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Preface
Most programmers begin by learning a high level language such as
BASIC and then immediately apply it to the task of writing programs.
This seems to be a natural extension of the way they learned the language
in the first place: by way of examples but examples are nearly always
short and there is a world of difference between a short example and a
long applications program! The difficulty is that there really are new
problems to be solved in tackling a large program that were not present in
the short examples. A short example of even as many as fifty lines can be
'held in the head', whereas a program that is likely to do anything useful
will be composed of so many lines that this is impossible. The result is
that large programs present a level of difficulty that is quite unnecessary.

There is more to programming than knowing the elements that make
up a computer language. In fact, this is only the first stage on the road to
becoming an advanced programmer. Learning how to apply a computer
language to real problems is mostly a matter of solving the problem of
writing larger programs and being aware of what your objectives are,
Using the ideas presented in this book you will find not only is it possible
to write large programs quickly but they are also more rewarding than any
short examples. The time saved by writing large programs in an organised
fashion can also be spent in dealing with details such as getting rid of bugs
and making programs 'friendly'. In this sense advanced programming
should be a rewarding experience for all concerned including the user!

To get the most from this book it is assumed that you have reached the
stage of being able to write short programs in BBC BASIC and generally
know your way around the machine. Some chapters also assume that you
know something about 6502 assembler, although if this is not the case you
can skip the relevant sections and come back to them at a later date. The
reason for using 6502 assembler is simply that the mixing of BBC BASIC
and assembler is essential to the production of efficient programs.
Although most of the programming methods described can be applied
either to BASIC or to assembler (or any other computer language!)
without any difficulty, we have included many specific examples of
'structured assembler' and have even devoted a whole chapter to it!

The examples that are used in this book are of course larger than you
would expect to find in other computer books and they are useful
programs in their own right. They include a disk sector editor, a spelling
checker, an execution tracer, a background clock and a disassembler. If
you intend writing applications programs as large and as complex as these
then you cannot afford to ignore the ideas contained within this book they
make programming easier, more satisfying and more enjoyable.

Mike James and S. M. Gee



Chapter One 
Advanced Programming

The BBC Micro is a computer that encourages the two approaches to
programming that concern this book producing clear, bug-free programs,
and using BASIC and assembler in combination. These features make the
transition from simple programming in BASIC to 'advanced
programming' a particularly painless and logical one.

It doesn't take long to discover that BASIC is a very simple computer
language. The total number of BASIC commands can be numbered in tens
and the set of commonly used ones is not many more than ten! In fact
there is nothing very complex about any computer language but knowing
the details of a language is not the same thing as being able to use it to
achieve any given result. To make a computer work to your advantage
you must not only knowwhat you want it to do, you must also know how
to make it do it. This is sometimes summarised by saying that our current
use of computers is at the 'HOW' rather than 'WHA T' stage. The process
of telling a computer how to do something is usually referred to as
'programming'. However, the subject of this book is 'advanced
programming' and this raises the question of what the word 'advanced'
means in this context. In this chapter what constitutes advanced
programming is explored and, in passing, the topics that form later
chapters are introduced.

Advanced languages?

As with so many things in computer science, it is easier to say what
'advanced' doesn't mean than what it does! Advanced programming
certainly doesn't imply the use of an advanced or difficult programming
language. It is a common fallacy that BASIC somehow lacks an essential
ingredient and is thus unsuitable for certain programming tasks. This
fallacy is reinforced by the way that academic computer scientists
promote languages such as Pascal and - increasingly the newest language
creation, Ada. However there is very little in either of these languages that
a programmer familiar with BBC BASIC would not recognise and
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understand. The sophistication of a language generally doesn't extend the
range of things it is capable- of; it just makes it more or less convenient
for the application in hand. At the other end of the scale, it is often
supposed that it represents an advance to 'graduate' to assembly language
(often referred to as 'machine code'). This idea is fostered by the fact that
many commercial programs that achieve effects that seem impossible
from BASIC are written in assembler. However, assembler certainly
cannot be thought of as an 'advance' in any sense of the word. If anything,
the continuing use of assembler is a reflection of how inadequate and
crude the current generation of computers are, in that the only reason for
using assembler is to gain extra speed of processing. Assembler is fast but
it isn't advanced.

The fact is that the elements which make up computer programming
are very simple, no matter in what language they turn up. Very roughly
speaking, a program, in any language, manipulates data, uses loops to
repeat actions and selects between actions using the IF statement or its
equivalent. Much confusion is caused by the assumption that problems
encountered when writing a program in BASIC would be solved by using
aother language. In most cases the program will prove just as difficult to
write in a new language as it did in BASIC because you are trying to solve
the same problem with only slightly different tools. Another way to sum
this up is if you don't know how to do it in BASIC you won't know how to
do it any other language!

Programs small and large

Once you have learned what each of the statements in BASIC do, the next
task is to use them to write programs. At first, the sort of programs that
you write are short enough to be written in one sitting. They also contain
very few statements so the scope for anything other than obvious bugs is
limited. At this stage it is very easy to recognise a successful, working
program. At the next stage, however, things are not so easy. There is a
world of difference between writing a small program and writing a large
program. It is important to realise that this difference is not just one of
degree; there genuinely are new types of difficulty to be found in writing
large programs. Some novice programmers never realise that this is the
case and so fail to progress beyond short programs. Others discover ad
hoe methods and create large programs through sheer enthusiasm. Both of
these conditions are sad because it is very easy to learn and use techniques
that make large programs not only possible, but possible without
superhuman labour!

Using an organised approach to program construction is most certainly
a part of advanced programming but it's not the only part. For example,
writing larger programs using any method brings the possibility of
introducing larger and more subtle bugs. There is also the question of
making programs easy and pleasant to use. Writing programs that work as
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intended is difficult, if not impossible, without being aware of the stages
of 'bug detection' and 'bug location'. Good initial program design is also a
help in keeping the number of bugs to a minimum but there is no fool-
proof way of ensuring that a program is entirely bug-free. Don't take this
as an excuse for ignoring the responsibility for removing as many bugs as
possible from a program but see it as an indication that a feature of
advanced programming is the need to use what time and resources are
available to the best effect. While it is possible to give firm guidelines on
how to deal with bugs, it is much more difficult to be definite about how
to achieve user-friendly programs. After all the methods for program
design and debugging have become second nature, the advanced
programmer can start to tackle the real problems of writing programs that
not only are useful but are a pleasure to use.

Communicating the total view

So far, it looks as though advanced programming amounts to nothing
more than a collection of methods to aid program construction. However,
there is a world of difference between applying these methods and
appreciating how they work. Another component of advanced
programming is knowing when rules and regulations can and should be
broken. To this end it is important that the underlying aims and theory of
programming are understood rather than being just a collection of rigidly
applied methods. In this sense there is still a great deal of freedom to be
exercised and there is no need to fear that the fun will be taken out of
programming by trying to do it better. Indeed, there is much more fun and
satisfaction to be gained from a well-conducted programming project than
from one that is scraped together by sheer brute force or hours spent
slaving over a keyboard.

There is another aspect of using a systematic approach to programming
that is worth explaining at this early stage. As programming develops, it is
becoming as much a method of communication as a way of getting things
done. It is almost a cliche to say that there are more programmers alive
today than ever before (the world's population is such that there is more of
everything!); but it is important not to miss the fact that programs are one
of the main channels of communication between programmers. A working
but difficult-to-understand program fails to satisfy the function of
communication and in this sense it is doomed to failure in the longer term.
The reason for this is simply that no program is ever complete. It may
serve the needs of the moment but the progression of computer hardware
and users' expectations mean that it will inevitably become inadequate.
When a program reaches the end of its useful life it is usually replaced but
this can be achieved in two ways - by starting from scratch or by
producing a new version of the old program. In both cases the only way to
avoid re-inventing the wheel is to make sure that the ideas that the original
program contains are clear for all to see. This principle of building on the
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best of the past is one that is already well known in science subjects. To
quote Sir Isaac Newton, the greatest English physicist and mathematician:
'If I have seen further it is by standing on the shoulders of giants'.

To make similar advances in computer science it is important that we
learn to expect new software to 'stand on the shoulders' of its precursors.
The skill of programming should include the ability to both read and write
programs. In the past the emphasis has been on writing programs possibly
because the current state of the art made reading existing programs almost
impossible. Advanced programming must be about writing programs that
are easy to read and learning to read programs written by other people.

Know your machine - the role of experiment

The role of any particular computer in advanced programming has been
played down until this point because, in the same sense that advanced
programming is nothing to do with a particular computer language, it is
similarly machine independent. However, this machine-independent
attitude misses the point that you have to have the experience of knowing
a particular machine before you can generalise. In the same way as you
must learn BASIC before you can understand the ideas of programming,
you have to study a particular machine before you can understand the
broader ideas of computer science and computer use and this book is
specifically about advanced programming using the BBC Micro - an
excellent machine for the job of illustrating almost any idea in computing!

Many pieces of hardware information seem to be 'one off facts' that
turn up by accident. That is, if you didn't know them there would be no
systematic way of setting out to discover them. This 'one off aspect of
hardware is only true in part because there are many methods of
investigating the way that a computer works that are common to all
machines. It is a step in the right direction to realise that computing is an
experimental science! An advanced programmer will have an idea of the
possible ways that a machine can operate. Using this knowledge and
perhaps some initial observations it is usually possible to guess the way
things might work in a particular case — in other sciences this is referred
to as an experimental hypothesis but for us the term 'guess' will do! On the
basis of this guess you can predict what you would expect to find and then
write a program or examine the machine in some other way to confirm or
deny the correctness of your guess. This is an experiment in any subject's
language, but computer scientists sometimes refer to it as 'having a look to
see'!

Throughout this book there are many specific pieces of information
given about the workings of the BBC Micro's hardware and software, but
much of the time the emphasis is on how these facts were discovered. This
means that as well as providing you with some information of practical
value, it should be possible for you to see how to add to this body of
knowledge. A great deal of information about the overall structure of the
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BBC Micro can already be found inThe BBC Micro: An Expert Guide
(Granada, 1983). Occasionally it will be necessary to summarise
information from that book so as to make this book complete in itself, but
the overlap between the two volumes is slight. In the same way the
overlap between this book and theBBC Micro User Guide is held to the
minimum but it is assumed that you have a copy available. Frequent
reference is made to the User Guide so keep it to hand.

The languages used - BASIC and assembler

As already mentioned, BBC BASIC is a suitable language for advanced
programming but it has to be admitted that sometimes the speed of
assembler is indispensable, For this reason, although many of the
examples in this book are in nothing but BBC BASIC, it would be
impossible to write a book on advanced programming that ignored
assembler. Rather than introduce it with apologies wherever it proves
necessary, it is better to treat it on a more equal footing with BASIC. So,
as well as turning up in some of the examples, you will also find whole
chapters devoted to assembler. In particular, Chapter Four deals with a
subject that is almost never discussed - programming style in assembler.
The most probable reason for this neglect is that it is somehow assumed
that assembler is such a difficult computer language that just to be able to
write programs using it is a sufficient level of proficiency. This is, as the
preceding discussion of advanced programming should indicate,
completely untrue. Assembler is difficult because the programming
methods that are advocated for languages such as BASIC are ignored in
assembler! It is as possible to write a well structured assembly language
program as it is to write structured BASIC, Pascal, ALGOL . . .

As with BASIC, it is assumed that you have reached the stage of
understanding the rudiments of assembler and this book makes no
pretence of being an introduction to 6502 assembler. However, this is not
to say that you have to know assembler to get anything from this book.
Most of the ideas are language independent and the results of the
assembly language sections can be used without understanding them. The
hope, of course, is that if you don't know assembly language you will be
inspired to invest the time necessary to learn it!

The twin approach of using BASIC with assembler is realistic in that it
represents what really happens in writing programs. Assembler is, at the
best of times, a less readable language than BASIC and there are fewer
programmers who understand it. For these reasons it is important not to
use it without good cause. It is rare for the bulk of a program to prove
impossible to write in BASIC and the best approach is to incorporate
assembly language subroutines within programs where they are absolutely
essential. This combination of BASIC and assembler is the most powerful
way to write programs.
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Using this book

After all this discussion of what constitutes advanced programming you
should be able to see how the topics dealt with in each chapter relate to
the overall idea. Advanced programming is not a subject with an exact
and finite syllabus and so it is impossible to include everything that is
worth knowing. However, you should find that most of the important
subjects are covered. The first part of the book is about programming
methods in general, including structured programming, debugging and
data handling. The latter part is devoted to some large example programs
which serve more than one purpose. They are intended to teach aspects of
programming, to iflustrate special facilities of the BBC Micro and to be
useful and a-ttractive applications.

Finally, it is a little known fact that computer books should not be read
in order of strictly increasing page number! Although the material in this
book is organised to reflect an overall progression of information, you
shouldn't suppose that you have to understand things in any predetermined
order. It would be going too far to suggest that the best strategy is to read
computer books backwards but you should exercise a greater degree of
freedom in the order of reading than is normal. On the other hand, if you
find that you do not understand something, don't give in to the very
natural impulse to re-read or go back to earlier chapters press on. It is
often the case that later material clarifies an earlier misunderstanding
while rereading' previous sections would only reinforce it.



Chapter Two
Program Structure

Many people write BASIC programs without ever having thought very
much about the resources at their disposal. Sitting down and writing a
program 'as it comes' is a workable method for small programs but it is
difficult to keep enough detail in your head when working on a large
program. To write a large program easily and with the minimum of bugs it
is important to understand the way that the instructions that constitute the
BASIC language are best used to construct programs. The surprising fact
is that the 'units' that make up a program are not, as most elementary
BASIC textbooks suggest, single BASIC instructions such as IF or
GOTO. The best way to think of, and hence write, a BASIC program is in
terms of larger standard units each composed of a number of BASIC
statements. For example. the action of the GOTO instruction is easy
enough to understand; it transfers control to a given line number, but there
are only a small number of circumstances in which it is necessary to
transfer control to an out of sequence line number and therefore it is better
to think in terms of the 'use' of the GOTO rather than simply what it does.
These larger program 'building blocks' are often referred to as structuring
elements and the programming method based on consciously using them
in program construction is often referred to as structured programming.
However, all these terms make it sound as though something forced and
unnatural is going on in the use of a 'structuring method' when all that is
really happening is the identification and conscious use of the natural
structures which the BASIC programming language provides. This is akin
to a skilled carpenter learning to work with the grain of the wood rather
than against it. You can write programs that go against the 'grain' of
BASIC but it is much better not to!

The two parts of a program

Any program has two aspects, its structure and its data. This corresponds
to the two aspects of any list of instructions, they always tell you (a) what
to do and (b) what to do it to.

In this sense, every program is like a simple English sentence it has a
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verb, the actions that are to be carried out, and a noun, the data that is to
be manipulated by the program.

These two aspects are equally important and indeed there is a trade-off
that can be made between the complexity of action and the complexity of
the data that the action is applied to. For example, if you use a string to
hold a list of numbers then the program to manipulate those numbers is
likely to be more complicated than if you had used an array.

The subject of this and the next chapter is program structure. The other
side of the coin, data, is dealt with in Chapter Five. What is missing from
this neat division is the interaction that occurs between the two in writing
a real program. This interaction is so problern-specific that it is almost
impossible to discuss it directly. However, it is hoped that as well as
illustrating program and data structure separately, the larger examples will
also show how the two are balanced in program construction.

The flow of control and spaghetti

One of the first ideas that any programmer has to understand is the flow of
control through a program. The default flow of control, whereby BASIC
statements are executed in order of increasing line number and from right
to left, is the first to be introduced. This rarely causes any trouble but
programs that use nothing but the default flow of control are so simple
that they completely fail to capture any of the power of a computer and
therefore it is not long before the GOTO, IF and FOR statements are
introduced as ways of altering the flow of control. The trouble is that
normally no guidance is given on how to use these statements to construct
programs. Their action is stated and after a few examples it is supposed
that the problem in hand will make it clear how the flow of control has to
be changed and hence which statements should be used. This is usually
referred to asfree style programming but for reasons that will be made
clear it might better be called 'spaghetti' programming.

Before it is possible to discuss desirable features of the flow of control
there has to be an easy way to see it. If you look at any program its flow
of control will be difficult to appreciate because of the distracting
elements of variables, PRINT statements, etc. If you take a pencil and
draw a line that follows all of the possible routes through a program then
the result is a 'map' of the flow of control that we can examine without
being distracted by the other features of the program. For example, the
flow of control map of a simple program that only uses the default flow of
control is a straight line down the page (see Fig. 2.1). (It is usual to treat
multiple statements on a single line as equivalent to a single 'compound'
statement for the purposes of mapping the flow of control.)
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Fig. 2.1 The default flow of control

10  INPUT A
20  A = A*2
30  PRINT A
40  A = A *2
50 PRINT A

Fig. 2.2. The division of the flow of control.

IF A<>0 THEN A = A–1 ELSE A = A+1

IF A<>0 ?

THEN ELSE

A = A–1 A = A+1

The effect of an IF statement is to divide the flow of control line into two
parts corresponding to the path taken when the condition is true and the
path taken when it is false (see Fig. 2.2). The effect of the GOTO
statement on the flow of control line is much more difficult to summarise.
It certainly diverts the flow of control line but the effect depends on where
it is diverted to. Using the GOTO statement it is possible to produce a
program that has a flow of control line that is reminiscent of tangled string
or a bowl of spaghetti - hence the term spaghetti programming! (see Fig.
2.3).

Fig. 2.3. Spaghetti!

10

20

30

40
50

60

70

80

90

A = 0

GOTO 60
PRINT A

A = A + 1

GOTO 10

IF A = 0 THEN GOTO 90

PRINT A

GOTO 10

A = A – 1

GOTO 30100

It should be easy to see that a program that has a simple flow of
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control line is easier to understand than one that is complicated and
tangled. It follows from this that a simple flow of control is less likely to
hide bugs because the programmer writing it has a better chance of
completely understanding its action! The usual objection to this argument
for simple flow of control is that complex programs can only be written
using complex flow of control. To a very limited extent this is true. The
simplest flow of control, the straight line running down the program, is
clearly inadequate for writing any useful programs but the additions that
have to be made to it before you can writeany program are very few. In
principle all you need is some method of forming a loop and a conditional
branch, but in practice it is easier to use a few more ways of changing the
flow of control - but not very many more and certainly not the complete
freedom that the GOTO statement gives you to tie the flow of control in
knots!

If you agree that spaghetti programs are a bad thing, then the next
question is how to ensure simplicity and clarity without making
programming an impossibly difficult activity. This question is answered in
the following sections, but if you don't see the point of a simple flow of
control then all of this will seem like a waste of time. It is therefore worth
thinking a little about the way that you use the statements that alter the
flow of control in a program before moving on to read the rest of this
chapter. From now on our explicit objective will be to find easy-to-apply
methods of keeping the flow of control simple. The main tool in achieving
this objective is to only use a small, fixed number of ways of changing it.
This approach also has the advantage that, no matter which ways of
changing the flow of control are chosen as 'standard', they will be easy to
recognise within a program and this in itself makes the program easier to
understand.

The natural structure of BBC BASIC

The fact that any program can be written using nothing but loops and
branches is remarkable and deserves a good deal of philosophical
pondering in its own right. However, the subject of this book is practical
programming and for this reason it is necessary to extend this limited
range to include one or two other natural structuring elements. In
particular, BBC BASIC provides a number of special control structures
that fit very nicely into our overall objective of simplifying the flow of
control fine but it is important to realise that they are not found in other,
less well designed, dialects of BASIC. For this reason structured
programming in BBC BASIC is a little different from the structured
programming in other dialects of BASIC but the objective is still the
same. (The reader is referred toThe Complete Programmer (Granada,
1983) for details of natural structured programming in traditional BASIC.)

As BBC BASIC also includes many of the instructions of traditional
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BASIC there is sometimes an over provision of facilities. The most
obvious example is the ability to construct subroutines using GOSUB and
procedures using PROC. Procedures and subroutines serve the same
purpose but, whereas GOSUB is traditional BASIC, procedures are new
and do the job much better. The presence of:

IF ... THEN line number

and

IF ... THEN list 1 ELSE list 2

where 'list 1' and 'list 2' are collections of BASIC statements, is also an
example of traditional BASIC versus enhanced BASIC. In early versions
of BASIC the only form of the IF statement allowed was IF . . . THEN
line number and BBC BASIC has to include this form to make sure that
existing programs will run. However, the second form is a much more
helpful when it comes to keeping the flow of control line simple and is
therefore to be preferred.

It would be nice to avoid any use of older forms of BASIC when
writing naturally structured BBC BASIC, but in practice this level of
strictness would add too much to the tedium of programming! You can
certainly avoid the use of the extremes like GOSUB and IF . . . THEN line
number but there are one or two traditional statements that are more
difficult to give up. For example, it is possible to write structured BBC
BASIC without ever using the GOTO! In this sense the GOTO statement
is yet another part of traditional BASIC that has found its way into BBC
BASIC. Some people do advocate this total abolition of the GOTO
statement as the essence of structured programming and it is easy to see
why. The GOTO statement is certainly responsible for most of the tangles
in the flow of control line and abolishing it would make it very difficult to
write spaghetti programs difficult but not impossible! While avoiding the
use of the GOTO would serve our main objective of simplifying the flow
of control it turns out to be more useful to examine and allow a few uses
of the GOTO statement. This attitude can be summed up as 'the GOTO is
a dangerous but powerful statement that it is worth learning to use
properly'.

As the two fundamental forms of flow of control are selection between
a number of alternatives and loops, it is worth looking at the best ways of
implementing each of these in turn, but first it is necessary to consider
briefly the role of line numbers in BASIC.

The trouble with line numbers

In nearly all versions of BASIC (there are one or two exceptions) each
line in a program must have a line number. This is so much part of the
BASIC language that BASIC programmers rarely stop to question if so
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many line numbers are really necessary. BASIC line numbers serve two
purposes as convenient 'markers' for editing program lines and as 'labels'
that are used by GOTO and GOSUB commands. It is clear that as far as
editing is concerned, for the method to work every line must have a line
number but for the use of GOTO and GOS UB the only lines that need
line numbers are those that are actually referred to in GOTO or GOSUB
commands.

There are many reasons why the dual function that line numbers serve
is a problem in the easy production of clear and bug-free programs. The
most important are:

(1) The line misplacement problem
The fact that every line has to have a line number to determine its position
within the program is a mechanism that is very sensitive to typing errors.
You only have to mistype a single digit and, not only does a line appear to
be missing at one position, an extra line appears elsewhere, possibly in
part of a program that was finished and debugged some time before. In
this sense, typing a single digit incorrectly causes the destruction of the
overall correctness of the program and leaves a very difficult bug lurking
in a part of the program that you have tested and is therefore almost above
suspicion! (This aspect of line numbers is taken up again in Chapter
Seven,)

(2) Fixed destinations
When a line number is used in a GOTO or GOSUB statement, it is an
advantage if this line number remains unchanged throughout the life of
the program. The reason for this is that the line number of the destination
of a GOTO or COS UB serves to 'name' a part of the program that
performs a particular task. If this 'name' changes during the development
of a program then it is possible that the programmer will incorrectly use
the 'old' value instead of the correct new value when re-using that part of
the program. For example, if during the initial implementation of a
program, subroutine 1000 prints an opening message then you are likely
to use GOSUB 1000 later on to print the same message. If, however, in
the intervening time it has been necessary to renumber the program so that
extra lines can be inserted, fine 1000 may be assigned a new fine number,
1370, say. From this point on, the programmer must remember that what
was once referred to as subroutine 1000 is now subroutine 1370, a task
made even more difficult by having to remember the fine number changes
for all the other subroutines in the program! The moral is that
renumbering is generally a bad thing.

(3) The forward jump problem
When writing a program it is easy to use a GOTO statement to transfer
control back to a point earlier in the program. The reason for this is that
usually the earlier part of the program is already written and it is very easy
to find the line number of the point to which you want to return. This
should be compared to the situation of using the GOTO to transfer control
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forward to a line later in the program. In this case the chances are that the
line to which you are trying to transfer control has not yet been written.
The line number that it will eventually be assigned is difficult to work out
as it depends on the number of statements that will be written and the line
number increment in use. The best solution to the forward jump problem
is not to make a guess at the fine number but to use a symbol such as '*' to
indicate that you have to return and fill in the missing line number after
the line concerned has been written. If you guess the line number it is
possible that you will get it wrong and this will go undetected because,
even though the line number you used was incorrect, the GOTO is still
valid BASIC. If you use '*' to mark incomplete GOTO statements it is
impossible to forget them as they will cause the program to crash if not
removed!

It is possible to imagine a version of BBC BASIC that doesn't use line
numbers for editing. Program fines could be entered, deleted, fisted and
modified by use of the cursor keys instead. This would be a great
improvement because the confusion and difficulties that result from the
dual use of fine numbers would be completely eliminated. Failing this, the
best course of action is to try to avoid the use of line numbers within
GOTO and GOSUB as much as possible. Once again we have a reason for
minimising the use of the GOTO and GOSUB statements!

Selecting between two alternatives

The simplest form of selecting between a number of alternatives is when
there are only two possibilities. This corresponds to the well known:

IF condition THEN list 1 ELSE list 2

where 'list 1' and 'list 2' are collections of BASIC statements. The action
of this statement is familiar enough if the 'condition' is true then 'list I' will
be executed; if the 'condition' is false then 'list 2' will be executed. You
can see this causes the flow of control line to split into two possible paths
which recombine only after the entire statement is complete, see Fig. 2.2.
This is a particularly simple way of dividing the flow of control; you can
immediately see what happens when 'condition' is true and when it is
'false'. You can also see instantly where the flow of control fine
recombines. If you think that these are small considerations, compare IF. ..
THEN. ..ELSE with the traditional BASIC way of selecting between two
alternatives:

IF condition THEN GOTO x
. . .
list 2
. . .
GOTO y
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x . . .
list 1
. . .

y rest of BASIC program

where 'x' and 'y' are line numbers. Using this method in a real program
makes it difficult to see what happens when 'condition' is true and when it
is false. It is also very difficult to see where the flow of control line
recombines and continues through the rest of the program.

The advantages of the IF. . . THEN . . . ELSE form of the BASIC
statement make it worth using in preference to ail other forms. When
either 'list 1' or 'list 2' contain only a few statements they can be written
within the IF statement separated by colons. If the lists are at all long they
should be turned into procedures and then called from within the IF
statement. For example, rather than:

IF condition THEN t1:t2:t3 . . . tn
ELSE e1:e2:e3 . . . en

where t1 to tn and e1 to en are lists of BASIC instructions use:

IF condition THEN PROCIist_1 ELSE PROClist_2

where PROClist_1 and PROClist_2 are defined elsewhere in the program
and consist of statements t! to tn and e1 to en respectively. The subject of
using procedures is discussed more fully in Chapter Three but even at this
early stage they show themselves as one of the most useful features of
BBC BASIC. Notice that it is never necessary to use:

IF . . . THEN GOTO x ELSE GOTO y

or

IF . . . THEN GOSUB x ELSE GOSUB y

where x and y are line numbers.
It looks as though the subject of selection is completely settled in that

the IF . . . THEN . . . ELSE statement is just right for the job, but there is
the question of what should happen when there are more than two possible
courses of action. Or, at an even simpler level, how should the very
common situation of conditional execution of one fist of statements be
handled ?

THEN without ELSE

If you examine almost any BASIC program you will find that the form of
the IF statement that occurs most often is:

IF condition THEN list of statements
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This can be regarded as a special form of the IF . . . THEN . . . ELSE
statement where the list of actions that follow the ELSE part is empty.
Although this may seem like a rather academic way of looking at a
perfectly simple and practical BASIC statement, it does highlight a
number of issues. The 'list of statements' following the THEN will of
course only be carried out if 'condition' is true but in practice the converse
is just as common a requirement; that is, the list of statements will be
'skipped' if a condition is true. This corresponds to an IF statement with an
empty statement list following the ELSE. While you can indeed write
something like:

IF A=0 THEN ELSE PRINT "Not Zero"

there is something very difficult and confusing about reading THEN
ELSE. Of course, the most commonly encountered solution is to use the
NOT of the 'condition' as in:

IF NOT (A=0) THEN PRINT "Not Zero"

or even the more readable:

IF A<>0 THEN PRINT "Not Zero"

Notice that although in this simple example the final form of the IF
statement looks the easiest and the one that should always be used, this is
not the case if the 'condition' is at all complicated. For example, if you
want to skip a list of statements when:

A=0 AND (B<>0 OR Z=100)

is TRUE, it is much easier to write:

IF NOT (A=0 AND (B<>0 OR Z=100)) THEN list

rather than try to work out what the NOT of the condition is.
It is important to notice in this discussion of the IF . . . THEN

statement that there is an implicit assumption that the list of statements
that follows the THEN never need contain a GOTO. In particular there is
never any need to use:

IF condition THEN GOTO x

to determine whether to execute or skip a section of program. If you need
to execute a section of program according to some condition then use:

IF condition THEN list

and if you need to skip a section of program according to a condition then
use:

IF NOT(condition) THEN list
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Once again if the 'list' of statements becomes too long to be conveniently
written on one line then it should be turned into a procedure

Multiple selection - ON

It is not often that a program has to execute one of a large number of
alternatives according to a condition but when it does happen it is usually
a major feature such as a 'menu selection' with a great many alternatives.
Traditional BASIC uses the:

ON x GOTO list of line numbers

or

ON x GOSUB list of line numbers

to select which of a number of sections of program will be executed. The
value of x, a numeric variable, selects which of the 'list of line numbers'
will be the destination of the GOTO or GOSUB command. For example:

ON I GOSUB 1000,2000,3000,4000

will transfer control to 1000 if I is 1, to 2000 if I is 2 and so on. In this
case if I is less than I or greater than 4 the program will crash. BBC
BASIC has both ON. . .GOTO and ON. . .GOSUB and it even allows the
statements to be followed by an ELSE statement to avoid crashing on out
of range values Thus the previous example could be written:

ON I GOSUB 1000,2000,3000,4000
ELSE GOSUB 3000

and subroutine 5000 would be called if I was less than 1 or greater than 4.
Certainly if you are going to use the ON statement you should use the

ON.. .GOSUB form and always follow it with an ELSE statement to catch
out of range values. However, following the earlier discussion of the sort
of problems that using line numbers bring it is obviously better to avoid
the ON statement if at all possible. In theory, it is always possible to use a
collection of IF statements to replace a single ON statement. For example,
the previous ON . . . GOSUB can be written:

IF I=1 THEN PROCaction_one
IF I=2 THEN PROCaction_two
IF I=3 THEN PROCaction_three
IF I=4 THEN PROCaction_four
IF I<1 OR I>4 THEN PROCaction_error

Notice that each of the conditions is mutually exclusive and only one of
the procedures following the THEN will be executed. The correctness of
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the scheme depends on one vital implied rule:

the value of I must not be changed by any of
the procedures following the THEN

If this rule is broken then it is possible that more than one of the
procedures will be executed. Sometimes there is a temptation to break this
type of rule to obtain a quick result For example, if PROCaction_one
changes I to 4 then when I is initially 1 both PROCaction_one and
PROCaction_four will be called. This is the worst sort of opportunist
programming! Anyone reading the program would be very unlikely to
spot this trick and the results could be a completely tangled and bugged
program! If your intention is also to call PROCaction_four when I is 1
then make it clear by:

IF I=1 THEN PROCaction_one:PROCaction_four

In most cases the conditions in the collection of IF statements are not as
simple as I=1, 1=2 and so on and therefore it is much more difficult to
ensure that only one of the procedures (or fists of statements) will be
executed. In situations where the conditions to be satisfied are
complicated it is usually sufficient to ensure that each condition correctly
determines whether or not a procedure (or list of statements) should be
executed and that nothing that would effect the condition is altered until
all of the IFs are completed.

You might object that this method of selecting one of a number of
actions is inefficient and slow. Surely there is no need to work through the
rest of the IF statements after one of them has found a true condition? The
answer is that there is no satisfactory way of gaining the slight speed
advantage of skipping the remaining tests after a true condition has been
found without reducing the readability and simplicity of the program. One
method that is often advocated is the 'nesting' (see later) of IF statements
as in:

IF A=1 THEN PRINT "One" ELSE
IF A=2 THEN PRINT "Two"
ELSE IF A=3 THEN PRINT "Three"
ELSE PRINT "Error"

By no stretch of the imagination can this be considered as clear (and
therefore less likely to hide bugs) as:

IF A=1 THEN PRINT "One" 
IF A=2 THEN PRINT "Two"
IF A 3 THEN PRINT "Three"
IF A<1 OR A>3 THEN PRINT "Error"

There are plenty of examples of the use of the IF statement to make
choices in later chapters. Finally, it is worth recalling that what matters is
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clarity and simplicity. Do not value short cuts that save a few fines of
program they will cost you much more time when it comes to debugging.

Loops

The other fundamental way of altering the flow of control is the loop. It is
difficult to think of a worthwhile program that doesn't contain some
element of repetition. Although BBC BASIC contains two distinct and
special instruction pairs FOR. . .NEXT and REPEAT. . .UNTIL there is
still a role for loops built using IF and GOTO and this is one of the few
cases where it is worth risking the dangerous GOTO in a program.

The basic mechanism of all loops can be seen in the infinite loop:

x list of BASIC statements
. . .
. . .
GOTO x

The GOTO x transfers control back to line number 'x' and so repeats the
lines of BASIC in between forever. In this description it is assumed that
there are no GOTO statements within the loop that transfer control out of
it.

Infinite loops are sometimes useful in applications where a computer
has to control some piece of equipment theoretically forever, but apart
from this loops usually have some way of coming to an end that is they
are finite loops. A finite loop is produced from an infinite loop by the
addition of a conditional statement that transfers control out of the loop
hence their alternative name conditional loops. The standard form of the
conditional loop is:

x list of BASIC statements
. . .
IF condition THEN GOTO y
. . .
list of BASIC statements
GOTO x

y rest of program

The IF statement transfers control out of the loop to fine number 'y' when
'condition' is true. This constitutes an 'exit point' for the loop and its
'condition' is an 'exit condition', see Fig. 2.4.

The only way that finite loops differ from one another is in the number
and position of their exit points. There are advantages of simplicity and
clarity in using only one exit point within a loop. If there is only one exit
point it is easy to determine what the exit condition is and where control is
transferred when the loop ends. However, there are exceptions to this one
exit point rule and these will be discussed later.
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Fig. 2.4. A conditional loop
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Given that there is only one exit point, the only scope for variation is in its
placement. Once again, there are advantages of clarity and simplicity in
placing restrictions on the way that loops are formed. Two favoured
positions for loop exit points are at the very start of the loop and at the
very end. Loops that have their single exit point at the start are usually
calledwhile loops and those that have their single exit point at the end are
calleduntil loops. The reason for these names is not important; they have
their roots in other computer languages. What is important, however, is
that BBC BASIC provides a pair of instructions, REPEAT and UNTIL,
that explicitly implement until loops. Thus, rather than:

x list of BASIC statements
. . .
. . .
IF condition THEN GOTO y
GOTO x

use

REPEAT
 list of BASIC statements

. . .

. . .
UNTIL condition

Notice that the REPEAT .. .UNTIL form of the loop completely avoids
the use of GOTOs and line numbers. Unfortunately, BBC BASIC doesn't
include a pair of instructions to implement a while loop and so there is no
choice but to construct it from scratch using IF and GOTO.

As a while loop has an exit point at its beginning it is possible for this
exit to be taken without the statements within the loop ever being
executed. However, the statements within an until loop have to be
executed before the exit point is reached. In other words, you can execute
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a while loop any number of times including zero but you have to execute
an until loop at least once.

Apart from these two simple characteristics concerning the minimum
number of times that a loop can be executed, the main advantage of
placing exit points at the start or the end of a loop is that all of the
statements within the loop will be carried out the same number of times.
For example, in the conditional loop:

10 I=0
20 I=I+1
30 IF I=10 THEN GOTO 60
40 PRINT I
50 GOTO 20
60 END

Statement 20 is executed ten times but statement 40 is executed only nine
times. In general, the portion of the loop before the exit point is always
executed once more than the portion of the loop that follows the exit
point. The accepted wisdom is that this difference in the number of times
statements are executed within a loop makes it difficult to understand, and
hence debug, programs that contain anything other than while or until
loops. However to restrict all conditional loops to just these two types is
unnecessarily harsh. A natural form of loop that often occurs in BASIC is:

x pre-exit statements
IF condition THEN GOTO y
post-exit statements
GOTO x

y rest of the program

where the pre-exit statements perform any actions that are necessary to
discover the current 'value' of the 'condition' and the post-exit statements
carry out the actions that have to be repeated if the 'condition' is false.
This form of 'loop is more complicated and difficult to debug than either
the while or the until loop and it should only be used when absolutely
necessary. This more general conditional loop can often be found in
BASIC programs where a little thought would have proved the while or
the until loop perfectly suitable. In short use the while and until forms of
the conditional loop unless there is a real need to use a more general form.

Multiple exit points

Although the emphasis in the last section was on the use of conditional
loops with one exit point, there are times when a program can be made
easier to understand by the use of more than one exit point. It is important
to realise that the only reason for using such a complicated form of
conditional loop is that control needs to be transferred to a number of
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different points depending on what 'condition' caused the loop to end. It
should never be necessary to use more than one exit point if they transfer
control to the same position within a program. For example. the loop:

x list of BASIC statements
. . .
IF condition 1 THEN GOTO y
. . .
IF condition 2 THEN GOTO y
GOTO x

y rest of program

can be reduced to the much simpler form:

x list of BASIC statements
. . .
IF condition 1 OR condition 2 THEN GOTO y
. . .
GOTO x

y rest of program

Of course there is the problem of exactly where the single exit point
should be placed in the loop to give the same effective result as the pair of
separate exit points but this is usually not at all difficult.

The real use of multiple exit points occurs when there are different
reasons for leaving the loop and different actions that have to be carried
out subsequently. For example, suppose you are searching a string array
for a particular word using a loop that compares each element of the array
against the 'target' string. There are two distinct reasons for leaving the
loop. Either the target is found and further processing is necessary or it
isn't and an error message (say) has to be printed. In this case, using a loop
with two exit points is permissible and may even result in a simpler
program. For example compare:

1000 I= I
1010 IF S$=T$(I) THEN GOTO 2000
1020 IF I=N THEN GOTO 3000
1030 I=I+1
1040 GOTO l0l0

which searches the string array T$ for an occurrence of the string in S$
using two exit points line 1010 exits to line 2000 if the string is found and
line 1020 exits to fine 3000 if it isn't with its single exit point version:

1000 I=1
1010 IF S$=T$(I) OR FN THEN GOTO 2000
1020 I=I+1
1030 GOTO 1010
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which is shorter but leaves the task of sorting out what causes the loop to
end to the part of the program starting at line 2000.

It is rare for it to be necessary to use more than two separate exit points
and conditions within a single loop and even then in most cases the exit
points can be replaced next to each other.

Enumeration loops - FOR . . . NEXT

There is one very special and very important class of conditional loop
with one exit point, theenumeration loop. An enumeration loop is one
that causes a section of program to be repeated a number of times that is
fixed before the loop begins. All versions of BASIC, including BBC
BASIC, have a pair of instructions FOR . . . NEXT that are intended to be
used to construct enumeration loops. For example:

FOR I=1 TO 10
. . .
list of BASIC statements
. . .
NEXT I

will repeat the 'list of BASIC statements' ten times. In some ways the
existence of a 'loop counter' or 'index variable' (I in the example given
above) that 'counts' the number of times that the loop has been executed is
unnecessary to the idea of an enumeration loop but in practice it turns out
to be an almost indispensable feature in the FOR loop, In particular, the
index variable is often used in array calculation, etc., within the loop but
its value should never be changed by direct assignment. If this rule is
broken and the index variable's value is altered as the loop progresses the
result is not fatal from the program's point of view, as the loop will run,
but the task of working out how many times it will repeat is very difficult.
The rule is that the number of times an enumeration loop is executed
should always be clear' from an examination of the FOR statement
without having to delve into the list of statements within the loop. This &
so implies that an IF statement or direct assignment to the index variable
should never be used to leave a FOR loop early. For example, searching a
string array for a particular value is often done using:

1000 FOR I=1 TO N
1010 IF S$=T$(I) THEN GOTO 2000
1020 NEXT I

where line 1010 terminates the FOR loop when (and if) the value in S$ is
found in T$(I). This is not only bad programming style, it will eventually
cause the program to crash. This is because each time a FOR loop is
begun an entry is created in an area of memory known as theFOR stack.
This entry is only removed when the normal exit is made from the FOR
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loop. Leaving the loop early, as in the above example, does not remove
the entry and if this is repeated the FOR stack becomes so clogged with
data on incomplete FOR loops that there is no room for any more hence
the crash. The correct way to leave a FOR loop without crashing the
program is to set the index variable to the final value:

1000 FOR 1=1 TO N
1010 IF S$=T$(I) THEN J=I:I=N
1020 NEXT I

Notice that to keep track of where the entry was found the value of I has
to be saved in J before it is set to N so terminating the loop. However, as
far as programming style is concerned there is no good way of exiting a
FOR loop early! The whole point of an enumeration loop is that it is
executed a given number of times and does not exit on any other
condition. If you find that you are always exiting FOR loops before they
are complete the chances are that you are confusing the purpose of
enumeration and conditional loops.

It has already been stated that a FOR loop has only one implicit exit
point. The remaining question is where is it placed? There are only two
practical possibilities at the end of the loop (giving an 'until' form of the
enumeration loop) and at the beginning (giving a 'while' form of the
enumeration loop). The difference in practice is only the number of times
that the FOR loop will be executed. If the exit point is at the end the loop
must be carried out at least once before the test for exit is made. On the
other hand if the exit point is at the start, the exit can occur before the loop
is even executed once. The trouble is that different versions of BASIC use
different forms of the FOR loop some use the 'until' FOR and others use
the 'while' FOR. BBC BASIC uses the 'until' version of the FOR loop and
so the loop is executed at least once to reach the test. For example:

10 FOR I=2 TO 1
20 PRINT I
30 NEXT I

will print 2 on the BBC Micro's screen but on some versions of BASIC
the loop will not be executed even once. As long as you know which type
of FOR loop you are working with there is no problem. The difficulties
arise when switching between different versions of BASIC.

Finally the FOR loop has one extra, and often dangerous, refinement
the STEP statement As the value of the index variable is often involved in
calculations the BASIC command STEP can be used to alter the amount
by which the index variable is increased each time through the loop. For
example:

10 FOR I=10 TO 1 STEP -1
20 PRINT I
30 NEXT I



24 Advanced Programming for the BBC Micro

is an enumeration loop which is carried out ten times, but the value of the
index variable decreases by 1 each time through the loop. Integer values
of STEP size are fairly easy to deal with and the meaning of the resulting
loop is usually quite clear. The trouble really begins when fractional
values are used for the STEP size. For example you might like to try to
work out the last number printed by the following FOR loop when it is run
on the BBC Micro:

10 FOR I=0 TO 1 STEP .1
20 PRINT I
30 NEXT I

The answer is not 1! Ambiguities such as this are common when the
STEP size is a fraction and are a consequence of the way fractions are
represented in binary. Even so, occasionally it has to be admitted that a
fractional STEP size is the clearest and simplest way of achieving
something.

A family tree of loops

There is no doubt that the number of loop types is large enough to be
confusing at first acquaintance. At this point in the discussion it is worth
summarising the information that has been presented concerning loops in
the form of a diagram see Fig. 2.5.

Fig. 2.5. Loops
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Constructing programs sequencing and nesting

The basic idea that lies behind structured programming is that programs
are constructed using nothing but the structuring elements that have been
introduced in this chapter. So far nothing has been said about how these
structuring elements can be put together in combination. An important
factor Up be noted when combining structuring elements is that their
pattern of flow of control should not be altered. In particular it is
important that a GOTO instruction doesn't transfer control into the body
of a structuring element. This rules out, for example, jumping into loops,
etc. It is surprising to discover just how few and simple the possibilities
are. In fact there are only two sequencing and nesting. Sequencing
corresponds to the most obvious way of putting structuring elements
together for they are simply arranged one after the other i.e. in sequence.
For example, a loop may be followed by an IF statement and then another
loop and so on. Sequencing is rather like writing each of the structuring
elements on a card and making up a program by laying the cards out in the
desired order.

The second way of combining structuring elements - nesting - is more
complicated, but very natural and familiar to all programmers. Nesting is
where one structuring element occurs as part of one of the 'lists of BASIC
statements' that have been present in each of the definitions given so far.
The most familiar example of nesting is when a loop occurs within
another loop as in:

10 FOR I=1 TO 10
20 FOR J=1 TO 10
30 PRINT I,J
40 NEXT J
50 NEXT I

where the FOR loop at lines 20 to 40 is completely contained, or nested,
within the FOR loop at lines l0 to 50, see Fig. 2.6. Notice that the phrase
'completely contained' is implied in the very idea of a structuring element.

If you were somehow only partially to include one structuring element
within another the result would be a brand new pattern of flow of control
and this would go against the very idea of using only a small and fixed
number of ways of altering the flow of control. Although loops are the
most often encountered examples of nesting, it is possible to have nested
IF statements. Indeed, the example given in the earlier section on multiple
selection used nested IFs. Nested IFs are generally difficult to understand
and should be avoided or converted to a single IF. For example the
nesting:
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Fig. 2.6. Nesting.

FOR I=1 TO 10

FOR J=1 TO 10

NEXT J

NEXT I

inner
loop

outer
loop

IF condition 1 THEN IF condition 2
THEN list of BASIC statements

is better written as:

IF condition 1 AND condition 2
THEN list of BASIC statements

However, there is one case where nested IFs are important and this is
where 'condition 2' would cause an error if it was evaluated when
'condition 1' was false.

Freedom, efficiency and structure

The account of structured programming given here is nowhere near as
restrictive as that found in most books that advocate structured
programming as a method of producing easy to understand, bug-free
programs. Hard line structured programming generally forbids the use of
GOTO and only allows the use of the until, while and FOR loops.
However, the whole point of structured programming is to produce a
simple and recognisable flow of control and, while this is an important
objective, overall program simplicity should never be sacrificed to the
application of nothing but the standard programming elements. For
example, there are some occasions when the ON . . . GOSUB statement is
so right for the job that it is better to use it than avoid it. The rules about
which structuring elements to use are only rules to the unskilled
programmer - the advanced programmer exercises judgement. Another
problem that often arises is the question of efficiency. Early programmers
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were taught that the main objective of programming was to write
programs that work fast and use little memory. These days, with hardware
being so much better and high level languages improving all the time,
efficiency is much less important. Now it is the cost and reliability of
software that matters and structured programming reduces cost and
increases reliability.



Chapter Three
Using Procedures and
Functions

The previous chapter considered the problem of keeping the flow of
control simple but even this is not enough to make a large program easy to
write. The key to the problem of writing large programs as easily as small
programs has already been partially introduced in the form of 'nesting'
structuring elements. In this chapter it is developed further into a second
component of programming method that goes naturally with structured
programming.

The small programs inside large programs

The best way to write a large program is as a number of small programs!
This seems like an obvious approach in the tradition of 'divide and
conquer' but there are a large number of interesting questions concerning
exactly how the divisions should be arrived at and then how these smaller
program should be assembled into one large bug-free program.

If you look at a finished program, no matter how it has been written,
you should be able to identify groups of statements that carry out
particular tasks. For example a program might have an initialisation and
data input section, followed by a section that performs calculations and
finally a section that prints results. As the final program will have this
sectional or 'modular' structure no matter how you go about writing it,
then it seems like a good idea to try to recognise this structure and make
use of it while constructing the program. This is the philosophy that lies
behind 'modular programming' . The benefit from breaking down the
construction of a large program into a number of smaller modules is easy
to see. Each module can be treated as if it was a program in its own right
and, of course, the module will be a smaller program than the one needed
to solve the initial problem, and smaller programs are easier to write! If
one of the modules turns out to be rather too large then the process can be
repeated and it can be divided up into a number of smaller modules and so
on. An important factor in the success of this repeated division strategy is
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that each module really can be treated as a program in its own right and in
isolation from the other modules.

The degree to which real modules can be treated in this way will be
discussed later. For the time being all that will be said is that there are
considerable advantages in implementing modules as BBC BASIC
procedures. This step of identifying modules with procedures is useful but
not essential. It would, for example, be possible to write sections of
program as subroutines to do particular tasks or even just as lists of
BASIC statements marked out by REMs, but either of these methods
would be severely under-using the facilities offered by BBC BASIC

Stepwise refinement - or starting at the top

To say that a program should be made up from modules is one thing; to
identify those modules when all you have is an idea of what the program
should do is quite another. Stepwise refinement is an excellent technique
for solving all manner of problems, not just those that demand programs
as solutions. One of the best features of stepwise refinement is that even if
you cannot solve the whole problem it is possible to make a start and
quickly identify what the real difficulties are. It also automatically takes
account of the natural modular structure of a program and uses it to
advantage.

The best way to explain stepwise refinement is via a simple example.
Consider the problem of producing a program that automatically sets and
marks questions in simple arithmetic.

The statement of the problem is easy to understand. The program is
intended to give routine practice in simple arithmetic, but unless you have
written such a program before, or are exceptionally talented, you will only
have a vague idea of what it should be like. If, as is normal, the complete
program isn't inside your head the traditional advice is to sit down with
plenty of paper and plan the program using flow charts or some other
method. This is a very wasteful way of designing a program because each
time you change your mind about how it should work you have to throw
away a lot that is good and works, along with the unsatisfactory bits.
Stepwise refinement doesn't suffer from this defect.

After very little thought it is clear that the arithmetic test program must
first construct a question, then ask it, mark it and finally repeat the whole
procedure until it is finished. If you examine this rough description
carefully you will find that it is not so rough after all. In fact, if each of the
parts of the description are interpreted as procedures, then you almost
have a program. In other words after very little thought about the problem
you can write:

10 REM arithmetic test
20 REPEAT
30 PROCset_question
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40 PROCask_question
50 PROCmark_question
60 UNTIL finished

which is perfectly good BBC BASIC apart from the fact that the PROCs
do not exist as yet and the condition 'finished' in the UNTIL statement is
not fully determined. You can even avoid the "No such FN/PROC at line
x" error messages that trying to run this program would produce by
including:

1000 DEF PROCset_question
1010 ENDPROC

2000 DEF PROCask_question
2010 ENDPROC

3000 DEF PROCmark_question
3010 ENDPROC

With these 'dummy' procedures present you can even begin the testing of
your first attempt at the program!

The rough program given above is the first stage in the stepwise
refinement process. Using it as a starting point, the second stage of
stepwise refinement is to fill in the details of the dummy procedures. In
this sense the dummy procedures introduced in the first stage are promises
to write procedures. The second stage of refinement can also apply the
same technique of using dummy procedures as promises to write the
procedures needed to complete the procedures introduced in the first
stage. So, for example, the devejopment of PROCset_question might
produce something like:

1000 DEF PROCset_question
1010 Q$=""
1020 PROCchoose_op
1030 NUMl=RND(99)
1040 NUM2=RND(99)
1050 Q$=STR$(NUM1)+O$+STR$(NUM2)
1060 PROCfind_ans
1070 ENDPROC

Where the dummy procedure PROCchoose_op returns one of '+' ,'-', '*' or
'/' in the string OS and PROCfind_ans works out the answer to the
arithmetic expression held in Q$. Notice that the two dummy procedures
are produced because at this stage we don't know how to go about
generating one of the four arithmetic operators in O$ nor how to work out
the answer to an arithmetic expression built up in Q$. These are problems
that will be solved at the next stage of refinement.



Chapter Three Using Procedures and Functions 31

This is all there is to stepwise refinement: at each stage you write as
much of the program as you can using dummy procedures to put off
solving any large task that has to be performed until the next stage. In
practice it is sometimes better to leave a task to the next stage even when
you know how to implement it at the current stage. This is the case when
the task is similar to other tasks that are being deferred to the next stage,
so that the resulting procedure 'fits into' the overall structure of the
program. For example, some programmers would have deferred the
construction of the two random numbers NUM1 and NUM2 to a
procedure at the next stage (PROCnumbers say) because this fits in with
the way a procedure PROCchoose_op is used to generate the operator part
of the expression. There are no hard and fast rules about when to defer a
task to the next level of refinement; only a feeling for the overall program
can help you. However, it is worth saying that in most cases you should
err on the side of using too many rather than too few procedures and steps.
The advice often given concerning working out simple arithmetic holds
for stepwise refinement never do at this stage what you can put off until
the next!

Stepwise refinement as nesting

In the last chapter the idea of 'nesting' one structuring element inside
another was introduced as a way of constructing programs. In many ways
stepwise refinement is a method of program construction that proceeds by
nesting one program inside another! For example if you look at the
program produced in the first step in the last section (i.e. lines I0to 60)
you can see that if you treat the procedure calls as single BASIC
instructions then this is a very simple but complete BASIC program. Its
structure is clearly one of our simple structuring elements an until loop
and therefore it is very easy to understand. However if you look at it a
little closer you will see that some of the BASIC statements are
themselves complete programs with a structure. For example, line 30, the
call to PROCset_question, is a complete program in the form of the
simplest of ail structuring element the default flow of control. In practice,
the modules that make up a program will contain a number of structuring
elements but never so many that it is difficult to see what is happening.

It is useful to think of this nesting of modules as a number of levels
present in the program. The top level is often called the 'main program'
and this calls modules or procedures in the next level down and so on. For
example the arithmetic test program could be described as:
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When you first look at a program constructed in this way all that you need
see to understand its overall working is the main program. As you look
closer and more carefully you work your way down through the levels,
understanding more and more of the detail of how the program works.
This is an exact reflection of the processes that were used to write the
program and this also explains why stepwise refinement is referred to as a
'top down' method.

In practice the separation between the levels of a program is not
always so clear. For example, a procedure in a lower level may be called
by a number of procedures in higher levels. In the case of the arithmetic
program PROCfind_ans might also be called by PROCset_question and
PROCmark_question or by any procedure that needs to know the answer
to the problem being set. It is better to try to build the levels in such a way
that procedures in each level onjy call procedures at the very next level
down but this is often impractical and existing procedures are often re-
used. Indeed, by reducing the total number of lines in a program, re-using
procedures is a simplifying action in its own right. There is nothing to stop
a procedure from calling one at a higher !eve] but this is a very dangerous
and sloppy programming practice. It not only destroys the clear nesting
structure of the program, it introduces the risk of the first procedure being
recalled at a later stage. For example, if PROCfind_ans for some reason
called PROCset_question then eventually PROCfind_ans would be called
again before the first call to it was completed! This recalling of a
procedure is a roundabout way of a procedure calling itself! In BBC
BASIC this is a perfectly permissible thing to do and it is calledrecursion.
Recursion is still a controversial subject in computer science; some
programmers like it and claim that it is a simplifying method, others just
find it confusing and difficult. Whatever your opinion of recursion it is
important that you know when you are using it, and the danger referred to
in a procedure calling a procedure at a higher level is simply that you
might produce a recursive program without noticing! (For more
information about recursion see Chapter Eleven ofThe Complete
Programmer.)

main program

set_question ask_question mark_question

choose_op fine_ans procs used by
ask_question

procs used by
mark_question

procedures called by procedures level 3

level 2

level 3

level 4

level 1

and so on
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Module interaction - local variables and parameters

One of the advantages of using separate modules to construct a program is
that each module can be treated as a program in its own right. However, as
pointed out earlier it is only possible to work on a module in isolation if it
really doesn't have any effect on any other modules. If you think about
this statement for a moment you will realise that it is not quite accurate. If
a module is going to work together with others to make up a program then
it is essential that data is passed to it and returned from it. In other words,
to produce a program the modules have to communicate. What is really
required is that modules should only interact with one another in clear and
strictly controlled ways.

As an example of how uncontrolled interaction can cause problems,
consider the traditional BASIC subroutine. Any variable used in a BASIC
subroutine is available to any other part of the entire program. This is fine
as long as each subroutine uses its own names for variables that it doesn't
want any other subroutine to use. In practice it is very difficult to keep
track of a large number of variable names and when two subroutines end
up using the same variable for different purposes the resulting bug is often
very difficult to find.

The point is that modules shouldn't interact in ways that you never
intended. Such accidental interactions are usually called the 'side effects'
of a module. Fortunately, the BBC BASIC procedure (and, as explained
later, function) has a perfect mechanism for ensuring that there are no side
effects. Any variable that is named in a LOCAL statement at the start of a
procedure will be the sole 'property' of the module. If an identically named
variable already exists before the procedure is called then its old value is
saved and the variable is re-initialised to zero. If the variable doesn't
already exist then it is created and initialised to zero. Either way the
procedure gets a nice new version of the variable that it can use without
interfering with any procedures at a higher level. When the procedure has
finished, the old values of all the local variables are restored.

Variables named in LOCAL statements are, not unreasonably, called
local variables. By contrast any variable that is not named in a LOCAL
statement is referred to as aglobal variable. Such a variable is global in
the sense that its value can be used and altered by any part of the program.
To make sure that procedures do not interact with one another all that is
necessary is that every variable which a procedure uses should be named
in a LOCAL statement. Of course, the strict application of this rule would
eliminate all types of interaction including desirable communication
between procedures.

A few minutes' thought indicates that the variables a procedure uses
fall into four categories:

(1) Variables that pass data to the module, the so-called 'input' variables.
(2) Variables that pass data from the module, the so-called 'output
variables'.
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(3) Variables that pass data into and out of the module, the so-called
'input/output variables'.
(4) Variables that are used within the module and neither pass data in or
out of the procedure, the so-called 'internal' variables.

It is clear that internal variables should all be named in LOCAL
statements as they are only of interest to the procedure that uses them.
Input variables correspond to BBC BASIC% definition of 'parameters'.
One way to think about a parameter is as a local variable that is initialised
to the value stored in another variable before the procedure is called. For
example in the procedure:

1000 DEF PROCspace(LINES)
1010 LOCAL I
1020 FOR I=1 TO LINES
1030 PRINT
1040 NEXT I
1050 ENDPROC

both I and LINES are local variables, that is changing their values within
the procedure will not change the values stored in any variables of the
same name in procedures at higher levels. However, when the procedure
is called, I will be initialised to zero but LINES will be initialised to the
value of the variable or expression used in between the brackets of the
call. For example:

PROCspace(l0)

will cause LINES to be initialised to 10 and:

PROCspace(A*l0+32)

causes LINES to be initialised to the result of A*10+32. Notice that in
BBC BASIC because parameters are local variables, they cannot be used
to pass data back to the calling program. In this sense they are 'input
parameters'. Some languages provide in addition both 'output' and 'input}
output' parameters but unfortunately these are absent from BBC BASIC.
In addition, arrays cannot be named in LOCAL statements and cannot be
passed as parameters. However, this doesn't mean that you cannot use
individual array elements, such as A( I) as values to be passed to
procedures, only that an entire array cannot be local.

All this raises the problem of how to pass data out of a procedure.
Unfortunately, there is no satisfactory answer to this problem. The only
practical way of passing values back is to use global variables with the
resulting risk of producing unwanted side effects. There is also no
alternative if you have to pass arrays in or out of a procedure arrays are
always global variables.

Putting all this together produces the following guidelines:
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(1) All simple data, real numbers, integers and strings should be passed
into a procedure by using parameters.

(2) Arrays have to be passed into and out of procedures as global
variables.

(3) Simple data has to be passed out of procedures by using global
variables.

(4) All simple variables that are not being used to pass data out of a
procedure should be named in the LOCAL statement.

This scheme is the best that can be achieved using BBC BASIC and after
using it for a while you should find that its only serious defect is the
difficulty in making plain which variablesare being used to pass data
back to the procedure that initially called it.

Functions

BBC BASIC does supply one method of passing a single value back
without using global variables the user-defined function. A function can
return a single numeric or string value without using a variable because it
can be incorporated into an arithmetic or string expression. For example,
you could write a procedure to square a number and return the result in the
global variable SQ but it is much more sensible to use a function:

1000 DEF FNsq(X)
1010 =X*X

The last line of the function can be thought of as assigning a value to the
function's name and terminating the function. An 'empty' assignment of
this sort anywhere in a function will set the value that it returns and
terminate it. This convention leads to some very odd looking lines such
as:

IF A=0 THEN 0
IF A>0 THEN =1 ELSE =-1

which are perfectly correct as part of a function definition and give rise to
a user-defined version of the supplied function SON. As an example of a
string function consider:

1000 DEF FNinsert(S$,I$,I)
1010 IF I<0 THEN =S$
1020 LEFT$(S$,l)+I$+MID$(S$,I+1)

which will insert the string I$ into the string S$ following the Ith letter.
User-defined functions can define their own local variables (using the
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LOCAL statement). They can also use global variables to return more
than one result but this is a feature that definitely should not be used. The
importance of functions is that they only return one result - a function that
uses global variables to return more than one result should be turned into a
procedure! The reason why this one-result rule is so important is the way
that functions are used within arithmetic and string expressions. For
example FNsq(X) can be used in arithmetic expressions such as:

A= FNsq(B)*3

or even:

A=SQR(FNsq(B)+FNsq(C))

and most programmers do not expect expressions, or functions for that
matter, to produce any side effects. In the same way, it is possible to
include PRINT and INPUT statements within functions but it takes a very
clever programmer to suspect an expression like:

A=FNsq(B)

of producing output or requiring input. In other words, data should only be
passed to functions by parameters and they should only pass one result
back in the standard manner. The main characteristic of a function is that
it can be used as part of an expression and as such it should never cause an
expression to do anything unpredictable.

REMs, indentations and line numbering schemes

It is often said that the use of the REM statement to explain what is
happening in a program is the most important part of making a program
understandable. While REMs and the comments they provide certainly do
add to the readability of a program they are by no means the most
important fact on A badly written program is still impossible to
understand even when the REM statements outnumber the other
statements many times over! On the other hand, a well structured modular
program is almost self-explanatory if meaningful names are used for
variables, procedures and functions. Of course, it is often the case that the
occasional REM statement helps but, as most programmers admit, no
matter how many good intentions you start olf with, REMs soon become a
chore that is forgotten during program development, The general ru]e
seems to be, if it is extra trouble then it tends not to be used! Structured
modular programming isn't extra trouble; it is part of the process of
program construction and it wen makes it easier! Of course, if you do find
that you have no choice but to use a complicated trick then it is absolutely
essential to document it within the program by using REMs, but otherwise
a well written program should be almost self-documenting.
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Another method of improving the readability of programs is to use a
line numbering scheme of the sort that has been used without comment in
all of the examples. That is the main program occupies lines 1 to 999, thus
subsequent procedures occupy line numbers in the thousands. It is
remarkably difficult to keep to a numbering scheme of this sort. As
indicated in the previous chapter, line numbers are something that BASIC
would be better without. Given that they are an evil that nothing can be
done about, then using a numbering scheme is the best that can be done.
However, the first use of RENUMBER destroys any scheme and so it
really isn't worth worrying about inventing anything elaborate!

A very useful facility for making programs easier to read is indenting.
Following LISTO 6 all FOR and UNTIL loops will be indented by two
spaces in listings. This makes it easier to spot the start and end of these
two structuring elements and is well worth using. However manual
indenting can also be applied to other loops and blank lines can be
inserted before and after procedure and function definitions either by
using empty REM statements or a line that contains nothing but a colon.

Whatever you do to improve the look and readability of your
programs, nothing can replace the reward of using a natural structuring
method combined with the use of modules.



Chapter Four
Structured Assembler

Chapters Two and Three discussed some of the ideas involved in
structured programming as applied to BBC BASIC. If you followed the
main points of the argument for the use of structured programming you
will realise that its objectives, namely to produce programs with a clear
flow of control structure, apply to any computer language including
assembler! This is not such a widely held belief as you might expect,
indeed some programmers claim that it isn't possible to write well
structured programs in a language as 'primitive' as BASIC, let alone
assembler! The question of whether modular programming and stepwise
refinement are at all useful in assembler is less controversial. Nearly every
assembly language programmer quickly learns the value of subroutines
and, in a language where each instruction achieves so little, stepwise
refinement is an ideal way of building up large programs without getting
into a position where 'the trees obscure the view of the wood'. In short, all
of the programming methods that you should apply to BBC BASIC
should also be applied to assembly language and any other computer
language that you might use.

The first part of this chapter looks in detail at the natural structuring
elements in assembler and at ways of constructing modules from
subroutines. These ideas apply to 6502 assembler on any machine, not just
the BBC Micro. To make things more specific, the second half of the
chapter examines more advanced ways of using the BBC Micro's
assembler to convert 6502 assembly language into machine code. The
BBC Micro's assembler may appear at first sight to be a very simple
assembler but, because it works in such close contact with BBC BASIC, it
can be used in ways that are jess than obvious. In particular, it is possible
to introduce better ways of defining data constants, conditional assembly
and macros without any difficulty.

The natural structure of assembler

It is very important that an assembly language program has a simple flow
of control. Each assembly language instruction performs so little work
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that it can take many instructions to complete a reasonable task and even
more to complete an entire program. Thus assembly language programs
are often large and intrinsically difficult to understand. A spaghetti
assembly language program is a nightmare worse than anything that can
be produced in BASIC but it is a sad fact that most assembly language
programs are more or less spaghetti! It is almost as if otherwise skilful and
careful programmers throw every thought of good structure away as soon
as assembly language is contemplated. The attitude seems to be that
writing a program in assembly language is difficult enough without
worrying about anything else. Of course, it is only difficult if you don't
use the familiar programming methods!

The problem in applying structured programming to assembler s;eems
to be that the natural structuring elements of IF . . . THEN . . . ELSE, etc.,
are just not present. This is not surprising as IF . . . THEN . . . ELSE is a
natural structuring element of BBC BASIC there are even some versions
of BASIC in which it is not present! Before it is possible to write
structured assembler it is necessary to identifyits natural structure. As in
the case of BASIC there are only two categories of structure selection and
looping.

Assembler selection

The fundamental commands of 6502 selection, or conditional execution,
are theconditional branches. The usual situation is that a calculation,
some test, or the simple loading or storing of a register is used to set the
condition codes in the status register. Following this a conditional branch
(for example, BCC Branch Carry Clear) can be used to divert the flow of
control depending on the setting of the condition code bits. You should be
able to see that this is very similar to the

IF condition THEN GOTO x

statement of BASIC. The 'condition' corresponds to the operations that set
the condition code bits and the 'THEN GOTO x' part corresponds to the
conditional branch instruction. The correspondence is not exact because
more than one condition code bit may be set at a time and exactly what is
being tested for also depends on the particular conditional branch that is
used. For example, the BASIC instruction:

IF A= 0 THEN GOTO x

where x is a line number, is equivalent to:

CMP #0
BEQ x

where x is a label in 6502 assembler but the instruction CMP #0 not only
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sets or clears the Z flag it a]so sets or clears the N and C flags. Thus:

CMP #0
BMI x

is equivalent to:

IF A<0 THEN GOTO x

In other words, the condition that causes the branch to be taken cannot be
determined solely from the operations that set the condition codes, it also
depends on which conditional branch is used. Thus the form of all
assembly language conditionals is:

(1) one or more operations that set the condition codes followed by:
(2) a conditional branch that branches depending on the state of one of the
condition code bits.

This still leaves the question of how the transfer of control should be
used to select which part of the program is to be executed? In assembler
the fundamental structuring element for conditional execution is the
'conditional skip'.

. . .
operations that set the condition codes
B** SKIP
. . .
list of assembly language instructions
. . .

.SKIP rest of program
. . .

where B** is a particular conditional branch that transfers control to
.SKIP when the desired condition is true. (All the conditional branch
instructions apart from BEQ and BNE are of the form BfS or BfC where
'f' is the name of the condition code bit or flag to be tested for Set or
Clear.) Notice that the 'list of assembly language instructions' is only
carried out when the condition is false, otherwise it is 'skipped'. As an
example of a conditional skip consider:

CPY #0
BEQ SKIP
DEY

.SKIP rest of program
Which will decrement the Y register only if it is not already zero. In other
words, the DEY is 'skipped' if Y is zero. You should be able to see that
this conditional skip is similar to:

IF Y=0 THEN GOTO x
Y=Y-1

x rest of program
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in BASIC where x is a line number.
The conditional skip is the fundamental structuring element for all

assembly language conditional execution. This might seem rather
surprising as in BASIC the IF. . .THEN. . .ELSE at least makes it possible
to select between two alternatives. In assembler even the choice between
two sections of program is built up from a choice to skip one of them! For
example to execute 'list I' when 'condition' is true and 'list 2' if it is false
you would use:

. . .
operations that set the condition codes
B** LIST1
. . .
list 2
. . .
JMP REST

.LIST1 . . .
list1
. . .

.REST rest of program
which should be compared to the example of how IF. . .THEN. . .ELSE
can be constructed from IF. . .THEN GOTO given in Chapter Two. A
particular example may help to clear up any difficulties. The following
assembly language:

CPY #0
BMI MINUS
DEY
JMP REST

.MINUS INY

.REST rest of program
will decrement Y if it is positive or zero, and increment it if it is negative.
Thus, it is equivalent to the BASIC:

IF Y>=0 THEN Y=Y-1 ELSE Y=Y+1

Once you have seen how the conditional skip can be used to select
between two alternatives it is easy to use it to select between any number
of alternatives. Fortunately situations that need a great many choices
happen very rarely in assembly language programming because such
problems are best dealt with using BASIC.

Assembly language loops

The subject of assembly language loops is identical to that of BASIC
loops except of course that there are no explicit FOR . . . NEXT and
REPEAT . . . UNTIL commands. All assembly language loops have to be
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made up from scratch using a jump instruction to form an infinite loop
and a conditional branch to form the exit point. For example:

LDY #0
.LOOP INY

CPY #l0
BEQ EXIT
JMP LOOP

.EXIT rest of program

is a conditional loop with its exit point at the end and so it ts the assembly
language equivalent of the until loop, Y ou may notice the slight
inefficiency in havjng the conditional branch immediately followed by the
JMP instruction and indeed the assembly language until loop is more
normally implemented as:

LDY #0
.LOOP INY

CPY #10
BNE LOOP
rest of progranm

All of the classification of loops and guidelines for using them given in
Chapter Two apply to assembly language loops. In particular try to:

(1) use only one exit point per loop,
(2) use only until and while loops,
(3) make the initial and final values of enumeration loops clear.

Modular assembly language

As well as using the natural structuring elements to put together an
assembly language program it is very important to use modular stepwise
refinement. The process of stepwise refinement is exactly the same for
assembler as it is for BASIC; at each step the program is extended by
filling in the details of dummy modules used in previous steps and
introducing new dummy modules to defer things to the next step, This is
easy once you have identified a method of constructing modules in
assembler. Unfortunately there is no convenient way of forming modules
analogous to the BBC BASIC procedure with its parameters and LOCAL
variables. Assembler has only the JSR (Jump to Subroutine) and RTS
(ReTurn from Subroutine) instructions and these are more like the BASIC
GOSUB and RETURN than PROC and ENDPROC. In fact, using
assembly language subroutines is exactly like writing modular programs
in traditional BASIC using COS UB and RETURN. All the variables and
registers in an assembly language program are global, in the sense that
they can be used by any part of the program with the danger of creating
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accidental side effects and difficult-to-find bugs. There is very little that
can be done about this problem and it is something that makes the use of
assembly language different from BBC BASIC. It is possible to keep the
6502's registers local to a particular subroutine by pushing them on the
stack at the start of the subroutine and restoring them by pulling them off
the stack at the end of the subroutine, but this is tedious and time-
consuming. Equally the problem of passing data into and out of a
subroutine is difficult to solve. There are many schemes that can be used.
Some, for example, involve pushing data that is to be passed to a
subroutine onto the stack before calling the subroutine. Similarly, data that
is to be passed out of the subroutine is pushed onto the stack to be
retrieved by the calling program. But, once again, such schemes are
tedious and time-consuming. It is conventional for small quantities of data
to be passed into and out of assembly language subroutines using the
registers. Larger quantifies of data are either passed through known and
fixed areas of memory or the address of the area of memory is passed in
the X and Y registers. Whatever method is used it is important that it is
made clear where the subroutine gets its data from, how it returns results
and which memory locations it uses. Many examples of parameter passing
in assembly language can be found in the applications programs in
subsequent chapters.

Even though there are many disadvantages to the assembly language
subroutine, it is no worse than the traditional BASIC subroutine and in
both cases modular programming is still better than attempting to write
large programs in one chunk. However, it is worth being aware of the
increased danger of accidental side effects. Whenever an assembly
language program, which was well behaved at earlier stages of stepwise
refinement, suddenly starts to act in an apparently illogical manner you
can be almost sure that the trouble stems from one subroutine altering
variables used by another.

The role of comments

At the end of Chapter Three the idea of a well structured BBC BASIC
program being almost self-documenting was introduced as a reason for
not worrying too much about including hundreds of REM statements. You
may think that a well structured assembly language program would share
this property of self-documentation, but this is not so. While the flow of
control and the subroutine nesting structure of assembler should be as
clear as a well structured BBC BASIC program, the intent of the program
isn't. BASIC is made up of almost self-explanatory statements such as
PRINT A and IF A=1 THEN PRINT "ONE" and, as long as the flow of
control is clear, it is usually not difficult to understand the program by
analysing what is happening in each statement. The situation is assembly
language is completely different as each instruction performs a very small
part of the larger task. Without knowing what the larger task is the single
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instruction often seems unconnected with anything going on in the
program. Thus in assembler it is important to include comments that
inform the reader of the overall idea of the action of each part of the
program. Notice that this doesn't mean that you have to include comments
on each instruction. Indeed, the most obvious comments in a program are
the most irritating! For example, the comments in the following program
section add nothing (except irritation):

LDA NUM1 \ load the A register with NUM1
CLC \ clear the carry flag
ADC TEST \ add TEST to the A register
and so on

Whereas the single comment \A=NUM1+TEST would have said it all!

Using the assembler

All that has been said so far applies to using 6502 assembler on any
machine and much of it applies to using any assembler! In this and
subsequent sections we look more specifically at the way that the BBC
Micro's built-in assembler can be used in some advanced ways, but first it
is worth briefly going over how it works.

To leave BBC BASIC and use the assembter all you have to do is
enclose any assembly language statements in square brackets. The rule is
that anything within square brackets will be treated as assembly language,
anything outside square brackets is pure BASIC. (Notice that this implies
that you cannot use BASIC statements within the square brackets that
enclose a ptece of assembly language, but sec later). This is a very easy
way of switching between BASIC and assembler but it is important to
understand the very different ways that BASIC and assembler are
processed. When the BASIC interpreter encounters a line of BASIC it
carries out the instruction, but when the assembler meets a line of
assembly language it doesn't carry out the instruction; it simply translates
it to machine code. Of course, to be of any use this machine code must be
carried out sooner or later but this is nothing to do with the assembler!

When the assembler translates the assembly language it has to store it
somewhere until it is needed. There are a number of places where the
machine code can be stored and the most useful is in abyte array. A byte
array is created by a special form of the DIM statement:

DIM variable maximum_index

which creates an area in memory consisting of 'maximum index' + 1 bytes
and stores the address of its first memory location in 'variable'. For
example:
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DIM CODE% 20

gives a byte array with 21 elements (i.e. element 0 to element 20) and
stores the address of the first element in the integer variable CODE%.
Notice that CODE% is a perfectly standard BASIC variable and can be
used in expressions, etc., as usual. As the address of the first element of
the array is stored in CODE% you can use the indirection operator '?' to
store and retrieve data within the array. That is:

CODE%?I=X

will store X in the Ith element of the byte array and:

X=CODE%?I

will store the Ith element of the byte array in X. Combined with the
indirection operators a byte array can be used for many things other than
just storing machine code.

The second component involved in the storage of machine code by the
assembler is one of the resident integer variables. The resident integer
variables are, unlike all other BASIC variables, present whether you use
them or not and are always stored in the same memory locations. The
resident integer variables are named @%, A% to Z% and the value stored
in P% is used by assembler as the address where the next item of machine
code will be stored. In addition to this, every time the assembler stores an
item of machine code it adds one to P% so making sure that each item of
machine code is stored in a new memory location. By setting P% to a
particular address before using the assembler you can determine where the
assembler stores the machine code that it produces. Thus, to make the
assembler store the machine code that it produces in a byte array all that
you have to do is set P% equal to the start address of the array before
entering the assembler. For example:

10 DIM CODE% 20
20 P%=CODE%
30[
40 LDA #65
50 JSR &FFE3
60 RTS
70 ]

Line 10 creates a byte array with 21 elements and places the address of the
first element in the variable CODE%. Line 20 stores this start address in
P% so that the assembler will start storing machine code in the byte array.

Lines 30 to 70 form a short assembly language program that prints the
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letter A on the screen and then returns to BASIC. However, if you run the
program you will only see a listing of the machine code program looking
something like:

1951 A9 41 LDA #65
1953 20 E3 FF JSR &FFE3
1956 60 RTS

If you recall that the assembler only converts 6502 assembly language to
machine code this isn't at all surprising. If you look at the first line of the
output then the first number, 195 I, is the address where the first item of
machine code, &A9, will be stored. The second item, &41, will
automatically be stored at 1952 and so on to 1956. To carry out the
machine code you have to use the BASIC CALL command:

CALL 'address'

This transfers control from BASIC to a machine code routine starting at
'address'. Notice that CALL must be carried out by BASIC so the standard
sequence in writing and using a machine code program is:

(1) in BASIC set up space for machine code, etc.,
(2) in assembler translate assembly language to machine code,
(3) in BASIC use CALL to transfer control to the machine code.

If you don't want to use the machine code immediately then there is
nothing to stop you from saving it on tape (using *SAVE) and then
loading it (using *LOAD) at a later date and possibly into a different
program. The only thing that you have to ensure is that the machine code
is loaded back into the same area of memory that it was originally
assembled to. This problem is taken up in Chapters Eight and Nine.

To use the machine code in the last example all you have to do is add
line

80 CALL CODE%

Notice that CODE% still holds the start address of the byte array, and
hence of the machine code, whereas P% at this point holds the address of
the memory location where the next byte of machine code would be
stored. Now running the whole program not only results in the conversion
of the assembly language to machine code but also in the execution of the
machine code.

Labels and variables

So far the subject of labels has been completely ignored. In fact the BBC
assembler has a very interesting way of handling labels. Although you
cannot use BASIC commands within the assembler you can use BASIC
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expressions! For example, instead of writing LDA #65 to load the ASCII
code for "A" into the A register, you can use LDA #ASC(" A"). In the
same way you can use an expression in the address field of an instruction.
So you could write JMP 2*3+6, which would cause a jump to address 12,
or an expression like JMP CALL%+ 10, which would cause a jump to the
address given by adding 10 to the contents of the variable CALL%. There
are many other ways in which this powerful idea can be applied and one
of the main problems is seeing which of the many ways is useful! The key
point to remember is:

You can use any valid BASIC expression, including defined variables,
anywhere that the assembler would expect data or an address as part of
an instruction.

The example 'print A' program given in the last section can now be
rewritten in a more readable form as:

10 DIM CODE%
20 P% CODE%
30 OUT%=&FFE3
40 [
50 LDA #ASC("A")
60 JSR OUT%
70 RTS
80 ]
90 CALL CODE%

Apart from the use of ASC(" A") already described, notice the use of
OUT%, defined in line 30, gives the address to which the JSR will
transfer control. In general, if you have any fixed subroutines or memory
locations within an assembly language program it is better to define
variables with the correct values and appropriate names within BASIC
and then use these variables within the program. If you follow this simple
rule your programs will be easier to understand and easier to modify.

If you are familiar with any other assemblers you will realise that the
command JSR OUT% is using a normal BASIC variable as if it was a
label. This is not unusual. After all a label is simply a variable that is used
to hold an address. What is unusual is the fact that BBC assembler labels
are also BASIC variables and this is one of the reasons that this simple
assembler is so powerful!

The fact that assembler labels and BASIC variables are one and the
same thing also applies to labels defined within an assembly language
program. Using a label preceded by a full stop causes the assembler to
store the current value of P% in it. For example, in the program:

10 DIM CODE%
20 P%=CODE%
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30 OUT%=&FFE3
40 [
50 LDA #ASC("A")
60 .LOOP% JSR OUT%
70 JMP LOOP%
80 ]
90 CALL CODE%

the variable/label LOOP% defined in line 60 is to contain the address of
the JSR OUT% instruction and this is used in line 70 to jump back to this
instruction repeatedly. (Of course, when the machine code is used by line
90 the result is that the infinite loop fills the screen with letter As.) It is
important to notice that although LOOP% was set to a particular value by
the assembler, it is still a BASIC variable and, once back inside BASIC, it
can be used just like any other variable. So you could add 85 PRINT
LOOP% to find out the address of the JSR instruction in fine 60.

Two-pass assembly

The only outstanding problem with using labels is related to the forward
jump problem described in Chapter Two. Consider for example:

l0 DIM CODE%
20 P%=CODE%
30 [
40 LDA #0
50 BEQ EXIT%,
60 LDA #0
70 .EXIT RTS
80 ]

The program itself doesn't do anything useful, it loads the A register with
zero then jumps to EXIT% if the result of the load was zero (it always is!).
However, the BBC assembler gives an error message if you run it. It is not
difficult to see the reason for this error message. When the assembler
reaches line 50 it needs to know the value of EXIT% but unfortunately
EXIT% has not been defined and will not be defined until line 70. This is
called theforward reference problem and the traditional solution is to use
a two-pass assembler. A two-pass assembler, as its name suggests, takes
two 'looks' at the program. The first time through it picks up all the
definitions of the labels and ignores any errors. The second time through it
uses the values of the labels defined in the first pass to assemble the
program correctly any errors at this stage are real!

The situation with the BBC assembler seems hopeless it's a simple
one-pass assembler. However this is where its close association with BBC
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BASIC comes to the rescue for the first but not the last time. There is an
assembler instruction called OPT which can be used to suppress error
messages and program listings in the following way:

n OPT n

0 ignore errors and don't produce a listing
1 ignore errors but produce a listing
2 report errors but don't produce a listing
3 report errors and produce a listing

(The default value of OPT is OPT 3.) The definition of OPT 0 should
enable you to understand how the two-pass method works. First the
assembler is run over the program using OPT 0 to define all the variables
used as labels. As these variables are BASIC variables they still exist and
their values are unaltered after the assembler has finished. Then the
assembler is run again using OPT 3, safe in the knowledge that all the
labels are defined. The only problem is how to run the assembler a second
time? We could write the entire assembly language program out twice but
this would soon put a stop to any serious applications! The answer is, of
course, to use a BASIC FOR loop to pass the assembler over the program
twice! This may sound uninteresting, especially if you have been using it
for some time as directed by the User Guide, but it is our first example of
using BASIC to modify the way that the assembler works. The two-pass
version of the forward reference example given above is:

10 DIM CODE%
20 FOR PASS=0 TO 3 STEP 3
30 P%=CODE%
40 [OPT PASS
50 LDA #0
60 BEQ EXIT%
70 LDA #0
80 .EXIT RTS
90 ]
100 NEXT PASS

Even this simple example exhibits one subtlety. You must be very careful
to set P% to the value stored in CODE% within the loop, otherwise the
second pass over the program will store its machine code after the
incorrect machine code produced by the first pass. Also notice the way
that the assembler must be left before trying to execute the NEXT PASS
instruction. Apart from very simple programs, this two-pass method of
using the BBC assembler is the norm and for this reason it is all too easy
to miss its implications for using BASIC with the assembler in other
ways.
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Conditional assembly

We now have all the information necessary to see how to turn the BBC
assembler into a 'conditional assembler'. An example is the best way to
explain exactly what a conditional assembler is. Suppose you had written
a communications program that worked at two different speeds. In any
given application you would only want the fast or the slow version of the
program so you could use something like:

IF FAST=1 THEN [LDA #60:] ELSE [LDA #30:]

where FAST is a normal BASIC variable that can be set elsewhere in the
program. Depending on the value of FAST either the first instruction will
be assembled into the program or the second. The only thing that you have
to be careful about is to remember to leave the assembler to execute the IF
statement and then remember to return to it afterwards. Notice that the IF
statement isn't part of the machine code that the assembler produces, it
simply affects what machine code the assembler produces.

As another example, it is often a good idea to use regular jumps to a
subroutine that prints the values stored in certain variables while you are
debugging an assembly language program. Once you have the program
working the obvious thing to do is to take out the debugging aids but this
does cause something of a problem if you then go on to find another bug!
The best solution is, of course, conditional assembly.

  10 TEST=1
. . .

150 [ LDA #&40
160 STA IRQC%
165 ]: IF TEST=1 THEN [ JSR DEBUG%:]
166 [
170 LDA AUXC%
180 ORA #&C0

. . .

This may look a little complicated but it is easy to follow. Line 165 first
returns to BASIC to carry out the IF statement which will either re-enter
the assembler to assemble JSR DEBUG% or just pass on to line 166
depending on the value in TEST. While debugging the program TEST
would be set to I, otherwise it would be set to 0.

By now you should be able to see how to use IF . . . THEN and IF . . .
THEN . . . ELSE to conditionally assemble any list of instructions into a
program and so all that is left is to decide when the facility is useful and
use it!



Chapter Four Structured Assembler 51

Macros

Now that we have seen how BASIC can be used to alter the way that the
assembler works, the principles behind a macro are easy. Consider the
fairly common problem of carrying out a shift or rotate instruction a few
times. Normally this would be done by writing the command as many
times as needed. For example, four arithmetic shift lefts would be:

100 ASL A
110 ASL A
120 ASL A
130 ASL A

Using the same idea as for the two-pass assembler we could generate four
ASL A instructions by placing a single ASL A instruction inside a FOR
loop, but this time not resetting the value of P% each time through. To
take this idea one stage further we could write a PROC with an
appropriate name and a parameter that would repeat the instruction a
given number of times. That is:

1000 DEF PROCASL(N)
1010 LOCAL I
1020 FOR I=1 TO N
1030 [ ASL A:]
1040 NEXT I
1050 ENDPROC

and in the main program the four ASL A instructions would be produced
by:

100 ]:PROCASL(4):[

which would first leave the assembler, then call the PROC and then, after
generating the required machine code, re-enter the assembler. The FROG
itself is fairly straightforward apart from the need to define I as LOCAL
just in case it is used anywhere else.

Once you have seen this idea in operation it 'takes off to produce all
sorts of useful macros. For example, you can use the parameters passed to
the PROC within BASIC to control the assembler, i.e. as in the FOR loop
or in conditional assembly, or you can use them within the assembler as
part of expressions. You could write a general addition macro along the
lines:

1000 DEF PROCADD(Nl,N2,ANS)
1010 [ CLC
1020 LDA N1
1030 ADC N2
1040 STA ANS
1050 ]
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1060 ENDPROC

To add two number stored at memory location DATA1 and DATA2 and
store the answer in DATA3 you would use:

PROCADD(DATA1,DATA2,DATA3)

which would generate the correct machine code at whatever position it
was used within the main program.

If you have a standard assembly language operation then the
advantages of turning it into a macro are as great as turning it into a
subroutine (using JSR . . . RTS) and in this sense macros are just a useful
as part of modular programming as subroutines. However, as use of the
macro generates the necessary machine code every time it is used there
are none of the inefficiencies incurred with jumping to and from a
subroutine.

Data definition

Macros can help with the very common problem of initialisation of
assembly language variables. The recommended method of doing this is
to leave the assembler and use the indirection operators to store the data
values directly into memory. For example, if you want to initialise two
variables, NUM I and NUM2, each consisting of a single byte to 50 and
100 respectively then you would use:

]
?P%=50
NUM1=P%
P%=P%+1
?P%=100
NUM2=P%
P%=P%+1
[

If you look at the way that these two variables are constructed you will be
able to see that each one involves three stages:

(1) The '?' indirection operator is used to store the value in the next free
memory location.
(2) The address in P% is stored in the variable's name for further use in
the program.
(3) The address in P% is incremented to point to the next free location,

This is a workable but not very clear method of defining data.
Fortunately it is not difficult to define three macros (using functions)

that make data definition very easy. For example the macro:

DEF FNequb(VA%)
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?P%r(VA% MOD 256)
P%=P%+1
=P%-1

will store a single byte value in the next free memory location and return
its address, The MOD 256 in the second line simply ensures that the
constant is in the range 0 to 255. Using this macro, the previous
definitions of NUM1 and NUM2 can be written:

]
NUM1=FNequb(50)
NUM2=FNequb(100)
[

which is a great improvement! (The function's name stands for EQUal to
Byte. )

In the same way the macro:

DEF FNequw(VA%)
?P%=(VA% MOD 256)
P%?1=(VA% DIV 256)
P%=P%+2
=P%-2

will store a two byte value in the next free memory location and return its
address. (The function's name stands for EQUal to Word.) The macro:

DEF FNequs(S$)
$P%=S$
P%=P%+LEN(S$)+1
=P%-LEN(S$)-1

will store all of the characters in the string SS starting at the first free
memory location and returns the address of the first character. (The
function's name stands for EQUal to String.) Notice that this macro does
not automatically append a carriage return to the string. To construct a
string complete with carriage return use:

]
HELLO=FNequs(" HELLO FOLKS")
CA=FNequb(&0D)

Some further examples of the use of these macros are given in the
assembly language program in later chapters. These macros serve the
same function as the EQUB, EQUW, and EQUS assembler commands
found in Electron BASIC and BASIC II.
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Problems with macros - OPT, BASIC and local variables

There are three complications that occur when using macros. The first is
due to the default setting of OPT being used whenever the assembler is
entered unless explicitly changed by an OPT statement. Thus, if you leave
the assembler using ']' and then enter it again with a macro using nothing
but '[', the default of OPT 3 will cause any undefined labels on the first
pass to cause an error and stop the assembly. The best solution would be
to use some method of finding out what the last setting of OPT was and
restore it when re-entering the assembler. However, this is not possible
without PEEKing system locations that might change in later versions of
BASIC. The only practical solution is always to re-enter the assembler
with [OPT PASS'.

The second problem is that there is no way of suppressing errors
caused by variables not being defined while in BASIC. For example, if a
macro uses a variable that is not defined until later as a parameter in the
assembly, the program will stop and report an undefined variable error on
the first pass. The only solution to this problem is to ensure that all the
variables used in the BASIC part of a macro are defined before the macro
is called on the first pass.

The final problem is caused by local variables being set to zero on
each pass. If a macro needs a label then the best way to ensure that no
other part of the program uses the same label is to name it in a LOCAL
statement. This causes no trouble if the label is defined on the first pass
before it is used but the usual two pass mechanism of using the first pass
to define labels that are then used in the second pass doesn't work! This is
because the value that a local variable acquires on the first pass is lost
when the LOCAL statement is encountered on the second pass! In other
words, local variables can only be used to implement backward jumps. If
you need to use a forward jump within a macro the best method is to use a
constant rather than a label in the address field of a conditional branch.
Thus BEQ 6 will jump forward six memory locations. These restrictions
make the wnting of foolproof macros a little more difficult than you might
imagine but then most useful macros are surprisingly simple.

Assembly language examples

No examples of large assembly language programs have been given in
this chapter to illustrate structured assembly language programming. This
is not an oversight, however, as Chapters Eight, Nine and Ten all include
some long assembly language programs.



Chapter Five
Structuring Data

In Chapter Two the idea that a program is made up of two parts data and
instructions concerning what to do with the data was introduced. Until this
chapter all of the emphasis has been placed on the instruction part of
program, with the assumption that the data type needed would be obvious
or didn't really matter. This is very unrealistic in that how to represent
something as data inside a program is not only crucial to the simplicity of
the program, it is usually very difficult. The trouble is that while there are
good ways of organising the construction of a program i.e. structured
programming and stepwise refinement there is no really effective theory
or method of selecting and creating data types.

The main difference between the instruction and data parts of program
construction is that most of the decisions about the data have to be made
before the program is written. Stepwise refinement simplifies program
construction for the very reason that it puts off the making of important
implementation decisions until they are really essential. In this way
progress can be made without having to have all of the details and
principles of the program determined beforehand. In the case of data,
there is no equivalent stepwise approach, you have to consider what it is
you are trying to do and identify what should be represented by data and
how it should be implemented. For example, if you want a program that
will act as a computerised telephone directory what should be represented
by data is obvious: names and telephone numbers. But the way to
implement this representation is not quite as clear as you might think.
Most BASIC programmers would immediately choose a string array for
'name' and a numeric array for 'telephone number'. but as will be
explained later the process of adding a new name and number is greatly
simplified if a more complex type of data, alinked list, is used. This is an
example of the general principle that the more suitable the data
representation is, the simpler the resulting program.

When it comes to data, the only real advantage that an advanced
programmer has over a beginner is having more possibilities to choose
from. If you only know about arrays you can't even consider linked lists as
a method of implementing a telephone directory! You may think that even
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if you know about linked lists there would be no point in considering them
because the BBC Micro doesn't support anything more complex than
arrays. This is quite true but it misses the point that the BBC Micro has a
good range of indirection operators that can be used to construct almost
any type of data easily and efficiently. This chapter serves two purposes;
firstly to introduce some of the more advanced data types and secondly to
show how they can be implemented on the BBC Micro. The more difficult
task of indicating how to go about selecting a data type is treated by way
of examples in the later chapters of this book!

Simple data and structured data

There is one similarity between program and data construction they are
both 'hierarchical'. When stepwise refinement is used a program can be
seen as being made up of smaller programs or modules, which in turn are
also made up of other, smaller modules and so on. In the same way
complex forms of data are made up from smaller, simpler forms of data.
For example, a numeric array is 'built up' from simple numeric variables,
The method used to organise the simple numeric variables into an array is
an example of a 'data structuring' method. In other words, taking a
collection of simple numeric variables and 'putting them together' so that
any one of them can be specified using a name of the form A(I) (or
whatever the array and index are called) is a data structuring method.

Once you have identified a data structuring method there is nothing to
stop you from appjying it to other simple data types. Thus applying array
structuring to simple strings gives the familiar string array. The string
array is so well known that it seems unnecessary to describe it in such a
sophisticated way, but as will be explained later even the humble BASIC
string is quite a complicated data type!

Not only can a data structuring method be applied to simple data, it can
also be appiied to data that has already been organised in some way. For
example, applying the array structuring method to an existing array gives
an array of arrays better known as a two-dimensional array! That is, a
two-dimensional array can be thought of as a one-dimensional array, each
element of which is itself a one-dimensional array. This corresponds
exactly to the usual way of thinking of a one-dimensional array as a 'row'
of simple numeric variables and a two-dimensional array as a table
consisting of 'rows' and 'columns'. If this sounds like a very complicated
way of describing something that is simple, it is because BASIC doesn't
really provide the range of data types and structuring methods that would
make an example credible! What is important at the moment is that the
idea of organising simple data types to produce new data types is clear.

What are the simplest forms of data that can be organised to make new
types of data? It is convenient to distinguish two types of elemental data
static and dynamic data.

The difference between the two is simply that an element of static data



Chapter Five Structuring Data 57

is stored in a fixed amount of memory, whereas the amount required to
store dynamic data can change while the program is running. For
example, a simple numeric variable is an item of static data but a string is
an item of dynamic data. Static data types are much easier to implement
than dynamic types and, apart from strings, they are better known to
BASIC programmers. In fact, static data types are so simple that there are
broadly only two types, scalars and reals.

Scalars - integer, character and Boolean data
Scalars form the largest and most useful group of data types. Essentially a
scalar is a whole number or an integer but often its real nature is well
hidden. For example, a single ASCII character is a scalar. To see this all
you have to do is recall that each character in the ASCII set is represented
by a code, i.e. an integer given by ASC("c") where c is the character. In a
sense a scalar is any sort of data that can be represented by a range of
integers. For example, the days of the week, Monday to Sunday, can be
represented by the integers 1 to 7, or 0 to 6, or l0 to 17, etc. What is most
important to a scalar type is not so much which particular integers are
used but the range of integers. Indeed some computer languages, notably
Pascal, allow the definition of scalar types that effectively hide the fact
that integers are used in the representation. For example, in Pascal you can
define a type of variable that can be used to store one of the days of the
week and then write statements such as

DAY:=sunday 
FOR DAY:=monday TO friday

You can achieve the same effect in BBC BASIC by explicitly using
integers to represent the days of the week. That is:

10 MONDAY=1:TUESDAY=2:WEDNESDAY=3:THURSDAY=4
20 FRIDAY=5:SATURDAY=6:SUNDAY=7
30 DAY=SUNDAY
40 FOR DAY=MONDAY TO FRIDAY

This use of integers to construct what are effectively new types of data is
second nature to most BASIC programmers but it helps to see that it
forms part of a larger pattern. The only scalar types that BBC BASIC
provides are the integers themselves, characters and the Boolean values
TR UE and FALSE.

Integers can be stored either in special integer variables (distinguished
by having names ending in %) or in ordinary real variables. However,
there are considerable advantages in using integer variables whenever you
are only using integer values. The two advantages most often quoted are
that integer arithmetic is fast, and integer variables occupy less memory.
While these are indeed advantages, the biggest reason for using integer
variables is that they clearly show when integer values are the only ones
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that are logically possible. If for some reason you my to store a real value
in an integer variable the program will, quite justifiably, crash! If you had
used a real variable to store the integer values then this bug would go
undetected.

Character data can only be stored directly in strings or, after
conversion to an integer using the ASC function, in numeric arrays. The
conversion from integers back to characters is achieved using the familiar
CHR$ function. The on]y other way that ASCII characters reveal that they
are represented by integers is by their order relations. The order of the
ASCII characters is produced by the underlying order of the codes that are
used to represent them. In other words "A"<"B" is true only because
ASC("A") <ASC("B"). This is simple enough to understand but often
causes problems when a mixture of upper- and lower-case characters are
being sorted into order. The trouble is that all of the upper-case letters
come before the lower-case letters in the order and this results in all the
words that begin with upper-case letters coming before all the words
beginning with lower-case letters.

The Boolean data type is particularly restrictive as it consists of the
two values TRUE and FALSE. In nearly all versions of BASIC, Boolean
data is stored directly in either integer or real variables. (This should be
contrasted with the approach adopted by other languages of creating
special Boolean variables only capable of storing the values TR UE and
FALSE.) BBC BASIC uses the value -1 to represent TRUE and 0 to
represent F ALSE. Y on can easily verify this fact by trying:

PRINT TRUE,FALSE

This assignment of integers to TRUE and FALSE is by no means standard
and you should avoid writing programs that make use of it in any way.
For example, in BBC BASIC it is true that TRUE<FALSE but in other
versions of BASIC it may be false! Boolean variables are considered in
more detail in Chapter Twelve.

Real data
Perhaps the most confusing thing about real constants and real variables is
the use of the word 'real'. In mathematics the term 'real number' has an
exact technical meaning but it has been taken over by computer scientists
to mean any sort of number that has a fractional part. A real variable can
be used to store numbers with fractional parts. The only problem is that an
integer like 3 can also be stored in a real variable and this confuses the use
of real and integer variables. Indeed early versions of BASIC only
provided real variables, taking the attitude that integer variables were an
unnecessary and confusing luxury.

In most cases it doesn't really matter whether you use real or integer
variables. However it is important to be aware of the fact that real
constants are not always stored accurately. Real variables in BBC BASIC
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numbers with an incredible range (2*10^38 to 2*l0^-38). No matter how
large or how small a number becomes, only nine digits are actually stored
the rest are made up with zeros! So the number 1234567891234 would be
stored as 1234567890000 i.e. smaller by 1234. This may seem like a large
inaccuracy but in fact it is only a matter of around .0000001%! In other
words, real variables may store numbers with large absolute errors but the
percentage error is generally small enough to ignore. However, there are
occasions when these small percentage errors cause large absolute errors
in a final result. For example, adding very small numbers to very large
numbers often gives the original large number as the result. Try:

10 A=12345678912
20 A=A+1
30 PRINT A
40 GOTO 20

and you will see that the value of A never changes! In other words in real
arithmetic it is quite possible for A=A+C to be true without implying that
C is zero! Other important sources of error are subtracting large numbers
that are close in value and dividing by small values. The whole subject of
accuracy and error in computation is difficult and beyond the scope of this
book but it is important to be aware that some odd things can happen
when using real variables.

Structuring methods - arrays and records

Now that the two types of static variable scalars and reals have been
described it is worth introducing the two best known ways of organising
dataarrays andrecords. Arrays are so familiar to the BASIC programmer
that it is hardly worth spending much time on them. BBC BASIC provides
three types of array real arrays, integer arrays and string arrays. In the next
section a method of constructing arrays for any sort of data type using the
indirection operators is described. An array is characterised by being a
collection of identical types of data called the elements of the array under
a single name. Some computer languages allow the use of the array name
on its own to signify that all of the elements are to be used. For example,
if A is an array then PRINT A would mean print all of the elements.
However BASIC in genera] and BBC BASIC in particular only allow
single elements of the arrays to be used. Any particular element is
signified by the use of an index in the usual way.

The main difference between an array and a record is that the elements
of a record do not have to be all of the same type. For example, to store
someone's name and telephone number you would use a string for the
name and a numeric variable for the telephone number. While these two
data types form a single logical unit of data in a program that manipulates
telephone entries in BASIC there is no way that they can be gathered
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together under a single name. In many other computer languages they
could be turned into a 'record' called ENTRY (or whatever). This is
similar to the way the elements of an array are collected together under a
single name but instead of using an index variable the individual elements
called-fields of a record are accessed by having additional subnames. In
the case of the telephone directory entry for example, the field that stores
the name might be called NAME and the field that stores the number
might be called TEL-N U M. To make clear which field in which record
you were referring to, most languages require the use of all the names that
a field has. So to store a name in the record ENTR Y you would use:

ENTRY.NAME="Fred"

and so on. This should be compared to the way an element of an array is
specified by giving both the array name and an index. The array name
corresponds to the record name and the index corresponds to the field
mame.

A field within a record is not restricted to being a simple data type, it
can be an array or another record. For example, if you wanted to store a
date you might define a record called DA TE with three fields, DA Y,
MONTH and YEAR, which might be incorporated as a field within ENTR
Y. Now to save a date along with the name and telephone number you
would write:

ENTRY.DATE.YEAR=84
ENTRY.DATE.MONTH=4
ENTRY.DATE.MONTH=1

and this should be compared to the use of two index variables in a two-
dimensional array.

Arrays and records are the two main data structuring methods found in
other computer languages. The fact that BASIC includes arrays and not
records is a reflection of the fact that while it is possible to do without
records it is very difficult to do without arrays (but this is a debatable
point!). Records are used to form tape and disk files of information that
are the computer equivalents of traditional paper-filled filing cabinets:- Y
ou might think that the use of arrays is equally obvious, but in fact they
are often under-used!

The use of arrays - look-up tables

The most obvious use is for storing a list of data that is going to be
processed. In this role arrays are similar to the mathematical 'objects'
vectors and matrices. Indeed much of the purely numerical work that
computers perform involves the use of one- and two-dimensional arrays as
vectors and matrices respectively. However this is not the only use for
arrays within computer science. Arrays are always introduced by



Chapter Five Structuring Data 61

examples such as finding the mean of a list of numbers or reading in a list
of numbers and printing them out in reverse order. This is understandable,
but because of it many programmers never see an example of how to use
an array as a look-up tabble.

Look-up tables are an excellent example of how the number of actions
that a program has to perform can be reduced by using a more complex
data structure. For example, suppose you need to use the SIN of a
particular set of angles repeatedly; the most obvious thing to do is to work
out the result each time it is needed but this often produces a very slow
program! An alternative method is to work out the values that you need
just once and then store them in an array for later use. In other words, use
an array as a look-up table. In the case of simple functions such as SIN
and COS there are always two ways of obtaining results by direct
calculation or by using a look-up table. However there are plenty of
'functions' that cannot be summarised by a simple formula and in these
cases the only choice is to use a look-up table. For example, there is no
way that you can calculate the time of departure of the third flight to a
particular destination but you can use a look-up table.

The use of look-up tables can become very complicated indeed, for a
good example see Chapter Eleven. There are many occasions when a two-
dimensional look-up table is necessary. For example, you could use a two-
dimensional look-up table to hold the distance between pairs of cities. The
biggest problem encountered with using look-up tables is the amount of
memory that they take and the need to initialise them with the correct
values. Sometimes you can take advantage of a pattern in the data to
reduce the size of the table but this depends very much on the nature of
the problem. For an example of how regularities in the data can be used to
reduce a two-dimensional table to one dimension see Chapter Eleven.

Constructing new data types

The BBC Micro provides all the programming facilities necessary to
construct new data types in thebyte array and the three indirection
operators '?', '!' and '$'. Although it is possible to construct new data types
it is not something to be taken on lightly. Use of the indirection operators
can easily produce programs that are very difficult to understand.

The byte array has already been introduced in Chapter Four. The
statement:

DIM variable_name size

will create a byte array of 'size'+1 bytes and store its starting address in
'variable'. For example:

DIM N% 10
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will create a byte array of 11 bytes and store the address of the first byte in
N%. Although origignally introduced as a way of reserving space for the
storage of machine code programs you can think of byte arrays as a way
of reserving memory locations for any purpose, including the storage of
data. Notice that while the memory location of a byte array will not
change once created there is no guarantee that it will be created at the
same location each time the program is run.

The action of the indirection operators is easy enough to understand.
The byte indirection operator '?' performs the same functions as PEEK and
POKE in other versions of BASIC. That is:

?address=value

stores 'value', an integer between 0 and 255, in the memory location at
'address' and:

?address

returns the contents of the memory location at 'address'. Similarly, the
word indirection operator '!' can be used to store and retrieve four bytes of
data in the format used to hold data in an integer variable. Thus any value
that could be stored in an integer variable can be stored in four memory
locations using '!'. The final string, indirection operator '$', will store and
retrieve up to 256 characters starting at the address specified. When
saving characters a carriage return is added to the end of the string and
when retrieving characters a carriage return is used to signal the end of the
string. For examples of the elementary use of the indirection operators see
theUser Guide, Section 39. Notice that when the indirection operators are
written in front of a value that forms a valid address they behave just like
variables. That is, an expression like ?address will return a value if used
on the right-hand side of an equals sign and will store a value if used on
the left. The expression:

A=123

will store 123 directly in the variable A but

?A=123

will store ]23 in the memory location whose address is stored in A, i.e.
where the value is stored in determined 'indirectly' by A. Hence the use of
the word 'indirection' as applied to the indirection operators. On a slightly
more advanced level it is worth pointing out that each of the three
operators can be used to store the results of expressions of the correct
type. For example, you can use statements like:

?A=I*2
!A=I+C

and
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$A=A$+CHR$(7)

If you try to store a value larger than 255 using the byte indirection
operator it will be reduced to the range 0 to 255 using the MOD function.
That is, if x is greater than 255

?A=x

has the same effect as

?A=x MOD 256

As already mentioned, the indirection operator stores and retrieves data in
the same format as used for integer variables. Thus the numeric range that
can be handled is:

-2,147,483,648 to +2,147,483,647

The second advanced feature of the indirection operators '?' and '!' is the
way that an 'offset' can be specified. For example, the command

A?F=D

is equivalent to

?(A+F)=D

The way that the indirection operators work is straightforward enough.
However, it is not so easy to see how to use them for anything other than
single values. Perhaps the simplest data type to implement directly is the
one-dimensional array, Although BBC BASIC provides integer and real
arrays there are occasions when it would be useful to use one-dimensional
arrays that use fewer bytes per element. For example, if you know that the
values that you want to store in an array lie in the range 0 to 255 then
theoretically you can get away with one byte per element, but even using
an integer array takes four bytes per element. However, using a byte array
and the byte indirection operator you can construct your own array that
uses only one byte per element. If you need an array with N elements then
use:

10 DIM ARRAY N-1

To store a value in the Ith element use:

ARRAY?I=value

and to retrieve the contents of the I th element use:

variable=ARRAY?I

Similarly, if you need an array that uses two bytes per element i.e. a
numeric range of 0 to 65535, then use:
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10 DIM ARRAY 2*N-1

to reserve enough memory,

ARRAY?I*2=value MOD 256
ARRAY?(I*2+1)=value DIV 256

to store a value and

variable=ARRAY?(I*2)+256*ARRAY?(I*2+1)

to retrieve a value from the Ith element.
Two-dimensional arrays can be implemented in the same way. The

only complication is finding any given element. For example, if the array
uses one byte per element then the space needed by an N by M array is:

l0 ARRAY N*M-1

and the address of the I,J element is:

ARRAY+N*J+I

Notice that each of these array definitions has two parts; the
reservation of the correct amount of memory as a byte array, and a
function that gives the location of any particular element This scheme can
even be extended to user-defined records. For example, consider the
telephone directory record given earlier. If the name field is restricted to a
maximum of 20 characters and the telephone number is stored as an
integer then a record can be defined as:

10 DIM ENTRY 23
20 NAME=0
30 NUMBER=20

where NAME and NUMBER are offsets that define the start of each field
from the first location allocated to the record. Thus:

40 $(ENTRY+NAME)="fred"

will store a string in the name field and:

50 ENTRY!NUMBER=12345

will store an integer in the number field. Notice that the form of a field
specification when using '?' and '!' is particularly neat in that the record
name can be written next to the field name using the indirection operator
as a separator.

Once implemented it is possible to manipulate the elements of the
user-defined arrays and records just as if they were standard variables.
The only real restriction is the lack of an indirection operator that will
store a real variable. This can be overcome in a number of ways. For
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example you could convert the real value to a string of digits using STR$
and then store it using '$'. In general, user-defined data structures are more
difficult to work with than the standard BASIC arrays. However there is
one respect in which they are better than standard arrays. Although you
cannot pass an array to a procedure as a parameter there is nothing to stop
you from passing the address of the start of the array! For example, you
could write a procedure that would add together elements I to N of an
integer array and store the result in element zero:

1000 DEF PROCsum(NAME%,N)
1010 LOCAL I,SUM
1020 SUM=0
1030 FOR I=1 TO N
1040 SUM=SUM+NAME%!(I*4)
1050 NEXT I
1060 NAME%!0=SUM
1070 ENDPROC

where NAME% contains the address of the start of the byte array being
used. Notice that this procedure can total any user-defined integer array.
For example:

10 DIM ARRAY% 400
20 PROCsum(ARRAY%,100)
30 PRINT ARRAY%!0

will total ARRAY%. This is such a useful facility that it is worth
exploring ways of extending it to the standard BASIC arrays. 

BASIC arrays and indirection

All BASIC arrays are stored in a very simple format composed of two
parts; a number of memory locations that hold part of the name and other
information about the size of the array, and a data section that actually
stores the array elements. If the start address of the array can be found
then there is nothing to stop us from using it with the indirection operators
to manipulate the contents of the data section of the array directly. In
particular, knowing the address of the start of an array makes it possible to
write procedures that will perform an operation on any array (as in the
case of PROCsum in the previous section).

The most obvious way of finding the address of the start of an array (or
any variable for that matter) is to write a function that searches the area of
memory where the variables are stored. However this is not an easy
function to write and there is a much simpler method that works just as
well. In BBC BASIC the memory needed to store arrays and simple
variables is allocated only when they are actually encountered during the
running of a program. This means that arrays are stored in the order that
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they are defined by DIM statements and as long as no other variables are
used in between such definitions they will occupy adjacent areas of
memory. Thus the statement:

DIM name 0,name(n)

will create two arrays next to each other in memory. The first is a byte
array consisting or a single memory location and the second is a standard
array consisting of n+1 elements. As the two arrays are created next to
each other you might expect the variable 'name' to contain the address of
the start of the standard array minus one. However, for some reason BBC
BASIC allocates three memory locations to the byte array even though
you only requested one, so 'name' holds the address of the start of the
standard array minus three. For example:

10 DIM ARRAY% 0,ARRAY%(100)

creates an integer array of l01 elements (i.e. ARRAY%(0) to
ARRAY%(100)) and a simple integer variable that contains three less
than the address of the start of the array. The only complication is that it is
not good enough simply to add three to ARRA Y%, to give the start of the
array because the start of the array is not the start of the area where the
data is stored. The format used to store variables is extensively described
in The BBC Micro: An Expert Guide but all that you need to know in this
context is that the end of array's name is marked by a zero and the next
memory location holds a constant that indicates the start of the data area.
Therefore to alter the address stored in ARRA Yg$ so that it 'points' to the
data area u be:

2000 DEF FNcorrect(START%)
20l0 START%=START%+2
2020 REPEAT
2030 START%=START%+1
2040 UNTIL ?START%=0
2050 =START%+START%?1

as in

ARRAY%=FNcorrect(ARRAY%)

Once the address has been corrected to point to the start of the data area of
the array it can be treated exactly like the user-defined arrays given
earlier. That is, you can use PROCsum to add up all the elements of any
integer array. For example, try:

10 DIM ARRAY% 0,ARRAY%(100)
20 ARRAY%= FNcorrect(ARRAY%)
30 FOR I=1 TO l0
40 ARRAY%(I)=1
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50 NEXT I
60 PROCsum(ARRAY%,100)
70 PRINT ARRAY%(0)
80 END

where PROCsum and FN correct have to be appended.

Dynamic variables - strings and pointers

All of the variables and data structures that we have examined so far have
been static, in the sense that the amount of memory that is needed to store
their values doesn't change while a program is running. By contrast
dynamic variables do change their size as a program runs. To a BASIC
programmer the most familiar example of a dynamic variable is the
humble string. Indeed most BASIC programmers use string variables
without a second thought but strings, like all dynamic variables, are very
difficult to implement efficiently. So much so that many other
programming languages, Pascal for example, do not provide strings as a
data type. What they do provide as an alternative is thecharacter array. A
character array can be thought of as a fixed length string, but it is more
directly related to a one-dimensional array where each element can be
used to store a single character. BBC BASIC doesn't have character arrays
but it is easy to see how they could be created using byte arrays and the
string indirection operator.

The details of how the BBC Micro tackles the difficult problem of
implementing strings are also given inThe BBC Micro: An Expert Guide
but essentially what happens is that a certain amount of memory is
allocated to a string variable when it is created. If the number of
characters that it has to store exceeds this initial memory allocation a
brand new and larger amount of memory is allocated to it. This process
can be repeated any number of times during the course of a program, each
time leaving behind a redundant area of memory that was once allocated
to the string variable. In this way it is possible to use up all of the BBC
Micro's memory by storing old copies of string data. If this is a particular
problem within a program the solution is very simple. All you have to do
is initialise all the strings to hold the largest number of characters that the
program will ever want to store. In this way the initial amount of memory
allocated to string variables will be large enough never to need increasing.

Although strings are probably the most useful form of dynamic
variables, they are so well known to the BASIC programmer that it is
more sensible to spend time explaining how other forms of dynamic
variables work and can be implemented in BBC BASIC. After the string
the most important dynamic data types are:

the stack
the queue
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the linked list and
the tree

Each of these four, along with other types of dynamic variable, are closely
related to the use ofpointers. A pointer is simply a variable that is used to
store a memory address. In this sense a pointer really does 'point' at a
memory location. There is nothing stopping us from storing an address in
any numeric variable and indeed this has been done many times to access
the contents of a memory location in combination with the indirection
operators. That is, in:

?A

the variable 'A' is being used as a pointer to a memory location. The art of
implementing and using dynamic data types on the BBC Micro is in
setting up and manipulating pointers and this is best explained by
examples of each of the dynamic data types listed.

The stack
The stack, or more accurately, the Last In First Out (LIFO) stack is well
known to assembly language programmers. In action it mimics the
operation of a stack of coins or plates. If you make a stack of plates you
can identify two operations, adding to the stack by placing a plate on top
and, conversely, removing a plate from the top of the stack. If you think
about it for a moment you will see that it is a characteristic of such a stack
that the order that the plates are removed is the opposite of the order that
they were added for the simple reason that the plates added to the stack
first will be further toward the bottom of the stack! In computing a stack
behaves in the same way. Storing data on the stack is known as 'pushing
data onto the stack', a PUSH operation, and retrieving data is known as
'pulling data off the stack', a PULL operation. The best way to illustrate
the operation of a stack is by giving an example.

There are two components to the implementation of a LIFO stack, an
area of memory that is used to store the data (often referred to as the stack
itself) and a pointer that marks the top of the stack. The most obvious way
to reserve some memory for a stack is once again the byte array. The
pointer can be implemented as a standard BASIC variable used in
conjunction with the appropriate indirection operator. When the stack is
initially created the pointer variable or 'stack pointer' is set to point to the
first free memory location. A PUSH operation stores data in this free
memory location and then adjusts the stack pointer so that it points to the
next free memory location. A PULL operation first adjusts the stack
pointer so that it points at the data item on the top of the stack and then
retrieves it, so freeing the location.

The following program uses an integer stack to reverse a list of ten
integers:
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 10 DIM STACK% 400
 20 POINTER%=STACK%
 30 FOR I=1 TO l0 
 40 INPUT A
 50 !POINTER%=A
 60 POINTER%=POlNTER%+4
 70 NEXT I
 80 FOR I=1 TO 10
 90 POINTER%=POINTER%-4
100 PRINT !POINTER%
110 NEXT I

Line 10 reserves sufficient memory for a stack of up to 100 integer items
(you will remember that an integer takes four bytes to store) and line 20
initialises the stack pointer POINTER% to the start of the area. The FOR
loop at lines 30 to 70 reads in l0 integers and pushes them onto the stack
(fines 50 and 60). The second FOR loop at fines 80 to I l0 pulls and prints
each item off the stack in turn (lines 90 and 100).

You can create stacks using other data types as raw material. For
example, you can use a standard BBC BASIC array indexed by a variable
playing the role of the stack pointer. Stacks are used whenever the order
of incoming data has to be reversed or just as a way of temporarily storing
data until it can be dealt with.

The queue
Once you have seen how a stack works the queue is an obvious next step.
Indeed a queue is often referred to as a First In First Out or FIFO stack.
The action of a queue is exactly what you would expect from a
consideration of the way people queue. The first person to join the queue
is (usually!) the first person to be served. So it is with the data queue, the
first item to join the queue is also the first item to leave it. Notice that the
two fundamental queue operations have already been identified JOIN adds
a data item to the queue and LEAVE removes an item.

The implementation of a queue involves an area of memory and a pair
of pointers. One of the pointers marks the front of the queue and the other
marks the end. Obviously data items are taken out of the queue using the
FRONT pointer and added using the END pointer. That is, assuming each
item is a single byte,

JOIN is
?END=value
END=END+1

and

LEAVE is
variable=?FRONT
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FRONT FRONT+1

Initially the FRONT and END pointers point to the same memory location
and as data is added to the queue the end moves up in memory and the
front stays put. Similarly, as data is removed from the queue, the front
moves up and the end stays put. The only trouble with this
implementation of the two operations is that the front and end of the
queue move ever upward! The solution is to make the queue circular by
setting any pointer that reaches the top of the allocated memory back to
the start of the area. For example, the following program reads in l0
numbers and adds (joins) them to a queue and then prints them out in the
order that they arrived.

  10 DIM QUEUE% 100
  20 FRONT%=QUEUE%
  30 REAR%=QUEUE%
  40 FOR I=1 TO l0
  50 INPUT A
  60 ?REAR%=A
  70 REAR%=REAR%+1
  80 IF REAR%>QUEUE%+100 THEN REAR%=QUEUE%
  90 NEXT I
100 FOR I=1 TO l0
110 PRINT ?FRONT%
120 FRONT%=FRONT%+1
130 IF FRONT%>QUEUE%+100 THEN FRONT%=QUEUE%
140 NEXT I

You should be able to recognise the JOIN and LEAVE operations in lines
60 to 80 and 1l0 to 130. Also notice that, in contrast to the stack in the last
section, this queue stores single byte items.

Queues are used whenever data is generated too fast to be dealt with
immediately but nevertheless needs to be processed in the order that they
were generated. The BBC Micro uses many queues in its normal
operations. For example, the sound queue, the printer buffer, the keyboard
buffer, etc.

The linked list
The queue and the stack are characterised by restrictions on where data
can be added or removed. In the case of the stack, data can only be added
to or removed from the top and in the case of the queue, data can only be
added at the end and removed from the front. The linked list is a more
versatile data type in that it is relatively easy to add and remove data from
any position. In this sense the linked list is more like the everyday idea of
a list of items made on paper.
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The fundamental principle that lies behind a linked list is that each item in
the list includes a pointer to the next item in the list. This, coupled with a
pointer to the start of the list and some way of detecting the end of the list,
is ail that there is to implementing a linked list. For example, a list of
names can be built up using a byte array and the string and word
indirection operators. If each item in the list is defined to consist of a
name with a maximum of 20 characters and a single integer pointer to the
next item, it is easy to work out that each item needs 24 bytes of storage.
The following program will build up a list of up to l0 names:

  10 DIM NAME_LIST 24*10
  20 START%=NAME_LIST
  30 CURRENT% NAME_LIST
  40 CURRENT%!20=0
  50 INPUT N$
  60 IF LEN(N$)>19 THEN GOTO 50
  70 $CURRENT%=N$
  80 CURRENT%!20=CURRENT%+24
  90 CURRENT%=CURRENT%+24
100 CURRENT%!20=0
1l0 GOTO 50

The format of the list is as shown in Fig. 5.1. Notice that each pointer
points to the start of the name and the last item doesn't store a name and
its pointer is set to 0.

Fig. 5.1 An example of a linked list.

START% JOE

20 bytes 4 bytes 20 bytes 4 bytes 20 bytes 4 bytes dummy record

CURRENT%

MIKE SAM " " 0

Notice that in the above example the pointer CURRENT% is used to
add items to the end of the list but new items can in fact be added
anywhere. For example, if you wanted to insert an item to follow the first,
i.e. to become the second item, all you would have to do is change the
pointers as shown in Fig. 5.2. The important idea is that the order that a
linked list is read is determined by the pointers, not by where the item is
stored.

Fig. 5.2. Adding "RAY" to the linked list in Fig. 5.1. Notice that reading the
list by 'following' the pointers gives the names in correct alphabetical order

START% MIKEJOE RAYSAM 0" "

The items that make up a linked list can be any data type as long as it
includes a pointer to the next item. For example, the telephone directory
given earlier in the chapter is best implemented as a linked fist with each
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item as a record that includes a pointer to the next record. Using a linked
list for a telephone directory has the advantage that when new items are
added they can be inserted into the list at the correct position to preserve
alphabetic order. (To do this the list is read, by following the pointers,
until the first item that the new name should precede is found, then the
new item is inserted by manipulating the pointers (as shown in Fig. 5.2).)
Without using a linked list each new item would need a complete sort of
the list to make sure that the result was in the correct order.

There are so many uses for linked lists that it is impossible to
summarise them. However, it is often the case that ignorance of the
existence of the linked list forces a programmer to use an array instead.
The result is always a program that is much more complicated and
involves a great deal of data moving. A linked list should be used
whenever a list of data needs to be repeatedly rearranged.

Trees
The final dynamic data type is the most complicated of all the tree but if
you have followed the use of pointers to form a linked list it should be
easy to understand. Each data item in a tree is associated with two pointers
the left pointer and the right pointer. The best way to think about this is as
shown in Fig. 5.3 which clearly reveals why this data type is called a tree!

Fig. 5.3. A tree.

Item 1

Left Right

pointer pointer

Item 2 Item 3

Left Right Left Right
pointer pointer pointer pointer

Item 4 Item 5 Item 6 Item 7

and so on

To implement a tree in BBC BASIC all that you have to do is reserve
some memory using a byte array and use pointer and indirection operators
in exactly the same way as for the linked list. (Apart from the fact that
there are two pointers per item and an increased choice of where to add an
item, that is!)

Trees are used to represent any sort of data that has a hierarchical
structure like a famjly tree, or the command structure of an organisation.
Most of their uses are found in advanced computer topics such as artificial



Chapter Five Structuring Data 73

intelligence and are thus outside the scope of this book. (If you would like
to know more about this application of trees, seeArtificial Intelligence in
BASIC by Mike James published by Newnes, 1984.) However, you
should be able to see how the tree is a simple use of pointers to construct
complicated data structures. In fact the type of tree that has been described
is more correctly described as a binary tree, because each item has two
pointers. It is quite possible to construct trees that contain more pointers
per item and linked lists that contain pointers to both the next item and the
previous item (sometimes calleddoubly linked lists). The range of
variations is too great to go into but once you have mastered the idea of
using a pointer to indicate where the next item is stored you should be
able to see them all for yourself.

Too many types?

At the end of this long chapter you might feel that there are far tqo many
data types and structures to cope with. However, if you make a list of the
data types that have been introduced you might be surprised to discover
how few there are. Simple static data reduces to nothing more than the
scalars, based on integers, and the real numbers. The only two common
data structuring methods are the array and the record. Even if you include
the dynamic data types we only have four more: the stack, the queue, the
linked list and the tree. What is amazing is that so many different
problems can be tackled successfully with such a small number of types!



Chapter Six
File Storage

One important data type that has been ignored so far is the file. This is
because files are generally not stored within RAM but, in the case of the
BBC Micro, on tape or disk. The fact that files are not stored in RAM
does affect the sort of applications that they can be used for. At the most
trivial level, the fact that disk or tape has a much larger storage capacity
than RAM makes it possible to write programs that handle realistic
amounts of data. On the other hand, it is important not to miss the point
that the idea of a file is independent of the physical device used to store it.
Indeed, one of the strengths of the BBC Micro's file system is that it
provides the programmer with a range of commands that are as far as
possible 'device independent'. This chapter examines the BBC Micro's
filing system and how it can be used from both BASIC and 6502
assembler with as much 'device independence' as possible.

The sequential file

There are two different types of file - sequential files andrandom access
files. Of the two, only sequential files can be stored on serial devices such
as tape and so these tend to be the more common type of data file.
Because of this the term 'file' used on its own nearly always refers to
sequential files. A file can be thought of as a 'list' of data items
constructed in such a way that only one item can be read or written at a
time. The only real difference between random access and sequential files
is that sequential files can only be read and written in a given order. It is
helpful to think of a pointer that is used to indicate the 'current' position in
the file. That is, the pointer points to the item that will be read from or to
the location in the list that will be written to. In the case of random access
files, the pointer can be freely moved to any position within the file.
Sequential files are much more restrictive. In fact there is no way that the
pointer can be influenced directly. Instead each time that an item is read or
written the pointer is 'moved on' to the next item. The situation is a little
more complicated than this in that generally you cannot change individual
items in an existing file.

When a file is being created, storage space is allocated and the pointer
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is set to the beginning of this area - this is called 'opening the file for
writing'. Notice that in this case the pointer points at the next free area of
storage so there is no way that anything can be read from a file that has
been opened for writing. As each item is written the pointer is moved on
to point to a new free space .Thus, items can only be added to the end of
the file and the file grows in length with each item that is written.

When an existing file is being read the pointer is initially positioned at
the first item in the file this is called 'opening the file for reading'. As each
item is read from the file the pointer is automatically moved on to point at
the next item if there is one! It is possible to try to read more items from a
file than were written to it. If you try and do this on a BBC Micro you will
generate an 'end of file error'.

There is one additional operation concerning files which in many ways
is the opposite of opening the file. Although in principle it is always
possible for a computer to deduce when you have finished using a file,
there are advantages in defining an operation that explicitly informs the
computer that you are finished -- this is the close file operation. What the
computer actually does when asked to close a file depends on the type of
device that the file is stored on and whether the file was open for reading
or writing. If the file was open for reading then a closing operation simply
resets various internal variables so that the file can potentially be re-
opened later in the program. If the file was open for writing then a close
operation will make sure that all the data that was written to the file is
actually written out rather than sitting in a buffer. After this a special
marker, the 'end of file marker', is inserted to show that there is no
meaningful data beyond this position.

If you are already used to sequential data files on tape or disk you may
find the above description unnecessarily complicated. However, thinking
in terms of a pointer to the current position in the file certainly helps when
it comes to understanding random access files. As the BBC Micro only
supports random access files on disk it makes more sense to leave a
description of how they work until after a description of disk files in
general.

BASIC file commands

The previous section introduced the sequential file in a very general way.
In practice any useful computer language provides a collection of
commands that manipulate files. The trouble is not only that each
computer language has invented its set of file commands, so have the
different dialects of BASIC! Some versions of BASIC even provide
different commands for handling files that are stored on tape and on disk!
The situation is not as bad as it seems from this description because all the
sets of commands have a great deal in common. BBC BASIC% file
handling commands are particularly logical and the only real differences
between files stored on tape and disk are that cassette tape is restricted to
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purely sequential files.
The User Guide, Section 33, gives a good introduction to the BBC

Micro's file commands and as a result it is not worth going over each
command in detail. However it does seem worth giving a brief summary
of what the different commands are used for and how they fit into the
general file scheme described earlier.

The fundamental BBC BASIC file operations are:

OPENOUT, OPENIN, CLOSE, BGET and BPUT

There are other file operations that are useful but these five are the ones
from which everything else stems. The commands OPENOUT and
OPENIN perform the file opening operations described earlier.
OPENOUT opens the file for writing and the OPENIN command opens
the file for reading. The only additional features are that opening
operations are used to associate a 'filename' with a 'channel number'. The
filename performs the same function for files as the variable name for
variables i.e. it identifies an area of storage on the file device concerned.
Although it would be possible to use the filename throughout a program to
identify which file is being used, it is more convenient to use 'channel
numbers'. When a file is opened it is assigned a unique channel number
that is used to identify it in all further operations. The exact forms of the
OPEN commands are:

variable=OPPENIN(filename)

and

variable=OPENOUT(filename)

where 'filename' can be a string expression or a constant and the channel
number is returned as the result of each function and stored in 'variable'.
Following either of these two commands the file is referred to by the
channel number stored in 'variable' and not by its filename.

The command:

CLOSE# channel

performs the file close operation on the file assigned to channel number
'channel'. As described in the general introduction to files, you must issue
a CLOSE command before trying to re-open the file and you must issue a
CLOSE command when you have finished writing a file to make sure that
all of the data that you have written to the file is safely stored.

The two commands:

BGET and BPUT

perform the operations of reading and writing an item of data. In this case
the term 'item' refers to a single byte that can either be used directly as a
number in the range 0 to 255 or can be interpreted as a single ASCII



Chapter Six File Storage 77

character (using CHR$). Thus:

BGET# channel

is a function that returns a single byte from the file assigned channel
number 'channel' and:

BPUT# channel,value

is a command that writes the single byte 'value' to the file assigned
channel number 'channel'. As you would expect, each instruction
automatically moves the pointer to the current file position on by one
byte.

BBC files in use - buffering 

Using just the five instructions introduced in the last section a file can be
created and read back. For example:

  10 INPUT F$
  20 F=OPENOUT(F$)
  30 FOR I=1 to 300
  40 BPUT#F,I MOD 256
  50 PRINT I
  60 NEXT I
  70 CLOSE #F
  80 F=OPENlN(F$)
  90 PRINT BGET#F
100 GOTO 90

If you are using (or have selected) the tape filing system then add:

75 PRINT "REWIND TAPE"

before running this program. Line 20 opens a new file for writing, the file
name is in F$ and the channel number is returned in F. Lines 30 to 60
write out 300 bytes to the file and to the screen. Line 70 closes the file and
line 80 re-opens it for reading. Lines 90 and 100 form an infinite loop
reading and printing a single byte at a time from the file.

If you run this program with either the tape or disk filing system
selected (using *TAPE or *DISC) then you will see a number of common
features about the way files are handled, Firstly, once the file has been
opened for writing you will see 256 numbers printed on the screen, then
the disk or tape will be activated and the program will pause. The tape
will then stop (or the disk will be deactivated), the program will continue
to print the remainder of the numbers on the screen and once again the
tape or disk will be activated. The reason for this stop go behaviour is that
the BBC Micro buffers all file operations. That is, bytes are not sent
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directly to the disk or tape, instead they are collected in an area of
memory called a buffer. Only when the buffer is full or the file is closed is
anything written on the tape or disk. Thus, data transfers between the file
storage device are in terms of 'buffer loads' rather than single bytes.

The same buffering behaviour can be seen when the file is read. The
OPENIN command actually reads in a buffer full of bytes which the
BGET command uses each time through the loop (lines 90 to 100). Of
course when the buffer is empty the program pauses while another buffer
load of data is read in. Buffering may seem a complicated way of handling
files but it is much faster than any method based on transferring single
bytes to and from the file storage device!

The above program comes to an end rather abruptly with an error
message 'EOF at line 90'. The solution to this problem is to be found in
the EOF function. The function:

EOF# channel

returns the value TRUE (-1) if the last byte has been read from the file and
FALSE (0) otherwise. Notice that EOF goes TR UE after the last item has
been read and not when you try to read beyond the last item. This means
that EOF can be used as part of a REPEAT . . . UNTIL loop to process
entire files. For example:

10 INPUT F$
20 F=OPENIN(F$)
30 REPEAT
40 PRINT BGET#F
50 UNTIL EOF#F

will read the file ES, byte by byte and stop immediately after reading the
last byte in the file. You can see the action of EOF more clearly if you
add:

95 PRINT EOF#F

to the earlier file creation and reading program. What this shows is that
EOF goes TR UE when the last valid byte is read from the file but you can
still read a 'dummy' value (of 254) from the file before the EOF error
message is given and the program stops. This is useful because it enables
a file to be read completely by a while loop, but it is also dangerous
because it is possible to process a totally spurious value if the change in
the EOF function is not detected immediately.

Larger data items - PRINT# and INPUT#

Although BBC Micro files work in terms of single byte data items, the
data types used in BBC BASIC are generally composed of a number of
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bytes. For example, a standard integer variable takes four bytes to store its
value. It is possible to see how real, integer and string variables could be
stored and retrieved from a file one byte at a time but this would be
tedious and do commands:

PRINT# channel,print_list

and

INPUT# channel,input_list

where 'channel' is the channel number as used in BGET and BPUT and
'print_list' and 'input_list' are lists of variables separated by commas.
Although there is a superficial similarity between PRINT # and PRINT
and INPUT# and INPUT it is important to realise that their actions are
very different.

Both PRINT and INPUT handle data output and input in terms of the
ASCII representation of data. For example, PRINT A will convert the
value stored in the variable 'A' from its internal format to a string of
ASCII digits. In this sense PRINT A performs the same set of actions as
PRINT STR$(A). By contrast PRINT# and INPUT# handle data without
changing it very much from its internal format. The actual format and the
number of bytes of storage used within a file depends on the type of value.
Integers are stored using five bytes, the first byte is always &04 and
serves to identify the following four bytes as an integer value. The integer
value is stored in the same format used for integer variables, that is 32-bit
two's complement with the least significant byte first. Real values use six
bytes, the first byte is always &FF and serves to identify the following
five bytes as a real value. String values take two bytes more than the
number of characters that compose the string. The first byte is always &00
to signify a string value, the second byte gives the length of the string. The
actual characters that make up the string follow the 'length byte' and the
only peculiarity is that they are stored in reverse order. For example, the
statement:

PRINT# F,A

will write six bytes to a file, &FF followed by the five bytes of the internal
representation of A. The statement:

PRINT# F,A%.

will write five bytes to a file, &40 followed by the four bytes that make up
the internal representation of the integer stored in A%. As already
explained, the number of bytes used by a PRINT# statement that writes a
string to a file depends on the number of characters in the string. For
exampie:

PRINT# F,"ABCDE"
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writes seven bytes to the file; &00 to indicate that a string follows, &05 to
indicate the number of characters in the string and then five bytes for the
ASCII codes of "E", "D", "C", "B" and "A". (Notice that the characters of
the string are stored in reverse order.)

In the same way that the PRINT # statement writes out the different
types of data values using the formats described above, the INPUT# will
read them back into variables of the correct type. It is possible to read in
an integer value to a real variable and even a real value into an integer
variable (any fractional part is truncated) but trying to read a string value
into a numeric variable or a numeric value into a string variable will
produce a type mismatch error. This means that you can use PRINT# to
create files with a mixture of data types and to read such a file back using
INPUT# you have to know in which order they come. This sounds like a
difficult task but in practice the pattern of data types in a sequential data
file is simple. For example, in the case of a name and telephone number
file, it is obvious that the pattern is always a string for the name, followed
by an integer for the telephone number. If you think in terms of the data
type record, introduced in the previous chapter then file organisation is
easy. Any collection of data that has to be stored in a file should be
thought of and manipulated as a single record. For example, the data items
NAME$ and NUMBER% should be thought of as a single data item, in
other words as a record. Rather than reading (or writing) the name and the
number parts as and when they are needed within the program they should
always be handled together. That is, always read and writeall the
information that constitutes the record. The best way to ensure that only
whole records are dealt with is to confine the reading and writing of
records to a pair of procedures, PROCrec_get and PROCrec_put (say). Of
course, this also fits in with the philosophy of modular programming!

Allowing for different file devices

The aim of the BBC Micro's file handling commands is to be as device
independent as possible. And as far as sequential files are concerned this
objective has been achieved fairly well. You can use the same commands
to read and write a file that resides on disk or tape. However, there are
times when it is useful to know what sort of device a file is stored on. In
the earlier example where a file was written, then closed, then re-opened
and read, it was important to inform the user that the writing of the file
was complete only if the file was being stored on tape. The reason for this
is simple enough; a cassette tape has to be manually rewound before the
file can be reread but a disk will look after itself.

This sort of slight difference causes no problem unless you are trying
to write programs that will work with any file device. In this case if you
choose to issue the "Rewind tape" message and disks are being used your
program will look silly, but if you don't issue the message and tape is
being used your program will be unusable. There is a way to find out the
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sort of file device in use but it involves the use of the filing system for
assembly language, a subject to be explained in more detail later. To find
out what the current file device is the BASIC programmer can use the
following function:

1000 DEF FNfi1e_system
1010 X%=&70
1020 Y%=0
1030 A%=0
1040 =USR(&FFDA) AND &FF

The value that this function returns determines which type of file device is
in use according to the following table:

value
0 no filing system
1 1200 baud cassette
2 2300 baud cassette
3 ROM pack
4 disk
5 Econet
6 Teletext/Prestel

Using this function it is possible to discover the type of file device
employed and to take appropriate action.

Random access files

Although the ideas and principles of random access files are device
independent it is only practical to use them in conjunction with disk
drives. As a result, this section and the commands that it describes apply
to the BBC Micro only plus its disk drives and the ACORN disk filing
system.

If you followed the explanation of the way that a sequential file works
in terms of moving a pointer through the data items that make up the file,
then random access files will seem easy. In the case of random access files
the 'current position pointer' is available as a 'supplied variable' with the
name:

PTR# channel

When a file is opened PTR# is set to zero, so pointing either at the first
byte in the file or the position where the first byte will be written. As bytes
are written to or read from the file PTR# is automatically updated just as
in the case of a sequential file. The difference is that now you can set the
pointer variable to read or write any byte in the file directly. For example,
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if you want to write the l00th byte to a file use:

PTR#F=100:BPUT#F,value

You can set PTR# to point to any byte of a file while writing, but you
cannot go past the of the file while reading. So that you can avoid trying
to read more of a random access file than there is, BBC BASIC provides
the EXT# function which returns the number of bytes in the file.

The variable PTR# and the function EXT# are the only extras needed
to manipulate random access files. However, being able to read or write
any given byte in a file is only a little way along the road to useful rand
om access of data. As in the case of sequential files the most useful way of
organising data for storage in a random access file is to think in terms of
records. Once again, only whole records should be read or written,
preferably using procedures, one for writing and one for reading. To
enable any record to be accessed in any order, it is necessary to associate a
'record number' with each one. If each record takes R bytes of storage then
you should be able to see that to access record I, PTR# has to be set to I*
R. For example, in the case of the telephone directory program used
earlier, the name field of the record may be allocated 20 characters of
storage and the telephone number field, being an integer, takes five bytes.
Thus to write record I you would use:

1000 DEF PROCput_rec(I)
1010 PTR#F=I*27
1020 PRINT# F ,NAME$
1030 PTR#F=I*27+22
1040 PRINT#F,NUMBER%
1050 ENDPROC

where NAME$ contains the name and NUMBER% the telephone number.
Line l0l0 calculates the position of record I and moves the file pointer to
its start. Notice that the length of each record is 27 bytes (= 20 characters
+ I string code byte + I string length byte + 5 bytes for the integer). Line
1020 writes NAME$, line 1030 moves the pointer on to the start of the
number field within the record and then line 1040 writes the telephone
number to the file. Although fine 1020 automatically moves on PTR#, line
1030 is necessary to ensure that PTR# has been moved on to allow space
for up to 20 characters. When using random access files it is important
that fields within records always take the same amount of space — if they
don't take the same amount of space it is much more difficult to find a
given record. To read a given record of the telephone directory file use:

2000 DEF PROCget_rec(I)
2010 PTR#F=I*27
2020 INPUT# F,NAME$
2030 PTR#F=I*27+22
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2040 INPUT# F,NUMBER%
2050 ENDPROC

which works in the same way as PROCput_rec. There are various other
ways of organising records within a random access file but they are all
based upon the methods described for constructing new data types given
in the previous chapter. For example, you should be able to recognise the
fixed size record random access method described in this section as being
essentially the same method used for organising a one-dimensional array
with the record number corresponding to the array index! In the same way
you can construct linked lists on disk by including within each record a
pointer to the next record.

The BBC Micro's disk filing system software is unfortunately very
primitive in the way that it allocates storage space. Disk storage is
organised into 'sectors', each capable of holding 256 bytes. A sector
represents the smallest amount of disk space that can be allocated. The
problem with the BBC disk filing system is that a file has to occupy a
block of sectors that are physically next to each other on the disk. When a
new file is opened for writing sixty-four sectors are assigned for its use. If
it doesn't use all sixty-four when the file is closed the unused sectors can
be used by another file. If more than sixty-four sectors are required
additional sectors can be acquired, but only if there are free sectors that
immediately follow the initial sixty-four! The trouble is that although
there may be more than enough free sectors on the disk to hold the entire
file, if they are not immediately next to the sixty-four already allocated the
program will crash with a 'Disk full' message. This is unlikely to happen if
the file that needs extending is being stored on a newly formatted disk, but
otherwise it is better to claim the amount of space required for a file as
soon as it is opened. That is, if you know that you are going to want to
create a random access file of 100 records, each 5 12 bytes long, you
should open the file and immediately write 51200 bytes out to it. If this
fails because there isn't enough space available as a single block of
adjacent sectors you can either change disks or use the *COMPACT
utility which moves existing files in an attempt to place all of the free
sectors together at one place on the disk.

The OPENUP problem

So far it has been assumed that a random access file will be opened using
OPENIN for reading and OPENOUT for writing. However there is
another way of opening a file which means that it can be both written and
read in the same program. The command:

variable = OPENUP(filename)

will open the file 'filename' forboth reading and writing and will store its
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channel number in 'variable' for future reference. This sounds very useful
but there are differences to be found in the way that all three OPEN
commands have been implemented in early and late versions of BBC
BASIC. BASIC I has only OPENOUT and OPENIN although OPENIN is
implemented in such a way that it can be used to both read and write a
random access file. That is, BASIC I OPENIN behaves like OPENUP is
supposed to. However all three OPEN commands are implemented in
BASIC II. The trouble is that programs written using BASIC I do not
translate as you might expect to BASIC II. In particular any OPENIN
commands that you might have used in a program will have mysteriously
changed to OPENUP commands! Going the other way, that is taking a
BASIC II program and running it under BASIC I, is even more of a
problem because any OPENUP commands are translated to OPENIN
commands and any OPENIN commands will cause errors! The reason for
all this is that OPENIN in BASIC I seems to use the token for OPENUP,
hence the mysterious translations.

There is no simple solution to this confusing problem. If you are
writing programs using BASIC I, the best course of action is to use
OPENOUT and OPENIN and the program should run under BASIC II If
you are writing programs under BASIC II then use only OPENUP and
your programs should run under BASIC I.

Virtual arrays

As already mentioned, the method used to construct random access files
based on fixed size records is essentially the method used to construct
arrays in RAM. This fact can be used to construct arrays that are stored on
disk so-calledvirtual arrays. For example, if you want a virtual real array
then use:

1000 DEF FNget_array(I)
1010 LOCAL DATA
1020 PTR#F=I*6
1030 INPUT# F,DATA
1040 =DATA

to access the Ith element stored in the virtual array corresponding to
channel F and use:

2000 DEF PROCput_array(I,DATA)
2010 PTR#F=I*6
2020 PRINT#F,DATA
2030 ENDPROC

to store DATA in the Ith element. Two-dimensional arrays are just as
easy; the only real change is that the expression in lines 1020 and 20l0
becomes:
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PTR# F=I*6+N*J*6

to access the I,Jth element of the array.

Using files from assembler

The BBC Micro's filing system is almost as easy to use from 6502
assembler as from BASIC. There is a great similarity between the MOS
routines used to manipulate files and the equivalent BASIC commands.
For example, the routines OSBPUT and OSBGET will write and read a
single byte in the same way that BPUT and BGET do. Table 6.1 gives
details of the MOS routines corresponding to each of the BASIC file
operations:

Table 6.1

BASIC MOS routine parameters

OPENIN OSFIND (&FFCE) A=&40, Y,X address of file name.
On return Y contains the channel number.
Y=0 if OSFIND cannot open the file

OPENOUT OSFIND (&FFCE) As for OPENIN but A=&80.
OPENUP OSFIND (&FFCE) As for OPENIN but A=&C0.
CLOSE OSFIND (&FFCE) A=0, Y=channel number of file to be

closed. (If Y=0 then all files are closed.)
BPUT OSBPUT (&FFD4) A=byte to be written, Y=channel number
BGET OSBGET (&FFD7) Y=channel number. On return A contains

byte read from file. Carry flag=1 if an error
has occurred in which case A contains an
error code. (&FF is 'end of file')

There are other MOS routines concerned with file handling but the ones
given in Table 6.1 are those most often used. For example, there is a MOS
routine, OSFILE, that performs the same action as the BASIC commands
SAVE and LOAD. There are also a number of routines that do not apply
to files stored on cassette. In particular, the needs of random access disk
files are catered for by OSARGS (&FFDA). On calling this routine the X
register should contain the address of the start of four memory locations in
page zero. These are used to hold the input value, or the result of calling
OSARGS, in the usual four byte integer format. Calling OSARGS with a
channel number in Y will read the file's current position pointer if A=0,
write the current position pointer if A=1, and read the file's length if A=2.
A call to OSARGS with A = &FF will ensure that any alterations made to
the file are actually written out rather than just sitting in a buffer.
OSARGS also has a number of other functions including returning the
code of the currently active filing system. This was used in the function
FN file system that can be used from BASIC to discover which type of
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file device is in use. There is nothing complicated about using these filing
system routines as they provide the same set of operations as their
equivalents in BASIC.

A disk sector editor

One of the most useful utilities that any disk user can possess is asector
editor. A sector editor will read in any sector of a disk and display it in
hex or in ASCII characters and then allow you to write it back to disk
after making any changes to the data that are necessary. This may sound
like a difficult program but the disk filing system includes an extension to
the MOS routine OSWORD to read or write a sector. Calling OSWORD
with the A register set to &7F will read or write a sector according to the
contents of a parameter block.

byte meaning

0 drive number
1-4 address of sector buffer
5 3
6 &53=read sector &4B=write sector
7 track number
8 sector number
9 &21

This has to be set up before entering OSWORD and its address stored in
the X and Y registers.

Using this information a sector editor is easy to write:

   10  REM SECTOR EDITOR
   20  DIM SEC_BUF% 255
   30  DIM INS_BLK% 50
   40  MODE 4
   60  PROCparm_get
   80  PROCsect_op
   90  PROCsect_pr in t
  100  GOTO 60

 1000 DEF PROCparm_get
 1010 PRINT TAB(0 ,28) ;
 1080 INPUT "Ac t ion  Read/Wr i te /Mod i fy " ,A$
 1090 IF  LEFT$(A$,1)<>"R"  AND 
      LEFT$(A$,1)<>"W"  AND 
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      LEFT$(A$,1)<>"M"  THEN GOTO 1010
 1100 IF  LEFT$(A$,1)="R"  THEN COM%=&53
 1110 IF  LEFT$(A$,1)="W"  THEN COM%=&4B
 1120 IF  LEFT$(A$,1)="M"  THEN COM%=0
 1125 IF  COM%=0 THEN ENDPROC
 1130 PRINT TAB(0 ,29) ; :
      INPUT "Dr ive=" ,D%
 1140 IF  D%<0 OR D%>3 THEN GOTO 1130
 1150 PRINT TAB(0 ,30) ; :
      INPUT "Track /Sec to r  (TTSS)" ,T$
 1160 IF  LEN(T$)<4  THEN GOTO 1140
 1170 T%=FNt rack(T$)
 1180 S%=FNsector (T$)
 1190 ENDPROC

 2000 DEF PROCsect_op
 2010 IF  COM%=0 THEN PROCmodi fy :ENDPROC
 2020 INS_BLK%?0=D%
 2030 INS_BLK%!1=SEC_BUF%
 2040 INS_BLK%?5=3
 2050 INS_BLK%?6=COM%
 2060 INS_BLK%?7=T%
 2070 INS_BLK%?8=S%
 2080 INS_BLK%?9=&21
 2090 A%=&7F
 2100 X%=INS_BLK% MOD 256
 2110 Y%=INS_BLK% DIV 256
 2120 CALL &FFF1
 2130 ENDPROC

 3000 DEF PROCsect_pr in t
 3010 LOCAL I
 3020 PRINT TAB(0 ,0 ) ;
 3025 FOR I=0  TO 15
 3026 PRINT TAB(3+I *2  MOD 32) ;~ I ;
 3027 NEXT I
 3028 PRINT
 3030 FOR I=0  TO 255
 3035 IF  I= ( I  D IV  16)*16  THEN 
      PRINT TAB(1) ;~ ( I  D IV  16) ;
 3040 PRINT TAB(3+( I *2  MOD 32) ) ;
      ~ (SEC_BUF%?I ) ;
 3050 NEXT I
 3060 PRINT:PRINT
 3070 FOR I=0  TO 255
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 3080 IF  SEC_BUF%?I<32 OR SEC_BUF%?I>127 
      THEN PRINT TAB( I  MOD 32) ; " - " ;  ELSE 
      TAB( I  MOD 32) ;CHR$(SEC_BUF%?I ) ;
 3090 NEXT I
 3100 ENDPROC

 4000 DEF PROCmodi fy
 4010 LOCAL A$, I ,D
 4015 PRINT TAB(0 ,29) ;
 4020 INPUT "Which  by te  row/co l " ,A$
 4030 I=EVAL("&"+A$)
 4040 IF  I<0  OR I>255 THEN GOTO 4010

 4050 P RINT TAB(0 ,30) ;
 4060 INPUT "New va lue=" ,A$
 4070 D=EVAL("&"+A$)
 4075 IF  D<0 OR D>255 THEN GOTO 4050
 4080 SEC_BUF%?I=D
 4090 CLS
 4100 ENDPROC

 9000 DEF FNt rack(T$)
 9010 =EVAL("&"+MID$(T$,1 ,2 ) )
 9020 DEF FNsec to r (T$)
 9030 =EVAL("&"+MID$(T$,3) )

The main program consists of the usual calls to procedures that do the
actual work of reading and writing sectors. PROCparm_get asks a number
of questions about what tasks the program should perform. Answering the
first question with either 'R' for 'Read a sector' or 'W' for 'Write a sector'
causes the program to prompt for the drive number, track and sector
number involved. Answering the first question with an 'M' for 'Modify'
causes the buffer editor to be called so that a single byte can be changed.
PROCsect_op actually performs the sector read and write operation or it
calls PROCmodify so that the contents of the sector buffer SEC BUF%
can be changed. Finally PROCsect_print prints the current contents of the
sector buffer in hex and, where possible, in ASCII. Notice that the track
and sector number has to be typed in as a single hex number, that is &F05
specifies track F sector 5. Also notice that while this program will allow a
user to change any given sector it doesn't check to see if the changes are in
any way sensible. For example, it doesn't give an error message if you try
to access track 79 on a 40 track disk! A sector editor is extremely useful in
recovering data from crashed disks, etc., but if it isn't used with care it can
itself be the cause of crashed disks!



Chapter Seven
Making Programs Work

So far we have tackled the subject of advanced programming from the
programmer's point of view. However, there are people other than
programmers interested in programs. In particular, it is all too easy to
forget the intended user, especially when the program is in some way
difficult or ingenious. A program that isn't used is a wasted effort and
anything that you can do to encourage people to use and trust your
programs is well worth the effort.

Users are influenced by the external features of your program, that is,
what it does and how it goes about it. Thus, in addition to good internal
structure, a program must be reliable and convenient to use. Unfortunately
there is no programming method that will guarantee that a program is
reliable and convenient to use. Using modular and structured
programming certainly helps in reducing the number of bugs in a program
that result from confusion over how the program works. It also makes the
location and elimination of bugs easier. But unless you spend time
detecting the presence of bugs by testing the program, it is likely to be
unreliable.

In some ways the main benefit of using the sort of programming
methods described earlier m thus book is that they give you the time to
concentrate on other more demanding aspects of programming. Instead of
making hard work of producing a program that is only just adequate, a
programming method should free you to consider overall program design
and reliability. This is an important shift in emphasis, as good design and
reliability are the areas where programming skill really counts. However,
while it is true that there is no programming method or system that will
guarantee well designed reliable programs, this doesn't provide a reason
for ignoring the problem or for taking a sloppy approach. There are
principles of programming testing and debugging that will ensure that the
time that you do spend on program reliability is effective. There are also
ways of evaluating the success of your program in terms of ease of use,
and then improving it in the light of this evaluation. All in all, it seems fair
to sum up the current situation by saying that the art and craft of
programming lies in the testing and debugging of programs, and is
measured by the ease of use of the resulting products.
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The natural history of bugs

Bugs - misbehaviour of programs - are a sad fact of the programmer's and
computer user's life. Only the very simplest programs can be said to be
'bug-free' and even then such statements usually only have the force of a
'hope' rather than an assertion of fact. To say that a program is bug-free
usually means nothing more than no program misbehaviour has been
observed for a 'period of time'. Of course as the 'period of time' increases
the level of confidence in the statement that a program is bug-free also
increases, but it never reaches certainty. (Theoretically there arc methods
of proving that a program is correct based on Boolean logic but cum ently
there is nothing of any practical value.)

The state of the art in reliable programming is that after generous
testing one can say that the number of bugs remaining is likely to be small
and that they are likejy to be relatively unimportant. It has been said that if
the products of other branches of engineering were as unreliable as a
typica] program. bridges would be falling down as fast as they could be
built and motor cars would need servicing once a day! This may seem a
very gloomy picture to paint at the start of a chapter that deals with
program reliability but the point is that most programs are not tested and
debugged at at! well. Aithough it is impossible to claim that all the bugs
have been removed from a program, it is certainly possible to improve on
the current situation. It is the typically undertested program of today that
has caused programming to be categorised as the most unreliable branch
of engineering! It is important not to despair because the goal of a bug-
free program cannot be attained with certainty; what matters is that a
program is refiable enough for failure to be the rare exception rather than
the regular rule!

All this discussion of the inevitability of bugs doesn't really provide
any idea of the type of failures that can occur. As a program is nothing
more than a very precise set of instructions it is subject to the same types
of failures that are found in written English. In general BASIC bugs fall
into three categories:

(1) Incorrect use of BBC BASIC or syntax errors. For example, writing
RINT instead of PR INT. Errors of this sort are the programming
equivalent of spelling mistakes in English.

(2) Misunderstanding or confusion about what a part of the program
actually does. For example, you may think that a variable is being used to
keep a total but because another part of the program uses it, this is not the
case. in English this would be equivalent to not saying what you intended
to say.

(3) Not catering for a wide enough range of ways that the program will be
used. If a program is intended to be used in a very exact way then it is up
to  the program and not the user to ensure that these conditions are met.
For example, if a program is designed to work out the roots of a quadratic
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equation it should not {ail because the user enters a cubic equation for it
to solve! The proper response to such a request is to inform the user that
only quadratic equations can be solved, but most programs in this
situation would stop with a meaningless (to the user) error message. In
English this is equivalent to being vague or ambiguous.

The first two types of error are in some ways more fundamental than
the third in that a program that doesn't contain any of the first two types of
bug will work as the programmer intended. I he third type of bug really
concerns what happens when the program is used in ways that are outside
the conditions that the programmer had in mind while writing the
program. This is often referred to as therobustness of a program. The
more robust a program is, the better it behaves in a wider range of
situations. Unfortunately the attitude that most programmers take to this
sort of 'creative' use of a program is that any error messages or strange
results are the sole fault of the user. This is a very limited attitude towards
programming that most users find difficult to accept- A good product
should behave well in all circumstances, not just in the ones that the
programmer has taken into account.

Although the reliability of programs under ail conditions Is important
it is better to deal with methods of finding and eliminating the first two
types of error first. Ensuring program robustness uses a very different set
of techniques that are described towards the end of this chapter (see the
section Programs fit to use).

Bug detection

The first thing to say about debugging is that it consist of two distinct
phases of 'bug detection' and 'bug location'. It is one thing to know that a
bug exists within a program- that is, to have detected it, and quite another
to know what its cause is, that is, to have located it. Although these two
phases are clear enough many programmers confuse the two and tend not
to realise that there are different methods used to detect and locate bugs.

Given a program that has reached a point in its development where the
programmer concerned believes that nothing extra needs to be added, the
next step is bug detection. That is, the program has to be tested to discover
if it performs as intended. The most common method of doing this is for
the programmer simply to use the program for a while and as long as it
doesn't crash or do anything obviously wrong it will be passed as working.
However, this unsystematic approach to program testing is both inefficient
and unreliable. The programmer may spend a long time testing the
program by using it to do the same sorts of things a great many times.
Obviously the most efficient use of time spent testing involves making the
program do as many different things as possible. Looked at in this way,
testing is about finding sets of input data that take the program through as
many different situations as possible. The problem is how to construct
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such sets of test data and this brings us back to the subject of the flow of
control diagram introduced in Chapter Two.

Obviously, it is possible to test a program using such a limited set of
test data that some parts of the program are never used. If there are parts
of a program that haven't been used during testing, then no matter how
long was spent testing the program it is only partially tested. An unused
line wan untested line and can contain any number of bugs. Another way
of thinking about this is that complete testing involves following each
path through the flow of control diagram. At each IF statement the flow of
control line divides into two alternative paths and the test data should
include a set of values that tests each path. You can think of the flow of
control diagram as a map that should be used to explore the program.

It is also important to test all parts of the program equally. Bugs tend
to hide just as often in what the programmer might think of as an easy part
of the program as in a hard part. In fact the difficulty of implementation of
a part of a program seems to have very little to do with where bugs are
found. However, programmers tend to over-test the sections of a program
that were troublesome during the development of the program and ignore
those that were quickly dealt with. If anything, a section of program that
was quick and easy to implement ismore likely to harbour bugs because it
has been scrutinised less. The only sensible attitude is to try to forget
which sections of the program were easy and which were difficult, and
make sure that testing uses every part of a program.

Another problem inherent in testing is that many cases seems so trivial
as to be hardly worth thinking about. The question is 'how do you know
that you have found a bug'? If the program is a game or something similar,
then a bug is usually immediately apparent, but in other cases it can be
much more difficult to decide if the result is correct. It is important that
before you try a program with a particular set of test data you predict what
you expect to see in other words, you work out the correct result. The
reason for this emphasis on predicting the outcome before trying the
program is that it is all too easy to convince yourself that whatever the
program actually does is correct Sometimes the need to believe that a
program is working correctly can defeat common sense! If it is difficult to
predict the correct results of a program, for example, solving a very
difficult set of equations, then there are three ways of dealing with the
problem:

(1) You should first try some simple test data and estimate (even if only
approximately) what you expect to see.

(2) You should then try some more difficult data and make sure that the
results change in the way that you expect.

(3) If there is another program that calculates the same or similar result

Without some independent method of checking the results of a program
there is no guarantee that it is correct and any results it produces have to
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be taken on trust. Claiming that a program is working something out using
a correct method correctly applied is not a proof that the result is correct!
The weak link in the argument is that you can never be sure that the
method is correctly applied unless you have checked that the result is
correct!

Practical testing

In theory testing is easy. All you have to do is:

(1) Construct sets of test data that take the flow of control down each of
the possible routes through the program.

(2) Predict what you expect to see as the result of each set of test data and
then run the program using the test data.

(3) Compare the results that you get with the results that you predicted
any discrepancy and you have detected a bug

In practice, even if you could follow this plan for complete testing it
would still leave some bugs undetected! The trouble is that the number of
test sets of data that are necessary for medium sized programs is larger
than can normally be handled during routine testing. The best that can
usually be managed is to make sure that at some point during testing each
branch of the flow of control diagram is tried out at least once. (Notice
that full testing involves taking every possible combination of branches in
the flow of control.)

One type of bug that even complete program testing will not detect is
related to using up the computer's 'resources'. For example, you may have
tested a section of a program that plots a shape on the screen and have
used sufficient test data to explore all of the possible routes through the
program but it's not until you try to plot the shape near the edge of the
screen will you discover the bug caused by part of the shape going off the
screen. In a sense this error is the result of trying to use more of a resource
i.e. the graphics screen, than the computer has. Another, and common
example, of a resource error is to be found in the misuse for FOR loops. If
you indulge in the practice of jumping out of FOR loops before they are
finished then you will eventually generate an error. The reason for this is
that each FOR loop that you leave unfinished is still 'active' and BBC
BASIC can only handle a maximum of ten FOR loops at any time. When
you test the program this bug may not show itself because the test data
doesn't cause the FOR loop to be left sufficiently often. However, as soon
as testing is over and the program is being used 'for real' the intensity of
use is much higher and hence the message "TOO MANY FORS" appears
and the program crashes. (The same problem can occur with REPEAT . . .
UNTIL loops.)

The only way of finding general resource bugs during testing is to
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include sets of extreme test data. Of course what 'extreme' means depends
very much on the nature of the program In a graphics program you should
always try to make the program malfunction by extremes of position and
size in the objects being drawn. In a numerical program you should try
very small and very large values. However, the best way of avoiding the
too many FOR or REPEAT . . . UNTIL loops bug is to read through the
program and make sure that there are no GOTOs transferring control into
or out of such loops. Of course if you have followed the principles of
structured programming there will be very few GOTOs and none of them
will transfer control into or out of FOR . . . UNTIL loops on purpose!

Some programmers and some users have the odd gift of being able to
invent test data that will detect bugs. However, if you can adopt the
attitude that program testing is only successful when bugs are detected
then it is surprising how easy it is to think of data that makes a program
fail. If this sounds obvious it is worth pointing out that most programmers
are disappointed to find a bug during testing and this attitude probably
subconsciously affects the test data they select. Remember that the object
of testing is to find bugs not to prove that your program is working. A
testing session that finds no bugs is more or less wasted time.

Bug location

Once you have detected that a bug exists the question is how to find out
what is causing it. In other words, after bug detection comes bug location.
The most commonly employed method of finding a bug is just looking at
the program listing! The surprising fact is that this works in most cases.
Often the bug causes the program to crash with an error message that
names the line that contains the error. If the line named in the error
message doesn't contain an obvious bug then the next thing to do is to
examine lines that define variables used in the line. For example, if the
error message uses the variable 'A' then examine lines that come before
the line in question that also use 'A'.

So many bugs are obvious once they have been detected that some
programmers never learn what to do when a bug is difficult to locate. If
just looking at the program listing fails to reveal the problem after a few
minutes then the chances are that 'just looking' will not work at all. If you
think that debugging involves studying a listing into the early hours of the
morning then the chances are that you have been wasting a lot of time.
Debugging is an activity; it needs both the program listing and the
computer to work efficiently. In fact the technique of debugging is an
extension of program testing. You should predict what the program should
be doing and compare it to what the program is actually doing. The first
place that you find a discrepancy is the location of the bug. The difference
between the predictions that you make during testing and debugging is the
level of detail. The predictions used during testing merely concern the
outward behaviour of the program, while those needed in debugging have
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to predict the internal behaviour of the program. To be precise you have to
specify the order in which you expect the statements to be carried out, that
is the flow of control, and the values that you expect to find in each
variable. If you find that the order of execution is not what you expected
or that a variable has a different value stored in it, even if you have not
found the actual bug you will be much closer to it.

This method of prediction and examination sounds easy enough but
how do you find out the actual order of execution and the content of
variables? In most versions of BASIC there is no problem with either task
but BBC BASIC presents a number of difficulties. However, with the
assistance of the 'trace/debug' program given in Chapter Nine debugging
BBC BASIC programs is easier than any other! In assembler the problem
is no more difficult and in fact the fundamental method of debugging - the
break point - was introduced by assembly language programmers long
before high level languages were invented.

BASIC and assembly language break points

A break point is a temporary halt in a program so that the order of
execution can be determined and variables examined. In BBC BASIC a
break point can be inserted into a program by using the STOP command.
The STOP command baits the program and prints the message STOP at
line xxxx where 'xxxx' is the line number of the STOP command. Thus by
placing a number of STOP commands in the program you can discover
the order of execution of its statements. When debugging never assume
that the program is taking a particular route through the flow of control
diagram; place STOP commands along the way to verify that it is. Once
the program has stopped you can also discover the values stored in
variables by using direct PRINT statements. Once you have finished
examining variables the program can be restarted using a GOTO yyyy
command entered in direct mode, where yyyy is the line number of the
next instruction following the STOP command. The only trouble is that
although you can restart a program following STOP using GOTO, the
BBC Micro will forget about any FOR loops, REPEA T. .. UNTIL loops
or procedures that it was in the middle of when the STOP was
encountered. This means that when you restart the program by using
GOTO the program will crash as soon as it tries to execute the NEXT,
UNTIL or ENDPROC statement. Thus you cannot use STOP/GOTO to
place break points within FOR loops, REPEAT. . .UNTIL loops or, most
importantly, within procedures. This is an unfortunate limitation on what
in other versions of BASIC is the main debugging tool.

The simplest way to overcome this problem is to add PRINT
statements to the program that tell you what the current line number is and
print out any variables of interest. This sound foolproof but in practice the
debugging messages tend to get lost on the screen or rapidly overprinted
by other messages. The best solution is to use a specially written debug
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procedure:

9000 DEF PROCdebug(L_NO,V1S,V2$,V3$)
9010 LOCAL X,Y
9020 X=POS:Y=VPOS
9030 SOUND 1,-15, 100,10
9040 PRINT TAB(0,0);"At line ";L_NO;
9050 PRINT V1$;"=";EVAL(Vl$);
9060 PRINT V2$;"=";EVAL(V2$);
9070 PRINT V3$;"=";EVAL(V3$)
9080 REPEAT:UNTIL INKEY(-106)
9090 PRINT TAB(X,Y);
9100 ENDPROC

This procedure will print the line number and the names and values of up
to three variables on the top line without disturbing the current cursor
position. It will then wait until the COPY key is pressed before returning
control to the program, For example, try:

10 FOR I=1 TO 100
20 PRINT I,SQR(I)
25 PROCdebug(25,"I","","")
30 NEXT I
40 END

Line 25 uses PROCdebug to inform the programmer that line 25 has been
reached and the current value of I.

Once you have seen a procedure like PROCdebug and used it a few
times you will soon be adding improvements of your own. For example, it
could dump all the variables used by the program. (If you want to inspect
such a routine, see the heap dump program inThe BBC Micro.- An Expert
Guide.) You could even make it prompt you for the names of the variables
that you would like to examine, but of course you would have to be
careful about screen layout!

If you know BBC BASIC well you might be wondering why the
TRACE command has not yet been mentioned as a way of following the
flow of control through a program. Following TRACE ON the line
number of each statement is printed just before it is obeyed. The trace can
be stopped by using TRACE OFF. Both statements can be entered in
direct mode or included within a program. For example. you could include
a TRACE ON command just before an IF statement to discover which
way the flow of control went and turn it back off with a TRACE OFF
immediately afterwards. Used in this limited way TRACE ON and
TRACE OFF are extremely useful additions to the range of debugging
aids but if the trace is switched on at the start of a program and left on the
sheer quantity of information printed on the screen is overwhelming. A
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program that enables the flow of control to be traced through a complete
program without any problems is given in Chapter Nine.

Debugging 6502 assembly language programs follows the same fines
as for BBC BASIC. However, there is the added problem that assembly
language is not run in such a 'protected' environment as the BASIC
interpreter provides for BBC BASIC. In other words, it is possible for an
assembly language program to run 'wild' and obliterate system variables,
etc., in such a way that the only method to recover control of the machine
is to switch it off and on. The best way of handling the testing and
debugging of an assembly language program is to use a special 'debug'
program that provides facilities such as single instruction execution and
full trace. However, for small programs the same method described for
BBC BASIC can be used. That is an assembly language 'debug'
subroutine can be written that will print out the current address and
contents of all the registers whenever required. Obviously in assembly
language debugging the address of the last instruction to be executed is
needed to follow the flow of control but values stored in variables are less
important than the current contents of the registers. The reason for this is
that generally assembly language variables arc changed by way of storing
the registers. You should be able to see that an assembly language version
of PR OCdebug is not difficult in principle. However, in practice it turns
out to be quite a long program!

The common errors of languages

The earlier sections of this chapter have supposed that when you are
looking for a bug you have no idea where it might be, except for the
evidence provided by predict and examine type debugging. However, in
practice all computer languages have their 'common errors'. For example,
as already mentioned the 'too many FOR loops' error often occurs in BBC
BASIC because of the accidental jumping out of unfinished FOR loops. It
obviously makes sense to look for the most common errors before looking
for new and exotic bugs!

In all versions of BASIC the greatest source of bugs is the line
numbering system. This has already been raised as a problem in Chapter
Two, but it is worth describing the types of effect that mistyped line
numbers produce. A single mistyped digit that is part of a fine number
will result in a line of BASIC being added to the program at an effectively
random position! This random scattering of legal statements within a
program gives rise to a type of error that is typical of BASIC. Whenever a
program starts to behave in apparently illogical ways it is worth checking
that there are no stray lines embedded in the program. This type of check
is one of the few debugging activities that is best conducted with a
program listing away from the computer. The problem of eliminating
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misplaced lines in the first place is very difficult. If you are entering a
large number of lines at one time a mistyped digit will not only add a line
at another position, it will also leave a gap in the program where you
intended the line to be. In practice, it is the absence of a line that was
recently typed that is detected first. Unfortunately the usual reaction is to
suppose that for some reason the machine just didn't accept the line.
Because of this the line is just typed in for a second time and there is no
immediate search for the version of the line that went missing! The
misplaced line is found sooner or later but often after a great deal of time-
consuming debugging. The rule is that you should always check that any
line or block of lines that you have typed has been added to the program
in the correct place. Any missing lines should not simply be retyped, but
the program should be searched and the lines found and removed.

Another common BASIC bug the unwanted interaction between
modules was introduced in Chapter Two. One of the most likely causes of
subtle and difficult-to-find bugs is the use of the same variables by
different procedures for different tasks. This is a problem that can be
largely eliminated by using local variables wherever possible but even
BBC BASIC sometimes suffers from this distressing bug.

The most common assembly language bugs are due to confusion over
addressing modes. For example, it is all to easy to mean:

LDA #&70

and actually write:

LDA &70

Other assembly language bugs are often caused by misunderstanding how
instructions set and affect the condition codes. Never assume that a branch
is being taken just because it is self-evident. Check that the instructions
just before the branch really do change the condition codes in the way that
you expect. Apart from these two bugs, assembly language also suffers
from the 'unwanted interaction between modules' problem encountered in
BASIC.

Stepwise testing and debugging

The question still remains of what to do once you have detected and then
located a bug. Should you fix the bug and carry on testing or carry on
testing and put off changing the program until later? The answer to this
question is not at all easy. If you change the program by fixing the bug
then you are no longer testing the program that you started with and in
theory at least you should go back and start testing all over again! If you
think that this is rather extreme advice, it is worth saying that many
embarrassing bugs result from making apparently minor last minute
changes that cause problems which would never be guessed at in well
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tested parts of the program. If you makeany change to a program. your
level of uncertainty about its correctness must drop back to where it was
before you started testing. In practice, common sense has to be applied to
which tests to repeat and which not to.

An advantage of using stepwise refinement is that the program can
also be tested in a stepwise manner. As each module is added to the
program, its specific action should be tested. In this way, by the time the
program reaches its final form, most of the worst bugs are likely to have
been removed. However, this is not to say that stepwise testing will
produce a bug-free program As already explained in previous sections,
some bugs arise from unwanted interactions between modules and to
detect these it is important to test the whole program. Thus, stepwise
testing and debugging should be used but not as an excuse to limit or
avoid final testing!

Programs fit to use

Reducing the number of bugs in a program is a difficult and time
consuming task but it is not enough to ensure the success of a program!
Indeed, a well debugged program is the minimum requirement For a
program to be successful it has to be easy to use and well behaved. It is
virtually impossible to explain how to write programs that are easy to use.
The best that can be done is to suggest guidelines and ways of evaluating
the ease of use of a program. However, it is possible to describe ways of
producing programs that are well behaved.

Essentially, a well behaved program should never crash or produce
results that it was not intended to. A program that is free of bugs can crash
in one of two ways. Firstly, the user can enter values that the program was
not designed to handle. For example, entering a value that is too big, or
too small or even of the wrong type. Secondly, an internal or external
condition can cause an apparently correct program to fail. For example, if
a string becomes longer than 255 characters then it cannot be stored in
BBC BASIC and the program will crash. Another example is trying to
read a file that doesn't exist, or a disk error.

The first type of crash can be avoided by testing all input values for the
correct type and range. This is not as difficult as it sounds. Every INPUT
statement should be followed by an IF statement that checks the input
values and either issues an error message reporting out of range values or
simply transfers control back to the input statement. Any INPUT
statement that is not followed by such a check for illegal values is a
potential route for garbage into the program - and every programmer is
familiar with the well known saying 'Garbage In. Garbage Out'. In reality
this saying is more often realised as 'Garbage In, Nothing Out' because
garbage data usually crashes the program! You can see examples of input
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protection in most of the programs in this book.
The second type of crash is very difficult to avoid. In many ways the

causes of such crashes are very like ordinary run-of-the-mill bugs. The
difference is that unlike bugs they are the consequence of perfectly correct
BASIC. For example, the part of a program that tries to read a file that
doesn't exist is perfectly correct BASIC; it just happens to be working in
an environment where it cannot carry out the task it was designed for.
Sometimes R is possible to detect and program around such situations, but
often the biggest problem is realising that such an event can happen. Often
it isn't even practical or possible to check for the conditions that cause the
crash for example, the work involved in checking that a string will not
become longer than 255 characters as a result of the next operation is
possible but not practical. The only practical way of handling such
exceptional circumstances is to use the ON ERROR 'statement' command.
When an error occurs the BBC BASIC interpreter will carry out the
'statement' part of the most recent ON ERROR command. Thus, ON
ERROR can be used to detect and handle errors as they happen. That is,
instead of trying to write BASIC statements that will detect situations
which will cause a crash before they happen, the ON ERROR statement
can be used to detect the situations by the fact that it does cause the
system to crash! However, the problem with detecting a crash after the
situation that caused it has already occurred, is that it is very difficult to
'backtrack' to the point just before the crash.

To be precise, after an ON ERROR statement has been acted upon all
of the variables have the value that they had just before the error occurred
but any active FOR loops or REPEAT . . . UNTIL loops are finished and
any FROG calls are 'forgotten'. This means that following an ON ERROR
statement you cannot transfer control back into a FOR or REPEAT . . .
UNTIL loop or procedure. This limits the way that you can restart the
program to a transfer of control back to a point in the main program. This
is very restricting and often it is better simply to issue an error message
explaining the problem that has arisen and then re-run the entire program
by using RUN as a program statement. To enable the error handling
routine to discover the nature of the error, BBC BASIC provides the
variables ERR, which holds the error number of the last error, and ERL.
which holds the line number that the last error occurred in.

Following this description you should be able to see that error handling
m a BBC BASIC program is very simple and limited. An ON ERROR
GOTO xxxx statement should be included at the start of the program
where 'xxxx' is the line number of an error handling routine. The error
handling routine should test ERR and ERL to find out what sort of error
has occured and where. On the basis of this test messages may be issued,
some variabies initialised and some files closed. Then the error handling
routine should use a GOTO statement to transfer control to a procedure
call within the main program but outside any FOR or REPEAT .. .UNTIL
loops. Because of the need to use of GOTOs and line numbers it is better
to add the ON ERROR type of error handling at a point where the
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program is very nearly finished. This also has the advantage that during
testing you can keep notes of any crashes that the error handler should
deal with. Often, however, the only solution is for the error handler to
make any valuable data safe and then offer the user the chance to re-run
the program. For example. if you detect a disk error within a text
processing program it is unacceptable not to try to handle the error, but it
is equally unacceptable to deal with it by losing am, text that was entered
and re-running the program from scratch (there are a number of
commercial text processors that do behave in this way in response to
relatively minor errors). The correct way of handling such an error is to
give the user the opportunity to change disks and save the text
immediately. The rule is that during all error handling the main concern
should be to minimise the user's wasted effort and this usually means
minimising the loss of data or results. The applications programs in the
remainder of this book have all been written with crash- proofing in mind.

Given a fully debugged and crash-proofed program the only remaining
consideration is its ease of use. As mentioned in the introduction to this
section it is wry difficult to say in genera! what makes a program easy to
use. The range of user 'interfaces' found in programs is too wide to
comment on in detail but it seems obvious that for a program to be easy to
use it must tend to do things in the order that the user requires. It should
also give the user as much freedom to determine the course of action as
possible but without forcing the user to specify everything in minute
detail. Programs that drag the user through tasks in an order determined
solely by the programmer convey a sense of restriction and claustrophobia
soon sets in. However. programs that are completely free and respond to
the user's very detailed commands are very tedious to use after a while.
The way to find out if your program does things in the right order is to
take note of the sort of mistakes that users make in the early stages of
running your program. If you ask for the maximum value followed by the
minimum value and users keep on entering the minimum value followed
by the maximum value then it is your program that is at fault! Remember
the user is (nearly) always right.

Apart from watching the way users react to your program there are
some general points that are worth keeping in mind while you are
designing and implementing it.

(1) Try to keep the screen display dear and uncluttered. It is important to
realise that a screen display you have developed in the course of the
program will look simple to you because it is familiar, but to a new user it
might appear a jumble

(2) Use colour and sound to draw attention to the important aspects of
your program, screen display or whatever. As the important aspects are
likely to be few in number, this implies that sound and colour should be
used sparingly. For example, do not use a different colour and sound
effect for every message. Highlight only the most important messages on
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the screen and only use sound to draw attention to a mistake or to
reinforce very important points. Loud, colourful programs quickly become
tedious.

(3) Always ask clear and unambiguous questions and do not use jargon
unless it is the user's jargon. For example, do not ask 'Dimension of
array?' when you mean 'How many entries?' If your program is intended
for users that have their own jargon then it makes the program more
friendly if you use their jargon. However, make sure that your idea of
their jargon is up to date there is nothing less likely to instil confidence
than using a term that has been redundant since 1800!

(4) Never present too much information at once and never allow
information to scroll off the screen before the user can read it. Make your
program respond to single key presses that indicate when the user has
finished reading whatever information is on the screen. For novice
computer users a slower rate of printing information on the screen is also
helpful. The usual BBC rate of printing can convey the impression that the
computer is so fast they cannot keep up! It is also worth nothing that
messages given in upper- and lower-case are much easier to read than
upper-case only.

(5) Always try to allow the user to correct mistakes and abort program
actions. Always use INPUT rather than GET$ or INKEY$ so that the user
can correct entries with the delete key. Allowing the user to abort program
actions is much more difficult. For example, how often have you had to sit
through a program doing something that you didn't really want it to do
because you entered a command by mistake and can find no way to stop
it! If at all possible it is a good idea to monitor the pressing of the
ESCAPE key using the ON ERROR statement. If the ESCAPE key is
pressed then the error handler will be entered with ERR set to 17.
Following this, the error handler's problem is to work out how to stop the
program's current action without causing a real error and then how best to
return control to the user.

(6) Finally, do not give error messages that are either too technical or too
friendly. That is, messages such as "INTEGER OVERFLOW
CONDITION ENCOUNTERED" and "YOU GOT IT WRONG" are
equally to be avoided. Try to inform the user of exactly what is wrong
without going into too much detail.

Similar guidelines could be added indefinitely, becoming increasingly
more specialised. The most important thing, however, is to think about
how the user wants to do the job and then try to make sure that your
program helps rather than hinders. In the final analysis, it is the user who
either likes or dislikes your program so take notice of any friendly users
you can find to try your programs!
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Chapter Eight
A Spelling Checker

This chapter and the following three each present a large applications
program. The first of these is a ‘spelling checker’ which can, in principle,
be implemented using nothing but BASIC. In practice, however, it is
worth using some assembly language to achieve a reasonable
performance. The program in Chapter Nine an execution tracer needs to
be implemented entirely in assembly language because of the way that it
fits into and modifies the workings of the BBC Micro's system software.
The program in Chapter Ten is another example of an all assembly
language program that again fits into the existing system software but it is
of a different character to the execution tracer in that it uses the BBC
Micro's interrupt and event handler. Chapter Eleven is devoted to the
implementation of a 6502 disassembler - written exclusively in BASIC.

None of these programs have been refined to the point where
they could be considered completely finished. (Something that all
advanced programmers realise is that no program is ever entirely
finished!) But they are taken to a stage of development where they do
something useful in thia sense they are finished all but the frills. However,
if you have been following the programming philosophy outlined in this
book you will soon realise how much time and effort programming the
‘frills’ takes! 

A spelling checker − design specification

The first thing that you should do before starting work on any program is
to consider in as much detail as possible what the program is intended to
do. This establishes a clear objective that your finished program can be
judged against. Although it is often necessary to modify initial objectives
in the light of what is possible in a reasonable amount of time, at least you
will know what you are sacrificing for a working program. The second
thing that you should do is to consider general ways of achieving your
objective. In other words, you should try to work out rough outlines of
how program would go about the task. The more ways of doing something
that you can think of at this stage the better. It is also important not to get



Chapter Eight A Spelling Checker 105

bogged down with detail at this early stage. What you should aim for is an
English description of the way the program will work that contains
enough information for you to identify the data structures involved.

The spelling checker is an especially large and complicated program
but its full objective is easy to state:

Check each word in a text file against a list of correctly spelt words (a
dictionary).

Words that are not found in the dictionary are either new words or
misspellings.

To discover which, each word is presented to the user and a decision is
requested.

New words can be added to the dictionary so that the program can
‘learn’ to spell them.

Misspelt words should be identified in the text file and the user given
the opportunity of correcting them.

From this specification it is not difficult to see that a spelling check
program has four actions to perform: 

(1) look up the words in a dictionary
(2) ask the user to identify misspellings
(3) add new words to dictionary
(4) correct misspellings in the text

To make the program suitable as an example it makes sense to drop the
last action and simply print out a list of misspellings in the text so that the
user can use a text processor} editor to make corrections. This is not at all
unreasonable and produces a spelling checker that is almost as useful as
one that implements the full specification.

The next question is how to go about the three actions that we are
going to implement. Clearly the major problem is how to look up each
word in the text file in a dictionary file. The straightforward approach is to
read in each word from the text file and search through the dictionary for
it. However, this approach is very time inefficient in that very common
words would be looked up each time they occurred in the text. A much
better method would be to read the entire text file and build a list of all the
words used. This list is almost certainly going to be much shorter than the
text file because common words such as ‘the’, ‘and’, etc., would appear
only once in the list irrespective of the number of times that they occurred
in the text. This reduction of the number of words also makes it feasible to
store the list of words in memory rather than as a file.

Once this list has been built each word can be looked up in the
dictionary in turn. This is a task that is made much faster if both the list of
words and the dictionary are sorted into alphabetical order. If they are not
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in order then the entire dictionary has to be searched for each word in the
list. If they are in order then you can abandon the search for a word as
soon as you have gone past the position that it should occupy in the
dictionary. Each word that is found in the dictionary can be deleted from
the list as we are only interested in the words that are not in the dictionary
The rest of the program is just a matter of simple operations on the list of
unidentified words.

It is important to realise that in a program of this sort it is vital to settle
on a method that is efficient. As each word might have to be checked
against a large dictionary file any slow operations will because of their
repetition make the program too slow to use.

The first stage

The spelling checker program is so large that it makes sense to tackle it in
a two parts the construction of the sorted list of words and then the
dictionary search and updating, This is not stepwise refinement but it does
provide the opportunity to get something working before going on to
extend it. Attempting a smaller problem that can be extended to include
additional desired features is a good strategy if you are working alone
because it provides some reward for your efforts in a shorter time than by
trying to write the full program.

Before the first stage of implementation we have to decide on a data
structure suitable for the storage of a list of words. The most obvious
choice is a one-dimensional string array with each word stored in a
different element of the array. The disadvantage of this is that the
management of the string array is left to the BASIC interpreter which, for
this application, would mean wasting both time and memory. Once a
string array has been rejected the only other possibility is to construct a
data structure using a byte array. Since the list needs to be sorted into
order as words are read in, the most obvious contender is a linked list.
Using a linked list new words could be inserted into their correct position
without having to move existing words to make room. Attractive though it
is for this application, a linked list has one important disadvantage it is
slow to search for a particular word. The reason for this is that the only
search method that can be used is to start at the first word and examine
each entry in turn until the word is found or until you have searched
beyond the point at which the word would appear if it was present in the
list. This searching method is known as alinear search and it is very
inefficient when compared to alternatives such as abinary search. (For
details of searching methods, see Chapter Eight ofThe Complete
Programmer, Mike James (Granada, 1983).) As the creation of a sorted
fist of words represents only a small part of the work of the program, the
linked list does not appear to be an attractive option. Although it is more
difficult to construct a sorted list using a BASIC string array, it is a much
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easier data structure to apply advanced searching methods to. The obvious
solution is to construct a special purpose string array using a byte array
and keep the storage management within the program. To be more
precise, the words can be stored in a byte array using the ‘$’ indirection
operator, If a word has to be inserted into the list all of the words that
follow it have to be moved up to make room but this is more efficient than
using BASIC to manage the array.

Now that the data structure has been decided upon the main program
can be written:

   10  MODE 7
   20  S IZE%=5000
   30  DIM WORD% SIZE%
   40  F IN%=WORD%+SIZE%
   50  F ILE_END=FALSE
   60  PROCin i t ia l i se
   70  PROCopen_f i le
   75  REPEAT
   80  PROCread_word(F)
   90  IF  WORD$<>""  THEN PROCadd_word(WORD$)
  100  UNTIL  F ILE_END
  110  PROCl is t_words
  120  STOP

Line 30 reserves 5000 memory locations as a byte array for the word list,
i.e. a total of 5000 characters. The variable SIZE% is used to set the size
of the array throughout the program so that this can be easily changed and
FIN% is set to the address of the end of the array by line 40.
PROCinitialise is included to take care of any initialisation that has to be
done just once at the start of the program. PROCopen_file is responsible
for getting the file name and opening the file. The resulting channel
number is returned in F. The main structure of the program is a
REPEAT . . . UNTIL loop formed by lines 75 to 100. This reads words
from the file usfing PROCread_word and adds them to the list using
PROCadd_word. Thd REPEAT . . . UNTIL loop is brought to an end by
reaching the end of the file, signalled by FILELEND becoming TRUE
(see Chapter Twelve for information on the use of Boolean variables). The
IF statement in line 90 is necessary to allow for the possibility of the file
coming to an end without PROCread word returning a word in WORD$.
Finally PROClist_words is used to examine the list for correctness.
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The second stage

The second stage of refinement presents no real problems.

 1000 DEF PROCin i t ia l i se
 1010 WORDCNT%=0
 1020 CURRENT_END%=WORD%
 1030 ENDPROC

 2000 DEF PROCopen_f i le
 2010 CLS
 2020 PRINT TAB(1 ,5 ) ;
 2030 INPUT "F i le  name o f  tex t  to  be" '
      "  p roo f  read  " ,F$
 2040 IF  LEN(F$)>10 THEN 
      PRINT"Name too  long" :GOTO 2020
 2050 PRINT
 2060 F=OPENIN(F$)
 2070 ENDPROC

 3000 DEF PROCread_word
 3010 LOCAL CHAR%
 3020 WORD$=""
 3030 REPEAT
 3040 CHAR%=FNread_cap(F)
 3050 UNTIL  NOT(FNsepara to r (CHAR%))
      OR F ILE_END
 3060 WORD$=WORD$+CHR$(CHAR%)
 3065 IF  F ILE_END THEN GOTO 3110
 3070 CHAR%=FNread_cap(F)
 3080 IF  FNsepara to r (CHAR%) OR
      F ILE_END THEN GOTO 3110
 3090 WORD$=WORD$+CHR$(CHAR%)
 3100 GOTO 3065
 3110 IF  WORD$<>""  THEN
      WORDCNT%=WORDCNT%+1
 3120 PRINT TAB(0 ,8 ) ;
      "Number  o f  words  =" ;WORDCNT%
 3130 ENDPROC

 4000 DEF PROCadd_word(WORD$)
 4020 PROCf ind_word(WORD$)
 4025 PROCt ime(2)
 4030 IF  FOUND% THEN ENDPROC



Chapter Eight A Spelling Checker 109

 4035 PROCstar t
 4040 PROCmake_space(WPOINT%,LEN(WORD$)+1)
 4045 PROCt ime(3)
 4050 $WPOINT%=WORD$
 4060 ENDPROC

 6500 DEF PROCl is t_words
 6505 CLS:VDU 14
 6506 PROCpr in te r
 6510 WPOINT%=WORD%
 6520 IF  WPOINT%=CURRENT_END% THEN
      VDU 15 ,3 :ENDPROC
 6530 PRINT $WPOINT%
 6540 WPOINT%=WPOINT%+LEN($WPOINT%)+1
 6550 GOTO 6520

PROCinitialise and PROCopen_file are straightforward. The only real
point of interest is that PROCinitialise sets CURRENT_END% to the start
of the byte array. CURRENT_END% is used to mark the extent of the
byte array that has been used to store words, i.e. it marks the division
between the used and unused parts of the array.

The first procedure worth examination is PROCread_word. The main
problem in implementing this procedure is the definition of a ‘word’. You
might think that a word was any group of letters enclosed by blanks.
However, this is not a sufficiently wide definition to include words that
are terminated by commas, full stops or other punctuation. The easiest
way to define a word is to say that it is a group of letters enclosed by any
of a number of legal separator characters. With this definition the
algorithm of PROCread_word is:

(1) Read characters until the first non-separator is found and then store
it in WORD$.

(2) Read characters until a separator is found and add each non-
separator to WORD$.

Each of these steps can be clearly seen as loops in the procedure. The first
is a REPEAT . . . UNTIL loop (lines 3030 to 3050) and the second is a
additional loop with an exit point in the middle (lines 3070 to 3100). The
exit point in the middle could be avoided and the loop turned into a
REPEAT . . . UNTIL loop but in this case it is more natural to use the
more complicated sort of loop. PROCread_word uses no additional
procedures but it does use two functions. FNread_cap(F) returns the
ASCII code of the next character read from the file after it has changed
lower-case letters to upper-case.  FNseparator(CHAR%) is an example of
a predicate function in that it returns a value of TRUE if CHAR% is a
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separator and FALSE otherwise (predicate functons are described in
Chapter Twelve). PROCadd_word first checks to see it WORD$ is
already in the list (using PROCCfind_word). If it is then nothing else
needs to be done. If the word does have to be added to the list then
PROCmake_space creates a ‘gap’ in the list by moving up all of the
existing entries. PROCfind_word returns two results, a Boolean variable
FOUND% that is TRUE if the word is in the list and FALSE otherwise,
and WPOINT% which gives either the position of the word in the byte
array or the position that it should occupy if it is not in the array.

The final procedure is PROClist_words and this uses WPOINT% to
record the address of each word in the byte array. IF WPOINT% is the
address of the start of the first word then PRINT $WPOINT%. will print
the first word and WPOINT%=WPOINT%+LEN($WPOINT%)+1 is the
address of the second word. The only procedure that PROClist_words
calls is PROCprinter which asks the user if the words should be listed on
the printer or not.

Third and fourth stages

The procedures to be defined at the third stage of refinement are
PROCfind_word, PROCmake_space and PROCprinter. The functions yet
to be defined are FNread_cap(F) and FNseparator. Of these
PROCfind_word and PROCmake_space are the most difficult. 

 5000 DEF PROCf ind_word(WORD$)
 5020 FOUND%=FALSE
 5030 WPOINT%=WORD%
 5040 IF  WPOINT%=CURRENT_END% THEN ENDPROC
 5050 IF  $WPOINT%>WORD$ THEN ENDPROC
 5060 IF  $WPOINT%=WORD$ THEN 
      FOUND%=TRUE:ENDPROC
 5070 WPOINT%=WPOINT%+LEN($WPOINT%)+1
 5080 GOTO 5040

 6000 DEF PROCmake_space(FROM%,AMOUNT%)
 6005 LOCAL I
 6010 IF  CURRENT_END%=FROM% THEN 
      GOTO 6050
 6020 FOR I=CURRENT_END%-1 TO FROM% STEP -1
 6030 I?AMOUNT%=?I
 6040 NEXT I
 6050 CURRENT_END%=CURRENT_END%+AMOUNT%
 6060 IF  ABS(FIN%-CURRENT_END%)<20 THEN 
      PROCnospace
 6070 ENDPROC
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 6600 DEF PROCpr in te r
 6605 LOCAL A%
 6610 PRINT TAB(0 ,4 ) ;
 6620 INPUT "Do you  want  to  use  
      the  p r in te r  (Y /N) " ,A$
 6630 IF  A$<>"Y"  AND A$<>"N"  THEN 
      GOTO 6620
 6640 IF  A$="Y"  THEN VDU 2  ELSE VDU 3
 6650 ENDPROC

 9000 DEF FNsepara to r (C%)
 9010 IF  C%=ASC("  " )  THEN =TRUE
 9020 IF  C%=ASC(" , " )  THEN =TRUE
 9030 IF  C%=ASC(" . " )  THEN =TRUE
 9040 IF  C%=ASC(" : " )  THEN =TRUE
 9050 IF  C%=ASC(" ; " )  THEN =TRUE
 9070 IF  C%<32 THEN =TRUE
 9080 IF  C%>127 THEN =TRUE
 9090 =FALSE

 9100 DEF FNread_cap(F)
 9110 LOCAL C%
 9120 C%=BGET#F
 9125 IF  EOF#F THEN CLOSE#F:F ILE_END=TRUE
 9140 IF  C%>96 THEN C%=C%-32
 9150 =C%

PROCfind_word simply searches through the list of words until it reaches
the end of the list (line 5040), finds the word (line 5060) or reaches the
point in the list where the word should be stored (line 5050). The body of
the procedure is in the form of a loop with multiple exit points (three to be
exact) all grouped at the start of the loop. In fact, the first two exit points
could be combined into one, that is:

5040 IF WPOINTf%=CURRENT_END% OR
$WPOINT%>WORD$ THEN ENDPROC

but the form used in the program is just as clear.
PROCmake_space is simple in principle. All it has to do is to use a

FOR loop to move all of the elements of the array from FROM% to
CURRENT_END% up by AMOUNT% bytes. However, in practice it is
quite difficult to get all the details right. If you are writing procedures that
perform complicated movements of data then it is a good idea to go
through the steps involved on paper below trying to write any BASIC. It is
possible for PROCmake_space to use up all of the byte array. This



112 Advanced Programming for the BBC Micro

condition is checked for in fine 6060 but the real question is what to do
when the program runs out of space, In the tradition of stepwise
refinement, the answer to this difficult question is put off until the next
stage of refinement by calling a procedure PROCnospace!

The functions FNseparator and FNread_cap are not difficult to
implement but they both contain important points of detail. FNseparator
simply checks C% against each possible type of separator character. The
separators in lines 9010 to 9050 are obvious but some text processors
embed control codes in the text in place of blanks and so any code lower
than 32 also has to be considered a legal separator (9070). The same holds
for codes above 127 but it is far less common for these to occur. Notice
that the advantage of using a function to determine whether or not a
character is a separator is that it is very easy to change or add to the set of
characters that are considered separators and without having to delve into
the inner areas of the program! For example, after you have run the
program on a few samples of text you will soon discover that there are
two omissions. The characters ‘(’ and ‘)’ have to be considered valid word
separators but it is left as an exercise for the reader to add them to
FNseparator. FNread_cap reads in a character code from the file and then
immediately tests to see if the end of file has been reached. [fit has, then it
sets the FILE_END flag so that the rest of the program knows that there is
no more data and actually closes the file. Line 9140 converts all lower-
case characters to upper-case. This function could protect the rest of the
program from trying to read data from a closed file by including the line:

9115 IF FILE_END THEN =0

but it is probably better to know that the program is trying to read from a
file that it shouldn't and deal with the problem higher up in the structure.

The fourth stage in refinement is now just one procedure,
PROCnospace. It is often said that what a program should do when
everything is working is easy it's when errors occur that things get tough!
The temptation is to write a procedure that gives an error message “NO
ROOM” and stops the program. This is quick and easy for the
programmer but the user would feel that the whole experience was a waste
of time. A reasonable compromise is to inform the user of the problem
and then proceed to process as many words as can be held in memory.
This is what PROCnospace does. It displays a message for a short time,
closes the file and sets FILE_END to TRUE so that the rest of the
program will think that there is no more text to process.

 6700 DEF PROCnospace
 6710 PRINT TAB(0 ,10) ; "Not  enough
      memory ! ! "
 6720 PRINT "C los ing  f i l e  -  bu t  w i l l
      p rocess"
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 6730 PRINT "words  a l ready  read"
 6740 F ILE_END=TRUE
 6750 CLOSE#F
 6760 T IME=0
 6770 REPEAT:UNTIL  T IME>500
 6780 ENDPROC

The dictionary

At the end of the last section the program was developed to the point
where it would read a text file, construct a sorted list of words in the byte
array starting at WORD% and then print the results either on the screen or
additionally on the printer. After testing this version of the program on a
number of texts you shouldn't be able to find any bugs (if you do then fix
them!) although you should be able to find ways of crashing the program
by specifying non-existent filenames, etc. The next stage in producing the
program is to move on from this working, but extremely limited, version
of the program by the addition of procedures to handle the dictionary file.
Once again before committing anything to BASIC there are a few design
decisions to be made. The main consideration is the form of the dictionary
tile. Up to this point the program has been independent of the file system
in use i.e. the program will work with either tape or disk. The problem
with the dictionary becomes apparent as soon as you consider how it
should be updated. If the dictionary file is to be kept in order then adding
new words would mean some very complicated random access file
handling. In fact it would be better to avoid the random access file
handling by simply rewriting the entire dictionary file, adding the new
words in their correct positions. Even this simpler method of adding
words to the dictionary file requires two files to be open at the same time
one for reading and one for writing and this is something that the tape
system cannot usually handle.

As an alternative it seems worthwhile to drop the requirement that the
dictionary file should be sorted into order. The advantage is simply that
new words could be added on to the end of the file i.e. they could be
appended. The disadvantage is that the search time is greater. However,
this can be minimised by a number of changes to the search algorithm.
Firstly the list of words stored in memory is smaller than the dictionary so
it makes sense to read a word from the dictionary and search for it in the
list nt words rather than vice versa. It also seems reasonable to physically
remove each word that has been identified from the word list so that
subsequent searches are on a smaller list. Neither of these two
improvements produce a program that is as fast as one that uses a sorted
dictionary but the advantages in terms of simplicity are great.

It would be possible to work out a scheme whereby new words could
be added to the end of an existing cassette file but this would be fairly
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complicated. The cassette system not only doesn't support random access
files, it doesn't allow existing files to be extended. The simplest method of
adding data to a cassette file is to write an additional file following it. That
is the dictionary data would be stored on tape stored on tape not in one file
but in as many files as needed named DICT1, DlCT2 and so on. You
would have to introduce your special ‘end of all files’ marker so that you
would know when you had reached blank tape but apart from this there
are no real problems. However, this scheme entails a complication
unnecessary to the essence of the spelling checker and the remainder of
the program will assume that the disk filing system is in use. Changing it
to work on the tape system is left as an exercise for the reader.

The first stage in adding the dictionary handling to the spelling checker
involves changes to the main program:

   10  MODE 7
   20  S IZE%=5000
   30  DIM WORD% SIZE%
   40  F IN%=WORD%+SIZE%
   50  F ILE_END=FALSE
   60  PROCin i t ia l i se
   70  PROCopen_f i le
   75  REPEAT
   76  PROCstar t
   80  PROCread_word
   85  PROCt ime(1)
   90  IF  WORD$<>""  THEN PROCadd_word(WORD$)
  100  UNTIL  F ILE_END
  110  PROCrepor t
  120  PROClookup
  130  PROCl is t_words
  140  PROCadd_d ic t
  150  END

PROCreport informs the user that reading the text file has finished and
that the dictionary lookup is about to begin. PROClookup, as its name
suggests, performs the actual look up operation and deletes any words that
have been found from the word list. PROClist words is the procedure
developed for the first version of the program that prints the list of words
on the screen and additionally on the printer. Now that it follows
PROClookup it gives the user a list of only those words that are not in the
dictionary and are therefore possible misspellings. Finally PROCadd_dict
performs the task of adding words to the dictionary.

In the second stage of refinement only PROClookup and
PROCadd_dict are at all complicated:

 7000 DEF PROCrepor t
 7010 CLS
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 7020 PRINT TAB(0 ,5 ) ; "Tex t  f i l e  has  been
      read . "
 7030 PRINT "A  to ta l  o f  - " ;WORDCNT%;
      "  words"
 7040 PRINT
 7050 PRINT "Ready  to  check  spe l l ing
      aga ins t "
 7060 PRINT "d ic t ionary  f i l e . "
 7070 ENDPROC

 7100 DEF PROClookup
 7110 F=OPENUP("DICT" )
 7115 F ILE_END=FALSE
 7120 REPEAT
 7130 INPUT#F,WORD$
 7135 IF  WORD$=""  THEN FILE_END=TRUE
 7140 PROCf ind_word(WORD$)
 7150 IF  FOUND% THEN 
      PROCremove(WPOINT%,LEN($WPOINT%)+1)
 7160 UNTIL  F ILE_END
 7180 PTR#F=PTR#F-2
 7190 ENDPROC

 8000 DEF PROCadd_d ic t
 8005 LOCAL A$ 
 8010 PRINT "Do you  want  to  add  cor rec t "
 8020 PRINT "words  to  d ic t ionary  (Y /N)  " ;
 8030 INPUT A$
 8040 IF  A$<>"Y"  AND A$<>"N"  THEN 
      GOTO 8010
 8050 IF  A$="N"  THEN CLOSE#F:ENDPROC
 8060 WPOINT%=WORD%
 8070 IF  WPOINT%=CURRENT_END% THEN 
      PRINT#F, " " :CLOSE#F:ENDPROC
 8080 WORD$=$WPOINT%
 8090 PRINT WORD$
 8100 INPUT "A(dd)  o r  I (gnore) " ,A$
 8110 IF  A$<>"A"  AND A$<>" I "  THEN 
      GOTO 8100
 8120 IF  A$="A"  THEN PRINT #F,WORD$
 8130 WPOINT%=WPOINT%+LEN($WPOINT%)+1
 8140 GOTO 8070

PROClookup assumes that the dictionary file is always called DICT,
opens it and proceeds to read words from it. Notice that the DICT file is
read using INPUT and written using PRINT so that the BBC Micro's
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filing system looks after the internal format of the file. The actual search
of the word list is performed by PROCfind_word which was developed
for the first version of the program and so alrendy exists. The only new
procedure needed is PROCremove which is the logical opposite of
PROCadd_word in that it removes a word by shifting all of the entries in
the word list down to close up the space that the word occupied.

PROCadd_dict is a very simple routine that asks the user if each word
in the word list should be added to the dictionary. Notice that there is no
need to open the dictionary file because PROC1ookup leaves the file open
and positioned at the end of file marker ready for new words to be added.

The final stage of refinement involves writing PROCremove which is
closely modelled on PROCadd_word.

 7500 DEF PROCremove(FROM%,AMOUNT%)
 7510 LOCAL I
 7520 FOR I=FROM% TO CURRENT_END%-AMOUNT%
 7530 ? I= I?AMOUNT%
 7540 NEXT I
 7550 CURRENT_END%=CURRENT_END%-AMOUNT%
 7560 ENDPROC

This completes this version of the program. All that is necessary to
‘start the ball rolling’ is the creation of first dictionary file using:

   10  *SAVE DICT 0000 8000
   20  F=OPENUP("DICT" )
   30  PRINT#F, " "
   40  CLOSE#F

This results in a single entry, the word “A", being stored in the dictionary
lie DICT. Following this the program can be run and the dictionary
extended by the addition of correctly spelt words from a range of text
files. in this way the dictionary is slowly built up rather than created by
transferring a traditional paper dictionary to disk.

Evaluation

At this stage in program development it is always worth evaluating the
program so far. In use the program shows no obvious problems apart from
its tendency to crash if the correct files are not present on disk. This
clearly nidicates the need for the addition of some error handling. The
internal structure of the program is quite good although PROCadd_dict is
a little on the large size for a single procedure and might better have been
broken down into two smaller procedures. It would also have been better
if PROClookup had used separate procedures to open and read the
dictionary file this would make any future modifications to the file
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handling easier. However these criticisms are not so serious that any
immediate action needs to be taken although you might want to disagree!

Perhaps the most obvious problem with this program is that it is slow.
And it gets increasingly slow as words are added to the word list. There
are two possible answers to this problem:

(1) Improve the search method.
(2) Use machine code.

It is quite obvious that a great saving in time could be made by replacing
PROCfind_word with a procedure that uses a binary search (seeThe
Complete Programmer). However, as the spelling checker is being used
here as an example we will go straight to the machine code option as a
way of illustrating how BASIC and machine code can be used together.

Locating inefficiency

The main thing to remember about using assembly language is that it is
better not to use it at all! Given that the bulk of any program is only
executed a few times it is possible to implement it using BASIC without
any serious problems of inefficiency. However, any section of a program
that is executed repeatedly can very easily become a problem. Even a
section of code that only takes a fraction of a second to execute in BASIC
may add up to a considerable delay if it is carried out thousands of times.
Obviously the best thing to do is to identify any such ‘critical’ pieces of
program and replace them by assembly language versions. In this way
BASIC and assembler can be used to produce efficient programs with the
minimum of effort.

In the case of the spelling checker it is obvious that searching the word
list and adding new words to it are the two most likely candidates for
assembly language routines. However, for the sake of example we will
suppose that this is not quite so obvious and try to identify where the
inefficiencies lie. To do this we need to know how much of the program's
running time is taken by each procedure. The following three procedures
can be used to record the cumulative time that any procedure is used for:

10000 DEF PROCstar t
10010 T IME=0
10020 ENDPROC

10100 DEF PROCt ime( I )
10110 T( I )=T( I )+TIME
10130 T IME=0
10140 ENDPROC

10200 DEF PROCtresu l t (N)
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10210 LOCAL I
10220 FOR I=1  TO N
10230 PRINT I ,T ( I )
10240 NEXT I
10250 IF  INKEY$(0)=" "  THEN GOTO 10250
10260 ENDPROC

PROCstart zeros the clock. PROCtime(I) adds the time since it was last
called or from the last call to PROCstart to (I). PROCtresult(N) prints the
cumulative times stored in T(I) to T(N). To use these procedures to find
out how long it takes to read all the words in a file, search for them in the
word list and finally add them to the list all we have to do is add the lines:

    1  D IM T(10)

   76  PROCstar t

   85  PROCt ime(1)

  105  PROCtresu l t (3 )

 4025 PROCt ime(2)

 4035 PROCstar t

 4045 PROCt ime(3)

Lines 76 and 85 record the time spent in PROCread_word, line 4025
records the time spent in PROCfind word and lines 4035 and 4045 record
the time spent in PROCmake_space (on common sense grounds these are
likely to be the most time-consuming procedures).

Running the spelling checker, a 150 (approx.) word text gave the
following results:

PROCread_word 18.07 seconds
PROCfind_word 28.29 seconds
PROCmake_space 43.36 seconds

Clearly PROCmake_space is the first procedure that should be replaced
by assembly language!

Using machine code with BASIC

Using assembly language within a BBC BASIC program is easy but it is
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still worth minimising the total amount of assembly language used. An
examination of PROCmake_space suggests that the most time-consuming
section is the FOR loop that actually does the move of the words in the
list. This suggests that we need an assembly language routine that will
move all of the characters in the list from FROM% to CURRENT_END%
up by AMOUNT% bytes. It is clear that we are going to have to pass
FROM%, CURRENT_END% and AMOUNT% to the routine as
parameters and this implies the use of the CALL instruction. That is, the
new version of PROCmake_space using an assembly language routine
MOVE% to implement the move is:

 6000 DEF PROCmake_space(FROM%,AMOUNT%)
 6010 IF  CURRENT_END%=FROM% THEN
      GOTO 6050
 6020 CALL MVE%,FROM%,AMOUNT%,CURRENT_END%
 6050 CURRENT_END%=CURRENT_END%+AMOUNT%
 6060 IF  ABS(FIN%-CURRENT_END%)<20 THEN 
      PROCnospace
 6070 ENDPROC

Notice that only the FOR loop (lines 6020 to 6040 in the old version) has
been replaced and BASIC is still used to check for a word added to the
end of the byte array (line 6010). updating CURRENT_END% (line
6050) and checking that there is enough space to add more words (line
6060). These operations would all have taken a great deal of assembly
language to implement and the resulting gain in speed would be
negligible.

All that now remains is to write the assembly language that constitutes
MVE%!

The 6502 has a reputation for being a fast and efficient microprocessor
but it lacks any registers that can hold a full 16-bit number or address.
This is a problem for this particular application in that it involves the
manipulation oi 16-bit addresses. The solution lies in the use of ‘indirect’
addressing. For example,

LDY #0
LDA (POlNT%),Y

will load the A register from the memory location whose address is stored
in the pair of locations POINT% and POINT%+1. In this sense POINT%
and POINT%+1 act like a 16-bit index register i.e. they hold the full 16-
bit address of a memory location that is involved in an instruction. The
only complication is that this sort of indirect addressing only works with
memory locations in page zero, that is &00 to &FF. Page zero memory
locations are so important and in such short supply that most of them are
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already used by BBC BASIC and the MOS, but & 70 to &8F are set aside
for use by application programs.

If POINT% is the address of the lowest pair of memory locations in
page zero, then the basis of the main algorithm of the MVE% routine can
be written:

LDY #0
LDA (POINT%),Y
LDY AMNT%
STA (POINT%),Y

The first two lines load A from the memory location pointed at by
POINT% and the final two lines store A in the memory location AMNT%
higher up in memory. This should be compared to

POINT%?AMNT%=?POINT%

which performs the same operation in BASIC.
Assembly language programming follows the same stepwise

refinement principle used for BASIC and so the first stage of MVE% is:

 8610 .MVE% JSR PARM_GET%
 8620 JSR START_LOOP%
 8630 .MLOOP% LDY #0
 8640 LDA (POINT%),Y
 8650 LDY AMNT%
 8660 STA (POINT%),Y
 8665 JSR TST_END%
 8666 BEQ MEXIT%
 8670 DEC POINT%
 8675 LDA POINT%
 8676 CMP #&FF
 8680 BNE MLOOP%
 8690 DEC POINT%+1
 8700 JMP MLOOP%
 8710 .MEXIT% RTS

Subroutine PARM_GET% moves the parameters passed to MVE% from
the parameter block at &600 into page zero so that they can be used as
indirect addresses. Notice that the CALL instruction stores the addresses
of the parameters, not their values in the parameter block.
START_LOOP% initialises POINT% to the address stored in
CURRENT_END% and stores the value in AMOUNT% in AMNT%.
Lines 8630 form the assembly language equivalent of the FOR loop in the
original version of the procedure. Subroutine TST_END% compares
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POINT% to the address in FROM% and returns with the Z flag set
accordingly. Finally lines 8670 to 8690 perform a 16-bit decrement of the
value stored in POINT% notice that the 6502 has no 16-bit operations.

The next stage of refinement gives:

 8740 .PARM_GET% LDX #0
 8750 LDY #0
 8760 .PLOOP% LDA &601,Y
 8770 STA &70,X
 8780 INX
 8790 INY
 8800 LDA &601,Y
 8810 STA &70,X
 8820 INX
 8830 INY
 8840 INY
 8850 DEC &600
 8860 BNE PLOOP%
 8870 RTS
 8880 \
 8890 .START_LOOP% LDY #0
 8900 LDA (CRNT_END%),Y
 8910 STA POINT%,Y
 8915 LDA (AMNT%),Y
 8916 STA AMNT%
 8920 INY
 8930 LDA (CRNT_END%),Y
 8940 STA POINT%,Y
 8950 RTS
 8955 \
 8960 .TST_END% LDA POINT%
 8965 LDY #0
 8967 CMP (FRM%),Y
 8969 BNE TEXIT%
 8970 INY
 8972 LDA POINT%+1
 8974 CMP (FRM%),Y
 8976 .TEXIT% RTS

PARM_GET simply transfers the parameter addresses from the parameter
block at &600 to zero page locations starting at &70. To understand this
subroutine all you have to know is that &600 contains the number of
parameters and each parameter is in the form of a two byte (16-bit)
address and a single byte giving the type of the parameter. As all the
parameters used in MVE% are integer variables, the type bytes are
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ignored and at the end of PARM_GET%, &70 and &71 hold the address
of FROM%, &72 and &73 hold the address of AMOUNT% and &74 and
&75 hold the address of CURRENT_END%. That is after PARM_GET%.

LDY #0
LDA (&70), Y

would load A with the first (least significant) byte of FROM%. To avoid
confusion the following labels are defined:

 8545 FRM%=&70
 8546 AMNT%=&72
 8547 CRNT_END%=&74

START_LOOP% transfers the value stored in CURRENT_END% into
POINT% and POINT%+1 and stores the first byte of AMOUNT% in
AMNT%. Notice that following START_LOOP% AMNT% no longer
contains the address of AMOUNT%, it contains the first byte of its value.
(It is assumed that no word is longer than 256 characters!) Finally
TST_END% is the assembly language equivalent of a predicate function.
Instead of a truth value TST_END% returns with the Z condition code set
according to whether the l6-bit value in POINT% is equal to the 16-bit
value stored in FROM%. Notice that this is done in two stages; first the
least significant bytes are compared (line 8967 and 8969) and then the
most significant bytes are compared (lines 8972 and 8974). If either pair
of bytes is different then the subroutine returns with the Z condition code
clear. Whenever you have a complex condition to test for in assembler use
a predicate subroutine like TST_END%.

After including all of the assembly language and the necessary BASIC
to assemble it, the complete program is:

    1  D IM T(10)
   10  MODE 7
   15  DIM CODE% 200
   20  S IZE%=5000
   30  DIM WORD% SIZE%
   40  F IN%=WORD%+SIZE%
   50  F ILE_END=FALSE
   60  PROCin i t ia l i se
   70  PROCopen_f i le
   75  REPEAT
   76  PROCstar t
   80  PROCread_word
   85  PROCt ime(1)
   90  IF  WORD$<>""  THEN PROCadd_word
  100  UNTIL  F ILE_END
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  105  PROCtresu l t (3 )
  110  PROCrepor t
  120  PROClookup
  130  PROCl is t_words
  140  PROCadd_d ic t
  150  END

 1000 DEF PROCin i t ia l i se
 1010 WORDCNT%=0
 1020 CURRENT_END%=WORD%
 1030 PROCasm(CODE%)
 1040 ENDPROC

 2000 DEF PROCopen_f i le
 2010 CLS
 2020 PRINT TAB(1 ,5 ) ;
 2030 INPUT "F i le  name o f  tex t  to  be" '
      "  p roo f  read  " ,F$
 2040 IF  LEN(F$)>10 THEN 
      PRINT"Name too  long" :GOTO 2020
 2050 PRINT
 2060 F=OPENIN(F$)
 2070 ENDPROC

 3000 DEF PROCread_word
 3010 LOCAL CHAR%
 3020 WORD$=""
 3030 REPEAT
 3040 CHAR%=FNread_cap(F)
 3050 UNTIL  NOT(FNsepara to r (CHAR%))  
      OR F ILE_END
 3060 WORD$=WORD$+CHR$(CHAR%)
 3065 IF  F ILE_END THEN GOTO 3110
 3070 CHAR%=FNread_cap(F)
 3080 IF  FNsepara to r (CHAR%) OR 
      F ILE_END THEN GOTO 3110
 3090 WORD$=WORD$+CHR$(CHAR%)
 3100 GOTO 3065
 3110 IF  WORD$<>""  THEN 
      WORDCNT%=WORDCNT%+1
 3120 PRINT TAB(0 ,8 ) ;
      "Number  o f  words  =" ;WORDCNT%
 3130 ENDPROC

 4000 DEF PROCadd_word
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 4020 PROCf ind_word
 4025 PROCt ime(2)
 4030 IF  FOUND% THEN ENDPROC
 4035 PROCstar t
 4040 PROCmake_space(WPOINT%,LEN(WORD$)+1)
 4045 PROCt ime(3)
 4050 $WPOINT%=WORD$
 4060 ENDPROC

 5000 DEF PROCf ind_word
 5020 FOUND%=FALSE
 5030 WPOINT%=WORD%
 5040 IF  WPOINT%=CURRENT_END% THEN ENDPROC
 5050 IF  $WPOINT%>WORD$ THEN ENDPROC
 5060 IF  $WPOINT%=WORD$ THEN FOUND%=TRUE
      :ENDPROC
 5070 WPOINT%=WPOINT%+LEN($WPOINT%)+1
 5080 GOTO 5040

 6500 DEF PROCl is t_words
 6505 CLS:VDU 14
 6506 PROCpr in te r
 6510 WPOINT%=WORD%
 6520 IF  WPOINT%=CURRENT_END% THEN 
      VDU 15 ,3 :ENDPROC
 6530 PRINT $WPOINT%
 6540 WPOINT%=WPOINT%+LEN($WPOINT%)+1
 6550 GOTO 6520

 6600 DEF PROCpr in te r
 6605 LOCAL A%
 6610 PRINT TAB(0 ,4 ) ;
 6620 INPUT "Do you  want  to  use  
      the  p r in te r  (Y /N) " ,A$
 6630 IF  A$<>"Y"  AND A$<>"N"  THEN 
      GOTO 6620
 6640 IF  A$="Y"  THEN VDU 2  ELSE VDU 3
 6650 ENDPROC
 6700 DEF PROCnospace
 6710 PRINT TAB(0 ,10) ; "Not  enough 
      memory ! ! "
 6720 PRINT "C los ing  f i l e  -  bu t  w i l l
      p rocess"
 6730 PRINT "words  a l ready  read"
 6740 F ILE_END=TRUE
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 6750 CLOSE#F
 6760 T IME=0
 6770 REPEAT:UNTIL  T IME>500
 6780 ENDPROC

 7000 DEF PROCrepor t
 7010 CLS
 7020 PRINT TAB(0 ,5 ) ; "Tex t  f i l e  has  been
      read . "
 7030 PRINT "A  to ta l  o f  - " ;WORDCNT%;
      "  words"
 7040 PRINT
 7050 PRINT "Ready  to  check  spe l l ing
      aga ins t "
 7060 PRINT "d ic t ionary  f i l e . "
 7070 ENDPROC
 7100 DEF PROClookup
 7110 F=OPENUP("DICT" )
 7115 F ILE_END=FALSE
 7120 REPEAT
 7130 INPUT#F,WORD$
 7135 IF  WORD$=""  THEN FILE_END=TRUE
 7140 PROCf ind_word
 7150 IF  FOUND% THEN
      PROCremove(WPOINT%,LEN($WPOINT%)+1)
 7160 UNTIL  F ILE_END
 7180 PTR#F=PTR#F-2
 7190 ENDPROC

 7500 DEF PROCremove(FROM%,AMOUNT%)
 7510 LOCAL I
 7520 FOR I=FROM% TO CURRENT_END%-AMOUNT%
 7530 ? I= I?AMOUNT%
 7540 NEXT I
 7550 CURRENT_END%=CURRENT_END%-AMOUNT%
 7560 ENDPROC

 8000 DEF PROCadd_d ic t
 8005 LOCAL A$ 
 8010 PRINT "Do you  want  to  add  cor rec t "
 8020 PRINT "words  to  d ic t ionary  (Y /N)  " ;
 8030 INPUT A$
 8040 IF  A$<>"Y"  AND A$<>"N"  THEN
      GOTO 8010
 8050 IF  A$="N"  THEN CLOSE#F:ENDPROC
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 8060 WPOINT%=WORD%
 8070 IF  WPOINT%=CURRENT_END% THEN
      PRINT#F, " " :CLOSE#F:ENDPROC
 8080 WORD$=$WPOINT%
 8090 PRINT WORD$
 8100 INPUT "A(dd)  o r  I (gnore) " ,A$
 8110 IF  A$<>"A"  AND A$<>" I "  THEN
      GOTO 8100
 8120 IF  A$="A"  THEN PRINT #F,WORD$
 8130 WPOINT%=WPOINT%+LEN($WPOINT%)+1
 8140 GOTO 8070

 8500 DEF PROCasm(START%)
 8510 LOCAL PASS
 8520 FOR PASS=0 TO 3  STEP 3
 8530 P%=START%
 8540 REM CALL MVE%,FRM%,AMNT%,CRNT_END%
 8545 FRM%=&70
 8546 AMNT%=&72
 8547 CRNT_END%=&74
 8548 POINT%=&76
 8600 [OPT PASS
 8610 .MVE% JSR PARM_GET%
 8620 JSR START_LOOP%
 8630 .MLOOP% LDY #0
 8640 LDA (POINT%),Y
 8650 LDY AMNT%
 8660 STA (POINT%),Y
 8665 JSR TST_END%
 8666 BEQ MEXIT%
 8670 DEC POINT%
 8675 LDA POINT%
 8676 CMP #&FF
 8680 BNE MLOOP%
 8690 DEC POINT%+1
 8700 JMP MLOOP%
 8710 .MEXIT% RTS
 8720 \
 8740 .PARM_GET% LDX #0
 8750 LDY #0
 8760 .PLOOP% LDA &601,Y
 8770 STA &70,X
 8780 INX
 8790 INY
 8800 LDA &601,Y
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 8810 STA &70,X
 8820 INX
 8830 INY
 8840 INY
 8850 DEC &600
 8860 BNE PLOOP%
 8870 RTS
 8880 \
 8890 .START_LOOP% LDY #0
 8900 LDA (CRNT_END%),Y
 8910 STA POINT%,Y
 8915 LDA (AMNT%),Y
 8916 STA AMNT%
 8920 INY
 8930 LDA (CRNT_END%),Y
 8940 STA POINT%,Y
 8950 RTS
 8955 \
 8960 .TST_END% LDA POINT%
 8965 LDY #0
 8967 CMP (FRM%),Y
 8969 BNE TEXIT%
 8970 INY
 8972 LDA POINT%+1
 8974 CMP (FRM%),Y
 8976 .TEXIT% RTS
 8990 ]
 8995 NEXT PASS
 8999 ENDPROC

 9000 DEF FNsepara to r (C%)
 9010 IF  C%=ASC("  " )  THEN =TRUE
 9020 IF  C%=ASC(" , " )  THEN =TRUE
 9030 IF  C%=ASC(" . " )  THEN =TRUE
 9040 IF  C%=ASC(" : " )  THEN =TRUE
 9050 IF  C%=ASC(" ; " )  THEN =TRUE
 9070 IF  C%<32 THEN =TRUE
 9080 IF  C%>127 THEN =TRUE
 9090 =FALSE

 9100 DEF FNread_cap(F)
 9110 LOCAL C%
 9120 C%=BGET#F
 9125 IF  EOF#F THEN CLOSE#F:F ILE_END=TRUE
 9140 IF  C%>96 THEN C%=C%-32
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 9150 =C%

10000 DEF PROCstar t
10010 T IME=0
10020 ENDPROC

10100 DEF PROCt ime( I )
10110 T( I )=T( I )+TIME
10130 T IME=0
10140 ENDPROC

10200 DEF PROCtresu l t (N)
10210 LOCAL I
10220 FOR I=1  TO N
10230 PRINT I ,T ( I )
10240 NEXT I
10250 IF  INKEY$(0)=" "  THEN GOTO 10250
10260 ENDPROC

When this version of the program is run on the same text file of 150
(approx.) words the timing results are:

PROCread_word 18.65
PROCfind word 28.55
PROCmake_space 2.49

which for PROCmake_space is an improvement of more than a factor of
twenty! This excellent result should convince you to change
PROCfmd_word to an assembly language routine.

Conclusion

The spelling checker has proved to be a very large program indeed and a
completely finished version is well beyond the scope of this book. You
should, however, be able to extend and modify it by the continued use of
modular and structured programming. In doing so you should be able to
prove for yourself how much easier it is to program using an organised
method. The second point that this example illustrates is how BASIC and
assembler can be used together to make programs efficient. There are very
few occasions where a program has to be written in nothing but assembler
and BASIC is always easier!



Chapter Nine
An Execution Tracer

The idea of testing a program by following the order of execution of
statements was introduced in Chapter Seven. The use of the command
TRACE ON was also described, as were the problems presented by the
quantity of output this command can produce. Ideally what is needed is
some way of watching the execution of a program line by line without
cluttering up the screen. The object of the program developed in this
chapter is to provide the BASIC programmer with a ‘real time’ indication
of the order of execution. Roughly speaking it prints the line number of
statement that is currently being obeyed at a fixed location at the top of
the screen but, to allow the programmer time to read this number before it
is overwritten, it also has to slow down the execution rate of the BASIC
interpreter. This program is particularly attractive in that, as well as being
a useful programming tool in its own right, it opens up the way to a very
wide range of other utilities.

Intercepting BASIC

If a machine code program is going to print the line number of each line
of BASIC as it is executed we obviously have to find some way of
intercepting the BASIC interpreter as it either starts or finishes obeying a
line. At first sight this seems like an impossible problem but the key to its
solution lies in the way the BASIC interpreter communicates with the
MOS. Whenever the interpreter needs to call the MOS to carry out some
action it does so by calling one of the fixed addresses high in memory but
these routines immediately ‘indirect’ through a number of ‘jump vectors’
stored in RAM. For example, if the interpreter wants to print a character
on the screen it loads the A register with the character code and jumps to
the subroutine OSWRCH at &FFEE. However, the routine at &FFEE
immediately does an indirect jump using &20E (known as WRCHV) i.e.
JMP (&20E). In other words, the routine at &FFEE transfers control to a
routine whose address is stored in &20E and, as &20E is a location in
RAM, it can be changed.
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The principle behind intercepting the BASIC interpreter as it starts or
finishes executing a line is to force it to make a jump to the MOS which
could be diverted to a new machine code routine. (Notice that there is no
way that this routine could be written in BASIC!) After examining the
possible jump vectors that could be altered (given in section 43 of the
User Guide) the first idea to present itself was to force an error at the start
of each ine by including an illegal character. This would cause the BASIC
interpreter to jump through BRKV at &202 but the problem with this
method is that there is no obvious way of restarting the BASIC interpreter
after an error of this sort. None of the other jump vectors seemed to be of
my use and so it looked as though a completely different method would
have to be employed. However, after leaving the problem for a few hours,
inspiration struck! Suddenly the possibility of using the existing TRACE
command became clear. Following a TRACE ON command the line
number of each line that is executed is printed on the screen in a fixed
format:

[line number] space

The printing is, of course, achieved by using OSWRCH and this routine
can be intercepted quite easily. Thus the overall plan is to change the
RAM vector used by OSWRCH to point to a new machine code routine
that checks each character printed for ‘[’. If it finds an opening square
bracket then it can assume that what follows, up to the matching closing
square bracket is a line number. The only problem with this method is that
any programs that print square brackets as part of their normal output or
that contain assembly language will behave strangely. This seems a small
price to pay for such a useful utility so easily implemented!

To summarise the execution tracer should:

(1) Detect ‘[’ and move the text cursor to a fixed location where the
digits that follow ‘[’ will be printed.

(2) Detect ‘]’ and move the text cursor back to its original position and
suppress the next blank that is printed.

Assembling a program

If you are writing a lot of assembly language then it makes good sense to
write a standard BASIC program that can be re-used with each assembly
language program. For example:

   10  DIM CODE% 500
   20  PROCasm(CODE%)
   30  CALL * * * * *
   40  STOP



Chapter Nine An Execution Tracer 131

 1000 DEF PROCasm(START%)
 1005 FOR PASS=0 TO 3  STEP 3
 1010 P%=START%
 1020 PROCprog
 1030 NEXT PASS
 1040 PRINT
 1050 PRINT P%-START%;"  By tes"
 1060 ENDROC

Line 10 sets up a byte array called CODE% to hold the machine code
produced. (For large programs 500 bytes might prove insufficient.) Line
20 calls PROCasm which actually does the job of assembling the
program. The parameter START% is used to indicate where assembly
should begin. This is usually set to CODE%, but as explained later this is
not always the case. Line 30 calls the assembled machine code for testing.
Of course, ***** would be replaced by the name of the routine to be run.
Lines 1005 to 1030 perform the two pass assembly as described in
Chapter Four. Line 1050 prints the number of bytes that the assembled
machine code occupies and it is worth keeping an eye on this figure to
make sure that sufficient space has been allocated to the byte array
CODE%. The actual assembly language to he assembled is written within
PROCprog and this is the only procedure that ever needs to be
significantly altered. If you want to write an assembly language program
simply write it as part of PROCprog (enclosed in square brackets) and add
it to the BASIC program given above.

The first stage

Assembly language program development proceeds in exactly the same
way as for a BASIC program that is, as a number of stages of refinement.
There are two parts to the main program of the execution tracer, the part
that ‘installs’ it by changing the jump vector and the part that checks for
square brackets. There is an important difference between the two in that
the part that installs the program is only run once to change the jump
vector but the check for square brackets is executed each tune a character
is printed out - in this sense the part that changes the jump vector isn't
really an integrated part of the execution checker and it can be written
later.

The main program has to do three things:

(1) Check for ‘[’ and carry out the appropriate action.
(2) Check for ‘]’ and carry out the appropriate action.
(3) Check for the ‘trailing’ space after ‘]’ and suppress it.

The first two actions are obvious but you might wonder why the trailing
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space has to be suppressed. The reason for this is a matter of screen
formatting and will become clear later. The main program can now be
written quite easily:

 3100 .MAIN% CMP #ASC(" [ " )
 3110 BEQ DOTRACE%
 3120 CMP #ASC(" ] " )
 3130 BEQ FINTRACE%
 3140 CMP #ASC("  " )
 3150 BEQ SPACE%
 3160 JMP (&70)

DOTRACE%, has to move the current printing position to the top of the
screen so that the digits that follow the ‘[’ are always printed in the same
place. FINTRACE% has to restore the printing position back to where it
was before DOTRACE% moved it! This implies that DOTRACE% also
has to store the existing printing position before moving it elsewhere.
SPACE% has the rather odd job of checking to see if each space printed
follows a closing square bracket, but more of this later. If the character to
be printed is anything other than a square bracket or a blank the main
program does an indirect jump through location &70. The reason for this
is that it is assumed that the part of the program that changes the jump
vector WRCHV to point to the start of the execution tracer will store its
original value in &70 and &71. Thus JMP (&70) will transfer control to
the machine code in the MOS that implements OSWRCH.

Second stage

The machine code routines that have to be written as part of the second
stage of refinement are DOTRACE%, FINTRACE% and SPACE%. As
described in the last section, DOTRACE%, has to save the current
position of the text cursor and then move it to the position that the line
number is to be printed at. Finding the current position of the text cursor is
easy OSBYTE call 134 returns the x and y co-ordinates of the text cursor
in the X and Y registers respectively. In practice, this is a little too easy in
that there is a hidden trap inherent in using any of the MOS from within
the execution tracer. The trouble is that whenever DOTRACE% is called,
the BASIC interpreter will be in the middle of printing a ‘[’ on the screen
and if it is going to resume what it was doing before it was intercepted by
the execution tracer the contents of all the registers and system variables
have to be preserved. The easiest way to save and restore all or any of the
registers is to use the system stack. However, pushing all the registers on
the stack and then pulling them all off is a very long and boring list of
assembly language statements. The obvious thing to do is to use a pair of
macros:
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 9300 DEF PROCsave
 9400 [OPT PASS
 9410 PHA
 9420 PHP
 9430 TXA
 9440 PHA
 9450 TYA
 9460 PHA
 9470 ]
 9480 ENDPROC

 9500 DEF PROCres to re
 9510 [OPT PASS
 9520 PLA
 9530 TAY
 9540 PLA
 9550 TAX
 9560 PLP
 9570 PLA
 9580 ]

The instruction:

]:PROCsave:[OPT PASS

will generate the code to push each of the 6502% registers onto the system
stack in the order A,P ,X, Y. Similarly:

]:PROCrestore:[OPT PASS

will pull the registers off the system stack in the reverse order i.e. Y,X,P,A
thus restoring their original values. (The system stack is a LIFO stack, see
Chapter Five.)

Now that the problem with preserving the registers has been solved
DOTRACE% is easy to write:

 3200 .DOTRACE% : ]PROCsave: [OPT PASS
 3210 LDA #134
 3220 JSR OSBYTE%
 3230 STX &72
 3240 STY &73
 3250 LDA #31
 3260 JSR OSWRCH%
 3270 LDA #20
 3280 JSR OSWRCH%
 3290 LDA #0
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 3300 JSR OSWRCH%
 3310 : ]PROCres to re : [OPT PASS
 3320 LDA #0
 3330 JMP (&70)

Lines 3210 to 3240 find the current location of the text cursor (using
OSBYTE call 134) and store the X value in &72 and the Y value in &73.
Lines 3250 to 3300 use the machine code equivalent of TAB(x,y) to move
the text cursor. This is achieved by sending ASCII code 31 to the VDU
driver (see Chapter Ten) followed by the desired x and y values (20 and 0
in this case). The last part of the routine restores the registers (line 3310)
and then loads the A register with 0 the ASCII code for null and does an
indirect jump through location &70 (line 3330). As already explained, this
transfers control to machine code that implements OSWRCH in the MOS
and thus completes the call to OSWRCH made by BASIC.

Notice that this simple routine, DOTRACE%, has a very subtle and
potentially confusing action. It calls OSWRCH apparently directly using
JSR OSWRCH%, but WRCHV (the jump vector for OSWRCH) has been
changed to point to the start of the execution tracer. In other words, the
instructions JSR OSWRCH% actually calls the execution tracer for a
second time! This works because none of the routines within the
execution tracer try to print any of the characters tested for by the main
program and so all OSWRCH calls that originate from within the
execution tracer are correctly passed on to OSWRCH (i.e. by line 3160).
You might like to work out what happens if DOTRACE% attempts to
print “[” or “]”!

FINTRACE% is quite easy:

 3400 .F INTRACE% : ]PROCsave: [OPT PASS
 3405 JSR PBLANK%
 3410 LDA #31
 3420 JSR OSWRCH%
 3430 LDA &72
 3440 JSR OSWRCH%
 3450 LDA &73
 3460 JSR OSWRCH%
 3470 LDA #&FF
 3480 STA SPFLG%
 3485 JSR DELAY%
 3490 : ]PROCres to re : [OPT PASS
 3500 LDA #0
 3510 JMP (&70)

After first saving the registers using PROCsave it prints two blanks using
PBLANK% (a subroutine to be written at the next level of refinement).
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The reason for printing these blanks is to clear any trailing digits
belonging to previous line numbers. Lines 3410 to 3460 restore the text
cursor to its original position once again using the machine code
equivalent of TAB(x,y). Line 3480 sets SPFLG% to &FF to indicate that
the next space Ibm BASIC tries to print should be suppressed. Line 3485
then calls DELAY%. which, as its name suggests, serves to slow down
the speed of execution of BASIC so that the fine numbers can be read.
Finally a null is printed to complete the OSWRCH call originally made by
BASIC.

Now that FINTRACE% has set SPFLG% to &FF when a space has to
be suppressed, SPACE%, can be written as a simple test on SPFLG%.

 3600 .SPACE% PHA
 3610 LDA SPFLG%
 3620 BEQ SPEXIT%
 3630 PLA
 3640 LDA #0
 3650 STA SPFLG%
 3660 JMP (&70)
 3670 .SPEXIT% PLA
 3680 JMP (&70)

After saving the contents of A (line 3600) SPFLG% is loaded and tested
to see if it is zero. If it is, line 3260 transfers control to 3670 where the
value in A is restored and printed (line 3680). If SPFLG% isn't zero then
A is loaded with zero and this is used both to zero SPFLG%, and to print a
null character in place of the space. Notice the way that FINTRACE%,
and SPACE% use SPFLG% as a method of communication.
FINTRACE% sets SPFLG% to &FF when the next space should be
suppressed and SPACE% resets it to zero so that only a single space is
supppressed. A variable or memory location used in this way is often
referred to as a ‘flag'.

Third stage and changing WRCHV

At the third stage only PBLANK% and DELAY% remain to be
implemented. These are both trivial:

 3700 .DELAY% LDY #PAUSE
 3710 .DLOOP% LDX #255
 3720 .D1% DEX
 3730 BNE D1%
 3740 DEY
 3750 BNE DLOOP%
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 3760 RTS

 3800 .PBLANK% LDA #ASC("  " )
 3810 JSR OSWRCH%
 3820 LDA #ASC("  " )
 3830 JSR OSWRCH%
 3840 RTS

The only detail worth comment is the way that the X and Y registers are
used as separate counters to provide a long enough delay. Lines 3710 to
3730 form an inner loop nested within an outer loop formed by lines 3700
to 3750. Each time through the outer loop the inner loop is executed 255
times. The total delay is set by the variable PAUSE% which for
convenience can be defined as part of the BASIC program that assembles
the execution tracer.

All that now remains to be implemented is a short program to change
the jump vector WRCHV to point to the start of the execution tracer (i.e.
MAIN%). This simply involves transferring the existing contents of &20E
to &70 and &20F to &71 and then storing the low and high bytes of
MAIN% in &20E and &20F respectively. That is:

 3000 .SETUP% LDA &20E
 3010 STA &70
 3020 LDA &20F
 3030 STA &71
 3040 LDA #(MAIN% MOD 256)
 3050 STA &20E
 3060 LDA #(MAIN% DIV 256)
 3070 STA &20F
 3080 RTS

The complete program

The complete program, including macros, data definitions and the
procedures that assemble it, is given below:

   10  DIM CODE% 500
   15  PAUSE=255
   20  PROCasm(CODE%)
   30  CALL SETUP%
   40  STOP

 1000 DEF PROCasm(START%)
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 1005 FOR PASS=0 TO 3  STEP 3
 1010 P%=START%
 1020 PROCprog
 1030 NEXT PASS
 1040 PRINT
 1050 PRINT P%-START%;"  By tes"
 1060 ENDPROC

 2000 DEF PROCprog
 2010 OSBYTE%=&FFF4
 2020 OSWRCH%=&FFEE
 2030 OSWORD%=&FFF1
 2990 [OPT PASS

 3000 .SETUP% LDA &20E
\save  WRCHV in  &70

 3010 STA &70
 3020 LDA &20F
 3030 STA &71
 3040 LDA #(MAIN% MOD 256)  

\s to re  MAIN % in  WRCHV
 3050 STA &20E
 3060 LDA #(MAIN% DIV 256)
 3070 STA &20F
 3080 RTS
 3090 \
 3100 .MAIN% CMP #ASC(" [ " )
 3110 BEQ DOTRACE%
 3120 CMP #ASC(" ] " )
 3130 BEQ FINTRACE%
 3140 CMP #ASC("  " )
 3150 BEQ SPACE%
 3160 JMP (&70)

\p r in t  the  charac te r  in  A
 3170 \
 3200 .DOTRACE% : ]PROCsave: [OPT PASS 

\save  the  reg is te rs
 3210 LDA #134 

\ge t  the  cur ren t  cursor  pos i t ion
 3220 JSR OSBYTE%
 3230 STX &72 

\and  s to re  i t  i n  &72 and &73
 3240 STY &73
 3250 LDA #31 

\TAB(20,0)
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 3260 JSR OSWRCH%
 3270 LDA #20
 3280 JSR OSWRCH%
 3290 LDA #0
 3300 JSR OSWRCH%
 3310 : ]PROCres to re : [OPT PASS 

\ res to re  reg is te rs
 3320 LDA #0
 3330 JMP (&70)  

\p r in t  a  nu l l
 3340 \
 3400 .F INTRACE% : ]PROCsave: [OPT PASS 

\save  reg is te rs
 3405 JSR PBLANK% 

\p r in t  two  b lanks
 3410 LDA #31 

\TAB(X,Y)  where  x  and  y  a re
 3420 JSR OSWRCH% 

\o ld  cursor  pos i t ion
 3430 LDA &72
 3440 JSR OSWRCH%
 3450 LDA &73
 3460 JSR OSWRCH%
 3470 LDA #&FF 

\se t  f lag  to  supress  nex t  space
 3480 STA SPFLG%
 3485 JSR DELAY% 

\make BASIC s lower
 3490 : ]PROCres to re : [OPT PASS 

\ res to re  reg is te rs
 3500 LDA #0  

\p r in t  a  nu l l
 3510 JMP (&70)
 3520 \
 3600 .SPACE% PHA
 3610 LDA SPFLG% 

\ tes t  f lag
 3620 BEQ SPEXIT% 
   \ IF  SPFLG=0 THEN PRINT A ELSE PRINT " "
 3630 PLA
 3640 LDA #0
 3650 STA SPFLG%
 3660 JMP (&70)
 3670 .SPEXIT% PLA
 3680 JMP (&70)
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 3690 \
 3700 .DELAY% LDY #PAUSE 

\PAUSE se ts  the  leng th  o f  de lay
 3710 .DLOOP% LDX #255
 3720 .D1% DEX
 3730 BNE D1%
 3740 DEY
 3750 BNE DLOOP%
 3760 RTS
 3770 \
 3800 .PBLANK% LDA #ASC("  " )
 3810 JSR OSWRCH%
 3820 LDA #ASC("  " )
 3830 JSR OSWRCH%
 3840 RTS

 9000 REM MACROS

 9010 DEF FNequb(VA%)
 9020 ?P%=(VA% MOD 256)
 9025 IF  PASS=3 THEN PRINT ~P%;"=" ;~?P%
 9030 P%=P%+1
 9040 =P%-1

 9100 DEF FNequw(VA%)
 9110 ?P%=(VA% MOD 256)
 9115 IF  PASS=3 THEN PRINT ~P%;"=" ;~?P%
 9120 P%?1=(VA% DIV 256)
 9125 IF  PASS=3 THEN PRINT ~P%+1; "=" ;~ (P%?1)
 9130 P%=P%+2
 9140 =P%-2

 9200 DEF FNequs(S$)
 9210 $P%=S$
 9220 IF  PASS=3 THEN PRINT ~P%;"=" ;S$
 9230 P%=P%+LEN(S$)+1
 9240 =P%-LEN(S$) -1

 9300 DEF PROCsave
 9400 [OPT PASS
 9410 PHA
 9420 PHP
 9430 TXA
 9440 PHA
 9450 TYA
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 9460 PHA
 9470 ]
 9480 ENDPROC

 9500 DEF PROCres to re
 9510 [OPT PASS
 9520 PLA
 9530 TAY
 9540 PLA
 9550 TAX
 9560 PLP
 9570 PLA
 9580 ]
 9590 ENDPROC

If you run this program and then add to it the lines:

    1 REM
    2 GOTO 1

and then run it after typing TRACE ON you will see the line numbers ‘1’
and ‘2’ printed repeatedly at the top of the screen following the execution
of the infinite loop. To disable the trace just type TRACE OFF. Notice
that if you try to trace the execution of the program that assembles the
execution trace program you are doomed to crash the machine. The reason
for this is that the first pass of assembly overwrites the existing machine
code with an incomplete version with obvious consequences.

Using the execution tracer

If the execution tracer is going to be used to test BASIC programs it is
clear that the machine code that it produces has to be stored somewhere
out of harm's way so that another BASIC program can be loaded and run
without destroying the machine code. There are locations where machine
code can hide which do not need to be ‘setup’ and thus the user can be
spared the problem of reserving memory. The trouble is that these
readymade places are all used for something else by the BBC Micro. For
example, the execution tracer could be stored in the RS423 buffers
(transmit at &0900 to &09FF and receive at &0A00 to &0AFF) but this
would cause a problem if the serial port was being used at the same time.

The alternative to using one of these existing areas is to reserve some
memory by increasing the value stored in PAGE. However, for a utility
such as the execution tracer this seems very inappropriate and likely to
cause trouble if you load the machine code over an existing BASIC
program by forgetting to set PAGE! After weighing up the alternatives, in
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this case it seems better to use the RS423 receive buffer at &0A00 to store
the machine code. This still allows a serial printer if required without
disturbing the machine code Of course, if the program that was being
debugged using the tracer used the RS423 Input then it would have to be
re-assembled In tun in the memory reserved using PAGE. (An example of
the use of PAGE to reserve memory can be found in Chapter Ten in
connection with the background clock program.)

To assemble the machine code into the RS432 receive buffer all you
have to do is to change line 20 to read:

   20 PROCasm(&A00)

The resulting machine code should then be saved on disk or tape by using:

*SAVE TRACER A00,AFF,A00

This will save the entire RS432 buffer from &A00 to &AFF. Following
this you can install the execution tracer at any time by typing:

*RUN TRACER

and using TRACE ON/OFF to control it.

Evaluation and modification

The execution tracer is not an easy program to write in that it ‘tampers’
with the normal working of the MOS. The program is already in a state
where it is a useful tool but there are one or two simple extras that would
be worth incorporating. It is very easy to install the execution tracer but
currently the only way to remove it completely is to press BREAK. It
would be better if another program was made available to remove the
execution tracer by changing WRCHV back to its original value. It would
also bean advantage to incorporate a method of allowing the user to alter
the delay factor without having to re-assemble the program, but this is a
more complicated addition.

The main worry with any program that modifies the workings of the
MOS is that it will introduce unwanted and unpredictable side effects.
Such side effects are always difficult to pin down because they are
generally only observed after a great number of different things have
happened and in this sense they are not repeatable. The execution tracer
does have a serious problem that was first identified as a side effect-
Occasionally while tracing the progress of a graphics program a line
would be drawn to the wrong point. This happened very infrequently but
often enough to cast doubt on the execution tracer. The cause of this
erratic behaviour remained a mystery for some time until a simple
program that consistently produced the misbehaviour was found. If you
try:
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   10 VDU 23,224,0,91,0,91,0,91,0,91
   20 PRINT "A"
   30 GOTO 10

with the execution tracer installed and turned on you will find that the “A”
is not pruned although the trace claims that line 20 is repeatedly executed.
The explanation lies in the fact that ASC(“[”) is 91! A number of VDU
codes are followed by a list of parameter bytes, all of which are sent to the
VDU driver. For example, in the case of line 10 the VDU statement sends
ASCII code 23, then 224, and then 0 and 91 four times. The execution
tracer is thus fooled into thinking that a stream of opening square brackets
are being sent to the screen when in fact they are all part of a character
definition!

The solution to this problem is to detect those VDU codes that are
followed by a sequence of parameter bytes and make sure that the
execution tracer ignores them. This is quite easy in principle but in
practice it takes quite a few extra lines of code. The modifications
necessary to the execution tracer to enable it to ignore parameter bytes
following certain VDU codes are given below:

 3090 .MAIN% PHA
 3091 LDA SUP_COUNT% 

\ IF  SUP_COUNT<>0 THEN GOTO SKIP%
 3092 BNE SKIP%
 3093 PLA
 3094 JSR VCODE% 

\check  fo r  codes  and se t  SUP_COUNT%
 3109 CMP #ASC(" [ " )
 3110 BEQ DOTRACE%
 3120 CMP #ASC(" ] " )
 3130 BEQ FINTRACE%
 3140 CMP #ASC("  " )
 3150 BEQ SPACE%
 3160 JMP (&70)
 3165 .SKIP% DEC SUP_COUNT% 

\SUP_COUNT=SUP_COUNT-1
 3166 PLA 

\PRINT A
 3167 JMP (&70)

 4000 .VCODE% STX &74 
\save  X

 4010 LDX #9  
\ load  X  w i th  number  o f  by tes  tha t  
 fo l low each  code

 4020 CMP #23 
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\ tes t  fo r  code
 4030 BEQ COEX% 

\ IF  A=code THEN GOTO COEX%
 4040 LDX #8
 4050 CMP #24
 4060 BEQ COEX%
 4070 LDX #5
 4080 CMP #25
 4090 BEQ COEX%
 4100 LDX #4
 4110 CMP #28
 4120 BEQ COEX%
 4130 LDX #4
 4140 CMP #29
 4150 BEQ COEX%
 4155 LDX #2
 4156 CMP #31
 4157 BEQ COEX%
 4160 LDX #0
 4170 .COEX% STX SUP_COUNT%
 4180 LDX &74 

\ res to re  X
 4190 RTS
 5000 ]
 5010 REM DATA
 5020 SPFLG%=FNequb(0)
 5030 SUP_COUNT%=FNequb(0)

The basic idea behind this extension is to record in SUP_COUNT%, the
number of bytes that should be ignored by the execution tracer. If
SUP_COUNT% is zero then the program works as before apart from
calling VCODE% to check to see if the code in the A register is followed
by any parameter bytes. If SUP_COUNT% is non-zero then the code in
the A register is not examined by the execution tracer and is simply
passed to OSWRCH. Each code that is ignored in this way causes
SUP_COUNT% to decrease by one. Thus the number of bytes that are
ignored depends on the initial setting of SUP_COUNT%. Setting
SUP_COUNT% is the responsibility of subroutine VCODE%. This
repeatedly loads the X register with the number of bytes to be ignored
following a particular code and then tests for that code. For example, line
4010 loads X with 9 and then line 4020 tests for code 23 and indeed nine
parameter bytes always follow code 23. In this way the X register always
contains the number of bytes to be ignored when the subroutine reaches
COEX%. This value is stored in SUP_COUNT% and then control is
returned to the main program. There are many other small but important
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details of how this extension works but you should be able to make sense
of them one by one.

Conclusion

The execution tracer started life as a fairly simple idea for an assembly
language program. As with many assembly language programs it quickly
grew to be larger and more subtle than expected! The use of stepwise
refinement and modular programming makes it much easier to cope with
the unexpected as well as the planned! There is still a small problem with
the execution tracer that results from the way that BBC BASIC handles
the comma within a PRINT statement. This is because the ‘zone’ spacing
is performed by BASIC, which uses the COUNT function to send the
correct number of blanks to the screen, rather than by the MOS. There is
nothing simple that can be done to correct this problem without using
memory locations that might be changed in future versions of BASIC.
Fortunately the trouble it causes doesn't detract loo much from the
usefulness of the execution tracer.



Chapter Ten
The MOS − A Soft Machine

Of the two pieces of system software stored in ROM (BBC BASIC and
the MOS Machine Operating System) BASIC gets by far the greater
amount of attention and praise. This is only to be expected because BBC
BASIC is a fairly advanced dialect of a very well known language.
However, BBC BASIC relies very heavily on the software support of the
MOS and many of the actions that appear to be part of BASIC are simply
passed over as a request for action to the MOS. The MOS is also
important in that it is the only piece of 'fixed' ROM software in the BBC
Micro. For example, you might replace the BASIC ROM by another
language but the new language would still use the MOS as support
software.

Some of the details of the workings of the MOS have already been
described inThe BBC Micro: An Expert Guide and the aim of this chapter
is to enlarge on some of the ideas presented in this earlier book. The MOS
is a highly structured piece of software and there is much that can be
learned from it about the way that the BBC Micro works. The first part of
this chapter builds up a general picture of the different sections of the
MOS and the tasks that they perform. The final part presents a short
project that makes use of a very special feature of the BBC Micro, 'event
handling', to produce a clock display that allows you to run another
program while still displaying the time.

What is a machine operating system?

The reason why there is, in general, so little comment on the MOS
probably has something to do with it being an operating system. The
purpose of implementation of a language such as BASIC is obvious, but
the purpose of an operating system is not so clear. The quality of a dialect
of BASIC is therefore easy to judge while it is difficult to set a standard
for an operating system. Tradition has it that the purpose of an operating
system is to make the facilities of a machine available to other programs
and ultimately the user, and this is indeed what the MOS does. However.
if an operating system offers up a facility in such a way that it is difficult
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to use, does the fault lie in the operating system or the hardware of the
machine? You might think that the answer to this question depends on the
particular case; sometimes the software would beat fault and sometimes
the hardware. The surprising thing is that it is always the software! No
matter how horrible the hardware is it is possible for the software
contained within the operating system to deliver it to the user in a way that
is easy to use. The only thing that you can blame the hardware for is lack
of speed and this might make the software's job pointless - an easy-to-use
but incredibly slow system is not something that anyone wants! An ideal
operating system should, so to speak, 'tame the machine's hardware' so
that other software can concentrate on putting it to good use.

Operating systems are not often considered an important factor in
personal computing and machine designers have often overlooked the
need for good operating systems and concentrated on the quality of the
BASIC. This has forced BASIC to grow extensions that look after
whatever extra hardware that the machine has. An example of this
approach at its most extreme can be seen in the APPLE II's so-called Disk
Operating System or DOS. This is so much an afterthought to
APPLESOFT BASIC that it is difficult to see it as a separate piece of
software! The BBC Micro was possibly the first machine fully to use an
operating system both to make facilities available and to enhance the
performance of the hardware. The MOS was designed as an essential and
integral part ofthe BBC Micro and without it the hardware would look
distinctly incomplete! Indeed the MOS is best regarded as a software
extension of the hardware and in this sense the BBC Micro is very much a
creation of software. In other words, it can be viewed as a 'soft machine'. 

The structure of the MOS

The main design decision that seems to have given rise to the MOS is that
all of the machine's I/O would be handled by it and it alone. In this sense
the MOS can be thought of as a layer of software that separates other
system software, such as BASIC, from the hardware (see Fig. 10.1). This
separation makes it possible to enable languages such as BASIC to be
hardware independent. At first it may be difficult to see any payoffs for
the user of this hardware independence but it is, for example, responsible
for the uniform way that files are handled no matter what the file device
concerned tape, disk, network or telesoftware (see Chapter Six). As far as
file devices are concerned, there is just one set of I/O commands and the
variability in the storage device is 'absorbed' by the filing system software.

Miscellaneous and character-oriented devices, such as the sound
generator and the serial interface, are always difficult to build into an
operating system in a regular way but the BBC MOS does its best. The
text and graphics display is such an important part of the machine that it is
given a section of the MOS all to itself the VDU drivers. Other I/O)
devices are combined with miscellaneous operations and dealt with in two
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classes those that require only a small amount of information to be passed
and those that require a large or variable amount of information to be
passed. The reason for this division is entirely practical because it enables
a simple method of communicating with the MOS to be used wherever
possible.

Fig. 10.1. The flow of data.

Hardware

MOS

BASIC
Program

BASIC
Interpreter

The MOS also acts as a sort of 'supervisor' program for any other ROMs
that might be present in the sideways ROM sockets. For example, when
the machine is first switched on the MOS selects, or 'pages', the ROM that
is in the numbered ROM socket with the highest number (see later). A
more important example of the role of the MOS in ROM paging is in the
processing of 'service' requests. When the ROM currently in use makes a
call to the operating system (via OSBYTE, for example) to perform some
I/O Oor any other task the MOS will attempt to carry out the request.
However, if the M OS doesn't recognise the request as something it is
capable of dealing with, it will ask each of the sideways ROMs in turn if
they can deal with the request. Thus the MOS is responsible for
implementing a fairly sophisticated paging system that can effectively
extend the BBC Micro's memory space to well over the 64K of memory
that the 6502 can address directly.

The final, and perhaps the least obvious, action of the MOS is to look
after interrupts. Put simply, an interrupt is a signal that stops a computer
from carrying out its current task, switches its attention to another task
and then returns it to its current task as if the interruption had never
occurred. Thus interrupts can be used to give a computer the appearance
of doing more than one thing at a time by repeatedly and very rapidly
switching between a number of tasks. The BBC Micro is an advanced
machine in that interrupts are an essential part of the way it works not, as
in the case of so many machines, an afterthought added to control a
special I/O device or provide a clock. An interrupt-driven machine has a
very special 'feel' about it for both programmers and users. In particular,
programmers have to be aware ofthe potential of a machine that runs
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under interrupts and of the consequent problems. Apart from providing
the real time clock in the pseudo variable TIME, the interrupts are used to
service and maintain the extensive system of I/O buffers and queues and
provide information to user programs about when certain events have
occurred. To get the best from your BBC Micro it is very important to
understand the nature of an 'interrupt driven' machine. To this end the
final part of this chapter gives an example of how interrupts can be used
within a program.

Fig. 10.2. The structure of the MOS.
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The structure of the MOS as described above can be seen in Fig. 10.2,
along with the names of the machine code subroutines that BASIC and
other software use to communicate with each section. Notice that although
the interrupt and event handler looks as though it has no way of letting
either BASIC or a user program gain access to it, this is not the case, as
will be explained later. As with any piece of real software there are always
odds and ends that don't fit into the overall classification and the MOS is
no exception. For example, there is a 'command line interpreter' which
while not essential does make the MOS easier to use. Now that the
structure of the MOS is clear it is time to look more closely at each of its
parts.
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The file system

In most computer systems it is useful to distinguish two types of I/O
devices those that work in terms of named files and those that work by
transferring small units of data one after the other. File devices include the
well known cassette recorder and floppy disks of all kinds (Chapter Six
has already described file handling as it applies to these two types of
device). However, for the BBC Micro the range of file devices extends to
exotic systems such as networks, telesoftware and ROM cartridges. Such
diverse systems might lead you to believe that a different method of
handling is appropriate and indeed necessary for each one. This is not so!
As already mentioned at the start of Chapter Seven, the idea of a file and
the operations that manipulate it are independent of the actual physical
device used to store it. The physical device affects the speed of storage
and retrieval (and very occasionally it may not allow a particular
operation) but it doesn't alter the principle underlying handling files.

The MOS uses a standard set of six machine code subroutines for all
file operations, no matter what type of device is in use. Two of the
subroutines, OSFIND and OSARGS, are concerned with general file
operations such as 'opening', 'closing', 'deleting', etc. The remaining four
are used to read and write files. OSBGET and OSBPUT are used to read
and write a single byte from and to a file that is already open. OSFILE
reads or writes an entire file in one operation. The final subroutine
OSGBPB will write or read a variable sized block of bytes to the file this
can only be used with devices that can sensibly support random access
such as the disk system.

Each one of these subroutines is used by referring to a fixed location in
the MOS ROM but, as these locations immediately transfer control to
jump vectors in RAM, the position of the code that actually carries out the
operation can easily be changed. In this way the code used when you call
one of the subroutines can be made appropriate for the currently selected
filing system tape, disk, network, etc. These subroutines are used by
BASIC to implement its file I/O and you should be able to recognise the
correspondence between the BASIC commands GET, PUT and LOAD/
SAVE with the MOS subroutines OSBGET, OSBPUT and OSFILE. Of
course the more familiar INPUT and PRINT make repeated use of the
MOS subroutines to handle their multiple data transfers. The use of these
machine code subroutines has already been described with reference to
tape and disk in Chapter Six.

The VDU driver

The VDU driver is responsible for performing all of the text and graphics
operations provided by the BBC Micro. If you are familiar with the
hardware details of how the BBC Micro produces its TV display (see The
BBC Micro: An Expert Guide for this hardware information) you will
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realise that the VDU driver has a lot to do simply to make a character
appear on the screen. As well as this fundamental job, it also has to
provide the colour control, implement the graphics commands, look after
the scrolling, implement and maintain the text and graphics windows and
look after just about every other feature of the display. With so many
different things to do you might expect that the VDU driver would consist
of a great many different subroutines, each with a different name and
method of use. As in the case of the file system, it is possible to make
things simpler by careful planning and observing how information is
normally generated and sent to a video display. As text is usually sent to
the display in the form of a stream of ASCII codes it makes sense to
continue to use the same method to communicate all the data to the VDU
driver. In other words, the VDU driver can use a single entry point as long
as it examines the stream of ASCII codes that is being sent to it for special
'control codes'.

The single entry point is OSWRCH and the ASCII codes are extended
to include all of the text and graphics operations. For example, if the VDU
driver detects ASCII code 12 then it will clear thetext screen, a code of 1 6
will clear the graphics screen and so on. Sometimes the amount of
information needed for a text or graphics operation is greater than a single
ASCII code can convey. In this case a sequence of ASCII codes is
required. For example, following ASCII code 31 the next two codes are
not interpreted in the usual way but are taken to be the new X and Y
position of the text cursor.

The familiar BBC BASIC text and graphics commands are
implemented by sending the appropriate ASCII codes to the VDU driver.
For example, the command CLS results in the code 12 being sent to the
VDU driver. In this sense the BASIC statements:

CLS
PRINT CHR$(12);

and

VDU 12

all achieve exactly the same results - they send code 12 to the VDU driver
and so clear the screen and are therefore the same! TAB(X,Y) first sends
code 31 and then two codes whose values are given by X and Y
respectively. In other words, BBC BASIC doesn't manipulate directly the
contents of the RAM that stores the screen data. Instead it converts its
requirements into the appropriate sequence of ASCII codes and sends
them to the VDU driver which then changes the screen data. All programs
running on the BBC Micro, whether in BBC BASIC or machine
code,should use the VDU driver and avoid direct manipulation of the
screen memory if at all possible.

For the sake of convenience, it is useful to have three entry points to
the VDU driver; OSWRCH, which sends the code stored in the A register
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to the VDU driver; OSASCI, which inspects the code and, if it is a
carriage return, sends a new fine code to the VDU driver, and finally.
OSNEWL, which is an entry point that automatically sends a new line
followed by a carriage return code. Each of these subroutines is entered
via a fixed address within ROM which then immediately transfers control
to a routine whose address is stored in RAM. This makes it possible to
intercept all output going to the screen by changing the contents of the
RAM vector and to replace or alter OSWRCH, etc. An example of this
can be found in the trace program given in Chapter Nine.

The power of this simple system of using a stream of ASCII codes to
control the complex text and graphics operations takes some time to
appreciate. One of its advantages is that both the BASIC programmer and
the assembly language programmer control the display in exactly the same
way. The sequence of codes that the BASIC programmer sends to the
VDU driver, using, say, the VDU command, is exactly the same as the set
of codes that the assembly language programmer has to send to the VDU
driver by calling OSWRCH directly.

Miscellaneous I/O

There are two machine code subroutines OSBYTE and OSWORD which
control a wide range of MOS activities. Exactly what OSBYTE and
OSWORD do is controlled by the code stored in the A register before they
are called. Once again the programmer is spared from having to deal with
a large number of separate and specialised subroutines by the simple
expedient of using a single entry point and an action code. OSBYTE is
made available to BASIC programmers in two ways. Firstly, it is used to
implement many BASIC commands, For example, the INKEY function
calls OSBYTE to read the keyboard. Secondly, many OSBYTE actions
are available via the familiar *FX command. Only OSBYTE actions that
do not return information to the program can be used via the *FX
command, because although the * FX command can transfer data to
OSBYTE it has no mechanism for returning it. The command *FX a,x,y
places the value 'a' in the A register, 'x' in the X register and 'y' in the Y
register and then calls OSBYTE. In this sense it is exactly equivalent to
the assembly language:

LDA #a
LDX #x
LDY #y
JSR OSBYTE

If 'x' or 'y' are omitted the command will automatically load the
appropriate registers with zero.

The OSWORD subroutine works in a very similar way to OSBYTE
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but, as the amount of data involved is more than just the A, X and Y
registers can hold, the *FX or an equivalent cannot be used to access
OSWORD from BASIC. The only access to OSWORD that a BASIC
programmer has is indirect and via the BASIC commands that call
OSWORD to implement their operations. For example, the SOUND
command sets up a data block of information about pitch, volume, etc.,
then it loads the A register with 7, sets the X and Y registers to point at the
data block and jumps to OSWORD which does the real work of setting up
the sound generator. OSWORD calls are listed in Section 43 of theUser
Guide.

The *FX commands are also well documented in the BBC Micro's
manual and so it isn't worth repeating the list here. However, there area
number of OSBYTE and OSWORD calls that are useful from BASIC but
no direct command is provided to access them. For example, the
OSWORD call with A set to 10 will return the dot definition of any
character. The ASCII code of the character is stored in the first location of
a data block and the dot pattern is stored in the following eight bytes of
the block when OSWORD returns. Although this OSWORD call isn't
available in BASIC it is easy to write a procedure to implement it:

1000 DEF PROCshape(CODE%)
1010 ?&600=CODE%
1020 A%=10
1030 Y%=&06
1040 X%=&00
1050 A%=USR(&FFF1)
1060 FOR A%=1 TO 8
1070 DOT%(A%)=A%?&600
1080 NEXT A%
1090 ENDPROC

The eight bytes of the dot pattern for the character corresponding to
CHR$(CODE%) are returned in the array DOT% which must be
dimensioned in the main program before PROCshape is used. The area of
memory starting at &600 is used for the data block because it is unlikely
to be in use for anything else. (It is normally used for the parameter block
for a CALL statement.) As another example the OSWORD call with A set
to 11 returns the logical to physical colour assignment asset by any
previous VDU 19 commands. This is also not available as a direct BASIC
command but it is easy to add it as a function:

2000 DEF FNphyscol(L%)
2010 ?&600=L%
2020 A%=11
2030 Y%=&06
2040 X%=&00
2050 A%=USR(&FFF1)
2060 =?&601
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This will return the physical colour code assigned to the logical colour
code stored in L%. You should be able to see the similarity between this
function and the previous procedure.

The final two I/O procedures, OSRDCH and (for a second time)
OSWRCH, are used to read and write single bytes of data to any of the
character-oriented devices. Normally OSRDCH will return the ASCII
code of any key pressed on the keyboard and OSWRCH will send the
ASCII code of a character to the VDU driver. This is because the
keyboard and the screen are the default I/O devices. It is possible to
change this default selection using the OSBYTE subroutine and in this
sense OSRDCH and OSWRCH are general purpose single character input
and output routines. For example, following *FX 3,3 OSWRCH sends a
character to the printer port and following *FX 2,1 OSRDCH gets
characters from the serial port. (See the short example in the section on
the interrupt and event handler.)

ROM paging

The ROM paging activities of the BBC Micro are unlikely to be of
practical interest unless you plan to produce your own software in ROM.
However, the general method used by the MOS to handle paging is
interesting for its own sake and will be described in this section. If you do
feel up to tackling the difficult and time-consuming problem of putting
software into ROM then you will find all of the technical details that you
need in a booklet entitledBBC Micro ROM Paging Systems Explained,
produced by Watford Electronics (35/37 Cardiff Road, Watford, Herts.
They can also supply all the extra hardware that you will need).

Although the 6502 inside the BBC Micro can only address 64K of
memory directly, this has been extended by allowing any one of a possible
16 ROMs to occupy the 16K region from &8000 to &C000. You can
think of these 16 ROMs as the pages of a book and at any one time the
book can only be opened to reveal one of the pages. This method of
sharing a limited amount of address space is usually called paging. From a
hardware point of view the BBC Micro's paging system is relatively
simple. If we assume that there are 16 ROM sockets numbered 0 to 15
then to select (or 'page in') the ROM in socket x all we have to do is to
write the value of'x' to the ROM page register at &FE30. An unmodified
BBC Micro has only four paged ROM sockets on the main PCB but this
number can easily be extended to the full 16 sockets by the use of an
expander board. (Some expander boards will even allow you to install
16K of RAM in the address range &8000 to &C000 and this makes ROM
software much easier to develop.)

The hardware side of ROM paging is indeed very simple but the real
difficulty inherent in any paging system is how to make sure that the
required page is enabled when und only when it is needed this is clearly a
software problem. To be more precise it is a problem that the MOS has to
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solve. The 16K of software that constitutes the MOS is always in position
at &C000 to &FFFF no matter which of the paged ROMs is selected. This
makes it the ideal (in fact the only!) candidate for looking after the paging
process.

The simplest paging action that the MOS carries out is detecting which
ROM sockets actually have a valid ROM installed and then paging the
one with the highest number into the address space. This happens when
the machine is first switched on or when BREAK is pressed. If you are
using an unmodified BBC Micro then it might be of use to know that the
ROM sockets are numbered from 12 on the left-hand side making the
right-most socket number 15. (The socket on the far left of the row of five
is not a page ROM socket but holds the MOS ROM instead.) In other
words, this paging action makes sure that when the machine is first
switched on, or when BREAK is pressed, the ROM in the right-most
socket is enabled this is usually BASIC but it could equally well be any
other language or, say, a word processor.

For a ROM to be detected its first few bytes must conform to the
following format:

Offset (from &8000) Size (in bytes)
0 3 JMP language
3 3 JMP service
6 1 ROM type
7 1 Length of information area.
8 1 Version number (in binary).
9 as required Title string ending with 00.
- as required Version string ending with 00.
- as required Copyright string starting with

'(C)' and ending with 00.
- 4 Tube relocation address.

The most interesting of these entries are the JMP language and JMP
service instructions. Each ROM can consist of two parts a language part
and a service part and these two instructions are used by the MOS to enter
either part as required. The language part of a ROM is characterised by
being a candidate for transfer over the Tube to run on a second processor
and for this reason it must avoid any direct reference to the main
processor's I/O locations it must use the MOS for all I/O operations, A
service part of a ROM is not a candidate for transfer over the Tube and as
such it can make direct use of the main processor's I/O locations and
generally get involved with the hardware. Service ROMs are usually
concerned with providing additional software support to other programs -
i.e. they provide a service to other programs. For example, the Acorn disk
operating system is a service ROM. On the other hand language ROMs
contain programs like the BASIC interpreter or word processors that make
use of service ROMs to handle the hardware. This distinction isn't clear
cut, however, and most ROMs have both a service and a language entry.
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The rest of the entries are mainly about describing the nature of the ROM.
The type byte of each valid ROM that is detected is stored in a table, the
address of which can be found by using OSBYTE call 170. (The start of
the table is returned in the X and Y registers. )

If the selection of a single ROM from a number of possibilities was the
only sort of paging that the MOS carried out then there would be little
advantage in using it! In fact the ROM paging system is used a great many
times during the normal running of a program. The language part of any
ROM can be entered at any time by using a *FX 142, ROM number
command or its OSBYTE equivalent. This OSBYTE command can be
issued by any of the paged ROMs or the. MOS itself. If it comes from
another paged ROM, control is first passed to the MOS which then
performs the necessary paging operation.

In the same way, the service part of a ROM can be entered using *FX
143 or its equivalent OSBYTE call. However, in this case the call is
somewhat more complicated. The full form of the *FX command is:

*FX 143,call number,parameter

where 'call number' describes the reason for the calland 'parameter'
supplies any additional information that is necessary. Notice that unlike
the language call this service call does not name the particular ROM
socket number that should deal with the call. The reason for this is that
this number will usually be unknown to the MOS and instead it will page
in each of the ROMs in turn and enter the service part with the 'call
number' in the A register. In this way the service part of each ROM is
given the chance to either take notice of or act on the call. The effects of
most of the call numbers are difficult to explain exactly but the following
table gives a summary.

Call Number Action

0 NOP - no operation - if a service ROM acts upon a call
and needs to make sure it will be ignored by the
remaining ROMs it can set A to zero before returning to
the operating system.

1 Work space required each ROM may state its needs for
working memory.

2 Private space required each ROM may state its need for
private, i.e. non shareable, work space.

3 Auto-boot when BREAK is pressed each ROM is given a
chance to test the keyboard to see if its 'start up' key is
pressed. If it is then the ROM may transfer control to its
language section or run any other program it likes.
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4 Command not recognised by MOS. If a command
starting with '*' is not one that the MOS recognises it
offers it to each of the ROMs in the hope that one of them
will recognise and act on it. On entry Y,(&F2) points to
the start of the command. 

5 IRQ not recognised. The MOS cannot identify the source
of an IRQ interrupt and asks each ROM in turn to try to
identify it. If a ROM is not using any interrupts then it
simply returns control to the MOS.

6 BRK a BRK instruction has to be executed i.e. the system
is in an error condition.

7 OSBYTE call not recognised. An OSBYTE call that the
MOS doesn't recognise is passed to each of the ROMs to
see if it is one that they can handle. The OSBYTE
parameters A,X and Y are stored in &EF,&F0 and &F1
respectively on entry and are also used to return any
results.

8 OSWORD call not recognised. As in the case of an
unrecognised OSBYTE call each ROM is given a chance
to process the unrecognised OSWORD call. Notice that
OSWORD calls in the range &80 to &FF indirect via
USRV rather than cause ROM paging.

9 HELP information required each ROM should print its
title line, etc.

A Claim main work space a ROM wishes to use the work
space.

B NMI released.
C NMI claimed.
D Initialise *ROM filing system.
E Return a single data byte for *ROM filing system.
F Claim MOS indirection vectors.
10 Filing system is about to close *SPOOL and *EXEC

files.
11 Character set about to implode/explode.
12 Initialise filing system.
FE Tube post initialisation.
FF Tube hardware present.

Many of these calls simply inform any ROMs that might be active of a
system condition but four of them effectively extend the facilities offered
by the MOS. Call 4 extends the range of '*' commands that are recognised,
call 5 extends the range of interrupts that are recognised (seethe next
section), call 7 extends OSBYTE and call 8 extends OSWORD. For
example, suppose you have written a new word processor and you want to
call it 'BWORD'. If you included a service entry that recognised the letters
of'BWORD' then you could be paged in by the command '*BWORD'.
When the MOS encounters this command it would find that it wasn't one
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that it recognised and it would begin to page in the ROMs one by one and
enter their service section with call number 4 unrecognised command.
Each ROM would then check to see if they recognised the command. Of
course, if you have chosen the name 'BWORD' carefully only the service
section of your word processor ROM will recognise it. To get the word
processor going the service section of your ROM would call the MOS
using *FX 142,ROM number which would then enter your ROM at the
language entry point.

As a more simple example, suppose your new ROM implements a
command that makes a specific sound effect and you want it to be added
to the MOS as OSBYTE &A0. When the MOS is entered via an OSBYTE
call with a code of &A0 it cannot identify what action to take and so it
starts to page each ROM in turn using call number 7. Each ROM will
inspect the unknown OSBYTE call and return control to the MOS if it too
fails to recognise it. Of course when your new ROM is paged it will
recognise the OSBYTE call and so will proceed to make the required
sound effect. Finally your ROM should set A to zero and return to the
MOS so that none of the remaining ROMs will even bother to examine
the call.

There is much more to say about how the MOS ROM paging
mechanism can extend the MOS. In particular, there is the whole subject
of filing systems and how new filing systems can be written so as to
integrate with the existing software but all this is beyond the scope of this
book. If you are interested then you will find the extra details that you
need in the booklet from Watford Electronics mentioned at the start of this
section and this, coupled with the overall description given here, should
be sufficient for you to implement your own ROM software.

The interrupt and event handler

While the BBC Micro is running interrupts are generated every hundredth
of a second by one of the timers inside VIA A. Each time one of these
regular interrupts is received the interrupt handler, whose address is stored
at &204, is called. This updates the pseudo variable TIME and then
checks to see if anything else needs attention. For example, it is
responsible for altering the parameters of the sound generator for the
duration of a sound controlled by an envelope. It is this action that makes
the BBC Micro's sound generator so powerful. From a hardware point of
view it is not at all impressive but when it is added to the frequent and
periodic attention that the interrupt handler provides it is as good as more
complex hardware and far more flexible.

The interrupt handler also looks after the system of queues which are
such an important feature of I/O through the MOS. Using the sound
generator as an example for the second time, it is easy to see that at each
interrupt the interrupt handler has to check to see if the current sound has
reached its specified duration or not. If it hasn't then the sound generator
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is left alone. If it has then the sound queue associated with that channel is
inspected. If it is empty then the channel is switched off, otherwise the
parameters stored in the queue are used to start the next tone and the
queue is moved up by one. This interrupt servicing of the sound queue is
responsible for the BBC Micro apparently being able to do two things at
once - run a BASIC program and generate a sound. The printer and serial
ports are both associated with queues or buffers that are serviced by the
interrupt handler and, as in the case of the sound generator, this greatly
enhances the performance of the entire system. For example, it is quite
possible for a BASIC program to print out a large quantity of data while
getting on with another job. All it has to do is send data to the printer
buffer until it detects, using ADVAL(-4), that it is full. Then it can get on
with another job and the interrupt handler will automatically send a
character at a time to the printer, at the rate that the printer can accept. Of
course, if left in this state all that would have been printed is a single
buffer full of data but if, while carrying out its other jobs, the BASIC
program occasionally checks to see if the buffer is once again empty
(using ADVAL(-4)) and transfers enough data to keep it topped up, any
amount of data can be printed without stopping the BASIC program
unnecessarily. As an illustration of this method the following short
program will print powers of two on the printer and a sequence of integers
on the screen.

     10 I=0
     20 J=2
     30 IF ADVAL(-4)=63 THEN PROCprint(J)
     40 I=I+1
     50 PRINT I
     60 GOTO 30

 1000 DEF PROCprint(J)
 1010 REPEAT
 1020 VDU 2,21:PRlNT J:VDU 6,3
 1030 J=FNupdate(J)
 1040 UNTIL ADVAL(-4)<10
 1050 ENDPROC

 2000 DEF FNupdate(J)
 2010 =J*J

The first part of the program, consisting of lines 10,40,50 and 60, is easily
recognised as a simple infinite counting loop. Line 30, however, tests to
see if the printer buffer is completely empty. If it is then PROCprint is
called to refill it. This ensures that, as the values of I are printed on the
screen, the printer is periodically given something to keep it busy.
PROCprint simply sends as many values of J as the printer buffer can hold
and then returns control to the main program. Notice that the REPEAT
loop, lines 1010 to 1040, comes to an end ten characters before the buffer
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is full. The reason for this is that the PRINT statement adds a number of
characters to the buffer each time it is executed and if the buffer became
full during this print statement the program would have to wait until space
was made available. This would of course defeat the object of the
program. Also notice that following each addition to the buffer FNupdate
is called to provide a new value for J. In practice FNupdate would usually
be a function to read single characters from a text tile stored on disk. so
allowing a file to be listed while the program gets on with something else.
You might be a little worried by line 1020 as it uses VDU 21 and VDU 6
to disable and enable screen output respectively, rather than the *FX
called mentioned in the section on miscellaneous I/O. The reason for this
is that *FX 3 appears not to work when the printer is the only selected
output device (i.e. *FX 3,2 will not select the printer). This presents no
real difficulty as VDU codes 21 and 6 can be used to send output to the
printer without affecting the screen. It is quite possible to write a machine
code version of the above program that would print the contents of a file
while an entirely different program was being used. How this could be
done will be easier to see after the following example.

A background clock

Interrupts are such an important part of the BBC Micro that it is worth
giving an example of a complete project that makes use of this facility.
The aim of the project is to add a 'background clock' that will display
hours, minutes and seconds on the screen no matter what the BBC Micro
is doing and without interfering with the running of any other programs.
The screen display part of this problem has already been solved in
connection with the trace program described in Chapter Nine and the only
really new element is how to update the display periodically. Perhaps the
most obvious method of updating a clock is to use the regular interrupts to
enter a routine that increments the current time. However, interrupts occur
every hundredth of a second and the background clock only has to 'tick'
once every second. It would be possible to count one hundred interrupts
and then increment the time but in the case of the BBC Micro this would
be a complicated way of doing things. As well as a five byte timer that is
used to provide the pseudo variable TIME, the MOS also maintains a
separate 'interval timer' that is incremented with each interrupt. This
interval timer can be read using OSWORD 3 and set to any given value
using OSWORD 4. For this particular project the most important feature
of the interval timer is that it can be used to cause a periodic event that
repeats after any given interval. If the 'interval timer crossing zero' event
is enabled using *FX 14,6 then an event will occur each time the event
timer reaches a count of zero. As the event timer counts up to &
FFFFFFFFFF and then resets itself to zero, the time between these events
can be set by storing an appropriate value in the event timer. In this case
we need an event to occur after one second, i.e. after one hundred
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interrupts, so the value that should be stored in the interval counter is &
FFFFFFFFFF-100 (because this will make the interval timer reset to zero
after being incremented 100 times).

Now that we have a method of making the clock 'tick' every second the
rest of the project is mamly about routine details such as how the data
should be represented, etc. (The rest of this discussion assumes that you
know something about simple binary and BCD) representation - if this is
not the case then you will find these ideas dealt with at length in Chapter
Twelve.) Obviously we are going to have to store a two digit value for
each of hours, minutes and seconds, increment them in such a way that a
count of 60 seconds adds one to the minutes and a count of 60 minutes
adds one to the hours. We could use simple binary to store the values but
this would make printing them out as decimal digits rather difficult.
Instead it makes sense to use a BCD (Binary Coded Decimal)
representation. BCD is explained more fully in Chapter Twelve but
essentially BCD uses four bits to represent a single decimal digit in the
range 0 to 9. Thus a single memory location can store a pair of BCD digits
and this is particularly convenient for our application as a single memory
location can be used for the two digit hours, minutes and seconds.

After so much discussion, writing the main program is easy:

3000 .T ICK%
3010 ]PROCsave: [OPT PASS
3020 JSR UPDATE%
3030 JSR DISPLAY%
3040 JSR RESET%
3045 ]PROCres to re : [OPT PASS
3050 RTS

PROCsave and PROCrestore are the two macros introduced as part of the
trace program in Chapter Nine which save and restore all of the 6502
registers - this has to be done for all but the simplest event handling
routine as the register values have to be preserved. UPDATE% is simply a
routine to increment the time. DISPLAY% prints the time at the top of the
screen and then restores the cursor's position. Finally RESET% sets the
interval timer's value so that an event will occur again after one second
has passed.

The second stage of refinement is fairly easy. The UPDATE% routine
simply adds one to SEC% and checks to see if it has reached 60. If it has
then it is zeroed and one is added to MIN% which is also checked to see if
it has reached 60. If it has then it too is zeroed and one is added to
HOUR% which is then checked to see if it has reached 24 (the
background clock is a 24 hour clock!). If it has then it is also zeroed. The
DISPLAY%, routine is essentially the same as the routine used in the
trace program to alter the cursor position. The only difference is that it
now calls DISPNUM% to print the time before returning the cursor to its
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original position. RESET% simply uses a call to OSWORD 4 to set the
interval timer and needs no comment.

The third and fourth stages of refinement are now quickly
implemented as only DISPNUM% remains undefined. DISPNUM% is
straightforward, if a little tedious in that it uses a pair of subroutines,
L_NUM% and RNUM%, to convert the left (i.e. bit 7 to bit 4) and the
right (i.e. bit 3 to bit 0) digits of a BCD number into valid ASCII digits
and then uses OSWRCH to print the results.

The only part of the program that remains is a routine that will alter the
'event vector' at &220 to contain the address of the start of theclock
program and enable the interval timer to reach zero event. This can be
seen in the complete version of the program given below as INIT%.

   10  DIM CODE% 500
   20  PROCasm(CODE%)
   30  CALL INIT%
   40  STOP

 1000 DEF PROCasm(START%)
 1005 FOR PASS=0 TO 3  STEP 3
 1010 P%=START%
 1020 PROCprog
 1030 NEXT PASS
 1040 PRINT
 1050 PRINT P%-START%;"  By tes"
 1060 ENDPROC
 2000 DEF PROCprog
 2010 OSBYTE%=&FFF4
 2020 OSWRCH%=&FFEE
 2030 EVNTV%=&220
 2040 OSWORD%=&FFF1
 2990 [OPT PASS

 3000 .T ICK%
 3010 ]PROCsave: [OPT PASS
 3020 JSR UPDATE%
 3030 JSR DISPLAY%
 3040 JSR RESET%
 3045 ]PROCres to re : [OPT PASS
 3050 RTS
 3060 \
 3070 .UPDATE% SED
 3080 CLC
 3090 LDA SEC%
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 3100 ADC #&01
 3110 CMP #&60
 3120 BNE UP2%
 3130 CLC
 3140 LDA MIN%
 3150 ADC #&01
 3160 CMP #&60
 3170 BNE UP1%
 3180 CLC
 3190 LDA HOUR%
 3200 ADC #&01
 3210 CMP #&24
 3220 BNE UP3%
 3230 LDA #&00
 3240 .UP3% STA HOUR%
 3250 LDA #0
 3260 .UP1% STA MIN%
 3270 LDA #0
 3280 .UP2% STA SEC%
 3290 CLD
 3300 RTS
 3310 \
 3320 .D ISPLAY% LDA #134
 3330 JSR OSBYTE%
 3340 STX XTEMP%
 3350 STY YTEMP%
 3360 LDA #31
 3370 JSR OSWRCH
 3380 LDA #20
 3390 JSR OSWRCH%
 3400 LDA #0
 3410 JSR OSWRCH%
 3420 JSR DISPNUM%
 3430 LDA #31
 3440 JSR OSWRCH%
 3450 LDA XTEMP%
 3460 JSR OSWRCH%
 3470 LDA YTEMP%
 3480 JSR OSWRCH%
 3490 RTS
 3500 \
 3510 .D ISPNUM% LDA HOUR%
 3520 JSR L_NUM%
 3530 JSR OSWRCH%
 3540 LDA HOUR%
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 3550 JSR RNUM%
 3560 JSR OSWRCH%
 3570 LDA #58
 3580 JSR OSWRCH%
 3590 LDA MIN%
 3600 JSR L_NUM%
 3610 JSR OSWRCH%
 3620 LDA MIN%
 3630 JSR RNUM%
 3640 JSR OSWRCH%
 3650 LDA #58
 3660 JSR OSWRCH%
 3670 LDA SEC%
 3680 JSR L_NUM%
 3690 JSR OSWRCH%
 3700 LDA SEC%
 3710 JSR RNUM%
 3720 JSR OSWRCH%
 3730 RTS
 3740 \

 4000 .L_NUM% LSR A
 4010 LSR A
 4020 LSR A
 4030 LSR A
 4040 ORA #&30
 4050 RTS
 4060 \
 4070 .RNUM% AND #&0F
 4080 ORA #&30
 4090 RTS
 4100 \
 4110 .RESET% LDX #(T_LEN% MOD 256)
 4120 LDY #(T_LEN% DIV 256)
 4130 LDA #4
 4140 JSR OSWORD%
 4150 RTS
 4160 \

 4200 . IN IT% LDA #(T ICK% MOD 256)
 4210 STA EVNTV%
 4220 LDA #(T ICK% DIV 256)
 4230 STA EVNTV%+1
 4240 JSR RESET%
 4250 LDA #14
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 4260 LDX #5
 4270 JSR OSBYTE%
 4280 RTS

 5000 ]
 5010 REM DATA
 5020 HOUR%=FNequb(0)
 5030 MIN%=FNequb(0)
 5040 SEC%=FNequb(0)
 5050 XTEMP%=FNequb(0)
 5060 YTEMP%=FNequb(0)
 5070 T_LEN%=FNequb(155)
 5080 dummy=FNequw(&FFFF)
 5090 dummy=FNequw(&FFFF)
 5110 ENDPROC

 9000 REM MACROS
 9010 DEF FNequb(VA%)
 9020 ?P%=(VA% MOD 256)
 9025 IF  PASS=3 THEN PRINT ~P%;"=" ;~?P%
 9030 P%=P%+1
 9040 =P%-1

 9100 DEF FNequw(VA%)
 9110 ?P%=(VA% MOD 256)
 9115 IF  PASS=3 THEN PRINT ~P%;"=" ;~?P%
 9120 P%?1=(VA% DIV 256)
 9125 IF  PASS=3 THEN PRINT ~P%+1; "=" ;
      ~ (P%?1)
 9130 P%=P%+2
 9140 =P%-2

 9200 DEF FNequs(S$)
 9210 $P%=S$
 9220 IF  PASS=3 THEN PRINT ~P%;"=" ;S$
 9230 P%=P%+LEN(S$)+1
 9240 =P%-LEN(S$) -1

 9300 DEF PROCsave
 9400 [OPT PASS
 9410 PHA
 9420 PHP
 9430 TXA
 9440 PHA
 9450 TYA
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 9460 PHA
 9470 ]
 9480 ENDPROC

 9500 DEF PROCres to re
 9510 [OPT PASS
 9520 PLA
 9530 TAY
 9540 PLA
 9550 TAX
 9560 PLP
 9570 PLA
 9580 ]
 9590 ENDPROC

If you run the above program you will see the clock display appear at the
top of the screen as soon as INIT% has been called. This display will
remain until you press CTRL and BREAK, so forcing a full system restart
or until you load another program over the machine code stored in
CODE%.

Obviously to make the program of permanent use it has to be installed
in the system in such a way that it cannot be overwritten by accident. The
only real way of doing this is to increase the value of PAGE and store it in
the free memory that this creates. To be precise:

(1) Save the above program on tape or disk and then perform a full system
reset (either by switching the machine off and on or by pressing CTRL
and BREAK).

(2) Enter

PRINT~PAGE

and note down the result.

(3) Now enter PAGE=PAGE+256 and once again PRINT�PAGE and note
down the result. This reserves 256 bytes for the clock program.

(4) Now load the clock program and change line 20 to read PROCasm(x)
where x is the original value of PAGE noted down in step 1. Also remove
line 30 to stop the clock from being started.

(5) Now run the program and enter PRINT INIT% and note down the
result. This gives the address of the start of the program.

(6) Finally using the information collected in steps (1), (3) and (5) enter:
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*SAVE TIMER x y z

where x is the value of PAGE as obtained instep (1), y is the value of
PAGE obtained in step (3) and z is the value of INIT% obtained in step
(5). Following steps (1) to (5) all you have todoto run the timer is to
remember to reserve the memory space that it needs using PAGE=PAGE+
256 and then enter the command *RUN TIMER.

The background timer given above certainly works and does the job
that was intended, but it suffers from a few shortcomings. The most
obvious is that there is no way to set M to the current time! This is not a
serious problem as it is not difficult to write a BASIC program that will
store the values of the current time in the memory locations used tor
HOUR%, MIN% and SEC%. A more serious defect is that the
DISPLAY% routine affects the working of the COPY key by moving the
copying cursor as well as the text cursor back to its 'original' position.
This is typical of the sort of unexpected side effect of an interrupt or event
driven program. In this case the only solution is to provide a subroutine
that will print the time on the screen without using the MOS and this is a
very large project. A much smaller criticism of the program is that it
doesn't check to make sure that the event that has happened really is the
interval timer reaching zero after all there might be other enabled events.
As each type of event corresponds to a different event code stored in the A
register, this is easy to remedy. The code for the event timer crossing zero
is 5 so, adding:

2991 CMP #5
2992 BEQ TICK%
2993 RTS

will ensure that the clock is only updated by the correct event.
You can use the methods outlined in this project to use events in your

own programs. In particular, you should now be able to see how to print
the contents of a file while running other programs by using the 'print
buffer empty' event to call a routine that will fill the print buffer.
However, it is worth mentioning that programs that use interrupts or
events can be very difficult to understand and very difficult to debug so
proceed with care! 



Chapter Eleven
Project – A 6502
Disassembler

The BBC Micro comes equipped with a very good 6502 assembler that
makes the translation of 6502 mnemonics to 6502 machine code easy. The
reverse process − converting 6502 machine code to 6502 mnemonics −
may be something that seems pointless until you attempt to decipher how
a machine code program works. Obviously if you have the assembly
language source for the machine code then all you have to do is study it. If
for any reason you don't haw access to the assembly language source then
one way or another you have to attempt to reconstruct it from the machine
code.

A program that changes machine code to assembly language is called a
disassembler. The main theme of this chapter is the production of a 6502
disassembler but this takes us into some surprising areas concerning
thevery fundamentals of microprocessors, look-up tables and program
design. As well as providing plenty of scope for discussion, the final
program is something that every BBC Micro owner needs now and again.
The reason for this is that the BBC Micro contains 32K of very important
machine code only software − BBC BASIC and the MOS. Some of the
topics are admittedly rather advanced. In fact. one or two are the sort of
thing that you would normally only encounter on a computer science
degree so you can be pleased it they cause you no trouble! On the other
hand. if you find any of the material tough going do not despair, you can
still make use of the disassembler and understand many of the points of its
implementation without understanding everything in this chapter.

The trouble with tables

The most obvious approach to constructing a disassembler, or an
assembler for that matter, is to use a look-up table (see Chapter Five). The
basic algorithm of a ‘table driven’ disassembler is very simple the
contents of each memory location is used to index a pair of tables that
give:

(1)  the three letter mnemonic to which it corresponds and
(2)  the addressing mode (e.g. absolute, immediate, etc.) that is in use.
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If the contents of a memory location do not correspond to a legal 6502
instruction then a special ‘invalid operation’ mnemonic, “***” for
example would be returned and the next memory location examined.
Values within a machine code program that do not correspond to any 6502
operation are most likely to be generated by data within the ortginal
assembly language source. However, the whole question of how to
differentiate automatically between areas of code and data is one stage
beyond the simple disassembler that is currently under discussion.

The only real difficulty with the look-up tables for the mnemonics and
addressing modes are their size. To allow an entry for every possible
single byte value needs two arrays each with 256 elements. That is,

DIM M$(255),AM(255)

where M$(1) holds the three letter mnemonic for the op code 1 and
AM(1) holds an integer that indicates the addressing mode. For example,
M$(&65) would hold “ADC” and AM(&65) would indicate zero page
addressing. (&65 is the machine code for ADC using zero page
addressing!) If you think about the pattern of entries in these tables you
will quickly realise that there are many duplicate entries. For example, the
mnemonic for ADC occurs eight times, once for each of its possible
addressing modes. Entering the complete set of 6502 mnemonics to form
a table is a tedious enough task without entering some of them as many as
eight times!

If you examine a 6502 instruction table (there is one at the back of the
BBC Micro’s User Guide) you should be able to see a pattern in the
values for the op codes corresponding to a single instruction in each of its
different address modes. Any pattern in the entries in a look-up table is
worth investigating because it is often possible to make use of it to reduce
the number of entries in the table.

The 6502 instruction format

To a certain extent the 6502 chip within the BBC Micro has the problem
of machine code disassembly every time it executes a program. After
reading an op code from memory the 6502 has to decode it and determine
what actions have to take place. For example, after reading the op code &
65 the 6502 has to decode it to ‘discover’ that it means ADC using zero
page addressing mode and then carry out the addition. The restrictions of
building logic circuits on silicon make it necessary to find a way of
making the decoding process as simple as possible. For this reason there is
a very regular pattern to be found in the op code values used in any
microprocessor and the 6502 is no exception.

By examining the table of instruction codes it is possible to deduce that
the internal format of a 6502 op code is:
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b7 b6 b5 b4 b3 b2 b1 b0

instruction
code

groupmode

Only the top three bits (b7, b6 and b5) of each opcode are used to indicate
the instruction that is to be carried out. The middle three bits (b4, b3 and
b2) indicate which addressing mode is in use. However, using only three
bits to determine the operation would limit the 6502 to a total of eight
different instructions! To increase the total number of instructions the last
two bits of the op code are used to provide four different groups of
instructions. Thus the ADC zero page instruction can be analysed by
writing down its op code in binary as a group one instruction:

011 001 01&65 =

The instruction code for ADC is 3 and the mode code for zero page
addressing is 1. In the same way ADC immediate is:

011 010 01&69 =

which again shows that ADC is a group 1 instruction and its instruction
code is 3. The only change to the op code in going from ADC zero page to
ADC immediate is carried in the three mode bits, the addressing mode
code for zero page addressing being 1 and for immediate addressing 2.
 You should be able to appreciate that this division of the bits that make
up an op code into an instruction code, an addressing mode code and a
group code can greatly simplify the decoding that is involved in both a
microprocessor and a disassembler. For example, if the first two bits of an
op code indicate a group one instruction and the top three bits give an
instruction code of 3 then the command is ADC. Subsequent examination
of the mode bits to give the current addressing mode complete the
decoding.

6502 instructions by group

Before the internal structure of the op code can be used to produce a
simplified disassembler, it is necessary to classify each 6502 instruction
by group code and produce tables relating instruction codes to mnemonics
and addressing mode codes to actual addressing modes. The way that this
task was tackled originally was with the aid of the following program: 
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10 INPUT A$
20 A=FNdec(A$)
30 GR=A AND &03
40 MO=(A AND &1C)/4
50 OP=(A AND &E0)/32
60 PRINT “Code=”;~A;“ Group=”;~GR;“ OP=”;OP;“ Mode ”;MO
70 GOTO 10
80 DEF FNdec(A$) EVAL("&"+A$)

This will analyse any 6502 op code and print out its group, instruction
code and addressing mode code.

For reasons that will become apparent, it is better to start with an
examination of the group 1 table:

Instruction Mode
Code 0 1 2 3 4 5 6 7

0 ORA ORA ORA ORA ORA ORA ORA ORA
1 AND AND AND AND AND AND AND AND
2 EOR EOR EOR EOR EOR EOR EOR EOR
3 ADC ADC ADC ADC ADC ADC ADC ADC
4 STA STA STA STA STA STA STA STA
5 LDA LDA LDA LDA LDA LDA LDA LDA
6 CMP CMP CMP CMP CMP CMP CMP CMP
7 SBC SBC SBC SBC SBC SBC SBC SBC

address
mode

(z,X) zero
page

imm abs (z,Y) z,X, c,Y c,X

(z = zero page address and c = two byte constant)

From this table you can see that all eight group 1 instructions are
operations m the A register. Another striking feature is that each
instruction can be used in any of the eight possible addressing modes. (As
will be demonstrated this is not the case with the other instruction groups.)
Also notice that the use of just three bits to code the addressing mode
limits any 6502 instruction to eight addressing modes at most despite the
fact that the 6502 supports 13 different addressing modes. This, to a
certain extent, accounts for the odd collection of rules about which
addressing mode can be used with which instruction.

As far as the disassembler is concerned, group 1 instructions are very
easy to decode. All that has to be done is to use the instruction code bits to
index a table of the eight mnemonics and the address mode bits to index a
table that gives the addressing mode in use. The mnemonic table is
simply:
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Instruction
Code

Mnemonic

0 ORA
1 AND
2 EOR
3 ADC
4 STA
5 LDA
6 CMP
7 SBC

If the 13 addressing modes of the 6502 are coded as:

mode imm abs zero
page

acc imp (z,X) (z),Y z,X c,X c,Y rel indir z,Y

code 1 2 3 4 5 6 7 8 9 10 11 12 13

then correspondence between the addressing mode code in group 1
instructions and actual addressing mode is:

addresing
mode code
(b4,b3,b2)

actual mode
code

0 6
1 3
2 1
3 2
4 7
5 8
6 10
7 9

This may seem a little complicated at first but the reward is reducing the
64 entries in the simple look-up tables to 8. For example, to decode the
opcode &1D it is first split up to give:

Group=1, Instruction code=0, Mode=7

As this is a group 1 instruction the two tables given above yield ORA for
the mnemonic and address mode 9 or c,X (absolute indexed addressmg
using the X register) which are both correct. 
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The situation with group 0 instructions is not so simple. The table for
group 0 is:

Instruction Mode
Code 0 1 2 3 4 5 6 7

0 BRK *** PHP *** BPL *** CLC ***
1 JSRabs BIT PLP BIT BMI *** SEC ***
2 RTI *** PLA JMP BVC *** CLI ***
3 RTS *** PLA JMPind BVS *** SEI ***
4 *** STY DEY STY BCC *** TYA ***
5 LDYimm LDY TAY LDY BCS *** CLV ***
6 CPYimm CPY INY CPY BNE *** CLD ***
7 CPXimm CPZ INX CPX BEQ *** SED ***

address
mode

impl zero
page

impl abs rel impl

(where the addressing modes are as shown at the bottom of each column unless otherwise
indicated within the table next to the instruction concerned)

This table reveals a much more complicated pattern. In particular, the
instruction code part of the op code is not the sole determinant of the
instruction type. Indeed, for group 0 instructions the addressing mode also
determines the instruction type. For example, there are five different
instructions corresponding to Instruction code=3 − that is, RTS, PLA,
JMP, BVS and SEI. However this is not to say that the neat pattern of
group 1 instructions is entirely lost. In the main, the instructions
corresponding to a particular value of mode do use the same addressing
mode. For example, all the instructions with mode=1 use zero page
addressing, those with mode 2 use implied addressing, those with mode=4
use relative addressing and those with mode=6 use implied addressing.
When mode=0 or mode=3 the situation is a little more difficult. The
instructions in mode 0 are a mixture of implied addressing (BRK, RTI and
RTS), absolute addressing (JSR) and immediate addressing (LDY, CPY
and CPX) while all but one of those in mode 3 are absolute and JMP is
indirect. Even so you should be able to see that there is a good overall
regularity which simplifies the decoding process for the 6502’s logic
circuits. (For example, all mode 4 instructions are branches and all mode 6
instructions clear or set flags.) As far as the disassembler is concerned the
simplest solution is to use the table as it stands i.e. as a two-dimensional
look-up table indexed by the instruction and address mode part of the op
code. The look-up table for the addressing modes is best teated as a one-
dimensional table with corrections, as in the following:

addressing
mode code

actual
addressing mode

0 5
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1 3
2 5
3 2
4 11
5 0
6 5
7 0

In the above table actual addressing code 0 is used to indicate that there
are no 6502 instructions using this mode in group 0. Of course this table is
not always correct - a mode 0 instruction doesn't always use implied
addressing and mode 3 instructions don't always use absolute addressing
but the departures can be easily detected and corrected using IF
statements.

Group 2 instructions are also messy but in a different way to group 0
instructions:

Instruction Mode
code 0 1 2 3 4 5 6 7

0 *** ASL ASL ASL *** ASL *** ASL
1 *** ROL ROL ROL *** ROL *** ROL
2 *** LSR LSR LSR *** LSR *** LSR
3 *** ROR ROR ROR *** ROR *** ROR
4 *** STX TXAimp STX *** STXz,Y TXS ***
5 LDX LDX TAXimp LDX *** LDXz,Y TSX LDYc,Y
6 *** DEC DEXimp DEC *** DEC *** DEC
7 *** INC *** INC *** INC *** INC

imm aero acc abs z,X impl c,X

(where the addressing modes are as shown at the bottom of each column unless otherwise
indicated within the table next to the instruction concerned)

The interesting thing about this table is that the top half (i.e. Instruction
code = 0 to 3) is entirely regular but the bottom half is irregular. The look-
up table for this group could also be created as a two-dimensional array as
for the group 0 instructions. However, overall the regularities in the table
outnumber the irregularities and it is easier to use a one-dimensional table
based on the pattern of mnemonics in the mode=1 column and use IF
statements to correct for the departures from regularity. In the same way
the addressing mode look-up table can be one-dimensional: 
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Addressing
mode code

Actual addressing
mode used

0 1
1 3
2 4
3 2
4 0
5 8
6 5
7 9

The departures from this pattern are taken care of by using IF statements.
After the complications introduced by the irregularities of group 0 and

group 2 instructions it is a relief to discover that the 6502 doesn't have any
group 3 instructions!

How good is the 6502?

Apart from reducing the size of the look-up tables needed for a
disassembler, this study of the structure of the 6502 instruction set
explains many of the odd patterns of addressing modes that can be used
with any particular instruction. One opinion is that an advanced
microprocessor should allow every instruction to use any and all
addressing modes that make sense. From this point of view the 6502 is a
very poor micro indeed as its rules for which addressing modes can be
used with which instructions contain many seemingly arbitrary
restrictions. For example, why can't any addressing mode that uses the Y
index register be used with the ROL or ROR instructions? A simple
explanation would be to say that ROL and ROR are group 2 instructions
but this misses the point that there are three unused addressing modes in
the group 2 table and the whole of the group 3 table is empty! However,
this argument can be countered by pointing out that by using only a single
byte for the op code (other microprocessors can use two or even three byte
op codes) the 6502 provides a good range of instructions, each of which
can be used with an appropriate collection of addressing modes. From this
point of view the 6502’s design sacrifices simplicity of use for a compact
and efficient instruction set.

The disassembler

After so much analysis the 6502 disassembler is fairly easy to write. The
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procedures used are shown in Table 11.1.

Table 11.1

Name Line number Function

initialise 1000 Sets up the look-up tables for each instruction
group.

getparams 2000 Input start and end address for the
disassembly.

code(D) 3000 Returns the mnemonic (in M$) and addressing
mode (in ATYPE) corresponding to the op
code in D

gzero(OP,MO) 4000 Performs the look-up for group 0 instructions.
gone(OP,MO) 4200 Performs the look-up for group 1 instructions.
gtwo(OP,MO) 4400 Performs the look-up for group 2 instructions.
gthree(OP,MO) 4600 Returns M$=*** and ATYPE=0 for non-

existent group three instructions.
add(ATYPE) 5000 Uses ATYPE to return a string (A$) that

contains the address field of the instruction.
Also returns the contents of the memory
locations that it uses to construct the address as
hex numbers in B$.

PROCinitialise sets up six different look-up tables, one pair for each
instruction group. G1$ and A1% hold the mnemonics and addressing
modes for group one instructions, GO$ and A0% hold the mnemonics and
addressing modes for group 0 instructions and G2$ and A2% hold the
mnemonics and addressing modes for group two instructions. If you look
at PROCcode you will see that, apart from dividing up the three parts of
the op code (lines 3020 to 3040) all it does is to call the correct PROC to
deal with the particular group that the instruction belongs to (lines 3050 to
3080). PROCone is the simplest because the look-up tables can be
indexed by OP and MO and the result used without correction. PROCzero
uses the two- dimensional look-up table for the mnemonic code and a one-
dimensional table for addressing mode. Unlike PROCone the results from
the look-up table have to be corrected for irregularities in the addressing
modes such as JSR (in the column corresponding to mode=0) using
absolute addressing rather than implied. These addressing mode
irregularities are corrected by the IF statements in lines 4030 to 4050.
PROCgtwo uses a pair of one- dimensional look-up tables like PROCgone
but in this case there are a large number of corrections to both addressing
mode and mnemonic. These are dealt with by the IF statements lines 4430
to 4550. PROCgthree is almost a dummy routine that returns “***” and
ATYPE=0. It is included more for completeness than anything else.
PROCadd uses the information about the addressing mode stored in A
TYPE to construct the address field that goes with the instruction. For
example, if A TYPE is 1 then the addressing mode is immediate and the
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address field is constructed by ‘peeking’ the value in the next memory
location, converting it to a string of hex digits and then adding a “#” in
front. Each of the adddresing modes has a corresponding IF statement that
constructs the instruction’s address field in AD$. The only other
complication is the need to return the contents of any memory locations
that are used to construct the address field as hex digits in B$ so that they
can be listed alongside the disassembled instructions. 

Three functions are also used:

Table 11.2

Name Line number Action

dec(A$) 9000 Converts hex string to decimal number.
rel(A) 9010 Returns positive of negative offset used in

relative addressing from the positive value
returned by 'peeking' th address field.

hex(A) 9030 Converts decimal number in A to a hex string.

The complete program is:

   10  PROCin i t ia l i se
   20  PROCgetparams:
      REM SADD,EADD re tu rned
   30  A=SADD
   40  REPEAT
   50  PRINT TAB(0) ;~A; "  " ;
   60  PRINT TAB(8) ;FNhex(A) ; "  " ;
   70  PROCcode(?A) :REM M$,ATYPE re tu rned
   80  PROCadd(ATYPE) :REM AD$ re tu rned
   90  PRINT B$,M$; "  " ;AD$
  100  UNTIL  A>EADD
  110  END

  120  DEF PROCin i t ia l i se
  130  LOCAL I ,J
  140  DATA ORA,AND,EOR,ADC,STA,LDA,CMP,SBC
  150  DATA 6 ,3 ,1 ,2 ,7 ,8 ,10 ,9
  160  DATA BRK,JSR,BIT ,RTS,* * * ,LDY,CPY,CPX
  170  DATA * * * ,B IT , * * * , * * * ,STY,LDY,CPY,CPX
  180  DATA PHP,PLP,PHA,PLA,DEY,TAY, INY, INX
  190  DATA * * * ,B IT ,JMP,JMP,STY,LDY,CPY,CPX
  200  DATA BPL,BMI ,BVC,BVS,BCC,BCS,BNE,BEQ
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  210  DATA CLC,SEC,CLI ,SEI ,TYA,CLV,CLD,SED
  220  DATA 1 ,3 ,5 ,7 ,11 ,0 ,5 ,0
  230  DATA ASL,ROR,LSR,ROR,STX,LDX,DEC, INC
  240  DATA 1 ,3 ,4 ,2 ,0 ,8 ,5 ,9
  250  DIM G1$(7)
  260  FOR I=0  TO 7
  270  READ G1$( I )
  280  NEXT I
  290  DIM A1%(7)
  300  FOR I=0  TO 7
  310  READ A1%( I )
  320  NEXT I
  330  DIM G0$(7 ,7 )
  340  FOR I=0  TO 7
  350  FOR J=0 TO 7
  360  IF  I=5  OR I=7  THEN G0$( I ,J )=" * * * "
      ELSE READ G0$( I ,J )
  370  NEXT J
  380  NEXT I
  390  DIM A0%(7)
  400  FOR I=0  TO 7
  410  READ A0%( I )
  420  NEXT I
  430  DIM G2$( I )
  440  FOR I=0  TO 7
  450  READ G2$( I )
  460  NEXT I
  470  DIM A2%(7)
  480  FOR I=0  TO 7
  490  READ A2%( I )
  500  NEXT I
  510  ENDPROC

  520  DEF PROCgetparams
  530  LOCAL A$
  540  REPEAT
  550  INPUT "START AT (HEX)" ,A$
  560  SADD=FNdec(A$)
  570  INPUT "END AT (HEX)" ,A$
  580  EADD=FNdec(A$)
  590  UNTIL  SADD<EADD
  600  ENDPROC

  610  DEF PROCcode(D)
  620  LOCAL MO,GROUP,OP
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  630  OP=(D AND &F0) /32
  640  MO=(D AND &1C) /4
  650  GROUP=D AND &03
  660  IF  GROUP=0 THEN PROCgzero(OP,MO)
  670  IF  GROUP=1 THEN PROCgone(OP,MO)
  680  IF  GROUP=2 THEN PROCgtwo(OP,MO)
  690  IF  GROUP=3 THEN PROCgthree(OP,MO)
  700  ENDPROC

  710  DEF PROCgzero(OP,MO)
  720  M$=G0$(MO,OP)
  730  ATYPE=A0%(MO)
  740  IF  MO=0 AND OP=1 THEN ATYPE=2
  750  IF  MO=0 AND (OP=0 OR OP=2 OR OP=3)
      THEN ATYPE=5
  760  IF  MO=3 AND OP=3 THEN ATYPE=12
  770  ENDPROC

  780  DEF PROCgone(OP,MO)
  790  M$=G1$(OP)
  800  ATYPE=A1%(MO)
  810  ENDPROC

  820  DEF PROCgtwo(OP,MO)
  830  M$=G2$(OP)
  840  ATYPE=A2%(MO)
  850  IF  ATYPE=0 THEN M$="** * "
  860  IF  MO=0 AND OP<>5 THEN M$="** * "
  870  IF  MO=2 AND OP=4 THEN M$="TXA" :
      ATYPE=5
  880  IF  MO=2 AND OP=5 THEN M$="TAX" :
      ATYPE=5
  890  IF  MO=2 AND OP=6 THEN M$="DEX" :
      ATYPE=5
  900  IF  MO=4 THEN M$="** * "
  910  IF  MO=5 AND (OP=4 OR OP=5)  THEN
      ATYPE=13
  920  IF  MO=6 THEN M$="** * "
  930  IF  MO=6 AND OP=4 THEN M$="TXS" :
      ATYPE=5
  940  IF  MO=6 AND OP=5 THEN M$="TSX" :
      ATYPE=5
  950  IF  MO=7 AND OP=4 THEN M$="** * "
  960  IF  MO=7 AND OP=5 THEN M$="LDX" :
      ATYPE=10
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  970  IF  MO=7 AND OP=6 THEN M$="DEC"
  980  ENDPROC

  990  DEF PROCgthree(OP,MO)
 1000 M$="** * "
 1010 ATYPE=0
 1020 ENDPROC
 1030 DEF PROCadd(ATYPE)
 1040 IF  ATYPE=1 THEN A=A+1:
      AD$="#"+FNhex(?A)
 1050 IF  ATYPE=2 THEN A=A+1:
      AD$=FNhex(?A+256*?(A+1) ) :A=A+1
 1060 IF  ATYPE=3 THEN A=A+1:
      AD$=FNhex(?A)
 1070 IF  ATYPE=4 THEN AD$="A"
 1080 IF  ATYPE=5 THEN AD$=""
 1090 IF  ATYPE=6 THEN A=A+1:
      AD$=" ( "+FNhex(?A)+" ,X) "
 1100 IF  ATYPE=7 THEN A=A+1:
      AD$=" ( "+FNhex(?A)+" ) ,Y"
 1110 IF  ATYPE=8 THEN A=A+1:
      AD$=FNhex(?A)+" ,X"
 1120 IF  ATYPE=9 THEN A=A+1:
      AD$=FNhex(?A+256*?(A+1) )+" ,X" :A=A+1
 1130 IF  ATYPE=10 THEN A=A+1:
      AD$=FNhex(?A+256*?(A+1) )+" ,Y" :A=A+1
 1140 IF  ATYPE=11 THEN A=A+1:
      AD$=FNhex(FNre l (?A)+A+1)
 1150 IF  ATYPE=12 THEN A=A+1:
      AD$=FNhex(?A+256*?(A+1) )+" ) " :A=A+1
 1160 IF  ATYPE=13 THEN A=A+1:
      AD$=FNhex(?A)+" ,Y"
 1170 A=A+1
 1180 IF  M$="** * "  THEN AD$="" :ATYPE=0
 1190 B$=FNhex(?(A-1) )
 1200 IF  ATYPE=2 OR ATYPE=9 OR ATYPE=10
      OR ATYPE=12 THEN
      B$=FNhex(?(A-2) )+"  "+FNhex(?(A-1) )
 1210 IF  ATYPE=4 OR ATYPE=5 OR ATYPE=0
      THEN B$=""
 1220 ENDPROC

 1230 DEF FNdec(A$)=EVAL("&"+A$)

 1240 DEF FNre l (A)
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 1250 IF  A<127 THEN =A ELSE =A-256
 1260 DEF FNhex(A)
 1270 LOCAL B, I ,A$
 1280 FOR I=1  TO 4
 1290 B=A AND &F
 1300 A=A DIV &10
 1310 IF  B<10 THEN A$=CHR$(B+48)+A$
 ELSE A$=CHR$(B+55)+A$
 1320 NEXT I
 1330 IF  MID$(A$,1 ,2 )="00"  THEN
      A$=RIGHT$(A$,2)
 1340 =A$

The main program is easy enough to understand by reference to the
procedure table (Table 11.1). The only other information that might help
is that A contains the address of the memory location that is currently
being examined for a possible op code.

Program structure and error handling

The disassembler listed above is a debugged first version. That is,
although a few lines have been changed and even a few lines added during
debugging the overall structure, the procedures and their internal
operation are unchanged from the first attempt. After the extensive
analysis of the form of the look-up tables given in the first part of this
chapter it is not surprising that no major changes were necessary but this
does not mean that the structure of the program is entirely up to standard.
PROCinitialise could be made more compact by using a pair of two-
dimension arrays for the mnemonic and address mode look-up table but
this would make the rest of the program much more difficult to follow.
The most unsatisfactory procedure in the whole program is PROCadd. An
examination of the statements that follow the THENs shows immediately
that there is much duplication of effort. It would be better to assemble the
data items that most of the IF statements use before the IF statements are
executed. For example, FNhex(?A) and FNhex(?A+256*?(A+1)) should
all be worked out and stored in string variables at the start of the
procedure. Also the variable that keeps track of the current location in
memory, A, should not be incremented by each of the IF statements. This
makes the task of printing the hex values stored in the memory locations
alongside the disassembled instruction much more difficult than it need be
(hence lines 1190 to 1210).

Even though there is plenty of scope for improvement definite proof
that it is often better to rewrite first attempts at procedures the program
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works and is a useful tool.
After using the program a few times the only fatal error that occurred

was BAD HEX due to mistyping of hex numbers in PROCgetparams.
This is easily cured by adding:

1 ON ERROR RUN

This is a crude but effective error catch-all.

Using a dissassembler

Using a disassembler is as easy as specifying the start and end address of
the block of code that you want disassembled! Of course interpreting the
output is much more difficult. Knowing where the machine code program
starts is a great help but even then it is possible to run into an area of data
and illegal op codes. Although illegal op codes are an almost sure sign
that you have encountered a data area it is possible for a data area to
contain legal op codes and so give the impression that you are still
disassembling part of a program. In practice, data areas are identified both
by containing the occasional illegal op code and by being referenced in
address fields of other parts of the program.

The other main technique in understanding a disassembly is tracing the
flow of control. Starting from the first instruction of the program it is
possible to follow through each branch, JMP and JSR instruction and
mark their destinations. In this way all of the possible paths through the
program can be identified before the task of trying to understand what is
happening in each part is begun. Going through and marking RTS
instructions serves to identify candidates for the end points of subroutines.
Similarly, the instructions that follow them are possible starting points of
subroutines.

Even after using these hints you will still need a great deal of skill and
ingenuity to decipher a disassembly. The one guiding principle is that you
should always work out how you would write a program or subroutine to
achieve the same result before you look at the output of a disassembler. If
you have chosen the same method as the program being disassembled
then you will quickly recognise the essential features of the method. If
you haven't, then the disassembly will remain unfathomable and after a
while you should stop studying it and try to think of another way of
achieving the same ends. When you have identified the overall algorithm
that is being used it is surprising how quickly the details fall into place.

Super disassemblers

The disassembler described in this chapter is far from the last word in
sophistication on how to produce an easy-to-understand disassembly of a
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program. The following are some suggestions that you might like to add
to the program, none of them very difficult:

(1) Allow the user to specify the location of known data areas. In these
data areas the disassembler should output the contents of memory as hex
and, where posslble, ASCII characters.

(2) Allow the user to specify a list at known labels and their
corresponding addresses. Each address that the disassembler produces
should be checked against the list to see if a label has been defined. If it
has then the label should be used in preference to the numeric address. For
example, instead of JSR &FFF4 the disassembler would print JSR
OSBYTE (assuming that OSBYTE=&FFF4 had been included in the list
of label definitions).

(3) Mark all branch, JSR and JMP instructions automatically so that they
can be found quickly. Also mark their corresponding destination
addresses. In other words, mark all the exit and entry points within the
disassembly.

It is possible to produce disassemblers that automatically identify
program and data areas by tracing all of the possible paths for the flow of
control through the program but this is a much more difficult problem. 



Chapter Twelve
Bits, Binary and Boolean
Loglc

It may seem odd to leave a discussion of the sort of thing that is often
included in introductory courses on computing to the very end of a book
on advanced programming. However, although bits, binary numbers and
Boo lean logic do form part of the foundations of computing, most of the
efforts of computer scientists have been concentrated on hiding this fact!
For example, high level languages such as BASIC were invented to avoid
a face-to-face confrontation with the underlying principles of computing.

The BBC BASIC interpreter will accept commands to do arithmetic in
terms of the familiar decimal notation, convert everything to a binary
representation, work out the result using binary arithmetic and will then
convert this back to decimal for printing! In fact, it is possible to use a
computer without ever realising that it has anything to do with bits, binary
or Boolean logic and for the most part this is how it should be. For the
ordinary user a computer is a tool and its internal workings should be
hidden. The question of how much of the internal workings a programmer
should know is debatable. On the one hand most programs can be written
without reference to 'low level' concepts such as bits. In this sense
languages such as BASIC have been successful in making programming
more accessible. However, there are still many reasons why BASIC and
other high level languages are not 'powerful' in terms of speed, memory
use, etc., and this occasionally forces the use of assembler and other 'low
level' languages.

Assembler is closer to the underlying hardware and so it works in
terms of bits and binary numbers and this is often the main reason that
BASIC programmers find it difficult to adapt to assembly language
programming. The point is that while it is easy to understand what
assembly language instructions do, and even relate them to statements in
BASIC, it is not easy to see how to use them the problem is that even if
the operation is familiar, it is performed on primitive forms of data not
normally found in BASIC. For example, the assembly language ADC
(ADd with Carry) performs the familiar operation of addition, but on
eight-bit binary numbers.

It is clear that if you want to use assembler effectively you must have
at least a working knowledge of some of the ideas at the heart of
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computing. What is less obvious is that the need for this knowledge also
arises in BASIC. A BASIC program that interacts dtrectly wnh the
hardware of a machine usually has to manipulate data at the level of
binary numbers. Also, it is sometimes possible to save both memory and
time by manipulating data directly in terms of its underlying binary
representation and so avoid having to use assembler to achieve the same
result.

All this suggests that once you have learned to use a high level
language then the next thing to do is to learn about bits, binary and other
technical topics before beginning the task of learning assembler! Bits,
binary and logic may be fundamental to computing but they are definitely
not the first things you should learn. If you follow this order, learning
assembler will be easier because you will know about the sort of data and
operations that make up an assembly language program but imagine how
difficult learning BASIC would be if you had to also learn all about
decimal numbers on the way! If you have already studied assembler then
the contents of this chapter may help you to apply what you know.

If the idea of learning about such mathematical concepts is off-putting
then it worth saying at this point that there is much in this chapter that is
directly about programming! If you find any of the topics difficult at first
reading, then just look them over and return to them when you actually
need to know something about them.

Bit patterns

The raw material of computing is thebit pattern. All the other types of
data described in Chapter Five are represented in the computer's memory
using bit patterns. A bit pattern is nothing more complicated than its name
suggests; that is, a pattern of zeros or ones. A memory location can store
only a fixed size of bit pattern. In most of the current micros, including the
BBC Micro, a single memory location always stores a bit pattern
consisting of eight bits. A group of eight bits is such a common unit that it
is given the name ofbyte probably the best known piece of all computer
jargon. However, it is important to realise that this use of eight bits is
entirely arbitrary and it will change as new generations of computers with
greater memory capacities are produced.

A bit pattern can be used to represent all sorts of information. For
example, suppose that you live in a house with eight rooms then you could
record which rooms had lights on and which had them off by using one bit
per room and a code such as (0=off and 1=on. In this way the bit pattern
00000011 would mean that all but two of the rooms had their lights off. It
is important to realise that the information a bit pattern holds is entirely in
the eye of the beholder. If, for example, we take 0 to mean 'light on' and 1
to mean 'light off' then the same bit pattern as above now records the fact
that all the lights areon bar two! A bit pattern doesn't have a built-in
meaning; it all depends what you use it for.
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Simple binary

The most familiar use of a bit pattern is as a binary number. In some ways
the familiarity of binary numbers is a problem in that it tends to obscure
the more fundamental idea of a bit pattern. In fact, we are generally so
familiar with numbers that it is often difficult to see how they work.
Although the use of a bit pattern to represent a number is almost identical
to the way that we use patterns of digits to represent numbers, if often
causes a great deal of trouble for beginners. The best advice is that if you
are in any doubt about how binary, or any other sort of number system,
works then compare it with the way that decimal numbers work.

The standard decimal representation of a number uses a 'place value'
system. For example, the number 123 means I 'lot' of one hundrgd, 2 'lots'
of tens and 3 'lots' of I. In other words, the meaning of a digit depends on
its 'place' within a number. Another way of expressing the meaning of a
decimal number like 123 is:

1*100 + 2*10 + 3*1

and you can see that the value of the number is arrived at by multiplying
each digit by a constant, or 'weight', that depends on its position. In the
case of a decimal number the weights follow a regular pattern, starting
with a weight of I for the right-hand digit and this weight increases by a
factor of l0 for each position moved to the left. If the digit positions are
numbered with the first position on the left as 0, the weight for position I
is simply 10^1. (To see that this equation works you need to know that
10^0 is 1. Indeed, it is a strange fact that any value raised to the zero is 1.)

The most obvious way of using a bit pattern to represent a number is to
modify the decimal place value system to take account of the fact that
each bit has only two states (0 or 1) unlike the ten different states that a
decimal digit can take (0 to 9). Apart from the binary weights being
powers of two rather than powers of ten no other modifications are
required. in other words the bit pattern l0 l0 interpreted as a binary
number is:

1*8 + 0*4 + 1*2 + 0*1

Notice that only 0 and 1 can occur in a binary number and the weights are
given by 2^1 where I is the bit position numbered starting from 0. If you
work out the sum of each bit multiplied by its associated weight you will,
of course, get the value that the big pattern represents in decimal. This
simple observation is all that is needed to write a BBC BASIC function
that will convert binary to decimal:

  10 INPUT B$
  20 PRINT FNbin_to_dec(B$)
  30 GOTO l0

9000 DEF FNbin_to_dec(B$)
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9010 LOCAL I,D
9020 D=0
9030 FOR I=1 TO LEN(B$)
9040 D=D+EVAL(MID$(B$,I,1))*2^(I-1)
9050 NEXT I
9060 =D

You can use this function to convert a string of zeros and ones to decimal
but notice that it doesn't check to see that no other characters are used in
the string and that it isn't the fastest method of converting to decimal.

Once you understand the way that the binary place value system
works, binary numbers are easy. For example, the smallest number that
can be stored in a single eight-bit memory location is 00000000, or just 0
in decimal, and the largest is 11111111, or 255 in decimal. If you need to
use a larger numeric range then you can extend the number of bits
available by using more than one memory location. For example, using
the bit pattern stored in two memory locations provides sixteen bits to
represent a number and this gives a range of 0 to 65535. One of the
memory locations has to be used to store the eight bits associated with the
smaller place values i.e. bit 0 to bit 7 this is called the 'least significant'
byte and the other is used to store the bits associated with the larger place
values i.e. bit 8 to bit 15 and this is called the 'most significant' byte. The
only trouble is that the byte indirection operator 'T only handles single
memory locations. That is:

?A=100

will first convert the decimal number 100 to an eight-bit binary
representation and then store the bit pattern in the memory location whose
address is in 'A'. You cannot use'?' to store a vaine that needs sixteen bits
to represent it directly. For example:

?A=3000

will not convert 3000 to a 16-bit binary representation and store it in the
two memory locations indicated by 'A'. To store a 16-bit value it is
necessary to separate out the most and least significant bytes. This is most
easily done using the operators MOD and DIV:

Most significant byte = value DIV 256
Least significant byte = value MOD 256

Putting the two bytes back together is just as easy. If A contains the least
significant byte and A+1 the most significant then:

value=?A+256*(A?1)

The reason why these equations succeed in splitting and recombining 16-
bit numbers will be clear after the section on bit manipulation.
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Negative numbers or two's compliment binary

With simple binary it is only possible to use bit patterns to represent
postive integers. It is important to realise at this stage that there are a
number of different ways of making a bit pattern represent negative
numbers. For example, we could use the standard decimal method of a
special symbol to indicate that a number is negative - +6 is a positive
number and -6 is a negative number. This is known as sign magnitude
representation because each number is composed of a sign that indicates
whether it is positive or negative and a number that indicates its size or
'magnitude'. The sign magnitude method can be used with bit patterns to
represent both positive and negative numbers. In binary the sign
magnitude method is just as easy. The sign of a number is indicated by
one of the bits, usually with 0 standing for positive and 1 for negative and
the remaining bits represent the magnitude using simple binary. For
example, an eight-bit sign magnitude number would conventionally use
bit 7, the most significant bit, to indicate the sign of the number so:

00000111

would be +7, because bit 7 is 0 for a positive number and the remaining
bits represent 7 in simple binary. On the other hand:

10000111

would be -7 because bit 7 is 1 for a negative number and the remaining
bits still represent 7 in simple binary.

Although sign magnitude representation is simple to understand it is
not easy to do arithmetic with. For this reason most computers use a
different method of representing positive and negative numbers known as
two's complement representation. This is the method used by the 6502 and
by BBC BASIC so it is worth explaining in detail.

It is a fundamental property of a negative number that when added to a
positive number of the same magnitude the answer is zero. For example
7+(-7) is 0. In fact this is more than a fundamental property, it is the
definition of a negative number! That is, the negative of X is a number Y
such that:

X+Y=0

if you can find any number Y that satisfies this equation then it is the
negative of X. This looks like an impossible task until you examine the
way that binary arithmetic is performed on computers. Unlike paper and
pencil arithmetic computer arithmetic is always carried out to a fixed
number of bits. For example, using 8-bit numbers and 8-bit arithmetic the
result of adding 1 to 255 will be:
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1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0

or 256, but 256 needs nine bits to represent it and the computer only keeps
the first eight. Thus, in computer arithmetic 255 + 1 is 0. As 1 + 255
equals 0 you should be able to see that 255 can be regarded as a
representation of -1. To be precise, it is the two's complement
representation of -1. Starting from 0 it is possible to find the
representation of the negative of each value. That is the negative of 0 is 0,
the negative of 1 is 255, the negative of 2 is 254 and so on. Notice that
apart from zero the negative of X is simply:

256 - X

Also notice that whereas an 8-bit simple binary number could represent
values in the range 0 to 255, an 8-bit two's complement number can only
represent positive numbers from 0 to 127. This is because 128 to 255 are
used to represent negative numbers in the range -128 to -1. In binary the
fact that 0 to 127 represent positive numbers and 128 to 255 represents
negative numbers means that it is possible to use bit 7 to test if a number
is negative or positive.

In the same way, 16-bit arithmetic simply ignores any 17th bit that is
generated as part of the result Thus in 16-bit arithmetic 1+65535 equals 0
and by the same reasoning 65535 can be taken to be the 16-bit two's
complement representation of -1. At first sight it may seem confusing that
the two's complement representation of -1 depends on the number of bits
that are used but it is not so difficult if you recall that the largest number
that can be stored before returning to zero depends on the number of bits.
In the case of 16-bit two's complement representation the range that can
be represented is —32768 to +32767 and the negative of X is given by:

65536 - X

The great advantage of two's complement numbers from the point of
view of the assembly language programmer is that they can be added
together without having to worry about whether they are positive or
negative. This is not the case with sign magnitude representation. If you
want to add 6 and -3 you actually have to notice that the second number is
negative and do a subtraction i.e. 6 - (+3). With two's complement this is
unnecessary. The same sum in 8-bit two's complement, for example, is 6 +
253 (253 is the 8-bit two's complement representation of 3) which gives
259 or, after ignoring all but the first eight bits, the correct answer, 3. In
the same way two's complement numbers can be subtracted without
having to take any notice of the sign of any of the operands.
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BBC integers

Rather than explore the implications of 8-bit and 16-bit two's complement
numbers, it is probably more useful to concentrate on the format used by
BBC BASIC to represent integers. That is 32-bit two's complement.
Obviously a 32-bit number takes four memory locations to store. The
bytes are stored starting with the least signficant byte so the arrangement
in memory is:

byte A+3 A+2 A+1 A
b31 to b24 b23 to b16 b15 to b8 b7 to b0

where A is the address of the first byte. The range of values that can be
represented is a staggering:

-2,147,483,648 to 2,147,483,647

and to find the two's complement representation of X use:

4294967296 - X

However, the word indirection operator '!' will automatically convert
decimal numbers into the correct two's complement representation and
vice versa. For example, !A = -2147483648 will store a bit pattern
consisting of all ones in the four memory locations starting at A.

Fractions - floating point binary

After extending the use of bit patterns to represent negative numbers, the
next obvious step is to find a way of representing fractions. Just as in the
case of negative numbers there are many ways of achieving this. The
simplest method is just to work as if there was a 'binary point' in the bit
pattern. The binary point works in a way analogous to the familiar
decimal point. Bits to the left of a binary point have place values that
increase by a factor of two, but bits to the right of a binary point have
place values that decrease by a factor of two. For example, the bit pattern:

weight 8 4 2 1 1/2 1/4 1/8 1/16
0 1 1 0 . 1 1 0 0

represents 6.75 using eight bits with the binary point fixed between bit 3
and bit 4. This representation is known asfixed point binary and used to
be very popular but it has fallen from favour because of its limited
numerical range. However, it is often useful in assembly language
programs where a limited amount of arithmetic is required.

The most common way of representing fractional numbers and the
method that the BBC Micro uses is called floating point binary. This is the
binary equivalent of the familiar decimal exponential notation. In decimal
a number can be written as:
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mantissa * 10^exponent

This form of representation is used by BBC BASIC when the number is
too large or too small to print conveniently on the screen. If you try:

PRINT 2^32

you will see the result 4.2949673E9 which means 4.294967*10^9 (the E
stands for 'Exponent'). You can also enter numbers in this format in
response to an INPUT staternent.

A floating point binary representation has the same overall format as a
decimal exponential representation. In the case of BBC BASIC a single
byte is used to store the exponent and four bytes are used for the mantissa:

byte A A+1 A+2 A+3 A+4
exponent four byte mantissa

high → low byte

where A is the address of the first byte. The exponent part of the
representation has to allow for the possibility that the exponent might be
negative. For this reason an 'excess 128' representation is used. This is yet
another way to use a bit pattern to represent both positive and negative
integers. As you might guess, an excess 128 representation means that 128
is added to the true exponent before it is stored. Thus 129 would represent
an exponent of +1 and 127 would represent an exponent of -1. The value
of the number stored is given by multiplying the value of the mantissa by
2^(E-128) where E is the contents of the first memory location. Notice
that it is 2 raised to the power of the exponent and not 10! The value
stored in the mantissa is represented in rather an odd way. Firstly, it is
always assumed that the binary point is just before the first bit and the
value that the mantissa represents is more than .5 and less than 1. You can
always make sure that the value of the mantissa is more than .5 and less
than 1 by altering the value of the exponent. With these two conditions in
mind the exponent is represented as a simple binary fraction. However, as
this fraction always lies between .5 and less than I you should be able to
see that the bit that comes after the binary point is always a I. (The place
value of this bit is .5). Always setting a bit to the same value is a waste of
storage and so it is used instead as a sign bit. Thus, the mantissa is a
modified sign magnitude fixed point representation! It is important to
notice that the mantissa isnot stored as a two's complement value in the
way that an integer is.

This description of floating point is a little complicated so it is worth
giving a few examples. The bit pattern:
byte 0 1 2 3 4

sign bit
↓

10000001 00000000 00000000 00000000 00000000
decimal 129 0 0 0 0
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represents an exponent of 1 (=129-128) and positive mantissa of value .5.
(The sign bit, that is bit 7 of byte 1, is 0 so the number is positive and
although all the other bits of the mantissa are also 0, the first bit after the
binary point is always 1). Thus the value represented is .5*2^1=1. The bit
pattern:

byte 0 1 2 3 4
sign bit

↓
10000011 11100000 00000000 00000000 00000000

decimal 131 224 0 0 0
represents an exponent of 3 (= 131 - 128) and a mantissa of -.875 (-=.5+
.25+.125) which gives a value of -7 (=.875*2^3).

If you know the floating point representation it is possible to' 'pick up'
values stored in BASIC variables from assembler but any sort of floating
point arithmetic is far better handled in BASIC.

Binary Coded Decimal

To close this discussion of how bit patterns can be used to represent
numeric values it is interesting to give an example of a completely
different method. Binary Coded Decimal (or BCD) representation is a sort
of cross between a decimal representation and simple binary. The
principle is that instead of converting the entire decimal number to binary
each digit is converted separately. As the largest decimal digit is 9, or
100! in binary only four bits are needed per digit. For example the number
1234 would be represented in BCD as:

1 2 3 4
0001 0010 0011 0100

Using four bits per digit means that it is possible to store two digits per
memory location and this ghes a range of 0 to 99 which should be
compared to the 0 to 255 that can be achieved using simple binary. The
main advantage of BCD is that conversion to binary is easy and can be
done as digits are entered from a keyboard, say. BCD arithmetic is also an
exact parallel of what happens in decimal and this can be a advantage for
some applications where accuracy is essential.

The BCD representation is particularly useful in assembler and to this
end the 6502 can work in a 'decimal mode'. The instruction SED will SEt
Decimal mode and CLD will CLear Decimal mode, i.e. return the 6502 to
normal binary arithmetic. In decimal mode two bytes are added together
using ADC or subtracted using SBC as if they each represented a pair of
decimal digits in BC D. For example,

SED
CLC
LDA #20
ADC #86
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will produce the result 112 in the A register. That is the bit patterns that
represents 20 and 86 are:

20 = 0001 0100
86 = 0101 0110

which corresponds to 14 and 56 in BCD. Now 14 + 56 =70 and this is
represented in BCD by the bit pattern:

0111 0000

which if treated as a simple binary number and converted to decimal is
112.

Notice that during this example the bit pattern was regarded as
representing different things. For the purposes of the assembler the bit
pattern was expressed in terms of a decimal number but for the purposes
of BCD arithmetic it was a pair of digits. This is quite proper and is
typical of the sort of 'mental gymnastics' that an advanced assembly
language programmer often goes through in thinking about data. A bit
pattern can be interpreted and hence written down in many ways. For
example the bit pattern :

10000111

is 135 in decimal if it is interpreted as simple binary; it is 7 as a sign
magnitude number; it is 121 as a two's complement number; it is 87 in
BCD and so on ... The important point is that the reality is the underlying
bit pattern what it represents depends on the way we interpret it and the
operations that we subject it to.

Hexadecimal

BBC BASIC can work with both decimal numbers and hexadecimal
numbers. The main advantage of hex is that it is very easy to convert to
binary. For this reason it is a particularly simple way of specifying a bit
pattern. Hex numbers use a place value representation with weights that
are powers of l6. This use of weights larger than l0 means that it is
necessary to invent some extra symbols to stand for values between 10
and IS, As explained in the BBC User Guide the conventional choice for
these new symbols is A to F. Thus counting in hex goes ()to 9 as usual
and then A, B, C, D, E and F. After F ( 15) the place value system comes
into play and the next number is 10 standing for

1*l6 + 0*1

or 16 in decimal. The conversion of hex numbers to decimal follows the
method used to convert binary to decimal that is each digit is multiplied
by the appropriate weight and the results are totalled. The only
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complication is the need to work out unfamiliar expressions such as E*16
which are tackled by converting the extra symbols A to F to decimal
before trying to perform the multiplication i.e. E*16 is simply 15*16.

However, as already mentioned, the importance of hex numbers is that
they are remarkably easy to convert to binary and vice versa. The reason
for this is that each symbol that makes up a hex number can be converted
to binary without reference to the rest of the number. For example, to
convert :

F7C3

all that you have to do is to write down the binary equivalent, of each
symbol, that is:

F 7 C 3
1111 0111 1100 0011

giving 1111011111000011 as the answer. Note that you have to be careful
to remember to write down four bits for each symbol (because the range 0
to 15, that is 0000 to 1111, takes four bits to represent). To convert a
binary number to hex, form groups of four bits starting from the right
(adding zeros to the final group if it has less than four bits). Then each
group of four bits can be separately converted to hex. For example:

10110110111

can be converted to hex by first forming groups of four bits:

0101 1011 0111

(Notice the extra zero added to the group on the far left.) Then each group
is converted to a single hex character:

5 B 7
0101 1011 0111

giving 5B7.
This method of converting hex to binary and binary to hex is so simple

that it is always to be preferred as a way of writing down a bit pattern. As
a single hex character corresponds to four bits and vice versa it only needs
a pair of hex characters to represent the contents of a single memory
location. For example, the most common explicit use of bit patterns in
BBC BASIC is in user-defined characters. A row of eight dots can be
represented by a pattern of eight-bits and this pattern is usually written in
a VDU 23 statement as a pair of hex digits.

It is well known that in BBC BASIC a hex number is distinguished by
writing '&' in front. A feature that is easy to miss from even a careful
reading of the User Guide is that "~" can be used to force a value to be
printed in hex. The easiest way to input hex numbers is to use the EVAL
function, as in:
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INPUT N$
N=EVAL("&"+N$)

Unfortunately "~" cannot be used to convert decimal numbers to hex
strings as it can only be used in PRINT statements. However, a function to
convert decimal to hex can be found in the disassembler in Chapter
Eleven.

Bit patterns and logic

The use of bit patterns to represent numbers is in many ways a very
sophisticated idea that might be better introduced after the rather simpler
topic of using bit patterns in Boolean logic. Boolean logic may be simple
but it is much less familiar than arithmetic and for this reason it has been
left until a later stage.

Boolean logic involves the manipulation of two values usually called
true and false, although in practice they can be any two distinct values.
Obviously it is possible to make a bit pattern represent a number of
Boolean values as each bit can be interpreted as meaning true or false.
Thus the bit pattern 0 l0! could be taken to mean 'false, true, false, true' if
we assume that 0 is representing false and 1 is representing true. The
fundamental operations of Boo lean logic, AND, OR and NOT, are fairly
well known even to non-programmers as they are very similar to their
everyday English equivalents. That is x AND y, where x and y are
Boolean values (or truth values) is TRUE if, and only if, x and y are both
TRUE; x OR y is TRUE if either x or y are true; and NOT x is TRUE if x
is FALSE and vice versa. A good way of explaining the action of a logical
operator is by a truth table that lists the result of the operation for each
possible value of x and y. For example AND may be characterised by:

x y x AND y
0 0 0
0 1 0
1 0 0
1 1 1

You may have noticed that while the idea of using a bit pattern to
represent a number of logical values was introduced at the start of the
section the logical operators have been introduced in terms of their effect
on a pair of single bits. That is, while the result of I AND 0 can be easily
worked out to be 0, so far no meaning has been attached to expressions
such as 01 l0 AND 1010. There are in fact a number of ways that this can
be done but the most common is the so-called bitwise extension to the
standard logical operations. A bitwise operation manipulates pairs of bits
that occupy the same positions within their respective bit patterns. For
example, the bitwise evaluation of 0110 AND 1010 first calculates bit
zero of the result by ANDing together the bit zeros of each bit pattern -
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that is 0 AND 0. Then the second bit of th result is calculated in an
analogous manner using the second bit of each bit pattern and so on. This
is best visualised as:

0110
AND 1010

0010
Bitwise versions of OR and NOT can be similarly arrived at. For example,
the bitwise implementation of 0110 OR 1010 is:

0110
OR 1010

1110
and NOT 0110 is simply obtained by 'inverting' each of the bits in turn
giving 1001 as the result.

Bitwise logical operations are particularly useful for carrying out 'bit
manipulation', that is independently changing some bits within a bit
pattern without altering others. For this reason it is the most common
method used to extend the logical operators to bit patterns, but it is
important to realise that it is by no means universal - see for example ZX
BASIC as implemented on the ZX81 or Spectrum.

BASIC logic

In BBC BASIC TRUE and FALSE are represented by integers, -1 for
TRUE and 0 for FALSE. The logical operators are AND, OR, NOT and
EOR (EOR stands for Exclusive OR and will be described later). Ifyou
use these operators on the values 0 and —I then they behave exactly as
you would expect. For example -1 AND 1 is -1 and NOT 0 is -1.
However, if you try using them with other integer values you will find
that, rather than printing an error message, the BBC Micro will return
another integer as a result. For example, if you try PRINT 16 OR 3 you
will see the result 19 printed. From the last section you should be able to
see that BBC BASIC is in fact implementing its logical operators in a
bitwise fashion. In fact the logical operators are applied bit wise to the
four bytes that are used to represent an integer. That is, the result of l6 OR
3 is:

00000000 00000000 00000000 00010000
OR 00000000 00000000 00000000 00000011

00000000 00000000 00006000 00010011

which is, of course. the binary representation of 19.
The only complication to this simple bitwise implementation is that an

integer is represented using two's complement For example, what is -1 OR
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7? The answer is easy as long as you remember or work out the bit pattern
used to represent -1 (using two's complement):

-1 = 11111111 11111111 1111111 11111111
7 =  00000000 00000000 00000000 00000111

-1 OR 7 = 11111111 11111111 11111111 11111111

That is -1 OR 7 is simply -1. If you find all of this conversion to two's
complement difficult or confusing then the best thing to do is to use hex.
For example PRINT ~(&E3 OR &3F) gives the result &FF.

Finally, it is worth pointing out that while TRUE and FALSE are -1
and 0 respectively, the IF statement will treat any non-zero value as
TRUE. That is, the IF statement is more accurately described as:

IF numeric expression THEN list 1 ELSE list 2

and 'list 1' will be executed if 'numeric expression' is non-zero and 'list 2'
will be executed if 'numeric expression' is zero.

Logic in assembler - EOR

The 6502 performs all of its logical operations as bitwise instructions
working on eight-bits at a time. Of course, you can manipulate larger bit
patterns by repeating the operations on eight-bits at a time. For example:

AND #&40

will perform a bitwise AND of the current contents of the A register and
&40 leaving the result in the A register. The logical operations included in
the 6502% instruction set are AND, OR and EOR. Y ou might be puzzled
by the absence of a NOT command and the presence of EOR. In practice,
there are a number of ways of producing the same effect as a NOT
command and one of them is to use EOR. EOR stands for Exclusive OR
and its action is best explained by way of a truth table:

x y x EOR y
0 0 0
0 1 1
1 0 1
1 1 0

If you examine this table you will see that x EOR y is true if x or y is true,
but notboth. This corresponds more closely to the English use of'or' than
OR. For example, if you say 'you can have marmalade or jam' you
generally mean that the choice is one or the other but not both! EOR can
be used to produce the same effect as a NOT instruction. If you want to
perform a bitwise NOT on the contents of the A register then use:
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EOR #&FF

This works because each bit in the A register is EORed with a '1' bit in the
bit pattern and if you look at the truth table you will see that 0 EOR 1 is 1
and 1 EOR 1 is 0 which is exactly what is needed to implement a NOT
operation.

Bit manipulation

The need to manipulate and test the value of individual bits within bit
patterns is fundamental to many areas of programming, particularly where
any direct interaction with the hardware is involved. Using the bitwise
logical operators it is easy to set any bit within a bit pattern to zero or one
or to change its existing value from 0 to 1 or vice versa.

In particular, you can set any bit or group of bits to zero by ANDingthe
bit pattern with another specially constructed bit pattern called amask. For
example, suppose you want to set the first three bits in a bit pattern to zero
then you would AND it with a mask consisting of all ones apart from the
first three bits. To see how this works examine the following:

value = 10101010
mask = 11110000
result =1010 1000

Notice that the last three bits will always be zero no matter what the last
three bits in 'value' are (because 0 or 1 when ANDed with a Oproducesa
0). ln the same way OR can be used to set any bit or group of bits to I and
EOR can be used to NOT or 'flip' any bit or group of bits.

To be precise:

(1) To set any group of bits to 1 construct a mask value consisting of zeros
in every bit position apart from the bit positions that you want to set to 1.
This mask is then ORed with the bit pattern that you want to alter.

(2) To set any group of bits to 0 construct a mask value consisting of ones
in every bit position apart from the bit positions that you want to set to 0.
This mask is then ANDed with the bit pattern that you want to alter.

(3) To 'flip' any group from their current value construct a mask
consisting of zeros in every bit position apart from the bit positions that
you want to alter. This mask is then EORed with the bit pattern that you
want to alter.

For example, if you want to 'flip' the first three bits of an eight-bit
value, the mask you would use would be:

00000111

or &07 in hex. If you EOR &07 with any value you will discover that as
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required the first three bits are unchanged, but the rest of the value is
unchanged. For example, &55 EOR &07 gives the result &52.

Extracting information - USR and shifts

Setting groups of bits to zero without affecting the rest of the bit pattern is
often used in conjunction withshift operations to extract information from
a bit pattern. A shift operation, as its name suggests, will shift all the bits
in a bit pattern one place to the right or the left. For example a right shift
of the bit pattern:

10011011

gives

01001100

Notice that as well as shifting all the bits one place to the right we have
also 'produced' a zero that has been shifted into bit 7's position and the old
value of bit 0 has been 'lost'. Apart from the direction of shift i.e. left or
right shift operations can also differ in the value that they shift 'into' the
bit pattern and what happens to the bit that is shifted out. Shifting a zero in
and losing the bit that is shifted out is called a logical shift.

Using a logical shift and the logical operators it is possible to isolate
any group of bits within a bit pattern. For example, a JSR function returns
a value that is best considered as a bit pattern made up in the following
way:

P |Y |X |A

where P is the contents of the status register, Y is the contents of the Y
register, X the contents of the X register and A the contents of the A
register. Notice that each register value is composed of eight-bit and hence
the [JSR function returns a four byte bit pattern that is interrupted by BBC
BASIC as an integer. Suppose that the particular [JSR function that you
have written returns its result in the X register and the values in the P, Y
and A register are irrelevant. To isolate the byte that comes from the X
register from the other three bytes, all that you have to do is to set all of
the unwanted bits to zero and then perform eight logical right shifts. That
is, first AND the value with:

&0000FF00

and then perform the eight logical shift rights. For example, if the value
returned by USR is &B1123486 then the result of ANDing it with the
above mask is &00003400 and the result of eight right shifts is &
00000034 or just &34.

This method can be used directly in 6502 assembler because the 6502
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has both logical operations and logical shifts. However, BBC BASIC
doesn't have a shift operation and so it looks as though this method cannot
be used. Fortunately this is not the case as there is a correspondence
between right shift operations and division by two and left shift operations
and multiplication by two. Dividing a number by two and ignoring any
fractional part has the same effect as shifting the bit pattern one place to
the right. In general BASIC this can be implemented as INT(V/2) where
V holds the bit pattern to be shifted to the right. In BBC BASIC a better
and faster way is to use the DIV operator which performs integer division
and so automatically ignores any fractional part. Thus, to isolate the X
register's value in BBC BASIC use:

(V AND &0000FF00) DIV 256

(Dividing by 256 is the same as dividing by 2 eight times, i.e. 256=2^8,
and so performs eight right shifts as required.)

Using shifts (implemented as divisions and multiplications in BASIC)
and logical operations it is possible to isolate, test and generally alter any
bit or group of bits within a bit pattern and this opens up all sorts
ofmemorysaving methods of 'packing' data into the smallest possible
space. Bit manipulation is a common tool in advanced programming.

Logic functions - predicates

For the final section in the final chapter of this book we return to the
subject of program clarity. Sometimes it is necessary to write a very
simple IF statement that is complicated by the difficulty of the 'condition'
that it tests for. For example, suppose you had written a program that
counted the number of letters (as opposed to numbers, spaces and
punctuation characters) a string contained. The IF statement that actually
does the counting is simple enough in conception:

IF C$ = a letter THEN COUNT COUNT+1

where C$ contains the character being tested. The trouble is that the
condition C$ a letter is not BASIC and turning it into valid BASIC
obscures its meaning:

IF (C$>="A" AND C$<="Z") OR (C$>="a" AND C$<="z") THEN
COUNT=COUNT+1

The first bracket tests to see if C$ is in the set of upper-case characters
and the second tests to see if it is in the set of lower-case characters.
Obviously if either of these tests is true then CS is a letter and hence they
are connected together using OR.

It is not possible to simplify this 'letter test' condition and so you might
come to the conclusion that there is nothing that can be done to improve
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the clarity of the program - this is not so. A simple idea from logic can be
applied with great success in BBC BASIC - the predicate function. A
predicate function is, roughly speaking, a function that returns a Boolean
value. As BBC BASIC represents TRUE and FALSE by integers there is
nothing stopping us from writing functions that return Boolean values. For
example the 'letter test' condition can be easily turned into a predicate
function :

1000 DEF FNletter(C$)
1010 LOCAL T%
1020 T%=C$>="A" AND C$<="Z")
1030 T%=T% OR (C$>="a" AND C$<="Z"
1040 =T%

Notice the way that within the function the complex condition can be
worked out in stages so that it can be understood in the same way this is
always a good idea. Once this function has been defined the IF statement
can now be written:

IF FNletter(C$) THEN COUNT=COUNT+l

or as

IF FNletter(C$)=TRUE THEN COUNT=COUNT+1

depending on which you find the clearest expression of your intentions.

Theory

If you really want to be confident about computing, there is a lot more
theory to learn about binary numbers, Boolean logic, etc. Most of it is
quite straightforward as long as you keep askingyourselfthe question 'what
does this theory really mean in terms of bit patterns and operations'. The
best way of ensuring this practical outlook is to learn theory as and when
you need it in your programming. A great deal of this book has been about
increasing your awareness of the possibilities rather than getting involved
in a great deal of detail. In computing, finding out what you don't know
and what you need to know is a substantial part of the battle!



Further Reading

Even though this is a long book it still does not include everything you
might want to know about BASIC programming, 6502 assembler and the
BBC Micro and while using it you may occasionally need to refer
elsewhere for more information.

An introductory book on BBC/Acorn BASIC that uses the approach of
natural structure to explain the use of each command isThe Electron
Programmerby S. M.Gee and Mike James (Granada, 1983). If you need a
more advanced but general guide to programming then tryThe Complete
Progranuner by Mike James (Granada, 1983). If you are programming in
assembly language then look out forIntroducing BBC Micro Machine
Code by A. P. Stephenson (Granada, 1983). A comprehensive, if rather
long, book on 6502 assembly language programming is:Beyond BASIC
by Richard Freeman (BBC and the National Extension College Trust,
1983.)

For specialised information on ROM paging seeBBC Micro ROM
Paging Systems Explained from Watford Electronics, 35/37 Cardiffitoad,
Watford, Herts. They can also supply the necessary hardware required.

You will find the hardware and many details of the inner workings of
BBC BASIC in The BBC Micro: An Expert Guide by Mike James
(Granada, 1983).

If you want to write applications programs that use the BBC Micro's
graphics then we recommend bothBBC Micro Sound and Graphics by
Steve Money (Granada, 1983) andThe Complete Graphics Programmer
by Mike James (Granada, 1984) which is a more advanced book about
graphics techniques.

Finally, if you would like more examples of how to use the
programming methods described in this book, this time applied to games
programs, you are referred to:The BBC Micro Gamesmasterby Kay
Ewbank, Mike James and S. M. Gee (Granada, 1984) whicheontains not
only the final program listings but a description of how each program was
created and its problems overcome.
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