
10 ROM Routines
Many of the tasks which need to be performed when dealing with
the BASIC system are handled by standard routines inside the
BASIC ROM. There are standard routines for expression
evaluation, checking the syntax of lines, handling the memory
allocation, and arithmetic routines. Although some of these will
only be of use inside new statements and functions (like the ‘Get
character at PTRB’ routine); many can be used from simple
machine code programs, to allow floating point calculations to be
performed, or accessing the variables passed by the BASIC
‘CALL’ statement, perhaps.

Note that these ROM routines can only be used if BASIC is paged
in to &8000 to &BFFF. If the machine code program which uses
them will be called from BASIC, using either the ‘CALL’
statement or the ‘USR’ function, BASIC will be paged in. The
programs in chapters 7 to 9 rely on this. However, BASIC will not
be paged in if the program is called by using the ‘ *RUN’
command in any filing system which itself sits in a paged ROM
(like DFS, for example): the filing system ROM will be paged in
instead.

To check that the current paged-in ROM is BASIC, the RAM
copy of the paged ROM select register (in location &F4) should
be compared with the ROM number of the BASIC ROM. This
can be found by using OSBYTE &BB (187). For example, this
section of code will check that the current ROM is BASIC:

LDA #&BB \ Cal l OSBYTE &BB t o r ead t he ROM
LDY #&FF \ socket number cont ai ni ng BASI C.
LDX #&00 \ X and Y ar e set t o r ead i t wi t hout
JSR osbyt e \ modi f i cat i on.
CPX &F4 \ I f i t i s not t he same as t he cur r ent
BNE gi veup \ ROM, don' t cont i nue.

The BASIC ROM does not need to be paged in if the only part of
the machine code program which is to be ‘RUN’ is the
initialisation section, and that just needs to check the year of the
BASIC ROM (but uses no ROM routines). If this is the case, the
BASIC ROM slot number can be found using OSBYTE &BB as

162

above, and the year byte found by using OSRDRM (&FFB9). For
example, the following code will read the year byte of the BASIC
ROM:

LDA #&BB \Call OSBYTE &BB to read the ROM
LDY #&FF \ socket number containing BASIC.
LDX #&00 \ X and Y are set to read it without
JSR osbyte \ modification.
TXA \
TAY \Transfer the ROM number into Y,
LDA #&80 \ and call OSRDRM to read the byte
STA &E7 \ at location &8015 in the BASIC ROM
LDA #&15 \
STA &E6 \
JSR &FFB9 \

Note that OSRDRM was implemented for operating the ‘*ROM’
filing system in paged ROMs, so use it with caution (as with most
of the rest of the examples in this book!).

Throughout this section, I have used the names of many of the
standard BASIC registers, rather than the actual memory they
occupy. They are detailed in other parts of this book, but here is a
summary of them:

IntA This is the integer accumulator which is held in page zero
at &2A to &2D (LSB in &2A, MSB in &2D). It is used
in integer calculations, and also to pass integer values
between routines.

The low 3 bytes of IntA (&2A to &2C) are also used to
hold the variable descriptor block when handling
variables. When being used for this, &2A and &2B point
to the first byte of the variable value, and &2C contains
the variable type (for a description of the variable types,
see section 3.1.3). This variable desrcriptor block is
sometimes used at &37 to &39 (if IntA is used to hold the
value of the variable).

FPA This is the main floating point accumulator, which is held
in page zero at &2E to &35 (see section 2.2.2 for the
floating point accumulator format). It is used in
calculations involving real numbers (together with FPB),
and also to pass real values between routines.

163

FPB This is the secondary floating point accumulator, which is
held in page zero at &3B to &42. It is involved in most
floating point calculations.

StrA This is the string accumulator, which is held in page 6
(&600 to &6FF). The current length of the string is held
in location &36 in page zero. It is used in string
manipulations, and to pass string values between
routines.

PTRA This is the primary text pointer. The base of the pointer is
held in page zero in &B and &C, with the offset in &A.
This is used mainly to parse the keyword at the start of a
statement.

PTRB This is the secondary text pointer. The base is held in
&19 and &IA, with the offset in &1B. This is used
mainly for expression evaluation.

STACKThis is the BASIC STACK which works downwards in
memory from HIMEM. The STACK pointer is held in
page zero in &4 and &5. It is used mainly to hold
temporary results of calculations, and to save old values
of parameters inside FNs and PROCs (see section 5.3).

HEAP This is the BASIC variable HEAP which works upwards
in memory from LOMEM. The HEAP pointer is held in
page zero in &2 and &3. It is used to hold variables and
FN and PROC locations (once found).

164

Summary

This list is a summary of the routines documented in this section,
split into functional groups. Some of the routines have other entry
points which are not listed here, but are included with the full
description of the routine. For a summary of the ROM in
numerical order, see appendix B.

BASIC1BASIC2

10.1 Restarting BASIC

cstart 8A80 8ADD Cold start
wstart 8A96 8AF3 Warm start
istart 8A99 8AF6 Enter immediate mode

10.2 Program handling

tline 88D9 8957 Tokenise a line

inslin BCAA BC8D Insert line in program
dellin BC4A BC2D Delete line in program
schlin 9942 9970 Search for program line

run BD2C BD14 Run a program

clear BD38 BD20 Clear variablesfistacks
clrstk BD52 BD3A Reset stacks and restore data

seterl B3F6 B3C5 Set up ERL to line in error
settop BE88 BE6F Set up TOP, check ' Bad program'

10.3 Statement handling

getcha 8A1E 8A97 Get character at PTRA
getchb 8A13 8A8C Get character at PTRB

chksda 9810 9857 Check end of statement
cont 8B0C 8B9B Continue execution
skipln 8AED 8B7D Skip rest of line

165

10.4 Expression evaluation

getnsb 9B03 9B29 Get <numeric> or <string>
getfsb AE1B ADEC Get <factor> or <string-factor>

getnmb A06C A07B Get number at PTRB
getina 97AE 97DF Get a tokenised line number

10.5 VariabIe/FN/PROC management

fndvar 95A9 95DD Find variable

rdvar B35B B32C Read value of variable
asvar 8BD3 8C21 Assign string variable
asvark B4E0 B4B4 Assign numeric variable

schvar 9429 9469 Search for variable in list
linkvar 94BC 94FC Link in new variable
scnvn 951F 9559 Scan variable name

schfnp 941B 945B Search for FN/PROC in list
lnkfnp 94AD 94ED Link in new FN/PROC

clrib 94F7 9531 Clear space for new block

10.6 STACK management

pusha BDA8 BD90 Push IntA, FPA, or StrA
pushi BDAC BD94 Push IntA
pushf BD69 BD51 Push FPA
pushs BDCA BDB2 Push StrA

chksp BE4C BE34 Check for STACK/HEAP clash
popi BE02 BDEA Pop IntA
popi0 BE25 BE0D Pop integer into page zero
popf BD96 BD7E Pop real number; set up (&4B)
pops BDE3 BDCB Pop StrA

pshvvd B33C B30D Push value and descriptor
poppar 8C5B 8CC1 Pop parameter value

166

10.7 Input/output

inputs BC17 BBFC Input string to StrA

pchar B571 B558 Print A as a character
ptoken B53A B50E Print A as a character or token
phex 8570 B545 Print A as a HEX number

plnum0 98F1 991F Print line number

pnewl BC42 BC25 Print a CRLF (newline)

10.8 Type conversion

citof A2AF A2BE Convert integer to real
catof A2DE A2ED Convert A to a real number
cftoi A3F2 A3E4 Convert real to integer

cntos 9ED0 9EDF Convert number to string
cston AC5A AC34 Convert string to number

10.9 Integer routines

lodiay AF19 AEEA Load IntA with A, Y

lodi0 AF85 AF56 Load IntA from 00,X−03,X
stori0 BE5C BE44 Store IntA at 00,X—03,X

negi ADB5 AD93 Negate IntA
absi AD94 AD71 Take ABS value of IntA

divi 99C0 99E8 Perform integer division

10.10 Floating point routines

movfab A20F A21E Move FPA into FPB
movfba A4E4 A4DC Move FPB into FPA

ldfantl A691 A686 Set FPA to zero
ldfanl A6A4 A699 Set FPA to 1
ldfbn0 A463 A453 Set FPB to zero

167

ldfam A3A6 A3B5 Load FPA from (&4B)
ldfbm A33F A34E Load FPB from (&4B)
stfam A37E A38D Store FPA at (&4B)
exfam A4DE A4D6 Exchange FPA with (&4B)

pntmt1 A7FB A7F5 Point &4B,&4C at &46C
pntmt2 A7F3 A7ED Point &4B,&4C at &471
pntmt3 A7F7 A7F1 Point &4B,&4C at &476
pntmt4 A7EF A7E9 Point &4B,&4C at &47B

tstfa A1CB A1DA Test FPA
nmlfa A2F4 A303 Normalise FPA
rcofa A667 A65C Round FPA & check overflow

negfa ADA0 AD7E Negate FPA
addfba A513 A50B Add FPB to FPA

mulfab A61E A613 Multiply FPA by FPB
mufa10 A1E5 A1F4 Multiply FPA by 10

divfab A6FC A6F1 Divide FPA by FPB
dvfa10 A23E A24D Divide FPA by 10

series A889 A897 Perform series evaluation
fixfa A40C A3FE Convert FPA to fixed format
fracfa A494 A486 Extract fractional part of FPA

10.11 Function entry points

Listed in section 10.11)

168

10.1 RESTARTING BASIC

These entry points allow BASIC to be re-started, rather than
continuing with the execution of the program currently running.
This may be necessary if, for example, the program has been
altered or corrupted by the statement just executed (like DELETE,
for example).

cstar t − Cold star t

Execution addr

BASIC1 &8A80
BASIC2 &8ADD

Entry conditions:

PAGE points to the program area to be used

HIMEM points to the top of available memory

Exit conditions:

NON−RETURNING

Descr iption

This entry has exactly the same effect as the BASIC ‘NEW’
command. It turns TRACE off, places the sequence &0D &FF in
memory at PAGE, and sets TOP to be PAGE+2, before executing
a warm start.

Other entry points

NONE

169

wstar t − Warm star t

Execution addr

BASIC1 &8A96
BASIC2 &8AF3

Entry conditions:

Resident program at PAGE

TOP points to the next available byte after the program

HIMEM points to the top of available memory

Exit conditions:

NON-RETURNING

Descr iption

LOMEM and HEAP are set to TOP, the variables and FN/ PROC
lists are cleared, and STACK is reset to HIMEM. BASIC then
enters immediate mode, and waits for a line to be input.

Other entry points

NONE

170

istar t − Enter immediate mode

Execution addr

BASIC1 &8A99
BASIC2 &8AF6

Entry conditions:

Resident program at PAGE

TOP points to the next available byte after the program LOMEM,
HIMEM delimit the HEAP/ST ACK memory to be used

Exit conditions:

NON-RETURNING

Descr iption

This entry has the same effect as the BASIC ‘END’ statement.
The ‘ON ERROR’ pointer is reset, and a line is input into the
keyboard buffer. If this starts with a line number, it is inserted into
the program; otherwise the line is executed as an immediate
command.

Other entry points

NONE

171

10.2 PROGRAM HANDLING

These are general routines for manipulating the program currently
in memory. Note that if the program is altered by inserting or
deleting any lines, the HEAP may be corrupted, so a ‘Warm start’
should be executed to return to immediate mode and clear the
variables.

tline − Tokenise a line

Execution addr

BASIC1 &88D9
BASIC2 &8957

Entry conditions:

Y 0
(&37) points to start of line to be tokenised
&3B start of statement flag: 0 = ‘at start’
&3C line number flag: 0 = don’t tokenise line numbers

Exit conditions:

Tokenised line starting at original position

&37 − &3D undefined
A undefined
X undefined
Y undefined
C undefined

Descr iption

This routine tokenises the line pointed to by the pointer at
&37,&38 and terminated by a carriage return. The tokeniser can
be in several states initially, and these states are set by the flags in
&3B and &3C before entering the routine. &3B tells the tokeniser
if it is at the start of a statement (if a ‘ * ’ is at the start, the rest of

172

the line is not tokenised); and &3C tells the tokeniser whether to
tokenise any numbers it finds, or to leave them as ASCII. The
tokeniser follows several rules, and encountering a keyword (or
not) may change the state. See section 2.3 for more on tokenising.

Other entry points

1 tline0 − Tokenise start of statement, no line numbers

BASIC1 &88D3
BASIC2 &8951

This entry point sets both of the tokenising flags to zero, and
zeros Y, before entering the main routine (i.e. tokenise from the
start of a statement, but don’t tokenise line numbers).

173

inslin − Inser t line in program

Execution addr

BASIC1 &BCAA
BASIC2 &BC8D

Entry conditions:

Y offset from &700 of first character of line text
IntA: line number of line to be inserted
&700− line to be inserted (keyboard buffer)

Exit conditions:

&37−&3E undefined
TOP new top of program
A &0D
X undefined
Y undefined
C 1

Descr iption

This routine inserts a line into the current program. On entry, the
line to be inserted should be in the keyboard buffer (at &700 to
&7FF), terminated by a carriage return. Y should point to the
first character of the line to be inserted into the program (so that
the line number itself can be missed out). The low 2 bytes of IntA
should contain the line number. The routine will delete the old
line if necessary, and then insert the new one if it is not empty. If
there is not enough room for the line to be inserted, a ‘LINE
space’ error (ERR = 0) will be generated.

Other entry points

NONE

174

dellin − Delete line in program

Execution addr

BASIC1 &BC4A
BASIC2 &BC2D

Entry conditions:

IntA: line number of line to be deleted

Exit conditions:

&37,&38 undefined
&3D,&3E undefined

TOP new top of program

A undefined
X undefined
Y undefined
C 0=line deleted, 1=line not found

Descr iption

This routine deletes a line from the current program. On entry, the
line number of the line to be deleted should be in the low 2 bytes
of IntA (at &2A,&2B). If the line could not be found, the
routine will exit with C set; otherwise, the line will be deleted,
and the routine will exit with C clear.

Other entry points

NONE

175

schlin − Search for line in program

Execution addr

BASIC1 &9942
BASIC2 &9970

Entry conditions:

IntA: line number of line to be found

Exit conditions:

C 0=line found, 1 =line not found

If C=0, (&3D) points at length byte of line found
If C= 1, (&3D) points at end of last smaller line

A undefined
X preserved
Y 2

Descr iption

This routine searches for a line in the program, given the line
number in IntA. If it is found, the pointer at &3D ,&3E is set to
point to the length byte of the line (i.e. 1 before the text of the
line), and C is cleared. If it is not found, C is set, and the pointer
at &3D ,&3E is left pointing at the carriage return on the end of
the last line that had a smaller line number than the one being
searched for.

Other entry points

NONE

176

run − Run a program

Execution addr

BASIC1 &BD2C
BASIC2 &BD14

Entry conditions:

Resident program at PAGE

Exit conditions:

NON-RETURNING

Descr iption

This entry point does the same as the BASIC statement ‘RUN’. It
clears the variables (apart from the resident integers) and stacks,
and starts executing the program from the beginning.

Other entry points

1 gstart − Goto start of program

BASIC1 &BD2F
BASIC2 &BD17

This entry point starts executing the BASIC program in memory
at PAGE, but it does not clear the varibles or stacks first.

177

clear − Clear var iables and stacks

Execution addr

BASIC1 &BD38
BASIC2 &BD20

Entry conditions:

Valid PAGE, TOP, HIMEM

Exit conditions:

variables cleared

REPEAT, GOSUB, FOR stacks cleared

DATA pointer restored to PAGE

LOMEM set to TOP
HEAP set to TOP
STACK set to HIMEM

A 0
X 0
Y preserved
C preserved

Descr iption

This routine clears all variables and FN/PROC lists (except for the
resident integers), and resets the HEAP and all BASIC stacks. It
does the same as the BASIC ‘CLEAR’ statement.

Other entry points

NONE

178

clrstk − Reset stacks, restore data

Execution addr

BASIC1 &BD52
BASIC2 &BD3A

Entry conditions:

Valid PAGE, HIMEM

Exit conditions:

REPEAT, GOSUB, FOR stacks cleared

DATA pointer restored to PAGE

STACK set to HIMEM

A 0
X preserved
Y preserved
C preserved

Descr iption

This routine resets the BASIC stacks, and restores the DATA
pointer to PAGE.

Other entry points

NONE

179

seter l − Set up ERL

Execution addr

BASIC1 &B3F6
BASIC2 &B3C5

Entry conditions:

PTRA: base points to position of error

Exit conditions:

&8,&9 line number of error (ERL)

A undefined
X undefined
Y undefined
C undefined

Descr iption

This routine searches through the program, keeping track of the
current line number, until it finds the line which the base of PTRA
points to. It then sets ERL to the number of this line.

Other entry points

NONE

180

settop − Set up TOP, check ‘Bad program’

Execution addr

BASIC1 &BE88
BASIC2 &BE6F

Entry conditions:

BASIC program at PAGE

Exit conditions:

&12,&13 points to the end of the program (TOP)

A undefined
X preserved
Y 1
C undefined

Descr iption

This routine scans through the current program in memory, and
sets TOP to point to the next free memory location after the end of
it. If it could not follow the length bytes through to the end of
the program, a ‘Bad program’ message will be generated, and a
JMP will be made to immediate mode (istart).

Other entry points

NONE

181

10.3 STATEMENT HANDLING

These routines allow general handling of statements, using the
syntax pointers PTRA and PTRB.

PTRA is mostly used for recognising statement keywords, and a
few other special uses; it should not be used inside the expression
evaluator (i.e. in functions) unless it is saved, and restored before
returning. The base of PTRA is stored in &B and &C, with the
offset in &A.

PTRB is used for evaluating expressions, and most other general
uses. The base ofPTRB is stored in &19 and &1A, with the offset
in &1B.

The base of both of these pointers normally points 1 character
before the start of the text of the statement currently being
executed (i.e. the ‘:’; or the length byte of the line if it is the first
statement on the line). These should not normally be changed
during a statement, except at the end, when they will be set up to
point to the next one by the ‘Check end of statement’ routine.

getcha − Get character at PTRA into A

Execution addr

BASIC1 &8A1E
BASIC2 &8A97

Entry conditions:

PTRA: points to the character to be read.

Exit conditions:

PTRA: points to the next character to be read.

A character read
X preserved
Y offset from base of PTRA to character just read
C undefined

Descr iption
182

This routine returns the first non-space character found at, or after,
PTRA. The offset of PTRA is updated so that it points to the
character after the one just read. The character returned by this
routine can be re-read if necessary by a ‘LDA (&B), Y’.

Other entry points

NONE

getchb − Get character at PTRB into A

Execution addr

BASIC1 &8A13
BASIC2 &8A8C

Entry conditions:

PTRB: points to the character to be read

Exit conditions:

PTRB: points to the next character to be read.

A character read
X preserved
Y offset from base of PTRA to character just read
C undefined

Descr iption

This routine returns the first non-space character found at, or after,
PTRB. The offset of PTRB is updated so that it points to the
character after the one just read. The character returned by this
routine can be re-read if necessary by a ‘LDA (&19), Y’.

Other entry points

NONE

183

chksda − Check for end of statement

Execution address

BASIC1 &9810
BASIC2 &9857

Entry conditions:

PTRA: points at the end of the current statement.

Exit conditions:

PTRA: base points to the statement delimiting character. -�
offset = 1

A undefined
X preserved
Y 1
C undefined

Descr iption

Starting at PTRA, if the first non-space character found is not a ‘ :’
,a carriage return character, or an ‘ELSE’ token, then a ‘Syntax
error’ (ERR = 16) will be generated. If it is one of these, then the
base of PTRA will be updated to point to this character, and the
offset set to 1. Thus PTRA will point to the first character after the
statement delimiter. Finally, the escape flag is tested before
returning, and an ‘Escape’ error (ERR = 17) will be generated if
an escape condition exists.

Other entry points

1 chksdb − Check end of statement at PTRB

BASIC1 &980B
BASIC2 &9852

This uses the offset of PTRB instead of the offset of PTRA on
entry. Providing that the base of PTRA has been copied into �
PTRB at some time during the statement, this entry point can be
used to check for the end of the statement at PTRB.

184

cont − Continue execution

Execution addr

BASIC1 &8B0C
BASIC2 &8B9B

Entry conditions:

PTRA: base points to the statement delimiting character.
offset = 1

Exit conditions:

NON-RETURNING

Descr iption

This entry will test the statement delimiter at the base of PTRA. If
it is an ‘ELSE’ token, the rest of the line will be skipped, and
execution will continue on the next program line. Otherwise,
execution will continue with the next statement or program line,
giving a TRACE if necessary. If the end of the program has been
reached (or the end of the line in immediate mode), a jump will be
made to enter immediate mode.

Other entry points

1 contsd − Check end of statement, then continue

BASIC1 &8B09
BASIC2 &8B98

This calls ‘check for end of statement’ before dropping into the
main routine. Entry conditions are as for ‘check end of statement’.

185

skplin − Skip rest of line, then continue execution

Execution addr

BASIC1 &8AED
BASIC2 &8B7D

Entry conditions:

PTRA: points at or before the CR on the end of the line.

Exit conditions:

NON-RETURNING

Descr iption

This entry will skip the rest of the current line, and execution will
continue on the next program line, giving a TRACE if necessary.
If the end of the program has been reached, or the line was an
immediate mode command, a jump will be made to enter
immediate mode.

Other entry points

NONE

186

10.4 EXPRESSION EVALUATION

Expression evaluation is carried out using PTRB to scan the text.
At each stage, the result is left in IntA, FPA, or StrA for the code
which called the routine. If the type of the result is not what is
required by the particular level (for example, an attempt to AND
with a string), then a ‘Type mismatch’ error is generated. See
chapter 4 for more on expression evaluation.

getnsb − Get <numer ic> or <str ing> at PTRB

Execution addr

BASIC1 &9B03
BASIC2 &9B29

Entry conditions:

PTRB: points to the next character to be read.

Exit conditions:

PTRB: points to the next character to be read.

If Z=1: result in StrA (string)
If N =1: result in FPA (real)
Otherwise: result in IntA (integer)

&27 result type (&00=string, &40=integer, &FF=real)

&2A−&4E undefined (except where specified above)

A result type
X next character (after the <numeric> or <string>)
Y result type
C undefined

187

Description

This routine evaluates the <numeric> or <string> at PTRB
(leading spaces will be ignored), and sets the 6502 flags according
to the type of the result (see chapter 4 for more on expressions).
PTRB will be updated to point to the character after the
<numeric> or <string>. Nothing should be left in the
accumulators (&2A to &36), or in BASIC’s temporary workspace
(&37 to &4E), as this will be used by the routine. Any
temporary results which need to be kept should be saved on the
BASIC STACK, or in the ‘ free for users’ zero page area (&70 to
&8F). Note also, that because FN’s can apppear in a <numeric>
or <string>, anything that can be set by a BASIC statement is
liable to change. PTRA will be preserved by this routine (it is
saved during execution of FNs and PROCs).

Other entry points

1 getnsa − Get <numeric> or <string> at PTRA

BASIC1 &9AF7
BASIC2 &9B1D

This entry copies PTRA into PTRB before entering the main
routine. All other entry and exit conditions are the same.

188

getfsb − Get <factor> or <str ing-factor> at PTRB

Execution addr

BASIC1 &AE1B
BASIC2 &ADEC

Entry conditions:

PTRB: points to the next character to be read.

Exit conditions:

PTRB: points to the next character to be read.
If Z= 1: result in StrA (string)
If N=1: result in FPA (real)
Otherwise: result in IntA (integer)

&27 undefined

&2A−&4E undefined (except where specified above)

A result type (&00=string, &40=integer, &FF=real)
X undefined
Y undefined
C undefined

Descr iption

This routine evaluates the <factor> or <string-factor> at PTRB
(leading spaces will be ignored), and sets the 6502 flags according
to the type of the result (see chapter 4 for more on expressions).
PTRB will be updated to point to the first character after the
<factor> or <string-factor>. Nothing should be left in the
accumulators (&2A to &36), or in BASIC’s temporary workspace
(&37 to &4E), as this will be used by the routine. Any temporary
results which need to be kept should be saved on the BASIC
STACK, or in the ‘ free for users’ zero page area (&70 to &8F).
Note that FN’s can be called inside this routine, so anything that
can be set by a BASIC statement is liable to change.

189

Other entry points

1 getifb − Get integer <factor> at PTRB

BASIC1 &92E3
BASIC2 &9292

This entry calls the main routine, and then forces the result to be
an integer. If the result is a string, a ‘Type mismatch’ error (ERR =
6) will be generated; if the result is real, it will be converted to an
integer. Entry and exit conditions are as for the main routine,
except that A and the flags will always indicate an integer result.

2 getrfb − Get real <factor> at PTRB

BASIC1 &92AC
BASIC2 &92EB

This entry calls the main routine, and then forces the result to be
real. If the result is a string, a ‘Type mismatch’ error (ERR = 6)
will be generated; if the result is an integer, it will be converted to
a real number. Entry and exit conditions are as for the main
routine, except that A and the flags will always indicate a real
result.

190

getnmb − Get number at PTRB

Execution addr

BASIC1 &A06C
BASIC2 &A07B

Entry conditions:

PTRB: points 1 after the first digit of the number

A first digit of the number
Y offset from base of PTRB to first digit of number

Exit conditions:

PTRB: points to the next character to be read.

C 0=no number found, 1=number found

If N=1: result in FPA (real)
Otherwise: result in IntA (integer)

&2A−&35 undefined (except where specified above)
&43 undefined
&48−&4A undefined

A result type (&40=integer, &FF=real)
X undefined
Y undefined

Descr iption

This routine gets the positive decimal integer at PTRB whose first
digit has just been read using the ‘Get character at PTRB’ routine.
If no number was found (i.e. the character in A on entry was not
one of ‘0’ to ‘9’), it will clear C and leave zero in FPA as a real
result. If a number was found, it will be left in IntA or FPA,
depending on the type (‘200000’ will be integer, ‘2E5’ or ‘1.7’
will be real).

Other entry points

NONE

191

getlna − Get a tokenised line number at PTRA

Execution addr

BASIC1 &97AE
BASIC2 &97DF

Entry conditions:

PTRA: points to the next character to be read.

Exit conditions:

If C=0 (no line number found):

PTRA: points to first non-space character found.

A character at PTRA
X preserved
Y PTRA offset

If C= 1 (line number found):

PTRA: points to the next character to be read.

IntA: line number (in &2A,&2B)

A undefined
X preserved
Y PTRA offset

Descr iption

This routine checks for a line number token (&8D) at PTRA
(ignoring leading spaces). If it finds one, it gets the 3 bytes of
tokenised line number following it into the low-order 2 bytes of
IntA, and exits with C set. Otherwise, it exits with C clear. See
section 2.3.2 for the format of tokenised line numbers.

Other entry points

NONE

192

10.5 VARIABLE/FN/PROC MANAGEMENT

Named variables, and the location of FNs and PROCs are stored
on the BASIC HEAP, which builds upwards from LOMEM. The
HEAP pointer is stored at &2,&3 in page zero, and points to the
next available memory location for a variable or FN/PROC
information block to be stored in. See section 3. 1 for more on
HEAP storage.

Each named variable stored on the HEAP has its own variable
information block, which gives the name and value of the
variable. These are chained together to form a linked list: one list
for each possible first letter (A to z), and one each for FNs and
PROCs. The format of the variable information block is:

00,01 pointer to start of next block
02− name of variable
XX &00 name terminator
XX+1 value starts here

The ‘name’ field does not include the first letter of the name if it
is a variable (but it does if it is a FN or PROC). The name
includes any ‘%’, ‘$’, or ‘ (’ characters on the end of a variable
name: these give the type of the variable.

Much of the variable handling is done using a variable descriptor
block, which gives the location and type of the variable. This
variable descriptor block has the following format (when in
IntA):

(&2A) points to the start of the variable value
&2C holds the type of the variable

Variable types can be:

&00 single byte integer
&04 4-byte integer
&05 5-byte real number
&80 static string terminated by a &0D
&81 dynamic string (stored on the HEAP)

For the format of these variable types, see section 3.1.3.

193

fndvrb − Find var iable at PTRB

Execution addr

BASIC1 &95A9
BASIC2 &95DD

Entry conditions:

PTRB: points to the first character of the variable name.

A first character of the variable name
Y copy of PTRB offset (in &1B)

Exit conditions:

Z=0,C=0: numeric variable found
Z=0,C=1: string variable found
Z=1,C=0: non-existent (but valid) variable name found
Z=1,C=1: no valid variable was found

A undefined
X undefined
Y undefined

If Z=0: (variable exists)

PTRB: points to the character after the variable
IntA: variable descriptor block

&2E−4E undefined

If Z=1,C=0: (non-existent variable)

PTRB: points to the character after the name
&2C variable type
(&37) points 1 before the start of the name
&39 length of name

&3A−&3D undefined

If Z=1,C= 1: (invalid variable)

(&37) points 1 before PTRB

194

Description

This routine looks for the variable which is at PTRB (this includes
indirected variables like ?A or B!5). If the variable exists, it sets
up the variable descriptor block in IntA. If it does not exist, but is
a valid name, it sets up the pointer at &37 ,&38 with the length of
the name in &39, ready to create it if necessary. If a non-existent
array name is found, an ‘Array’ error (ERR = 14) will be
generated.

Other entry points

1 fndvra − Find variable at PTRA

BASIC1 &9595
BASIC2 &95C9

This entry first copies PTRA into PTRB, and then skips any
leading spaces at PTRB, before entering the main routine. The
exit conditions are the same.

2 fncvra − Find variable at PTRA, creating one if necessary

BASIC1 &9548
BASIC2 &9582

This entry calls entry point 1 above, and if a non-existent, but
valid, variable name is found, it will create it and clear space for it
on the HEAP. Its initial value will be zero (or the empty string).
Exit conditions are the same as for the main routine (the variable
may still be invalid).

195

rdvar − Read value of var iable

Execution addr

BASIC1 &B35B
BASIC2 &B32C

Entry conditions:

IntA: variable descriptor block

Exit conditions:

If Z=1: result in StrA (string)
If N=1: result in FPA (real)
Otherwise: result in IntA (integer)

A: result type (&00=string, &40=integer, &FF=real)
X: undefined
Y: undefined
C: undefined

Descr iption

This routine gets the value of the variable given by the variable
descriptor block in IntA, and transfers it to the relevant
accumulator. This can also be used to get the value of parameters
passed by the BASIC ‘CALL’ statement.

Other entry points

NONE

196

asvar − Assign str ing var iable

Execution addr

BASIC1&8BD3
BASIC2&8C21

Entry conditions:

IntA: variable descriptor block (MUST be a string)
StrA: value to be assigned

Exit conditions:

Value assigned to variable

HEAP: moved up if necessary

Descr iption

This routine assigns the value in StrA to a static or dynamic string.
In the case of a dynamic string, if the space allocated for the string
is not large enough, a new space is allocated on the HEAP (see
section 3.1.3 for more on string allocation). A static string (one
which is to be written into memory using the string indirection
operator) will just be stored at the address given, terminated by a
carriage return character (&0D). This routine can be used to set
the value of string parameters passed by the BASIC ‘CALL’
statement. Both the variable and the value must be a string, as no
test is made by this routine for type mismatch.

Other entry points

1 asvark − Assign variable on stack

BASIC1 &8BD0
BASIC2 &8C1E

This entry pulls the variable descriptor block from the STACK
into IntA before entering the main routine. It should have
previously been pushed on the STACK using the ‘Push IntA’
routine (pushi).

197

anvark − Assign numer ic var iable

Execution addr

BASIC1 &B4E0
BASIC2 &B4B4

Entry conditions:

STACK: variable descriptor block

&27: type of value (&00=string, &40=integer, &FF=real)

Real: value in FPA
Integer: value in IntA

Exit conditions:

STACK: variable descriptor block removed (4 bytes)

Value assigned to variable

&37 − &3A undefined

A undefined
X undefined
Y undefined
C undefined

Descr iption

This routine assigns the value in FPA or IntA (type given in &27)
to the variable whose variable descriptor block is on the STACK.
This should have previously been pushed by the ‘Push IntA’
routine (pushi). This routine can be used to set the value of
numeric parameters passed by the BASIC ‘CALL’ statement. If
the type of the value (in &27) is a string, a ‘Type mismatch’ error
(ERR = 6) will be generated, but the variable type is not checked,
and must be numeric.

198

Other entry points

1 asgtvr − Assign <numeric> to variable on stack

BASIC1&B4DD
BASIC2&B4B1

This entry calls the ‘Get <numeric> or <string> at PTRB’ routine
(getnsb), to set up the value and the type in &27, before entering
the main routine. The variable descriptor block should still be on
the STACK on entry. All temporary areas (&2A to &4E) will be
undefined if this entry is used.

199

schvar − Search for var iable in list

Execution addr

BASIC1 &9429
BASIC2 &9469

Entry conditions:

(&37) points 1 before the start of the variable name
&39 length of name

Exit conditions:

If Z=1: variable not found
If Z=0: variable found

&3A−&3D undefined

A undefined
X preserved
Y undefined
C undefined

If Z=0 (variable found):

(&2A) points to the variable value

Descr iption

This routine searches for a variable name in the linked list. If
found, it sets the low 2 bytes of the variable descriptor block in
IntA to the address of the value of the variable. This routine is
used by the main ‘Find variable at PTRB’ routine (fndvar).

Other entry points

NONE

200

lnkvar − L ink in new var iable

Execution addr

BASIC1 &94BC
BASIC2 &94FC

Entry conditions:

(&37) points 1 before the start of the name
&39 length of name

Exit conditions:

New variable information block linked in to HEAP.

(&3A) points to the previous block
HEAP points to the new block

A undefined
X undefined
Y length of name
C undefined

Descr iption

This routine links in a new variable infomation block to the linked
list of variables on the HEAP (see section 3.1 for more on the
HEAP). The MSB of the new link pointer is zeroed (to mark the
end), and the name is transferred to the new block. The routine
exits with the pointer at &3A,3B pointing to the previous link
pointer (which now points to the new block), so that this pointer
can be re-set if there is not enough memory for the new block.
This routine does not allocate any memory for the new block; this
must be done with a call to the ‘Clear space for information
block’ routine (clrib).

Other entry points

NONE

201

scnvn − Scan var iable name

Execution addr

BASIC1 &951F
BASIC2 &9559

Entry conditions:

(&37) points 1 before the start of the name

X (see exit)

Exit conditions:

A first character following variable name
X incremented by the length of the name
Y offset from (&37) of character in A
C undefined

Descr iption

This routine scans the variable name starting one byte after the
pointer at (&37). Only the characters A-Z, a-z, @, _, and £ are
allowed in variable names (and 0-9 after the first character). The
special variable symbols ‘$’ and ‘%’ are not recognised by this
routine. This routine is used by the array handler and the FN/
PROC handler.

Other entry points

NONE

202

schfnp − Look for FN/PROC in list

Execution addr

BASIC1 &941B
BASIC2 &945B

Entry conditions:

(&37) points 1 before the FN/PROC token
&39 length of name (including 1 for FN/PROC token)

Exit conditions:

If Z=1: FN/PROC not found in list
If Z=0: FN/PROC found

&3A−&3D undefined

A undefined
X preserved
Y undefined
C undefined

If Z=0 (FN/PROC found):

(&2A) points to the FN/PROC pointer field

Descr iption

This routine searches for a given FN or PROC in the linked list on
the HEAP. If found, it leaves the low 2 bytes of IntA pointing to
the pointer field of the FN/PROC information block. This pointer
field points to the first character after the FN or PROC name
definition (i.e. the ‘ (’ if it has any parameters). See section 3.1 for
HEAP storage.

Other entry points

NONE

203

lnkfnp − L ink in new FN/PROC

Execution addr

BASIC1 &94AD
BASIC2 &94ED

Entry conditions:

(&37) points 1 before the FN/PROC token
&39 length of name (including FN/PROC token)

Exit conditions:

New FN/PROC information block linked in to the HEAP.

(&3A) points to the previous block
HEAP points to the new block

A undefined
X undefined
Y length of name
C undefined

Descr iption

This routine links in a new FN or PROC infornation block to the
linked list of FNs or PROCs on the HEAP (see section 3.1 for
more on the HEAP). The MSB of the new link pointer is zeroed
(to mark the end), and the name is transferred to the new block.
The routine exits with the pointer at &3A,3B pointing to the
previous link pointer (which now points to the new block), so that
this pointer can be re-set if there is not enough memory for the
new block. This routine does not allocate any memory for the new
block; this must be done with a call to the ‘Clear space for
information block’ routine (clrib).

Other entry points

NONE

204

clr ib − Clear space for new information block

Execution addr

BASIC1 &94F7
BASIC2 &9531

Entry conditions:

X number of bytes to be cleared (at least 1)
Y offset of end of name into information block

HEAP points to start of information block
(&3A) points to the previous block in the list

Exit conditions:

Bytes cleared in information block given by X on entry

HEAP: moved up to cover new block

A LSB of HEAP pointer
X 0
Y MSB of HEAP pointer
C 0

Descr iption

This routine clears and allocates space on the HEAP for a variable
or FN/PROC information block, once the pointer and name have
been set up. On entry, Y (as an offset from the HEAP pointer)
points to the last character of the name already in the information
block, and X contains the number of bytes which need to be
zeroed after it (including 1 for the name terminating byte). If the
HEAP pointer is above the STACK pointer after the space for the
block is allocated, then a ‘No room’ error is generated (message
only in BASIC1, ERR = 0 in BASIC2). Because the bytes are
cleared before the space check is made, the top of STACK
contents will be destroyed if there is not enough room. This
routine is called after the ‘Link in new variable’ (Inkvar) or ‘Link
in new FN/PROC’ (lnkfnp) routines have set up the name and link
pointer.

205

Other entry points

1 mvheap − Add Y to HEAP pointer

BASIC1 &94FF
BASIC2 &9539

This entry point adds Y to the HEAP pointer. It does not zero any
bytes. If the new HEAP pointer is above the STACK pointer, a
‘No room’ error is generated, otherwise the routine returns.

206

10.6 ST ACK MANAGEMENT

The BASIC STACK pointer is maintained in page zero in
&04,&05 and works downwards from HIMEM. It is used to hold
temporary results, and information saved by FNs and PROCs. For
more on the use of the STACK, see section 3.2.

pusha − Push IntA, FPA, or StrA on STACK

Execution addr

BASIC1 &BDA8
BASIC2 &BD90

Entry conditions:

If Z=1: string in StrA
IfN=1: real in FPA
Otherwise: integer in IntA

Exit conditions:

Item pushed on ST ACK

STACK: pointer lowered by size of item

A undefined
X preserved
Y undefined
C undefined

Descr iption

This routine tests the 6502 flags on entry to find the type of the
item to be pushed on the BASIC STACK. It then pushes the
appropriate accumulator (IntA, FPA, or StrA). Note that there is
no way to tell the type of an item on the STACK, so this should be
saved before this routine is called. If the ST ACK would be
lowered below the level of the HEAP by pushing this item, a ‘No
room’ error is generated (message only in BASIC1, ERR = 0 in
BASIC2), and the item is not pushed.

207

Other entry points

1 pushi − Push IntA on STACK

BASIC1 &BDAC
BASIC2 &BD94

This routine pushes IntA on the BASIC ST ACK, lowering the
STACK pointer by 4 bytes. This can be used to save the variable
descriptor block, which is sometimes held in IntA.

2 pushf − Push FPA on STACK

BASIC1 &BD69
BASIC2 &BDB2

This entry pushes FPA on the BASIC STACK, lowering the
STACK pointer by 5 bytes.

3 pushs − Push StrA on STACK

BASIC1 &BDCA
BASIC2 &BDB2

This routine pushes StrA on the BASIC STACK, lowering the
STACK pointer by one more than the length of the string (the byte
on the top gives the length of the string).

208

chksp − Check for STACK/HEAP clash

Execution addr

BASIC1 &BE4C
BASIC2 &BE34

Entry conditions:

STACK: new value of STACK pointer to be tested

A copy of LSB of new STACK pointer, &4

Exit conditions:

A preserved (LSB of STACK pointer)
X preserved
Y MSB of STACK pointer
C 1

Descr iption

This routine tests the STACK pointer against the HEAP pointer. If
the STACK is below the HEAP, a ‘No room’ error is generated
(message only in BASIC1, ERR = 0 in BASIC2). If there is no
clash, the routine returns.

Other entry points

1 lwrsp − Lower STACK pointer; check for HEAP clash

BASIC1 &BE46
BASIC2 &BE2E

This entry point can be used if up to 255 bytes need to be
allocated on the STACK. The LSB of the STACK pointer (in &4)
should be loaded into A, and the number of bytes required should
be subtracted from this. A call to this entry point will then save A
as the LSB of the new STACK pointer, and decrement the MSB
(in &5) if the subtraction had cleared the carry flag (i.e. if the
number of bytes to be allocated was greater than the LSB of the
STACK pointer). The main routine will then be entered to test for
a HEAP clash.

209

popi − Pop IntA from STACK

Execution addr

BASIC1 &BE02
BASIC2 &BDEA

Entry conditions:

STACK: points to the 4-byte integer to be popped

Exit conditions:

IntA: integer popped from STACK

STACK: pointer moved up by 4 bytes

A undefined
X preserved
Y 0
C undefined

Descr iption

This routine pops the 4-byte integer from the top of the ST ACK
into IntA, and moves the STACK pointer up by 4 bytes to remove
it.

Other entry points

1 rmvi − Remove integer from STACK

BASIC1 &BE17
BASIC2 &BDFF

This entry moves the STACK pointer up by 4 bytes to remove the
integer on the STACK. X and Y are preserved.

210

popi0 − Pop integer from STACK into page zero

Execution addr

BASIC1 &BE25
BASIC2 &BE0D

Entry conditions:

STACK: points to the 4-byte integer to be popped

X points to the destination for the integer

Exit conditions:

00,X to 03,X holds the integer just popped

STACK: pointer moved up by 4 bytes

A undefined
X preserved
Y 0
C undefined

Descr iption

This routine pops the 4-bytes on the top of the STACK into page
zero at 00,X to 03,X. It then moves the STACK pointer up by 4
bytes to remove it.

Other entry points

1 popi1 − Pop integer from stack into &37 to &3A

BASIC1 &BE23
BASIC2 &BE0B

This entry sets X to &37 before entering the main routine.

211

popf − Pop real number from STACK; set up
(& 4B)

Execution addr

BASIC1 &BD96
BASIC2 &BD7E

Entry conditions:

STACK: points to the 5-byte real number to be popped

Exit conditions:

(&4B) points at real number

STACK: pointer moved up by 5 bytes

A undefined
X preserved
Y preserved
C undefined

Descr iption

This routine pops a real number from the STACK, and moves up
the STACK pointer by 5 bytes to remove it. It does not move the
number into FPA, but it sets up the floating point memory pointer,
(&4B), to point to it. If the number is to be saved, it should be
loaded into FPA or FPB after this routine has been called.

Other entry points

NONE

212

pops − Pop StrA from STACK

Execution addr

BASIC1 &BDE3
BASIC2 &BDCB

Entry conditions:

STACK: points to the string to be popped

Exit conditions:

StrA: string popped from STACK

STACK: pointer moved up to remove string

A undefined
X preserved
Y 0
C undefined

Descr iption

This routine pops a string from the STACK into StrA, and moves
the STACK pointer up by one more than the length of the string,
to remove it from the stack (the length of the string is the first
byte on the stack).

Other entry points

1 rmvs − Remove string from STACK

BASIC1 &BDF4
BASIC2 &BDDC

This entry gets the length of the string from the stack, and moves
the STACK pointer up by one more than the length of the string
(to allow for the length byte, which was also on the stack).

213

pshvvd − Push value and descr iptor of var iable
on STACK

Execution addr

BASIC1 &B33C
BASIC2 &B30D

Entry conditions:

IntA: variable descriptor block

Exit conditions:

Value of variable pushed on STACK, followed by descriptor

STACK: lowered by required amount
A undefined
X undefined
Y undefined
C undefined

Descr iption

This routine gets the value of the variable pointed to by the
variable descriptor block in IntA, and pushes it on the STACK. It
then pushes the variable descriptor block, so the variable can be
re-set later. This is used to save the old values of local variables
(or parameters) for a FN or a PROC.

Other entry points

NONE

214

poppar − Pop old parameter value from STACK

Execution addr

BASIC1 &8C5B
BASIC2 &8CC1

Entry conditions:

&37−&39 variable descriptor block

STACK: points to the value to be popped

Exit conditions:

Value assigned to variable

STACK: pointer moved up to remove value

A undefined
X undefined
Y undefined
C undefined

Descr iption

This routine is used to re-assign old values to parameters and local
variable which have previously been saved on the STACK. It
should NOT be used to assign new variables, because it assumes
the allocated space for a string will be large enough (which it will
be, if it came from there in the first place). It is used on a return
from a procedure or function, to re-set old variable values.

Other entry points

NONE

215

10.7 INPUT/OUTPUT

These routines are the input and output routines used in BASIC.
The output routines all handle COUNT (in &IE) and WIDTH (in
&23): COUNT is used by BASIC to keep track of the current
cursor column to be used by TAB.

There is no routine to print a number from IntA or FPA: to do this
the number can be converted to a string in StrA using the ‘Type
conversion’ routines (section 10.8), and then StrA can be printed
(there is not a routine for this either, but it is fairly simple). Input
of numbers can also be accomplished by inputting a string, and
then converting that to a number.

inputs − Input str ing from keyboard into StrA

Execution addr

BASIC1 &BC17
BASIC2 &BBFC

Entry conditions:

NONE

Exit conditions:

&600− string input
&37−&3B used as the OSWORD parameter block

COUNT set to zero (in &1E)

A 0
X undefined
Y length of string
C 0

216

Description

This routine calls OSWORD with A=&0 to input a line from the
keyboard into StrA at &600 onwards. Maximum line length is 238
bytes; all characters with an ASCII value of less than &20 will not
be put in the input line (i.e. the control characters). If the ESCAPE
key terminated the input instead of a carriage return, an ‘Escape’
error (ERR = 17) will be generated.

Other entry points

1 inputk − Input string into the keyboard buffer

BASIC1 &BC1D
BASIC2 &BC02

This entry prints the character in A as a prompt, and sets the
address for input to be &700 (the keyboard buffer) before joining
the main routine. It is used for BASIC’s immediate mode

217

pchar − Pr int A as a character

Execution addr

BASIC1 &B571
BASIC2 &B558

Entry conditions:

A character to be printed

Exit conditions:

COUNT updated, allowing for WIDTH if necessary

A preserved
X preserved
Y preserved
C undefined

Descr iption

This routine outputs the character in A using OSWRCH, and
increments the value of COUNT. If COUNT has moved past
WIDTH, the character will be printed on a new line, and COUNT
will be reset.

Other entry points

1 pspace − Print a space

BASIC1 &B57B
BASIC2 &B565

This entry loads A with a space (&20) before entering the main
routine.

2 pnewl − Print a newline

BASIC1 &BC42
BASIC2 &BC25

This entry point calls OSNEWL to print a carriage return and a
line feed, and then zeros COUNT.

218

ptoken − Pr int A as a character or token

Execution addr

BASIC1 &B53A
BASIC2 &B50E

Entry conditions:

A character or token to be printed

Exit conditions:

COUNT updated, allowing for WIDTH if necessary

&37−&3A undefined

A last character printed
X preserved
Y preserved
C undefined

Descr iption

If the character in A is less than &80, it will be printed out as a
character. Otherwise, it will be interpreted as a token, and the
corresponding keyword will be printed from the token table. This
routine will not handle a line number token, or any other invalid
token (which may cause the routine to hang up). This routine is
used by the ‘LIST’ and ‘REPORT’ statements.

Other entry points

NONE

219

phex − Pr int A as a 2-digit HEX number

Execution addr

BASIC1 &8570
BASIC2 &B545

Entry conditions:

A byte to be printed

Exit conditions:

COUNT updated, allowing for WIDTH if necessary

A last character printed
X preserved
Y preserved
C undefined

Descr iption

This routine prints the byte in A as a 2-digit HEX number (a
leading zero will not be suppressed). This routine is used by the
assembler, but has been re-located in BASIC2 to save space.

Other entry points

1 phexsp − Print HEX byte, followed by a space

BASIC1 &856A
BASIC2 &B562

This entry calls the main routine to print the 2-digit HEX number
in A, and then prints a space after it. This leaves &20 in A on exit.

220

plnum0 − Pr int line number
��
Execution addr

BASIC1 &98F1
BASIC2 &991F

Entry conditions:

IntA: line number to be printed

Exit conditions:

COUNT updated, allowing for WIDTH if necessary

&14 0 (field width used)

&37 undefined
�&3F−&43 undefined

A last character printed
X &FF
Y undefined
C undefined

Descr iption

This routine prints the line number in the low 2 bytes of IntA as a
positive decimal number between 0 and 65535. No leading spaces
are printed.

Other entry points

1 pInum5 − Print line number (field 5)

BASIC1 &98F5
BASIC2 &9923

This entry uses a field width of 5 to print the line number: it will
be padded with leading spaces if necessary. Location &14 will be
set to 5 on exit.

221

10.8 TYPE CONVERSION

These routines allow conversion between integers, reals, and
strings.

The ‘Integer to real’ and ‘Real to integer’ routines are used
throughout the expression evaluator in BASIC when the type of
the number being dealt with needs to be converted. For example if
an integer is being added to a real number, the integer must be
converted to real before the addition is carried out.

The ‘String to number’ and ‘Number to string’ routines are used
during input and output of numbers, as the I/O routines do not
handle numbers directly.

citof − Conver t integer to real number

Execution addr

BASIC1 &A2AF
BASIC2 &A2BE

Entry conditions:

IntA: integer to be converted

Exit conditions:

FPA: converted real number (normalised)
IntA: ABS value of original integer

A undefined
X undefined
Y undefined
C undefined

222

Descr iption

This routine converts the 2’s complement (signed) integer in IntA
to a real number in FPA.

catof − Conver t A to real number

Execution addr

BASIC1 &A2DE
BASIC2 &A2ED

Entry conditions:

A 2’s complement signed integer (+127 to −128)

Exit conditions:

FPA: converted real number (normalised)
A 0 if number is zero, else undefined (non-zero)
X undefined
Y undefined
C undefined
Z 1 if number is zero, else 0

Descr iption

This routine converts the 2’s complement (signed) integer in IntA
to a real number in FPA.

Other entry points

NONE

223

cftoi − Conver t real number to integer

Execution addr

BASIC1 &A3F2
BASIC2 &A3E4

Entry conditions:

FPA: real number to be converted

Exit conditions:

IntA: converted integer

FPA: 2’s complement integer part of number in mantissa
FPB: ABS value of fractional part of number in mantissa

A undefined
X undefined
Y undefined
C undefined

Descr iption

This routine converts the floating point number in FPA into an
integer in IntA. If the number is too large to be converted to an
integer, a ‘Too big’ error (ERR = 20) will be generated. On
conversion, the ABS value of the number will be truncated, and
then negated if necessary; this means that ‘−1.9’ will be converted
to ‘−1’ (try ‘A% = −1.9’). On exit, FPB mantissa contains the
ABS value of the fractional part of the number (the top bit of &3E
represents 0.5), and the sign of this fraction will be in &2E, so this
could be used to round the number properly afterwards, if
necessary.

224

Other entry points

1 int − Take INT ofFPA

BASIC1 &ACA5
BASIC2 &AC7F

This entry performs the equivalent of the BASIC function ‘ INT’:
it converts the floating point number to the highest integer which
is less than or equal to it (i.e. ‘−1.9’ gets converted to ‘−2’, ‘1.9’
gets converted to ‘1’). This routine will exit with &40 in A, and
the Z and N flags clear, to signal an integer result (as if from the
‘Get <factor> or <string-factor>’ routine). To round a number to
the nearest integer, 0.5 could be added to it before this routine is
called.

cntos − Conver t number to str ing

�Execution addr

BASIC1 &9ED0
BASIC2 &9EDF

Entry conditions:

Y type of number (&40=integer, &FF=real)

IfY=&40: integer in IntA
If Y=&FF: real in FPA

@% set as for the BASIC ‘PRINT’ statement
&15 top bit set if number is to be in HEX

225

Exit conditions:

StrA: converted string

IntA: undefined
FPA: undefined
FPB: undefined

&37,&38 undefined
&3B−&46 undefined
&49 undefined

&46C−&470 undefined

A undefined
X undefined
Y undefined
C undefined

Description

This routine converts the number in either IntA or FPA to a string
in StrA. If entered with bit 7 of &15 set, then a HEX number will
be produced; otherwise a decimal number will be produced. The
format of this number depends on the value of @%o (refer to
‘PRINT’ in the User Guide). This routine uses most of the page
zero temporary area, so any temporary results should be saved out
of the way before this routine is called.

Other entry points

1 cntoh − Convert number to HEX string

BASIC1 &9E81
BASIC2 &9E90

This is the routine called if the hex flag (bit 7 of &15) is set on
entry to the main routine. This will convert the number to a hex
string, ignoring the settings of @%o and &15. Y must still contain
the type of the number (if it is real it will be converted to integer
before the HEX string is generated). Any leading zeros will be
suppress.ed. This entry only uses locations &3F to &46 for the
conversion.

226

cston − Conver t str ing to number

Execution addr

BASIC1 &AC5A
BASIC2 &AC34

Entry conditions:

StrA: string to be converted

Exit conditions:

N 1=real, 0=integer

If N=1: result in FPA (real)
If N=0: result in IntA (integer)

&27 number type (&40=integer, &FF=reaI)

&2A− &35 undefined (except where specified above)
&43 undefined
&48−&4A undefined

A number type
X undefined
Y undefined
C undefined

Descr iption

This routine converts the ASCII decimal number in StrA into
either a real number in FPA or an integer in IntA. It uses the ‘Get
number at PTRB’ routine (getnmb), pointing PTRB into StrA, and
restores PTRB to its original value afterwards. It leaves the 6502
flags indicating the type of the result (either integer or real).

Other entry points

NONE

227

10.9 INTEGER ROUTINES

Most of the integer arithmetic is performed using the 4-byte
integer accumulator, IntA, which is held in page zero at &2A to
&2D (LSB in &2A, MSB in &2D). The multiplication and
division routines also use two other 4-byte accumulators in the
temporary storage area, at &39 to &3C and at &3D to &40.

IntA can be transfered to and from memory by using the variable
handling routines in section 10.5, with the variable descriptor
block set up as if to point to an integer variable. It can be set to 0
or −1 by using the ‘FALSE’ and ‘TRUE’ entry points (section
10.11.

lodiay − Load IntA with A, Y

Execution addr

BASIC1&AF19
BASIC2&AEEA

Entry conditions:

A LSB of 16-bit positive integer
Y MSB of 16-bit positive integer

Exit conditions:

IntA: 16-bit positive integer from A, Y

Z=0, N=0 to signal an integer result

A &40 (result type =integer)
X preserved
Y preserved
C preserved

Descr iption

This routine sets up IntA with the 16-bit positive integer in A and
Y. The top 2 bytes of IntA are set to zero.

228

Other entry points

1 lodia − Load IntA with A

BASIC1 &AF07
BASIC2 &AED8

This entry sets Y to zero before entering the main routine; thus
setting IntA to the 8-bit positive integer in A.
&40 (result type = integer)

lodi0 − Load IntA from 00,X to 03,X

Execution addr

BASIC1 &AF85
BASIC2 &AF56

Entry conditions:

X points to 4-byte integer in page zero

Exit conditions:

IntA: 4-byte integer loaded from 00,X to 03,X

Z=0, N=0 to signal an integer result

A preserved
X preserved
Y preserved
C preserved

Descr iption

This routine loads IntA with the 4-byte integer in page zero
pointed to by X.

Other entry points

NONE

229

stor i0 − Store IntA at 00,X to 03,X

Execution addr

BASIC1 &BE5C
BASIC2 &BE44

Entry conditions:

X points to 4-byte area in page zero

IntA: number to be transferred

Exit conditions:

00,X to 03,X contains the 4-byte integer in IntA

A MSB of integer
X preserved
Y preserved
C preserved

Descr iption

This routine copies the contents of IntA into a 4-byte area of page
zero pointed to by X.

Other entry points

NONE

230

negi − Negate IntA

Execution addr

BASIC1 &ADB5
BASIC2 &AD93

Entry conditions:

IntA: 4-byte integer to be negated

Exit conditions:

IntA: negated 4-byte integer

Z=0, N =0 to signify an integer result

A &40 (result type = integer)
X preserved
Y 0
C 0

Descr iption

This routine negates the 4-byte integer in IntA.

Other entry points

1 absi − Take ABS value of IntA

BASIC1 &AD94
BASIC2 &AD71

This entry takes the absolute value of IntA. If it is negative, it will
be negated; otherwise it will be unaffected. Exit conditions are as
for the main routine.

231

addi − Per form integer addition

Execution addr

BASIC1 &9C36
BASIC2 &9C5B

Entry conditions:

IntA: 4-byte signed integer
STACK: 4-byte signed integer to add to IntA

X anything except ‘+’ or ‘−’

Exit conditions:

IntA: 4-byte signed integer result

integer popped from STACK

A &40 (type of result = integer)
X preserved
Y 3
C undefined

Descr iption

This routine adds the 4-byte signed integer on the BASIC STACK
to the 4-byte signed integer in IntA. No overflow check is made
by this routine.

This routine is an integral part of the expression evaluator. The X
register must be set to any character other than a ‘+’ , or a ‘−’
before the routine is called, or it will attempt to read another part
of the expression it expects to be at PTRB. X is its one character
look-ahead (see section 4.2).

Other entry points

NONE

232

subi − Per form integer subtraction

Execution addr

BASIC1 &9C9D
BASIC2 &9CC2

Entry conditions:

STACK: 4-byte signed integer
IntA: integer to subtract from number on STACK

X anything except ‘+’ or ‘−’

Exit conditions:

IntA: 4-byte signed integer result

integer pqpped from STACK

A &40 (type of result = integer)
X preserved
Y 3
C undefined

Descr iption

This routine subtracts the 4-byte signed integer in IntA from the 4-
byte signed integer on the BASIC STACK. No overflow checking
is made by this routine.

This routine is an integral part of the expression evaluator. The X
register must be set to any character other than a ‘+’ , or a ‘−’
before the routine is called, or it will attempt to read another part
of the expression it expects to be at PTRB. X is its one character
look-ahead (see section 4.2).

Other entry points

NONE

233

muli − Per form integer multiplication

Execution addr

BASIC1 &9D4A
BASIC2 &9D6D

Entry conditions:

IntA: 4-byte signed integer multiplier

STACK: 4-byte signed integer multiplicand

&27 anything except ‘ * ’, ‘ /’, &83 or &81

Exit conditions:

IntA: 4-byte signed integer result
&39−&3C undefined
&3D−&40 ABS value of result

multiplicand popped from STACK

A &40 (type of result = integer)
X copy of &27
Y undefined
C undefined

Descr iption

This routine multiplies the 4-byte signed integer in IntA by the 4-
byte signed integer on the BASIC stack. The number in IntA must
be between −32768 and +32767, as only the low 2 bytes are used,
once its ABS value has been found. The routine does no checking
for overflow, so it is a good idea to check for this before calling
the routine.

234

This routine is an integral part of the expression evaluator.
Location &27 must be set to any character other than a ‘ * ’, a ‘ /’, a
‘MOD’ token or a ‘DIV’ token before the routine is called, or it
will attempt to read another part of the expression it expects to be
at PTRB. Location &27 is its one character look-ahead (see
section 4.2).

Other entry points

NONE

divi − Per form integer division

Execution addr

BASIC1 &99C0
BASIC2 &99E8

Entry conditions:

IntA: 4-byte positive integer divisor
&39−&3C 4-byte positive integer dividend
&3D−&40 zero

Exit conditions:

IntA: preserved

&39−&3C 4-byte positive integer quotient
&3D−&40 4-byte positive integer remainder

A undefined
X undefined
Y 0
C undefined

Descr iption

This routine divides the 4-byte integer in page zero at &39 to
&3C by the 4-byte positive integer in IntA (&3D to &40 must be
set to zero on entry), leaving the result in &39 to &3C, and the
remainder in &3D to &40. If IntA is zero on entry to this routine,
a ‘Division by zero’ error (ERR = 18) will be generated.

235

If a signed division is required, the signed numbers should be
converted to positive integers (using the ‘Take ABS value of IntA’
routine above) before this routine is called. The sign of the
result can be calculated as the EOR of the signs of the two
original operands (which should be saved before their ABS value
is used for the division), and the result of the division then
negated if necessary.

Other entry points

NONE

236

10.10 FLOATING POINT ROUTINES

Most of the floating point arithmetic is done using the main
floating point accumulator FPA, at &2E to &35, and the
secondary floating point accumulator FPB, at &3B to &42 (in the
page zero temporary storage area). The memory area used by FPB
may be used for other purposes by routines which do not involve
any floating point calculations. See section 2.2.2 for more on
floating point number storage.

The format of the accumulators is:

FPA FPB
&2E &3B sign byte
&2F &3C exponent overflow byte
&30 &3D binary exponent (offset &80)
&31 &3E mantissa (MSB)
&32 &3F mantissa
&33 &40 mantissa
&34 &41 mantissa (LSB)
&35 &42 mantissa low order rounding byte

FPA and FPB are transferred to and from memory using a pointer
at &4B,&4C. Floating point numbers are packed into 5 bytes
when stored out in memory.

�movfab − Move FPA to FPB

��Execution addr

BASIC1&A20F
BASIC2&A21E

Entry conditions:

FPA: number to be copied

Exit conditions:

FPA: preserved
FPB: copy of FPA

237

A undefined
X preserved
Y preserved
C preserved

Descr iption

This routine copies the floating point number in FPA to FPB.

Other entry points

NONE

movfba − Move FPB to FPA

Execution addr

BASIC1 &A4E4
BASIC2 &A4DC

Entry conditions:

FPB: number to be copied

Exit conditions:

FPB: preserved
FPA: copy of FPB

A undefined
X preserved
Y preserved
C preserved

Descr iption

This routine copies the floating point number in FPB to FPA.

Other entry points

NONE

238

ldfan0 − Load FPA with zero

Execution addr

BASIC1 &A691
BASIC2 &A686

Entry conditions:

NONE

Exit conditions:

FPA: zero

A 0
X preserved
Y preserved
C preserved
Z 1

Descr iption

This routine sets the floating point accumulator FPA to zero.

Other entry points

NONE

239

ldfan1 − Load FPA with 1.0

Execution addr

BASIC1 &A6A4
BASIC2 &A699

Entry conditions:

NONE

Exit conditions:

FPA: 1.0
A &81
X preserved
Y &81
C preserved
Z 0

Descr iption

This routine sets the floating point accumulator FPA to 1.0.

Other entry points

NONE

240

ldfbn0 − Load FPB with zero

Execution addr

BASIC1&A463
BASIC2&A453

Entry conditions:

NONE

Exit conditions:

FPB: zero

A 0
X preserved
Y preserved
C preserved
Z 1

Descr iption

This routine sets the floating point accumulator FPB to zero.

Other entry points

NONE

241

ldfam − Load FPA from (& 4B)

Execution addr

BASIC1 &A3A6
BASIC2 &A3B5

Entry conditions:

(&4B) set to point to 5-byte packed real number

Exit conditions:

FPA: real number unpacked from (&4B)

A 0 if FPA is zero, else undefined (non-zero)
X preserved
Y 0
C preserved
Z set if FPA is zero, else clear

Descr iption

This routine loads the floating point accumulator FPA from
memory, unpacking it from its S-byte packed format. On entry,
the pointer at &4B,&4C points at the number to be loaded.

Other entry points

1 ldfatl − Load FPA from &46C to &470

BASIC1 &A3A3
BASIC2 &A3B2

This entry pre-sets the memory pointer (&4B) to point to the real
number temporary storage slot at &46C before entering the main
routine.

242

ldfbm − Load FPB from (& 4B)

Execution addr

BASIC1 &A33F
BASIC2 &A34E

Entry conditions:

(&4B) set to point to 5-byte packed real number

Exit conditions:

FPB: real number unpacked from (&4B)

A 0 if FPA is zero, else undefined (non-zero)
X preserved
Y 0
C preserved
Z set if FPA is zero, else clear

Descr iption

This routine loads the floating point accumulator FPB from
memory, unpacking it from its 5-byte packed format. On entry, the
pointer at &4B ,&4C points at the number to be loaded.

Other entry points

NONE

243

stfam − Store FPA at (& 4B)

Execution addr

BASIC1 &A37E
BASIC2 &A38D

Entry conditions:

FPA: real number to be stored

(&4B) points to 5-byte destination

Exit conditions:

Number stored at (&4B)

A undefined
X preserved
Y 4
C preserved

Descr iption

This routine packs FPA into a 5-byte area of memory pointed to
by the pointer at &4B,&4C. Note that the-mumber in FPA must be
in normalised form (i.e. with the top bit of the MSB of the
mantissa set) before this routine is called to store it in memory.
FPA and (&4B) are preserved by this operation. There is no
corresponding routine to store the contents of FPB into memory.

Other entry points

1 stfatx − Store FPA in floating point temp area

Temp slot BASIC1 BASIC2

stfat1 &46C to &470 &A376 &A385
stfat2 &471 to &475 &A36E &A37D
stfat3 &476 to &47A &A372 &A381

244

These entry points pre-set the memory pointer at (&4B) to point
to a floating point temporary storage slot (&46C, &471, or &476)
before entering the main routine. These slots can be used to hold
temporary results in the middle of complex calculations, but they
should not be used if the expression evaluator is called, as this
may use these areas itself.

exfam − Exchange FPA with number at (& 4B)

Execution addr

BASIC1 &A4DE
BASIC2 &A4D6

Entry conditions:

FPA: real number
(&4B) real number

Exit conditions:

FPA real number from (&4B)
FPB real number from (&4B)
(&4B) real number from FPA

A undefined
X preserved
Y 4
C preserved

Descr iption

This routine exchanges the (normalised) number in FPA with the
number pointed to by (&4B). It loads FPB from (&4B), stores
FPA at (&4B), and then copies FPB into FPA.

Other entry points

NONE

245

pntmtx − Point (& 4B) at temp storage slot

Execution addr

Temp slot BASIC1 BASIC2

pntmt1 &46C to &470 &A7FB &AF75
pntmt2 &471 to &475 &A7F3 &A7ED
pntmt3 &476 to &47A &A7F7 &A7F1
pntmt4 &47B to &47F &A7EF &A7E9

Entry conditions:

NONE

Exit conditions:

(&4B) points to 5-byte temp store slot

A 4
X preserved
Y preserved
C preserved

Descr iption

These routines set the floating point memory pointer in &4B,&4C
to point to a temporary storage slot.

Other entry points

NONE

246

tstfa − Test FPA

Execution addr

BASIC1 &A1CB
BASIC2 &AIDA

Entry conditions:

FPA: number to be tested

Exit conditions:

If Z= 1, FPA is zero
If Z=0, N=1 FPA is negative
If Z=0, N=0 FPA is positive

A zero if Z=0, else undefined (non-zero)
X preserved
Y preserved
C preserved

Descr iption

This routine tests the floating point accumulator FPA, and sets the
Z and N flags of the 6502 according to the number.

Other entry points

NONE

247

nmlfa − Normalise FPA

Execution addr

BASIC1 &A2F4
BASIC2 &A303

Entry conditions:

FPA: number to be normalised

Exit conditions:

FPA: normalised number

A 0 if FPA is zero, else undefined (non-zero)
X undefined
Y undefined
C undefined
Z set if number is zero, else clear

Descr iption

This routine ensures that the number in FPA is in normalised form
(i.e. it has the top bit of the MSB of the mantissa set). If it is not
already normalised, it will shift up the mantissa of the number
(correcting the exponent) until it is.

Other entry points

NONE

248

rcofa − Round FPA, and check over flow

Execution addr

BASIC1 &A667
BASIC2 &A65C

Entry conditions:

FPA: number to be rounded

Exit conditions:

FPA: number with mantissa rounded into 4 bytes

A 0
X undefined
Y undefined
C undefined
Z 1

Descr iption

This routine tests the low-order rounding byte of FPA mantissa
(held in &35), and rounds up the remaining 4 bytes of the
mantissa if necessary. The low-order rounding byte is used for
more accuracy in the middle of calculations, but must be rounded
up into the rest of the mantissa before the number can be stored in
memory in its packed format.

The routine then checks the exponent overflow byte (which is
used to allow internal calculations to temporarily overflow the
normal number limits). If this is zero, no overflow has occurred,
and the routine exits; if it is negative, an underflow has occurred,
and the number will be set to zero; and if it is positive (non-zero),
an overflow has occurred, and a ‘Too big’ error (ERR = 20) will
be generated. This routine (together with normalising) ensures
that FPA is ready to be stored in memory in its packed 5-byte,
format.

249

Other entry points

1 nrofa − Normalise, round and check overflow

BASIC1 &A664
BASIC2 &A659

This normalises FPA before entering the main routine above.

negfa − Negate FPA

Execution addr

BASIC1 &ADA0
BASIC2 &AD7E

Entry conditions:

FPA: number to be negated

Exit conditions:

FPA: negative of initial number

Z=0, N=1 to signal a real result

A &FF (to signal a real result)
X preserved
Y preserved
C preserved

Descr iption

This routine negates the real number in FPA, and sets the flags to
signal a real result.

Other entry points

NONE
��

250

addfba − Add FPB to FPA

Execution addr

BASIC1 &A513
BASIC2 &A50B

Entry conditions:

FPA, FPB contain the numbers to be added

Exit conditions:

FPA: sum
FPB: undefined

A undefined
X undefined
Y undefined
C undefined
Z undefined

Descr iption

This routine adds the floating point number in FPB to the floating
point number in FPA, leaving the result in FPA, and normalises
the result. If a subtraction is required, then the number to be
subtracted should be negated (using the ‘Negate FPA’ routine
above), and the resulting numbers can added together.

Other entry points

1 addmfa − Add number at (&4B) to FPA

BASIC1 &A50E
BASIC2 &A500

This entry point loads the number at (&4B) into FPB before
calling the main routine. On exit, the ‘Round FPA and check
overflow’ routine is called to ensure that it is ready to be stored in
memory (a ‘Too big’ error will be generated if it overflows).

251

2 subfam − Subtract FPA from number at (&4B)

BASIC1 &A50B
BASIC2 &A4FD

This entry point negates FPA before entering entry point 1 above.
The result is left in FPA.

3 submfa − Subtract number at (&4B) from FPA

BASIC1 &A505
BASIC2 &A4D0

This entry point calls entry point 2 above, and then negates the
result.

mulfab − Multiply FPA by FPB

Execution addr

BASIC1 &A61E
BASIC2 &A613

Entry conditions:

FPA, FPB contain numbers to be multiplied

Exit conditions:

FPA: product
FPB: undefined

&43−&47 undefined

A undefined
X undefined
Y 0
C undefined
Z 1

252

Description

This routine multiplies the real number in FPA by the real number
in FPB, leaving the result in FPA. It does not test for either
number being zero on entry, but it will still perform the
multiplication correctly, even if one of them is (although it will be
quicker if it is discovered before this routine is called). The result
of the multiplication is not normalised (or tested for overflow), so
the normalising routine should be called before it is written out to
memory.

Other entry points

1 mulfam − Multiply FPA by number at (&4B)

BASIC1 &A611
BASIC2 &A606

This entry point loads the number at (&4B) into FPB before
calling the main routine. If either number is zero, the routine will
exit with a zero result immediately.

2 mufamo − Multiply FPA by (&4B); check overflow

BASIC1 &A661
BASIC2 &A656

This entry point calls entry point 1 above, and then normalises the
result. Finally, it rounds the low-order byte into the mantissa, and
tests for overflow, generating a ‘Too big’ error (ERR = 20) if it is.

253

mufa10 − Multiply FPA by 10

Execution addr

BASIC1 &A1E5
BASIC2 &A1F4

Entry conditions:

FPA: number to be multiplied by 10

Exit conditions:

FPA: original number multiplied by 10
FPB: undefined

A undefined
X undefined
Y preserved
C undefined
Z undefined

Descr iption

This routine multiplies the number in FPA by 10. It is faster than
the general ‘Multiply FPA by FPB’ routine, and does not use as
much temporary memory. It does not test for the number being
zero on entry, and will produce an invalid number if this is the
case (although calling the ‘Test FPA’ routine afterwards will
rectify it). If the number overflows, the ‘exponent overflow byte’
(held in &2F) will be incremented, but no error will be generated
at this stage.

Other entry points

NONE

254

divfab − Divide FPA by FPB

Execution addr

BASIC1 &A6FC
BASIC2 &A6F1

Entry conditions:

FPA: dividend
FPB: divisor

Exit conditions:

FPA: quotient (FP A/FPB)
FPB: undefined

&43−&46 undefined
A 0
X undefined
Y undefined
C undefined
Z 1

Descr iption

This routine divides the number in FPA by the number in FPB,
leaving the result in FPA. FPA is then normalised, rounded, and
checked for overflow. The routine does not test for either number
being zero on entry: if the routine is entered with FPB zero, an
invalid result will be obtained.

Other entry points

1 divfam − Divide FPA by number at (&4B)

BASIC1 &A6F2
BASIC2 &A6E7

This entry point divides FPA by the number in memory at (&4B),
leaving the result in FPA. If the number at (&4B) is zero, then a
‘Divsion by zero’ error (ERR = 18) will be generated.

255

2 divmfa − Divide number at (&4B) by FPA

BASIC1 &A6B8
BASIC2 &A6AD

This entry divides the number at (&4B) by FPA, leaving the result
in FPA. IfFPA is zero on entry, a ‘Division by zero’ error (ERR =
18) will be generated.

3 recfa − Take reciprocal of FPA (set FPA = 1/FPA)

BASIC1 &A6B0
BASIC2 &A6A5

This entry divides FPA into 1, leaving the result in FPA. If FPA is
zero on entry, a ‘Division by zero’ error (ERR = 18) will be
generated.

256

dvfa10 − Divide FPA by 10

Execution addr

BASIC1 &A23E
BASIC2 &A24D

Entry conditions:

FPA: number to be divided by 10

Exit conditions:

FPA: original number divided by 10
FPB: undefined

A undefined
X preserved
Y preserved
C undefined
Z undefined

Descr iption

This routine divides the number in FPA by 10, leaving the result
in FPA. The ‘Round and check for overflow’ routine should be
called if the result of this is to be stored in memory, as an
underflow may have resulted from this division. This routine is
faster than the general ‘Divide FPA by FPB’ routine, and does not
use as much temporary memory.

Other entry points

NONE

257

ser ies − Per form ser ies evaluation

Execution addr

BASIC1 &A889
BASIC2 &A897

Entry conditions:

FPA: argument for series evaluation

A LSB of pointer to constant list
Y MSB of pointer to constant list

Exit conditions:

FPA: result of series evaluation
FPB: undefined

&43−&48 undefined
&4B−&4E undefined

A undefined
X undefined
Y undefined
C undefined
Z 1

Descr iption

This routine performs the series evaluation required by some of
the BASIC mathematical functions (e.g. SIN, EXP). On entry, the
pointer in A (LSB) and Y (MSB) points to a list of constants to be
used: the first byte of the list indicates 1 less than the number of
5-byte floating point constants in it. The algorithm that the series
evaluator follows is:

A = first constant
REPEAT

A = X/A + next constant
UNTIL no more constants left

258

where X represents the argument passed to the series evaluator in
FPA, and A is the eventual result.

Other entry points

NONE

fixfa − Conver t FPA to fixed format

Execution addr

BASIC1 &A40C
BASIC2 &A3FE

Entry conditions:

FPA: floating point number to be fixed

Exit conditions:

If ABS(FPA) < 1 on entry:

FPA: zero
FPB: original number

If ABS(FPA) >= 1 on entry:

FPA sign:sign of number
FPA exponent:&A0
FPA mantissa:2’s complement integer part

FPB sign:zero
FPB exponent:zero
FPB mantissa:ABS value of fractional part

A undefined
X preserved
Y preserved
C undefined
Z undefined

259

Description

This routine converts the floating point number in FPA into its
integer and fractional parts. To find the integer part, the
conversion truncates the ABS value of the original number, and
then negates it if it was negative. This means that the integer part
of ‘− 1.9’ found by this routine would be ‘− 1’ (see ‘Type
conversion routines’: section 10.8 for alternative conversion to
integer). If the number is too large for an integer, a ‘Too big’ error
(ERR = 20) will be generated. Note that the integer left in FPA
mantissa will be in the opposite order to normal integers: the MSB
will be in &31, and the LSB will be in &34.

If the ABS value of the original number is less than 1, then the
fractional part (i.e. the original number) will be left as a complete
real number in FPB. Otherwise, the ABS value of the fractional
part will be left in the mantissa of FPB, with no exponent. This
requires an exponent of &80 (representing 2�’, positioning the
binary point just above the top bit of FPB mantissa) to be given to
it, and the sign should also be transferred from the sign of FPA.
The exponent should NOT be set if the number in FPB is already
complete.

This routine can be used very easily to find the integer part of a
number; but if it is to be used to to extract the fractional part, it
may be better to test if the ABS value of FPA is less than 1 before
calling it (alternatively, the next routine could be used).

Other entry points

NONE

260

fracfa − Extract fractional par t of FPA

Execution addr

BASIC1 &A494
BASIC2 &A486

Entry conditions:

FPA: number to be used (normalised)

Exit conditions:

&4A LSB of 2’s complement integer part
FPA fractional part of number (normalised)

A undefined
X undefined
Y preserved
C undefined
Z undefined list

Descr iption

This routine extracts the integer and fractional parts of the number
in FPA, leaving the LSB of the (signed) integer part in &4A, and
the fractional part as a real number in FPA. The original number
will be rounded to the nearest integer, so that the fractional part
will be between −0.5 and +0.5. A ‘Too big’ error (ERR = 20) will
be generated if the number is too large to fit in a 4-byte integer,
but no test is made to check if it is outside the range of a single
byte (the other 3 bytes of the integer part are lost).

Other entry points

NONE

261

10.11 Function entry points

This is a list of the equivalent entry points for the easily accessible
BASIC functions. Some of the other functions require more than
one argument, and others cannot be used outside the environment
of the expression evaluator.

The ‘Argument’ column gives the type of the item which will be
operated on by the function. The possibilities are:

−−−− No argument is expected by this function
real A real number should be in FPA on entry
integer An integer should be in IntA on entry
string A string should be in StrA on entry
numeric Either ‘ real’ or ‘ integer’ , with N set if real

Note that if the function expects a numeric, the N and Z flags
should specify the type on entry (as if the ‘Get <factor> or
<string-factor>’ routine had just been used).

On exit from these routines, the result will be in IntA, FPA, or
StrA, depending on the result. The type of the result will be in A
(&00=string, &40=integer, &FF=real).

262

Function Argument Result BASIC1 BASIC2

ABS numeric numeric &AD90 &AD6D
ADVAL integer integer &AB59 &AB36
ASC string integer &ACC9 &ACA3
ASN real real &A8CF &A8DD
ATN real real &A90A &A90A
CHR$ integer string &B3F1 &B3C0
COS real real &A98C &A990
COUNT −−−− integer &AF26 &AEF7
DEG real real &ABEA &ABC5
ERL −−−− integer &AFCE &AF9F
ERR −−−− integer &AFD5 &AFA6
EVAL string anything &AC17 &ABEE
EXP real real &AAB7 &AA94
FALSE −−−− integer &AEF9 &AECA
GET −−−− integer &AFE8 &AFB9
GET$ −−−− string &AFEE &AFBF
HIMEM −−−− integer &AF32 &AF03
INT numeric integer &ACAI &AC7B
LEN string integer &AF05 &AED6
LN real real &A807 &A801
LOMEM −−−− integer &AF2B &AEFC
NOT integer integer &ACEA &ACD4
PAGE −−−− integer &AEEF &AEC0
PI −−−− real &ABF0 &ABCB
POS −−−− integer &AB92 &AB6D
RAD real real &ABD9 &ABB4
RND −−−− integer &AF80 &AF51
��RND() integer numeric &AF41 &AF12
�SGN numeric integer &ABB2 &AB8D
SIN real real &A997 &A99B
SOR real real &A7B7 &A7B7
TAN real real &A6CC &A6C1
TIME −−−− integer &AEE3 &AEB4
TOP −−−− integer &AF13 &AEE6
TRUE −−−− integer &ACEA &ACC4
USR integer integer &ABFE &ABD5
VAL string numeric &AC5A &AC34
VPOS −−−− integer &AB9B &AB76

263

