
7 Adding New Commands
When the BASIC interpreter discovers anything which it does’ t
recognise, it generates an error (usually ‘Mistake’), to stop
processing of the program or command and go back to command
mode. This section describes how new statements and commands
can be added to BASIC by intercepting this error.

7.1 Trapping BRK

The method that BASIC uses to generate an error, is to execute a
BRK instruction, which is followed by a number of bytes in a
standard error format. This format is:

BRK instruction to generate the error
Single byte error number (ERR)
Error message (like ‘Mistake’)
A zero byte to terminate the message

This is the standard method of generating errors on the Acorn
BBC system, and it allows errors to be ‘ trapped’ by intercepting
the BRK vector (at &202). By trapping the errors generated by
BASIC, it is possible to add new commands, overlay procedures,
etc., and continue where it left off. Other errors which are
generated by BASIC are described in chapter 11.

When a BRK instruction is executed, the Machine Operating
System will JMP to the BRK handler whose address is in the BRK
vector at &202,&203. On entry to the BRK handler the following
conditions prevail:

(a) The A, X and Y registers are unchanged from when the
BRK instruction was executed.

(b) The 6502 stack is prepared ready for an RTI to the
instruction following the BRK instruction (i.e. with the
6502 flag byte on the top of the stack, and the return
address underneath it). This will return control to the
instruction 2 bytes after the BRK instruction.

(c) The pointer in locations &FD,&FE points to the ‘error
number’ byte after the BRK instruction.

98

Although a return from a BRK intruction is possible (it can be
used as a breakpoint in a machine code program), BASIC does
not expect such a return; executing an RTI after a BRK instruction
has been executed by BASIC (or any other program using it as an
error generating mechanism) will probably have fatal results.

The small program below illustrates how the BRK vector can be
intercepted, to cause a bleep (CHR$7) each time an error is
generated. If you get fed up with this, pressing BREAK or typing
�BASIC’ will re-set the BRK vector to point to the default BRK
handler in BASIC, missing out this routine.

The code assembles into the user defined character area from
&(]C00 onwards. If any user defined characters are to be used
while the routine is ‘linked in’ to the BRK vector, it could be
assembled somewhere else, by changing line 900. Space could be
allocated at PAGE for it by adding 256 to PAGE before the
routine is loaded (or typed in), and assembling the code to the old
location of PAGE, underneath the BASIC program.

 10 REM Routine to print a bleep on an error
 20 REM
 400 brkv = &0202 :REM BRK vector location
 410 oldbrk = !brkv AND &FFFF :REM Get default BRK handler
 420
 500 oswrch = &FFEE :REM OSWRCH (to print bteep)
 505
 900 start% = &0C00 :REM User char area
 905
 910 FOR opt% = 0 TO 3 STEP 3
 915 P%=start%
 920 [OPT opt%
 925
 1000 .newbrk
 1005 PHA \ Save A
 1007
 1010 LDA #&7 \ Print a bteep
 1015 JSR oswrch
 1017
 1020 PLA \ Retrieve A, and continue
 1025 JMP oldbrk \ with default BRK handter.
 9000]
 9010 NEXT
 9020 IF newbrk=oldbrk PRINT"Already set up":END
 9030 brkv?0 = newbrk MOD &100 :REM Set up BRK vector to
 9040 brkv?1 = newbrk DIV &100 :REM point to this routine.
 9050 END

99

When the program is assembled, the address of the default BRK
handler is retrieved at line 410. This is where the new routine will
JMP to when it has printed its bleep. This means that the error
message will still be printed by the BASIC BRK handler, as
though nothing had happened.

After the program has been assembled, its start address is poked
into the BRK vector at lines 9030 and 9040 (the BRK vector is
stored low byte first). Line 9020 checks to see if the program has
already been set up. If it has, the new BRK handler would jump
back to itself when it has finished. This means that if any error
occurs, it will continue printing bleeps until BREAK is pressed −
not very useful (try assembling it twice, and see what happens).
This is something to look out for with most error trapping
routines; if they fail to clear the error which called them, it will be
generated again, and they will be called again in exactly the same
situation.

The error trap routine saves A by pushing it on the stack, while it
prints the bleep. This is not necessary if the BASIC error handler
will be JMPed to immediately afterwards, as it does not use it; but
it would be important if a different routine, which relies on A
being correct on entry, had intercepted the BRK vector before this
program was entered. If this other routine had been linked in to
the BRK vector in a similar way, the ‘JMP oldbrk’ on the end of
this routine will jump into that routine when it is finished, rather
than the BASIC BRK handler.

It is usually a good idea to save any registers you are going to use,
if control will be returned to another routine which may need
them. If the ‘No room’ error is being trapped, for example
(chapter 11, BASIC2 only), all of the 6502 registers (A, X, Y)
must be intact so that the source of the error can be determined.

7.2 The ‘Mistake’ er ror

If you type in a word that BASIC doesn’t recognise, it generates a
‘Mistake’ error (error number 4). However, it leaves its statement
pointer, PTRA, pointing one character after the start of the name
(PTRA was advanced one byte by the action of reading in the first
character). This means that the word which caused the error to be
generated can be checked, and action taken if it corresponds to a
new, ‘home-made’ statement.

100

The ‘Mistake’ error is actually generated when BASIC fails to
find an ‘=’ character, often due to a mistyped keyword (such as
‘PRIT’ instead of ‘PRINT’). When this happens, the sequence of
actions is as follows:

1 The statement interpreter reads the character at PTRA,
advancing PTRA to point to the next character.

2 The character is not a keyword token. It is alphabetic,
however, so it looks like the start of a variable name; and
the statement interpreter jumps into the variable assignment
handler.

3 The assignment handler scans what it thinks is a variable
name, using PTRB. This means that PTRA still points one
byte after the first character of the name. If the name is of a
variable which doesn’t already exist, it will create it; but
only after it has checked that there is an ‘=’ following it.

4 The assignment routine checks for an ‘=’ after the variable
name. If it doesn’t find one (which it won’t, if it was a
mistyped keyword), it generates a ‘Mistake’ error. If it does
find one, it continues with the assignment.

In fact there are 5 slightly different causes of a ‘Mistake’:

(a) A non-existent variable name was found, without an ‘=’
following it. This error is generated before the variable is
created, by a sort of ‘pre-check’ before the main
assignment routine is entered.

(b) An existing variable name was found, without an ‘=’
following it. This is not quite the same as (a), above, but
the only difference is the return address left on the 6502
stack.

(c) A ‘LET’ statement, followed by a valid variable, was
found, but there was no ‘=’ following the name. If the
variable did not exist before this statement, it would have
been created before the error was generated (unlike (a)
above).

101

(d) A psuedo-variable name, like ‘HIMEM’, was found, but no
‘=’ followed it.

(e) A ‘FOR’ statement was found, followed by a valid variable,
but no ‘=’ followed the name.

All of these leave PTRA pointing 1 byte after the start of the
statement, but (c), (d), and (e) leave the 6502 stack in different
states. Fortunately, this only happens if the first character of the
statement is a keyword token; so if new statements are to be
introduced, they should not be allowed to start with one of the
tokens mentioned above (so ‘FORAGE’ cannot be a new
statement keyword).

Note that new keywords cannot begin with any other tokens either
(like the ‘TO’ in ‘TOTAL’) as these will cause a ‘Syntax error’
rather than a ‘Mistake’ . However, some of the BASIC �� keywords
are not tokenised if followed by an alphanumeric character (see
section 2.3.1), so ‘TIMER’ could be used as a new statement (the
‘TIME’ part would not be tokenised).

For (a) and (b), the prevailing conditions on entry to the BRK
handler are:

&FD,&FE points to the error number (4)

Stack contents: RTI information Return 3 bytes
Return address 2 bytes

PTRA points 1 after the first byte of the name

Other conditions are not so important (see chapter 11, error
number 4).

When a new statement has been recognised, the 3 bytes of RTI
information (pushed by the BRK instruction) and the 2 bytes of
return address (the ‘=’ was checked by a subroutine called by the
assignment handler) must be pulled from the stack before
execution is continued. If this is not done, any FNs or PROCs will
not return properly, as they expect their return address to be on the
top of the stack (see section 5.3).

102

7.3 A single character statement

The routine in this section shows a simple example of adding a ��ew
statement, by just checking the first character of the �tatement; the
one just before PTRA. If it is a ‘B’ ,it pulls the 5 bytes to be
discarded from the stack, checks that the ‘B’ is the only thing
(apart from spaces) in the statement, and produces a bleep.
Finally, it JMPs to the BASIC entry point to continue executing
the following statements.

Instead of being initialised when the program is assembled, this
program links in to the BRK vector when the small routine at the
start is CALLed (lines 1000 to 1115). Any programs which are
initialised in this way don’t need to be reassembled each time they
are used.

Note that the EQUB and EQUS assembler directives are used in
this program (lines 1025 to 1040), as they are much clearer than
the equivalent in BASIC. However, the EQU directive is not
implemented in BASIC 1, and should be replaced with its
equivalent using indirection operators.

 10 REM *** Program to add single character command ***
 12 REM
 14 REM M D Ptumbtey 1984
 16 REM
 18 REM This program traps the BRK vector. On an error,
 20 REM if ERR (the error number) is 4 ("Mistake")
 22 REM and the unrecognised statement is the singte
 24 REM character "B", then a bteep will be produced.
 26 REM
 28 REM If the error number is not 4, or the first char
 30 REM of the statement is not a "B" , then controll will
 32 REM be passed to the defautt error handl-er.
 34 REM
 36 REM When setting up, the program tests for BASIC 1
 38 REM or BASIC 2, and uses the corresponding ROM
 40 REM entry points.
 42 REM
 44 REM Before using on BASIC I, all EQU directives
 46 REM should be reptaced with indirections:
 48 REM "EQUB X" => "]?P%=X:P%=P%+1:[OPTopt%"
 50 REM "EQUS A$" => "]$P%=A$:P%=P%+LEN$P%:[OPTopt%"
 52 REM
 54 REM The code is assembled into the user defined
 56 REM character space: alternatively, space coutd
 58 REM be reserved at PAGE for it.

103

 60 REM
 99
 100 PROCset up : REM Set up cor r ect ROM ent r y poi nt s
 490
 495 REM * * * OS r out i nes and vect or s * * *
 500 OSWRCH = &FFEE
 550 BRKV = &0202
 799
 900 st ar t % = &0C00 : REM Assembl e i nt o user char space
 905
 910 FOR opt % = 0 TO 3 STEP 3
 920 P% = st ar t %
 950 [OPT opt %
 1000 . i ni t
 1005 LDA &8015 \ Test t hat t he cor r ect
 1010 CMP #baschr \ ver s i on of BASI C i s
 1015 BEQ basok \ i n t he ROM.
 1016
 1020 BRK \ I f i t i sn' t , pr i nt an
 1025 EQUB 60 \ er r or message.
 1030 EQUS " Not BASI C " \ (baschr set by PROCset up)
 1035 EQUB baschr
 1040 EQUB 0
 1041
 1045 . basok
 1050 LDA BRKV \ Load t he cur r ent BRK vect or
 1055 LDX BRKV+1 \ i nt o A and X.
 1056
 1060 CMP #newbr k MOD &100 \ I f t hi s r out i ne i s al r eady
 1065 BNE nt savd \ set up, don' t change BRKV.
 1070 CPX #newbr k DI V &100
 1075 BEQ saved
 1076
 1078 . nt savd
 1080 STA svbr kv \ I t has not been set up
 1085 STX svbr kv+1 \ al r eady, so save ol d
 1090 LDA #newbr k MOD &100 \ BRKV, and set up t he neu
 1095 STA BRKV \ one.
 1100 LDA #newbr k DI V &100
 1105 STA BRKV+1
 1106
 1110 . saved
 1115 RTS
 1190
 1192 \ * * * Thi s i s t he new BRK handt i ng r out i ne * * *
 1200 . newbr k
 1205 PHA \ Save A and Y on 6502 st ack
 1210 TYA
 1215 PHA
 1216
 1220 LDY #0 \ Get er r or number
 1225 LDA (&FD) , Y

104

 1226
 1280 CMP #4 \If "Mistake", check for a "B"
 1285 BEQ mistak
 1286
 1400 .giveup
 1410 PLA \Restore A and Y from 6502 stack
 1420 TAY
 1430 PLA
 1431
 1440 JMP (svbrkv) \Go to old BRK handl-er
 1441
 1490 \ *** If we get here, an error 4 ("Mistake") has ***
 1492 \ *** ocurred, so see if the charcter is a "B". ***
 1500 .mistak
 1510 LDY &A \Get character at start of statement
 1520 DEY
 1530 LDA (&B),Y
 1531
 1540 CMP #ASC"B" \If it is not a "B" , go to the old
 1550 BNE giveup \ BRK handler
 1551
 1560 PLA \Discard saved A and Y from stack
 1570 PLA
 1571
 1580 PLA \Discard RTI information from the
 1590 PLA \ 6502 stack. This is automaticatty
 1600 PLA \ pushed by the BRK instruction.
 1601
 1610 PLA \Discard return addr (of routine
 1620 PLA \ to check for "=") from stack
 1621
 1630 JSR chksda \Check for end of statement
 1631
 1640 LDA #7 \Print a beep
 1650 JSR OSWRCH \ (action at last!)
 1651
 1660 JMP cont \Continue execution
 1661
 6899
 6990 \ *** Routine variabtes area ***
 6991
 7000 .svbrkv EQUW !BRKV \Space to save old BRK vector
 7010
 8000]
 8010 NEXT
 8015 @%=0
 8020 PRINT'"Code length =&"~P%-start%
 8190
 8200 PRINT'''''"** WARNING: Once assembled, the code"
 8210 PRINT"generated by this program is not"
 8220 PRINT"transferable between different BASICS"
 8230 PRINT

105

 8300 PRINT"Execute ""CALL &"~init""" to initialise."
 8310 END
 8990
 8992 REM *** Set up ROM entry points, allowing for ***
 8993 REM *** BASIC 1 and BASIC 2. ***
 9000 DEFPROCsetup
 9010 basic1$ = "BASIC"+CHR$0+"(C)1981 Acorn"+CHR$&A
 9020 basic2$ = "BASIC"+CHR$0+"(C)1982 Acorn"+CHR$&A
 9030 IF $&8009=basic1$ THEN PROCset1 :ENDPROC
 9040 IF $&8009=basic2$ THEN PROCset2 :ENDPROC
 9050 PRINT "NOT BASIC I OR II"
 9060 END
 9290
 9292 REM *** Set up BASIC 1 entry points ***
 9300 DEFPROCset1
 9310 baschr = ASC"1":REM Used by init routine
 9320 chksda = &9810 :REM Check for statement delimiter
 9330 cont = &8B0C :REM Cont execution at next statement
 9490
 9492 REM *** Set up BASIC 2 entry points ***
 9500 DEFPROCset2
 9505 baschr = ASC"2":REM Used by init routine
 9530 chksda = &9857 :REM Check for statement delimiter
 9540 cont = &8B9B :REM Cont execution at next statement
 9550 ENDPROC

The general operation of the program is as follows:

PROCsetup is called to set up the correct ROM entry points
required by the routine (‘Check for statement delimiter’ and
‘Continue execution’ in this case). This uses the copyright string
to check for the version type, and calls PROCset1 or PROCset2
depending on the year (1981 or 1982). Alternatively, the paged
ROM version number, held in location &8008, could be used.
This is &00 for BASIC1, and &01 for BASIC2.

When the assembled code is initialised by CALLing the start, the
initialisation routine first checks that the year of the ROM is the
same as the one it was assembled for; if it isn’t, it won’t link itself
in (as the ROM entry points will be wrong). Note that this check
will only work if the BASIC ROM is paged in when the
initialisation routine checks the year; and not if the DFS, say, is
paged in (if the routine has just been �RUN’). See chapter 10 for
more on this.

If the ROM is correct, the initialisation routine saves the contents
of the BRK vector at ‘svbrkv’, and sets the BRK vector to point to
the new BRK handling routine.

106

When an error is generated, and ‘newbrk’ is entered, it checks that
the error number pointed to by &FD ,&FE is 4, if it isn’t, the or
was not a ‘Mistake’ , and a JMP is made to the default BRK
handler to deal with it.

If the error is a ‘Mistake’, the character before PTRA is tested to
see if it is a ‘B’ (the base of PTRA is stored in &B,&C with the
offset in &A). If it isn’t the old BRK handler is JMPed to to print
the ‘Mistake’ message.

If it is a ‘B’ , then the 5 bytes on the 6502 stack are pulled from it
(together with the 2 saved registers from the BRK handler). Then
the ROM routine is called which checks for the end of the
statement at PTRA (which still points just after the ‘B’). This will
produce a ‘Syntax error’ (error number 16) if it doesn’t find a ‘:’,
an ELSE token, or the end of the line.

Finally, a bleep is printed, and a JMP is made to the ROM routine
which continues with the execution of the program. Note that this
routine expects the ‘Check for statement delimiter’ routine to be
called before it, so that PTRA is set up to actually point 1 byte
after the statement terminator. These ROM routines are detailed in
chapter 10.

7.4 Recognising keywords

Just using single character statements is not very versatile: most
of the time it would be much more useful to give the new
statements keywords which reflect the action that they perform,
like ‘DUMP’ to dump the variables, or ‘REN’ to renumber a
program. The program in this section shows how to implement a
command line interpreter to recognise keywords from a table.

The keywords implemented in the program are ‘BEEP’, which
beeps (again), and ‘DUMP’ , which lists the current active
dynamic variables (see section 3.1.2). Neither of them take any
arguments.

Note that the EQU assembler directive has been used again (lines
1025 to 1040 as before, and lines 2500 to 2580 in the keyword
table).

107

 10 REM *** Program to add new BASIC commands ***
 12 REM
 14 REM M D Plumbley 1984
 16 REM
 18 REM This program traps the BRK vector. On an error,
 20 REM if ERR (the error number) is 4 ("Mistake")
 22 REM then a command line interpreter with test the
 24 REM statement for a keywrd to recognise. If it is
 26 REM recognised, the keyword's action is performed.
 28 REM Otherwise, controt is passed on to the default
 30 REM BRK handler.
 32 REM
 34 REM The code is assembled into the user key/char
 36 REM space: alternatively, space could be reserved
 38 REM at PAGE for it.
 40 REM
 42 REM Before using with BASIC 1, the EQUs should be
 44 REM reptaced with their equivatent:
 46 REM "EQUB X" => "]?P%=X:P%=P%+1:[OPTopt%"
 48 REM "EQUW X" => "]!P%=X:P%=P%+2:[OPTopt%"
 50 REM "EQUS A$" => "]$P%=A$:P%=P%+LEN$P%:[OPTopt%"
 52 REM
 99
 100 PROCsetup :REM Set up correct ROM entry points
 490
 495 REM *** OS routines and vectors ***
 500 OSWRCH = &FFEE
 550 BRKV = &0202
 590
 600 svbrkv = &0070 :REM Space to save old BRK vector
 690
 900 start% = &0B00 :REM User keylchar area
 905
 910 FOR opt% = 0 TO 3 STEP 3
 920 P% = start%
 950 [OPT opt%
 1000 .init
 1005 LDA &8015 \Test that the correct
 1010 CMP #baschr \ version of BASIC is
 1015 BEQ basok \ in the ROM.
 1016
 1020 BRK \If it isn't, print an
 1025 EQUB 60 \ error message.
 1030 EQUS "Not BASIC " \ (baschr set by PROCsetup)
 1035 EQUB baschr
 1040 EQUB 0
 1041
 1045 .basok
 1050 LDA BRKV \Load the current BRK vector
 1055 LDX BRKV+1 \ into A and X.
 1056
 1060 CMP #newbrk MOD &100 \If this routine is already

108

 1065 BNE ntsavd \ set up, don't change BRKV.
 1070 CPX #newbrk DIV &100
 1075 BEQ saved
 1076
 1078 .ntsavd
 1080 STA svbrkv \It has not been set up
 1085 STX svbrkv+1 \ atready, so save old
 1090 LDA #newbrk MOD &100 \ BRKV, and set up the new
 1095 STA BRKV \ one.
 1100 LDA #newbrk DIV &100
 1105 STA BRKV+1
 1106
 1110 .saved
 1115 RTS
 1190
 1192 \ *** This is the new BRK handting routine ***
 1200 .newbrk
 1205 PHA \Save A and Y on 6502 stack
 1210 TYA
 1215 PHA
 1216
 1220 LDY #0 \Get error number
 1225 LDA (&FD),Y
 1226
 1280 CMP #4 \If "Mistake", try new keytwsrds
 1285 BEQ mistak
 1286
 1400 .giveup
 1410 PLA \Restore A and Y from 6502 stack
 1420 TAY 1430 PLA
 1431
 1440 JMP (svbrkv) \Go to old BRK handter
 1441
 1490 \ *** If we get here, an error 4 ("Mistake") has ***
 1492 \ *** ocurred, so attempt to recognise one of the ***
 1494 \ *** command keywords in the table. ***
 1500 .mistak
 1510 LDA #keytab MOD &100\Get start of keytusrd tabte
 1520 STA &39 \ into (&39)
 1530 LDA #keytab DIV &100
 1540 STA &3A
 1541
 1550 LDY &A \Set (&37) to point to character
 1560 DEY \ before PTRA. It will then point
 1570 TYA \ to the first non-space character
 1580 CLC \ of the statement.
 1590 ADC &B
 1600 STA &37
 1610 LDA &C
 1620 ADC #0
 1630 STA &38

109

 1631
 1640 JSR nxtwrd \Call the command line interpreter
 1641
 1650 BCS giveup \Exit if no match
 1651
 1660 DEY \Adjust the offset of PTRA so that
 1665 TYA \ it points to the first charcter
 1670 CLC \ after the keytwrd just recognised.
 1675 ADC &A
 1680 STA &A
 1681
 1685 PLA \Discard saved A and Y from stack
 1690 PLA
 1691
 1695 PLA \Discard RTI information from the
 1700 PLA \ 6502 stack. This is automatically
 1705 PLA \ pushed by the BRK instruction.
 1706
 1710 PLA \Discard return addr (of routine
 1715 PLA \ to check for "=") from stack
 1716
 1720 JMP (&0037) \Execute the command
 1721
 1900 \ *** Command Line Interpreter ***
 1902 \ *** On entry, (837) shoutd point to the first ***
 1904 \ *** char of the HELLO!rd in the program to be ***
 1906 \ *** recognised. (&39) should point to the ***
 1908 \ *** start of the keyword table. ***
 1910 \ *** On exit; ***
 1912 \ *** if C is set, a match was not made ***
 1914 \ *** if C is ctear, the action addr is in ***
 1916 \ *** &37,38, so that JMP (&37) will call it. ***
 1917 \ *** Y contains the length of the word. ***
 1918 \ *** ***
 1920 \ *** No abbreviations are allowed. ***
 1922
 2135 .nxtwrd
 2140 LDY #0 \Beginning of words
 2141
 2150 LDA (&39),Y \If no word, this is the end of the
 2160 BEQ nomtch \ table, so no match was made.
 2161
 2170 CMP (&37),Y \If the chars do not match,
 2180 BNE difrnt \ try the next keyword.
 2181
 2190 .nextch
 2200 INY \Get the next character:
 2210 LDA (&39),Y \ if it is the end of the keyword,
 2220 BEQ getadr \ then get its addr, and jump there.
 2221
 2230 CMP (&37),Y \If the chars match,
 2240 BEQ nextch \ try the next one.

110

 2241
 2250 .difrnt
 2260 INY \This keywrd is not the right one,
 2270 LDA (&39),Y \ so look for the end of it.
 2280 BNE difrnt
 2281
 2290 INY \Set the base pointer at (&39) to
 2300 INY \ the start of the next keyword in
 2310 TYA \ the tabte (i.e. 3 bytes past the
 2320 SEC \ end of this keyword, to allow
 2330 ADC &39 \ for the address).
 2340 STA &39
 2350 LDA &3A
 2360 ADC #0
 2370 STA &3A
 2371
 2380 JMP nxtwrd \Try the next keyword in the table
 2381
 2400 .getadr
 2410 INY \The correct keyword has been
 2415 LDA (&39),Y \ matched, so put its execution
 2420 STA &37 \ addr in (&37).
 2425 INY
 2430 LDA (&39),Y
 2435 STA &38
 2436
 2440 DEY \Adjust Y so it contains the length
 2445 DEY \ of the recognised word.
 2446
 2450 CLC \Flag "Match OK" , and exit
 2455 RTS
 2456
 2460 .nomtch
 2465 SEC \Flag "No match", and exit
 2470 RTS
 2490
 2494 \ *** Keywrd tabte. The format of this table ***
 2496 \ *** is; Keywrd, zero byte, action addr ***
 2498 \ *** A keyword entry marks end of table. ***
 2499
 2500 .keytab
 2505 EQUS "BEEP" \Keyword,
 2510 EQUB 0 \ zero byte,
 2515 EQUW beep \ action addr
 2516
 2520 EQUS "DUMP"
 2525 EQUB 0
 2530 EQUW dump
 2531
 2580 EQUB 0 \End of keywrd tabte
 2990
 2992 \ *** BEEP - This command makes a beep by ***

111

 2994 \ *** printing a BEL character (CHR$7) ***
 3000 .beep
 3010 JSR chksda \Ensure end of statement
 3011
 3020 LDA #7 \Print a beep
 3030 JSR OSWRCH
 3031
 3035 .alldne
 3040 JMP cont \Continue execution
 3090
 3092 \ *** DUMP - This command lists the names of ***
 3094 \ *** all of the current active variables. ***
 3100 .dump
 3105 JSR chksda \Ensure end of statement
 3106
 3110 LDA #ASC"A"-1 \Set first initial letter for
 3120 STA &39 \ variable (allow for first INC)
 3121
 3125 .newltr
 3130 INC &39 \Use the next initial. Letter
 3131
 3140 LDA &39 \If all the letters have been
 3150 CMP #ASC"z"+1 \ used up, go to next statement
 3160 BCS alldne
 3161
 3170 ASL A \Point (&3A) at the right ptace
 3180 STA &3A \ in the variabte link table
 3190 LDA #4 \ in the top hatf of page 4
 3200 STA &3B
 3201
 3205 .newptr
 3210 LDY #1 \Get the MSB of the pointer to the
 3220 LDA (&3A),Y \ next variabte in the linked list.
 3221
 3230 BEQ newltr \If it is 0, we have found the end,
 3231 \ so try another initial letter.
 3232
 3240 TAX \Using X as a temp for the MSB,
 3245 DEY \ get the LSB of the pointer to the
 3250 LDA (&3A),Y \ next variabte in the list, and
 3255 STA &3A \ set (83A) to point to this
 3260 STX &3B \ variable.
 3261
 3262 LDA &39 \Print initiat letter of variabte
 3264 JSR pchar \ name (not stored in the list)
 3265
 3266 LDY #2 \Point at 1st stored char
 3267
 3268 .nxtchr
 3270 LDA (&3A),Y \Get the char in the name. If it
 3275 BEQ namend \ is the end of the name, exit.
 3280 JSR pchar \ Otherwise, print the char, and

112

 3285 INY \ go to the next one.
 3290 BNE nxtchr \ (Y never 0 here, so branch atways)
 3291
 3295 .namend
 3300 JSR pnewl \Print a new line after the end of
 3305 JMP newptr \ the name, and try the next link.
 8000]
 8010 NEXT
 8015 @%=0
 8020 PRINT'"Code length =&"~P%-start%
 8190
 8200 PRINT'''''"** WARNING: Once assembled, the code"
 8210 PRINT"generated by this program is not"
 8220 PRINT"transferable between different BASICS"
 8230 PRINT
 8300 PRINT"Execute ""CALL &"~init""" to initialise."'
 8310 END
 8990
 8992 REM *** Set up ROM entry points, allowing for ***
 8993 REM *** BASIC 1 and BASIC 2. ***
 9000 DEFPROCsetup
 9010 basic1$ = "BASIC"+CHR$0+"(C)1981 Acorn"+CHR$&A
 9020 basic2$ = "BASIC"+CHR$0+"(C)1982 Acorn"+CHR$&A
 9030 IF $&8009=basic1$ THEN PROCset1 :ENDPROC
 9040 IF $&8009=basic2$ THEN PROCset2 :ENDPROC
 9050 PRINT "NOT BASIC 1 OR 2"
 9060 END
 9290
 9292 REM *** Set up BASIC 1 entry points ***
 9300 DEFPROCset1
 9310 baschr = ASC"1":REM Used by init routi ne
 9320 pchar = &B571 :REM Print char in A: handle COUNT
 9330 pnewl = &BC42 :REM Print a CRLF, and zero COUNT
 9340 chksda = &9810 :REM Check for statement detimiter
 9350 cont = &8B0C :REM Cont execution at next statement
 9360 ENDPROC
 9490
 9492 REM *** Set up BASIC 2 entry points ***
 9500 DEFPROCset2
 9505 baschr = ASC"2":REM Used by init routine
 9520 pchar = &B558 :REM Print char in A: handle COUNT
 9525 pnewl = &BC25 :REM Print a CRLF, and zero COUNT
 9530 chksda = &9857 :REM Check for statement detimiter
 9540 cont = &8B9B :REM Cont execution at next statenemt
 9550 ENDPROC

Note that the initialisation and setup routines are substantially the
same as for the program in section 7.3 (although there are a few
extra ROM routines). The program is longer than the last One, so
it destroys the user defined function key area (this means that

113

funny things might happen if you press BREAK, as it is function
key 10). The comrrfand line interpreter in this program (lines
1500 on) replaces the simple check for a ‘B’ in the last one.

The keyword recogniser (lines 1900 to 2470) is a subroutine all by
itself. It uses a keyword table (lines 2500 to 2580) with each entry
in the following format:

keyword characters
a zero byte to terminate the keyword
the action address of the keyword (2 bytes)

The end of the table is marked by the first character of the
keyword being a zero byte.

The keyword recogniser is entered with the address of the table in
&38,&39 and the address of the keyword to be recognised in
&37,&38. If the keyword is recognised, the action address is put
into &37,&38, the length of the recognised word is left in Y, and
the carry flag cleared. If the keyword is not recognised, the carry
flag is set.

Sending the address of the table in this manner allows more than
one routine to use the same recogniser, with different tables. This
means that it could also be used if new functions are being added
as well.

The general operation of the keyword recogniser is as follows:

1 If the first byte of the name is a zero, the end of the table
has been reached without a match, so exit with the carry
flag set.

2 Compare the keyword in the table against the word in the
program. If they both match until the zero at the end of the
word in the table is found, get the action address of the
keyword.

3 If any characters did not match, move the table pointer up
to point to the next entry, and go back to stage 1 to try to
match the next one.

When the keyword recogniser has returned, PTRA is updated to
point to the first character after the keyword (lines 1660 to 1680).
This allows the routine for the keyword to continue from there, to

114

get anything it needs from the text (or to just check for the end of
the statment).

The variable dump routine works in a similar way to the BASIC
one in section 3.1.2, but it doesn’t print out their values.

7.5 A renumber utility

The RENUMBER command in BASIC is very limited; it only
allows you to renumber the whole of your program. This is OK
for small programs, but larger programs usually consist of a
number of PROC and FN definitions, and it is very easy to loose
track of these if they don’t start on, say, 1000 boundaries. Using
BASIC’s blanket renumber on programs such as these will lose
this structure completely.

This section describes how to add a new command to allow
selected areas of the program to be renumbered. It is less than 512
bytes long, and so will fit in any 2 spare pages in memory (the
user defined character and function key pages, perhaps).

Once the program has been assembled, and initialised by
CALLing the start address, the new statement ‘REN’ has been
added.

REN L, U; S, I

will renumber the lines in the program between L and U
(inclusive) starting at S with an increment of I. All line numbers
outside this range will be left unaltered. The GOTO and GOSUB
line number references will be dealt with, in the same way as the
BASIC RENUMBER command (in fact, the program JMPs into
the RENUMBER code to do this!).

For example, if the following program was in memory:

 10 REM PROGRAM
 100 A=0
 101 B=0
 110 PROCthing
 1000 DEFPROCthing
 1010 ENDPROC

115

typing ‘REN 100,110;500,20’ would leave the program as:

 10 REM PROGRAM
 500 A=0
 520 B=0
 540 PROCthing
 1000 DEFPROCthing
 1010 ENDPROC

The following errors will be produced if the REN statement is
misused:

REN syntax

This error is generated if the REN statement fails to find a comrm
or a semicolon separating its arguments where expected.

REN space

This error is generated if there is not enough room for the pile of
old line numbers the REN statment needs to put on the TOP of the
program. This is similar to the ‘RENUMBER space’ error (a fatal
error).

REN range

An attempt was made to renumber the program such that the new
lines would be out of sequence. In the above example, if ‘REN
1000,1010.,1,2’ was typed this error would be generated.

REN type

A string was used as the argument to the REN statement (floating
point numbers will be converted to integer if necessary).

EQU has not been used in this program, so it will work without
modification with either BASIC 1 or BASIC 2 (although it looks a
bit messy).

 10 REM *** Selective renumber utility ***
 12 REM
 14 REM M D Plumbley 1984
 16 REM
 18 REM This program traps the BRK vector. If the error
 20 REM number is 4 ("Mistake") then the command line
 22 REM interpreter will test for the new command "REN",

116

 24 REM and execute it if it is.
 26 REM
 28 REM REN L, U; S, I will renumber lines L to U of a
 30 REM program, starting at S, tfith an increment of I.
 32 REM
 34 REM The code is assembted into the user key char
 36 REM space. This can be changed by changing line 900
 38 REM
 40 REM The EQU directive is not used in this program, and
 42 REM it will work without modification on either
 44 REM BASIC1 or BASIC2 machines.
 46 REM
 99
 100 PROCsetup :REM Set up correct ROM entry points
 490
 495 REM *** OS routines and vectors ***
 550 BRKV = &0202
 590
 600 worksp = &0070 :REM Workspace area
 605 svbrkv = worksp :REM BRK vector save slot
 610 lower = worksp+&2 :REM Lower renumber limit
 615 upper = worksp+&4 :REM Upper renumber limit
 620 start = worksp+&6 :REM Start line number
 625 number = worksp+&8 :REM Next renumber number
 630 line = worksp+&A :REM Pointer to line in prog.
 635 pile = worksp+&C :REM Ptr. to line no. pile
 640 newnum = worksp+&E :REM line no. to be used
 690
 695 REM *** BASIC system variables ***
 700 himem = &0006
 705 top = &0012
 710 page = &0018
 715 count = &001E
 720 inta = &002A :REM Integer accumutator
 725
 750 renum = 0 :REM To stop "No such var."
 799
 900 start% = &0B00 :REM User key/char
 905
 910 FOR opt%= 0 TO 3 STEP 3
 920 P% = start%
 950 [OPT opt%
 1000 .init
 1005 LDA &8015 \Test that the correct
 1010 CMP #baschr \ version of BASIC is
 1015 BEQ basok \ in the ROM.
 1020
 1025 BRK \If it isn't, print an
 1030]?P%=60:P%=P%+1 :REM error message
 1035 $P%="Not BASIC ":P%=P%+LEN$P%
 1040 ?P%=baschr:P%=P%+1
 1045 ?P%=0:P%=P%+1:[OPTopt%

117

 1050
 1055 .basok
 1060 LDA BRKV \Load the current BRK vector
 1065 LDX BRKV+1 \ into A and X.
 1070
 1075 CMP #newbrk MOD &100\If this routine is atready
 1080 BNE ntsavd \ set up, don't change BRKV.
 1085 CPX #newbrk DIV &100
 1090 BEQ saved
 1095
 1100 .ntsavd
 1105 STA svbrkv \It has not been set up
 1110 STX svbrkv+1 \ atready, so save old
 1115 LDA #newbrk MOD &100\ BRKV, and set up the new
 1120 STA BRKV \ one.
 1125 LDA #newbrk DIV &100
 1130 STA BRKV+1
 1135
 1140 .saved
 1145 RTS
 1190
 1192 \ *** This is the new BRK handling routine ***
 1200 .newbrk
 1205 PHA \Save A and Y on 6502 stack
 1210 TYA
 1215 PHA
 1220
 1225 LDY #0 \Get error number
 1230 LDA (&FD),Y
 1235
 1240 CMP #4 \If "Mistake" , try new keywords
 1245 BEQ mistak
 1250
 1400 .giveup
 1405 PLA \Restore A and Y from 6502 stack
 1410 TAY
 1415 PLA
 1420
 1425 JMP (svbrkv) \Go to old BRK handler
 1430
 1490 \ *** If we get here, an error 4 ("Mistake") has ***
 1492 \ *** occurred, so attempt to recognise one of the ***
 1494 \ *** command keywords in the table. ***
 1500 .mistak
 1505 LDA #keytab MOD &100 \Get start of keyword table
 1510 STA &39 \ into (&39)
 1515 LDA #keytab DIV &100
 1520 STA &3A
 1525
 1530 LDY &A \Set (&37) to point to character
 1535 DEY \ before PTRA. It will then point
 1540 TYA \ to the first non-space character

118

 1545 CLC \ of the statement.
 1550 ADC &B
 1555 STA &37
 1560 LDA &C
 1565 ADC #0
 1570 STA &38
 1575
 1580 JSR nxtwrd \Call the command line interpreter
 1585
 1590 BCS giveup \Exit if no match
 1595
 1600 DEY \Adjust the offset of PTRA so that
 1605 TYA \ it points to the first charcter
 1610 CLC \ after the keyword just recognised.
 1615 ADC &A
 1620 STA &A
 1625
 1630 PLA \Discard saved A and Y from stack
 1635 PLA
 1640
 1645 PLA \Discard RTI information from the
 1650 PLA \ 6502 stack. This is automatically
 1655 PLA \ pushed by the BRK instruction.
 1660
 1665 PLA \Discard return addr (of routine
 1670 PLA \ to check for "=") from stack
 1675
 1680 JMP (&0037) \Execute the command
 1685
 1690
 1990 \ *** This is the command line interpreter bit ***
 1992
 2000 .nxtwrd
 2005 LDY #0 \Beginning of wrds
 2010
 2015 LDA (&39),Y \If no word, this is the end of the
 2020 BEQ nomtch \ table, so no match was made.
 2025
 2030 CMP (&37),Y \If the chars do not match,
 2035 BNE difrnt \ try the next keyword.
 2040
 2045 .nextch
 2050 INY \Get the next character:
 2055 LDA (&39),Y \ if it is the end of the keyuord,
 2060 BEQ getadr \ then get its addr, and jump there.
 2065
 2070 CMP (&37),Y \If the chars match,
 2075 BEQ nextch \ try the next one.
 2080
 2085 .difrnt
 2090 INY \This keyword is not the right one,
 2095 LDA (&39),Y \ so look for the end of it.

119

 2100 BNE difrnt
 2105
 2110 INY \Set the base pointer at (&39) to
 2115 INY \ the start of the next keywrd in
 2120 TYA \ the table (i.e. 3 bytes past the
 2125 SEC \ end of this keyword, to allow
 2130 ADC &39 \ for the address).
 2135 STA &39
 2140 LDA &3A
 2145 ADC #0
 2150 STA &3A
 2155
 2160 JMP nxtwrd \Try the next keyword in the table
 2165
 2170 .getadr
 2175 INY \The correct keywrd has been
 2180 LDA (&39),Y \ matched, so put its execution
 2185 STA &37 \ addr in (&37).
 2190 INY
 2195 LDA (&39),Y
 2200 STA &38
 2205
 2210 DEY \Adjust Y so it contains the length
 2215 DEY \ of the recognised word.
 2220
 2225 CLC \Flag "Match OK", and exit
 2230 RTS
 2235
 2240 .nomtch
 2245 SEC \Flag "No match", and exit
 2250 RTS
 2490
 2494 \ *** Keyword table. The format of this table ***
 2496 \ *** is; Keyword, zero byte, action addr ***
 2498 \ *** A 0 keyword entry marks end of tabte. ***
 2499
 2500]
 2505 keytab = P%
 2510 $P% = "REN" :P%=P%+LEN$P%
 2515 ?P% = 0 :P%=P%+1
 2520 !P% = renum :P%=P%+2
 2525 ?P% = 0 :P%=P%+1:REM end of table
 2600 [OPT opt%
 2790
 2792 \ *** This prints a REN syntax error ***
 2800 .nocom \ If "," missing, or ";"
 2805 .noscol \ missing, generate a
 2810 BRK \ "REN syntax" error
 2815]
 2820 ?P%=&60:P%=P%+1
 2825 $P%="REN syntax":P%=P%+LEN$P%
 2830 ?P%=0:P%=P%+1

120

 2835 [OPT opt%
 2990
 2992 \ *** REN - This command renumbers a selected ***
 2994 \ *** part of a program ***
 3000 .renum
 3005 JSR gtinta \Get the lower limit line
 3010 LDA inta \ number from the text at
 3015 STA lower \ PTRA, and save it in
 3020 LDA inta+1 \ "lower". PTRB points to
 3025 STA lower+1 \ the next item.
 3030
 3035 JSR getchb \Check for a comma at PTRB,
 3040 CMP #ASC"," \ and error if it isn't.
 3045 BNE nocom
 3050
 3055 JSR gtintb \Get the upper limit line
 3060 LDA inta \ number from the text at
 3065 STA upper \ PTRB, and save it in
 3070 LDA inta+1 \ "upper".
 3075 STA upper+1
 3080
 3085 JSR getchb \Check for a semicolon at
 3090 CMP #ASC";" \ PTRB, and error if it
 3095 BNE noscol \ isn't.
 3100
 3105 JSR gtintb \Get the start number for
 3110 LDA inta \ the renumbered section,
 3115 STA start \ and save it in "start".
 3120 LDA inta+1
 3125 STA start+1
 3130
 3135 JSR getchb \Check for a comma, and
 3140 CMP #ASC"," \ error if it isn't.
 3145 BNE nocom
 3150
 3155 JSR gtintb \Get the increment, leaving
 3157 \ leaving it in IntA.
 3160
 3165 JSR chksdb \Check for end of statement
 3170
 3200 JSR settop \ Set TOP to the top of the
 3202 \ program, and set up the
 3205 JSR setup \ initiat ptrs and numbers
 3210
 3490 \ ** Go through all the lines, piting up the ***
 3492 \ ** numbers, and checking for range. ***
 3500 .chklns
 3505 LDY #0 \If we're at the end of the
 3510 LDA (line),Y \ program, go on to renumber
 3515 BMI renlns \ the lines
 3520
 3525 STA (pile),Y \Othewise, add the line

121

 3530 INY \ number to the pile on the
 3535 lDA (line),Y \ TOP of the program.
 3540 STA (pile),Y
 3545
 3550 CLC \Add 2 to the pile pointer,
 3555 LDA #2 \ to cover the new line just
 3560 ADC pile \ added to it. Save the LSB
 3565 STA pile \ of the pile pointer in X,
 3570 TAX \ as it will be needed to
 3575 LDA pile+1 \ check against HIMEM.
 3580 ADC #0
 3585 STA pile+1
 3590
 3595 CPX himem \If the pile pointer is now
 3600 SBC himem+1 \ above HIMEM, give a
 3605 BCS noroom \ "REN space" error.
 3610
 3615 JSR rngchk \Check the line range, and
 3620 JSR nextln \ move the pointer to the
 3621 \ next one, and go back to
 3625 JMP chklns \ do another.
 3630
 3635 .noroom \Generate a "REN space"
 3640 BRK \ error.
 3645]?P%=&61:P%=P%+1
 3650 $P%="REN space":P%=P%+LEN$P%
 3655 ?P%=0:P%=P%+1
 3660 [OPT opt%
 3990
 3992 \ ** Once the line range has been checked, and the **
 3994 \ ** pile set up, come here to renumber the lines **
 3996
 4000 .renlns \Re-set the line pointer and
 4005 JSR setup \ numbers.
 4010
 4015 .rnline \ If we're at the end of the
 4020 LDY #0 \ program, go on to resolve
 4025 LDA (line),Y \ the GOTO line references.
 4030 BMI rsolve
 4035
 4040 JSR rngchk \Set up "newnum" to be the
 4045 \ new line number to be
 4050 LDA newnum+1 \ used, and set the line
 4055 STA (line),Y \ number of the current line
 4060 INY \ to it.
 4065 LDA newnum
 4070 STA (line),Y
 4075
 4080 JSR nextln \Move the line pointer to
 4085 \ point to the next line,
 4090 JMP rnline \ and jump back to renumber
 4095 \ the next one.

122

 4100
 4500 .rsolve \Jump into RENUMBER to fix
 4505 JMP rsvgot \ the GOTO refeFences.
 4510
 5989
 5990 \ ** Set up current number to first,
 5992 \ line pointer to PAGE+1,
 5994 \ pile pointer to TOP
 6000 .setup
 6005 LDA start \Set the next number in the
 6010 STA number \ renumbered section to the
 6015 LDA start+1 \ start number in the
 6020 STA number+1 \ renumbered section.
 6025
 6030 LDA #1 \Set the line pointer to
 6035 STA line \ point to the first line
 6040 LDA page \ at PAGE+1
 6045 STA line+1
 6050
 6055 LDA top \Set the pile pointer to
 6060 STA pile \ the TOP of the program
 6065 LDA top+1
 6070 STA pile+1
 6075
 6080 LDA #0 \Set the last number used to
 6085 STA newnum \ zero
 6090 STA newnum+1
 6092
 6095 RTS \ Exit
 6189
 6190 \ ** Set "line" to point to next line **
 6200 .nextln
 6205 LDY #2 \Get the length byte of the
 6210 LDA (line),Y \ current line.
 6212
 6215 CLC \ Add the length of the line
 6220 ADC line \ to the line pointer.
 6225 STA line
 6230 BCC lineok
 6235 INC line+1
 6240 .lineok
 6245 RTS \ Exit
 6489
 6490 \ ** Check range and set up newnum **
 6500 .rngchk
 6505 LDY #1 \Get the current line number
 6510 LDA (line),Y \ into X (LSB) and A (MSB)
 6515 TAX
 6520 DEY
 6525 LDA (line),Y
 6530
 6535 CPX lower \If the current line is not

123

 6540 SBC lower+1 \ under the lower limit, go
 6545 BCS notund \ to "notund"
 6550
 6555 LDA (line),Y \If it is, check that the
 6560 CPX start \ start line for the REN
 6565 SBC start+1 \ section is above this
 6570 BCC thistn \ line. Otherwise, ...
 6575
 6580 .rngerr \Generate a "REN range"
 6585 BRK \ error
 6590]?P%=&62:P%=P%+1
 6595 $P%="REN range":P%=P%+LEN$P%
 6600 ?P%=0:P%=P%+1
 6605 [OPT opt%
 6610
 6615 .notund \Check to see if the current
 6620 LDA (line),Y \ line number, which is
 6625 CMP upper+1 \ not under the lcwer limit,
 6630 BCC notovr \ is also not over the upper
 6635 BNE over \ limit. If it is inside
 6640 CPX upper \ both these limits, go to
 6645 BCC notovr \ "notovr" to generate a new
 6650 BEQ notovr \ line number.
 6655
 6660 .over \If the current line number
 6665 CMP newnum+1 \ is over the upper limit,
 6670 BCC rngerr \ check that the last line
 6675 BNE thistn \ used was not above this
 6680 CPX newnum \ one. If it was, the last
 6685 BCC rngerr \ renumbered line number was
 6690 BEQ rngerr \ too big, so error.
 6695
 6700 .thistn \If the current line number
 6705 LDA (line),Y \ is outside the REN limits,
 6710 STA newnum+1 \ use the current line
 6715 STX newnum \ number as the new one, and
 6720 RTS \ exit.
 6725
 6730 .notovr \If the current line number
 6735 CLC \ is inside the REN limits,
 6740 LDA number \ use "number" as the new
 6745 STA newnum \ line number, and add the
 6750 ADC inta \ increment to "number".
 6755 STA number
 6760
 6765 LDA number+1 \The AND is to make sure
 6767 AND #&7F \ that the line number never
 6770 STA newnum+1 \ exceeds 32768. If it does,
 6775 ADC inta+1 \ it will be lost off the
 6780 STA number+1 \ end of the program.
 6782
 6785 RTS \ Exit

124

 6790
 6990 \ ** Get an integer from the text at PTRA **
 7000 .gtinta
 7005 JSR getnsa \Get a <numeric> or <string>
 7010 JMP typchk \ at PTRA, and check type.
 7015
 7017 \ ** Get an integer from the text at PTRB **
 7020 .gtintb \Get a <numeric> or <string>
 7025 JSR getnsb \ at PTRB.
 7027
 7030 .typchk \If it was a string, give a
 7035 BEQ msmtch \ "REN type" error
 7040
 7045 BPL noconv \If it was real (type -ve),
 7050 JSR cftoi \ convert it to integer.
 7052
 7055 .noconv
 7060 RTS \ Exit.
 7065
 7070 .msmtch \Generate a "REN type"
 7075 BRK \ error.
 7080]?P%=&63:P%=P%+1
 7085 $P%="REN type":P%=P%+LEN$P%
 7090 ?P%=0:P%=P%+1
 8000
 8010 NEXT
 8015 @%=0
 8020 PRINT'"Code length=&"~P%-start%
 8190
 8200 PRINT'''''"** WARNING: Once assembled, the code"
 8210 PRINT"generated by this program is not"
 8220 PRINT"transferable between different BASICS"
 8230 PRINT
 8300 PRINT"Execute ""CALL &"~init""" to initialise."'
 8310 END
 8990
 8992 REM *** Set up ROM entry points, allowing for ***
 8993 REM *** BASIC 1 and BASIC 2. ***
 9000 DEFPROCsetup
 9010 basic1$ = "BASIC"+CHR$0+"(C)1981 Acorn"+CHR$&A
 9020 basic2$ = "BASIC"+CHR$0+"(C)1982 Acorn"+CHR$&A
 9030 IF $&8009=basic1$ THEN PROCset1 :ENDPROC
 9040 IF $&8009=basic2$ THEN PROCset2 :ENDPROC
 9050 PRINT "NOT BASIC 1 OR 2"
 9060 END
 9290
 9292 REM *** Set up BASIC 1 entry points ***
 9300 DEFPROCset1
 9305 baschr = ASC"1":REM Used by init routine
 9310 cftoi = &A3F2:REM Convert ftoating point to integer
 9315 chksdb = &980B:REM Check statement delimiter at PTRB
 9320 getchb = &8A13:REM Get character at PTRB

125

 9325 getnsb = &9B03:REM Get <numeric> or <string> at PTRB
 9330 getnsa = &9AF7:REM Get <numeric> or <string> at PTRA
 9340 rsvgot = &8FAD:REM Resolve RENUMBERed G0TOs
 9345 ENDPROC
 9490
 9492 REM *** Set up BASIC 2 entry points ***
 9500 DEFPROCset2
 9505 baschr = ASC"2": REM Used by i ni t routi ne
 9510 cftoi = &A3E4:REM Convert ftoating point to integer
 9515 chksdb = &9852:REM Check statement delimiter at PTRB
 9520 getchb = &8A8C:REM Get character at PTRB
 9525 getnsb = &9B29:REM Get <numeric> or <string> at PTRB
 9530 getnsa = &9B1D:REM Get <numeric> or <string> at PTRA
 9535 settop = &BE6F:REM Set up TOP, check "Bad program"
 9540 rsvgot = &900D:REM Resotve RENUMBERed GOTOs
 9545 ENDPROC

The initialisation routine, BRK handler, and keyword recogniser
used by this program (lines 1000 to 2250) are the same as used in
the program in section 7.4. The keyword table (lines 2500 to
2525) contains the single entry ‘REN’.

The general operation of the renumber utility, once recognised, is
as follows:

1 The rest of the line after the ‘REN’ is decoded (lines 3000
to 3165). The keyword recogniser leaves PTRA pointing to
the first character after the keyword, so this is used to get
the first integer. The succeeding characters and integers are
read in from PTRB, as this is advanced leaving PTRA still
pointing to the first character after the ‘REN’.

2 The old line numbers are piled up above the program, from
TOP onwards (lines 3500 to 3625). Also, each line is
checked to make sure that the range of the renumbered
lines does not overlap with the lines which will not be
renumbered. This check is carried out by the routine
‘rngchk’ (which also calculates the new line number, but
that is not used at this stage).

3 The lines are then renumbered (lines 4000 to 4095), using
the routine ‘rngchk’ to calculate the new line number. This
is not done at stage 2, in case there was not enough room 4
for the pile of line numbers; otherwise, the program would
be left half-renumbered, with no GOTO references
resolved.

126

4 The GOTO and GOSUB references are resolved. This part
is in fact done by the routine in the ROM which is used by
the BASIC RENUMBER command. It scans through the
program, looking for line number tokens (section 2.3.2). If
it finds one, it searches through the pile of old line numbers
on top of the program, at the same time keeping track of
the corresponding new line number in the program. When
it matches the line numbers, it changes the tokenised line
number to the new one. If it couldn’t match them, it prints
the ‘Failed at xxx’ message, before continuing.

The ‘rngchk’ routine is used both in stages 2 and 3. It decides
whether the current line number is inside the range to be
renumbered or not, and generates ‘newnum’ to be either the
current line number, or a new renumbered line number
accordingly. If it finds that the renumbering would cause a line
number overlap, it generates a ‘REN range’ error.

The ‘getinta’ and ‘getintb’ routines get an integer from the line of
text, leaving it in IntA (&2A to &2D). If the argument is in fact a
string, a ‘REN type’ error will be generated. If the argument is a
floating point number, it will convert it to an integer. The routine
to get a <numeric> or <string> at PTRA will first copy PTRA into
PTRB, and then get the <numeric> or <string> at PTRB (thus
leaving PTRA unchanged). See chapter 10 for more details of
these expression evaluation routines.

With the mechanisms described in this chapter, any number of
new statements can be added (provided there is enough memory
to keep them all in). The next chapters describe how other errors
can be trapped, as well as the ‘Mistake’ error.

127

