
3 Memory use
Fig 3.1 shows the memory map as seen by BASIC. The memory
that BASIC uses can be split up into 3 major areas: workspace,
program storage, and dynamic storage (the HEAP and STACK).

The workspace includes most of the general memory used by
statements and functions. This is described in more detail in
section 3.3.

Program storage has already been described in section 2.4.

Dynamic storage is allocated while a program is actually running;
whereas workspace and the program occupy fixed areas while this
is going on. Dynamic storage includes the storage of variables on
the HEAP, and the use of the STACK for storing temporary
results, and saving things during FN or PROC calls. The HEAP
and STACK are described in more detail in the next sections.

3.1 Variables and the HEAP

3.1.1 The resident integer variables

The resident integer variables, @% and A % to Z%, are not stored
on the HEAP where the rest of the variables are: they occupy the
lower half of page 4. Because each one occupies a fixed location,
they are very fast to access. They are stored in the following
format:

&400 to &403 @%
&404 to &407 A% etc.

&468 to &46B Z%

They are stored in standard 4-byte integer format (i.e. LSB first,
MSB last). Here is a short program to list the resident integer
variables, and their values (in HEX).

47

&FFFF

&C000

&B000

HIMEM

LOMEM

TOP

PAGE
OSHWM

&0800

&0700

&0600

&0500

&0400

&0900

&0700

&004F

&0000

MOS ROM

BASIC ROM

screen

STACK

HEAP

OS workspace

keyboard buffer

StrA

control stacks

variables area

OS workspace

user workspace

(not used)

BASIC workspace

program
BASIC

Figure 3.1 — The BASIC memory map.

48

 5 REM Prints out the resident integer variables
 10
 90 vbase = &400
 100 FOR char = ASC"@" TO ASC"Z"
 110 offset = (char AND &1F)*4
 120 value% = vbase!offset
 130 PRINT CHR$(char);"% = &";~value%
 140 NEXT char

3.1.2 Dynamic variables

The rest of the variables used by BASIC are dynamic variables,
because it allocates space for them when it needs it (i.e. when they
are first set). These are stored on the HEAP, which works upwards
in memory from LOMEM. To get at the variables once it has put
them on the HEAP, BASIC uses a series of linked lists.

A linked list starts with a base pointer, which points to the first
item in the list. The first item in the list has a pointer which points
to the second item in the list, and so on. The end of the list is
usually marked by the pointer to the next item being 0. So, if the
linked list doesn’t contain any items, the base pointer is 0 (a null
pointer). Fig 3.2 shows a linked list of three items.

0

BASE
POINTER

NULL
POINTER

ITEM 3

ITEM 1

ITEM 2

Figure 3.2 − A linked list.

49

One of the advantages of a linked list is that the items don’t need
to be in any set pattern in memory, as long as the pointers still
point to the next item in the list. This can be very useful for
variable storage, as different types of variables occupy a different
number of bytes (especially arrays).

In fact, BASIC uses a separate linked list for each possible first
letter of a variable name. Although these linked lists are separate,
they all use the HEAP in the same way, and the lists link round
each other. Using these separate linked lists means that searching
for variables is much faster (unless your variable names all start
with the same letter!).

The base pointers, which point to the first variable in each
particular list, are stored in the upper half of page 4 in the
following format:

&482 ,&483 base pointer for the ‘A’ list
etc.

&4B4 ,&4B5 base pointer for the ‘Z’ list
etc.

&4F4 ,&4F5 base pointer for the ‘z’ list

A similar linked list is used to store the locations of PROCs and
FNs, once they have been called, so that BASIC doesn’t have to
search through the whole program to find them again. The base
pointers for these are:

&4F6,&4F7 base pointer for the PROC list
&4F8,&4F9 base pointer for the FN list

0

LINK POINTER

NAME

VALUE

Figure 3.3 − A variable information block.

50

Each variable (or PROC/FN) on the HEAP is stored as a Variable
Information Block (fig 3.3). This Variable Information Block is
composed of 3 fields:

The pointer field (2 bytes).

This is the pointer which points to the next item in the list
(with the same first letter). If this item is at the end of the
list, then the MSB of this pointer must be zero (the next
item can’t be in page zero, so only checking that the MSB
is zero saves time).

The name field.

This holds the name of the variable, with a zero byte to
mark the end of the name. For a variable, this name field
does not include the first character of the name, because
that was used to choose which base pointer to use. It does
contain the ‘$’, ‘%’ or ‘(’ characters on the end of the name
(if there are any), as this gives the type of the variable.

For a PROC or FN, the first character of the name is
included, as there is only one list for all PROCs, and one
for all FNs.

The value field.

This starts with the first byte after the zero byte at the end �
of the name field. For a variable, the format of this field
depends on the type: these are detailed in section 3.1.3.

For a PROC or FN, this field contains a 2-byte pointer to
the PROC or FN where it is defined. It points to the first
character after the name of the PROC or FN (i.e. to the ‘(’
character if it uses any parameters).

As an illustration of the way variables are stored on the HEAP, the
program below will go through the current active variables,
printing their names and values. It can be used to print out
Variables other than those used by the program itself, by setting
them up first, and using ‘GOTO 90’ to start the program (if
‘RUN’ is used, all variables are cleared first).

The program follows the linked list for each initial letter of

51

variable names, using the variable ‘addr’ to hold the current
pointer.

PROCvar prints out the name and value of the variable whose
Variable Information Block (VIB) is at ‘addr’. The last character
of the variable gives its type, and this is used to prevent the
program from printing out arrays. To print out the value of the
variable, it ‘cheats’ by giving the name of the variable to EVAL
rather than extracting it directly. Section 7.4 gives a machine code
version of this routine.

 5 REM * * * * * * VRPRI NT * * * * * *
 10 REM Pr i nt s out var i abl es used by t he pr ogr am.
 15 REM I f any ot her s ar e t o be pr i nt ed, use
 20 REM " GOTO 90" so t hey won' t be cLear ed.
 90 @%=0
 100 PRI NT' " Var i abl e" TAB(15) " Val ue" '
 110 FOR char = ASC(" A") TO ASC(" z")
 120 addr = &400+2* char : REM Get poi nt er addr ess
 130 addr = ! addr AND &FFFF
 131 : REM Get pt r t o 1st VI B
 140 I F (addr DI V &100) =0 THEN GOTO190
 141 : REM Exi t i f nul l poi nt er
 150 REPEAT
 160 PROCvar : REM Pr i nt var i abl e
 170 addr = ! addr AND &FFFF : REM Get pt r t o next VI B
 180 UNTI L (addr DI V &100) =0 : REM Exi t i f nul l poi nt er
 190 NEXTchar
 200 END
 999 REM * * * Pr i nt var i abl e name and vat ue * * *
 1000 DEFPROCvar
 1010 name$ = CHR$(char) : REM Fi r st char act er of name
 1020 npt r = 2 : REM Pt r t o name i n VI B
 1030 I F addr ?npt r =0 THEN GOTO1100
 1031 : REM End of name?
 1040 REPEAT
 1050 name$ = name$+CHR$(addr ?npt r)
 1051 : REM Add next char t o name
 1060 npt r = npt r +1
 1070 UNTI L addr ?npt r =0 : REM Exi t i f end of name
 1100 PRI NT name$, TAB(15) ;
 1105 t yp$ = RI GHT$(name$, 1) : REM Get t ype of var i abl e
 1110 I F t yp$=" (" THENPRI NT" <ar r ay>" ELSEPRI NT EVAL(name$)
 1111 : REM Pr i nt val ue i f not ar r ay
 1130 ENDPROC

52

3.1.3 Variable value formats

When writing programs in BASIC, variables can be one of 3
types: 4-byte integers, floating point numbers, or strings (these are
called dynamic strings, as BASIC allocates memory for them as it
is required). However, the indireciton operators (‘?’, ‘!’ and ‘$’)
can be used to manipulate 8-bit bytes, 4-byte integers, and static
strings (i.e. strings at a fixed address in memory).

Once BASIC has found the location of the variable, these bytes
and static strings are treated like just like two more variable types
(4-byte indirected integers are stored the same as named 4-byte
integer variables). To pass variables between routines, a Variable
Descriptor Block (not to be confused with the Variable
Information Block) is used, which is usually left in IntA (the
integer accumulator). The format of this is:

&2A,&2B pointer to the location of the variable value
&2C type of the variable

This Variable Descriptor Block is used, for example, in the
Parameter Block passed by the BASIC ‘CALL’ statement (when
any parameters are passed to it). This means that a user routine
can read or set any of the variables passed as parameters to the
CALL statement.

The format of the different variable types are:

Type number &00: 8-bit byte

Format:

00 8-bit byte 1 byte

This is just a single byte at the specified location. This type
of variable can only be accessed by using the ‘?’ operator;
either as ‘?M’ to mean ‘the byte pointed to by M’ ,or as
‘M?3’ to mean ‘the byte at location M+3’.

53

Type number &04: 32-bit integer

Format:

00 32-bit integer 4 bytes

This is a 4-byte integer at the specified location. It is stored
LSB first, MSB last. This type of variable can be accessed
as a named integer variable, like ‘A %’ or ‘integer%’ , or by
using the ‘I.’ operator.

If a named variable is used, the location of the value has to
be found first, either by looking it up in the table of
resident integer variables, or by searching through one of
the linked lists for it. The name field of the Variable
Information Block in the linked list has the ‘%’ on the end
of it, so that it is identifiable as an integer.

If the ‘!’ operator is used, the location of the variable is
taken as the number following the ‘!’ (for the unary
version); or the sum of the variable before the ‘!’ , and the
number after it (for the binary version).

Type number &05: 40-bit floating point number

Format:

00 exponent (offset &80) 1 byte
01 mantissa 4 bytes
(bit 7 of byte 01 holds the sign bit)

This is a floating point number at the specified location.
The mantissa is stored MSB first, LSB last (the opposite
order to 4-byte integers). The top bit of the mantissa is used
to hold the sign bit, as this would always be a ‘1’ (see
section 2.2.2 for a description of floating point numbers).

This type of variable can only be accessed as a named
variable stored on the HEAP; there is no floating point
indirection operator. The location of the variable is found
by searching through one of the linked lists for it. There is
no symbol on the end of the name field of a floating point
variable.

54

Type number &80: static string

Format:

00 ASCII characters of string nn bytes
nn &0D terminating character 1 byte

This is a static string at the specified location. It can only
be accessed by using the ‘$’ string indirection operator: the
location of the string is taken to be the number after the ‘$’.
The carriage return (&0D) terminating character is not
counted as one of the characters of the string: it is only
used to mark the end.

Space can be allocated for a string of this type, by using the
‘reserve space’ form of the DIM statement: ‘DIM A 20’
will allocate space for a string at A of maximum size 20
characters, plus 1 for the terminator.

Type number &81: dynamic string

Format:

00 pointer to string on HEAP 2 bytes
02 space allocated 1 byte
03 current length 1 byte

This is the String Information Block of the dynamic string:
these 4 bytes will occupy the value field of the Variable
Information Block of a string variable. This type of
variable can only be accessed as a named variable. The
name field of the Variable Information Block has the ‘$’
symbol on the end, so it is identifiable as a string.

When a dynamic string is first assigned, the Variable
Information Block is created and linked into one of the
lists, to hold the name and String Information Block of the
string. Then space is allocated on the HEAP for the
characters of the string itself, and the String Information
Block is set up to point to first character of that string. The
string itself does not need a carriage return to mark the end,
as the String Information Block holds the length of it.

55

If the string is empty, no space needs to be allocated for it
at all. If the string is a ‘small’ string (less than 8
characters), just the correct number of bytes is allocated on
the HEAP for it. If it is a ‘large’ string, an extra 8 bytes are
reserved for it, to allow some room for expansion (if this
would take the allocated space over 255 characters, 255
bytes are reserved).

Whenever a dynamic string exceeds the space which has
been allocated, a new area is reserved for it on the HEAP
(using the same rules as above). The ‘gap’ left in the HEAP
where the string used to be cannot be recovered (BBC
BASIC has no ‘garbage collector’): so if memory is not to
be wasted, it is usually a good idea to set strings, at the start
of a program, to the largest size that they are likely to
become.

The amount of memory wasted in this manner is not
usually a great deal, but certain operations tend to use quite
a lot (for example, a loop which adds one character on the
end of a string each time round). In BASIC2 this has been
improved by checking to see if the string is on top of the
HEAP: if it is, it can be extended without having to throw
away the old area.

3.1.4 Array storage

Arrays are stored in the same kind of Variable Information Block
as ordinary variables, but the value field of an array is usually
much bigger than that of an ordinary variable. The value field of
an array has to hold the number of dimensions, and the size of
each dimension, as well as the the value of each cell in the array.

The Variable Information Block for an array is linked into the list
when it is dimensioned: any attempt to read from or write to a
array which does not exist will result in the ‘Array’ error (error
number 14) being generated.

The name field in the Variable Information Block for an array has
the ‘(’ symbol on the end, so that it is identifiable as an array. It
also has the ‘%’ or ‘$’ symbol before that, if it is an integer array
or a string array.

56

The format of the value field of an array with D dimensions is:

00 offset of start of cells (nn) 1 byte
01 size of dimension 1 2 bytes
03 size of dimension 2 2 bytes
05 etc.

nn − 2 size of dimension D 2 bytes
nn start of cells

The first byte of the value field gives the offset of the start of the
cells from the start of the value field, rather than the number of
dimensions of the array. If the number of dimensions is D, this
offset will be ?�D+1 bytes (2 for the size of each dimension, and 1
for the offset byte itself). This will be 3 for single-dimension
arrays.

The size of each dimension is stored as the maximum allowed
subscript.

Each cell is in the same format as the equivalent variable: if it is
an integer array, each cell will contain a 32-bit integer (type
number &04); if it is a floating point array, each cell will contain a
40-bit floating point number (type number &05); and if it is a
string array, each cell will contain a 4-byte String Information
Block (type number &81). The actual strings for a string array are
stored separately on the HEAP (as for dynamic string variables),
as soon as they are first set.

The order of the cells is probably best explained by an example.
For the array A(1,1,1) the order of the cells will be:

cell 0 A(0,0,0)
cell 1 A(0,0,1)
cell 2 A(0,1,0)
cell 3 A(0,1,1)
cell 4 A(1,0,0)
cell 5 A(1,0,1)
cell 6 A(1,1,0)
cell 7 A(1,1,1)

57

The following algorithm can be used to find the required element
of an array:

C = 0
start at first dimension
REPEAT

C = (C * size) + subscript
move on to next dimension

UNTIL no more dimensions left

where ‘size’ is one more than the maximum subscript for the
dimension of interest (allowing for the subscript O); and
‘subscript’ is the required subscript of the dimension of interest.

At the end of that algorithm, C will give the cell number of the
required element.

Taking the example of the array A(1,1,1) again, if the element
required was A(1,1,0), the successive values of C after each
iteration of the loop in the algorithm would be:

after 1 pass: C = 1
after 2 passes: C = 3
after 3 passes: C = 6

This means that the element A(1,1,0) is cell number 6 of the array
A(1,1,1). This agrees with the list given above.

To get the location of the cell, the cell number must be multiplied
by the size of each cell: 4 bytes for an integer or a string, or 5
bytes for a floating point number. This gives the offset (in bytes)
of the required cell from the start of the cells.

Once the location of the element has been found, this can be put
in the Variable Descriptor Block, together with the type of the
element (integer, floating point, or string). The array element can
now be handled inside BASIC as if it was just another variable in
memory .

58

3.2 The BASIC STACK

The BASIC STACK works downwards from HIMEM. The
STACK pointer is held in page zero, at &4,&5. It is used to save
temporary results in the middle of calculations, and to save the
6502 stack and parameters when a FN or PROC is called (see
section 5 .3).

For example, to evaluate the expression:

2 + 5 * 3

the ‘2’ must be saved while the ‘5 * 3’ is being calculated. The
6502 stack could be used for this, but it is very small, and would
not allow very complex expressions without overflowing
(especially when there are FNs to be dealt with).

Before anything is pushed on the STACK, a check is made to
ensure that there is enough room for the new item: otherwise there
may be a clash with the HEAP which is growing in the opposite
direction, upwards from LOMEM (see fig 3.1). If there is not
enough room, the ‘No room’ error is generated.

There are routines to push any of BASIC’s accumulators IntA,
FPA, and StrA (and pull them again); these are used quite a lot in
the expression evaluator. Chapter 4 describes the expression
evaluator in more detail.

The other main use of the BASIC STACK is by PROCs and FNs.
When one of these is entered, the 6502 stack is transferred onto
the BASIC STACK. If this was not done, the small 6502 stack
would soon overflow with return addresses for JSRs if the
recursion of the PROCs or FNs went very deep (i.e. the PROC or
FN called itself).

PROCs and FNs also need to make sure that LOCAL variables
and parameters used in the PROC or FN are returned to their
original values when the call is finished. When the call is started,
the values of the parameters in the PROC or FN definition are
pushed on the STACK, together with the Variable Descriptor
Block for the parameter. That gives the location and type of the
variable, so it can be restored after the call. Section 5.3 gives more
detail on the action of PROCs and FNs.

59

3.3 Workspace

This section lists the workspace used by BASIC. In many cases,
the use of particular locations may be described in more detail
elsewhere.

Page Zero

&00 − &01 LOMEM
&02 − &03 HEAP pointer (section 3.1)
&04 − &05 STACK pointer (section 3.2)
&06 − &07 HIMEM

&08 − &09 ERL

&0A PTRA offset
&0B − &0C PTRA base (section 2.2.5)

&0D − &11 psuedo-random number for RND

&12 − &13 TOP

&14 PRINT field width
&15 PRINT hex flag (HEX if bit 7 set)

&16 − &17 ON ERROR pointer (section 5.8, chapter 11)

&18 MSB of PAGE (LSB is always zero)

&19 − &1A PTRB base
&1B PTRB offset (section 2.2.5)

&1C − &1D DATA pointer (points before next DATA item)

&1E COUNT (no of characters printed on line)

&1F LISTO maskbit 0:space after line no.
bit 1: indent FORs
bit 2: indent REPEATs

&20 TRACE flag (&00 = OFF, &FF = ON)
&21 − &22 TRACE maximum line number

60

&23 WIDTH (or &FF if WIDTH 0 used)

&24 REPEAT stack pointer (section 5.5)
&25 GOSUB stack pointer (section 5.2)
&26 FOR stack pointer (section 5.6)

&27 Temp for expression evaluator

&28 OPT mask: bit 0:produce listing
bit 1:give errors
bit 2:relocate (BASIC2)

&29 opcode slot for assembler

&2A − &2D IntA (section 2.2.1)
&2E − &35 FPA (section 2.2.2)
&36 StrA length (characters from &600 on)

Page Zero multi-purpose workspace

&37 − &4E Main uses are:
&37 − &38 general pointer
&39 name length/variable type
&39 − &40 integer for division and multiplication
&3B − &42 FPB for floating point routines
&43 − &46 floating point multiplyldivide workspace
&3F − &47 PRINT hex digit buiFd area
&48 no. of constants for series evaluator
&49 flag for stringlnumber conversion
&4A exponent for stringlnumber conversion
&4B − &4C floating point memory pointer
&4D − &4E pointer for series evaluator

&4F − &8F (not used)

OS workspace

&90 − &3FF OS workspace

61

Page 4 workspace

&400 − &46B resident integer variables (section 3.1.1)

&46C − &470 floating point temp 1
&471 − &475 floating point temp 2
&476 − &47A floating point temp 3
&47B − &47F floating point temp 4

&480 − &4F5 variable list base pointers (section 3.1.2)

&4F6 − &4F7 PROC list base pointer (section 3.1.2)
&4F8 − &4F9 FN list base pointer (section 3.1.2)

&4FA − &4FF (not used)

Page 5 workspace

&500 − &595 FOR stack (section 5.6)
&596 − &5A3 (not used)
&5A4 − &5CB REPEAT stack (section 5.5)
&5CC − &3FF GOSUB stack (section 5.2)

Page 6 workspace

&600 − &6FF characters of StrA (section 2.2.3)

Page 7 workspace

&700 − &7FF keyboard input buffer X

62

