
6 Assembling and
Disassembling
6.1 The Assembler

The built-in 6502 assembler in BASIC is a very useful tool,
allowing both large and small machine code routines to be written
easily. Being a part of BASIC itself, it is very easy to use BASIC
variables and functions, conditional assembly (with some sections
of the assembly code in IF..THEN statements), or macros
(assembly sections in a GOSUB or FN/PROC).

The assembler is written very efficiently, and in total only
occupies just over 1K of the 16K BASIC ROM.

The assembler mnemonics in the ROM are stored in a compressed
format to save space. Only the least significant 5 bits of each
mnemonic character are used, so that the whole mnemonic can be
compressed into 15 bits of a 2-byte number. This also mearvs that
both upper case or lower case mnemonics will be recognised (or a
mixture of the two). Fig 6.1 shows how the characters are packed.

MNEMONIC CHARACTERS

COMPRESSED FORMAT

MSB LSB

FIRST SECOND THIRD

Figure 6.1. − Mnemonic compression.

83

A further byte is used for each mnemonic, to hold the ‘base value
of the opcode. For instructions which can only have one
addressing mode (such as the instructions which employ implied
or relative addressing), this is the actual opcode used; for other
intructions, this base value is modified by the actual addressing
mode used.

The mnemonic and base opcode are stored as follows:

BASIC1 BASIC2
&843B+M &8450+M MSB mnemonic
&8474+M &848A+M LSB mnemonic
&84AD+M &84C4+M base opcode

where M is the mnemonic number. Table 6.1 shows the mnemonic
and base opcode value for each mnemonic number, as stored in
the ROM table. Note that the directives OPT and EQU are stored
the same as mnemonics, but they need no base opcode. The EQU
directive is not implemented in BASIC1

By comparing this table with fig 6.2, it can be seen that the
mnemonics are grouped together with others which allow the
same addressing modes. The assembler has a different section of
machine code which is used for each of the different groups of
mnemonics, to decide which addressing modes to allow. Section
1.5 gives these mnemonic groups.

Table 6.1 − Assembler Mnemonics

No. Mnemonic Base No. Mnemonic Base

&01 BRK &00 &0F RTI &40
&02 CLC &18 &10 RTS &60
&03 CLD &D8 &11 SEC &38
&04 CLI &58 &12 SED &F8
&05 CLV &B8 &13 SEI &78
&06 DEX &CA &14 TAX &AA
&07 DEY &88 &15 TAY &A8
&08 INX &E8 &16 TSX &BA
&09 INY &C8 &17 TXA &8A
&0A NOP &EA &18 TXS &9A
&0B PHA &48 &19 TYA &98
&0C PHP &08 &1A BCC &90
80D PLA &68 &1B BCS &B0
80E PLP &28 &1C BEQ &F0

84

No. Mnemonic Base No. Mnemonic Base

&1D BMI &30 &2C ROR &66
&1E BNE &D0 &2D DEC &C6
&1F BPL &10 &2E INC &E6
&20 BVC &50 &2F CPX &E0
&21 BVS &70 &30 CPY &C0
&22 AND &21 &31 BIT &20
&23 EOR &41 &32 JMP &4C
&24 ORA &01 &33 JSR &20
&25 ADC &61 &34 LDX &A2
&26 CMP &C1 &35 LDY &A0
&27 LDA &A1 &36 STA &81
&28 SBC &E1 &37 STX &86
&29 ASL &06 &38 STY &84
&2A LSR &46 &39 OPT ---
&2B ROL &26 &3A EQU ---

BRK
Implied
1 7

BPL
Relative

2 7

BMI
Relative
2 2**

JSR
Absolute

36

RTI
Implied
1 6

BVC
Relative
2 2**

RTS
Implied
1 6

BVS
Relative
2 2**

BCC
Relative
2 2**

LDY
IMM
2 2

BCS
Relative
2 2**

CPY
IMM
2 2

BNE
Relative
2 2**

CPX
IMM
2 2

BEQ
Relative
2 2**

ORA
(IND, X)

2 6

ORA
(IND, Y)
2 5*

AND
(IND, X)

2 6

AND
(IND), Y
2 5*

EOR
(IND, X)

2 6

EOR
(IND), Y
2 5*

ADC
(IND, X)

2 6

ADC
(IND), Y
2 5*

STA
(IND, X)

2 6

STA
(IND), Y

2 6

LDA
(IND, X)

2 6

LDA
(IND), Y
2 5*

CMP
(IND, X)

2 6

LDX
IMM
2 2

BRK
Implied
1 7

0

0 * Add 1 to N if page boundary is crossed.
** Add 1 to N if branch occurs to same page.

add 2 to N if branch occurs to different page.

BIT
ZP

2 3

STY
ZP

2 3

STY
ZP, X
2 4

LDY
ZP

2 3

LDY
ZP, X
2 4

CPY
ZP

2 3

CPX
ZP

2 3

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

LSD

M
S

D

CMP
(IND), Y
2 5*

SBC
(IND, X)

2 6

SBC
(IND), Y
2 5*

ORA
ZP

2 3

AND
ZP

2 3

EOR
ZP

2 3

ADC
ZP

2 3

STA
ZP

2 3

LDA
ZP

2 3

CMP
ZP

2 3

SBC
ZP

2 3

ORA
ZP, X
2 4

AND
ZP, X
2 4

EOR
ZP, X
2 4

ADC
ZP, X
2 4

STA
ZP, X
2 4

LDA
ZP, X
2 4

CMP
ZP, X
2 4

SBC
ZP, X
2 4

ASL
ZP, X
2 6

ROL
ZP, X
2 6

LSR
ZP, X
2 6

ROR
ZP, X
2 6

STX
ZP, Y
2 4

LDX
ZP, Y
2 4

DEC
ZP, X
2 5

INC
ZP, X
2 6

ASL
ZP

2 5

ROL
ZP

2 5

LSR
ZP

2 5

ROR
ZP

2 5

STX
ZP

2 3

LDX
ZP

2 3

DEC
ZP

2 3

INC
ZP

2 5

PHP
Implied
1 3

CLC
Implied
1 2

SEC
Implied
1 2

CLI
Implied
1 2

SEI
Implied
1 2

DEY
Implied
1 2

TYA
Implied
1 2

TAY
Implied
1 2

CLV
Implied
1 2

INY
Implied
1 2

CLD
Implied
1 2

INX
Implied
1 2

SED
Implied
1 2

SED
Implied
1 4

PLP
Implied
1 4

PHA
Implied
1 3

ORA
IMM
2 2

AND
IMM
2 2

EOR
IMM
2 2

ADC
IMM
2 2

ORA
ABS, Y
3 4*

AND
ABS, Y
3 4*

EOR
ABS, Y
3 4*

ADC
ABS, Y
3 4*

LDA
IMM
2 2

CMP
IMM
2 2

SBC
IMM
2 2

STA
ABS, Y
3 5

LDA
ABS, Y
3 4*

CMP
ABS, Y
3 4*

ASL
Accum
1 2

ROL
Accum
1 2

LSR
Accum
1 2

ROR
Accum
1 2

TXA
Implied
1 2

TAX
Implied
1 2

TSX
Implied
1 2

DEX
Implied
1 2

NOP
Implied
1 2

BIT
ABS
3 4

JMP
ABS
3 3

JMP
ABS
3 5

CPY
ABS
3 4

CPX
ABS
3 4

LDY
ABS, X
3 4*

LDY
ABS
3 4

ORA
ABS
3 4

AND
ABS
3 4

EOR
ABS
3 4

ADC
ABS
3 4

STA
ABS
3 4

LDA
ABS
3 4

CMP
ABS
3 4

SBC
ABS
3 4

ORA
ABS, X
3 4*

AND
ABS, X
3 4*

EOR
ABS, X
3 4*

ADC
ABS, X
3 4*

LDA
ABS, X
3 4*

CMP
ABS, X
3 4*

SBC
ABS, X
3 4*

STA
ABS, X
3 5

ASL
ABS
3 6

ROL
ABS
3 6

LSR
ABS
3 6

ROL
ABS, X
3 7

LSR
ABS, X
3 7

ROR
ABS
3 6

ROR
ABS, X
3 7

ASL
ABS, X
3 7

LDX
ABS
3 4

LDX
ABS, Y
3 4*

DEC
ABS
3 6

INC
ABS
3 6

DEC
ABS, X
3 7

INC
ABS, X
3 7

— OP Code
— Addressing Mode
— Instruction Bytes; Machine Cycles

STY
ABS
3 4

STX
ABS
3 4

TXS
Implied
1 2

SBC
ABS, Y
3 4*

Figure 6.2 − 6502 op-code matrix.

85

6.2 The Disassembler

A disassembler is always useful: either for exploring the contents
of the ROMs in the machine, or for checking that the machine
code that you have just assembled is actually what you wanted
(especially if its got lots of conditional assembly in it).

Most disassemblers take up quite a lot of memory. For a start,
they usually use a large table to decode the opcodes, with one
entry for each of the 256 possible l-byte numbers. Each entry of
the table contains 3 bytes of mnemonic characters, and a further
byte to give the addressing modes allowed with that particular
opcode. This means that the disassembler is 1K long already,
without any program to decode the instructions. Also, they are
usually written in BASIC, which makes them slow, and even
larger.

The disassembler described in this section uses the assembler
tables in the ROM, and is written in machine code. When
assembled, it is less than 500 bytes long, and so will fit in any 2
spare pages of memory (for example, from &B00 to &CFF, which
is otherwise used for the user defined characters and function
keys).

To use the disassembler, the resident integer variable D% is set to
point to the first instruction to be disassembled (similar to the use
of P% by the assembler). Typing ‘CALL start�’ will then
disassemble one instruction, and leave D% pointing to the next
one to be disassembled. If the variables have been re-set since the
program was assembled, ‘CALL &B00�, or wherever the start of it
is, will have to be used instead. This could be built in as a new
statement, if required (see chapter 7).

To disassemble a length of code, a loop can be used:

REPEAT:CALL &B00:UNTIL FALSE
or: REPEAT:CALL &B00:UNTIL D%>&BFFF

(page mode will have to be used with a loop like this, as it
disassembles at about 150 bytesfisecond, depending on the screen
mode). In fact, a short program could be used to make the use of it
very flexible; but the main advantage of it is that other programs
can be loaded and run while the disassembler is still resident. If
the user defined characters or function keys need to be used while
the disassembler is in memory, PAGE could be moved up by 512

86

bytes, and it could be assembled there.

The ‘EQU’ directive has not been used in the program, so that it
will work on either a BASICI or BASIC2 machine with no
modification. PROCsetup (lines 9000 on) checks which version of
BASIC is present, and sets up th.e correct ROM table labels
before it is assembled.

Operation of the disassembler

The disassembler compares the opcode which is to be
disassembled against the ‘base opcode’ of each mnemonic, and
calculates the difference between them. If this difference can be
made up by the offset of a particular addressing mode, and this
addressing mode is allowed with the current mnemonic that it is
checking, the mnemonic and addressing mode of that particular
opcode have been found.

For example, if the value of the opcode was &31, this would be
matched with the mnemonic ‘AND’ (base opcode &21) and the
addressing mode ‘ (IND), Y’ (offset &10). The base opcodes for
each mnemonic are stored in the ROM tables, but the
disassembler must contain the tables of allowed addressing modes
for each group of instructions, and also the extent of each group.
These tables are not in the ROM as the assembler does the
addressing mode decoding in machine code rather than using tab
les.

The main opcode matching loop is from lines 1460−1760.

If the opcode is not matched with anything in the table, ‘???’ is
printed out (for an unrecognised mnemonic). Note that ‘JMP
(IND)’ has to be tested for separately (line 1190) as it does not fit
into the pattern with the rest of them.

87

The allowed addressing mode offsets for each group are:

Addressing Offset
mode-grp. 00 04 08 0C 10 14 18 1C

0 &00−&21 X
1 &22−&28 0 1 2 3 4 5 6 7
2 &29−&2C 1 A 3 5 7
3 &2D−&2E 1 3 5 7
4 &2F−&30 # 1 3
5 &31 1 3
6 &32−&33 3
7 &34−&35 # 1 3 5 7
8 &36 0 1 3 4 5 6 7
9 &37−&38 1 3 5

These possible offsets are held in the bit table ‘msktab’ in the
program (lines 3490−3590). The number of the lowest mnemonic
in each group is held in the table ‘grptab’ (lines 3600−3710).

The symbols in the table (X, #, A, 1 to 7) represent the possible
addressing modes. Note that they don’t all line up: the addressing
mode decode part of the program has to line up all these to get the
correct addressing mode. The symbols represent:

X either relative or implied
IMM (same as 2, but different pattern)
0 (IND,X)
1 ZP
2 IMM
3 ABS
4 (IND),Y
5 ZP,X
6 ABS,Y
7 ABS,X (,Y if LDX or STX)

The rest of the program handles the decoding and printing of the
addressing mode characters and data. For most of the groups this
is not too difficult, as the addressing mode corresponds directly
with the offset from the base address; however, some others need
to be shifted by an extra offset to ‘ line up’ with the others. This
shifting is done by lines 1810−2060.

88

The more complex addressing modes are printed using a bit mask
table (lines 3800 to 3882) to decide which characters to print. The
simpIer addressing modes are printed by a separate part of the
routine.

 10 REM Machine code disassembler
 15 REM using assembler ROM tables
 20 REM
 25 REM M D Plumbley 1984
 30 REM
 99
 100 PROCsetup :REM Set up ROM entry points
 590
 595 REM *** Allocate workspace ***
 600 worksp = &0070
 605 grpmsk = worksp :REM Bit mask of allwed modes
 610 ytemp = worksp+1 :REM Temp for addr mode group
 615 mdstor = worksp+2 :REM Store for addressing mode
 620 opcode = worksp+3 :REM Opcode read in from memory
 625 data = worksp+4 :REM The 2 bytes after the opcode
 630 addr = worksp+6 :REM Copy of address in D%
 635 mnem = worksp+8 :REM Mnemonic construction area
 640 xtemp = worksp+10 :REM Temp for mnemonic number
 645 lastch = worksp+11 :REM Last char of mnemonic
 650 nbytes = worksp+12 :REM Number of instruction bytes
 655 chrmsk = worksp+13 :REM Addr mode character mask
 690
 700 count = &1E
 799
 900 start% = &0B00 :REM User defined charlkey area
 905
 910 FOR opt% = 0 TO 3 STEP 3
 920 P% = start%
 950 [OPT opt%
1000 .disass
1010 LDA &410 \Get address from D%, and put it
1020 STA addr \ in the workspace
1030 LDA &411
1040 STA addr+1
1045
1050 LDY #2 \Transfer the opcode and 2 data
1060 .txbyte \ bytes to be disassembted
1070 LDA (addr),Y
1080 STA opcode,Y
1090 DEY
1100 BPL txbyte
1105
1110 LDA addr+1 \Print the address and the opcode
1120 JSR phex
1130 LDA addr

89

1140 JSR phexsp
1150 JSR pspace
1160 LDA opcode
1170 JSR phexsp
1180
1190 LDA opcode \If we have a JMP (XXXX), then
1200 CMP #&6C \ set the mnemonic to "JMP"
1210 BNE mtchop \ (mnemonic number &32),and the
1220 LDX #&32 \ addressing mode to 8.
1230 STX xtemp \ Otherwise, attempt to match the
1240 LDA #8 \ opcode with the table
1250 STA mdstor
1260 JMP domode
1270
1280 .nomtch
1290 JSR tbmnem \If we get here, no match was
1300 LDY #3 \ found, so print a "???",
1310 LDA #ASC"?" \ and go on to add 1 to D%
1320 .pqloop \ before finishing
1330 JSR pchar
1340 DEY
1350 BNE pqloop
1360 JMP add1
1370
1380 .tbmnem
1390 LDY #16 \Print spaces until we get to
1400 .tbloop \ the 16th cotumn. This lines
1410 JSR pspace \ up all the mnemonics.
1420 CPY count
1430 BCS tbloop
1440 RTS
1450
1451 \ ** Main opcode matching routine **
1452
1460 .mtchop \Go through all the mnemonics,
1470 LDX #&39 \ and try to match one to the
1480 LDY #&0A \ opcode.
1485
1490 .nextop
1500 DEX \If ws have tried all the
1510 BEQ nomtch \ mnemonics, it is invatid.
1515
1520 TXA \Check to see if we are now in
1530 CMP grptab,Y \ a new mnemonic group.
1540 BCS samgrp
1550 DEY
1560 LDA msktab,Y
1570 STA grpmsk
1575
1580 .samgrp
1590 LDA opcode \The opcode can only have this
1600 SEC \ mnemonic if is a positive

90

1610 SBC opbase, X \ of f set f r om t he " baseopcode"
1620 BCC next op \ of i t . Al so, t he of f set must
1630 LSRA \ be di v i s i bl e by 4, and must be
1640 BCS next op \ &1C or l ess (&1C=4* 7)
1650 LSRA
1660 BCS next op
1670 CMP #8
1680 BCS next op
1685
1690 STA mdst or \ Check t o see i f t hi s addr mode
1700 STY yt emp \ i s at t owed wi t h t hi s mnemoni c.
1710 TAY \ I f i t i sn' t , go back t o check
1720 LDA bi t t ab, Y \ f or anot her mnemoni c.
1730 LDY yt emp \ " gr pmsk" hol ds t he al l owed
1740 AND gr pmsk \ addr modes f or t hi s mnemoni c.
1750 BEQ next op
1755
1760 STX xt emp \ Success! ! - so save t he mnemoni c
1762 \ number
1765
1770 LDY yt emp \ I f t he mode gr oup i s 0, i t i s
1790 TYA \ ei t her i mpl i ed or r el at i ve
1800 BEQ i mpr el
1805
1810 LDA #&10 \ I f t he gr oup masksuggest s t hat
1820 . t r ymsk \ t he mnemoni c doesn' t al l ou
1830 BI T gr pmsk \ absot ut e addr essi ng, w. have t o
1840 BNE mskok \ at t er t he addr essi ng mode unt i t
1850 I NC mdst or \ i t does. (The " BPL" wi l l al ways
1860 LSR gr pmsk \ wor k af t er a " LSR" .)
1870 BPL t r ymsk
1875
1880 . mskok \ When we get her e, t he mask and
1890 LDA gr pmsk \ addr mode of f set i s OK.
1900 AND #&08 \ Homever , i f t he addr mode i s 0
1910 BNE modeok \ and (i ndi r) , Y i s not at t owed,
1920 LDA mdst or \ t hen i t i s r eal l y i mmedi at e
1930 BNE modeok \ addr essi ng, whi ch shoul d be
1940 LDA #2 \ addr mode 2
1950 STA mdst or
1955
1960 . modeok \ When we get her e, t he onl y t hi ng
1970 CPY #2 \ l ef t t o t est f or i s accumul at or
1980 BNE domode \ addr essi ng. I f t he " al l owed
1990 TYA \ mode" gr oup i s 2, and t he addr
2000 CMP mdst or \ mode i s al so 2, t hen pr i nt t he
2010 BNE domode \ mnemoni c, f ol l owed by an " A" ,
2020 JSR pmnem \ and go t o add 1 t o D% bef or e
2030 LDA #ASC" A" \ f i ni shi ng. Ot her wi se, go t o
2040 JSR pchar \ " domode" .
2050 . j add1
2060 JMP add1

91

2065
2070 .imprel \If we get here, the addressing
2080 LDX xtemp \ mode is either retative or
2090 CPX #&1A \ imptied.
2100 BCS rel
2105
2110 JSR pmnem \If it is imptied, print the
2120 JMP add1 \ mnemonic, and add 1 to D%
2125
2130 .rel \If it is relative, we have 1
2140 LDA data \ extra data byte to print out
2150 JSR phexsp \ before the mnemonic.
2160 JSR pmnem
2165
2170 LDA #0 \The absolute addr has to be
2180 STA data+1 \ calculated from the offset.
2190 LDA data \ First extend the sign of the
2200 BPL nodec \ offset byte into 2 bytes
2210 DEC data+1
2215
2220 .nodec \Then add this 2-byte offset to
2230 SEC \ D%, adding another 2 with it.
2240 ADC &410 \ One extra is added by setting
2250 STA data \ the carry before the addition,
2260 LDA &411 \ the other is added by
2270 ADC data+1 \ incrementing the address
2280 STA data+1 \ afterwards.
2290 INC data
2300 BNE nopage
2310 INC data+1
2315
2320 .nopage \Finally, print the absotute
2330 JSR pabs \ address, and add 2 to D% before
2340 JMP add2 \ leaving.
2350
2355 \ ** Print the mnemonic ***
2360 .pmnem
2370 LDX xtemp \First, get the number of the
2380 JSR tbmnem \ mnemonic, and get the LSB and
2390 LDA lsbmn,X \ MSB of the compressed mnemonic.
2400 ASLA \ The shifts are to get the bits
2410 STA mnem \ ready for the first 5 bits to
2420 LDA msbmn,X \ be shifted out.
2430 ROLA
2440 STA mnem+1
2445
2450 LDX #3 \This is the main loop which
2460 .mcloop \ shifts 3 characters out of
2470 LDA #0 \ the 2-byte compressed mnemonic.
2480 LDY #5 \ 5 bits at a time are shifted
2490 .mbloop \ out into the accumutator, and
2500 ASL mnem \ they are then ORed with &40 to

92

2510 ROL mnem+1 \ turn them into upper case
2520 ROLA \ letters .
2530 DEY
2540 BNE mbloop
2550 ORA #&40
2560 JSR pchar
2570 DEX
2580 BNE mcloop
2585
2590 STA lastch \Save the last character printed:
2595 \ it might be an "X".
2600 JMP pspace \Print a space, and exit.
2605
2606 \ ** Handle the addressing mode stuff **
2610 .domode
2620 LDY mdstor \First, get the number of bytes
2630 LDX mdbyts,Y \ used by this addr mode, and
2640 STX nbytes \ save it.
2645
2650 DEX \Print the required number of
2660 BEQ nodata \ data bytes before the mnemonic.
2670 LDA data
2680 JSR phexsp
2690 DEX
2700 BEQ nodata
2710 LDA data+1
2720 JSR phexsp
2725
2730 .nodata
2740 JSR pmnem \Print the mnemonic.
2745
2750 LSR mdstor \If the addr mode was odd, it is
2760 BCS smplmd \ a simple one, so deal with it
2770
2780 LDY mdstor \If it was not a simple mode, get
2790 LDA chmstb,Y \ the mask of characters to be
2800 STA chrmsk \ printed into "chrmsk".
2805
2810 LDY #6 \Starting at the 7th (0..6) char,
2820 .newchr \ if the bit shifted out of the
2830 ASL chrmsk \ mask is set, then print it.
2840 BCC nochr
2850 LDA chtab,Y
2860 JSR pchar
2865
2870 .nochr \If we have got to the 5th char,
2880 CPY #5 \ the data can be printed (i.e.
2890 BNE nodat \ the "#" or "(" has been printed
2900 JSR pdata \ if there was one)
2905
2910 .nodat \Go round for another character
2920 DEY \ if we haven't printed them all;

93

2930 BPL newchr \ otheruise add "nbytes" to D%
2940 JMP addn \ and exit.
2950
2960 .smplmd \If we get here, the addr mode is
2970 JSR pdata \ either "zero-page", "absotute",
2980 LSR mdstor \ "zero-page,X" or "absolute,X".
2990 LSR mdstor \ Shifting out the 2nd bit from
3000 BCC addn \ "mdstor" gives whether indexed
3010 LDA #ASC"," \ addressing is required.
3020 JSR pchar
3025
3030 LDA #ASC"X" \If the last character of the
3040 CMP lastch \ mnemonic was a "X", then use
3050 BNE px \ "Y" as the index
3060 LDA #ASC"Y"
3070 .px
3080 JSR pchar \Print the index character, and
3090 JMP addn \ add "nbytes" to D%.
3095
3096 \ ** Routines to print the data after the mnemonic **
3110 .pabs \Print the data as an absotute
3120 LDA #ASC"&" \ address.
3130 JSR pchar
3140 LDA data+1
3150 JSR phex
3160 LDA data
3170 JMP phex
3175
3180 .pdata \If the total number of bytes for
3190 LDA nbytes \ this addressing mode is not 2
3200 CMP#2 \ (i.e. it is 3) then print the
3210 BNE pabs \ absolute address.
3220 .pzerop
3230 LDA #ASC"&" \Print the data as a single byte.
3240 JSR pchar
3250 LDA data
3260 JMP phex
3265
3267 ** Exit points; add size to D% and exit ***
3270 .add1 \Add 1 to D%, and then exit
3280 LDA #1
3290 BNE add
3300 .add2 \Add 2 to D%, and then exit
3310 LDA #2
3320 BNE add
3360 .addn \Add the number of bytes in the
3370 LDA nbytes \ instruciton to D%, then exit
3375
3380 .add\Add A to D%
3390 CLC \ (The least significant 2 bytes
3400 ADC &410 \ of D%, are stored in &410 and
3410 STA &410 \ &411)

94

3420 LDA &411
3430 ADC #0
3440 STA &411
3445
3450 JMP pnewl \Print a CRLF and exit
3460
3480 *** Allowed offset table ***
3482 \This tabte gives the allowed addr mode offset for
3484 \ each group of mnemonics. Bit 7 (the top bit) is set
3486 \ if 0 is allowed; bit 6 set if 4 is allowed; etc.
3490]:msktab=P%:P%=P%+10
3500 msktab?0 = &80
3510 msktab?1 = &FF
3520 msktab?2 = &EA
3530 msktab?3 = &AA
3540 msktab?4 = &D0
3550 msktab?5 = &50
3560 msktab?6 = &80
3570 msktab?7 = &D5
3580 msktab?8 = &DF
3590 msktab?9 = &A8
3592
3594 REM ** Addressing mode groups **
3596 REM This table contains the starts of the mnemonics
3598 REM which have the same allowed addressing modes
3600 grptab=P%:P%=P%+11
3610 grptab?&0 = &01
3620 grptab?&1 = &22
3630 grptab?&2 = &29
3640 grptab?&3 = &2D
3650 grptab?&4 = &2F
3660 grptab?&5 = &31
3670 grptab?&6 = &32
3680 grptab?&7 = &34
3690 grptab?&8 = &36
3700 grptab?&9 = &37
3710 grptab?&A = &39
3712
3714 REM *** Bit position table ***
3716 REM This table contains the bit position corresponding
3718 REM to each addressing mode
3720 bittab=P%:P%=P%+8
3730 bittab?0 = &80
3740 bittab?1 = &40
3750 bittab?2 = &20
3760 bittab?3 = &10
3770 bittab?4 = &08
3780 bittab?5 = &04
3790 bittab?6 = &02
3800 bittab?7 = &01
3802
3804 REM *** Addr mode character mask table ***

95

3806 REM This table gives the characters to be printed for
3808 REM the non-simple addressing modes
3810 chmstb=P%:P%=P%+5
3820 chmstb?0 = &78 :REM "(,X)"
3830 chmstb?1 = &80 :REM "#"
3840 chmstb?2 = &4E :REM "(),Y"
3850 chmstb?3 = &06 :REM ",Y"
3860 chmstb?4 = &48 :REM "()"
3870 chtab=P%:P%=P%+7
3880 $chtab="Y,)X,(#"
3882
3884 REM *** Addressing mode bytes table ***
3886 REM This table gives the total number of bytes used by
3888 REM a given addressing mode.
3890 mdbyts=P%:P%=P%+9
3900 mdbyts?0 = 2
3910 mdbyts?1 = 2
3920 mdbyts?2 = 2
3930 mdbyts?3 = 3
3940 mdbyts?4 = 2
3950 mdbyts?5 = 2
3960 mdbyts?6 = 3
3970 mdbyts?7 = 3
3980 mdbyts?8 = 3
8000
8010 NEXT
8015 @%=0
8020 PRINT'"Code length =&"~P%-start%
8190
8200 PRINT'''''"** WARNING: Once assembled, the code"
8210 PRINT"generated by this program is not"
8220 PRINT"transferable between different BASICs"
8230 PRINT
8300 PRINT"DO ""CALL &"~disass""" to disassemble 1 line"
8305 PRINT"D% points to code to be disassembled"'
8810 END
8990
8992 REM *** Set up ROM entry points, allowing for ***
8993 REM *** BASIC 1 and BASIC 2. ***
9000 DEFPROCsetup
9010 basic1$ = "BASIC"+CHR$0+"(C)1981 Acorn"+CHR$&A
9020 basic2$ = "BASIC"+CHR$0+"(C)1982 Acorn"+CHR$&A
9030 IF $&8009=basic1$ THEN PROCset1 :ENDPROC
9040 IF $&8009=basic2$ THEN PROCset2 :ENDPROC
9050 PRINT "NOT BASIC 1 OR 2"
9060 END
9290
9292 REM *** Set up BASIC 1 entry points ***
9300 DEFPROCset1
9310 opbase = &84AD :REM Opcode base vatue table
9315 lsbmn = &843B :REM Tabte of LSB of mnemonic
9320 msbmn = &8474 :REM Tabte of MSB of mnemonic

96

9325 phex = &8570 :REM Print A as a HEX byte
9330 phexsp = &856A :REM Print A in HEX, then space
9335 pspace = &B57B :REM Print a space
9340 pnewl = &BC42 :REM Print a CRLF
9345 pchar = &B571 :REM Print char in A
9350 ENDPROC
9490
9492 REM *** Set up BASIC 2 entry points ***
9500 DEFPROCset2
9510 opbase = &84C4 :REM Opcode base vatue tabte
9515 lsbmn = &8450 :REM Table of LSB of mnemonic
9520 msbmn = &848A :REM Table of MSB of mnemonic
9525 phex = &B545 :REM Print A as a HEX bytes
9530 phexsp = &B562 :REM Print A in HEX, then space
9535 pspace = &B565 :REM Print a space
9540 pnewl = &BC25 :REM Print a CRLF
9545 pchar = &B558 :REM Print char in A
9550 ENDPROC

97

