
4 Expression Evaluation
One of the major sections of the BASIC interpreter is the
expression evaluator. Virtually every statement uses it to get the
number or numbers that it is going to work with. For example the
‘HIMEM’ statement uses it to find the new value that HIMEM is
to be set to.

4.1 Operator precedence

When expressions are to be evaluated, some operators take
precedence over others. For example, multiplication is always
done before addition, unless the addition is surrounded by
brackets. This makes expression evaluation somewhat more
complex than it would otherwise be, as you can’t just scan along
the line, doing every operation as you come across it.

In fact, many old electronic calculators did just scan along the line
like this. If you pressed:

2 + 3 * 5 =

you would get the answer ‘25’ . This is not particularly satisfactory
for an expression evaluator in BASIC, because if ‘2 + 3 * 5’
appears as an expression, it is assumed that the multiplication will
be done first, giving the answer ‘17’ . Somehow, BASIC must
identify that the addition must be done after the multiplication,
save the ‘2’ while the ‘3’ and ‘5’ are being multiplied together,
and then add the ‘2’ on afterwards.

4.2 Top-down analysis

To get these operator priorities right, BASIC uses a method called
top-down analysis, where the expression evaluation is divided up
into several levels. The top levels deal with the low priority
operators, and these call the bottom levels (which deal with the
high priority operators) for the items to operate on. This means
that the high priority operations will be performed first, by the
bottom levels of the expression evaluator, before the results of
those operations are passed back to the top levels, for the low
priority operations to be performed.

63

Taking the example of ‘2 + 3 * 5’ again, the top level would deal
with the addition, and call the bottom level to get the values for it
to add. The bottom level would deal with the multiplication,
before passing the result back to the top level.

If we call the top level <expression>, and the bottom level
<term>, we can see how this would operate:

1 <expression> calls <term> to get the first item to
operate on.

2 <term> gets the number ‘2’ from the line.

3 There is not a ‘ * ’ or a ‘ /’ after the ‘2’, so <term> passes ‘2’
up to <expression>.

4 <expression> finds that there is a ‘+’ after the item
that <term> had evaluated, so it saves the ‘2’ and calls
<term> again to get the item to add to it.

5 <term> gets the number ‘3’ from the line.

6 There is a ‘ * ’ following the ‘3’, so <term> saves the ‘3’
and gets the number ‘5’ from the line.

7 The ‘5’ is multiplied by the saved ‘3’, to give the result
‘15’

8 There is not a ‘ * ’ or a ‘ /’ after the last number just read (the
‘5’), so <term> passes the ‘15’ up to <expression>.

9 <expression> retrieves the ‘2’ that it had saved at stage 4,
and adds it to the ‘15’ passed up from <term>, giving the
result ‘17’.

10 There is not a ‘+’ or a ‘−’ after the item that <term> had
evaluated (the ‘3*5’), so it passes the ‘17’ up as the result
of the <expression>.

The levels in this simple expression evaluator can be expressed
using Backus-Naur Form, or BNF (see appendix A). It is
expressed as follows:

<expression> ::= <term> {+|- <term>}
<term> ::= <number> {*|/ <number>}

64

::= means ‘ is defined as’

{} surround items which can appear zero or more times

| separates alternatives

So an <expression> can consist of just a <term> or any
number of <term>s with each one separated by a ‘+’ or a ‘−’.
Similarly a <term> can be just a <number>, or it can be any
number of <number>s with each one separated by a ‘ * ’ or a ‘ /’ .

In the example ‘2 + 3 * 5’:

the <expression> is ‘2 + 3 * 5’

the first <term> is ‘2’
the second <term> is ‘3 * 5’

The BASIC program below shows a simple expression evaluator
with the <expression>, <term>, and <number> levels .

FNexpr evaluates an <expression>, calling FNterm to get the
<term>, and FNnumber is used to get the <number> . Spaces
are not allowed in expressions evaluated by this program.

The program uses one character look-ahead, where the next
character is always kept in the variable ‘char$’. This allows the
character not recognised by FNterm, say, to be passed to FNexpr
in case it was a ‘+’ or a ‘− ’. If this were not done,
<expression> would have to re-read the character from the
line, before testing it for one of its operators. If a character is
recognised, the next one must be read into char$ before another
routine is called (for example, on line 1030).

 5 REM Simple expression evatuator to demonstrate the
 10 REM "top-down" method of expression analysis
 15 REM (spaces not allowed in expressions)
 20 REM
 90 REM *** Main loop ***
 100 REPEAT
 110 INPUT"EXPRESSION :"line$
 120 lptr = 1
 130 PRINT"VALUE IS :";FNexpr
 140 UNTIL FALSE

65

 990
 1000 DEF FNexpr :REM Get <expression> from line
 1005 PROCgetchar :REM Get char into char$
 1010 value = FNterm :REM Call <term> to get first item
 1015 REPEAT
 1030 IF char$="+" THEN PROCgetchar:value =value+FNterm
 1040 IF char$="-" THEN PROCgetchar:value =value-FNterm
 1045 UNTIL char$<>"+" AND char$<>"-"
 1050 =value :REM Final result
 2000 DEF FNterm :REM Get <term> from line
 2010 value = FNnumber :REM Call <number> to get first item
 2025 REPEAT
 2030 IF char$="*" THEN PROCgetchar:value =value*FNnumber
 2040 IF char$="/" THEN PROCgetchar:value =value/FNnumber
 2042 UNTIL char$<>"*" AND char$<>"|"
 2050 =value :REM Result of <term>
 3000 DEF FNnumber :REM Read in <number> from line
 3020 IF char$>"9" OR char$<"0" PRINT "NO NUMBER":STOP
 3035 number = 0
 3040 REPEAT
 3050 digit = ASC(char$)-&30
 3060 number = number*10 + digit
 3070 PROCgetchar
 3090 UNTIL char$>"9" OR char$<"0"
 3100 = number :REM Value of <number>
 4000 DEF PROCgetchar :REM Get character from line
 4030 char$ = MID$(line$,lptr,1)
 4040 lptr = lptr+1
 4060 ENDPROC

The expression evaluator in BASIC has eight levels, rather than
Just the 2 in the simple model. The levels, and their associated
operators, are as follows (lowest priority at the top): Operators

Level Operators

<testable-condition> OR, EOR

<logical-expression> AND

<relnl-expression> =, <, <=, <>, >, >=

<expression> +, -

<term> *, /, MOD, DIV

<sub-term> ^

<factor> +, - (unary operatoes)
<primitive>

66

Note that <testable-condition> is the same as
<numeric> (see chapter 33 of the BBC User Guide, or chapter
25 of the Electron User Guide). Numbers, functions and variables
appear at the <primitive> level. A <primitive> could
also be a <testable-condition> in brackets, causing the
expression evaluator to recurse down from the top level again.
For a more complete definition of the expression evaluator, and
the rest of BASIC, see appendix A.

Most functions enter the expression evaluator at the <factor>
level rather than at the top; this means that variables or numbers
can be given to a function without brackets, but an
<expression> must be included in (round) brackets. So, for
example, the expression ‘SIN2+5’ will be evaluated as
‘(SIN2)+5’.

When finished, each level of the expression evaluator leaves its
result in IntA, FPA, or StrA (depending on the type), with the type
in the 6502 accumulator. The type bytes are:

&00 real (floating point) number
&40 integer
&FF string

Note that these are not the same as the variable types described in
section 3.1.

Each level can check this type byte returned to it by a lower level,
and do any conversions necessary (or generate an error if a type
mismatch has occurred). The particular ROM routines in section
10.4 give more details of the use of these type numbers.

No check is made to see if the expression evaluator is running out
of 6502 stack (due to all the subroutines it is calling). This means,
for example, that if more that 17 levels of nested brackets are
used, the stack will overflow, and the expression will not be
evaluated properly (it may even generate an obscure error). In
practice, this number of brackets is hardly ever used, so the
problem never arises.

67

