2 The BASIC System

The BBC microcomputer system has been designed to allow
many different languages (like LISP or FORTH) to be used with
it. However, the language that all BBC micros and Electrons start
withisBBC BASIC.

2.1 An overview of BASIC

When BASIC isinitialised, it takes control of the computer. It
prints ‘BASIC’ on the screen, and prompts for aline to be input.
You then type in programs, RUN them, edit and RUN them again
until they work, and continue until the power is switched off.

Beneath al of thisis 16K of 6502 machine code, in a paged ROM
sitting between & 8000 and & BFFF, beavering away trying to
work out what to do with the line that you just typed in. It isreally
awhole system al by itself, editing programs, interpreting
program statements, evaluating expressions, handling variables; in
fact it does everything except actually input and output to the
hardware (it leaves that to the Machine Operating System).

Fig 2.1 shows ageneral overview of BASIC, with its main
component parts. The first mgjor section of the BASIC system is
the command handler and the statement interpreter. When alineis
input at the keyboard, the command handler tokenisesit, and
decides whether to insert it into the program (if it startswith aline
number), or to send it to the statement interpreter. The statement
interpreter is also used to handle program statements. The action
of the command handler and statement interpreter is decribed in
sections 2.3 and 2.4.

The other major section of the BASIC system shown infig2.1is
the expression evaluator. Thisis called by most of the statement
handlers (or function handlers) when they want anumber or a
string to operate on. For example, the MODE statement handler
calls the expression evaluator to get the number of the MODE that
isto be used. The expression evaluator is described in more detail
in chapter 4.

28

HARDWARE

KEYBOARD VDU
OPERATING
SYSTEM
1/0 HANDLER
BASIC
A
e '@ _ | COMMAND »| TOKENISER
[HANDLER
| |
| |
! ! STATEMENT
! PROGRAM ! HANDLERS
| |
‘ ‘ IF
| | V I |
\ ! | STATEMENT [[
L r INTERPRETER [
GOTO
Y A
FUNCTION
ASSIGNMENT
ASSEMBLER HANDLER HANDLERS
Y SIN
- EXPRESSION [[
| ! EVALUATOR ! !
MEMORY |
] v
e
[HEAP/STACK
Lo HANDLER
A Y
ARITHMETIC
MODULE

Figure 2.1 — The BASIC system.

29

The arithmetic module is a collection of routines which is used to
perform the calculations required by the expression evaluator (and
by the statement and function handlers). Most of these have to be
floating point routines, as real numbers are more difficult for the
computer to handle than integers or strings. These routines are
detailed in chapter 10.

The HEAP/STACK handler is another collection of routines, but
these deal with variables and other use of memory by BASIC
while the program is running (dynamic memory use). Variables,
and BASIC’'s memory use are described in chapter 3.

2.2TheBASIC ‘CPU’

The 6502 CPU is aversatile machine, but on itsown it isabit
limited. Its 8-bit accumulator, A, can only handle single byte
integers; it can’'t deal with real numbers or strings; it can’t allocate
space for BASIC variables, and its stack is only 255 bytes deep.
To get round this, BASIC has a softwvare layer on top the 6502,
to provide a more versatile service.

Thisnew ‘layer’ has a collection of page O locations as ‘registers

, which are manipulated by the 6502. These registers (together
with the routines to handle them) make up the * Central Processing
Unit’ of the BASIC system. Fig 2.2 compares the 6502 registers
with BASIC'sregisters.

6502 BASIC

IntA (32 bits) PTRA (16+8 bits)

‘ FPA (40 bits) ‘ ‘ PTRB (16+8 bits) ‘

A (8 bits) ‘ ‘ PC (16 bits)

StrA (255 bytes)
‘ X (8 bits) ‘ ‘ S (8 bits) HEAP ptr. (16 bits)
TEMP
AREA

Figure 2.2 — 6502/BASIC registers.

30

2.2.1 BASIC Integers

Where the 6502 only allows 8-bit integers to be used, most of
BASIC'sinteger work is done with 32-bit (4-byte) integers. For
thisit has a 4-byte integer accumulator, IntA, stored in page zero
at &2A to &2D. The format of the 4-byte integers stored in this
accumulator is shown in fig 2.3.

LOCATION &2A &2B &2C &2D

LSB

MSB

Figure 2.3 — Integer format

Note that the least significant byte (LSB) is stored first, at & 2A,
with the most significant byte (MSB) at &2D. This meansthat a
single-byte (positive) value at & 2A can be converted into a 4-byte
integer starting at & 2A, by setting the 3 most significant bytes (in
& 2B, &2C and & 2D) to zero.

2.2.2 Real numbers

One of the major advantages of the BASIC ‘' CPU’ over the 6502
equivalent isits ability to deal with real numbers, rather than just
integers. For this, it has 2 floating point accumulators, FPA and
FPB. For those not familiar with binary floating point
representation, here is a brief description.

Decimal integers can be written in binary form, like

9 (decimal) can bewrittenas: 1001 (binary).

Fractions can be written in decimal by using adecimal point, like
‘9.6’ , and binary numbers can be written in asimilar form. Thus
‘0.1’ (binary) represents 1/2 (0.5 decimal), ‘0.0’ (binary)
represents 1/4 (0.25 decimal), and so on. As an example,

3.625 (decimal) can bewrittenas. 11.101 (binary)

31

Using thiswould give away to represent numbers on a computer;
by holding the integer part as one number, and the fractional part
as another. In practice, though, for many applicationsthisisjust
too limited.

In decimal, for talking about a much wider range of numbers,
scientific form or standard form can be used. For this, the number
to be expressed is written down as a number between 1 and 10
(thisisthe mantissa), multiplied by * 10 to the power of " another
number (thisis the exponent). Thus 273 can be written as 2.
73x102 (or 2.73E2).

For the binary representation of real numbers, BASIC usesa
similar form to the decimal one: the number to be expressed is
written as a number between 1/2 and 1 (not equal to 1), multiplied
by ‘2 to the power of” another number. Thus 11.101 (binary) can
be written as 0.11101x22 (the exponent isin decimal for clarity).
Thisis often called floating point representation, as the actual
position of the binary point in the number is not fixed to a
particular position (in integers, for example, the binary point is
always just beneath the least significant bit).

When floating point numbers are stored in variables, they occupy
5 bytes, and are stored as shown in fig 2.4.

BYTE 0 1 2 3 4
it
)
EXPONENT MSB o LSB
BINARY POINT
SIGN BIT
MANTISSA

Figure 2.4 — Floating point packed format.

The exponent is stored offset by &80 — i.e. &80 represents 29,
32

& 81 represents 21 and so on. This alows the number zero to be
represented by afloating point number with al its bytes set to 0.
Note that zero doesn't fit in to this floating point representation: it
issmaller than 27127, yet it islarger than —2-127 | |t hasto be
represented as a specia case.

The position of the binary point in the mantissais just above the
most significant bit.

The mantissais always a number between 1/2 (0.1 binary) and 1
(but not equal to 1), so the top bit of the mantissaisawaysa“‘l’.
This means that this bit position is not needed for the mantissa (it
can always be retrieved by ORing the MSB of the mantissawith
&80), so this bit is used to store the sign bit of the number (the top
bit of the mantissawill not bea‘1’ if the number being
represented is zero)

The mantissa occupies 4 bytes. This means that 4-byte integers
can be converted to floating point format, and back again, without
loss of accuracy. The bytes are stored MSB first, LSB last; the
opposite order to integers. The mantissais stored as a positive
number, and not in 2's complement format (so the representation
for ‘6’ isjust the same as the representation for ‘-6, except the
sign bit will be changed).

When a*packed’ floating point number isloaded into one of the
floating point accumulators, FPA or FPB, it is unpacked into 8
bytes. The format of these accumulatorsis shown in fig 2.5.

BYTE 0 1 2 3 4 5 6 7
[]
%,_J
LSB

SIGN BYTE MSB

EXPONENT
BIINARY POINT

MANTISSA

Figure 2.5 — Floating point accumulator format

33

The exponent has been expanded into 2 bytes; the high-order byte
of the exponent is set to zero when the number isloaded in. This
allows results of calculations to temporarily overflow (i.e. the
exponent becomes too large for the 5-byte representation to
handle), providing that they end up in the correct range before
being written out to memory again in the 5-byte packed format.
The exponent is still offset by & 80.

The mantissa has been expanded to 5 bytesinstead of 4. This
allows for extra accuracy in the middle of calculations. Before the
number is written back out to memory, this extrabyte is used to
round the rest of the mantissa

The sign bit has been removed to a whole byte by itself, and the
top bit of the mantissa has been restored to ‘1. For calculations,
this‘1’ is needed in the top bit where it is supposed to be.

Often during a calculation, the top bit does not stay set (perhaps
due to anumber almost equal to it being subtracted from it). If
thisisthe case, the value of the number is still given correctly (as
the mantissa multiplied by ‘2 to the power of’ the exponent), but
the mantissais now much less than 1/2. Before the number can be
written out into memory, the number must be ‘ normalised’ by
repeatedly multiplying the mantissa by 2 (i.e. shiftingit up by 1
bit), and decrementing the exponent (dividing that part of the
representation by 2) to compensate, until the top bit of the
mantissa becomes set again.

If this happens, some of the accuracy of the number may have
been lost, as some of the bits of the number may have ‘fallen off
the bottom’ before the number was shifted back up again.

Floating point numbers do have certain limitations:

(@ Thelargest number which can be represented (in the 5-byte
38 format) isjust less than 1.0x2127 (1.7x1038).

(b) Thesmallest number (in magnitude) which can be
represented (apart from zero) is 1.0x2-128 (2.9x10-39).

(c) Because just 32 bits are used to hold the mantissa of the
number, the representation is only accurate to 1 part in 232.
(1 part in 4x109). This meansthat if any number stored in
thisformat is printed out in decimal, it will only be
accurate to the first 9 decimal digits.

34

(d) Cdculationsinvolving floating point numbers take longer
than those involving integers.

The actual format of the floating point accumulators isO03A
FPA FPB USE

&2E &3B Signbyte

&2F &3C exponent overflow byte

&30 &3D hinary exponent (offset & 80)
&31 &3E mantissa(MSB)

&32 &3F mantissa

&33 &40 mantissa

&34 &41 mantissa

&35 &42 mantissa(LSB)

2.2.3 Strings

For string handling, BASIC has a string ‘accumulator’, StrA. All
of page 6 is allocated to the string accumulator; the characters of
StrA are stored from & 600 onwards, with location & 36 in page
zero used to hold the length of the string.

This makes string handling relatively simple, although it does take
up alot of memory.

2.2.4 General workspace

In addition to these accumulators, BASIC has a general
Workspace area, between & 37 and & 4E, which it uses for genera
pointers (instead of the 6502 X and Y registers) and for other
different purposes, depending on which part of the systemisin
Operation at the time. FPB is actually in this area, and several
routines which do not need to do any floating point calculations
may use the same memory that it occupies.

35

2.2.5 Program pointers

Instead of the Program Counter (PC) of the 6502, BASIC has two
pointers, PTRA and PTRB, which it uses to scan through a
BASIC program (or aline typed in at the keyboard). Both of these
pointers are composed of a 2-byte base pointer, and a single-byte
offset from that base. PTRA is mainly used to read the first part of
a statement until the statement token is recognised, and PTRB is
mainly used for scanning expressions.

The format of these pointersis:

&B,&C PTRA base
&A PTRA offset
&19,&I1A PTRB base
&1B PTRB offset

2.2.6 Dynamic memory pointers

The 6502 only has one way of dynamically allocating space
during a program: its stack. This works downwards in page 1 with
amaximum size of 256 bytes (i.e. from & 1FF down to & 100).

Rather than using this, BASIC has a STACK which works
downwards in memory from HIMEM. It uses thisto hold
temporary results from calculations, or when aFN or PROC is
called. BASIC aso has a HEAP which works upwards in memory
from LOMEM (usually the TOP of the program), which iswhere
it puts any variables (apart from resident integers). Together, the
BASIC STACK and the HEAP can use up all of the memory
between the TOP of the program and the bottom of the screen.
Chapter 3 describes how variables are stored, and the use of the
HEAP and the STACK.

36

2.3 Tokenising

When alineistyped in at the keyboard, it isinserted into
BASIC's keyboard buffer in page 7 (from & 700 onwards). From
here, the command handler sends the line to the tokeniser, so that
the keywords can be tokenised. This involves looking through the
line and replacing occurrences of keywords (and their
abbreviations) in the line by a single byte token, with avalue
between &80 and & FF. This saves memory when the lineis put
into a program (as, for example, PRINT takes up only 1 byte
instead of 5), and it makesit alot easier (and faster) to recognise
the keyword when it is to be inter preted.

2.3.1 Keyword tokenising

The keyword table is stored at & 806D (BASIC1) or &8071
(BASIC2), inroughly aphabetical order. The format of each entry
is:

Keyword
Single-byte token
Flag byte

Table 2.1 gives alist of the keyword tokens, and the address
where they IMP to when recognised, in token value order. From
thisit can be seen that the tokens are divided up into several
groups:

&80t0 &84 operators

&85t0 &8C auxiliary tokens

&8D line number token (see section 2.3.2)
&8E ‘OPENIN’ for BASIC2
&8Ft0&93 pseudo-variable functions
&941t0&BC numeric-valued functions

&BDto &C4 string-valued functions

&C5 ‘EOF
&C6to &CD commands
&CE (not used)

&CFto &D3 pseudo-variable statements
&D4to &FF statements

The tokeniser does not simply tokenise the line: it obeys certain
rules, and can be in severa states. The flag byteis used to give
instructions to the tokeniser about how to continue tokenising the
rest of the line, or how to tokenise this keyword. The flags are

37

used as follows:

BitO

Bit1

Bit 2

Bit 3

Bit4

Bit5

Bit 6

Conditional flag. If thisis set, this tells the tokeniser not to
tokenise this keyword if it is followed by an aphanumeric
character. This means, for example, that ‘ TIMER’ can be
used as a variable name, asthe ‘ TIME' part of it will not be
tokenised.

Middleflag. If thisis set, thistells the tokeniser to go to
‘middle of statement’ mode after this token.

Start flag. If thisflag is set, this tells the tokeniser to go to
‘start of statement’ mode. The tokeniser must know if itis
at the start of a statement or not, because a‘*’ at the start of
a statement will cause tokenising to be abandoned so that
the rest of the line can be sent to OSCL | untokenised. If a
‘**'isfound in the middle of a statement, it will bein the
middle of an expression, so the rest of the line should be
tokenised. It also needs to know if a pseudo-variable found
is a statement or afunction.

FN/PROC flag. If thisflag is set (asit isfor FN or PROC),
this tells the tokeniser not to tokenise the name
immediately following the token. This means, for example,
that the ‘ERROR'’ part of ‘ PROCERROR’ will not be
tokenised.

Line number flag. If thisflag is set, it tells the tokeniser to
start tokenising line numbers after thistoken. Thisflagis
set for keywords like ‘GOTO’ or ‘RENUMBER'. Line
number tokenising is usually turned off after any other
symbol apart froma‘,’ , aHEX number, or a string.

REM flag. If thisis s, it tells the tokeniser to stop
tokenising the rest of theline. Thisflag is used by the
‘DATA’ and ‘REM’ tokens.

Pseudo-variable flag. If thisis set, it tells the tokeniser to
add &40 to thistoken if it isfound at the start of a
statement. Thisis how the tokeniser decides whether a
pseudo-variable is a statement or afunction. Note that the

38

pseudo-variable statement entry in the token table is not
used by the tokeniser; it uses the function entry and
convertsit to the statement token if it is at the start of a
statement. The statement entry is used by ‘LIST’ when the
tokens are being printed out.

Bit 7 (not used)
Other symbols

Specia symbolsfound in the input line which affect tokenising
are:

& scans the following hex number
" scans the following string constant
goesto ‘start of statement’ state
* prevents tokenising if at the start of a statement

2.3.2 Line number tokenising

Line numbers can also be tokenised, as well as keywords.
However, they will be left alone unless they are found at the start
of aline, or after atoken with the ‘tokenise line numbers' flag set.

Note that the tokenised line number at the start of the lineis not
inserted into the program (see section 2.4 for program storage).

Tokenising line numbers speeds up the use of GOTOs or
GOSUBs in a program, because the numbers are simpler to
decode than an ASCI| string of digits; but it does not really save
very much memory, as each tokenised line number takes up 4
bytes. Fig 2.6 shows how line numbers are tokenised, once the
ASCII digits have been read in and converted to a 16-bit integer
(it isactually a 15-bit integer, as line numbers greater than 32767
are not allowed).

The bytes after the &8D line number token must be less than & 80,
or they may look like another token. If this was not the case, one
of them may look like an * EL SE’ token, and it may be latched on
to by the ‘I F statement as something to do if it got a FALSE
result (see section 5.4).

Also, the bytes after the line number token must not be allowed to
be a control character (i.e. less than & 20). If this was not the case,

39

the byte may look like a & 0D (carriage return), which marks the
end of alinein aprogram.

The ssimplest way to ensure that both of these conditions are met,
isto fix the top 2 bits of each byteto ‘01’ so that it isin the range
&40to & 7F.

16-BIT INTEGER
MSB LSB

7 0 7 0

[TTTITTT] [TTTTTTT]
%(_J

NOT

NOT

A v
[e | [B[[LIPl] [el T T] [o]

BYTEO BYTE 1 BYTE 2 BYTE 3

TOKENISED LINE NUMBER

Figure 2.6 — Line number tokenising.

So to convert a 16-bit integer to the tokenised line number format:

1 Set byte 0 to the &8D line number token.

2 Transfer bits 7 and 6 of the MSB of theinteger into bits 3
and 2 of byte 1 of the tokenised line number, inverting bit 6
beforeit isinserted into bit 2.

3 Transfer the bottom 6 bits of the LSB of the integer into
byte 2 of the tokenised line number, setting bits 7 and 6 to
] Oll

4 Transfer the bottom 6 bits of the MSB of the integer into
byte 3 of the tokenised line number, setting bits 7 and 6 to
‘ 01!

5 Set byte 1 of the tokenised line number to ‘01000000’
(binary).

40

6 Transfer bits 7 and 6 of the LSB of the integer into bits 5
and 4 of byte 1 of the tokenised line number, inverting bit 6
beforeit isinserted into bit 4.

The line number is now tokenised. It isabit easier to get theline
number out of the tokenised form:

1 Shift byte 1 of the tokenised line number up 2 bits, load it
into A, and mask off the bottom 6 bits.

2 EOR this with byte 2 of the tokenised line number. A now
contains the LSB of the number.

3 Shift byte 1 of the tokenised line number up by afurther 2
bits, and load it into A (the bottom 6 bits are all 0)

4 EOR this with byte 3 of the tokenised line number. A now
contains the MSB of the number.

Table 2.1. - Keyword Tokens

Token BASIC 1 BASIC 2
Keyword Flags Addr Keyword Flags Addr
80 AND -------- AND --------
81 DV = a------- DV~ aeeea---
82 EOR -------- EOR --------
83 MOD @ -------- MD -e-----
84 OR - OR e
85 ERROR ----- S- ---- ERROR -S--
86 LINE -------- LINE --------
87 OFF -e------ OFF ceeeea-
88 STEP -------- .- STEP -------- .-
89 SPC a------- SPC eee-----
8A TAB(-------- .- TAB(-------- .-
8B ELSE ---L-S-- ---- ELSE ---L-S-- ----
8C THEN ---L-G-- THEN ---L-S-- .-
8D line no. -------- line no. --------
8E --- aeeeea-- T BF78
8F PTR -P----MC BF50 PTR -P----MC BF47
90 PAGE -P----MC AEEF PAGE -P----MC AECO
91 TIME -P----MC AEE3 TIME -P----MC AEB4
92 LOVEM -P----MC AF2B LOVEM -P----MC AEFC
93 H MEM -P----MC AF32 H MEM -P----MC AFO3
94 ABS - ADSD AB5 - ADGA
95 ACS - A8C6H ACS -------- A8D4
96 ADVAL -------- AB56 ADVAL -------- AB33
97 ASC -------- ACCA ASC -------- AC9E

BRB]AFIANBARBT

ASN
ATN
BGET

COUNT
DEG
ERL
ERR
EVAL
EXP

FALSE
FN

I NKEY
I NSTR(
I NT
LEN

LN

LOG
NOT
OPENI N
OPENOUT
P

POl NT(
PCS
RAD
RND
SaN
SIN
SR
TAN

TO
TRUE
USR
VAL
VPCS
CHR$
GETS$

| NKEY$
LEFTS(
M D$(

Rl GHT$(
STR$
STRI NGS$(
EOF
AUTO
DELETE
LOAD

LI ST
NEW
oD

ABFB

AB9B
B3EE
AFEE
B055
AFFB
8068
BO1D
BOC3
BOF1
ACDE
905F
8ECE
BF2D
B5B5
8A7D
8A3D

ASN a-eao--
ATN —ooao-s

BGET ~ ------- C

COUNT ~ ---e--- c

DEG ~ ce----e-

= T C
ERR ----e-- C

EVAL -eeee-e-
EXP -eeee-e-

FALSE =~ ------- C

FN ceo-F---

INKEY — -=--oe--
INSTR(==--=----
INT oo
LEN eo--e--
LN e
LOG e
NOT mmeeeee-
OPENUP - -=-----
OPENQUT - -------

Pl e c

PONT(-=-e----

POS -e---- c

RAD ceece-e-

RND -e---- c

SGN ame-ee--
SIN e
[0 = S
TAN e
TO -

TREE =~ ------- C

USR ~ -ecme-e-
VAL eeeeeee-

VPOS e--ee-- c

CHRS -------
GETS ~ -----e--
INKEY$ — --------
LEFT$(--------
MDS(--eee--
RIGHT$(--------
STRS --------

42

ABDA
A907
BF6F
A98D
AEE7
ABC2
AF9F
AFAG
ABE9
AA91
BF46
AECA
B195
AFB9

ACE2
AC78
AED1
ATFE
ABA8
ACD1
BF80
BF7C
ABCB
AB41
AB6D
ABB1
AF49
AB88
A998
A7B4
AGBE
AEDC
ACC4A
ABD2
AC2F
AB76
B3BD
AFBF
B026
AFCC
B039
AFEE
B094
BOC2
ACB8
90AC
8F31
BF24
B59C
8ADA
8AB6

BT EONEYRE3EY8ESERRENEERRGS

RENUMBER
SAVE
PTR
PAGE
TI VE
LOVEM
H MEM
SOUND
BPUT
CALL
CHAI' N
CLEAR
CLCSE
CLG
CLS
DATA
DEF
DI M
DRAW
END
ENDPRCC
ENVELCOPE
FOR
GosuB
GOTO
GCOL
IF

I NPUT
LET
LOCAL
MODE
MOVE
NEXT
ON
VDU
PLOT
PRI NT
PRCC
READ
REM
REPEAT
REPORT
RESTORE
RETURN
RUN
STCP
COLOUR
TRACE
UNTI L
W DTH

8E37
BEFA
9839
BF39
9239
927B
9224
9212
B461
BF61
8E6C
BF33
9326
BF9E
8E57
8E5E
8AED
8AED
90DD
93A5
8A50
9310
B49C
B7DF
B8B4
B8EB
932F
9893
BAG62
8B57
92D5
935A
93A1
B6AE
B934
93EF
93AE
8D33
92B6
BB39
8AED
8BFF
BFE6G
BB0O
B8D5
BD29
8A59
9346
9243
BBCC
B4CC
9839

RENUMBER - --L----
SAVE --e-----
PTR --------
PAGE ~ --------
TIME ---e-e--
LOVEM --------
HMEM ----e---
SOUND ------ M
BPUT ------ MC
CALL ------ M
CHAIN ------ M
CLEAR ------- C
CLCSE ~ ------ MC
G ------- c
CcLs -e----- c
DATA --Re----
DEF ------ M
DM ------ M
DRAW ~ ------- C
END ------- C
ENDPROC ~ ------ M
ENVELOPE ------ M
FOR ------ M
GosuB ---L--M
GoTO -o-L--M
GcoL e M
N M
INPUT ------ M
LET ----- S--
LOCAL ------ M
MODE ~ ------ M
MVE ------ M
NEXT ~ ------ M
N - M
vouU o ee--e M
pLor ------ M
PRINT ~ ------ M
PROC ----F-M
READ ------ M
REM --R--M
REPEAT ~ ------ M
REPORT ~ ------- C
RESTORE ~ ---L--M
RETURN ~ ------- c
RUN oo c
sTOP -----e- C
COLOUR ------ M
TRACE ~ ------ M
UNTI L ---L--M
WDTH ------ M

43

8FA3
BEE3
982A
BF30
9283
92C9
926F
925D
B44C
BF58
8ED2
BF2A
928D
BF99
8EBD
8EC4
8B7D
8B7D
912F
93E8
8AC8
9356
B472
B7C4
B888
B8CC
937A
98C2
BA44
8BE4
9323
939A
93E4
B695
B915
942F
93F1
8D9A
9304
BB1F
8B7D
BBE4
BFE4
BAE6
B8B6
BD11
8ADO
938E
9295
BBB1
B4A0
BEC2

2.4 Program storage

Once the line has been tokenised, the command handler checksto
seeif it starts with aline number. If it is, it isinserted into the
program (and the old line with the same number, if thereisone, is
deleted). The format of each lineisasfollows:

00 MSB of line number
01 LSB of line number
02 length byte (= * XX")
03 first character of line text O4etc.

XX-1 &O0D (carriage return) line terminator.
XX start of next line

The length byte is used so that searching for aline number (for a
‘GOTO or ‘GOSUB’ statement) is much faster. If thislength byte
isnot set up correctly, BASIC will give a‘Bad program’ error (see
section 9 .2 for a salvage routine).

The first character in memory at PAGE is a carriage return
character: this gives something to ‘latch on to’ when BASIC
checksfor a‘Bad program'’. The routine that checks this also sets
TOP o point to the next free location after the end of the program.

The end of the program is marked by a byte with the top bit set
(i.e. &80 or greater) in the position which would be the MSB of
the lirfe number of the next line. Thisiswhy line numbers greater
than 32767 are not allowed: if one got in, the MSB of itsline
number would just mark the end of the program.

For example, the program * 10PRINT A’ would be stored as (if
PAGE = & 1900).

&1900 &OD carriagereturn at start of program
&1901 &00 MSB of line number

&1902 &OA LSB of line number (10)

&1903 &07 length byte

&1904 &F1 ‘PRINT token

&1905 &20 spacecharacter

&1906 &41 ‘A
&1907 &OD carriage return end of line marker
&1908 &FF end of program marker

2.5 Executing statements

If the line input to the command handler did not start with aline
number, it passesit on to the statement interpreter to decide what
to do withit.

The statement interpreter is also used to RUN programs, as well
asjust interpreting statements and commands typed in command
mode. The command handler has a specia entry point to the
statement interpreter, so that commands (like ‘OLD’) can only be
executed in command mode, and not in the middle of a program.

The action of the statement interpreter is as follows:

1 It looks at the first character of the statement (skipping any
spaces). If it isthe token of aBASIC statement keyword
(or acommand keyword if we came from the command
handler), then go to the corresponding statement handler
(there is one of these for each statement or command)
where the rest of that particular statement will be
interpreted.

The action address of a particular token (the address to
which the statement interpreter jumps when atokenis
found) is stored in the following format:

BASIC1 BASIC2
& 82CB+T & 82DF+TLSB of action address
&833C+T & 8351+TMSB of action address

where T isthe number of the token (seetable 2.1).

2 If the first character of the statement was not a statement
keyword token, the statement interpreter checksto seeif it
isavariable name. If it is, it jumps to the assignment
handler. Thistries to assign the variable to the expression
found after the ‘=" sign. If there wasn't an ‘=’ after the
variable name, it generates a‘ Mistake' error (error number
4).

45

If the first character of the statement wasn't avariable
name either, the statement interpreter checksto seeif itis
one of the other special symbols which can be at the start
of aline. If itisa‘*’, it passestherest of the line to the
Operating System Command Line Interpreter (OSCLI) to
beacted on. If itisa‘[’, it jumpsinto the assembler. If itis
an ‘=", it jumpsto the FN return statement handler (asthis
isthe FN return statement).

If it wasn't any of those, it checksto seeif thefirst
character of the statement actually marks the end of the
statement — in other words we have an empty statement. If
it was, it goes back to stage | to interpret the next statement
(or go to command mode if we have run out of statements
to interpret). Most of the statement handlers jump to here
when they have finished, to check that the text pointer is
set up to point to the next statement.

Finally, if the character wasn't a statement delimiter either
(acharacter marking the end of the statement), the
statement interpreter gives up, and generates a ‘ Syntax
error’ (error number 16).

46

