258
Chapter 8 Board games and game trees

In the next two chapters, we are going to look at some of
the techniques needed to write programs that play 'board!'
games. Examples of the sort of game that we have in mind are
NIM, Noughts and Crosses (or Tic-Tac-Toe), Kalah, Go-Moku
Go, Draughts (Checkers) and Chess. Don't worry if you not
familiar with all of these games - we shall explain rules of
any games that we use. In all of the above games the outcome
depends entirely on the skill of the two players involved.
Both players have available exactly the information and
their choice of move is not influenced the throw of a dice
or the deal of a card. For the time being, we shall avoid
consideration of games like Battleships and Cruisers where
neither player can see other's board or Backgammon where the
throw of a dice affects the choice of moves available.

In Chapter 1, we presented the outline program structure
needed for a program that plays a board game. In the next
two chapters, we will look at techniques that can be used by
such a program for choosing a goal move.

In this chapter, we shall concentrate on rather trivial
games. It may seen that these games are a long way removed
from more intellectually demanding games like chess and
draughts, but the techniques that we introduce by using
these simple games are easily modified to deal with
difficult games. The modifications needed are discussed the
next chapter.

There are three main problem areas in programming games
of the type that we are considering:

(a) Choosing a move:
In the next two chapters we shall devote a great deal
of attention to the techniques that are available for
writing procedures to choose goal moves.

(b) Representing board positions and moves inside the
computer:
For a given game, there may be several different ways
of representing a board position inside a program. In
our 'Last One Wins' program, a single integer was
enough to represent the 'board'. In more difficult
games, there may is a choice of data structure
representationg tor a board position. Different

259

representations for the Noughts and Crosses board
suggested at the end of Chapter 1.

(c) Displayipg the board:
Producing elegant displays of board positions on the
screen involves the use of graphics facilities that are
extensively discussed elsewhere.

8.1 Game trees

Choosing a sensible move in a board game often involves
exploring ahead from the current position in the game and
considering the various sequences of moves and counter-moves
that are available from the position. It will make our
discussion of this process easier, if we introduce the idea
of a 'game tree'. To do this, we use a variation of the game
'Last One Wins' (Chapter 1). In order to better illustrate a
number of points we change the rules of the game as follows:

Players now score a point for each counter removed during
the course of a game. The player who makes the last move
scores an additional two points. The aim of the game is
to maximise the 'point difference' between oneself and
one's opponent.

We shall call this version of the game 'Last One Wins - or
does he?'.

There are a number pieces of information required to
completely describe a position reached during the course of
a game:

The number of counters left on the board;
Whose turn it is (player A or player B);
A's score so far;

B's score so far.

We shall represent a state of the game graphically by a box
containing this information. For example:

4A21

represents a state of the game in which there are 4 counters
left on the board, it is A's turn to play, A has scored 2
points so far and B has scored 1 point so far. A move can be
represented by a line joining two such boxes and the
sequence of moves played in a particular game starting with
7 counters (A starts) might be:

260

A takes 2

B takes 3

A takes 2

game over
A scores 2 extra points and wins by +3

There is, of course, usually a choice of moves available in
any one position and the complete set of possibilities
available for the game with 5 counters (A starts) can be
illustrated by the tree on the next page.

Any path starting at the 'root' of the tree (at the top)
and moving down through the tree to a 'leaf' represents a
particular sequence of moves making up one complete game
that could be played. In this tree, there are represented 13
possible games. In terms of the tree, this means that there
are 13 different leaves and 13 different pathways from root
to leaf. The terminal positions or leaves in the tree are
marked with the point difference for A and these values will
be used later.

The boxes representing positions are often referred to as
the 'nodes' of the game tree.

Exercises
1 The rules for 'Grundy's Game' are:

Two players start with a pile of counters on the board
between them. The first player divides the pile into
two unequal piles. The players alternately do the same
to one of the remaining piles. The player who first
cannot play loses. (This happens when all the piles on
the board contain 1 or 2 counters - a pile of two
counters cannot be subdivided into two unequal piles.)

Draw a game tree for Grundy's Game starting with a pile
of 7 counters.

261

1- £-

e+ G+ T+ e+

S

e+

7NM«O; 7mw«o;

| zevT

|zego|[1va0 | [1ear | [eeao]| |[zeso] |zzat |

[Tv

%0 | [tear]| |[tesz |

[

| zevo]| [Tevr |

|eevo]| [zevi| [1eve] BExd | ztve |

TIVE

262

8.2 Using recursion to generate a game tree
Our purpose in introducing the idea of a game tree is to
enable us to write a procedure that decides, for a given
position, which particular move is best from the point of
view of the player whose turn it is. In order to use the
game tree to help in its choice of moves, such a procedure
will have to explore the various branches of the game tree.
Before introducing the complication of comparing different
sequences of possible moves, it will be instructive to write
a procedure that generates and prints the entire game tree
for 'Last One Wins - or does he?'. In fact we shall see
later that this procedure can be fairly easily modified to
collect the information needed to select a good move on the
basis of its exploration of the tree.

We can outline what our procedure must do:

To generate the game tree from position P:

Print position P.
Work out which moves are available in P (if any).

FOR each move available
Construct the position we get if we make that move.
Generate the game tree from this new position.

NEXT move

The way that we have described this process immediately
suggests the use of recursion (Chapter 7). In this case,
generating a tree is described in terms of generating some
smaller trees. The word 'smaller' is important - it is this
aspect of our definition that makes sure that the recursive
description eventually stops when a position is found in
which no moves are available. Here is a recursive procedure
for exploring the game tree.

100 DEF PROCgrowtree (counters, turn$, Ascore, Bscore)
110 LOCAL move,movesavailable,

newturns$, newAscore, newBscore
120 PRINT ;counters; turn$; Ascore; Bscore
130 IF counters = 0 THEN

PROCfinalscore : ENDPROC
140 PROCcheckmovesavailable :REM defined as before.
150 FOR move= 1 TO movesavailable

160 IF turn$="A" THEN newturn$ = "B"
newAscore=Ascore+move: newBscore=Bscore
ELSE newturn$ = "A"

newBscore=Bscore-move: newAscore=Ascore
170 PROCgrowtree (counters-move, newturn$,
newAscore, newBscore)
180 NEXT move
190 ENDPROC

200
210
220

230

263

DEF PROCfinalscore
PRINT "F
IF turn$="A" THEN PRINT ;Ascore; " - "; Bscore+2

ELSE PRINT ;Ascore+2; " — "; Bscore
ENDPROC

inal Score: ";

The procedure takes some parameters that represent the
position frcan which it is to generate the game tree. Note
that the definition of PROCgrowtree reflects the outline and
contains a call of itself.

In order to generate the tree for the game with 3
, A starts, we need to insert:

counters

10
20

PROCgrowtree (3, "A", 0, 0)

END

A run of this program produced the following output:

3A00
2B10
1A11
0B21
Final score: 4 - 1
OAl2
Final score: 1 - 4
1B20
0A21
Final score: 2 - 3
0B30
Final score: 5 - 0
The game tree for the game with 3 counters is:
3ACO
2B10 1B20 0B30
1A11 0A12 0A21
0B21

As we can see,

our

recursive procedure has generated and

264

printed all the nodes in the tree. We shall adjust the
program! so as to improve the layout of its output in a
moment, but before doing this it will be instructive to look
in some detail at how it works. The program starts by
calling:

PROCgrowtree (3,"A",0,0)

We can think of this procedure call, together with its
parameters, as representing the root of the game tree. In
the course of the evaluation of this procedure call it sets
move=1 and calls itself recursively (at line 170). We can
represent the situation at this stage by:

growtree(3,"A",0,0)
move=1

growtree(2,"B",1,0)

Because this new procedure call is entered before the
previous one ig exited, we now have two calls of the same
procedure active at once, each with its own private set of
parameters and each with its own private copies of its LOCAL
variables. As we suggested in Chapter 7, you may find it
easier to think in terms of two completely separate copies
of the procedure, although of course it does not work like
this behind the scenes. When the computer eventually exits
from the second procedure call, it will carry on obeying the
first where it left off, but that will not happen until the
'subtree' to be grown by the second procedure call has been
completely generated. Having printed the values of its
parameters, the second procedure call sets its local
variable move=1 and calls PROCgrowtree recursively (at line
170) . We can now picture the situation as:

growtree(3,"A",0,0)
move=1

growtree(2,"B",1,0)
move=1

growtree(3,"A",1,1)

265

growtree(3,"A",0,0)
move=1

growtree(2,"B",1,0)
move=1

growtree(3,"A",1,1)
move=1

growtree(0,"B",2,1)

This procedure activation makes one more recursive call and
on entry to this last call of the procedure the IF statement
at line 130 is triggered. This outputs the final score for
the current position and terminates the procedure call. The
computer exits to the prevoious procedure call

growtree (1,"A",1,1)
and carries on from where it left off there (line 180).
There are no more moves available in the position
represented by that procedure activation and so the FOR loop
terminates and that procedure activation is exited. The
computer is now continuing its execution of the call

growtree (2, "B",1,0)
and again carries on at line 180. In this case, the FOR loop
is executed for a second time with move=2 and this results
in the procedure call

growtree (0, "A",1,2)

The new situation is illustrated in the following diagram:

growtree(3,"A",0,0)
move=1

growtree(2,"B",1,0)
move=2

growtree(0,"A",1,2)

266

In order to present a complete picture of what has happened
as well as what is happening, the diagram includes the
procedure calls that have been terminated, but these are
clearly marked.

As you can see, the program is working its way
systematically through the nodes in the tree by proceeding
as far as it can down one branch before retracing its steps
and exploring another branch. This type of exploration is
known 'depth-first search' and the process of going back and
trying another branch is known as 'backtracking'. You will
observe a similar effect if you try to draw a tree without
lifting the pen off the paper and without retracing your
steps more than is absolutely necessary.

The latest procedure activation represents another
position in which the end of the game has been reached and
after printing the final score for this position, the
procedure call is terminated. The program retraces its steps
to line 180 in the call

growtree(2,"B",1,0)
which also terminates as there are no more moves available
ta this position. This takes us back to line 180 in the
procedure activation that started the whole process off. The
EOR loop here is repeated with move=2 and this results in
the call

growtree (1, "B",2,0)
which in turn calls

growtree (0, "A",2,1)
Then the final score for this position has been printed, the
program retraces its steps back through the last two
procedure calls to the topmost procedure call in which the
FOR loop is executed with move=3. This results in the
situation illustrated in the next tree.

growtree(3,"A",0,0)
move=3

growtree(2,"B",1,0) growtree(1,"B",2,0) growtree(0,"B",3,0)

growtree(1,"A",1,1) growtree(0,"A",1,2) growtree(0,"A",2,1)

growtree(0,"B",2,1)

267

A final score is output for the last time and the two
remaining procedure calls exit in turn.

You should now be able to see how tho program keeps track
of the structure of tho game as it is being generated. If
recursion were not available, the game positions generated
and information about which moves have been tried in each
position would have to be stored in some sort of data
structure that would allow the program to retrace its steps
when all the possibilities down one branch of the tree have
been considered. The data structure that would be needed to
do this is called a 'stack'. In a programming language that
allows recursion, we do not need to create such a data

structure — we can use the procedure entry and exit
mechanisms to handle the 'bookkeeping' details needed to
implement the backtracking process. (In fact the computer

uses 1its own stack behind the scenes to keep track of
recursive procedure calls.) When we use recursion, trying a
move corresponds to calling a procedure - the resultant
procedure activation and its parameters represent the new
game position. Note the importance of the LOCAL declaration
at the head of the procedure. Several procedure activations
can be in existence at once, and each one needs its own
private copy of information that is unique to that
activation and the position that it represents.

One final point: if you try to use PROCgrowtree for more
than 10 counters, it will fail with the error message 'Too
many FORs'. There is a limit to the number of FOR's that can
be 'nested' inside one another and when we call our
procedure recursively it behaves as if the FOR loop obeyed
in the recursive call were inside the FOR loop of the
procedure that made the call. (This problem was discussed in
Chapter 7.) There are over 1100 positions in the tree for
the ganre starting with 11 counters, so you are unlikely to
want to print them out. If you do want to use the procedure
for 11 or more counters, you will have to replace the FOR-
NEXT with an IF-GOTO loop or a REPEAT loop (REPEAT loops can
be more deeply nested than FOR loops) .

Now that we have seen how our tree generating program
works, it is interesting to see if we can improve the layout
of the output produced. One way of doing this is to make the
output reflect the structure of the tree being explored by
printing some extra spaces at the start of each line of
output. The number of spaces printed before a position is
proportional to the depth of the position in the game tree.
The easiest way of doing this is to add an extra parameter
to our recursive procedure. Remember that a call of the
procedure represents a game position. Each time we call the
procedure we shall supply an extra parameter that indicates
the depth of the new position in the game tree. We need to
make the following changes to our procedure:

268

100 DEF PROCgrowtree (counters, turn$,
Ascore, Bscore, depth)

110 LOCAL move,movesavailable,
newturns$, newAscore,newBscore
115 PRINT
120 PRINT TAB (4*depth) ;counters;turn$;Ascore;Bscore
130 IF counters = 0 THEN PROCfinalscore : ENDPROC

170 PROCgrowtree (counters-move, newturn$,
newAscore, newBscore, depth+1l)

200 DEF PROCfinalscore
210 PRINT TAB(4*depth); "Final score: ";

Note that when an activation of the procedure tries a move
by calling the procedure recursively, the depth of the new
position created is one more than the current depth. Hence
the need to supply depth+l as a parameter to the recursive
procedure call at line 170. When the procedure call
corresponding to depth=depth+l is exited, The old value of
depth is restored. If the procedure is now called by

10 PROCgrowtree (3, "A", 0, 0, 0)

the output produced is

3A00

N

2B10
1A11

0B21
Final score: 4 - 1

0A12
Final score: 1 -4

1B20

0A21
Final score: 2 - 3

0B20

Final score: 5 -0

The lines have been drawn to make it clear how the layout of
the program output corresponds to the structure of the game

269

tree. A rather interesting variation of the above program
would be one that uses graphics statements to draw a
complete game tree.

Here is

10
20
30
40
50
GO
70

100
110
120
130
140
150
160
170
180
190
200
210
220
230

250
260

270

the program that produced the photograph:

INPUT "Counters", counters

MODE 4

MOVE 640,1000

VDU 5

PROCdrawtree (counters, 640,1000,1280)
k=GET:MODE 7

END

DEF PROCdrawtree (counters, x,y, width)
LOCAL moveanovesavailable, newx, newy, newwidth
PRINT ;counters
IF counters=0 THEN ENDPROC
PROCcheckmovesavailable
newwidth = INT (width/movesavailable)
newx = INT(x-width/2+newwidth/2)
newy = y-100
FOR move= 1 TO movesavailable
MOVE x,y : DRAW newx,newy
PROCdrawtree (counters-move, newx, newy, newwidth)
newx = newx + newwidth
NEXT move
ENDPROC

DEF PROCcheckmovesavailable
IF counters<3 THENmovesavailable = counters
ELSE movesavailable = 3

ENDPROC

270

Exercises:

1 Draw the game tree of procedure calls that takes place as
a result of obeying the statement

PROCgrowtree (4, "A" ,0 ,0)

Make sure that you understand the order in which
procedure activations are entered and exited.

8.3 Manipulating board positions during recursion

In the procedures written in the last section, a board
position could be easily represented by a single integer.
When PROCgrowtree was called recursively, it was given a
value for a parameter ('counters') representing a new board
position. When the recursive procedure call exits, that
value for 'counters' disappears and the old value is now
available for trying other moves.

More complicated data structures such as arrays cannot be
passed as parameters in BBC BASIC and we need to find some
other way of restoring a board position to the state it was
in before a move was tried by a recursive call of the
procedure. One way of doing this is to make the move by
changing the board before calling the procedure recursively
and then 'unmake' the move after the recursive procedure
call has exited. This is illustrated in the following
program that prints the tree for Grundy's Game.

If you wonder why we have used a REPEAT at line 350
instead of a FOR, try replacing the REPEAT with a FOR and
refer back to page 267.

10 DIM pile(20)

20 pilet(l) = 7 :REM start with one pile
30 PROCgrowtree ("A", I) :REM of 7 counters.
40 END

100 DEFPROCgrowtree (turn$, piles)
110 LOCAL p, pilestried, nextturns

120 PRINT turn$;
130 FOR p=1 TO piles : PRINT ;pile(p); : NEXT
140 PRINT
150 IF turn$="A" THEN nextturn$="B"
ELSE nextturn$=" A"
160 pilestried = 0
170 FOR p = 1 TO piles
180 IF pile(p)>2 THEN PROCtrysplits
190 NEXT p
200 IF pilestried=0 THEN

PROCfinalresult :REM there were no moves.
210 ENDPROC

271

300 DEF PROCtrysplits
310 LOCAL posssplits, split

320 pilestried = pilestried+l

330 posssplits = INT((pile(p)-1)/2)

340 split = 0

350 REPEAT

360 split = split+1

370 pile(piles+1l) = split

380 pile(p) = pile(p) - split

390 PROCgrowtree (nextturn$, piles+1)

400 pile(p) = pile(p) + split :REM 'unmake' mve.

410 UNTIL split=posssplits
420 ENDPROC

500 DEF PROCfinalresult

600 IF turn$ = "B" THEN PRINT " A wins."
ELSE PRINT " B wins. "

700 ENDPROC

The program also exhibits some other interesting features
that you should study. For example, the recursion is no
longer quite so obvious - PROCgrowtree uses a subsidiary
procedure, PROCtrysplits, to try different ways of splitting
a given pile and it is this procedure that may call
PROCgrowtree again. Also there is no explicit test at the
head of PROCgrowtree to terminate the recursion - recursion
terminates if there are no piles to be subdivided and this
is not known until all the piles have been examined.

Exercises

1 Draw the tree of procedure calls that take place as a
result of obeying the above program. Mark alongside each
procedure call the state of the array 'pile' when the
procedure is entered.

8.4 Minimaxing

We now need to introduce a criterion that can be used by a
game playing program to decide on the best move in a given
position. When a good human game player is presented with a
board position in which he has to make a move, he usually
considers some of the moves available, some of his opponents
possible responses to these moves, some of his possible
responses to his opponent's moves, and so on. In other
words, he looks ahead and explores part of the game tree
rooted at the current position. Human game players are very
selective about which branches of the tree they explore -
they have to be because of their slow processing speed and
limited short term memory capabilities. A typical human
player thinks about only one or two moves at each position
in his lookahead, whereas a computer program usually
explores a much bushier game tree:

272

human player computer program

The better the hunman player, the better he is at
recognising the promising branches of the tree that need
exploration. This process of ignoring branches of the
lookahead tree - 'tree pruning' - is very important for
programs too, and will be discussed later, but for the time
being we shall assume that a game playing program will
explore the entire game tree in deciding on its move. Such a
complete exploration is possible only for trivial games like
'Last One Wins - or does he?', but the programming
techniques required for the partial exploration of a much
larger tree are almost identical and will be discussed
later.

Congider the problem of deciding on a move in the
following situation.

current position A's turn

choice of
three moves:

move X leads move y leads move z leads
to position X to position Y to position Z

One way of making a choice of moves would be to give

273

numerical values to position X, Y and Z where the value
assigned to a position indicates how good that position is
from player A's point of view. A could then choose the
position with the highest wvalue. It is easy to assign such a
value to a terminal position of a game tree. In a position
where the game is over, we can compute a final score for the
game. For example, in the tree for 'Last one Wins - or does
he' each terminal position was given a value representing
the point difference by which player A has won. A negative
value means that player A has lost by that amount. In a game
where the outcome must be just win, draw or lose, we could
assign values +1, 0 or -1 to the terminal nodes of the tree.
Thus if X, Y and Z were all terminal positions, we could
easily give values to these positions for the purpose of
comparing moves x, y and z. A problem arises when X, Y and Z
are not terminal positions and player B now has a choice of
moves in each of these positions. Let us extend the above
tree to one more level. We assume that there are three moves
available in each of positions X, Y and Z and that any one
of these moves will terminate the game. We have assigned
hypothetical final scores to each of the terminal positions.

A's turn

B's turn

0 0 0 -2 -1 -7 -9 -4 256

We assume that positive values represent a win for A (the
higher the better) and negative values mean that A has lost.
It is highly unlikely that an actual game would have such
widely differing terminal values but we have chosen values
that will emphasise the points that we wish to make. We must
now decide how to evaluate the non-terminal positions X, Y
and Z.

All three moves available in position X lead to scores of
0. Whatever move player B chooses in position X must
inevitably lead to a draw, and there is no difficulty in
deciding that position X should be given a value of 0.

The three moves available in position Y all lead to
positions where A loses by varying amounts. It is clear
that we can classify position Y as a losing position and
assign it a negative value. We shall decide exactly what
negative value it should be given when we have considered
position Z.

274

In position Z, B has a choice of moves, one of which
leads to a spectacular win for playor A. In evaluating
position Z, player A must decide what I likelihood there
is of achieving this spectacular win. After player A baa
made a move control of the outcome will pass to player B
and, in order to decide on the value of position Z, A
must make some assumption about how player B will choose
his move. If A assumes that B is making completely random
moves, then he might decide that the value of position Z
is the average of the values of the three positions that
B might move to. This would be a reasonable assumption in
a game where B's move is determined by the throw of a
dice, but in games of the type that we are dealing with
both players have exactly the same information available
and both players have a completely free choice of move.
Under these circumstances, experienced board game players
know that the only safe assumption is that one's opponent
will choose his best move in any position. In our
imaginary game, this means that player A assumes that it
player B is presented with position Z then B will make
his best move, ie. the move leading to the lowest
possible value from A's point of view. Under this
assumption, the value of Z is the minimum of the values
of the three positions to which moves could be made. We
therefore say that Z has the value -9. (In the same way,
the value of position Y would be -7.)

We can now see that this part-tree represents a situation in
which A can only win by a fluke. The correct move by player
A must be to make the move leading to the highest wvalued
position, ie. move x. When player A is analysing the game
tree and values are being given to positions from his point
of view, the above assumption together with the fact that A
will always choose his best move gives us the following two
rules:

(a) The value of position at which it is A's turn is the
maximum of the values of positions to which moves are
available.

(b) The value of a position at which it is B's turn is the
minimum of the values of positions to which moves are
available.

You should now examine the game tree for 'Last one Wins - or
does he' and attempt to apply these rules in order to give
values to the non-terminal nodes. You should find that you
an do this provided that you work backwards from the
terminal nodes. For obvious reasons this process is known as
minimaxing'. In the next tree we have done this and all the
non-terminal nodes have been given values, including the
node at the root of the tree.

275

._”|

m|

Nmmo

7 Nwwo | | mmm”qo ;

22Vl Tm+

g+ €+ G+ T+ e+ G+
B | 2eg0 | [1v80 | |71edt |1~ [eza0| |zeso | |zeat|e- [1vEo | |Tear [T-| 128z |e-
[zevo] [1eve [s+ [eewo] [zevife+r [12ve fe+ [€TvI i+ [TTvE o+

276

The value that has been assigned to the position at which
the game starts tells us that if both players always make
their best moves, then the outcome of the game is bound to
be score of +1 tor the-player who starts (A in this case).
If player B ever chooses a move that does not lead to the
position with mininium value, then A will improve on this
score. You should convince yourself of this by trying
different sequences of moves in the tree.

The fact that the minimax process determines a unique
value for the root node of the entire game tree is sometimes
referred to as the 'Foregone conclusion Theorem'. In theory,
the outcome of any game of the type that we are considering
is a foregone conclusion. However, the trees for all but the
most trivial of games are extremely large. For example, on
the next page we have a fragment of the game tree for
noughts and crosses.

Even with a simple game like this, the entire game tree
could easily be a mile or more across. However, the noughts
and crosses board is highly symmetrical and the size of the
tree could be considerably reduced by eliminating duplicate
positions that are reached by different sequences of moves
and by eliminating positions that are rotations and-
reflections of other positions (although it is not easy for
a program to do this). The foregone conclusion of noughts
and crosses is well known to be a draw.

If we move to more serious games like draughts and chess,
the problem of determining the 'foregone conclusion' becomes
many orders of magnitude worse. It has been estimated that

The draughts tree contains about 1040 nodes.
The chess tree contains about 10120 nodes.

If these numbers mean very little to you, the following
facts may help to put them in perspective.

There are only 101¢ microseconds in a century and it
takes about 1 microsecond for a computer to carry out a
simple operation such as the addition of two numbers.

Cosmlogists estimate that there are about 1080 elementary
particles in the universe.

Thus it is exceedingly unlikely that we shall ever know what
the foregone conclusion is for chess or draughts, even with
the help of high-speed computers.

Exercises
1 Determine the foregone conclusion for the version of

Grundy's Game that starts with 7 counters. (A win for A =
+1, a win for B = -1.)

277

h VR VA VAR VR "R VAR VAV
o o o)

O () o]

X X X TIX X X O X 10
AV 4 ééé%
X X X
X X X
X X X

278

8.5 A recursive function for minimaxing

Despite the remarks made at the end of the last section, the
process of minimaxing still plays an important role in
programs that play more difficult games like draughts and
chess. Before modifying our analysis to deal with such
games, we shall use the game 'Last One Wins - or does he?'
to introduce the programming techniques required to carry
out minimaxing. We are going to modify the procedure
'growtree' of Section 8.2 so that it explores the entire
game tree as before, and in the process calculates minimax
values for the nodes. The nodes of the tree will no longer
be printed as they are generated.

Once you have gained some confidence in handling recursion
you will find that you can write a recursive procedure or
function and be sure that it is correct without subsequently
going through a detailed analysis of how it works. You must
acquire the ability to write a recursive description of the
process you are programming without attempting to visualise
in detail how the procedure or function will behave when the
program is running. In the present context, we can outline
the process of calculating a value for a node as follows:

To calculate a value for a given position:
IF the position is a terminal position THEN
calculate the final score
ELSE
FOR each move available
Calculate value for position reached by move
Keep a note of the best (max or min) wvalue found
NEXT move
Best value found is the value required.

The recursive nature of this description should be obvious,
Provided that we have correctly described the process of
calculating a value for a given position in terms of the
values of the positions to which moves are available, then
the recursion mechanism will automatically apply our correct
description at all levels in the tree. The program will
search recursively down the tree until it reaches terminal
nodes from which values can be carried back up the tree.
Note the similarity in structure between this description
at the minimax process and the procedure 'growtree'
programmed in Section 8.2. In this case, it is convenient to
define a function rather than a procedure, the value
produced by a function call being the minimax value for a
node. Conversion of' the above outline description into a
recursive Basic function is fairly straightforward:

279

100 DEF FNminimaxval (counters, turn$, Ascore, Becore)
110 LOCAL move, movesavailable, neturn$,
newAscore, newBscore, bestsofar, nextwval

120 IF counters = 0 THEN = FNfinalscore
130 PROCcheckmovesavailable
140 IF turns$="A" THEN bestsofar = -100
ELSE bestsofar = +100
150 FOR move = 1 TOmovesavailable
160 IF turn$=" A" THEN newturn$ = "B"
newAscore=Ascore+move: newBscore=Bscore
ELSE newturnS$ = "A"
newBscore=Bscore+move: newAscore=Ascore
170 nextval = FNminimaxval (counters-move,
newturn$, newAscore, newBsgcore)
180 IF turn$="A" THEN

bestsofar=FNmax (bestsofar,nextval)
ELSE bestsofar=FNmin (bestsofar,nextval)

190 NEXT move

200 = bestsofar

300 DEF FNfinalscore

310 IF turn$="A" THEN = Asgscore- (Bscore+2)
ELSE = (Ascore+2)-Bscore

400 DEF FNmax (old,new)
410 IF new<old THEN =o0ld
ELSE =new

420 DEF FNmin (old, new)
430 IF new>old THEN =old
ELSE =new

As was the case with the procedure 'growtree', an activation
of the above function represents a node in the game tree.
The nodes are examined in exactly the sane order as they
were by 'growtree'. Instead of printing the node represented
by the paranieters of a function activation, the minimax
value calculated by a call of the function is returned as
the result of that function call. The value returned by a
recursive call of the function is immediately examined by
the function activation that made the call (line 180).

In order to discover the 'foregone conclusion' of the
game, with 3 counters (A starts), we could call our function
,as follows:

10 PRINT "3 counters - foregone conclusion:" ;
20 PRINT ; FNminimaxval (3, "A", 0, 0)
30 END

This prints the minimax value of the initial position in the
game starting with 3 counters. The tree of function calls
produced during a run of this program is:

280

minimaxval(3,"A",0,0)

/N

minimaxval(2,"B",1,0) minimaxval(1,"B",2,0) minimaxval(0,"B",3,0)

minimaxval(1,"A",1,1) minimaxval(0,"A",1,2) minimaxval(0,"A",2,1)

|

minimaxval(0,"B",2,1)

This tree of function calls is generated in the same way as
the tree of procedure calls discussed in detail in Section
8.2. You should annotate each function call in the tree with
the minimax value that is the eventual result of that call.

8.6 Mutually recursive functions for mimaxing

The purpose of a call of PROCgrowtree was simply to print a
representation of a node of the game tree. The operations
carried out by FNminimaxval depend to a much greater extent
on the question of whose turn it is. For this reason, the
above function looks very cumbersome because of the repeated
need to examine the value of the parameter 'turn$' in order
to decide whether the current function activation represents
a position at which it is A's turn (maximising) or B's turn
(minimising) . We can produce a considerably more elegant
program for minimaxing if we define two mutually recursive
functions. One function, FNmaxval, will be use to calculate
the minimax value of a node at which it is player A's turn
md the other, FNminval, will be used to calculate the
minimax value of a node at which it is player B's turn.
FNmaxval will try each move available in a position and must
use FNminval to evaluate the position reached by each move.
In a similar way, FNminval uses Flimaxval.

100 DEF FNmaxval (counters, Ascore, Becore)
120 LOCAL move, movesavailable, maxsofar, nextval

130 IF counters = 0 THEN = Ascore- (Bscore+2)

140 PROCcheckmovesavailable

150 maxsofar = -100

160 FOR move = 1 TO movesavailable

170 nextval = FNminval (counters-move,
Ascore+move, Bscore)

180 maxsofar=FNmax (maxsofar ,nextval)

190 NEXT move

200 = maxsofar

281

300 DEF FNminval (counters, Ascore, Bscore)
320 LOCAL move, movesavailable, minsofar , nextval

330 IF counters = 0 THEN = (Ascore+2)-Bscore

340 PROCcheckmovesavailable

350 minsofar = +100

360 FOR move = 1 TO movesavailable

370 nextval = FNmaxval (counters-move,
Ascore, Bscore+move)

380 minsofar=FNmin (minsofar,nextval)

390 NEXT move

400 = minsofar

500 DEF FNmax (old,new)
510 IF new<old THEN =o0ld
ELSE =new

520 DEF FNmin (old, new)
530 IF new>old THEN =old
ELSE =new

Note that the parameter 'turn$' is no longer needed. To
print the 'foregone conclusion' of the game starting with 4
counters we now need:

10 PRINT "4 counters - foregone conclusion:";
20 PRINT ; FNmaxval (4, 0, 0)
30 END

The tree of function calls resulting from a run of this
program is:

maxval (4,0,0)

N

minval(3,1,0) minval (2,2,0) minval (1,3,0)
maxval (2,1,1) maxval (1,1,2) maxval (0,1,3) maxval (1,2,1) maxval (0,2,2) maxval (0,3,1)
minval (1,2,1) minval (0,3,1) minval (0,2,2)

maxval (0,2,2)

282

The nodes of the game tree are examined in the same order as
before, but activations of FNmaxval represent positions at
which it is A's turn and activations of FNminval represent
postions at which it is B's a turn.

We have mentioned before that our emphasis in the book is
on clarity of presentation of ideas. There are various ways
in which the above program could be changed so as to reduce
the amount of work that it has to do. For example, we could
replace the two parameters 'Ascore' and 'Bscore' by a single
parameter 'Asnetscore' whose value is the difference between
A's score and B's score. Other more subtle improvements
could be made, but only at the cost of obscuring the way
that the function works.

Finally, note that none of the above minimaxing
functions, as presented, will work for more than ten
counters (see page 267 for a discussion of the reasons for
this) .

Exercises

1 Write functions FNminval and FNmaxval for calculating the
minimax values of positions in Grundy's Game.

2 TIf you are familiar with any other 'simple' board games,

such as NIM, do the same for them.

8.7 Choosing a move in a 'small' game.

Before studying the problem of choosing a move in a more
difficult game, we shall finish our study of 'small' games
by examining a number of ways in which a program can be made
to choose its move in such a game. The program at the end of
Chapter 1 is easily modified to play 'Last One Wins - or
does he?'. We need two variables 'Apoints' and 'Bpoints'
initialised to zero at the start of PROCaygame:

105 Apoints = 0 : Bpoints = 0

Making a move now involves adjusting the appropriate player'
S score:

750 counters=counters-move : Apoints=Apoints+move

920 counters=counters-move : Bpoints=Bpoints+move

and the program must now announce the final score at the end

283
of the game:

610 IF turn$="A" THEN Bpoints = Bpoints+2
ELSE Apoints = Apoints+2

611 PRINT "Final Score - ME:"; Apoints

612 PRINT " YOU:"; Bpoints

The techniques introduced in this section can now be
described by reprogramming PROCplayerA in various ways.

Exhaustive lookahead with minimaxing

When presented with a position, the program can use the
minimax functions defined in Section 8.6 to carry out an
exhaustive lookahead along all possible sequences of moves
from the current position. The result of this lookahead will
be to obtain a value for each of the positions that can be
reached by a legal move from the current position. The
program should then choose the move leading to the position
with the highest value. The following version of PROCplayerA
does this.

700 DEF PROCplayerA
710 LOCAL move

720 move = FNbestmove

730 PRINT "I take "; move; " counters."

740 counters=counters-move : Apoints=Apoints+move
750 turns$ = "B"

760 ENDPROC

1100 DEF FNbestmove
1110 LOCAL move,movesavailable,nextval,max,bestmovesofar

1120 PROCcheckmovesavailable

1130 max = -10

1140 FOR move = 1 TO movesavailable

1150 nextval = FNminval (counters-move,
Apoints-tmove, Bpoints)

1160 IF nextval>max THEN
max = nextval : bestmovesofar = move

1170 NEXT move

1180 = bestmovesofar

FNmaxval and FNminval will have to be renumbered from 1200
onwards. You should notice the similarity between FNbestmove
and FNmaxval. The difference is that FNmaxval is used to
find the value of the best position to which moves are
available, whereas in the above context we wish to find the
move that leads to the best position.

284
Decision tables

In small games like Noughts and Crosses or 'Last One Wins',
the number of different positions that might be encountered
by a program is small enough for a program to store a table
containing a list of possible positions together with the
recommended move for each position.

In the case of 'Last One Wins - or does he?', positions
such as:

7 A 0 0 (the start of a game with 7 counters)
7 A 21

7 A5 3

are all different in the sense that the scores are different
in each position. However the move recommended by a minimax
lookahead will be the same in each case. Once a sequence of
moves has been irrevocably made, there is nothing a player
can do to change the points scored so far. All he can do is
to optimise subsequent scoring from his point of view. Thus
the best move for the player whose turn it is depends only
an the number of counters left on the board. The following
table lists the best move (in the minimax sense) for various
positions:

best move:
counters left no. of counters to be taken

OWOJOUdWNRE
WWWNhREWWN R

=

any move

We could construct a table like this by hand for a game that
we wish to program, but it would be more sensible to use a
program to do it for us. Ways of using the minimax function
previously written to automatically construct a decision
table are discussed shortly. Whether we have constructed the
above list by hand or automatically, our program can use it
us a decision table as follows:

285
5 DIM tablemove(10)
6 PROCsetuptable

50 DEF PROCsetuptable
51 LOCAL c¢

52 FOR ¢ = 1 TO 10
53 READ tablemove (c)
54 NEXT c

55 ENDPROC
56 DATA 1, 2, 3, 3, 1, 2, 3, 3, 3, 3

700 DEF PROCplayerA

710 move= tablemove (counters)

720 PRINT "I take "; move; " counters. "

730 counters = counters-move : Apoints = Apoints+move
740 turn$ = "B"

750 ENDPROC

In 'Last One Wins - or does he?', a game position to be
looked up in the decision table consists of a single
integer. The decision table can thus be represented by an
array containing the recommended moves, a board position
being used as a subscript to access the table. In a game
with more complicated board positions, each board position
together with its corresponding recommended move would have
to be stored in the table. Table access techniques of the
type discussed in Chapter 6 would then have to be used to
find a given position in the table.

Whenever a decision table is being constructed for a
game, spectacular savings in space requirements for the
table can often be made by careful use of the fact that the
decisions in the table will confine the game to a subtree of
the main game tree. The diagram on the next page shows the
first three levels of the game tree for Noughts and Crosses
in which we have treated symmetrical positions as being
identical. (As we have already mentioned, it is not easy for
a program to recognise such symmetries.) If the program
starts and the entry in the decision table for the initial
position recommends playing in the centre, then the program
will always do this and there is clearly no possibility that
the program will ever have to make a move in any of the
marked positions that are at depth two down the branches
reached by the other possible initial moves. These positions
can be left out of the decision table. Note that we cannot
leave out all the positions down these branches of the tree.
For example, i1f the program's opponent starts, then he might
make any one of the three initial moves and thus all three
possible positions at depth one have to be stored.

The next two trees illustrate, for a hypothetical game,
the overall effect that we get if one of the two players
always chooses his best move (in the minimax sense) .

PEEHH FRE@H ¢

h
/X

/

287

awreb jeonaylodAy e 1oj saangns Abarens 1sag

g JoAe(d loj sangns Abarens i1seg

¢l 11 € [L- 6- T- 1T¢ 0C €1 61 8 /L € v 1- L S 9 € 9T ¢ ¢— v S ¢ ST €-
v 14
14

\/jﬁm

v JaAe|d 10} aangns Abaresls 1sag
¢TI ITT €¢ L- 6- T- T¢ 0C €T 6T 8 L € ¥ 1- L2 §9 € 9T ¢ ¢- v § ¢ S1T ¢&-

[/ \V/ \J/
€ ¥ T-9¢V 1% A 6T *\ VIV 1V gﬂv

- g v 4 3 d

>
NEaZ

288

Note that although the minimu values have been calculated
on the assumption that both players always make their best
moves, we cannot rely on the program's opponent doing this.
We must allow the possibility that the program's opponent
will make a non-optimal move when it is his turn. If the
program starts then play will be confined to one subtree
(sometimes called a 'best strategy subtree') and if its
opponent starts, then play will be confined to another
subtree. These subtrees are marked with double lines in the
diagrams. Only positions in these subtrees at which the
program has to make a move (shaded) need be stored in a
decision table. In this case we would need 7 decision table
entries for a game in which there are 13 non-terminal
positions. If the same analysis were applied to a game tree
with 10000 non-terminal positions, the number of positions
that would need to be stored in the decision table would be
reduced to about 200. Clearly, we could not carry out such
an analysis manually and we now introduce ways of doing it
automatically.

Automatic construction of a decision table
The decision table that we constructed for 'Last One Win s-
or does he?' could have been constructed automatically:

50 DEFPROCsetuptable
51 LOCAL counters

52 Apoints=0 : Bpoints=0

53 FOR counters = 1 TO 9 :REM 10 wont work
(Too many FORs)

54 tablemove (counters) = FNbestmove

55 NEXT counters

56 ENDPROC

This will take rather a long time to initialise the tables
web time the program is used.

The program will exhibit rather more interesting
behaviour if we initialise all the entries in the decision
table to zero and extend FNbestmove as follows:

1100 DEF FNbestmove
1110 LOCALmove, movesavailable,max, nextval,bestvalsofar

1120 IF tablemove (counters) >0 THEN
= tablemove (counters)
1130 PROCcheckmovesavailable
1140 max = -10
1150 FOR move = 1 TO movesavailable
1160 nextval = FNminval (counters-move,
Apoints+move, Bpoints)
1170 IF nextval>max THEN
max = nextval : bestmovesofar = move
1180 NEXT move

1190 tablemove (counters) = bestmovesofar

289

1195 = bestmovesofar

We must also revert to using the version of PROCplayerA that
called FNbestmove. Each time FNbestmove is called, the
decision table is examined, i an entry has previously been
inserted for the given number of counters, then that entry
determines the beat move. If no entry has yet been inserted,
FNbestmove carries on and calculates the best move by
carrying out a minimax analysis. Before this move is
returned as a result of the function, it is inserted in the
decision table for future use. This version of FNbestmove
can now be used by PROCplayerA. Now consider what happens if
we use the following loop to control the execution of our
game-playing program.

10 REPEAT

11 PROCplaygame

13 INPUT "Another go (Y/N)", reply$s
14 UNTIL reply$="N"

If we run the program and play several games during one run,
then the program will gradually fill in entries in its
decision table. For example, the first time the program has
to choose a move with 10 counters on the board, it will take
a long time to analyse the situation, but the next time, its
response will be instantaneous - we have implemented a
fairly primitive form of 'learning'. Furthermore, we are
only inserting entries in the decision table for positions
that are encountered during actual games. This, together
with the effect discussed in the last section, would reduce
the storage space required for a decision table in a game
with more complicated board positions.

Another possibility that we shall not program in detail
is some form of 'learning by trial and error'. We could set
up a decision table in which each position has associated
with it a set of values that determine the probabilities
with which each move is to be selected. For a position that
has not been encountered before, the probabilities for the
moves available would all be equal. Thus the program would
start by selecting completely random moves. During the
course of a game the program would keep a record of the
positions encountered and the moves selected. At the end of
the game, if the program wins, then the probabilities of
making all the moves recorded can be increased slightly; if
the program loses, the probabilities for the moves made can
be decreased slightly. The adjustments made must not more
than slight: winning a game does not mean that all the moves
made were good. Over a period, the performance of the
program will gradually improve.

If we are experimenting with the 'learning' techniques
discussed in this section, then it can be very frustrating

290

if we have painstakingly improved the program's performance
during a RUN and then have to start from scratch again the
next day. For this reason, a useful option in such a program
would be the ability to output a decision table to a file
and to read the table from the file at the start of the next
run.

Playing by rule
For simple games, it is often possible to define a rule or
rules that can be used to select a good move without
exhaustive exploration of the game tree.

In the game 'Last One Wins' used at the end of Chapter 1,
there is a very simple rule that can be used to find a
winning move if there is one available:

Try to make a move that leaves a multiple of 4 counters
on the board. (If no such move is available, then you are
in a losing position.)

In Noughts and Crosses, we might use a sequence of rules
that are to be applied in turn until a move is found. For
example,

If there is a winning move, make it.

If the opponent has a winning move, block it.
If the centre is empty, play there.

Make a random move.

This Noughts and Crosses strategy does not always select the
best move and draws attention to the fact that a set of
rules need not be optimal. In fact, it would be quite easy
to define a set of simple rules for choosing a move in
Chess, but the resulting program would play a very poor
game.

Exercises
1 Extend your Noughts and Crosses program so that it

chooses a move by using a set of simple rules like those
outlined above.

