
9 Trapping Other Errors
Chapters 7 and 8 described how two of the errors generated by
BASIC could be trapped, and used to add new commands, or to
overlay procedures and functions. This section gives a couple of
examples of recovering from other errors.

9.1 Bad MODE recover

If an attempt is made to change mode inside a PROC or a FN, a
‘Bad MODE’ error (error number 25) is generated. When a PROC
or FN is in operation, there will be data on the BASIC STACK,
which it will use when it returns (see section 5.3).

A MODE change alters HIMEM and resets the BASIC STACK
pointer to this new value of HIMEM. If this was reset inside a
PROC or a FN, the BASIC STACK contents would be lost, and
BASIC would crash when the call returned.

However, by trapping this error, changing MODE inside a PROC
or a FN can be allowed, providing that the bottom of the new
MODE is above the current HIMEM. If it is, HIMEM can be left
as it is, and the BASIC STACK pointer left unchanged. For
example, changing from MODE 3 to MODE 6 would be allowed,
as the bottom of screen is higher for MODE 6 than MODE 3.

The prevailing conditions on a ‘Bad MODE’ error are:

Stack contents: RTI information 3 bytes
&16 MODE change char. 1 byte

PTRA points at statement delimiter
&2A prospective MODE number

If it is possible to change MODE without moving the STACK,
this routine will print the MODE change command and continue
executing the program. It will not reset HIMEM or the STACK,
although the normal MODE change routine will continue to do so
whenever the MODE change is made outside a FN or PROC. This
means that after this routine has been called, there may be a gap
between HIMEM and the bottom of the screen.

143

 10 REM * * * Pr ogr am t o al l ou MODE change i nsi de PROCS * * *
 12 REM
 14 REM M D Pl umbl ey 1984
 16 REM
 18 REM Thi s pr ogr am t r aps t he " Bad MODE" er r or (ERR = 25)
 20 REM
 22 REM I f t her e i s enough r oom t o change MODE above
 24 REM HI MEM, t f i t hout di sur bi ng t he BASI C st ack, t hen
 26 REM MODE can be changed, even i f t he st ack i s i n use
 28 REM (i . e. t her e i s a FN or PROC act i ve at t he t i me)
 30 REM
 32 REM " Bad MODE" wi l l s t i l l be gi ven i f you ar e changi ng
 34 REM t o a mode whi ch r equi r es HI MEM t o be l ower t han
 36 REM t he cur r ent set t i ng (unt ess you ar e not i n a
 38 REM FN/ PROC) .
 40 REM
 42 REM For BASI C 1, r epl ace EQUs as i n chapt er 7.
 44 REM
 99
 100 PROCset up : REM Set up cor r ect ROM ent r y poi nt s
 490
 495 REM * * * OS r out i nes and vect or s * * *
 500 OSWRCH = &FFEE
 505 OSBYTE = &FFF4
 550 BRKV = &0202
 590
 595 REM * * * Al l ocat e wor kspace * * *
 600 wor ksp = &0070
 605 svbr kv = wor ksp
 690
 695 REM * * * BASI C syst em var i abt es * * *
 700 Lomem = &0D00
 705 Heap = &0002
 710 St ack = &0004
 715 Hi mem = &0006
 720 Top = &0012
 725 Count = &001E
 799
 900 st ar t % = &0C00 : REM Assembl e i nt o user char space
 905
 910 FOR opt % = 0 TO 3 STEP 3
 920 P% = st ar t %
 950 [OPT opt %
 1000 . i ni t
 1005 LDA &8015 \ Test t hat t he cor r ect
 1010 CMP #baschr \ ver s i on of BASI C i s
 1015 BEQ basok \ i n t he ROM.
 1016
 1020 BRK \ I f i t i sn' t , pr i nt an
 1025 EQUB 60 \ er r or message.
 1030 EQUS " Not BASI C " \ (baschr set by PR0Cset up)
 1035 EQUB baschr

144

 1040 EQUB 0
 1041
 1045 . basok
 1050 LDA BRKV \ Load t he cur r ent BRK vect or
 1055 LDX BRKV+1 \ i nt o A and X.
 1056
 1060 CMP #newbr k MOD &100 \ I f t hi s r out i ne i s al r eady
 1065 BNE nt savd \ set up, don' t change BRKV.
 1070 CPX #newbr k DI V &100
 1075 BEQ saved
 1076
 1078 . nt savd
 1080 STA svbr kv \ I t has not been set up
 1085 STX svbr kv+1 \ at r eady, so save ol d
 1090 LDA #newbr k MOD &100 \ BRKV, and set up t he new
 1095 STA BRKV \ one.
 1100 LDA #newbr k DI V &100
 1105 STA BRKV+1
 1106
 1110 . saved
 1115 RTS
 1190
 1192 \ * * * Thi s i s t he new BRK handt i ng r out i ne * * *
 1200 . newbr k
 1205 PHA \ Save A and Y on 6502 st ack
 1210 TYA
 1215 PHA
 1216
 1220 LDY #0 \ Get er r or number
 1225 LDA (&FD) , Y
 1226
 1230 CMP #25 \ I f ERR = 25 (" Bad MODE") , t hen
 1235 BEQ badmde \ t r y t o cor r ect i t
 1236
 1240 . gi veup
 1245 PLA \ Rest or e A any Y f r om 6502 st ack
 1250 TAY
 1255 PLA
 1256
 1260 JMP (svbr kv) \ Go t o ol d BRK handt er
 1261
 1490 \ * * * I f we get her e, a " Bad MODE" er r or has * * *
 1492 \ * * * occur r ed. Thi s was ei t her caused by a * * *
 1494 \ * * * non- empt y BASI C st ack, or not enough r oom. * * *
 1500 . badmde
 1505 LDX &2A \ Get r equest ed mode number f r om
 1510 LDA #&85 \ I nt A, and f i nd out what HI MEM
 1515 JSR OSBYTE \ woul d be i n t hat mode.
 1516
 1520 CPX Hi mem \ I f new HI MEM wout d be bel ow t he
 1525 TYA \ cur r ent HI MEM, t hen t he STACK
 1530 SBC Hi mem+1 \ i s i n t he way.

145

 1535 BCC gi veup
 1536
 1540 CPX Heap \ I f new HI MEM woul d be bel ow t he
t op
 1545 TYA \ of t he var i abl es heap, t her e i s
 1550 SBC Heap+1 \ not enough r oom f or t he MODE.
 1555 BCC gi veup
 1556
 1560 CPX Top \ I f HI MEM wout d be bel ow TOP,
t her e
 1565 TYA \ i s not enough r oom f or t he MODE.
 1570 SBC Top+1 \ Thi s t est i s i n case LOMEM had
 1575 BCC gi veup \ not been set t o TOP yet .
 1576
 1580 PLA \ Di scar d saved vat ues of Y and A
 1590 PLA \ f r om 6502 st ack
 1591
 1600 PLA \ Di scar d RTI i nf or mat i on f r om t he
 1605 PLA \ 6502 st ack. Thi s i s pushed by
 1610 PLA \ t he BRK i nst r uct i on.
 1611
 1615 LDA #0 \ Zer o COUNT (a MODE change l eaves
 1620 STA Count \ t he cur sor at st ar t of l i ne)
 1621
 1625 PLA \ Pop " mode change" byt e f r om st ack
 1630 JSR OSWRCH \ (pushed by MODE command) , and
 1631 \ pr i nt i t
 1632
 1635 LDA &2A \ Get mode number f r om i nt ace, and
 1640 JSR OSWRCH \ pr i nt t hat
 1641
 1645 JMP cont \ Command compt et ed, so execut e t he
 1646 \ next st at ement .
 1647
 8000]
 8010 NEXT
 8015 @%=0
 8020 PRI NT' " Code l engt h =&" ~P%- st ar t %
 8190
 8200 PRI NT' ' ' ' ' " * * WARNI NG: Once assembl ed, t he code"
 8210 PRI NT" gener at ed by t hi s pr ogr am i s not "
 8220 PRI NT" t r ansf er abl e bet ween di f f er ent BASI Cs"
 8230 PRI NT
 8300 PRI NT" Execut e " " CALL &" ~i ni t " " " t o i ni t i at i se. " '
 8310 END
 8990
 8992 REM * * * Set up R0M ent r y poi nt s, al l owi ng f or * * *
 8993 REM * * * BASI C I and BASI C I I . * * *
 9000 DEFPROCset up
 9010 basi c1$ = " BASI C" +CHR$0+" (C) 1981 Acor n" +CHR$&A
 9020 basi c2$ = " BASI C" +CHR$0+" (C) 1982 Acor n" +CHR$&A
 9030 I F $&8009=basi c1$ THEN PROCset 1 : ENDPROC
 9040 I F $&8009=basi c2$ THEN PROCset 2 : ENDPROC
 9050 PRI NT " NOT BASI C 1 OR 2
 9060 END

146

 9290
 9292 REM *** Set up BASIC 1 entry points ***
 9300 DEFPROCset1
 9305 baschr = ASC"1":REM Used by init routine
 9310 cont = &8B0C :REM Cont execution at next statement
 9320 ENDPROC
 9490
 9492 REM *** Set up BASIC 2 entry points ***
 9500 DEFPROCset2
 9505 baschr = ASC"2":REM Used by init routine
 9540 cont = &8B9B :REM Cont execution at next statement
 9550 ENDPROC

The initialising and BRK handling parts of this routine are very
similar to the programs in chapter 7. In fact, there is not really a
lot to the program at all.

This routine could be modified to copy the BASIC stack bodily if
a MODE change was made which required HIMEM to be lower
than its current setting. This could also be used anyway, to ensure
that the least amount of memory was being used for each MODE.

Performing a MODE change, and shifting the stack, may be one
way of allocating more memory if a ‘No room’ error is generated.
However, this is only possible with BASIC 2, as this error does
not use the BRK error generating mechanism in BASIC 1 (see
chapter 11 for more on ‘No room’)

9.2 Bad program salvage

One of the more annoying error messages that BASIC can
produce is ‘Bad program’. You may have just waited 10 minutes
for a long program to load from tape, or spent the last 2 hours
typing something in, to be greeted by this message because the
program got corrupted somehow. This section describes how the
bad program, or as much of it as possible, can be salvaged into an
editable form.

147

Program storage

Program lines are stored in the following format:

00 MSB of line number
01 LSB of line number
02 total length of line (= XX)
03 first character of line text
04 etc.

XX−1 &0D (carriage return) line end marker
XX MSB of line number of next line
XX+1 etc.

The first byte stored at PAGE is a &0D (carriage return), followed
by the MSB of the first line number. The end of the program is
marked by an &FF byte after the carriage return on the end of the
last line.

The length byte of the line number is used to speed up the search
for line numbers in a GOTO or GOSUB. However, if one of these
gets corrupted, so that there isn’t a &0D where BASIC thinks the
end of the line should be, it will give a ‘Bad program’ error. This
could also be caused if the carriage return has been corrupted.

By scanning through the program, re-linking all these length
bytes, the program can be savlaged. It may not be completely
correct, but at least it will be possible to edit it again.

The salvage routine

This routine can be assembled and the code saved onto disc or
cassette by using ‘ *SAVE’. It assembles into the user defined
character area, so the code can be loaded in and executed if a ‘Bad
program’ occurs, without disturbing the program to be salvaged.

The program can be loaded and run by typing

*LOAD SALVAGE
CALL &C00

148

assuming that it was assembled from &C00 onwards. If the DFS,
or any filing system which operates from a paged ROM, is used to
load the routine, it should not be run by using ‘*SALVAGE’. If
this was used, the DFS ROM, rather than the BASIC ROM,
would be paged in while the routine was operating, and the
BASIC ROM routines which the are called would not be
available. To get round this, the ROM routines required could be
duplicated in the salvage routine itself.

 4 REM ** Bad program salvage routine ***
 6 REM
 8 REM M D Plumbley 1984
 10 REM
 12 REM This routine will scan through the BASIC program
 14 REM at PAGE and re-set any link pointers which have
 16 REM been corrupted.
 18 REM
 20 REM Before using with BASIC 1, the EQUs shoutd be
 22 REM replaced with their equivalents:
 24 REM "EQUB X" => "]?P%=X:P%=P%+1:[OPTopt%"
 26 REM "EQUS A$" => "]$P%=A$:P%=P%+LEN$P%:[OPTopt%"
 90 REM
 99
 100 PROCsetup :REM Set up correct ROM entry points
 490
 495 REM *** OS routines and vectors ***
 510 osrdch = &FFE0
 590
 600 worksp = &0070
 605 line = worksp
 610 ytemp = worksp+2
 690
 695 REM *** BASIC system variables ***
 700 page = &0018
 710 inta = &002A
 799
 900 start% = &0C00 :REM User defined character area
 905
 910 FOR opt% = 0 TO 3 STEP 3
 920 P% = start%
 950 [OPT opt%
 990
 995\ ** Salvage routine entry point ***
 1000 .slvage
 1005 LDA page \Set "line" to point to the
 1010 STA line+1 \ first byte of the program
 1015 LDY #0 \ at PAGE.
 1020 STY line
 1025
 1030 LDA (line),Y \If it is a CR, jump to start

149

 1035 CMP #&0D \ checking through the lines.
 1040 BEQ strtok
 1045
 1050 JSR pmess \Othertfise, print an
 1055 EQUS "No CR at start" \ error message and
 1060 NOP \ exit.
 1065 .end
 1070 RTS
 1075
 1100 .escape \This is used to give an
 1105 BRK \ "Escape" error if the
 1110 EQUB 17 \ necessary
 1115 EQUS "Escape"
 1120 EQUB 0
 1125
 1195 \ ** Start looking through lines ***
 1200 .strtok
 1205 JSR pnewl \Start on a new line
 1210
 1215 BIT &FF \If an escape condition is
 1220 BMI escape \ pending, handle it.
 1225
 1230 LDA line+1 \Print out the address of the
 1235 JSR phex \ current line.
 1240 LDA line
 1245 JSR phexsp
 1250
 1255 LDY #1 \If we are at the end of the
 1260 LDA (line),Y \ program, exit.
 1265 BMI end
 1270
 1275 STA inta+1 \Otherwise, print out the
 1280 INY \ line number.
 1285 LDA (line),Y
 1290 STA inta
 1295 JSR plnum5
 1300
 1305 LDY #3 \Get the length byte from the
 1310 LDA (line),Y \ line. If it is zero, the
 1315 BEQ flink \ link has failed, so fix it.
 1320
 1325 TAY \Get the byte on the end of
 1330 LDA (line),Y \ the line.
 1335
 1340 CMP #&0D \If it is not a CR, the link
 1345 BNE flink \ failed, so fix it.
 1350
 1355 TYA \Transfer the length into A
 1360
 1365 .newlna
 1370 CLC \Add the length of the line
 1375 ADC line \ (in A) to the line pointer,

150

 1380 STA line \ so it now points to the
 1385 BCC strtok \ line, and go back to
 1390 INC line+1 \ "strtok" to handl-e the next
 1395 BCS strtok \ line.
 1400
 1990 \ ** If we get here, the link has faited ***
 2000 . flink
 2005 JSR pmess \Print a message
 2010 EQUS " Failed link"
 2015 NOP
 2020
 2025 LDY #3 \Scan from the start..
 2030
 2035 .cscan \ for control characters
 2040 LDA #&1F \ (i.e. less than &20)
 2045 INY
 2050
 2055 .loop \loop round until a control
 2060 CMP (line),Y \ character is found. If it
 2065 BCS fixlnk \ is, go to fix the link.
 2070 INY
 2075 BNE loop
 2080
 2085 DEY \If the end wasn't found, set
 2090 STY ytemp \ the "end" to be used at 255
 2095
 2100 JSR pmess \ and print the
 2105 EQUS " End not found: F/T" \ message.
 2110 NOP
 2115
 2120 JSR osrdch \Read a character, and exit
 2125 BCS escape \ if ESC was pressed.
 2130
 2135 .notasc \Check for a "T".
 2140 CMP #ASC"T"
 2145 BNE noterm
 2150
 2155 LDA #&FF \If it was, set the MSB of
 2160 LDY #1 \ the current line to &FF
 2165 STA (line),Y \ to terminate the program,
 2170 .nforce \ and exit.
 2175 RTS
 2180
 2200 .noterm \If it wasn't, check for an
 2205 CMP #ASC"F" \ "F".
 2210 BNE nforce
 2215
 2220 LDY ytemp \If it uas, set the character
 2225 .force \ where scanning stopped to
 2230 LDA #&0D \ be a CR, and ...
 2235 STA (line),Y
 2240

151

 2245 TYA \ set the length byte,
 2250 LDY #3 \ and ...
 2255 STA (line) ,Y
 2260
 2265 JMP newlna \ go to the next line.
 2270
 3000 .fixlnk \If the controt character
 3005 LDA (line),Y \ that was found was a CR,
 3010 CMP #&0D \ force the length byte to
 3015 BEQ force \ point to it.
 3020
 3025 STY ytemp \Otherwise, save the offset,
 3030
 3035 JSR pmess \ and print the
 3040 EQUS " Control. char A/F/T" \ message.
 3045 NOP
 3050
 3055 JSR osrdch \Read the character input,
 3060 BCS jesc \ and exit if ESC pressed.
 3065
 3070 CMP #ASC" A" \Check for "A" .
 3075 BNE notasc
 3080
 3085 LDY ytemp \If it was, force the
 3090 LDA (line),Y \ control char to be a letter
 3095 ORA #&40 \ by ORing it with &40, and
 3100 STA (line),Y \ jump back to continue
 3105 JMP cscan \ scanning the line.
 3110
 3200 .jesc \Jump the the "Escape" error.
 3205 JMP escape
 8000]
 8010 NEXT
 8015 @%=0
 8020 PRINT'"Code length =&"~P%-start%
 8190
 8200 PRINT'''''"** WARNING: Once assembled, the code"
 8210 PRINT"generated by this program is not"
 8220 PRINT"transferable between different BASICs"
 8230 PRINT
 8300 PRINT"Execute ""CALL &"~start%""" to use"'
 8310 END
 8990
 8992 REM *** Set up ROM entry points, allwing for ***
 8993 REM *** BASIC 1 and BASIC 2. ***
 9000 DEFPROCsetup
 9010 basic1$ = "BASIC"+CHR$0+"(C)1981 Acorn"+CHR$&A
 9020 basic2$ = "BASIC"+CHR$0+"(C)1982 Acorn"+CHR$&A
 9030 IF $&8009=basic1$ THEN PROCset1 :ENDPROC
 9040 IF $&8009=basic2$ THEN PROCset2 :ENDPROC
 9050 PRINT "NOT BASIC 1 OR 2"
 9060 END

152

 9290
 9292 REM *** Set up BASIC 1 entry points ***
 9300 DEFPROCset1
 9305 plnum5 = &98F5 :REM Print line number (field 5)
 9310 pmess = &BFCB :REM Print message fottenfing JSR
 9315 pnewl = &BC42 :REM Print a new line (CRLF)
 9320 phex = &8570 :REM Print A as 2-digit HEX no.
 9325 phexsp = &856A :REM Print HEX no. then space
 9330 ENDPROC
 9490
 9492 REM *** Set up BASIC 2 entry points ***
 9500 DEFPROCset2
 9505 plnum5 = &9923 :REM Print line number (fietd 5)
 9510 pmess = &BFCF :REM Print message following JSR
 9515 pnewl = &BC25 :REM Print a new line (CRLF)
 9520 phex = &B545 :REM Print A as 2ASNdigit HEX no.
 9525 phexsp = &B562 :REM Print HEX no. then space
 9600 ENDPROC

The general operation of the routine is as follows:

1 It first checks that there is a carriage return at the start of
the program. If there isn’t, it prints a message and exits. If
this happens, either there was no BASIC program at all, or
the routine can be re-started after ‘?P AGE=13’ has been
typed.

2 The start address of the current line, and its line number,
are printed. If the program is so bad that this savlage
routine cannot cope with it properly, this infornation may
help if a hex dump program needs to be used to patch up
the program.

3 If the end of the program has been found, the routine exits.

4 If the length byte points correctly to the carriage return on
the end of the line, the routine moves on to the next line,
and jumps back to stage 2.

5 The message ‘Failed link’ is printed after the line number,
and the line is scanned until a control character is found.

6 If the control character found was a carriage return, the
length byte is fixed, and the routine jumps back to continue
checking the rest of the program.

153

7 If the end of the line was not found, or the control character
found was not a carriage return, the routine gives the option
of forcing the control charater to be a letter, forcing the end
of the line to be at this point, or marking the end of the
program at this line.

The ESC key can be pressed at any time while the salvage
operation is underway, and the routine will stop when it is about
to do the next line.

The routine may think that it has reached the end of the program
before it should have, because it found a negative byte as the
MSB of the next line number. It can be forced to continue by
typing ‘END:?(TOP−1)=0’ to force the end marker to zero before
re-starting the salvage routine.

This routine will cope with most things, but if the program is
really bad, the following hex dump program may be useful to
examine it by hand. It should be loaded in by setting PAGE above
the top of the corrupted program (give plenty of room, just in
case), and then just LOADing in as normal.

 5 REM ** Hex dump program **
 6 REM
 10 REM M D Plumbley 1984
 15 REM
 20 REM Press <space> to stop listing
 25 REM <return> to continue
 30 REM "Q" to quit
 35 REM
 100 len% = 8:REM length of line (bytes)
 200 INPUT"START ADDR :&"input$
 210 start% = EVAL("&"+input$)
 220 INPUT"END ADDR :&"input$
 230 end% = EVAL("&"+input$)
 400 REPEAT
 410 PROCline(start%) :REM Hexdump 1 line
 420 start% = start%+len% :REM Next line
 430 key$ = INKEY$(0)
 440 IF key$=" " THEN PROCuait
 450 IF key$="Q" THEN END
 460 UNTIL start%>end%
 470 END
 998
 999 REM *** Print hexdump of 1 line ***
 1000 DEFPROCline(addr%)
 1010 @%=4:PRINT~addr%" "; :REM Addr at start of line

154

 1015 @%=3
 1017 text$ = "" :REM Clear text string
 1020 FOR offset = 0 TO len%-1
 1030 byte% = addr%?offset :REM Get byte
 1040 PRINT ~byte%; :REM Print hex byte
 1045 valid = (byte%>=&20 AND byte%<&7F)
 1046 :REM Is it a character?
 1050 IF valid THEN chr$=CHR$(byte%) ELSE chr$="."
 1060 text$ = text$+chr$:REM Add char to text string
 1070 NEXT offset
 1080 PRINT" " text$
 1090 ENDPROC
 1998
 1999 REM *** Wait for <CR> or "Q" to be pressed ***
 2000 DEFPROCwait
 2010 REPEAT
 2020 key$ = GET$
 2030 UNTIL key$=CHR$(13) OR key$="Q"
 2040 IF key$="Q" THEN END
 2050 ENDPROC

9.3 Error listing

Sometimes it is not very easy to spot an error in a line of BASIC,
especially when it is in the middle of a multi-statement line. The
routine in this section will LIST out the line that any error
occurred on, together with 2 markers pointing out the possible
sources of the error. These represent the positions of the two
BASIC text pointers, PTRA and PTRB, at the instant of the error.

For example, if the following line is typed in:

>PRINT"HELLO"; REM ShouLd be a ":"

the response will be:

HELLO
PRINT"HELLO"; REM Should be a ":"
 ^
 ^
No such variable

The top arrow represents the position of PTRA, and the bottom
one represents the position of PTRB. In this case, they both point
to the same position (just after the REM token), but in most cases
they will be different.

155

This can also be used to check the position of the pointers, if
certain errors are to be intercepted.

 5 REM *** Error Listing routine ***
 7 REM
 10 REM M D Plumbley 1984
 15 REM
 20 REM When an error occurs, this routine will print out
 25 REM the offending line, and print the position of
 30 REM the ttw BASIC pointers, pointing out the error.
 35 REM
 40 REM This program assembles into user keylcharacter
 42 REM area at &0B00 ornrards.
 44 REM
 46 REM Before using with BASIC 1, the EQUS shoutd be
 48 REM replaced with their equivatents:
 50 REM "EQUB X" => "]?P%=X:P%=P%+1:[OPTopt%"
 52 REM "EQUW X" => "]!P%=X:P%=P%+2:[OPTopt%"
 54 REM "EQUS A$" => "]$P%=A$:P%=P%+LEN$P%:[OPTopt%"
 56 REM
 99
 100 PROCsetup :REM Set up correct R0M entry points
 490
 550 BRKV = &0202
 799
 900 start% = &0B00 :REM User key/char space
 905
 910 FOR opt% = 0 TO 3 STEP 3
 920 P% = start%
 950 [OPT opt%
 1000 .init
 1005 LDA &8015 \Test that the correct
 1010 CMP #baschr \ version of BASIC is
 1015 BEQ basok \ in the ROM.
 1016
 1020 BRK \If it isn't, print an
 1025 EQUB 60 \ error message.
 1030 EQUS "Not BASIC " \ (baschr set by PROCsetup)
 1035 EQUB baschr
 1040 EQUB 0
 1041
 1045 .basok
 1050 LDA BRKV \Load the current BRK vector
 1055 LDX BRKV+1 \ into A and X.
 1056
 1060 CMP #newbrk MOD &100 \If this routine is already
 1065 BNE ntsavd \ set up, don't change BRKV.
 1070 CPX #newbrk DIV &100
 1075 BEQ saved
 1076
 1078 .ntsavd

156

 1080 STA svbrkv \It has not been set up
 1085 STX svbrkv+1 \ atready, so save old
 1090 LDA #newbrk MOD &100\ BRKV, and set up the new
 1095 STA BRKV \ one.
 1100 LDA #newbrk DIV &100
 1105 STA BRKV+1
 1106
 1110 .saved
 1115 RTS
 1480
 1490 \ *** Enter here on BRK ***
 1500 .newbrk
 1502 PHA \Save A,Y,X on 6502 stack
 1504 TYA
 1506 PHA
 1508 TXA
 1510 PHA
 1511
 1515 JSR pnewl \Start a new line
 1516
 1520 LDA #&FF \Set up immediate area
 1525 STA &3D \ as defautt for error area.
 1530 LDA #&06 \ (83D) is used to point to the
 1540 STA &3E \ start of the line in error
 1545
 1550 LDA &C \If error occurred in immed mode,
 1560 CMP #7 \ don't look for a line
 1570 BEQ immed
 1575
 2010 JSR setERL \Get ERL, and
 2020 LDA &8 \ copy it into the
 2030 STA &2A \ integer accumulator
 2040 LDA &9 \ ready for "schlin"
 2050 STA &2B
 2055
 2060 JSR schlin \Point (&3D) at start of line
 2070 BCS noline \Exit if line not found
 2072
 2075 JSR pnewl \Start a new line, followed by
 2080 JSR plnum5 \ the line number
 2082
 2085 .immed
 2090 LDA #0 \Reset counters for
 2100 STA countA \ the position of the pointers
 2110 STA countB \ on the line
 2115
 2120 LDA &A \Save PTRA in temp area
 2130 STA ptrtmp
 2140 LDA &B
 2150 STA ptrtmp+1
 2160 LDA &C
 2170 STA ptrtmp+2

157

 2175
 2180 LDA &3D \Set PTRA to point to start
 2190 STA &B \ of line in error.
 2200 LDA &3E \ (PTRA is used by the line number
 2210 STA &C \ decoding routine)
 2220 LDY #1
 2230 STY &A
 2235
 2240 JSR prtlne \Print out line, setting counters
 2245
 2250 LDX countA \Print posn of PTRA
 2260 JSR prtptr
 2262 JSR pnewl
 2265
 2270 LDX countB \Print posn of PTRB
 2280 JSR prtptr
 2285
 2290 LDA ptrtmp \Restore PTRA from temp area
 2300 STA &A
 2310 LDA ptrtmp+1
 2320 STA &B
 2330 LDA ptrtmp+2
 2340 STA &C
 2342
 2345 .noline
 2350 PLA \Restore X,Y,A from 6502 stack
 2355 TAX
 2360 PLA
 2365 TAY
 2370 PLA
 2371
 2375 JMP (svbrkv) \Continue with defautt BRK routine
 2376
 2900 .exit
 2910 JMP pnewl \Print CRLF at end of line
 2920
 2990 \ *** Print out line at PTRA, setting counters ***
 2991 \ *** countA and countB to the screen positions ***
 2992 \ *** of the saved PTRA and PTRB ***
 3000 .prtlne
 3010 LDY &A \Get next character, and
 3020 INC &A \ increment PTRA
 3030 LDA (&B),Y
 3035
 3040 CMP #&0D \If end of line,
 3050 BEQ exit \ print CRLF and exit.
 3055
 3060 CMP #&8D \If a line number,
 3070 BEQ lineno \ print it
 3075
 3080 JSR ptoken \Print char or token in A
 3090 JMP counts \ and skip line number section

158

 3095
 3100 .lineno
 3110 JSR getlno \Get line number after token
 3120 JSR plnum0 \ and print it
 3130 .counts
 3140 CLC \Move PTRA (position of next
 3150 LDA &A \ char to be printed) into
 3160 ADC &B \ integer accumutator
 3170 STA &2A \ at &2A and &2B
 3180 LDA &C
 3190 ADC #0
 3200 STA &2B
 3205
 3210 LDA ptrtmp \Get old PTRA from temp area
 3220 ADC ptrtmp+1 \ into X (LSB)
 3230 TAX \
 3240 LDA ptrtmp+2 \ and A (MSB)
 3250 ADC #0
 3255
 3260 CPX &2A \If char at old PTRA has not
 3270 SBC &2B \ been printed yet,
 3280 BCC nocntA \
 3290 LDA &1E \ set countA to COUNT
 3300 STA countA \ (COUNT held in &1E)
 3305
 3310 .nocntA
 3320 CLC \Get PTRB
 3330 LDA &1B \
 3340 ADC &19 \ into X (LSB)
 3350 TAX \
 3360 LDA &1A \ and A (MSB)
 3370 ADC #0
 3375
 3380 CPX &2A \If char at PTRB has not been
 3390 SBC &2B \ printed yet,
 3400 BCC nocntB \
 3410 LDA &1E \ set countB to COUNT
 3420 STA countB
 3425
 3430 .nocntB
 3440 JMP prtlne \Go back for another char
 4990
 4991
 4992 \ *** Print a "^" in the Xth cotumn ***
 4993 \ *** (entry point is "prtptr") ***
 5006 . loop
 5010 LDA #ASC(" ") \Print a space
 5020 JSR pchar
 5022
 5025 .prtptr
 5030 CPX &1E \If not at the right cot,
 5040 BNE loop \ print another space.

159

 5045
 5050 LDA #ASC("^") \Print a "^"
 5060 JSR pchar
 5065
 5080 RTS \Exit
 7790
 7792 \ *** Routine variabtes area ***
 7800 .svbrkv EQUW !BRKV \Space to save BRK vector
 7801
 7810 .countA EQUB 0 \Screen posn of PTRA
 7815 .countB EQUB 0 \Screen posn of PTRB
 7816
 7820 .ptrtmp EQUW 0 \Temp for PTRA
 7825 EQUB 0
 8000]
 8010 NEXT
 8015 @%=0
 8020 PRINT'"Code length =&"~P%-start%
 8190
 8200 PRINT'''''"** WARNING: Once assembled, the code"
 8210 PRINT"generated by this program is not"
 8220 PRINT"transferable between different BASICs"
 8230 PRINT
 8300 PRINT"Execute ""CALL &"~init""" to initialise."'
 8310 END
 8990
 8992 REM *** Set up ROM entry points, allowing for ***
 8993 REM *** BASIC 1 and BASIC 2. ***
 9000 DEFPROCsetup
 9010 basic1$ = "BASIC"+CHR$0+"(C)1981 Acorn"+CHR$&A
 9020 basic2$ = "BASIC"+CHR$0+"(C)1982 Acorn"+CHR$&A
 9030 IF $&8009=basic1$ THEN PR0Cset1 :ENDPROC
 9040 IF $&8009=basic2$ THEN PROCset2 :ENDPROC
 9050 PRINT "NOT BASIC 1 OR 2"
 9060 END
 9290
 9292 REM *** Set up BASIC 1 entry points ***
 9300 DEFPROCset1
 9305 baschr = ASC"1":REM Used by init routine
 9310 setERL = &B3F6 :REM Get no of line in error into &8,9
 9315 schlin = &9942 :REM Find start of line given line no
 9320 plnum5 = &98F5 :REM Print &2A,2B in decimal (field 5)
 9325 plnum0 = &98F1 :REM Print &2A,2B in decimal (field 0)
 9330 ptoken = &B53A :REM Print char, or token if A > &7F
 9335 pchar = &B571 :REM Print char in A, and incr COUNT
 9340 pnewl = &BC42 :REM Print CRLF, and zero COUNT
 9345 getlno = &97BA :REM Get tokenised line no at PTRA
 9350 ENDPROC
 9490
 9492 REM *** Set up BASIC 2 entry points ***
 9500 DEFPROCset2
 9505 baschr = ASC"2":REM Used by init routine

160

 9510 setERL = &B3C5 :REM Get no of line in error into &8,9
 9515 schlin = &9970 :REM Find start of line given line no
 9520 plnum5 = &9923 :REM Print &2A,2B in decimal (field 5)
 9525 plnum0 = &991F :REM Print &2A,2B in decimal (field 0)
 9530 ptoken = &B50E :REM Print char, or token if A > &7F
 9535 pchar = &B558 :REM Print char in A, and incr COUNT
 9540 pnewl = &BC25 :REM Print CRLF, and zero COUNT
 9545 getlno = &97EB :REM Get tokenised line no at PTRA
 9550 ENDPROC

The general operation of the routine is as follows:

1 The pointer at &3D ,&3E is set up to point to the start of
the line in error, by searching through the program if
necessary.

2 The line is printed out, updating counters which mark the
screen position of PTRA and PTRB. Tokens are expanded
by the ROM routine ‘ptoken’ , but this does not handle line
number tokens. These have to be dealt with separately.

3 The markers which point to the positions of PTRA and
PTRB are printed out, using the counters set while the error
line was being printed.

4 Finally, a JMP is made to the default BRK handler to print
out the error message.

The programs in the last few chapters are not really meant to
show everything that can be done: they are really just an
indication of the way that the BBC BASIC can be enhanced by
overlaying procedures, or adding new commands and utilities.

Chapters 10 and 11 detail the routines inside the ROM, and the
the other errors generated by BASIC, and these may give ideas for
experimenting with more new command and functions, like
graphics commands or statistical functions.

161

