
8 Over laying Procedures
Lack of memory can be a very restrictive and annoying problem
with large programs. One way of getting round this is to use
several smaller programs, and CHAIN them together (like the
‘Welcome’ cassette). However, this RUNs each program which is
loaded in, so all the variables (apart from the resident integers) are
lost.

Another method is to ‘overlay’ FNs and PROCs. If the program
consists of a number of large sections, which will not be in
memory at the same time as one another, these sections can be
loaded in on top of each other when one is required. Since only
one of the sections will be active at any particular time, the same
memory can be used for all of them.

By intercepting the ‘No such FN/PROC’ error, an overlay file can
be loaded in, and executed as if it was a normal FN or PROC.
When the FN or PROC has finished, the memory that it loaded
into is free for another call. This sort of overlaying is more useful
on a system with discs, because of its random access ability; but it
can be used with cassettes as well if the order in which the overlay
files will be required is known (so that they can be saved in that
order on the tape).

This chapter describes how to overlay FNs and PROCs, JMPing
back in to BASIC to continue when the file has been loaded.

8.1 The ‘No such FN/PROC’ er ror

This error (error number 29) is generated by the FN/PROC
handler when it failed to find the definition of the FN or PROC in
the program. See section 5.3 for the operation of the FN/PROC
handler. The sequence of actions taken when the FN/PROC
handler comes across an undefined call is as follows:

1 The 6502 stack, from &1FF to the item on top of the stack,
is saved on the BASIC STACK. The 6502 stack pointer is
saved as the byte on top of the BASIC stack, so that the
correct number of bytes can be retrieved after the call.
After saving, the 6502 stack pointer is re-set to &1FF.

128

2 The FN or PROC token is saved as the first item on the
6502 stack, at &1FF, so that ENDPROC or the ‘=’
statement know which type of call they are in. The FN
token is &A4, and the PROC token is &F2.

3 PTRA is saved on the 6502 stack, from &1FE to &1FC.
The stack pointer now points to &1FB (at the next free
byte).

4 If there was no name after the FN/PROC token, a ‘Bad
call’ error is generated. Otherwise, the FN/PROC handler
searches through the list of already used FNs or PROCs for
the name.

5 If it wasn’t found in the list (which it won’t be, if it is not in
the program), the FN/PROC handler searches through the
program for the definition. When it doesn’t find it, it
restores the base of PTRA from the 6502 stack, so that
ERL will be set up properly by the BASIC error handler,
and generates a ‘No such FN/PROC’ error.

When this error ocurrs, the prevailing conditions on entry to the
BRK handler are:

&FD,&FE points to the error number (29)

6502 stack: &1FB RTI info. 3 bytes
&1FE PTRA offset 1 byte
&1FF FN/PROC token 1 byte

BASIC STACK contains old 6502 stack.

&37,&38 points 1 byte before the FN/PROC token
&39 length of name (+1 for token)

The FN/PROC can be re-entered to force it to use an overlayed
file as the FN or PROC it was looking for, but first the 6502 stack
must be restored to the state immediately before the error was
generated. The 3 bytes of RTI information must be pulled from
the stack, and the base of PTRA must be pushed back on (&B
first, then &C).

129

At this point the overlay file can be loaded. When the overlay file
is in memory, the FN/PROC handler can be re-entered, as if the
overlay is a FN or PROC which it has just found.

To re-enter the FN/PROC handler, set the base of PTRA (in
&B,&C) to point to the first character which would be after the
name of the FN/PROC in the definition, and JMP to &B223
(BASIC1) or &B1F4 (BASIC2).

Jumping to this address will continue with the FN/PROC handler,
and the name will not be added to the list of used FNs or PROCs.
If the name had been added to the list, difficulties would arise
when the overlay had been finished with; the FN/PROC handler
would still think that it knew where the overlayed FN or PROC
was, but the memory may have already been used by a different
overlay file.

8.2 Static overlaying

A very simple method of overlaying a FN or PROC is to load a
file into a fixed position in memory (hence ‘static’) whenever a
‘No such FN/PROC’ error is generated.

The routine in this section will load the file ‘OVERLA Y’ into
memory at &6000 (this can be changed by altering line 600), and
then re-enter the FN/PROC handler to use this file as the FN or
PROC which could not be found.

The ‘OVERLAY’ file should be saved as if it is a normal BASIC
program: it should not contain the ‘DEF PROCname’ (but it must
have the ‘ENDPROC’ or ‘=’ statement). If parameters are to be
passed to it, the ‘(’ should be the first character on the first line of
the program. For example, the following overlay file will print the
SIN of the number passed to it:

 10(number)
 20PRINT SIN(number)
 30ENDPROC

If this program is saved as the file ‘OVERLA Y’, any
unrecognised FN or PROC call will be passed to it. For example,
‘PROCFRED(PI/2)’ will print ‘1’.

130

This overlay routine cannot tell the difference between FNs and
PROCs; it will load the file ‘OVERLAY’ whenever the error is
generated. So, if the file is saved as above, ‘X=FNA(3)’ will give
a ‘No PROC’ error, when it finds the ‘ENDPROC’ statement on
the end of what it thinks is a FN.

If the overlay does not need any parameters, the first character on
the first line could be the start of the first statement, or a space.

 4 REM This is a simpte program to overtay procedures.
 6 REM
 8 REM M D Plumbley 1984
 10 REM
 12 REM Once this is initilaised, if a FN or PROC is not
 14 REM found in a program, generating the
 16 REM "No such FN/PROC" error, then the fite called
 18 REM "OVERLAY" will be loaded from disc, and
 20 REM executed.
 22 REM
 24 REM The overlay file shoutd not contain the name of
 26 REM the PROC or FN, but any parameters should be
 28 REM inside brackets on the first line of the file.
 30 REM If used, the open bracket must be the first
 32 REM character on the first line of the file.
 90 REM
 95
 100 PROCsetup :REM Set up correct ROM entry points
 390
 395 REM *** OS vectors ***
 400 brkv = &0202
 410 oldbrk = !brkv AND &FFFF
 490
 495 REM *** OS routines ***
 500 oscli = &FFF7
 590
 600 ldslot = &6000 :REM Area to load overlay into
 799
 900 start% = &0C00 :REM Assembte into user char space
 905
 910 FOR opt% = 0 TO 3 STEP 3
 920 P% = start%
 950 [OPT opt%
 960
 1000 .newbrk
 1005 PHA \Save A and Y on 6502 stack
 1010 TYA
 1015 PHA
 1020
 1025 LDY #0 \Get error number
 1030 LDA (&FD),Y

131

 1035
 1040 CMP #29 \ I f " No such FN/ PROC" , go
 1045 BEQ nopr oc \ t o over t ay r out i ne.
 1050
 1055 . gi veup \ Ot her wi se, r est or e A and Y and go
 1060 PLA \ t o t he def aut t BRK handt er .
 1065 TAY
 1070 PLA
 1075 JMP ol dbr k
 1080
 2000 . nopr oc
 2005 PLA \ Remove t he saved A and Y f r om t he
 2010 PLA \ 6502 st ack.
 2015
 2020 PLA \ Remove t he RTI i nf or mat i on f r om t he
 2025 PLA \ 6502 st ack.
 2030 PLA
 2035
 2040 LDA &B \ Push t he base of PTRA, r eady f or
 2045 PHA \ t he r et ur n f r om t he FN/ PROC.
 2050 LDA 8C
 2055 PHA
 2060
 2065 LDX #l odt xt MOD &100 \ Tel l t he f i t i ng syst em t o
 2070 LDY #l odt xt DI V &100 \ l oad t he over l ay f i l e
 2075 JSR oscl i
 2080
 2085 LDA #l dsl ot MOD&100+4 \ Set PTRA t o poi nt t o t he
 2090 STA &B \ 1st char of t he f i t e
 2095 LDA #l dsl ot DI V &100 \ (not CR, l i ne num, or
 2100 STA 8C \ l engt h)
 2105
 2110 JMP pr ef nd \ Cont i nue wi t h t he FN/ PROC handt er
 2115
 2120 . l odt xt \ DFS command t o l oad t he over t ay
 2125] $P% = " LOAD OVERLAY " : P%=P%+LEN$P%
 2130 $P% = STR$~l dsl ot : P%=P%+LEN$P%
 2135 ?P% = &0D : P%=P%+1
 2140
 3010 @%=0
 8000 NEXT
 8020 PRI NT' " Code l engt h =&" ~P%- st ar t %
 8030
 8040 REM * * * Li nk new r out i ne i n t o BRK vect or * * *
 8050 I F newbr k=ol dbr k PRI NT" Al r eady set up" : END
 8060 br kv?0 = newbr k MOD &100
 8070 br kv?1 = newbr k DI V &100
 8080 END
 8090
 9000 REM * * * Set up R0M ent r y poi nt s, at t owi ng f or * * *
 9010 REM * * * BASI C1 and BASI C2 * * *
 9020 DEFPROCset up

132

 9030 IF ?&8015=ASC"1" THEN PROCset1 ELSE PROCset2
 9040 ENDPROC
 9050
 9300 REM *** Set up BASIC1 entry points ***
 9310 DEFPROCset1
 9320 prefnd = &B223 :REM Return to FN/PROC handler
 9330 ENDPROC
 9340
 9500 REM *** Set up BASIC2 entry points ***
 9510 DEFPROCset2
 9520 prefnd = &B1F4 :REM Return to FN/PROC handter
 9530 ENDPROC

The general operation of the routine is as follows:

1 If the error number is not 29, the default BRK handler is
called (lines 1000 to 1080). If the error number is 29, the 3
bytes of RTI information are removed from the stack (as
well as the 2 registers saved by the BRK handling routine
at 1000 to 1015).

2 The base of PTRA is pushed back on the 6502 stack (lines
2040 to 2055), for the return when the call is finished.

3 The overlay file is loaded by sending the line ‘LOAD
OVERLAY 6000’ to the Operating System Command Line
Interpreter (OSCLI). This will be interpreted just as if a
‘*LOAD’ had been typed at the keyboard. Note the use of
the hexadecimal version of the STR$ function (line 2130).
This is in BASICI and BASIC2, but is not mentioned in the
User Guide.

4 The base of PTRA is set to point to the fifth character of
the file (at &6004). If the file has been entered as a BASIC
program, the first character of the file will be a &0D,
followed by a 2-byte line number, followed by the line
length byte (see section 2.4 for the program storage
format).

5 A JMP is made to re-enter the FN/PROC handler. It will
then think that the call definition has been found, and that
the base of PTRA points to the first charcter after the name
in the definition. If this character is a ‘(’, it will handle any
parameters which are listed. It will then start executing
statements in the file as if it was a proper FN or PROC.

133

8.3 Dynamic overlaying

The routine in the last section is a bit limited. It can’t tell the
difference between different FNs or PROCs, as it doesn’t do any
name checking; and it always loads into the same area of memory
(which must be decided when it is assembled), so only one PROC
or FN can operate at a time.

The routine in this section shows how FNs and PROCs can be
recognised and loaded onto the BASIC STACK, completely
invisible to the main program (except for the amount of memory
required to load them). If there is not enough memory to load the
FN or PROC, a ‘No room’ error will be generated. FNs and
PROCs loaded like this can call others inside them to be
overlayed, and these will also be loaded onto the STACK. The
program in section 8.2 would just load the other overlay on top of
the first one.

The exit from the FN or PROC is trapped by changing the token
byte on the 6502 stack at &1FF, so that a ‘No FN’ or ‘No PROC’
error will be generated. This allows the overlayed file to be
removed from the STACK when it is finished with, by
intercepting these errors.

The overlay files are created in the same manner as the ones in
section 8.2, with the ‘(’ as the first character on the first line if
necessary. However, the routine will check the name of the FN or
PROC, and will load in ‘P.fred’ if ‘PROCfred’ is called, arid
‘F.fred’ if ‘FNfred’ is called. Note that the operating system will
treat upper and lower case letters as the same, so ‘F.FRED’ is the
same as ‘F.fred’ as far is it is concerned.

 10 REM *** Program to overlay PROCs and FNs **
 12 REM
 14 REM M D Plumbley 1984
 16 REM
 18 REM Once this is run, if a FN or PROC is not found in
 20 REM a program, generating the "No such FNIPROC"
 22 REM error, then the file with the same name
 24 REM as the FN or PROC will be loaded from disc (or
 26 REM tape). The P directory will be used for PROCS,
 28 REM the F directory for FNs.
 30 REM
 32 REM The FN or PROC will be loaded on the BASIC

134

 34 REM STACK, and will be removed then it exits.
 36 REM
 38 REM The overlay file should not contain the name of
 40 REM the PROC or FN, but any parameters should be
 42 REM inside brackets on the first line of the file.
 44 REM If used, the open bracket must be the first
 46 REM character on the first line of the file.
 48 REM
 50 REM Before using with BASIC 1, all EQU directives
 52 REM shoutd be reptaced by indirections:
 54 REM "EQUB X" => "]?P%=X:P%=P%+1:[OPTopt%"
 55 REM "EQUW X" => "]!P%=X:P%=P%+2:[OPTopt%"
 56 REM "EQUD X" => "]!P%=X:P%=P%+4:[OPTopt%"
 57 REM "EQUS A$" => "]$P%=A$:P%=P%+LEN$P%:[OPTopt%"
 90 REM
 95
 100 PROCsetup :REM Set up correct ROM entry points
 390
 395 REM *** OS vectors ***
 400 brkv = &0202
 410 oldbrk = !brkv AND &FFFF
 490
 495 REM *** OS routines ***
 500 oscli = &FFF7
 505 osfile = &FFDD
 590
 690 REM *** BASIC registers ***
 700 stack = &0004
 705 inta = &002A
 799
 800 parms = &0070 :REM Temp for number of parameters
 899
 900 start% = &0B00 :REM User defined character area
 905
 910 FOR opt% = 0 TO 3 STEP 3
 920 P% = start%
 950 [OPT opt%
 960
 1000 .newbrk
 1005 PHA \Save A and Y on 6502 stack
 1010 TYA
 1015 PHA
 1020
 1025 LDY #0 \Get error number
 1030 LDA (&FD),Y
 1035
 1040 CMP #29 \If "No such FN/PROC", go
 1045 BEQ nofnpr \ to overtay routine.
 1047
 1050 CMP #7 \If "No FN" see if it is
 1055 BEQ jnofn \ to be thrown away.
 1057

135

 1060 CMP #13 \If "No PROC" see if it is a PROC
 1065 BEQ jnoprc \ to be thrown away
 1070
 1075 .ospace
 1080 .giveup \Otherwise, restore A and Y and go
 1085 PLA \ to the defautt BRK handler.
 1090 TAY
 1095 PLA
 1100 JMP oldbrk
 1105
 1110 .jnofn \Jump to the "No FN" handler
 1115 JMP nofn
 1117
 1120 .jnoprc \Jump to the "No PROC" handler
 1125 JMP noproc
 1127
 1990 \ *** If we get here, a FN or PROC is to be ***
 1992 \ *** over layed, after a "No such FN/PROC" error ***
 2000 .nofnpr
 2005 PLA \Remove the saved A and Y from the
 2010 PLA \ 6502 stack.
 2015
 2020 PLA \Remove the RTI information from the
 2025 PLA \ 6502 stack.
 2030 PLA
 2035
 2040 LDA &B \Push the base of PTRA, ready for
 2045 PHA \ the return from the FN/PROC.
 2050 LDA 8C
 2055 PHA
 2060
 2065 LDY &39 \If the length of the name of the
 2070 CPY #9 \ FN/PROC, with the token, is > 8,
 2075 BCS giveup \ it is too big to be a filename.
 2080
 2085 LDA #&0D \Put a CR on the end of the
 2090 STA filnam+1,Y \ area, ...
 2095
 2100 .txnmlp \ and transfer the name from the
 2105 LDA (&37),Y \ text into the fitename area.
 2110 STA filnam,Y
 2115 DEY
 2120 BNE txnmlp
 2125
 2130 LDX #ASC"P" \If the token on the front of the
 2135 CMP #&F2 \ name (the last byte transfered)
 2140 BEQ proc \ was a PROC token, put a "P" on
 2145 LDX #ASC"F" \ the front of the filename;
 2150 .proc \ otherwise use an "F".
 2155 STX filnam
 2160
 2165 LDA #ASC"." \Put a "." between the P/F and the

136

 2170 STA f i l nam+1 \ FN/ PROC name.
 2175
 2180 LDX #pbl ock MOD &100 \ Cal l OSFI LE t o f i nd
 2185 LDY #pbl ock DI V &100 \ t he l engt h of t he
 2190 LDA #5 \ f i l e.
 2195 JSR osf i l e
 2200
 2205 CMP #1 \ I f i t di dn' t ex i st , j ump t o t he
 2210 BNE gi veup \ def aul t er r or handt er .
 2215
 2220 LDA st ack \ Save t he BASI C STACK poi nt er i n
 2225 STA i nt a \ I nt A, and move t he STACK poi nt er
 2230 SEC \ dam r eady t o l oad t he over l ay,
 2235 SBC pbl ock+&0A \ by subt r act i ng t he l engt h of t he
 2240 STA st ack \ f i t e f r om i t . The f i t e l engt h
 2245 STA pbl ock+2 \ i s r et ur ned by OSFI LE 5 i n
 2250 \ pbl ock+&A and pbl ock+&B.
 2255 LDA st ack+1 \
 2260 STA i nt a+1 \ A copy of t he new st ack poi nt er
 2265 SBC pbl ock+&0B \ i s l oaded i nt o pbl ock+2 and
 2270 STA st ack+1 \ pbl ock+3, t o t el l OSFI LE &FF
 2275 STA pbl ock+3 \ wher e t o l oad t he f i l e uhen i t
 2277 \ i s cal l ed.
 2280 BCC ospace \ I f t he STACK wr apped r ound,
 2282 \ gi ve an er r or .
 2285
 2290 JSR pushi \ Push t he ol d STACK poi nt er on
 2292 \ t he STACK.
 2295
 2300 LDA #0 \ Set t he " addr " f l ag f or OSFI LE t o
 2305 STA pbl ock+6 \ l oad t he f i l e at t he gi ven addr
 2310
 2315 LDX #pbl ock MOD &100 \ Cal l OSFI LE t o l oad
 2320 LDY #pbl ock DI V &100 \ t he over l ay f i l e i nt o
 2325 LDA #&FF \ t he space al l ocat ed
 2330 JSR osf i l e \ on t he STACK.
 2335
 2340 LDA st ack \ Set t he base of PTRA t o poi nt t o
 2345 CLC \ t he f i r s t char act er i n t he BASI C
 2350 ADC #8 \ f i l e (4 up t o mi ss over I nt A,
 2355 STA &B \ and anot her 4 up t o mi ss t he
 2360 LDA st ack+1 \ &0D, l i ne number , and l engt h
 2365 ADC #0 \ byt e as bef or e) .
 2370 STA &C
 2375
 2380 LDA f i l nam \ Set t he FNI PROC i dent i f i er byt e
 2385 STA &1FF \ on t he st ack t o a " P" or " F"
 2390
 2395 JMP pr ef nd \ Jump i nt o t he FN/ PROC handl er .
 2990
 3000 . pbl ock \ OSFI LE par amet er bt ock
 3005 EQUW f i l nam

137

 3010 EQUD 0
 3015 EQUD 0
 3020 EQUD 0
 3025 EQUD 0
 3030 EQUB 0
 3032
 3035 . f i l nam \ Fi l ename ar ea (max 9 char act er s)
 3040 EQUS " 123456789"
 3045 EQUB &0D
 3990
 3992 \ * * No FN er r or * *
 4000 . nof n
 4005 LDA &1FF \ I f t he i t em on t he st ack was not
 4010 CMP #ASC" F" \ Lef t by t he over t ay r out i ne,
 4015 BNE j gi vup \ t her e i sn' t a FN on t he STACK.
 4017
 4020 CPX #&F5 \ I f t he 6502 st ack poi nt er wasn' t
 4025 BNE j gi vup \ &F5, we' r e not i n a FN.
 4027
 4030 JSR get nsa \ Get t he val ue of t he FN f ol l cwi ng
 4035 JSR chksdb \ t he " =" , check end of st at ement ,
 4040 JMP dor et \ and j ump t o do t he FN r et ur n.
 4045
 4090 \
 4100 . j gi vup
 4105 JMP gi veup \ Jump t o t he ol d BRK handl er
 4110
 4990 \ * * No PROC er r or * *
 5000 . nopr oc
 5005 LDA &1FF \ I f t he i t em on t he st ack was not
 5010 CMP #ASC" P" \ l ef t by t he over l ay r out i ne,
 5015 BNE j gi vup \ t her e i sn' t a PROC on t he STACK.
 5020
 5025 CPX #&F5 \ I f t he 6502 st ack poi nt er wasn' t
 5030 BNE j gi vup \ &F5, wer e not i n a PROC.
 5032
 5035 JSR chksda \ Check end of st at ement af t er t he
 5036 \ " ENDPROC" .
 5037
 5040 . dor et
 5045 PLA \ Remove t he saved A and Y f r om t he
 5050 PLA \ 6502 st ack.
 5055
 5060 PLA \ Remove t he RTI i nf or mat i on f r om
 5065 PLA \ t he 6502 st ack
 5070 PLA
 5075
 5080 PLA \ Remove t he r et ur n addr t o t he
 5085 PLA \ FN/ PROC handt er .
 5090
 5095 PLA \ Rest or e PTRB
 5100 STA &1A

138

 5105 PLA
 5110 STA &19
 5115 PLA
 5120 STA &1B
 5125
 5130 PLA \If there were no parameters,
 5135 BEQ noparm \ don't restore any.
 5140
 5145 STA parms \Otherwise, restore the saved
 5150 .doparm \ vatue of each parameter by
 5155 JSR popi1 \ popping the variabte descriptor
 5160 JSR poppar \ block and vatue from the BASIC
 5165 DEC parms \ stack.
 5170 BNE doparm
 5175
 5180 .noparm
 5185 PLA \Restore PTRA
 5190 STA &C
 5195 PLA
 5200 STA 8B
 5205 PLA
 5210 STA &A
 5215
 5220 LDY #0 \Restore the BASIC stack pointer
 5225 LDA (stack),Y \ to the value it was before the
 5230 TAX \ FN or PROC was loaded onto it:
 5235 INY \ this had been pushed on the
 5240 LDA (stack),Y \ STACK when the file was loaded.
 5245 STX stack
 5250 STA stack+1
 5253
 5255
 5260 LDY #0 \Restore the 6502 stack from the
 5265 LDA (stack),Y \ BASIC STACK. The first byte
 5270 TAX \ gives the old value of the 6502
 5275 TXS \ S register, the rest of the
 5280 .txstk \ bytes are the actual stack
 5285 INY \ contents.
 5290 INX
 5295 LDA (stack),Y
 5300 STA &100,X
 5305 CPX #&FF
 5310 BNE txstk
 5315
 5320 TYA \Move the STACK pointer up to
 5325 ADC stack \ remove the 6502 stack contents
 5330 STA stack \ from it.
 5335 BCC stkok
 5340 INC stack+1
 5345 .stkok
 5347
 5350 LDA &27 \Set the 6502 flags according to
 5352 \ &27 (in case we're in a FN).

139

 5253
 5355 RTS \Exit
 9000]
 9010 NEXT
 9020 @%=0
 9030 PRINT'"Code length =&"~P%-start%
 9040
 9045 REM *** Link new routine in to BRK vector ***
 9050 IF newbrk=oldbrk PRINT"Already set up":END
 9060 brkv?0 = newbrk MOD &100
 9070 brkv?1 = newbrk DIV &100
 9075 END
 9080
 9500 REM *** Set up ROM entry points, allwing for ***
 9510 REM *** BASIC1 and BASIC2 ***
 9520 DEFPROCsetup
 9530 IF ?&8015=ASC"1" THEN PROCset1 ELSE PROCset2
 9540 ENDPROC
 9550
 9600 REM *** Set up BASIC1 entry points ***
 9610 DEFPROCset1
 9615 prefnd = &B223 :REM Return to FNIPROC handter
 9620 pushi = &BDAC :REM Push IntA on the BASIC STACK
 9625 popi1 = &BE23 :REM Pop &37-&3A from the STACK
 9630 poppar = &8C5B :REM Pop parameter vatue from STACK
 9635 getnsa = &9AF7 :REM Get <numeric> or <string>
 9640 chksda = &9810 :REM Check end of statement (PTRA)
 9645 chksdb = &980B :REM Check end of statement (PTRB)
 9650 ENDPROC
 9670
 9800 REM *** Set up BASIC2 entry points ***
 9810 DEFPROCset2
 9815 prefnd = &B1F4 :REM Return to FNIPROC handter
 9820 pushi = &BD94 :REM Push IntA on the BASIC STACK
 9825 popi1 = &BE0B :REM Pop &37-&3A from the STACK
 9830 poppar = &8CC1 :REM Pop parameter vatue from STACK
 9835 getnsa = &9B1D :REM Get <numeric> or <string>
 9840 chksda = &9857 :REM Check end of statement (PTRA)
 9845 chksdb = &9852 :REM Check end of statement (PTRB)
 9850 ENDPROC

The general operation of the routine is as follows:

1 It creates a filename using the name of the FN or PROC,
which is left 1 byte after (&37). If it is a FN, ‘F.’ is put on
the front: otherwise ‘P.’ is put on the front.

2 OSFILE is called to find the length of the overlay file, and
the BASIC STACK is moved down by a corresponding
amount. The old value of the STACK pointer is pushed
onto the STACK so that it can be restored to its original
value afterwards. This action also checks that the STACK

140

has not gone below the level of the HEAP (and produces a
‘No room’ error if it has).

3 OSFILE is called again, but this time to load the file into
the space created for it on the STACK.

4 A ‘P’ or an ‘F’ is put in the token slot on the 6502 stack at
&1FF. This will cause a ‘No FN’ or ‘No PROC’ error when
the FN or PROC exits, so that the STACK can be restored,
removing the overlayed file.

5 PTRA is pointed to the first character of the overlay and a
JMP is made to continue with the FN/PROC handler.

When a ‘No FN’ or ‘No PROC’ error is generated on the return
from the overlayed call (caused by the substitution of the call type
identifier token at stage 4) the routine must not only do the job
normally performed by end of the FN/PROC handler, but also
remove the overlayed file from the BASIC STACK.

The action performed when this happens is as follows:

1 If it is the exit from a FN, the value is evaluated, and a
check is made for the end of the statement. If it is the exit
from a PROC, the end of statement chack only is made.
These actions were not performed by the FN or PROC
return statements before the error was generated.

2 The return address to the FN/PROC handler is pulled from
the stack. The rest of this routine will do its job instead.

3 PTRB is restored from the stack.

4 The parameter values, pushed on the BASIC STACK when
the FN/PROC call was made, are restored.

5 PTRA is restored from the stack.

6 The BASIC STACK, which is now in the same state which
it was just after the overlay file was loaded, is restored to
its previous value (which was pushed onto the STACK by
the overlaying routine).

7 The 6502 stack is restored from the BASIC STACK.

141

8 The flags are set according to the byte in &27. If we are
returning from a PROC, this has no effect; but if we are
returning from a FN, the 6502 flags need to reflect the type
of the value of the FN.

9 The routine exits, either to the PROC statement handler, or
to the code which asked for the FN value.

For more details on the general operation of PROCs and FNs, see
section 5.3. For more details on the ‘No FN’ (error number 7) and
‘No PROC’ (error number 13) see chapter 11.

This overlay routine is very much better than the one in section
8.2. However, there are still improvements which could be made
to it. For example, if a recursive FN or PROC is used, it will load
m another new version each time a call is made. Perhaps a linked
list of overlayed files could be used to get round this.

Another way of overlaying may be to shift the STACK down
bodily, and load the file between HIMEM and the bottom of the
screen. A file loaded in this way could be left in memory until a
‘No room’ error was generated, and then it could be removed
(providing it wasn’t being executed at the time). In fact, there are
many alternatives and improvements which can be made to this
general idea.

142

