increments.

87

Three dimensional transformations - composite bodies
Composite models can be built up using instances of already
generated structures. Say, for example, that we wanted to
generate a model consisting of four cylinders as shown,
perhaps to represent the four wheels of a motor car.

a
x w

z
w

b

c

yw

d

We could start by generating the cylinder in the correct
orientation (long axis parallel to the (xw, yw) plane, but
let us consider instancing the cylinders in their correct
orientation and position from data generated by the previous
program - an upright cylinder.

x w

z
w

yw

To instance the four cylinders in their required positions
and orientations we could use various combinations of the
following transformations:

T1 move the cylinder down
so that its long axis
is centred at the
origin

88

T1

R1 rotate 90 degress about
the yw-axis - the cylinder
in this position can now
be used in each of the
subsequent transformations

T2 translate 100, -100, 0
and DRAW an instance of
the cylinder

T3 translate (-100, -100, 0)
and DRAW an instance of
the cylinder

S1*T4 shrink by half and
translate (75, 150, 0);
DRAW an instance of the
cylinder

S1*T5 shrink by half and
translate (-75, 150, 0);
DRAW an instance of the
cylinder

89

R1

T2

T3

S1*T4

S1*T5

Thus the following transformations are required for each
instance:

instance A T1*R1*T2
instance B T1*R1*T3
instance C T1*R1*S1*T4
instance D T1*R1*S1*T5

T1*R1 is common to all transformations. We can organise the
program by having two arrays, one in which to store tho
original cylinder in world coordinates, after the common
transformation T1*R1. The other array would store the result
of the transformations T2, T3, S1*T4 and S1*T5 prior to
plotting. The program structure would be:

read original vertex file into the vertex array 'object'

PROCtransformT1R1

PROCtransformT2 : PROCworldtoscreen : PROCplotcylinder

PROCtrans£ormT3 : PROCworldtoscreen : PROCplotcylinder

PROCtransformS1T4 : PROCworldtoscreen : PROCplotcylinder

PROCtransformS1T5 : PROCworldtoscreen : PROCplotcylinder

PROCtransformT1R1 operates on and outputs to the array
'object' originally initialised with the vertex data
produced by the previous program. All the other procedures
output to the array 'target' and can be the same procedure
supplied with different parameters according to the

90

91

transformation being carried out. The array 'target' is the
input to PROCworldtoscreen and this produces the array
'cylinder' containing the screen coordinates for
PROCplotcylinder. Thus we are using three arrays - 'object',
which stores the original cylinder and the cylinder after
the cmmon transform T1*R1, 'target', which stores each
cylinder after it is subject to the remaining transforms and
'cylinder', which stores the final screen coordinates for
each generated cylinder. The transformations are:

1

cos 90 0 – sin 90 0
0 1 0 0

sin 90 0 cos 90 0
0 0 0 1

1 0 0 0
0 1 0 0
0 0 1 0
75 150 0 1

1 0 0 0
0 1 0 0
0 0 1 0

– 75 150 0 1

0.5
0
0
0

0
0.5
0

0

0
0

0.5
0

0
0

0
1

1 0
0 0
0 0

0

0
0
1

– 50

0
1
0

0

– 50 0 0 1
1 0 0 0

10 0 0
0 0 – 1 0

100 – 100 0 1
0 0 1 0
0 1 0 0

1 0 0 0

1 0 0 0

0 1 0 0

00 0 1

– 100 – 100 0 1

0.5 0 0 0
0 0.5 0 0

0 0 0.5 0
75 150 0 1

0.5 0 0 0

0 0 0.5 0
0 0 0 1

00 0.5 0

0.5 0 0 0
0 0.5 0 0
0 0 0.5 0

– 75 150 0 1

T1*R1 =

=

T2 =

T3 =

S1*T4 =

=

S1*T5 =

=

Examination of the transformation shows that only 12
parameters need be specified:

a i
b j

e
f

d lh

c kg

and this is implemented as the procedure PROCtransform in
the program below. PROCinitialise can initialise array
'object' either by generating the cylinder as described
previously, or by reading previously generated vertices.

10 noofpoints=2 : noofvertices=noofpoints*37
20 DIM object(3,noofvertices),

target(3,noofvertices),
cylinder(2,noofvertices)

30 MODE0 : VDU 29, 640; 512;
40 INPUT "rho" ,rho, "theta" ,viewtheta,

"phi " ,phi, "screen dist ,d" ,d
50 PROCinitviewtransform(rho,viewtheta,phi)
60 PROCinitialise : PROCtransformT1R1
80 PROCtransform(1,0,0, 100,0,1,0,-100,0,0,1,0)
90 PROCworldtoscreen : PROCplotcylinder

100 PROCtransform(1,0,0, -100,0,1,0,-100,0,0,1,0)
110 PROCworldtoscreen : PROCplotcylinder
120 PROCtransform(0.5,0,0,75,0,0.5,0,150,0,0,0.5,0)
130 PROCworldtoscreen : PROCplotcylinder
140 PROCtransform(0.5,0,0,-75,0,0.5,0,150,0,0,0.5,0)
150 PROCworldtoscreen : PROCplotcylinder
160 k=GET : MODE 7 : END

400 DEF PROCworldtoscreen
410 LOCAL v
420 FOR v = 1 TO noofvertices
425 REM ***** note change in next line *****
430 PROCviewtransform(target(1,v),

target(2,v),target(3,v))
440 PROCperspecttransform(xe,ye,ze,d)
450 cylinder(1,v) = xs
460 cylinder(2,v) =ys
470 NEXT v
480 ENDPROC

700 DEF PROCtransformT1R1
710 LOCAL v, x,z
720 FOR v = 1 TO noofvertices
730 x= object(1,v) : z = object(3,v)
740 object(1 ,v) = z - 50
750 object(3,v) = -x
760 NEXT v
770 ENDPROC

92

800 DEF PROCtransform(a,b,c,d,e,f,g,h,i,j,k,l)
810 LOCAL v, x,y,z
820 FOR v = 1 TO noofvertices
830 x = object(1,v) : y = object(2,v)
840 z = object(3,v)
850 target(1,v) = a*x + b*y + c*z + d
860 target(2,v) = e*x + f*y + g*z + h
870 target(3,v) = i*x + j*y + k*z + 1
880 NEXT v
890 ENDPROC

Off-line animation - moving modelled objects
You can see from the time taken to execute the above example
limit real-time animation of such mathematically generated
objects is impossible on the BBC micro. Some graphics
processors are designed to perform real time animation of
three-dimensional scenes - notably flight simulators - but
most animation of this kind is generated off-line. A frame
us built up and stored and quickly transformed into a screen
Image. As far as the BBC micro is concerned even storing
frames in the form of final position vertex arrays in disc
files will still not facilitate animation in BASIC. The MOVE
and DRAW utilities still take too long to construct a
picture. Off-line animation could however be performed in
BASIC by single shotting with a cine camera and the
techniques used are worthy of study.

Let us return to the four wheel model. Say that we want
to generate a sequence of 10 frames with the wheel set
moving from left to right. Of course it is not just a matter
of taking a two-dimensional image and moving it to the right
(two-dimensional animation) because if we are animating with
respect to a stationary observer, each frame will be
different because of the changing position of the object
with respect to the stationary viewpoint.

To make the wheels move forward in a straight line (along
say the y-axis) we have to apply an increasing yw
translation to each wheel object in turn, and keep the
viewpoint stationary. This could be accomplished in the
above program by inserting another common transformation
prior to the individual wheel transformations and drawing
sequences. The required transformation is:

Ta = 1 0 0 0
0 1 0 0
0 0 1 0
0 d 0 1

where d is the inter-frame displacement along the yw-axis.
The procedure can output into array 'object' so that the
displacements accumulate:

93

900 DEF PROCdisplace
910 LOCAL v
920 FOR v = 1 TO 74
930 object(2,v) = object(2,v) + displacement
940 NEXT v
950 ENDPROC

The whole program would then be looped, providing one frame
for each execution of the loop.

...
55 INPUT "displacement", displacement...
75 FOR frame=1 TO 10
76 CLG...

150 PROCworldtoscreen : PROCplotcylinder
155 PROCdisplace : k = GET
156 NEXT frame

The illustration shows just two frames (superimposed) that
are produced by the first two executions of the frame loop
in the program.

Local coordinate systems
The method used above to instance the four wheels is
somewhat less than satisfactory. What we are doing is taking
one cylinder, subjecting it to increasing yw displacements
and then translating it into four wheel positions.

94

Instance a

T2

T3

Instance b

S1*T5

S1*T4

World
coordinates

Instance c Instance d

What if the car was turning? Then not only would the front
actuals have to be rotated about the zw-axis, but each
wheel's (x,y) displacement would be different. In general it
makes more sense to divide the problem into four sub-
problems with a separate local coordinate system for each
wheel.

a
W coordinate
system

bW coordinate
system

c
W coordinate
system

d
W coordinate
system

We can then start by having an instance of a cylinder in
each of the four coordinate systems. The set of points in
Wa, representing a wheel, would be exactly the same as the
set of points in Wb. Similarly the set in We would be
identical to those in Wd. To start off with a frame in which
all the wheels were pointing straight ahead, we would
transform the wheel points into the world coordinate system
(from their own local system) by transforming each sub-
coordinate system into the world coordinate system. Remember
that to transform a coordinate system we apply the inverse

95

translation transformation. Previously we had a cylinder at
the centre of the world system and instanced it four times
as shown.

Now we have four cylinders each with their own coordinate
system and a transformation to give a set of points in
theworld coordinate system.

You can see that the two approaches are exactly
equivalent by working through a two-dimensional example. Now
prior to taking each wheel set into the world system we can
operate on each wheel in its own coordinate system. For
example, we may want to rotate each front wheel about its
own z-axis, by applying the same rotational transformation
to each front wheel in turn (to simulate a car turning).
After each object has been moved in its own coordinate
system, we transform the points into the world coordinate
system using:

(xwi, ywi, zwi, 1)

where i = a, b, c or d.

0– Tx 0 0
0 – Ty 0 0
0 0 – Tz 0
0 0 0 1

The inter-frame x and y increments for the front wheels
are identical, the wheels following parallel circumferential
tracks. The x and y increments for the rear wheels are
different, the differential drive in the rear axle
facilitating this discrepancy. In such a context the
convenience of separate coordinate systems is apparent.

3.5 Hidden line removal
Now as mentioned in the introduction we are practically
constrained on the BBC micro to wire frame models and this
means that we are interested in removing hidden lines or
edges rather than hidden surfaces. Such an operation tends
to enhance the interpretation of the displayed model and
diminish the effect of such ambiguities as the Necker cube
illusion. There is a large variety of hidden line removal
algorithms used in different contexts. There is no standard
approach or algorithm, the algorithm used depends on the
application or context. One thing is certain, hidden line
removal will add an execution time penalty to your program.

Algorithms can either operate in object space where the
calculations are carried out in the world coordinate system
or in display space where the calculations are carried out
ta the display coordinate system. Hybrid algorithms use
information frem both the object and the image space domain.
One of the most direct approaches to the problem of hidden
surface removal is the depth buffer or z-buffer algorithm.
In this algorithm we keep a record of the intensity of a

96

pixel together with its depth or value of its 'ze'
coordinate (depth information comes from object space and
the algorithm, although primarily a display space algorithm,
needs some information from object domain. The need for a
two-dimensional buffer to store the 'depth' of each pixel
gives the algorithm its name and of course is the major
disadvantage of the technique - it requires considerable
extra storage. The algorithm operates on the polygons that
delineate the boundary of a surface that has been mapped
into the screen coordinate system. It can be stated as:

(1) Initially set depth(x,y) to a large value and
intensity(x,y) to the background.

(2) For every polygon in the scene find all the pixels
that lie within the polygon

For each pixel:

(a) Calculate its z value

(b) If the z value < depth(x,y) (eye coordinates)
then depth(x,y) becomes the z value and
intensity(x,y) becomes the intensity of the
pixel, otherwise leave depth(x,y) and
intensity(x,y) unaltered.

Now the point of this digression is firstly to point out
that it is completely general and will work for any group of
objects or scene. Secondly it operates on individual pixels.
On the BBC micro if we are restricting ourselves to BASIC
then we have no easy access in a wire frame model to the
'bright' pixels joining two vertices - we only have access
to the end points. Efficient general purpose hidden line
removal algorithms need to be integrated with the scan
conversion process - the process that converts for example
the statement 'DRAW x,y' into a line of the required bright
pixels. We will now look at two special cases of hidden line
removal. Firstly consider the plotting of a function of two
variables.

Hidden line remval - f(x,y)
This is a display space or image space algorithm and depends
on the fact that the function is plotted along lines of
constant x starting with the profile nearest to the
observer. The algorithm needs two arrays at the horizontal
resolution of the display (640 in MODE 0). In these arrays,
say 'max(ys)' and 'min(ys)', we keep the current highest and
lowest values of ys - the screen y value. When plotting a
new function or profile along a line of constant x it is
deemed to be visible when above the profile stored in 'max'
and below the profile stored in 'min'.

97

Current invisible region

'max'
updated 'min'

updated 'max'
updated

Contents of 'max'

Contents of 'min'

Profile being plotted

The algorithm is:

(1) Initialise 'max' to the minimum y screen coordinate
and 'min' to the maximum y screen coordinate.

(2) For all x profiles or contours
For each y along the profile

Calculate xs and ys
IF ys>max(xs) THEN DRAW xs,ys : max(xs)=ys
ELSE IF ys<min(xs) THEN DRAW xs,ys : min(xs)=ys
ELSE MOVE xs,ys

This simple algorithm however has two drawbacks. The arrays
'max' and 'min' must each have 640 elements. However, if we
increment y by 20 degrees in the object space (as we did in
the original program) the algorithm will produce only 37 xs
values for each profile where the size of the intervals
between values depends on the viewpoint. When the arrays are
updated with new information gaps will be left. Another
effect of these gaps is that when plotting does start it may
not necessarily coincide with the previous x profile.

Current profile

Contents of 'max'

New points
in 'max' Points not

overwritten because
of different values
of xs

98

There are two possible solutions to this prolem. We could
reduce the increment in y to a point where all the elements
in 'max' and 'min' arc guaranteed to be accessed. For the
function and viewpoint used earlier this would have to be
about 1/2 degree. The plotting time would then be
inordinately long, because of excessive use of the
trigonometric functions. Another approach is to
'interpolate' between successive screen points generated by
the program, i.e. to examine each pixel on a line between
two successive screen points. It is the latter method that
is implemented in the next program. The output from the
program was displayed earlier alongside the same function
plotted without hidden line removal. Note that, with the
long variable names and readable layout used here, there is
no room to run the program in MODE 0. As presented, the
program runs in MODE 4. The photograph was taken by running
a compacted version of the program in MODE 0. Techniques for
compacting programs are given at the end of Chapter 10.

10 INPUT rho, theta, phi, d
20 PROCinitviewtransform(rho, theta, phi)
30 MODE 4 : VDU 29, 640; 512;
32 PROCinithiddenlineremoval
40 FOR xw= 360 TO -360 STEP -20
50 PROCscreen(xw, -360, FNf(xw,-360)) : MOVE xs,ys
55 prevxcell = (640+xs) DIV xstep : prevys =ys
60 FOR yw = -340 TO 360 STEP 20
70 PROCscreen(xw,yw,FNf(xw,yw)) : PROCcheckplot
80 NEXT yw
90 NEXT xw

100 k=GET : MODE 7 : END

110 DEF FNf(x,y) = 100*(COS(RAD(x)) + COS(RAD(y)))

120 DEF PROCscreen(x,y,z)
130 LOCAL xe, ye,ze
140 PROCviewtransform(x, y, z)
150 PROCperspecttransform(xe, ye, ze, d)
160 ENDPROC

300 DEF PROCinithiddenlineremoval
310 LOCAL c
320 xstep = 4 : cells = 1279 DIV xstep
330 DIM min(cells), max(cells)
340 FOR c = 0 TO cells
350 min(c) = 512 : max(c) = -512
360 NEXT c
370 ENDPROC

99

400 DEF PROCcheckplot
410 LOCAL xcell, yinc,nextys, c
420 xcell = (xs+640) DIV xstep
430 IF xcell=prevxcell THEN PROCpoint(xcell,ys)
440 yine = (ys-prevys)/(xcell-prevxcell)
450 nextys = prevys
460 FOR c = prevxcell TO xcell
470 nextys = nextys + yine
480 PROCpoint(c, nextys)
490 NEXT c
500 prevxcell = xcell : prevys = ys
510 ENDPROC

520 DEF PROCpoint(c,y)
530 LOCAL x : x= c*xstep- 640
540 IF c<0 OR c>cells THEN MOVE x,y :ENDPROC
550 IF y<max(c) AND y>min(c) THEN MOVE x,y : ENDPROC
560 IF y<min(c) THEN min(c) = y
570 IF y>max(c) THEN max(c) = y
580 DRAW x ,y
590 ENDPROC

All in all you can see that great care must be taken when
setting up bidden line removal if inordinately long
processing is to be avoided.

Hidden line removal - back surface elimination
This is another special case method that works for single
convex polyhedrons. It is not really an algorithm but a
straightforward application of vector mathematics. It can be
used as the basis of a more general algorithm that will deal
with scenes containing many convex polyhedral objects. It is
an object space procedure and although we are removing
edges, paradoxically it is the surfaces defined by the edges
that we consider.

Given a viewpoint we determine whether or not a face is
visible from that viewpoint. Consider the next illustration
showing a cube decomposed into 6 surfaces. Pointing out of
each surface we have a line that is normal or perpendicular
to the surface. This line or vector determines the
orientation of the plane. It is called a surface normal
vector. From the viewpoint we can construct 'line of sight'
lines or vectors to any point on each surface. If we
construct a line of sight vector to meet the surface vector,
then the angle between these two vectors gives us a
visibility test. The surface is visible from the viewpoint
if, and only if, the angle between these two vectors is less
than 90 degrees.

100

Normal vector
Viewpoint

Line of sight vectors

Visible

Normal vector

Invisible

Visible

Normal vector

In the next program we have implemented back surface
elimination for the wire frame cube. PROChidden line remove
tests each of the 6 surfaces for visibility. If surface is
visible its edges are plotted. The main program is:

10 DIM vertex(3,8), surface(6,4)
20 DIM vector1(3), vector2(3)
30 DIM visible(6)

35rho=1500:theta=50:phi=30:d=8000:GOTO50
40 INPUT "rho" ,rho, "theta" ,theta, "phi " ,phi,

"screen dist ,d" ,d
50 costheta=COS(RAD(theta)) : sintheta=SIN(RAD(theta))
60 cosphi=COS(RAD(phi)) : sinphi=SIN(RAD(phi))
70 xview = rho*sinphi*costheta
80 yview = rho*sinphi*sintheta
90 zview = rho*cosphi

100 PROCinitviewtransform(rho,theta,phi)
110 MODE 0 : VDU 29, 640; 512;
120 PROCinitialise
130 PROChidden_line_remove
140 FOR surfaceno = 1 TO 6
150 IF visible(surfaceno) THEN

PROCtransform_and_plot(surfaceno)
160 NEXT surfaceno
170 k=GET : MODE 7 : END

We need to set up a data structure to associate a surface
with its edges and this is implemented by using two arrays
'surface' and 'vertex'. The array 'vertex' contains a list
of the coordinates of the 8 vertices in the cube, and
'surface' contains for each surface a list of vertex numbers
that define the surface. This data structure means that we
can deal with surfaces as entities rather than vertices.

101

vertex number coordinates

surface(1) 1 2 3 4 vertex(1) 100 0 0

surface(2) 2 6 7 3 vertex(2) 100 100 0

surface(3) 3 7 8 4 vertex(3) 100 100 100

surface(4) 6 5 8 7 vertex(4) 100 0 100

surface(5) 1 5 6 2 vertex(5) 0 0 0

surface(6) 1 4 8 5 vertex(6) 0 100 0

vertex(7) 0 100 100

vertex(8) 0 0 100

2

6

1

3

2

5

4

1

4

3

8

5

6

7

A surface must contain (for the vector mathematics) vertices
listed in counter-clockwise order as seen frenn outside the
object. Thus the surface number 2 is specified in the second
row of array 'surface' which will contain the vertex numbers
2, 6, 7 and 3. Thus to access surface number 2 for
calculation or plotting we would indirectly access the array
'vertex' as follows:

vertex(surface(2,1))
vertex(surface(2,2))
vertex(surface(2,3))
vertex(surface(2,4))

PROCinitialise sets up this DATA structure. Note that this
is another disadvantage of the method - either the
construction of surfaces in the object needs to be
explicitly stated as here, or the method that constructs the
solid must do so in such way that consecutive vertices

102

relating to one surface are listed in counterclockwise order
(looking in from outside the object).

180 DEF PROCinitialise
190 LOCAL v, vertexno,surfaceno
200 FOR v = 1 TO 8
210 READ vertex(1,v), vertex(2,v), vertex(3,v)
220 NEXT v
230 FOR surfaceno= 1 TO 6
240 FOR vertexno = 1 TO 4
250 READ surface(surfaceno, vertexno)
260 NEXT vertexno
270 NEXT surfaceno
280 ENDPROC

290 DATA 100,0,0, 100,100,0, 100,100,100, 100,0,100
300 DATA 0,0,0, 0,100,0, 0,100,100, 0,0,100
310 DATA 1,2,3,4, 2,6,7,3, 3,7,8,4
320 DATA 6,5,8,7, 1,5,6,2, 1,4,8,5

PROChidden_line_remove lists the method broken down into
further procedure calls.

330 DEF PROChidden_line_remove
340 FOR surfaceno = 1 TO 6
350 PROCcalc_surface_vectors(surfaceno)
360 PROCcalc_normal_vector
370 PROCcalc_line_of_sight_vector(surfaceno)
380 PROCvisibility_test(surfaceno)
390 NEXT surfaceno
400 ENDPROC

The first thing that we do is to calculate the components of
a pair of vectors lying in the surface. These are two
vectors emanating from the first vertex. We do this for each
surface and calculate the components of vector1 and vector2
storing them in arrays 'vector1' and 'vector2'.

1 Vector 2

Vector 1

2

1

3

103

410 DEF PROCcalc_surface_vectors(surfaceno)
420 FOR i = 1 TO 3
430 vector1(i) = vertex(i, surface(surfaceno,2))

- vertex(i,surface(surfaceno,1))
440 vector2(i) = vertex(i, surface(surfaceno,3))

- vertex(i,surface(surfaceno,1))
450 NEXT i
460 ENDPROC

The 'cross product' of vector1 and vector2 gives a normal
vector or a vector perpendicular to the surface and joining
the surface at the first vertex. This has components
'normalx', 'normaly' and 'normalz'.

Normal vector

Vector 1

Vector 2
1

470 DEF PROCcalc_normal_vector
480 normalx = vector1(2)*vector2(3) -

vector2(2)*vector1(3)
490 normaly = vector1(3)*vector2(1) -

vector2(3)*vector1(1)
500 normalz = vector1(1)*vector2(2) -

vector2(1)*vector1(2)
510 ENDPROC

We can then calculate the components of the vector that
joins the viewpoint to the vertex containing the normal
vector and apply the visibility test.

Normal
vector

Line of sight vector

INVISIBLE

INVISIBLE

Viewpoint

104

520 DEF PROCcalc_line_of_sight_vector(surfaceno)
530 lineofsightx = xview -

vertex(1,surface(surfaceno,1))
540 lineofsighty = yview -

vertex(2,surface(surfaceno,1))
550 lineofsightz = zview -

vertex(3,surface(surfaceno,1))
560 ENDPROC

570 DEF PROCvisibility_test(surfaceno)
580 visible(surfaceno) = normalx*lineofsightx +

normaly*lineofsighty +
normalz*lineofsightz > 0

590 ENDPROC

The visibility test calculates the 'dot product' of the line
of sight and normal vectors. If the magnitude of the dot
product is less than zero the the angle between the two
vectors is greater than 90 degrees. Finally we need a
standard transformation and plotting procedure for a
surface:

600 DEF PROCtransform_and_plot(surfaceno)
610 LOCAL vertexno, startx,starty
620 PROCscreenvertex(surfaceno,1)
630 MOVE xs,ys : startx=xs : starty=ys
640 FOR vertexno = 2 TO 4
650 PROCscreenvertex(surfaceno,vertexno)
660 DRAW xs ,ys
670 NEXT vertexno
680 DRAW startx,starty
690 ENDPROC

700 DEF PROCscreenvertex(s,v)
710 PROCviewtransform(vertex(1, surface(s,v)),

vertex(2, surface(s,v)),
vertex(3, surface(s,v)))

720 PROCperspecttransform(xe,ye,ze,d)
730 ENDPROC

105

The illustration shows views of the cube together with a
list of the surfaces removed for two different viewpoints.

Exercises

1 Apply hidden line removal to plots of a variety of three-
dimensional functions f(x,y).

2 Apply the hidden surface removal algorithm to a variety
of three-dimensional shapes - a house, a tetrahedron, and
so on. You will need to extend the dimensions of the
arrays used if there are more than eight vertices or it
there are surfaces with more than four vertices. If the
number of vertices in a surface varies within the same
object, a separate array will be needed to record the
number of vertices in each surface.

3 Organise a 'fly round' each object used in the last
exercise, with hidden line removal.

106

