6 Assembling and
Disassembling
6.1 The Assembler

The built-in 6502 assembler in BASIC isavery useful tool,
allowing both large and small machine code routines to be written
easily. Being apart of BASIC itself, it isvery easy to use BASIC
variables and functions, conditional assembly (with some sections
of the assembly codein IF.THEN statements), or macros
(assembly sectionsin a GOSUB or FN/PROC).

The assembler iswritten very efficiently, and in total only
occupiesjust over 1K of the 16K BASIC ROM.

The assembler mnemonics in the ROM are stored in a compressed
format to save space. Only the least significant 5 bits of each

mnemonic character are used, so that the whole mnemonic can be
compressed into 15 bits of a 2-byte number. This also mearvs that
both upper case or lower case mnemonics will be recognised (or a
mixture of the two). Fig 6.1 shows how the characters are packed.

MNEMONIC CHARACTERS

FIRST SECOND THIRD

T)

MSB LSB

COMPRESSED FORMAT

Figure 6.1. — Mnemonic compression.

83

A further byteis used for each mnemonic, to hold the ‘ base value
of the opcode. For instructions which can only have one
addressing mode (such as the instructions which employ implied
or relative addressing), thisis the actual opcode used; for other
intructions, this base value is modified by the actual addressing
mode used.

The mnemonic and base opcode are stored as follows:

BASIC1 BASIC2

& 843B+M & 8450+M MSB mnemonic
& 8474+M & 848A+M LSB mnemonic
&84AD+M &84C4+M base opcode

where M is the mnemonic number. Table 6.1 shows the mnemonic
and base opcode value for each mnemonic number, as stored in
the ROM table. Note that the directives OPT and EQU are stored
the same as mnemonics, but they need no base opcode. The EQU
directiveis not implemented in BASIC1

By comparing this table with fig 6.2, it can be seen that the
mnemonics are grouped together with others which allow the
same addressing modes. The assembler has a different section of
machine code which is used for each of the different groups of
mnemonics, to decide which addressing modes to allow. Section
1.5 gives these mnemonic groups.

Table 6.1 — Assembler M nemonics

No. Mnemonic Base No. Mnemonic Base
&01 BRK &00 &OF RTI &40
&02 CLC &18 &10 RTS &60
&03 CLD &D8 &11 SEC &38
&04 CLI &58 &12 SED &F8
&05 CLV &B8 &13 SEI &78
&06 DEX &CA &14 TAX &AA
&07 DEY &88 &15 TAY &A8
&08 I NX &E8 &16 TSX &BA
&09 I NY &C8 &17 TXA &BA
&0A NOP &EA &18 TXS &9A
&0B PHA &48 &19 TYA &98
&0C PHP &08 &1A BCC &90
80D PLA &68 &1B BCS &B0
80E PLP &28 &1C BEQ &F0

No. Mnemonic Base No. Mnemonic Base

&1D BM &30 &2C ROR &66
&1E BNE &D0 &2D DEC &C6
&1F BPL &10 &2E I NC &E6
&20 BvVC &50 &2F CPX &EO
&21 BVS &70 &30 cPY &CO
&22 AND &1 &31 BIT &20
&23 EOR &41 &32 JWP &4C
&24 ORA &01 &33 JSR &20
&25 ADC &61 &34 LDX &A2
&26 CcwP &Cl1 &35 LDY &A0
&27 LDA &A1 &36 STA &81
&28 SBC &E1 &37 STX &86
&29 ASL &06 &38 STY &84
&2A LSR &46 &39 OoPT ---

&2B ROL &26 &3A EQU ---

LsD

o 0 1 2 3 4 5 6 7 8 9 A B c D E F
@
= | B8Rk | ORA ORA | ASL PHP | ORA | ASL ORA | ASL
0 | Implied | (IND, X) P zP Implied | IMM | Accum ABS | ABS o
17|26 23|25 13 2 |12 34 |36
BPL | ORA ORA | ASL cic | ora ORA | ASL
1 | Relative| (IND, Y) zP,x | zZP,X Implied | ABS, Y ABS, X | ABS, X 1
2 7|2 5 2 4|26 12 4 3 4|37
ISR | AND BT | AND | ROL PLP | AND | ROL BT | AND | ROL
2 | Absoluq (IND, X)| 7P 7P zp implied | IMM | Accum ABS | ABS | ABS 2
8 |2 6 23|23 |25 14 2 |1 2 34|34 |36
BMI [AND AND | ROL SEC | AND AND | ROL
3 | Relative| (IND), Y| zp, X | zp,X implied | ABS, Y ABS, X | ABS, X 3
| 2 5 24 |26 12 3 3 4|3 7
RTI | EOR EOR | LSR PHA | EOR | LSR P | EOR | LSR
4 | implied | (IND, X) 7P zp implied | IMM | Accum ABS | ABS | ABS 4
16|26 23|25 132 2 |12 33|34 |36
BVC | EOR EOR | LSR cu | Eor EOR | LSR
5 | Relative| (IND), Y| P, X | zP,X Implied | ABS, Y ABS, X | ABS, X 5
| 2 5 24|26 123 & 3 4|3 7
RTS | ADC ADC | ROR SED | ADC | ROR amp | ADC | ROR
6 | Implied | (IND, X) 7P zP Implied | IMM | Accum ABS | ABS | ABS 6
16|26 2 3 142 2 |12 35|34 (36
BVS | ADC ADC | ROR SEl | ADC ADC | ROR
7 | Relative| (IND), Y| zP,x | zP,X Implied | ABS, Y ABS, X | ABS, X 7
2 2|2 5 2 4|26 123 4 3 4|37
STA sty | sTA | sTX DEY XA STY | sTA | sTX
8 (IND, X) 7P 7P zp Implied Implied ABS | ABS | ABS 8
2 6 23|23 |23 12 12 3 4 |3 4 (34
BCC | STA STy | stA | sTx YA | sTA | TXs STA
9 | Relative| (IND), Y| px | zPx | zPY implied | ABS, Y | Implied ABS, X °
2 2+ 2 6 274 |24 |24 123 5|12 35
Loy DA | LDX oy | A | DX TAY | DA | TAX oy | A | Lox
A | MM | (ND,X)| MM zP zp zp implied | IMM | implied ABS | ABS | ABS A
2 2 | 2 2 2 3|23 |23 1202 2 |12 34 |3 4 (34
BCS | LDA Loy | oA | DX cv | LDA | Tsx LY | DA | LDX
B | Relative| (IND), Y| P, X | zP, X | zP,Y Implied | ABS, Y | Implied ABS, X | ABS, X | ABS,Y B
| 2 s 2 4 |2 4 |24 12) sl 3 4|3 s
cPy | cmp cPY | cMp | DEC INY | cMP | DEX cPY | cMP | DEC
c | MM | (IND, X)| P P zP Implied | IMM | Implied ABS | ABS | ABS c
2 2|26 2 3 |2 3 12 2 |1 2 3 4 |3 4|36
BNE | CMP cMP | DEC co | cmp cMP | DEC
D | Relative| (IND), Y| P X | ZP,X Implied | ABS, Y ABS, X | ABS, X D
2| 2 5 2 4 |25 12 4 3 4|37
cPX sBC CPX | sBC | INC INX | sBC | NOP cPX | SBC | INC
E | MM | (ND,X) 7P 7P zp implied | IMM | Implied ABS | ABS | ABS E
22|26 2 3 |2 2 12 2 |1 2 3 4|3 4 (36
BEQ | SBC seC | INC SED | SBC SBC | INC
F | Relative| (IND), Y| P, x| zp,X implied | ABS, Y ABS, X | ABS, X F
2 2 5 24 |26 12 |3 4 3 4|37
0 1 2 3 4 5 6 7 8 9 A B8 c) E F

*Add 1 to N if page boundary is crossed.
** Add 1 to N if branch occurs to same page.

— OP Code add 2 to N if branch occurs to different page.

— Addressing Mode
— Instruction Bytes; Machine Cycles

Figure 6.2 — 6502 op-code matrix.

85

6.2 The Disassembler

A disassembler is always useful: either for exploring the contents
of the ROMs in the machine, or for checking that the machine
code that you have just assembled is actually what you wanted
(especialy if its got lots of conditional assembly in it).

Most disassemblers take up quite alot of memory. For a start,
they usually use alarge table to decode the opcodes, with one
entry for each of the 256 possible I-byte numbers. Each entry of
the table contains 3 bytes of mnemonic characters, and a further
byte to give the addressing modes allowed with that particular
opcode. This means that the disassembler is 1K long already,
without any program to decode the instructions. Also, they are
usually written in BASIC, which makes them slow, and even
larger.

The disassembler described in this section uses the assembler
tablesin the ROM, and is written in machine code. When
assembled, it isless than 500 bytes long, and so will fit in any 2
spare pages of memory (for example, from &BO0O0 to & CFF, which
is otherwise used for the user defined characters and function

keys).

To use the disassembler, the resident integer variable D% is set to
point to the first instruction to be disassembled (similar to the use
of P% by the assembler). Typing ‘CALL start * will then
disassemble one instruction, and leave D% pointing to the next
one to be disassembled. If the variables have been re-set since the
program was assembled, ‘CALL &BO00, or wherever the start of it
IS, will have to be used instead. This could be built in as anew
statement, if required (see chapter 7).

To disassemble alength of code, aloop can be used:

REPEAT:CALL &BOO:UNTIL FALSE
or: REPEAT.CALL &BOO:UNTIL D%>&BFFF

(page mode will have to be used with aloop like this, asit
disassembles at about 150 bytesfisecond, depending on the screen
mode). In fact, a short program could be used to make the use of it
very flexible; but the main advantage of it is that other programs
can be loaded and run while the disassembler is still resident. If
the user defined characters or function keys need to be used while
the disassembler isin memory, PAGE could be moved up by 512

86

bytes, and it could be assembled there.

The 'EQU’ directive has not been used in the program, so that it
will work on either aBASICI or BASIC2 machine with no
modification. PROCsetup (lines 9000 on) checks which version of
BASIC is present, and sets up th.e correct ROM table labels
beforeit is assembled.

Operation of the disassembler

The disassembler compares the opcode which isto be
disassembl ed against the ‘ base opcode’ of each mnemonic, and
calculates the difference between them. If this difference can be
made up by the offset of a particular addressing mode, and this
addressing mode is allowed with the current mnemonic that it is
checking, the mnemonic and addressing mode of that particular
opcode have been found.

For example, if the value of the opcode was & 31, thiswould be
matched with the mnemonic ‘AND’ (base opcode & 21) and the
addressing mode * (IND), Y’ (offset & 10). The base opcodes for
each mnemonic are stored in the ROM tables, but the
disassembler must contain the tables of allowed addressing modes
for each group of instructions, and also the extent of each group.
These tables are not in the ROM as the assembler does the
addressing mode decoding in machine code rather than using tab
les.

The main opcode matching loop is from lines 1460—1760.
If the opcode is not matched with anything in the table, ‘ 2?7? is
printed out (for an unrecognised mnemonic). Note that * IMP

(IND)’ hasto be tested for separately (line 1190) asit does not fit
into the pattern with the rest of them.

87

The allowed addressing mode offsets for each group are:

Addressing Offset
mode-grp. 00O 04 08 0OC 10 14 18 1C

&00-&21 X
&22-&28 0
&29-&2C 1
&2D-&2E 1
&2F-&30 #
&31

&32-&33 3
&34-&35 #
& 36 0
&37-&38 1 3 5

A s
WWN

w

golpH

~N~No

OCO~NOUIRRWNEFLO
ww ww

These possible offsets are held in the bit table * msktab’ in the
program (lines 3490—-3590). The number of the lowest mnemonic
in each group is held in the table ‘ grptab’ (lines 3600-3710).

The symbolsin thetable (X, # A, 1 to 7) represent the possible
addressing modes. Note that they don't all line up: the addressing
mode decode part of the program hasto line up al these to get the
correct addressing mode. The symbols represent:

either relative or implied

IMM (same as 2, but different pattern)
(IND,X)

ZP

IMM
ABS

(IND),Y

ZPX

ABS,Y

ABSX (,Y if LDX or STX)

~NOURWNRF O # X

The rest of the program handles the decoding and printing of the
addressing mode characters and data. For most of the groups this
is not too difficult, as the addressing mode corresponds directly
with the offset from the base address, however, some others need
to be shifted by an extra offset to ‘line up’ with the others. This
shifting is done by lines 1810—2060.

88

The more complex addressing modes are printed using a bit mask
table (lines 3800 to 3882) to decide which charactersto print. The
simpler addressing modes are printed by a separate part of the

routine.

10 REM Machi ne code di sassenbl er

15 REM using assenbl er ROMt abl es

20 REM

25 REM M D Pl unbl ey 1984

30 REM

99

100 PRCCset up :REM Set up ROM entry points
590

595 REM *** Al | ocate wor kspace ***

600 worksp = &0070

605 grpnsk = worksp :REM Bit mask of allwed nodes
610 ytenp = worksp+1 :REM Tenp for addr node group
615 ndstor = worksp+2 :REM Store for addressing node
620 opcode = worksp+3 : REM Opcode read in from nmenory
625 data = worksp+4 :REM The 2 bytes after the opcode
630 addr = wor ksp+6 : REM Copy of address in D%

635 mMmem = wor ksp+8 : REM Mhenoni ¢ construction area
640 xtenp = wor ksp+10 :REM Tenp for mmenoni ¢ nunmber
645 lastch = worksp+11 : REM Last char of mmenonic

650 nbytes = worksp+12 : REM Nunber of instruction bytes
655 chrmsk = worksp+13 : REM Addr node character mask
690

700 count = &1E

799

900 start% = &0BO0O : REM User defined charl key area
905

910 FOR opt% = 0 TO 3 STEP 3

920 P% = start%

950 [OPT opt %
1000 . di sass
1010 LDA &410 \Get address from D% and put it
1020 STA addr \ in the workspace
1030 LDA &411
1040 STA addr +1
1045
1050 LDY #2 \ Transfer the opcode and 2 data
1060 .txbyte \ bytes to be di sassenbted
1070 LDA (addr),Y
1080 STA opcode, Y
1090 DEY
1100 BPL txbyte
1105
1110 LDA addr+1 \Print the address and the opcode
1120 JSR phex
1130 LDA addr

89

1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1451
1452
1460
1470
1480
1485
1490
1500
1510
1515
1520
1530
1540
1550
1560
1570
1575
1580
1590
1600

JSR
JSR
LDA
JSR

LDA
cwP
BNE
LDX
STX
LDA
STA
JMWP

.nont ch
JSR
LDY
LDA
. pgl oop
JSR
DEY
BNE
JMP

.tbmem
LDY
.tbl oop
JSR
CPY
BCS
RTS

\ ** Main opcode

.ntchop
LDX
LDY

. next op
DEX
BEQ

TXA
CwP
BCS
DEY
LDA
STA

. sangrp
LDA
SEC

phexsp
pspace
opcode
phexsp

opcode
#&6C
nt chop
#&32

xt enp
#8

nmdst or
donode

t brmem
#3
#ASC" ?"
pchar

pgl oop
addl
#16
pspace

count
t bl oop

#&39
#&0A

nont ch

grptab, Y
sangrp

nsktab, Y
gr pnek

opcode

\If we have a JMP (XXXX), then
set the menonic to "JWP"
(menoni ¢ nunber &32), and the
addressing node to 8.

O herwi se, attenpt to match the
opcode with the table

—— — — —

\If we get here, no match was
\ found, so print a "???"

\ and go on to add 1 to D%

\ before finishing

\Print spaces until we get to
\ the 16th cotum. This lines
\ up all the mmenonics.

mat chi ng routine **
\Go through all the menonics

\ and try to match one to the
\ opcode

\If ws have tried all the
\ mmenonics, it is invatid.

\Check to see if we are now in
\ a new mmenoni c group.

\ The opcode can only have this
\ menonic if is a positive

90

1610
1620
1630
1640
1650
1660
1670
1680
1685
1690
1700
1710
1720
1730
1740
1750
1755
1760
1762
1765
1770
1790
1800
1805
1810
1820
1830
1840
1850
1860
1870
1875
1880
1890
1900
1910
1920
1930
1940
1950
1955
1960
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060

SBC
BCC

opbase, X
next op

LSRA

BCS

next op

LSRA

BCS
CwP
BCS

STA
STY
TAY
LDA
LDY
AND
BEQ

STX
LDY
TYA
BEQ

LDA

.trymsk

BIT
BNE
I NC
LSR
BPL

. nekok

LDA
AND
BNE

BNE
LDA
STA

. nodeok

BNE
TYA

BNE
JSR

JSR

.j add1

JWP

next op
#8
next op

nmdst or
ytenp

bittab,Y
ytenp
gr pnek
next op

Xt enp

ytenp
i mprel
#&10

gr psk
mskok

mdst or
gr pnsk
trynsk

gr prsk
#8&08
nmodeok
nmdst or
nmodeok
#2
nmdst or

#2
donode

nmdst or
donode
pmmem
#ASC' A"
pchar

addl

of fset fromthe "baseopcode"”
of it. Also, the offset nust
be divisible by 4, and nust be
&1C or less (&1C=4*7)

—— - —

\Check to see if this addr node
\ is attowed with this mmenonic.
\ If it isn't, go back to check
\ for another mmenonic.

\ "grpnmsk" holds the all owed

\ addr nodes for this mmenonic

\ Success!! - so save the mmenonic
\ nunber

\If the node group is O, it is
\ either inplied or relative

\If the group masksuggests that

\ the mmenoni c doesn'tallou

\ absotute addressing, w. have to
\ atter the addressing node untit
\ it does. (The "BPL" will always
\ work after a "LSR'.)

\ When we get here, the mask and
addr node offset is OK
Honmever, if the addr node is O
and (indir),Y is not attowed
then it is really inmediate
addr essi ng, which should be
addr node 2

— o — —

\ When we get here, the only thing
\ left to test for is accumnul ator
\ addressing. If the "all owed

\ node" group is 2, and the addr
\ node is also 2, then print the
\ menonic, followed by an "A",

\ and go to add 1 to D% before

\ finishing. Gtherwise, go to

\ "donode"

91

2065
2070
2080
2090
2100
2105
2110
2120
2125
2130
2140
2150
2160
2165
2170
2180
2190
2200
2210
2215
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2315
2320
2330
2340
2350
2355
2360
2370
2380
2390
2400
2410
2420
2430
2440
2445
2450
2460
2470
2480
2490
2500

Linprel
LDX

BCS

JSR
JWP

.rel
LDA
JSR
JSR

LDA
STA
LDA
BPL
DEC

. nodec
SEC
ADC
STA
LDA
ADC
STA
I NC
BNE
I NC

. nopage
JSR
JWP

Xt enp
#&1A

re

pmem
addl

dat a
phexsp
pmem

#0

dat a+1
dat a
nodec
dat a+1

&410
dat a
&411
dat a+1
dat a+1
dat a
nopage
dat a+1

pabs
add2

\If we get here, the addressing
\ node is either retative or
\ inptied.

\If it is inptied, print the
\ menmonic, and add 1 to D%

\If it is relative, we have 1
\ extra data byte to print out
\ before the menonic

\ The absol ute addr has to be

\ calculated fromthe offset

\ First extend the sign of the
\ offset byte into 2 bytes

\ Then add this 2-byte offset to
D% adding another 2 with it.
One extra is added by setting
the carry before the addition,
the other is added by
increnenting the address

af t erwards.

— o — —

\Finally, print the absotute
\ address, and add 2 to D% before
\ leaving

\ ** Print the menonic ***

. prmem
LDX

JSR t brmem
LDA | sbm, X

Xt enp

ASLA

STA

LDA nsbm, X

mem

ROLA

STA

LDX
. ntl oop
LDA
LDY
. nbl oop
ASL

memt1

#3

#0
#5

mem

\First, get the nunber of the
menoni c, and get the LSB and
MSB of the conpressed mmenoni c.
The shifts are to get the bits
ready for the first 5 bits to
be shifted out.

—— — — —

\This is the main | oop which
shifts 3 characters out of

the 2-byte conpressed menoni c
5 bits at atinme are shifted
out into the accunutator, and
they are then ORed with &40 to

— o — —

92

2510
2520
2530
2540
2550
2560
2570
2580
2585
2590
2595
2600
2605
2606
2610
2620
2630
2640
2645
2650
2660
2670
2680
2690
2700
2710
2720
2725
2730
2740
2745
2750
2760
2770
2780
2790
2800
2805
2810
2820
2830
2840
2850
2860
2865
2870
2880
2890
2900
2905
2910
2920

ROL mMmemt+1
ROLA

DEY

BNE nbl oop
ORA #&40
JSR pchar
DEX

BNE nctl oop

STA |l astch

JMP pspace

\ turn theminto upper case
\ letters .

\ Save the last character printed:
\ it mght be an "X".
\Print a space, and exit.

\ ** Handl e the addressing node stuff *=*

. donode
LDY ndst or
LDX mdbyts, Y
STX nbytes

DEX

BEQ nodat a
LDA data
JSR phexsp
DEX

BEQ nodat a
LDA data+1
JSR phexsp

. nodat a
JSR pmem

LSR ndst or
BCS snpl nd

LDY ndst or
LDA chnstb, Y
STA chr sk

LDY #6

. newchr
ASL chrnsk
BCC nochr
LDA chtab, Y
JSR pchar

. nochr
CPY #5
BNE nodat
JSR pdat a

. nodat
DEY

\First, get the nunber of bytes
\ used by this addr node, and
\ save it.

\Print the required nunber of
\ data bytes before the mmenonic.

\Print the menonic.

\If the addr npde was odd, it is
\ a sinple one, so deal with it

\If it was not a sinple node, get
\ the mask of characters to be
\ printed into "chrnsk".

\Starting at the 7th (0..6) char,
\ if the bit shifted out of the
\ mask is set, then print it.

\If we have got to the 5th char,
\ the data can be printed (i.e.

\ the "#" or "(" has been printed
\ if there was one)

\ Go round for another character
\ if we haven't printed themall;

93

2930
2940
2950
2960
2970
2980
2990
3000
3010
3020
3025
3030
3040
3050
3060
3070
3080
3090
3095
3096
3110
3120
3130
3140
3150
3160
3170
3175
3180
3190
3200
3210
3220
3230
3240
3250
3260
3265
3267
3270
3280
3290
3300
3310
3320
3360
3370
3375
3380
3390
3400
3410

BPL newchr
JWP addn

.snpl md
JSR pdat a
LSR ndst or
LSR ndst or
BCC addn
LDA #ASC',"
JSR pchar

LDA #ASC' X"

CWP | astch

BNE px

LDA #ASC'Y"
. px

JSR pchar

JMP addn

\ ** Routines to

. pabs
LDA #ASC' &"
JSR pchar
LDA data+1
JSR phex
LDA data
JMP phex

. pdat a
LDA nbyt es
CVP#2
BNE pabs

. pzerop
LDA #ASC'&"
JSR pchar
LDA data
JMP phex

** Exit points;
.addl

LDA #1

BNE add
. add2

LDA #2

BNE add
.addn

LDA nbytes

.add\Add A to D%
CLC
ADC &410
STA &410

add

\ otheruise add "nbytes" to D%
\ and exit.

\If we get here, the addr node is
ei ther "zero-page", "absotute",
"zero-page, X' or "absolute, X".
Shifting out the 2nd bit from
"mdstor" gi ves whether indexed
addressing is required.

—— - — —

\If the last character of the
\ menonic was a "X"', then use
\ "Y' as the index

\Print the index character, and
\ add "nbytes" to D%

print the data after the menonic **
\Print the data as an absotute
\ address.

\If the total nunber of bytes for
\ this addressing node is not 2
\ (i.e. it is 3) then print the
\ absol ute address.

\Print the data as a single byte.

size to D% and exit ***

\Add 1 to D% and then exit

\Add 2 to D% and then exit

\ Add the nunber of bytes in the
\ instruciton to D% then exit

\ (The least significant 2 bytes
\ of D% are stored in &410 and
\ &411)

94

3420
3430
3440
3445
3450
3460
3480
3482
3484
3486
3490
3500
3510
3520
3530
3540
3550
3560
3570
3580
3590
3592
3594
3596
3598
3600
3610
3620
3630
3640
3650
3660
3670
3680
3690
3700
3710
3712
3714
3716
3718
3720
3730
3740
3750
3760
3770
3780
3790
3800
3802
3804

LDA &411
ADC #0
STA &411

JMP pnew \Print a CRLF and exit

*** Al owed of fset table ***

\This tabte gives the allowed addr node offset for

\ each group of mmenonics. Bit 7 (the top bit) is set
\ if Ois allowed; bit 6 set if 4 is allowed; etc.

1 : nekt ab=P% PY%=P%+10

nmskt ab?0 = &80
mskt ab?1 = &FF
mskt ab?2 = &EA
mekt ab?3 = &AA
mskt ab?4 = &DO
nskt ab?5 = &50
mskt ab?6 = &80
nmskt ab?7 = &D5
mskt ab?8 = &DF
nskt ab?9 = &A8
REM ** Addressi ng node groups **

REM This table contains the starts of the mmenonics
REM whi ch have the sanme al |l owed addressing nodes
gr pt ab=P% P%=P%*11

grptab?&0 = &01
grptab?&l = &22
grptab?&2 = &29
grptab?&3 = &D
grptab?&4 = &2F
grpt ab?&5 = &31
grpt ab?&6 = &32
grpt ab?&7 = &34
grpt ab?&8 = &36
grpt ab?&9 = &37
gr pt ab?&A = &39
REM *** Bit position table ***

REM Thi s table contains the bit position correspondi ng
REM t o each addressi ng node
bi t t ab=P% PY%=P%*8

bittab?0 = &80
bittab?l = &40
bittab?2 = &0
bittab?3 = &10
bittab?4 = &08
bittab?5 = &4
bittab?6 = &02
bittab?7 = &1
REM *** Addr node character nmask table ***

95

3806 REM This table gives the characters to be printed for
3808 REM t he non-sinpl e addressi ng nodes
3810 chnst b=P% P%P%+5

3820 chnstb?0 = &78 CREM"(,X)"
3830 chmstb?1 = &80 :REM " #"
3840 chnstb?2 = &4E “REM " (), Y"
3850 chmstb?3 = &06 “REM ", Y"
3860 chnstb?4 = 848 “REM " ()"

3870 cht ab=P% PY%=P%-7

3880 $chtab="Y,)X, (#"

3882

3884 REM *** Addressing node bytes table ***

3886 REM This table gives the total nunmber of bytes used by
3888 REM a gi ven addressi ng node.

3890 ndbyt s=P% P%P%+-9

3900 ndbyts?0 = 2

3910 ndbyts?1
3920 ndbyts?2
3930 ndbyts?3
3940 ndbyts?4
3950 ndbyts?5
3960 ndbyts?6
3970 ndbyts?7
3980 ndbyts?8
8000

8010 NEXT
8015 @40
8020 PRI NT' "Code | ength =&"~P% start %

8190

8200 PRINT' '"''"'"** WARNI NG Once assenbl ed, the code"
8210 PRI NT"generated by this programis not"

8220 PRI NT"transferabl e between different BASICs"

8230 PRI NT

8300 PRINT"DO ""CALL &"~disass""" to disassenble 1 |ine"
8305 PRI NT"D% points to code to be di sassenbl ed"’

8810 END

WWWNNWNDN

8990
8992 REM *** Set up ROMentry points, allowing for ***
8993 REM *** BASIC 1 and BASIC 2. *Ex

9000 DEFPRCCset up

9010 basicl1$ = "BASI C'+CHR$0+" (C) 1981 Acorn" +CHR$&A
9020 basi c2$ = "BASI C'+CHR$0+" (C) 1982 Acor n" +CHR$&A
9030 | F $&8009=basi c1$ THEN PROCset 1 : ENDPROC

9040 | F $&8009=basi c2$ THEN PROCset 2 : ENDPROC

9050 PRINT "NOT BASIC 1 OR 2"

9060 END

9290

9292 REM *** Set up BASIC 1 entry points ***

9300 DEFPRCCset 1

9310 opbase = &84AD : REM Opcode base vatue table
9315 I sbrm = &843B : REM Tabte of LSB of mmenonic
9320 nsbm = &8474 : REM Tabte of MsSB of mmenonic

96

9325
9330
9335
9340
9345
9350
9490
9492
9500
9510
9515
9520
9525
9530
9535
9540
9545
9550

phex = &8570
phexsp = &B56A
pspace = &B57B
pnew = &BCA2
pchar = &B571
ENDPROC

REM *** Set up
DEFPRCCset 2
opbase = &84C4
I sbm = &8450
msbm = &848A
phex = &B545
phexsp = &B562
pspace = &B565
pnew = &BC25
pchar = &B558
ENDPRCC

:REM Print A as a HEX byte
:REM Print A in HEX, then space
:REM Print a space

:REM Print a CRLF

:REM Print char in A

BASIC 2 entry points ***

: REM Opcode base vatue tabte
:REM Tabl e of LSB of mmenonic
:REM Tabl e of MSB of mmenonic
:REM Print A as a HEX bytes
:REM Print A in HEX then space
:REM Print a space

:REM Print a CRLF

:REM Print char in A

97

