
3 Program Control
Mechanisms
Normally in a BASIC program, the statements are executed one
after the other, working through the program. However, several
statements are provided which allow this normal flow of control
of the program to be changed, either by jumping to another part of
the program, or by conditionally executing a series of statements.

BASIC keeps a text pointer, PTRA, which it uses to point to the
statement currently being executed, in a similary way to the
program counter (PC) in the 6502 (see section 2.2.5). Whenever
any of these program control statements, like GOTO, change the
flow of control of the program, this pointer is changed to point to
the start of the new statement where execution of the program is
to continue. When the interpreter continues, it will then start
reading in from the statement pointed to by PTRA.

This section details the program control statements in BASIC, and
describes the mechanisms that they use to operate.

5.1 GOTO

This is the simplest of the program control statements in BASIC.
It just passes control from one part of the program to another.

The action of the BASIC GOTO statement is:

1 Get the line number or <numeric> following the GOSUB
token, and set PTRA to point to the end of the statement.

2 Search the program to find a line with that line number; if
it is not found, generate a ‘No such line’ error (error
number 41).

3 If the line was found, then point the text pointer PTRA at
the start of the first statement on that line. When the
BASIC interpreter continues, it will execute statements
from there onwards.

68

5.2 GOSUB...RETURN

The GOSUB statment is similar to the GOTO statement in that it
passes control to another part of the program; but it also allows
control to RETURN to the statement after the GOSUB statement
when the subroutine has finished.

The GOSUB statement has to remember where to RETURN to
after the end of the subroutine. A ‘GOSUB stack’ is used to hold
the location of the statement following the GOSUB statement, so
that the RETURN statement on the end of the subroutine can pass
control back to that part of the program. The format of the
GOSUB stack is:

&05CC+GSP LSB of return address
&05E6+GSP MSB of return address
&25 GOSUB stack pointer (GSP)

The action of the GOSUB statement is:

1 Get the line number or <numeric> following the GOTO
token.

2 Search the program from the beginning to find a line with
that line number; if it is not found, generate a ‘No such
line’ error (error number 41).

3 If the GOSUB stack pointer is more than 25, there are
already 26 return addresses (0 to 25) on the stack. In this
case, generate a ‘Too many GOSUBs’ error (error number
37), to prevent the GOSUB stack from overflowing (it only
has room for 26 entries).

4 If we get here, the GOSUB stack is not full, so push the
base of PTRA, which now points to the end of the GOSUB
statement, on to the the GOSUB stack. Increment the
GOSUB stack pointer (GSP), ready for the next one.

5 Point the text pointer PTRA at the start of the first
statement on the line found. When the BASIC interpreter
continues, it will execute statements from there onwards.

69

When a RETURN statement is encountered, it has to retrieve the
old value of PTRA, so that it can go back to the statement after
the GOSUB which called it.

The action of the RETURN statement is:

1 If the GOSUB stack pointer is 0, the GOSUB stack is
empty, and there is no address to return to. In this case,
generate the ‘No GOSUB’ error (error number 38).

2 Pop the return address from the GOSUB stack,
decrementing the GOSUB stack pointer to remove it. This
return address is then put into PTRA. When the interpreter
continues, it will execute statements from there onwards
(i.e. starting with the statement after the GOSUB which
called the subroutine).

5.3 PROCs and FNs

The ability to call PROCs and FNs is a very powerful feature of
BBC BASIC, although as far as the interpreter is concerned it is
just a more complex version of the GOSUB statement. With
PROC and FN calls, not only does the return address have to be
saved, so that control can be returned when the call is finished,
but the values of parameters and local variables have to be saved
so that they can be restored also.

Once a FN or PROChas been called, its name and location is
added to a linked list on the BASIC HEAP, one list for FNs, and
one for PROCs. This means that once a FN or PROC has been
used, BASIC does not have to search through the whole of the
program to find it again (like it does with the line numbers given
to a GOTO or GOSUB statement). See section 3.1 for the format
of these liked lists.

After the FN or POC has been found, any parameters which need
to be passed are handled. In the description below formal
parameter refers to the parameter used in the FN or PROC
definition; and actual parameter refers to the parameter which is
passed to it.

70

Although PROC is a statement and FN is a function (and hence
returns a value), the mechanism which is used when they are
called is very similar. To deal with both of them, there is a
standard FN/PROC handler which is called by both the FN
function and the PROC statement.

The PROC statement has to copy PTRA into PTRB before calling
this handler, and then use PTRB (rather than PTRA) to check that
it is at the end of the statement when the call has returned. The
FN/PROC handler must not alter PTRA, because this is not used
in the expression evaluator (and hence the FN function must not
change it). The FN function does not need to do any of this (as
PTRB will be set up correctly for it), and the FN/PROC handler
returns directly to the code which called the FN when it has
finished.

The action of the FNIPROC handler is:

1 Save the contents of the 6502 stack on the BASIC stack
(with a byte to give the old 6502 stack pointer), and reset
the 6502 stack pointer to &1FF. The 6502 stack works
downwards in page 1, and the stack pointer points to the
next available byte, so it is now empty (fig 5.1 (b)). The
6502 stack is not very big − only 256 bytes − and saving it
in this manner allows deep recursion of FNs and PROCs
without overflowing the small 6502 stack.

HIMEM

&1FF
6502 STACK

EMPTY

BASIC
STACK

6502 STACK

OLD
6502 STACK

OLD
6502 STACK

SAVED
PARAMETERS

FN/PROC TOKEN

PTRA

NUMBER OF
PARAMETERS

PTRB

(a) (b) (c)

Figure 5.1 − FN/PROC stack use.

71

2 Save the FN or PROC token as the first item on the 6502
stack, at &1FF. The FN token is &A4, and the PROC token
is &F2. This allows the ENDPROC or FN return statement
(‘= ’) to check that it is inside the correct type of call
before it exits.

3 Save PTRA on the 6502 stack.

4 Scan the name of the FN/PROC call. If there is not one
immediately following the FN or PROC token, generate a
‘Bad call’ error (error number 30).

5 Search for the name of the FN or PROC in the list of
already used calls. If it is found, don’t bother to look
through the program for it.

6 If the FN or PROC was not in the list, look through the
program from the beginning until a DEF FN or a DEF
PROC is found with the correct type and name. This search
uses PTRA to look through the program (which is why it
was saved at stage 3). If it is found, add it to the list;
otherwise, restore the base of PTRA from the 6502 stack
(this will tell the error handler on which line the error
occurred), and generate a ‘No such FN/PROC’ error.

7 Set PTRA to point to the location found by the search (or
found in the list). This will point to the first character
following the name after the DEF FN or DEF PROC. If
there are any parameters, this character will be an opening
bracket, ‘(’.

8 If there are any parameters in the definition, check that they
match with those in the call. If they do, push the value and
the variable descriptor block of each formal parameter on
the BASIC STACK (i.e. the one in the definition), and
assign the new value to it given by the value of the actual
parameter in the call. Saving the value and variable
descriptor block allows the formal parameters to be
restored to their original values after the call has returned.
If the parameters do not match, restore the base of PTRA
from the 6502 stack (for the error handler), and generate an
‘Arguments’ error (error number 31).

72

9 Push the number of parameters on the 6502 stack, so that
the correct number can be restored when returning from the
call. If there were no parameters, this will be 0.

10 Save PTRB on the 6502 stack. This points to the next part
of the line to be interpreted, and will need to be restored
after the call has returned. The stacks are now in the state
shown in fig 5.1(c).

11 Start off the call by executing a JSR to the statement
interpreter, which will start executing statements from
PTRA. This leaves this return address on the 6502 stack
ready for a FN return statement or an ENDPROC statement
(all other statements JMP back to the statement interpreter
when they have finished; only the ENDPROC and FN
return statements finish by executing an RTS).

12 When we get here, the FN or PROC has finished. If it was
a FN, then the result type will be in &27, and the value will
be in IntA, StrA, or FPA as appropriate.

13 Restore PTRB from the 6502 stack. This points to the place
in the line where interpreting should continue.

14 Pull the number of parameters from the 6502 stack. If there
were any, restore the old value of each one by pulling its
variable descriptor block and value from the BASIC
STACK.

15 Restore PTRA from the 6502 stack. The only thing left
now on the stack, is the FN or PROC token, which was
used to tell the ENDPROC or FN return statement which
type of call it was in.

16 Recover the old 6502 stack from the BASIC stack. The
stacks are now back to the state that they were when the
FN/PROC handler was called (fig 5.1(a)).

17 Retrieve the type of the result from &27 into A, in case this
is a FN. If it is a PROC, this stage is not needed, but does
no harm.

73

18 Execute an RTS to return to the code which called the FN/
PROC caller. In the case of a FN, this returns to the
expression evaluator, with the type of the result of the FN
in A, and the result itself in IntA, FPA, or StrA. In the case
of a PROC, this returns to the PROC statement handler,
which sets PTRA to point to the next statement (using
PTRB to find out where the FN/PROC handler had got up
to), and jumps back to the statement interpreter to continue
execution after the PROC.

By trapping the ‘No such FN/PROC’ error generated if the DEF
FN or DEF PROC is not found in stage 6 above, procedures and
functions can be overlayed from disc (or tape, but it’s not so
useful). There is more on overlaying FNs and PROCs in chapter
8.

The LOCAL statement inside a FN or PROC has to save the old
value of variables in a similar way to parameters passed to the
call. Each variable in the LOCAL statement has its value pushed
on the BASIC STACK, followed by its variable descriptor block;
and the ‘Number of parameters’ byte on the 6502 stack is
incremented. The current value of the variable is then set to zero.
Saving it in this manner means that its old value will be restored
as if it was just another parameter, when the call returns.

The ENDPROC statement and the ‘=’ (FN return) statement check
the state of the stack before they return (just returning could have
disastrous results if they didn’t). If they find that there are not at
least 4 items on the 6502 stack (there won’t be any if it isn’t in a
PROC or a FN), they generate a ‘No FN’ or ‘No PROC’ error.
Also, if the token at &1FF (the bottom of the stack) does not
match (i.e. a PROC token for ENDPROC, or a FN token for the
FN return statement), this error is also generated. Otherwise, if
everything is OK, then they execute an RTS (after evaluating the
<numeric> in the case of the FN return statement) to return to the
FN/PROC handler at stage 12 above.

When executing statements inside a FN or PROC, the 6502 S
register contains &F5 (i.e. the next available byte on the stack is
at &1F5), and the state of the stack is as follows:

74

&1F6 RTS addr for FN/PROC handler 2 bytes
&1E8 PTRB base MSB 1 byte
&1F9 PTRB base LSB 1 byte
&1FA PTRB offset 1 byte
&1FB number of parameters 1 byte
&1FC PTRA base MSB 1 byte
&1FD PTRA base LSB 1 byte
&1FE PTRA offset 1 byte
&1FF Bottom: FN/PROC token (&A4/&F2) 1 byte

Note that when the FN/PROC handler gets back at stage 12, the
RTS address has been removed from the top.

5.4 IF...THEN...ELSE

This construction allows the statements after the THEN or the
ELSE parts to be executed conditionally, depending on the value
of the <testable-condition> found after the IF part.

The action of the IF satement is:

1 Evaluate the <testable-condition> following the IF token
(i.e. the <numeric> after the IF token: they are just the
same).

2 If the <testable-condition> evaluated to be 0 (i.e. false),
then scan through the line until an ELSE token or the end
of the line is found. If no ELSE was found on the line, then
continue execution on the next line. Otherwise, set PTRA
to point to the character after the ELSE token, and continue
at stage 4.

3 If the <testable-condition> evaluated to be anything other
than 0 (i.e. true), check for a THEN token. If there isn’t
one, JMP to the statement interpreter to continue executing
the rest of the line after the <numeric> (you don’t have to
use a THEN). If there is a THEN token, set PTRA to point
to the character after it, and continue at stage 4.

4 Check for a (tokenised) line number following the THEN
or ELSE; if there is one, execute a GOTO to that line
number. Otherwise, JMP to the statement interpreter to
continue executing the rest of the line.

75

Note that once the IF statement has decided that the THEN
section is to be executed, the IF statement does not prevent it from
‘falling into’ the ELSE clause; this is done by the general
statement interpreter itself. If it discovers that there is an ELSE
token on the end of the statement it has just executed, it will just
skip the rest of the line instead (as if it was a REM statement).
This means that lines like:

PRINT "HELLO" ELSE MISTAKE

will not give an error, but the ELSE clause will never be executed.

5.5. REPEAT...UNTIL

This is the simplest of BASIC’s two loop structures, the other
being the FOR. ..NEXT loop. Using this loop, control is
repeatedly passed back to the statements following the REPEAT
until the UNTIL clause is satisfied.

This loop structure uses a stack in page 5 to save the location of
the start of the statement after the REPFAT, so that the UNTIL
statement knows where to pass control back to if it is not satisfied.
The format of the REPEAT stack is

&5A4+RSP LSB of repeat address
&5B8+RSP MSB of repeat address

&24 REPEAT stack pointer (RSP)

The action of the REPEAT statement is:

1 Check that the REPEAT stack pointer (RSP) is less than 20
(&14). If it isn’t, the REPEAT stack is full, so generate a
‘Too many REPEATs’ error (error number 44).

2 PTRA points to the character after the REPEAT token, so
push that address on the REPEAT stack, incrementing the
REPEAT stack pointer.

3 JMP to the statement interpreter to continue execution with
the statements after the REPEAT token.

76

The action of the UNTIL statement is:

1 Evaluate the <testable-condition> following the UNTIL
token, checking that it is at the end of the statement (if it
isn’t at the end of the statement, a ‘Syntax error’ is
generated).

2 Check that the REPEAT stack is not empty (i.e. the
REPEAT stack pointer is not 0). If it is, generate a ‘No
REPEAT’ error (error number 43).

3 If the <testable-expression> evaluated in stage 1 was zero,
get the address of the statement following the REPEAT
from the REPEAT stack, leaving it on there for the next
time this UNTIL statement is encountered. Set PTRA to
this address, and JMP to the statement interpreter to
continue execution at the statement after the REPEAT.

4 If the <testable-expression> was not zero, remove the top
entry from the REPEAT stack by decrementing the
REPEAT stack pointer, and JMP to the statement intepreter
to continue execution with the statements following the
UNTIL statement.

5.6 FOR...NEXT

This loop structure allows a series of statements to be performed a
set number of times, with a different value of the control variable
each time. This is a more complex loop than the REPEAT ...
UNTIL loop, as far as the interpreter is concerned, because it
takes more time to set up, and there is more to do every time it
goes round the loop.

This loop has to save the address and type of the control variable,
the STEP size, the TO limit, and the address of the statement after
the FOR statement. For this, it has a stack in page 5 in the
following format:

77

&500−50E First 15-byte FOR entry
&50F−51F etc.

&587−595 Tenth 15-byte FOR entry

&26 FOR stack pointer (FSP) (multiple of 15)

The FOR stack pointer is an offset from &500 to the next
available 15-byte FOR slot. The format of each 15-byte entry is:

&00 Address of control variable 2 bytes
&02 Type of control variable 1 byte
&03 STEP size 5 bytes
&08 TO limit 5 bytes
&0D Address after FOR statement 2 bytes

If the control variable is integer, it only uses 4 of the 5 bytes
allocated for the STEP size and TO limit.

The action of the FOR statement is:

1 Get the variable following the FOR token; this is going to
be the ‘control variable’ . If it is invalid, or a string
variable, generate a ‘FOR variable’ error (error number 34).

2 Check for an equals sign (‘=’) following the variable; if
there isn’t one, generate a ‘Mistake’ error (error number 4).

3 Evaluate the <numeric> after the equals sign, and set the
value of the control variable to this.

4 If the FOR stack pointer is &96 (150) or more, there are
already 10 FOR loops in operation and the FOR stack is
full. If this is the case, generate a ‘Too many FORs’ error
(error number 35).

5 Save the address and type of the variable (i.e. its variable
descriptor block) on the FOR stack.

6 If the next character on the line is a TO token, evaluate the
<numeric> after it (making sure it is the same type − real or
integer − as the control variable), and save that on the FOR

78

stack. If it isn’t a TO token, generate a ‘No TO’ error (error
number 36).

7 If the next character is a STEP token, get the <numeric>
following that to use as the step size (making sure it is of
the correct type again). If it isn’t a STEP token, use 1 as the
STEP size instead.

8 Check that we are now at the end of the statement, and set
PTRA to point to the next statement.

9 Save PTRA on the FOR stack, to tell NEXT where to
return to, and move the FOR stack pointer up by 15 bytes
to cover this new FOR entry.

10 Finally, JMP to the statement interpreter to continue
execution with the statements after the FOR statement.

The action of the NEXT statement is:

1 Look for a varable name after the NEXT token. If there is
one, get its variable descriptor block and look down the
FOR stack, throwing away the top entry, until the same
variable is found. If the FOR stack was empty, generate a
‘No FOR’ error (error number 32); if the FOR stack wasn’t
empty, but a FOR loop could not be found with the same
control variable, then generate a ‘Can’t match FOR’ error
(error number 33).

2 If there was no variable after the NEXT, check that the
FOR stack is not empty (generate a ‘No FOR’ error if it is
empty).

3 Get the type and address of the control variable, so that real
and integer loop variables can be handled separately. Note,
however, that NEXT does not differentiate between single-
byte and 4-byte integers (although FOR does), so a single
byte variable like ‘?A%’ may give unpredictable results if
used as a control variable.

4 Add the STEP size to the control variable.

79

5 If the new value of the control variable is inside the TO
limit (less than or equal if STEP is positive; greater than or
equal if STEP is negative) set PTRA to the address of the
statement after the FOR statement (from the FOR stack),
and JMP to the statement interpreter to continue execution
with those statements.

6 If the new value of the control variable is outside the TO
limit, move the FOR stack pointer down by 15 bytes to
remove the top entry.

7 Set PTRA to point to the next character of the NEXT
statement. If it is a comma (‘,’), go back to stage 1 as if it
was a new NEXT statement (i.e. we have a multiple NEXT
statement). Otherwise, JMP to the statement interpreter to
continue execution with the statements following the
NEXT statement.

5.7 ON...GOTO/GOSUB

This program control statement allows control to be passed to
different parts of the program, depending on the value after the
ON.

The action of the ON statement is:

1 If the first chracter after the ON token is an ERROR token,
then go to the ON ERROR handler (section 5.8).

2 Evaluate the <numeric> following the ON token.

3 If the next character is not a GOTO or a GOSUB token,
generate an ‘ON syntax’ error (error number 39).

4 Save the GOTO or GOSUB token on the 6502 stack.

5 If the value of the <numeric> was less than zero or greater
than 255, give up trying to match it; otherwise, count along
the list of line numbers to try find the entry corresponding
to the ON control value. If the entry was found, pop the
GOTO or GOSUB token from the 6502 stack, and jump

80

into the GOTO or GOSUB routine (depending on the
token) to pass control to that line number.

6 If no match was made, remove the token from the 6502
stack, and look to see if there is an ELSE token on the line.
If there is, handle it as if it was an ELSE in an IF statement
(i.e. if there is a line number after the ELSE token, GOTO
it, otherwise continue execution with the statements after
the ELSE token).

7 If there is no ELSE token on the line, generate an ‘ON
range’ error (error number 40).

In BASIC1, the token is not popped from the 6502 stack at stage
6; so if an ELSE clause is found and executed, the 6502 stack
state has been messed up. If the ON statement was inside a FN or
PROC (which keeps its return address on the 6502 stack), this will
cause BASIC to crash on the FN or PROC return. The ON
statement works correctly without the ELSE clause; and this bug
has been cured in BASIC2 anyway.

5.8 ON ERROR

This statement does not directly change control of the program
execution like the other program control mechanisms, but it does
still involve using the pointers in a similar way. It changes the
BASIC statements that the error handler executes when an error is
generated.

BASIC keeps an ON ERROR pointer in page zero at &16,&17.
This points to the start of a section of BASIC which will be
executed when an error occurrs.

In BASIC1 the default error handler (stored as 2 lines in the ROM
starting at &B443) is:

 REPORT: I F ERL<>0 PRI NT" at l i ne " ; ERL;
 0 PRI NT : END

In BASIC2 the default error handler (only 1 line at &B433) is:

REPORT: I F ERL PRI NT" at l i ne ” ; ERL: END ELSE PRI NT: END

81

The action of the ON ERROR statement is:

1: If the first character after the ERROR token is an OFF
token, set the ON ERROR pointer to point to the default
error handler, and JMP to the statement interpreter to
continue with the statements after the ON ERROR OFF
statement.

2: If the character was not an OFF token, then set PTRA to
point to the first character after the ON ERROR, and set
the ON ERROR pointer to point to this. This means that,
should an error occurr, these statements will be executed as
the error handler.

3: Finally, skip the rest of the line as if it was a REM
statement (we don’t want to execute the error handler yet),
and continue execution of the program on the next line.

82

