9 Trapping Other Errors

Chapters 7 and 8 described how two of the errors generated by
BASIC could be trapped, and used to add new commands, or to
overlay procedures and functions. This section gives a couple of
examples of recovering from other errors.

9.1 Bad MODE recover

If an attempt is made to change mode inside a PROC or aFN, a
‘Bad MODE'’ error (error number 25) is generated. When a PROC
or FN isin operation, there will be data on the BASIC STACK,
which it will use when it returns (see section 5.3).

A MODE change alters HIMEM and resets the BASIC STACK
pointer to this new value of HIMEM. If thiswasreset inside a
PROC or aFN, the BASIC STACK contents would be lost, and
BASIC would crash when the call returned.

However, by trapping this error, changing MODE inside a PROC
or aFN can be allowed, providing that the bottom of the new
MODE is above the current HIMEM. If it is, HIMEM can be | eft
asitis, and the BASIC STACK pointer left unchanged. For
example, changing from MODE 3 to MODE 6 would be alowed,
as the bottom of screen is higher for MODE 6 than MODE 3.

The prevailing conditions on a‘Bad MODE’ error are:

Stack contents: RTI information 3 bytes
& 16 MODE changechar. 1 byte

PTRA points at statement delimiter

&2A prospective MODE number

If it is possible to change MODE without moving the STACK,
this routine will print the MODE change command and continue
executing the program. It will not reset HIMEM or the STACK,
athough the normal MODE change routine will continue to do so
whenever the MODE change is made outside a FN or PROC. This
means that after this routine has been called, there may be a gap
between HIMEM and the bottom of the screen.

143

600
605
690
695
700
705
710
715
720
725
799
900
905
910
920
950
1000
1005
1010
1015
1016
1020
1025
1030
1035

REM *** Programto allou MODE change inside PROCS ***

REM
REM
REM

M D Pl unbl ey 1984

REM This programtraps the "Bad MODE' error (ERR = 25)

REM
REM
REM
REM
REM
REM

If there is enough roomto change MODE above

H MEM tfithout disurbing the BASIC stack, then

MODE can be changed, even if the stack is in use
(i.e. there is a FN or PROCC active at the tinme)

REM "Bad MODE" will still be given if you are changing

REM
REM
REM
REM
REM
REM

to a node which requires HHMEMto be | ower than
the current setting (untess you are not in a
FN PRCC) .

For BASIC 1, replace EQUs as in chapter 7.

PROCset up : REM Set up correct ROM entry points

REM *** OS routines and vectors ***

OSWRCH = &FFEE
OSBYTE = &FFF4
BRKV = &0202
REM *** Al | ocat e wor kspace ***
wor ksp = &0070
svbrkv = worksp

REM *** BAS| C system vari abtes ***

Lomem = &0D0O0
Heap = &0002
Stack = &0004
H mem = &0006
Top = &0012
Count = &001E

start% = &C00 : REM Assenbl e i nto user char space

FOR opt% = 0 TO 3 STEP 3

P% = start %

[OPT opt%

Linit
LDA &8015 \Test that the correct
CWP #baschr \ version of BASICis
BEQ basok \ in the ROM
BRK \If it isn't, print an
EQUB 60 \ error nessage.
EQUS "Not BASIC " \ (baschr set by PROCset up)
EQUB baschr

144

1040
1041
1045
1050
1055
1056
1060
1065
1070
1075
1076
1078
1080
1085
1090
1095
1100
1105
1106
1110
1115
1190
1192
1200
1205
1210
1215
1216
1220
1225
1226
1230
1235
1236
1240
1245
1250
1255
1256
1260
1261
1490
1492
1494
1500
1505
1510
1515
1516
1520
1525
1530

\
\
\

EQUB 0
. basok
LDA BRKV \Load the current BRK vector
LDX BRKV+1 \ into A and X
CVP #newbrk MOD &100 \If this routine is already
BNE nt savd \ set up, don't change BRKV.
CPX #newbrk DIV &100
BEQ saved
. ntsavd
STA svbr kv \It has not been set up
STX svbrkv+1 \ atready, so save old
LDA #newbrk MOD &100 \ BRKV, and set up the new
STA BRKV \ one.
LDA #newbrk DIV &100
STA BRKV+1
. saved
RTS
\ *** This is the new BRK handting routine ***
. newbr k
PHA \Save A and Y on 6502 stack
TYA
PHA
LDY #0 \ Get error nunber
LDA (&FD), Y
CWVP #25 \If ERR = 25 ("Bad MODE"), then
BEQ badnde \ try to correct it
. gi veup
PLA \Restore A any Y from 6502 stack
TAY
PLA
JWP (svbrkv) \Go to old BRK handter
*** |f we get here, a "Bad MODE" error has *xx
*** occurred. This was either caused by a *xx
*** non-enpty BASIC stack, or not enough room ***
. badnde
LDX &2A \ Get requested node nunber from
LDA #&85 \ IntA and find out what H MEM
JSR CSBYTE \ would be in that node
CPX Hi mem \If new H MEM wout d be bel ow t he
TYA \ current HHMEM then the STACK
SBC Hi nem+1 \ is in the way

145

1535
1536
1540
top
1545
1550
1555
1556
1560
t here
1565
1570
1575
1576
1580
1590
1591
1600
1605
1610
1611
1615
1620
1621
1625
1630
1631
1632
1635
1640
1641
1645
1646
1647
8000
8010
8015
8020
8190
8200
8210
8220
8230
8300
8310
8990
8992
8993
9000
9010
9020
9030
9040
9050
9060

BCC gi veup
CPX Heap \If new H MEM woul d be bel ow t he
TYA \ of the variables heap, there is
SBC Heap+1 \ not enough room for the MODE
BCC gi veup
CPX Top \If H MEM woutd be bel ow TOP
TYA \ is not enough room for the MODE
SBC Top+1 \ This test is in case LOVEM had
BCC gi veup \ not been set to TOP yet
PLA \Di scard saved vatues of Y and A
PLA \ from 6502 stack
PLA \Di scard RTI information fromthe
PLA \ 6502 stack. This is pushed by
PLA \ the BRK instruction.
LDA #0 \ Zero COUNT (a MODE change | eaves
STA Count \ the cursor at start of line)
PLA \ Pop "node change" byte from stack
JSR OSWRCH \ (pushed by MODE command), and

\ print it
LDA &2A \ Get npde nunber fromint ace, and
JSR OSWRCH \ print that
JMP cont \ Conmand conpteted, so execute the

\ next statenent.

]

NEXT

@&0

PRI NT' " Code | ength =&"~P% st art %

PRINT "' "' "** WARNI NG Once assenbl ed, the code"
PRI NT"generated by this programis not"

PRI NT"t ransf erabl e between different BASICs"

PRI NT

PRI NT" Execute ""CALL & ~init""" to initiatise."
END

REM *** Set up ROM entry points, allowing for ***
REM *** BASIC | and BASIC I|. ***

DEFPRCCset up

basi c1$ = "BASI C'+CHR$0+" (C) 1981 Acor n" +CHR$&A
basi c2$ = "BASI C'+CHR$0+" (C) 1982 Acor n" +CHR$&A

| F $&8009=basi c1$ THEN PRCOCset 1 : ENDPROC

| F $&8009=basi c2$ THEN PRCCset 2 : ENDPROCC

PRINT "NOT BASIC 1 OR 2

END

146

9290

9292 REM *** Set up BASIC 1 entry points ***

9300 DEFPRCCset 1

9305 baschr = ASC'1": REM Used by init routine

9310 cont = &8BOC : REM Cont execution at next statenent
9320 ENDPRCC

9490

9492 REM *** Set up BASIC 2 entry points ***

9500 DEFPRCCset 2

9505 baschr = ASC'2": REM Used by init routine

9540 cont = &B8B9B : REM Cont execution at next statenent
9550 ENDPRCC

Theinitialising and BRK handling parts of thisroutine are very
similar to the programs in chapter 7. In fact, thereis not realy a
lot to the program at all.

This routine could be modified to copy the BASIC stack bodily if
a MODE change was made which required HIMEM to be lower

than its current setting. This could also be used anyway, to ensure
that the least amount of memory was being used for each MODE.

Performing a MODE change, and shifting the stack, may be one
way of allocating more memory if a‘No room’ error is generated.
However, thisis only possible with BASIC 2, asthis error does
not use the BRK error generating mechanism in BASIC 1 (see
chapter 11 for more on *No room’)

9.2 Bad program salvage

One of the more annoying error messages that BASIC can
produce is ‘Bad program’. You may have just waited 10 minutes
for along program to load from tape, or spent the last 2 hours
typing something in, to be greeted by this message because the
program got corrupted somehow. This section describes how the
bad program, or as much of it as possible, can be salvaged into an
editable form.

147

Program storage

Program lines are stored in the following format:

00 MSB of line number

01 LSB of line number

02 total length of line (= XX)

03 first character of line text

04 etc.

XX-1 &OD (carriage return) line end marker
XX MSB of line number of next line
XX+1 etc.

Thefirst byte stored at PAGE isa & 0D (carriage return), followed
by the MSB of thefirst line number. The end of the program is
marked by an & FF byte after the carriage return on the end of the
last line.

The length byte of the line number is used to speed up the search
for line numbersin aGOTO or GOSUB. However, if one of these
gets corrupted, so that there isn't a & 0D where BASIC thinks the
end of theline should be, it will give a‘Bad program’ error. This
could also be caused if the carriage return has been corrupted.

By scanning through the program, re-linking all these length
bytes, the program can be savlaged. It may not be completely
correct, but at least it will be possible to edit it again.

The salvage routine

This routine can be assembled and the code saved onto disc or
cassette by using ‘* SAVE'. It assembles into the user defined
character area, so the code can be loaded in and executed if a‘Bad
program’ occurs, without disturbing the program to be salvaged.

The program can be loaded and run by typing

*LOAD SALVAGE
CALL &C00

148

assuming that it was assembled from & CO0 onwards. If the DFS,
or any filing system which operates from a paged ROM, is used to
load the routine, it should not be run by using ‘* SALVAGE'. If
this was used, the DFS ROM, rather than the BASIC ROM,
would be paged in while the routine was operating, and the
BASIC ROM routines which the are called would not be
available. To get round this, the ROM routines required could be
duplicated in the salvage routine itself.

REM ** Bad program sal vage routine *xx
REM

REM M D Pl unbl ey 1984

REM

REM This routine will scan through the BASIC program

REM at PAGE and re-set any link pointers which have
REM been corrupted.

REM

REM Before using with BASIC 1, the EQUs shoutd be
REM replaced with their equival ents:

24 REM "EQUB X' => "] ?PY%X: P%=P%-1: [OPTopt %
26 REM "EQUS A$" => "] $PY%AS$: P%PY%LEN$P% [OPTopt %
90 REM
99
100 PRCCsetup : REM Set up correct ROM entry points
490
495 REM *** OS routines and vectors ***
510 osrdch = &FFEO
590
600 worksp = &0070
605 |ine = worksp
610 ytenp = worksp+2
690
695 REM *** BASI C system vari abl es ***
700 page = &0018
710 inta = &002A
799
900 start% = &C00 : REM User defined character area
905
910 FOR opt% = 0 TO 3 STEP 3
920 P% = start%
950 [OPT opt %
990
995\ ** Salvage routine entry point ***
1000 . sl vage
1005 LDA page \Set "line" to point to the
1010 STA line+1 \ first byte of the program
1015 LDY #0 \ at PAGE.
1020 STY line
1025
1030 LDA (line),Y \If it is a CR junp to start

149

1035
1040
1045
1050
1055
1060
1065
1070
1075
1100
1105
1110
1115
1120
1125
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375

CWP #&0D \ checking through the Iines.
BEQ strtok
JSR pness \Qthertfise, print an
EQUS "No CR at start" \ error nmessage and
NOP \ exit.

.end
RTS

. escape \This is used to give an
BRK \ "Escape" error if the
EQUB 17 \ necessary
EQUS "Escape"
EQUB 0

\ ** Start |ooking through lines ***

.strtok
JSR pnew \Start on a new line
BI T &FF \If an escape condition is
BM escape \ pending, handle it.
LDA line+l \Print out the address of the
JSR phex \ current line.
LDA line
JSR phexsp
LDY #1 \If we are at the end of the
LDA (line),Y \ program exit.
BM end
STA inta+1 \ Ot herwi se, print out the
I NY \ l'ine nunber.
LDA (line),Y
STA inta
JSR pl nunb
LDY #3 \Get the length byte fromthe
LDA (line),Y \ line. If it is zero, the
BEQ flink \ link has failed, so fix it.
TAY \Get the byte on the end of

LDA (line),Y

CWP #&0D
BNE flink
TYA

. new na
CLC
ADC | i ne

\ the line.

\If it is not a CR the link
\ failed, so fix it.

\Transfer the length into A
\Add the length of the line

\ (in A) to the line pointer,

150

1380
1385
1390
1395
1400
1990

2000

2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2200
2205
2210
2215
2220
2225
2230
2235
2240

STA
BCC
I NC
BCS

line \ so it now points to the
strtok \ line, and go back to

line+l \ "strtok" to handl-e the next
strtok \ line.

\ ** |f we get here, the link has faited ***

flink
JSR
EQU
NOP

LDY

. cscan
LDA
I NY

.1 oop
CwP
BCS
I NY
BNE

DEY
STY

JSR
EQU
NOP

JSR
BCS

. not asc
Ccwp
BNE

LDA
LDY
STA
.nforce
RTS

.noterm
CwP
BNE

LDY
.force

LDA

STA

pmess \Print a nmessage
" Failed Ilink"
#3 \'Scan fromthe start.
\ for control characters
#&1F \ (i.e. less than &20)
\loop round until a contro
(line),Y \ character is found. If it
fixlnk \ is, goto fix the link
| oop
\If the end wasn't found, set
ytenp \ the "end" to be used at 255
pmess \ and print the
" End not found: F/T" \ nessage
osrdch \Read a character, and exit
escape \ if ESC was pressed
\ Check for a "T"
#ASC' T"
not erm
#&FF \If it was, set the MSB of
#1 \ the current line to &FF
(line),Y \ to term nate the program
\ and exit.
\If it wasn't, check for an
#ASC' F" \UF.
nforce
ytenp \If it uas, set the character
\ where scanning stopped to
#&0D \ be a CR and ..
(line),Y

151

2245 TYA \ set the length byte,
2250 LDY #3 \ and ...

2255 STA (line) ,Y

2260

2265 JMP new na \ go to the next line.
2270

3000 . fixlnk \If the controt character
3005 LDA (line),Y \ that was found was a CR,
3010 CWP #&0D \ force the length byte to
3015 BEQ force \ point toit.

3020

3025 STY ytenp \ O herw se, save the offset,
3030

3035 JSR pness \ and print the
3040 EQUS " Control. char A/F/T" \ nmessage.

3045 NOP

3050

3055 JSR osrdch \ Read the character input,
3060 BCS j esc \ and exit if ESC pressed.
3065

3070 CWP #ASC' A" \ Check for "A"

3075 BNE not asc

3080

3085 LDY ytenp \If it was, force the
3090 LDA (line),Y \ control char to be a letter
3095 ORA #&40 \ by ORing it with &0, and
3100 STA (line),Y \ junp back to continue
3105 JMP cscan \ scanning the line.

3110

3200 .jesc \Junp the the "Escape" error.
3205 JWP escape

8000]

8010 NEXT

8015 @40

8020 PRI NT' "Code | ength =&"~P% start %

8190

8200 PRINT' "'''"** \WWARNI NG Once assenbl ed, the code"
8210 PRI NT"generated by this programis not"

8220 PRI NT"transferabl e between different BASICs"

8230 PRI NT

8300 PRI NT"Execute ""CALL &' ~start%"" to use"'

8310 END

8990

8992 REM *** Set up ROM entry points, allwing for ***
8993 REM *** BASIC 1 and BASIC 2. ok
9000 DEFPRCCset up

9010 basi c1$ = "BASI C'+CHR$0+" (C) 1981 Acorn" +CHR$&A
9020 basi c2$ = "BASI C'+CHR$0+" (C) 1982 Acor n" +CHR$&A
9030 | F $&8009=basi c1$ THEN PRCCset 1 : ENDPROC

9040 | F $&8009=basi c2$ THEN PRCCset 2 : ENDPROC

9050 PRINT "NOT BASIC 1 OR 2"

9060 END

152

9290
9292
9300
9305
9310
9315
9320
9325
9330
9490
9492
9500
9505
9510
9515
9520
9525
9600

REM *** Set up BASIC 1 entry points ***

DEFPRCCset 1

pl nunb = &8F5 : REM Print line nunber (field 5)
pnmess = &BFCB : REM Print nessage fottenfing JSR
pnewl = &BC42 :REM Print a new |line (CRLF)

phex = &B8570 : REM Print A as 2-digit HEX no.
phexsp = &856A : REM Print HEX no. then space
ENDPROC

REM *** Set up BASIC 2 entry points ***
DEFPRCCset 2

pl nunb = &9923 : REM Print line nunber (fietd 5)
pnmess = &BFCF : REM Print nessage follow ng JSR
pnewl = &BC25 : REM Print a new |line (CRLF)

phex = &B545 : REM Print A as 2ASNdi git HEX no.
phexsp = &B562 : REM Print HEX no. then space
ENDPROC

The general operation of the routineis as follows:

1

It first checks that there is a carriage return at the start of
the program. If there isn't, it prints a message and exits. If
this happens, either there was no BASIC program at all, or
the routine can be re-started after * 2P AGE=13" has been
typed.

The start address of the current line, and its line number,
are printed. If the program is so bad that this savlage
routine cannot cope with it properly, this infornation may
help if ahex dump program needs to be used to patch up
the program.

If the end of the program has been found, the routine exits.
If the length byte points correctly to the carriage return on
the end of the line, the routine moves on to the next line,
and jumps back to stage 2.

The message ‘Failed link’ is printed after the line number,
and thelineis scanned until a control character isfound.

If the control character found was a carriage return, the

length byte is fixed, and the routine jJumps back to continue
checking the rest of the program.

153

7 If the end of the line was not found, or the control character
found was not a carriage return, the routine gives the option
of forcing the control charater to be aletter, forcing the end
of the line to be at this point, or marking the end of the
program at thisline.

The ESC key can be pressed at any time while the salvage
operation is underway, and the routine will stop when it is about
to do the next line.

The routine may think that it has reached the end of the program
before it should have, because it found a negative byte as the
MSB of the next line number. It can be forced to continue by
typing ‘ END:?(TOP-1)=0' to force the end marker to zero before
re-starting the salvage routine.

Thisroutine will cope with most things, but if the program is
really bad, the following hex dump program may be useful to
examine it by hand. It should be loaded in by setting PAGE above
the top of the corrupted program (give plenty of room, just in
case), and then just LOADiINg in as normal.

5 REM ** Hex dunp program *x
6 REM

10 REM M D Pl unbl ey 1984

15 REM

20 REM Press <space> to stop listing

25 REM <return> to continue

30 REM "qQ to quit

35 REM

100 len% = 8: REM Il ength of |ine (bytes)
200 | NPUT" START ADDR : &"i nput$

210 start% = EVAL("&"+i nput $)

220 |1 NPUT" END ADDR : &"i nput $

230 end% = EVAL("&"+i nput $)

400 REPEAT

410 PROCI i ne(start% : REM Hexdunp 1 l|ine
420 start% = start %l en% : REM Next i ne

430 key$ = | NKEY$(0)

440 I F key$=" " THEN PRCCuai t

450 I F key$="Q' THEN END
460 UNTI L start%end%
470 END

999 REM *** Print hexdunp of 1 line ***

1000 DEFPROC i ne(addr %
1010 @&4: PRI NT~addr% "; :REM Addr at start of |ine

154

1015 @#3

1017 text$ = "" :REM Cl ear text string

1020 FOR offset = 0 TO len% 1

1030 byte% = addr %®of f set :REM Get byte

1040 PRI NT ~byte% :REM Print hex byte

1045 valid = (byte%=&20 AND byt e%<&7F)

1046 *REM Is it a character?

1050 I F valid THEN chr $=CHR$(byt e% ELSE chr$="."

1060 text$ = text$+chr$:REM Add char to text string

1070 NEXT of f set

1080 PRINT" " text$

1090 ENDPROC

1998

1999 REM *** Wit for <CR> or "Q' to be pressed ***
2000 DEFPROCwai t

2010 REPEAT

2020 key$ = GET$

2030 UNTI L key$=CHR$(13) OR key$="Q'
2040 | F key$="Q' THEN END

2050 ENDPROCC

9.3Error listing

Sometimes it is not very easy to spot an error in aline of BASIC,
especially when it isin the middle of a multi-statement line. The
routine in this section will LIST out the line that any error
occurred on, together with 2 markers pointing out the possible
sources of the error. These represent the positions of the two
BASIC text pointers, PTRA and PTRB, at theinstant of the error.

For example, if the following lineistyped in:

>PRI NT"HELLO'; REM ShoulLd be a ":"

the response will be:

HELLO
PRI NT"HELLO'; REM Should be a ":"

N

N

No such variabl e

The top arrow represents the position of PTRA, and the bottom
one represents the position of PTRB. In this case, they both point
to the same position (just after the REM token), but in most cases
they will be different.

155

This can also be used to check the position of the pointers, if
certain errors are to be intercepted.

1000
1005
1010
1015
1016
1020
1025
1030
1035
1040
1041
1045
1050
1055
1056
1060
1065
1070
1075
1076
1078

REM * * * Error Listing routine *xx
REM

REM M D Pl unbl ey 1984

REM

REM When an error occurs, this routine will print out
REM the offending line, and print the position of
REM the ttw BASIC pointers, pointing out the error.
REM

REM Thi s program assenbl es into user keyl character
REM area at &0B0O ornrards.

REM

REM Before using with BASIC 1, the EQUS shoutd be
REM replaced with their equivatents:

REM "EQUB X' => "]?P%X: P%P%-1:[OPTopt %

REM "EQUW X' => "]!P%X: PY%P%2: [OPTopt %

REM "EQUS A$" => "] $P%AS$: P¥%P%-LENSPY% [OPTopt %
REM

PROCset up : REM Set up correct ROMentry points
BRKV = &0202
start% = &B00 : REM User key/char space

FOR opt% = 0 TO 3 STEP 3
P% = start%

[OPT opt %
.init
LDA &8015 \Test that the correct
CWP #baschr \ version of BASIC is
BEQ basok \ in the ROM
BRK \If it isn't, print an
EQUB 60 \ error message.
EQUS "Not BASIC " \ (baschr set by PROCsetup)
EQUB baschr
EQUB 0
. basok
LDA BRKV \Load the current BRK vector
LDX BRKV+1 \ into A and X

CWP #newbrk MOD &100 \If this routine is already
BNE nt savd \ set up, don't change BRKV.
CPX #newbrk DIV &100

BEQ saved

. ntsavd

156

1080
1085
1090
1095
1100
1105
1106
1110
1115
1480
1490
1500
1502
1504
1506
1508
1510
1511
1515
1516
1520
1525
1530
1540
1545
1550
1560
1570
1575
2010
2020
2030
2040
2050
2055
2060
2070
2072
2075
2080
2082
2085
2090
2100
2110
2115
2120
2130
2140
2150
2160
2170

STA
STX

svbrkv
svbrkv+1

\It has not been set up
\ atready, so save old

LDA #newbrk MOD &100\ BRKV, and set up the new

STA

BRKV

\ one.

LDA #newbrk DIV &100

STA

. saved
RTS

\ *** Enter

. newbr k
PHA

JSR

LDA
STA
LDA
STA

LDA
BEQ

JSR
LDA
STA
LDA
STA

JSR
BCS

JSR
JSR

. i mmed

STA
STA

LDA
STA
LDA
STA
LDA
STA

BRKV+1

pnew

#&FF
&3D
#&806
&3E

&C
#7
i mred

set ERL
&8
&2A
&9

&2B

schlin
nol i ne

pnewl
pl nunb

#0
count A
count B

&A

ptrtnp
&B

ptrtnmp+l
&C

ptrtnmp+2

here on BRK ***

\'Save A Y, X on 6502 stack

\Start a new line

\'Set up imedi ate area

\ as defautt for error area.

\ (83D) is used to point to the
\ start of the line in error

\If error occurred in i med node,
\ don't look for a line

\Get ERL, and

\ copy it into the

\ integer accumnul ator
\ ready for "schlin"

\Point (&3D) at start of line
\Exit if line not found
\Start a new line, followed by

\ the line nunber

\ Reset counters for
\ the position of the pointers
\ on the line

\Save PTRA in tenp area

157

2175
2180
2190
2200
2210
2220
2230
2235
2240
2245
2250
2260
2262
2265
2270
2280
2285
2290
2300
2310
2320
2330
2340
2342
2345
2350
2355
2360
2365
2370
2371
2375
2376
2900
2910
2920
2990
2991
2992
3000
3010
3020
3030
3035
3040
3050
3055
3060
3070
3075
3080
3090

LDA &3D
STA &B
LDA &3E
STA &C
LDY #1
STY &A

JSR prtlne

LDX count A
JSR prtptr
JSR pnew

LDX count B
JSR prtptr

LDA ptrtnp
STA &A

LDA ptrtnp+l
STA &B

LDA ptrtnp+2
STA &C

.noline
PLA
TAX
PLA
TAY
PLA

JMP (svbrkv)

.exit
JMP pnew

\ *** Print out

line at

\Set PTRA to point to start

\ of linein error.

\ (PTRA is used by the |ine nunber
\ decodi ng routine)

\Print out line, setting counters

\Print posn of PTRA

\Print posn of PTRB

\Restore PTRA fromtenp area

\Restore X, Y, A from 6502 stack

\Continue with defautt BRK routine

\Print CRLF at end of line

PTRA, setting counters bl

\ *** countA and countB to the screen positions ***

\ *** of the saved PTRA and PTRB * Kk
.prtlne

LDY &A \ Get next character, and

I NC &A \ increment PTRA

LDA (&B),Y

CWP #&0D \If end of line,

BEQ exi t \ print CRLF and exit.

CWP #&8D \If a line nunber,

BEQ | i neno \ print it

JSR pt oken \Print char or token in A

JMP counts \ and skip line nunber section

158

3095
3100
3110
3120
3130
3140
3150
3160
3170
3180
3190
3200
3205
3210
3220
3230
3240
3250
3255
3260
3270
3280
3290
3300
3305
3310
3320
3330
3340
3350
3360
3370
3375
3380
3390
3400
3410
3420
3425
3430
3440
4990
4991
4992
4993

5010
5020
5022
5025
5030
5040

.lineno
JSR
JSR

.counts
CLC
LDA
ADC
STA
LDA
ADC
STA

LDA
ADC
TAX
LDA
ADC

CPX
SBC
BCC
LDA
STA

.hocnt A
CcLC
LDA
ADC
TAX
LDA
ADC

CPX
SBC
BCC
LDA
STA

. nhocnt B
JMP

getl no
pl num0

&A
&B
&2A
&C
#0
&2B

ptrtnp
ptrtnmp+l

ptrtnmp+2
#0

&2A
&2B
nocnt A
&1E
count A

&1B
&19

&1A

&2A
&2B
nocnt B
&1E
count B

prtlne

\ *** Print a """

\ *** (entry point
5006

| oop
LDA
JSR

.prtptr
CPX
BNE

#ASC(" ")
pchar

&1E
| oop

\Get |ine nunber after token
\ and print it

\ Move PTRA (position of next
\ char to be printed) into
\ integer accunutator

\ at &A and &B

\Get old PTRA fromtenp area
\ into X (LSB)

\

\ and A (MSB)

\If char at old PTRA has not
\ been printed yet,

\
\ set countA to COUNT
\ (COUNT held in &LE)

\ Get PTRB

\

\ into X (LSB)
\

\ and A (MSB)

\If char at PTRB has not been
\ printed yet,

\

\ set countB to COUNT

\ Go back for another char

in the Xth cotum ***
is "prtptr") x kK

\Print a space

\If not at the right cot,
\ print another space.

159

5045

5050 LDA #ASC(""") \Print a """

5060 JSR pchar

5065

5080 RTS \ Exit

7790

7792 \ *** Routine variabtes area ***

7800 . svbrkv EQUW ! BRKV \ Space to save BRK vector
7801

7810 .countA EQUB 0O \ Screen posn of PTRA
7815 . countB EQUB 0O \ Screen posn of PTRB
7816

7820 .ptrtnp EQUWO \Tenp for PTRA

7825 EQUB 0

8000]

8010 NEXT

8015 @40

8020 PRINT' "Code | ength =&"~P% start %

8190

8200 PRINT ' '''"** WARNI NG Once assenbl ed, the code”

8210 PRI NT"generated by this programis not"
8220 PRI NT"transferabl e between different BASICs"

8230 PRI NT

8300 PRI NT"Execute ""CALL &' ~init""" to initialise."'
8310 END

8990

8992 REM *** Set up ROMentry points, allowing for ***
8993 REM *** BASIC 1 and BASIC 2. i

9000 DEFPRCCset up

9010 basi c1$ = "BASI C'+CHR$0+" (C) 1981 Acorn" +CHR$&A
9020 basi c2$ = "BASI C'+CHR$0+" (C) 1982 Acor n" +CHR$&A
9030 | F $&8009=basi c1$ THEN PROCset 1 : ENDPROC

9040 | F $&8009=basi c2$ THEN PROCset 2 : ENDPROC

9050 PRINT "NOT BASIC 1 OR 2"

9060 END

9290

9292 REM *** Set up BASIC 1 entry points ***

9300 DEFPRCCset 1

9305 baschr = ASC'1": REM Used by init routine

9310 setERL = &B3F6 : REM Get no of line in error into &8,9

9315 schlin = &9942 : REM Find start of line given line no
9320 plnunb = &98F5 : REM Print &2A 2B in decinal (field 5)
9325 plnunD = &98F1 : REM Print &2A 2B in decimal (field 0)
9330 ptoken = &B53A : REM Print char, or token if A > &7F
9335 pchar = &B571 : REM Print char in A and incr COUNT
9340 pnew = &BC42 : REM Print CRLF, and zero COUNT

9345 getlno = &7BA : REM Get tokenised |line no at PTRA
9350 ENDPRCC

9490

9492 REM *** Set up BASIC 2 entry points ***
9500 DEFPRCCset 2
9505 baschr = ASC'2": REM Used by init routine

160

9510 set ERL &B3C5 : REM Get no of line in error into &8,9

9515 schlin = &970 : REM Find start of line given line no
9520 pl nunb = &9923 : REM Print &2A 2B in decinmal (field 5)
9525 plnunD = &991F : REM Print &2A 2B in decinmal (field 0)
9530 ptoken = &B50E : REM Print char, or token if A > &7F
9535 pchar = &B558 : REM Print char in A and incr COUNT
9540 pnew = &BC25 : REM Print CRLF, and zero COUNT

9545 getlno = &7EB : REM Get tokenised line no at PTRA

9550 ENDPRCC

The general operation of the routineis as follows:

1 The pointer at &3D ,& 3E is set up to point to the start of

thelinein error, by searching through the program if
necessary.

2 Thelineis printed out, updating counters which mark the
screen position of PTRA and PTRB. Tokens are expanded
by the ROM routine ‘ptoken’, but this does not handle line

number tokens. These have to be dealt with separately.

3 The markers which point to the positions of PTRA and

PTRB are printed out, using the counters set while the error

line was being printed.

4 Finaly, a IMPis made to the default BRK handler to print

out the error message.

The programs in the last few chapters are not really meant to
show everything that can be done: they arereally just an
indication of the way that the BBC BASIC can be enhanced by
overlaying procedures, or adding new commands and utilities.

Chapters 10 and 11 detail the routines inside the ROM, and the

the other errors generated by BASIC, and these may give ideas for

experimenting with more new command and functions, like
graphics commands or statistical functions.

161

