
Other books of interest from Granada:
The Apple II
APPLE II
PROGRAMMERS
HANDBOOK
R. C. Vile
0 246 12027 4

ATARI
GET MORE FROM
THE ATARI
Ian Sinclair
0 246 12149 1

THE ATARI
BOOK OF GAMES
M. James, S. M. Gee
and K. Ewbank
0 246 1 2277 3

The BBC Micro
INTRODUCING THE
BBC MICRO
Ian Sinclair
0 246 12146 7

THE BBC MICRO -
AN EXPERT GUIDE
Mike James
0 246 12014 2

21 GAMES FOR THE
BBC MICRO
M. James, S. M. Gee
and K. Ewbank
0 246 12103 3

BBC MICRO
GRAPHICS AND
SOUND
Steve Money
0 246 12156 4

DISCOVERING
BBC MICRO
MACHINE CODE
A. P. Stephenson
0 246 12181 2

THE BBC BASIC
PROGRAMMER
S. M. Gee and M.
James
0 246 12158 0

The Colour Genie
MASTERING THE
COLOUR GENIE
Ian Sinclair
0 246 12190 4

The Commodore 64
COMMODORE 64
COMPUTING
Ian Sinclair
0 246 12030 4

THE COMMODORE
64 GAMES BOOK
Owen Bishop
0 246 12258 7

SOFTWARE 64
Practical Programs
for the Commodore
64
Owen Bishop
0 246 1 2266 8

The Dragon 32
THE DRAGON 32
And How to Make
The Most Of It
Ian Sinclair
0 246 121 14 9

THE DRAGON 32
BOOK OF GAMES
M. James, S. M. Gee
and K. Ewbank
0 246 12102 5

THE DRAGON
PROGRAMMER
S. M. Gee
0 246 12133 5

DRAGON
GRAPHICS AND
SOUND
Steve Money
0 246 12147 5

THE DRAGON 32
How to Use and
Program
Ian Sinclair
0 586 06103 7

The IBM Personal
Computer
THE IBM PERSONAL
COMOPUTER
James Aitken
0 246 12151 3

The Jupiter Ace
THE JUPITER ACE
Owen Bishop
0 246 12197 1

The Lynx
LYNX COMPUTING
Ian Sinclair
0 246 12131 9

The NewBrain
THE NEWBRAIN
And How To Make
The Most Of It
Francis Samish
0 246 12232 3

The ORIC-1
THE ORIC-1
And How To Get
The Most From It
Ian Sinclair
0 246 12130 0

THE ORIC-1 BOOK
OF GAMES
M. James, S. M. Gee
and K. Ewbank
0 246 121 55 6

THE ORIC-1
PROGRAMMER
M. James and S. M.
Gee
0246 12157 2

ORIC MACHINE
CODE HANDBOOK
Paul Kaufman
0246 12160 5

Continued on inside back cover

BBC Micro Graphics
and Sound

S. A. Money

GRANADA
London Toronto Sydney New York

Granada Technical Books
Granada Publishing Ltd
8 Grafton Street, London W1X 3LA
Copyright©1983 by S. A. Money

British Library Calaloguing in Publication Dura
Money, S. A. BBC micro graphics and sound.

1. Computer graphics
2. BBC Microcomputer
I. Title
001.64'43 T385

ISBN 0-246-12156-4

First published in Great Britain 1983 by Granada Publishing

Typeset by V & M Graphics Ltd, Aylesbury, Bucks
Printed in Great Britain

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording or otherwise,
without the prior permission ofthe publishers.

DIGITALLY REMASTERED ON ACORN RISC OS COMPUTERS,
May 2011

Contents

Preface

1 Introduction v

2 Drawing and Plotting 1

3 Painting by Numbers 15

4 Graphs and Charts 39

5 More About Colour and Plot 71

6 The Teletext Mode 89

7 Making Things Move 104

8 The Third Dimension 115

9 Making Sounds 139

10 MakingMusic 156

Index 169

Preface

Among the more interesting developments in personal and home
computer design in the past few years has been the introduction of
high resolution colour graphics displays and versatile sound
generation systems. Of the currently available home computers the
BBC Micro probably offers the most comprehensive graphics and
sound facilities.

The potential uses of the graphics and sound on the BBC Micro
seem to be limitless and many hours can easily be spent injust trying
out some of the many combinations that are possible. In this book the
aim has been to explain the various facilities available on the BBC
Micro in simple terms and to show how they might be used in
practical applications.

Chapter 1 starts off by explaining the various techniques used for
producing graphics and text displays and examines the various display
modes available. This chapter concludes with a program which allows
the computer to be used as a simple sketch pad. The techniques of
drawing various common shapes, such as circles, rectangles and
polygons, are explored in Chapter 2 and a number of illustrative
routines and short programs are included. The reader may then
incorporate these routines and techniques into his own programs to
allow virtually any shape to be drawn. It should be noted that all ofthe
illustrations in this book were produced using a BBC Model B
machine and an Epson MX80 printer.

Colour is an important factor in modern computer displays,
particularly for video games applications, and in Chapter 3 the basic
colour facilities of the BBC Micro are examined. Later in Chapter 5
some of the more advanced colour display features of the machine are
explored. These include switching of the available colour set and the
use of logical operations on colour commands to allow objects on the
screen to move put one another without producing odd colour effects.

An important use for computer displays is for presentation of

various types of graph or chart. In Chapter 4 the techniques involved
in drawing bar charts, graphs and pie charts are dealt with.

One disadvantage of the BBC Micro is that for most of its display
modes it tends to be very greedy on memory, with 10K and 20K of the
available memory tied up solely for use by the display. Although this
is compensated for by the excellent graphics facilities there are
programs, such as adventure games, where a large amount of memory
is required for the program itself. There is, however, one display mode
which uses the same standard as broadcast teletext and requires only
1K of memory for the display. The various facilities available in this
display mode are discussed in Chapter 6. For games programs
animation is often an important feature. Chapter 7 is devoted to the
basic principles involved in producing animated images and also looks
at the facilities available for producing special text symbols which
may be useful in animated games programs.

The real world is of course three-dimensional and it is useful to be
able to produce pseudo three-dimensional images on the computer
display. The techniques producing three-axis graphics displays and
perspective views are explained in Chapter 8 and a number of
illustrative programs are provided. Real time animation of a
perspective view normally requires the use of machine code
programming to provide the processing speed and was felt to be
beyond the scope of this present book, but a simple animation program
in BASIC has been included to show the possibilities of this type of
display.

With four channels the sound generator on the BBC Micro is
extremely versatile and it would probably take a whole book and many
years of experimenting to explore all of its possibilities. In Chapters 9
and 10 the basic operation of the sound generator is explored and the
reader is shown how it can be used to produce various kinds of sound
effects and music. The object here has been to show the reader how
the sound and envelope facilities might be used.

Throughout this book the aim has been to explain in simple terms
the various techniques needed for producing pictures and sounds from
the BBC Micro. I have assumed that the reader is familiar with the
general operation of the machine and its BASIC language. For those
who find the User’s Manual rather daunting I can recommend lan
Sinclair’s book Introducing the BBC Micro. Bach user will, of course,
have his or her own particular requirements for producing displays or
sounds and much of the fun of uninga home computer is the challenge
of making it do what you want it to. I hope that in this book I have

Prefacen vi

provided a useful set of tools to help the reader achieve that aim.
Finally I would like to thank Richard Miles of Granada publishing

for his encouragement and help during the production of this book.

Steve Money

BBC Micro Graphics and Soundvii

Chapter One
Introduction

One of the more attractive features of modern personal or home
computers is their ability to produce graphics displays. When we talk
about graphics this means the ability to produce drawings, pictures,
graphs, charts and all sorts of other pretty patterns on the display
screen.

All popular home computer systems can produce graphics of some
sort and most of them provide full colour graphics. The quality of the
displays we can produce depends upon the graphics resolulion, which
is a measure of how line the details can be in a displayed picture. In
general the higher the resolution the better the display, but usually the
highest resolution displays will be limited to perhaps two or four
colours.

Graphics displays can be very important when we are producing
games programs and almost all modern computer games use graphics
in one way or another. For arcade type games of the Invaders or
Asteroids type, graphics are the key ingredient. In such a game not
only do we draw a picture but we also make some, or perhaps all of,
the objects displayed move around the screen. Here we are effectively
using the computer to display a real-time moving picture of the game
situation. Invaders move across the screen and we can shoot rockets or
laser beams at them. With this type of game We are producing what
amounts to a computerised version of the familiar cinema cartoon
film.

Adventure type games can be greatly enhanced by actually showing
a picture of the current location of the explorer, rather than just having
a written description. It is also possible to show pictures of various
objects or treasures that may be in the explorer‹s current location, It
would also be possible to allow the explorer to examine a leleeted
object in detail by expanding its size until it tills the screen. A variant
of the adventure game is the maze, and here we can perhaps show

picture of what the explorer can see when he looks along the path he is
on. By using a pseudo three-dimensional display the side turnings
from the present location may be shown. Of course, although games
are a pleasant way of passing the time we will also want to use the
computer for more serious activities. In many applications we may
want to produce various kinds of chart or graph to perhaps show how a
business is progressing. Graphs and charts are also important in
scientific applications where we want perhaps to display the results of
a scientific experiment or the information gained from a poll or
survey. Graphs and charts are generally much more effective at
conveying information than a table of numbers.

Drawing on a computer using a high resolution graphics display is
another application. We might perhaps produce technical drawings
such as plans, electronic circuit diagrams, or hook illustrations. The
illustrations in this book were actually produced using a BBC Model B
Microcomputer and an Epson MX80 printer. Many modern drawing
offices use computer aided techniques for drawing and designing,
which are provided by a set of programs called a computer aided
design (CAD) package. We might use similar techniques to show the
apparatus and demonstrate the results of a physics or chemistry
experiment. This could be very useful where the actual equipment
required would be very expensive. Here the computer simulates the
actual experiment and the display might show the various stages in the
progress of the experiment, giving readouts of perhaps temperature,
pressure, etc.

Computer graphics can of course be used purely as an art form.
Here we will be producing pretty patterns, handling colour and
perhaps producing perspective views. Using techniques for displaying
solid objects, it becomes possible to draw an object and then view it
from different directions. The shape can then perhaps be modified and
the result viewed until the desired effect is obtained. The BBC Micro
is perhaps one of the best of the currently available machines in terms
of its graphics display capabilities. The model B in particular allows
up to eight basic display colours on the screen at the same time and the
high resolution graphics modes are excellent.

If you have bought the Model A, its capabilities are rather less
impressive, but nevertheless it is capable of producing excellent
graphics displays. The main difference in terms of graphics capability
between the Model A and the Model B is simply the amount of
memory available and in fact a Model A with its memory expanded to
32 kbytes can perform virtually as well as a Model B.

2 BBC Micro Graphics and Sound

We shall be exploring the basic techniques of producing graphics in
this book with particular reference to using the excellent capabilities
of the BBC Micro. As a start in this direction let us first of all look at
the way in which computers produce graphics displays and take an
initial look at the various modes of operation available with the BBC
machine.

The video display

All of the popular home computers, including the BBC Micro, use a
television screen to provide a display. This may be the domestic
television receiver or it could be a special television monitor designed
for use as a computer visual display unit (VDU). At this stage it might
be useful to take a look at the way in which the actual display is
produced on the screen. ln a television system the image on the screen
is actually traced out by a single moving dot which sweeps very
rapidly across the screen in a series of horizontal lines. At the same
time the dot moves rather more slowly down the screen so that each
successive line falls just below the last one traced out on the screen.
When the bottom right- hand corner of the screen is reached the dot
moves hack up to the left-hand top corner and repeats the whole
scanning process again. This operation goes on continually with the
dot sweeping down the screen every fiftieth of a second. The total
number of scan lines is 625.

When we view this display our eyes are unable to see the dot
moving because it travels so fast and the eye does not respond to
things that change faster than about 20 times a second. As a result we
lee the whole picture as if it were present on the screen continuously.
To reduce flickering the scan lines are interlaced. What happens is that
on one sweep down the screen the dot traces out every other line, say
the odd numbered lines, then on the next sweep it fills in the gaps by
tracing out the even numbered lines. This gives a flicker rate of 50 per
second which the eye cannot see, whereas tracing all of the lines once
every VZ, second could produce a noticeable flicker which might be
distracting to the viewer.

As the spot sweeps over the screen its brightness can be varied so
that a pattern of light and dark dots appears, and these make up the
picture that we lee. A colour television has three sets of dots giving
red, green or blue light, and by combining these we can produce
colour displays.

3Introduction

Text displays

After you switch on your computer it will normally print up some sort
of text message on the screen and before going on to look at graphics
it might be as well if we looked at the way in which the computer
displays printed text.

When the computer produces a printout of text on the screen it
effectively divides up the screen area into an array of small rectangular
spaces with say 40 spaces across the screen and 24 rows down the
screen. Each of these rectangles is called a character or symbol space
and in each of these spaces on the screen a single letter, number or
other symbol may be displayed.

In the early days of computers, graphs and pictures were often
produced by actually using text symbols to make up individual points
in the picture. Some letters will appear brighter than others because of
their shape, so by carefully choosing the letter placed at a point the
image may be made light or dark. If the resultant page of text is
viewed from a sufficient distance then it will show a picture, since the
viewer‹s eyes will not be able to resolve the individual letters.

Graphics using symbols

Using text symbols is rather a crude way of getting pictures on the
screen. An alternative method for producing pictures is to have a
special set of graphics symbols in addition to the normal alphanumeric
ones. These might contain vertical or horizontal lines running through
the space at various positions, diagonal lines, curved lines and special
symbols, such as musical note signs or playing card symbols. Try
running the short program listed in Fig. 1.1 which will display some
examples of this kind of symbol. By placing these special symbols in
appropriate positions on the screen quite good drawings can be
produced.

The BBC Micro does not have any of these special symbols in its
normal character set but it is possible to produce them. There is a
facility for creating your own special symbols on the BBC Micro, and
we shall be exploring this feature in Chapter 7.

4 BBC Micro Graphics and Sound

 100 REM Special text symbols
 110 MODE 2
 120 VDU23,240,255,1,1,1,1,1,1,1
 130 VDU23,241,0,0,0,0,15,8,8,8
 140 VDU23,242,28,28,8,127,8,20,34,65
 150 VDU23,243,8,8,8,8,15,8,8,8
 160 VDU23,244,8,28,62,127,127,42,8,8
 170 VDU23,245,62,127,73,73,127,85,85,85
 180 VDU23,246,8,28,62,127,62,28,8,0
 190 VDU31,3,16
 200 VDU 240,32,241,32,242,32,243
 210 VDU31,3,20
 220 VDU 244,32,245,32,246
 230 END

Fig. 1.7. Program for displaying symbols.

Mosaic graphics

An alternative and more flexible approach to producing graphics is to
have an extra set of symbols, where each text rectangle is divided up
into a pattern of six small blocks arranged as two columns of three
blocks each. If each block can be either black or white there are 64
different patterns of blocks that can be produced within the text
symbol space. By carefully choosing the block patterns within the text
spaces it is possible to produce a picture on the screen. Here we have a
rather crude form of television picture. For a normal text display of 40
characters per line and 24 lines the picture is effectively built up from
an array of dots 80 wide and 72 high. In fact this is rather better than
Baird‹s original television system, which gave a resolution of about 40
by 30.

This technique for producing graphics is known as mosaic graphics
and provides us with a low to medium resolution graphics capability.
The technique is used for teletext and viewdata and is capable of
producing quite effective pictures. On the BBC Micro llhere is a
teletext display mode which uses the mosaic type of graphics display.

High reaolution pixel graphics

If the text symbols on the screen are examined closely it will be seen
that they are themselves built up from a pattem of dots. The BBC
Micro uses a pattern which is eight dots wide and eight dots high for
each text ryrnbol space. The actual symbol is produced by selectively
lighting the dots ln the space as shown in Fig. 1.2. Normally the

5Introduction

patterns of dots for each symbol in the available set are stored in a
special character generator memory and called up as a pattern when a
particular symbol is to be displayed.

Fig. 1.2. The dot matrix used to produce text symbols.

Suppose we could control the individual dots in every character
space on the screen. Now for a 40 × 24 screen layout there would be
40 × 8 or 320 dots across the screen and 24 × 8 or 192 dots down the
screen. The pictures produced would become much more detailed than
can be achieved with mosaic graphics. In fact this is approaching the
resolution available from a domestic video recorder.

The individual dots in each character space are generally referred to
as pixels (picture elements) and this mode of graphics is called pixel
graphics or high resolution graphics. On the BBC Model B the highest
graphics resolution is actually 640 dots across the screen and 256
down the screen, giving a total of 160,000 individual pixels.

Display modes on the BBC Micro

The BBC Micro provides eight different display modes which are
numbered as MODE0 to MODE7. Most of these display modes will
permit both graphics and text to be displayed on the screen, but two
modes (MODE3 and MODE6) are for text displays only.

The display modes available on the BBC Micro are:

Mode 0 Graphics 640 × 256 2 colours
Mode 1 Graphics 320 × 256 4 colours
Mode 2 Graphics 160 × 256 16 colours

6 BBC Micro Graphics and Sound

Mode 3 Text 80 × 25 2 colours
Mode 4 Graphics 320 × 256 2 colours
Mode 5 Graphics 160 × 256 4 colours
Mode 6 Text only 2 colours
Mode 7 Teletext mode

Note that a standard Model A BBC Micro with 16K memory will work
only in modes 4, 5, 6 and 7, but an expanded Model A with 32K of
memory will be able to use all display modes.

Let us examine each mode in a little more detail.

Mode 0 provides the highest graphics resolution with 640 dots across
the screen and 256 rows down the screen. It is also possible to display
text in this mode, with 80 text characters per row across and 32 rows
of text down the screen. Because of the high resolution of this mode it
may be difficult to obtain a clear, sharp picture when using a domestic
television as a display, but if a colour monitor is used with direct video
drive then there should be no problems.

In this mode only two colours are permitted, one being the
foreground or drawing colour and the other the background colour.
Under normal conditions the background will be black and the picture
or text will be white. We shall see later that it is in fact possible to
choose any two colours from the available colour set for use in this
mode instead of the normal black and white.

Mode 1 provides a lower graphics resolution of only 320 dots wide by
256 lines high. Text can also be displayed as 32 lines with 40
characters per line. Four colours are available in this mode, normally
black, red, yellow and white. Any one colour may be chosen as the
background and the graphics design or text may be displayed in the
other three colours.

Mode 2 gives graphics of 256 × 192 or alternatively text appears as 32
rows of 20 characters per row. This mode provides the maximum
range of colours with a total of sixteen selectable colours. In fact there
are eight plain colours, which are black, red, green, yellow, blue,
magenta, cyan and white. The other selectable colours are the same
basic colours but they flash on and off.

Mode 3 allows only a text display with 80 chlrlcterr per line and 25
lines. This mode permits only two colours, one for foreground and one
for background, and these are normally white and black, as for Mode
0.

7Introduction

Mode 4 is like Mode 1 with a graphics resolution of 320 × 256, but
only two colours may be used, as in Mode 0. This mode allows text to
be displayed in the format of40 characters per row and 32 rows as for
mode 1.

Mode 5 is like mode 2 with a graphics resolution of 160 × 256, but
only four colours may be used. Text in this mode is 20 × 32 as for
mode 2.

Mode 6 gives a text only display, with 40 characters per row and 25
rows. Only two colours can be displayed.

Mode 7 is a special mode called the telelext mode and is designed to
be compatible with broadcast teletext services. Here both graphics and
text may be used, but the graphics is of the mosaic type and is written
on to the screen using the same method as for text display. We shall
devote a special chapter to this mode later (Chapter 6) since it operates
in a different way to the normal graphics modes. In mode 7 the
effective graphics resolution is about 80 dots across the screen and 72
dots down the screen, giving relatively low resolution graphics. All
eight colours and eight flashing colours can be used simultaneously in
the teletext mode.

Memory requirements

One problem with high resolution graphics is that it requires a large
amount of memory to store the data for the image on the screen, and
the higher the resolution the more memory is needed. If we consider
the mode 0 display with 160,000 pixels and if we use one bit of the
computer‹s 8~bit word for each pixel, this means that a memory of
20,000 bytes is required just for the display. When it is considered that
even the Model B has only 32,000 bytes, this leaves only 12,000 for
programs and data.

For text displays most home computers use a dedicated character
generator chip which provides the dot patterns for each symbol in
response to a simple 8-bit character code. This means that only one
word of memory is required for each symbol displayed. This technique
is used on the BBC Micro for mode 7 and this requires a dlsplsy
memory of about 1000 bytes. In all other modes, however, the BBC
Micro stores the Actual pixel pattern in memory so that either text or

8 BBC Micro Graphics and Sound

graphics use the same amount of memory. This has some advantages
since it allows complete freedom in mixing text and graphics on the
screen, but it does tie up a large part of the available computer
memory for display generation.

The memory used for the screen display in each of the modes is
shown below:

Mode 0 20K
Mode 1 20K
Mode 2 20K
Mode 3 20K
Mode 4 10K
Mode 5 10K
Mode 6 10K
Mode 7 1K

It will be seen that modes 0 to 3 need more than 16K of memory and
will not work with a standard Model A machine, which has only 16K
of memory available. An expanded Model A machine where the
memory size has been increased to 32K, or a standard Model B
machine will be able to run all display modes.

Text cursor and coordinates

When text is displayed a flashing bar appears on the screen and is
called the text cursor. It shows the position on the screen where the
next text symbol will be displayed. We can move this cursor around
the screen by using the arrow keys at the right of the keyboard. When
a new character is entered from the keyboard it takes the place of the
cursor and the cursor moves on to the next symbol position in the row.
If the cursor is at the end of a row it automatically moves down to the
start of the next row.

When we are running a BASIC program it is possible to move the
cursor about on the screen by using the TAB function which is inserted
into a PRINT statement and takes the form

 100 PRINT TAB (X,Y)

where X and Y are the coordinates of the position on the screen where
we went to place the cursor. The vslue X is the number of spaces from
the left-hand edge across the screen end Y is the number of rows down

9Introduction

the screen from the top. Note that X=0 for the first position at the left
edge of the screen and Y=0 for the top row ofthe screen.

X=39
Y=0

X=39
Y=31

X=0
Y=0

X=0
Y=31

Fig. 1.3. Text coordinates, mode 1.

In mode 1 the top left corner is 0,0, the top right is 0,39, bottom left
is 0,31 and bottom right 39,3l. This is shown in Fig. 1.3. On the BBC
Micro the range of values that can be used for X and Y will depend
upon the display mode selected. Modes 0 and 3 allow X values from 0
to 79 and modes 1, 4, 6 or 7 will allow X from 0 to 39. In modes 2 and
5 the highest value for X is 19. The value of Y can be from 0 to 24 in
modes 3, 6 or 7 and from 0 to 31 for all other modes.

Graphics cursor

When used for graphics displays the BBC Micro uses a graphics
cursor, but unlike the text cursor this is not displayed on the screen.
The computer docs, however, keep a record in memory ofthe values of
X and Y coordinates for the graphics cursor and when lines are drawn
they run from the current position of the graphics cursor to a new X,Y
value specified in the drawing command.

Whereas the text coordinates have different ranges depending upon
the display mode selected, the graphics cursor uses the same range of
coordinates for all modes. The value of X indicates the position along
a horizontal line starting at the left edge ofthe screen and its range is

10 BBC Micro Graphics and Sound

from 0 to 1279, giving a total of 1280 possible positions. The Y
coordinate in graphics is measured up from the bottom of the screen
and runs from 0 to 1023 to give 1024 possible points in the vertical
direction.

Y=0
X=0

Y=0
X=1279

Y=1023
X=0

Y=1023
X=1279

Fig. 1.4. Graphics coordinates.

Fig. 1.4 shows the layout of the screen coordinates for the high
resolution graphics modes on the BBC Micro.

Moving the graphics cursor

As with the text cursor we can move the graphics cursor around on the
screen and the command for doing this is MOVE, which takes the
form

 100 MOVE X, Y

where X and Y are the graphics coordinates ofthe point to which we
want to move the cursor. At the start of operations after the mode has
been selected the graphics cursor is always located at position 0,0 at
the bottom left-hand corner of the screen.

Drawing lines

To produce s graphics picture on the screen we need to be able to draw

11Introduction

lines und this is achieved simply by using the DRAW command. Like
the move command this has coordinates X and Y, which specify the
position to which the line will be drawn. After the line has been drawn
on the screen the graphics cursor will move to the new value of X,Y
specified in the DRAW command. Ifthe lirie is drawn at an angle to
the horizontal or vertical axes of the screen the computer will
automatically compute which dots on the screen have to be lit to
produce the line. When the lower resolution modes are selected it will
be noticed that a diagonal line is made up from a number of short
horizontal or vertical lines. As the resolution is increased this stepped
appearance of the lines becomes less obvious. Let us now see if we
can draw lines on the screen. For this we use thc command DRAW
and the form of the instruction will be

 100 DRAW X,Y

Now a line will be drawn on the screen from the cursor position to thc
new position X,Y. If this instruction is the first graphics instruction in
the program then the line will start from the origin point 0,0.

Let us try this out with the following little program:

 10 MODE 2
 20 DRAW 100, 100

This will produce a short line running from the bottom left corner
towards the middle of the screen. lf we now add the line

 30 DRAW 100,700

and re-run the program this will produce a vertical line running
upwards from the end of the first line. By adding the instruction

 40 DRAW 700,700

a horizontal line is drawn to the right from the top of the vertical line.
Now the DRAW command always draws the new line starting from

the last set of coordinates X and Y specified in the program, and if the
last instruction was DRAW this means the line runs from the end of
the last line to be drawn.

Sometimes we may want to draw a separate line at some other point
on the screen. To do this we would use a MOVE instruction to move
the cursor to the point where we want to start drawing the separate
line.

Let us add some more instructions to our small program as follows,
and then re-run it.

12 BBC Micro Graphics and Sound

 50 MOVE 800,100
 60 DRAW 1000,100

This now produces a short horizontal line in the lower right-hund side
of the screen.

A simple sketching program

By moving the cursor and drawing lines we can build up a picture on
the screen, but this can become quite a tedious exercise. We need to
work out the coordinates of all the points between which we are going
to draw lines and then we have to write a program with the appropriate
sequence of MOVE and DRAW commands to make the computer
trace out the picture.

 100 REM Simple Sketching Program
 110 REM for BBC model B with OS1.0
 120 MODE1
 130 *FX4,1
 140 VDU23,1,0;0;0;0;
 150 X=600
 160 Y=500
 170 PLOT69,X,Y
 180 PRINT TAB(0,0) "X= ";X;" Y= ";Y
 190 FOR N=1 TO 10000
 200 PLOT71,X,Y
 210 A = GET
 220 IF A=137 THEN X=X+5
 230 IF A=136 THEN X=X-5
 240 IF A=139 THEN Y=Y+5
 250 IF A=138 THEN Y=Y-5
 260 IF A=85 THEN P=0
 270 IF A=68 THEN P=1
 280 IF A=81 THEN 350
 290 IF P=0 THEN MOVE X,Y
 300 IF P=1 THEN DRAW X,Y
 310 PLOT69,X,Y
 320 PRINT TAB(0,0) "X= ";X;" Y= ";Y
 330 FOR T=1 TO 100:NEXT T
 340 NEXT N
 350 VDU23,1,1;0;0;0;
 360 *FX4,0
 370 END

Fig. 1.5. Sketching program,

Another approach to drawing pictures is to turn the computer into a
sort of sketch pad by using the program listed in Fig 1.5 to control the

13Introduction

14 BBC Micro Graphics and Sound

movement of the cursor we can use the arrow keys and then we might
use the keys U and D to indicate whether the pen is up or down. If the
pen is up the cursorjust moves to a new point but if the pen is down a
line is drawn as the pen moves, When the pen is up nothing is drawn
but in order to see where the cursor is, a PLOT command is used
which draws a dot at the cursor point. This dot is erased before each
new move. We shall be looking more closely at this PLOT command
in the next chapter.

Now a few notes about the program itself. First, the program is
written for a Model B machine or a Model A expanded to 32K
memory. If you have a standard Model A the mode selected in line 120
should be MODE 4.

Line 130 disables the normal function of the arrow keys and allows
them to produce an ASCII number for the GET command. Arrow keys
are restored to their normal function in line 360 at the end of the
program.

Line 140 switches off the text cursor and it is restored at the end of
the program by line 350. Note that this only works with operating
system OS1.0 or above. If you have the older operating system
(OS0.1) then line 140 must be changed to

 140 VDU23;8202;0;0;0

and line 350 must be changed to

 350 MODE1

or

 350 MODE4

for the Model A.
Lines 180 and 320 print out the current X and Y coordinates at the

top of the screen. Lines 1916-340 form the main drawing loop.
Lines 220-250 check for the four arrow keys and increase or

decrease the values of X and Y according to which key is pressed.
Lines 260 and 270 check for keys U and D, and P is used to indicate
the state of the pen. Line 2810 checks for the Q key which causes the
program to end.

Lines 290 and 300 execute MOVE or DRAW according to the state
of P and line 220 puts a dot at position X,Y. Line 310 puts a dot at the
X,Y position, whilst line 200 erases the dot before moving to the next
cursor position.

Line 330 is merely a time delay, the size of which can be adjusted
to control the speed of movement of the pen.

Chapter Two
Drawing and Plotting

In the last chapter we developed a simple program which enabled us to
use the computer display as a form of sketch pad, and it is quite
possible to produce simple drawings with this program. However, you
will have found that drawing shapes such as polygons or circles is not
at all easy and even simple shapes such as squares and rectangles need
some care to produce good results.

If we are interested in producing technical drawings or if we need to
draw a number of shapes rapidly then it would be useful to have
routines by which the computer draws the shape itself having been
given sufficient information to define exactly what it has to draw. With
such a routine it might be possible to draw circles of any desired size
at any specified point on the screen. In fact we can effectively arrange
to have the computer act as a special kind of paint brush, or perhaps
more accurately a rubber stamp, which will produce any desired shape
as many times as we want it and where we want it.

Let us now take a look at the techniques required for drawing
various common shapes such as squares, rectangles, polygons, circles
and ellipses. For a start we'll take a look at the simple square figure.

Drawing squares

One simple solution to drawing a square is to work out the X,Y
coordinates for each of the four corners of the square and then use a
MOVE command to place the cursor at say the bottom left corner of
the square. At this point four DRAW commands may be used to draw
in the four lines making up the sides of the square.

Suppose we want to draw a square with sides 100 units long and
have it positioned with its lower left-hand corner at position X,Y =

500,500. This is shown in fig. 2.l. The coordinates ofthe first corner
fA) at the bottom left are 500,500. The other lower corner (B) is 100
units further to the right, so the X value increases by 100 to 600 but
the Y value remains at The two upper corners (C and D) have the
same pair of values for X but their Y values are increased by 100,
giving points 600,600 and 500,600 for C and D respectively. Now to
draw the square we could use the following little program.

500,600 600,600
D C

A
500,500

B
600,500

Fig. 2.1. Actual coordinates for a square.

 100 REM Draw square
 110 MODE 1
 120 HDVE 500,500
 130 DRAW 550,500
 140 DRAW 550,550
 150 DRAW 500,550
 160 DRAW 500,500
 170 END

Drawing more squares

If we want to draw lots of squares of different sizes at various points
on the screen the process of working out all of the coordinates for each
square becomes rather tedious. A much better approach is to use a
square drawing procedure or subroutine which will work out the
corner points and draw the squares automatically.

To work out the required coordinates we need the location of a
reference point on the square such as the bottom left-hand comer md
the width of the required square. Suppose the reference point is X,Y
andthe width is W, then the required square is as shown in Fig. 2.2.
Point A ofthe lquere is simply X,Y. For point B the width W is added

16 BBC Micro Graphics and Sound

to X to give coordinates X+W,Y. Points C and D both have width W
added to Y, giving C = X+W,Y+W and D = X,Y+W.

X,Y+2
D

X+W,Y+W
C

B
X+W,Y

A
X,Y

Fig. 2.2. Coordinates for drawing a square using X, Y and W.

All we need do now is set up the bottom left corner coordinates nntl
the width of the square in the main program. In the procedure the
width is added to X and Y as required to calculate the other three
corners and lines are then drawn for the sides of the square.

 100 REM Random squares
 110 MODE 1
 120 FOR N=1TO30
 130 X=RND(1200)
 140 Y=RND(1000)
 150 W= 40+200*RND(1)
 160 PROCSQUARE
 170 NEXT N
 180 END

 500 DEFPROCSQUARE
 510 MOVE X,Y
 520 DRAW X+W,Y
 530 DRAW X+W,Y+W
 540 DRAW X,Y+W
 550 DRAW X,Y
 560 ENDPROC

Fig. 2.3. Program to draw random squares.

Fig. 2.3 shows a program in which a set of 30 squares of different
sizes are drawn at random points on the screen. The pattern drawn
should be different each time this program is run. Note that here a
procedure lm been used for the actual proeeu of drawing each square.
This could of course equally well have been nehieved by uslng a
subroutine for drawing the the square. Fig. 2.4 shows a tyical display
from this program.

17Drawing and Plotting

Fig. 2.4. Display produced by random squares program

Drawing rectangles

A more general form of a four-sided figure is the rectangle, where the
width and height are different. We can quite easily adapt our square
drawing routine to make it draw rectangles instead. In fact this is new
routine could equally well be used for drawing squares by simply
making the width and height values the same,

In the new procedure H is added to the Y coordinate whilst W is
now added only to the X coordinate. A program for drawing random
rectangles all over the screen would be as shown in Fig. 2.5.
 100 REM Random rectangles
 110 MODE 1
 120 FOR N=1TO30
 130 X=RND(1200)
 140 Y=RND(1000)
 150 W=10+90*RND(1)
 160 H=10+90*RND(1)
 170 PROCRECT
 180 NEXT N
 190 END

 500 DEFPROCRECT
 510 MOVE X,Y
 520 DRAW X+W,Y
 530 DRAW X+W,Y+H
 540 DRAW X,Y+H
 550 DRAW X,Y
 560 ENDPROC
Fig 2.5. Random rectangles program.

18 BBC Micro Graphics and Sound

Drawing hexagons

R

R

Fig. 2.6. Basic Hexagon shape made up of six equal-sided triangles.

Drawing squares and rectangles is easy but suppose we want to draw a
hexagon, which has six equal sides. The basic hexagon shape is Fig.
2.6. Basic hexagon shape made up of six equal-sided triangles, shown
in Fig. 2.6. A point to note is that if we draw lines between opposite
points on the hexagon they all pass through the centre and all have the
same length. In effect the hexagon is made up from six equal sided
triangles. To draw the hexagon we need to get involved in some
simple trigonometry.

R

A B

C

DY

TH

DX D
Fig. 2.7. One of the triangles forming the hexagon.

In Fig. 2.7 one of the triangles forming the hexagon has been drawn
with one of its sides along the X axis. Suppose we choose the centre of
our hexagon (point A) as the reference point, then the coordinates of
point A will be X,Y. Now let us make the width (W) value equal to the
length of side AB. Since sides AB and AC are equal then side AC is
also of length W. The first point for drawing will be point B and its
coordinates will be X+W,Y.

19Drawing and Plotting

To draw the aide BC we need to know the coordinates of point C.
Let us drop a vertical line from C to point D. To find and X value for
point C we need to know the length AD and to find the Y value we
need to know the length CD. This is where the trigonometry comes in.

We will call the angle at point A of the triangle them. The function
we need to use now is sin(theta). The definition of sin(theta) is that it
is the ratio of the length of the side of the triangle opposite angle theta
to the length of the hypotenuse (the side opposite the right angle). So
in our triangle

 SIN(THETA) = CD/AC

We already know that AC = radius R and CD is the change we need to
make to Y, which we will call DY. Therefore

 SIN(THETA) = DY/R

and if we multiply both sides by R we get

 DY = R * SIN(THETA)

Having found DY we need to find a value for AD which we shall
call DX. Now it just happens that cos(theta) is the ratio of the length of
the adjacent side (AD) to the length of the hypotenuse (AC), so we get

 COS(THETA) = AD/AC = DX/R

and by rearranging the equation

 DX = R * COS(THETA)

Another useful fact is that if theta is 0 then cos(theta) = 1 and
sin(theta) = 0, so for our first point B the values of DX and DY are R
and 0 respectively. So for both points B and C we simply have to
calculate values for DX and DY, then add them to the X and Y values
for the centre point. The same rule applies to all of the points of the
hexagon.

How do we decide on a value for theta? Well there are 360 degrees
in a complete rotation of the angle theta, and since we have six sides
each triangle must add 360 / 6 or 60 degrees to the value of theta. Our
computer, however, doesn‹t work in degrees but uses radians instead.
All we need to know here is that there are 2 × pi radians in 360
degrees, so therefore the angle increases by 2 × pi/ 6 radians for each
point of the hexagon. To draw our hexagon we simply use a loop to
repeat the calculations and draw a side six times. The program in Fig.
2.8 draws lots of varying sized hexagons all over the screen.

20 BBC Micro Graphics and Sound

 100 REM Random hexagons
 110 MODE 1
 120 FOR NH=1 TO 50
 130 X=RND(1200):Y=RND(1000)
 140 R=30+RND(150)
 150 PROCHEX
 160 NEXT NH
 170 END

 500 DEFPROCHEX
 510 MOVE X+R,Y
 520 DTH = 2 * PI/6
 530 TH=0
 540 FOR N=1 TO 6
 550 TH=TH+DTH
 560 DX = R*COS(TH)
 570 DY = R*SIN(TH)
 580 DRAW X+DX,Y+DY
 590 NEXT N
 600 ENDPROC

Fig.2.8. Random hexagons program.

Here DTH is the change required in the value of TH for each step
and we have shortened the name THETA to TH. Note the MOVE to
get the cursor to the first point to be drawn on the hexagon rather than
to the centre of the hexagon.

Drawing polygons

A hexagon is an example of a many-sided figure for which the general
name is polygon. Now suppose we want to draw a polygon with a
different number of sides.

In the case of the six-sided hexagon the angle for each point
increased by 2 × pi/ 6. If we wanted to have eight sides then the total
angle of 2 × pi radians would have to be divided up into eight equal
parts, so the angle theta increases by 2 × pi/8 radians for each point. To
make a general polygon drawing routine we could add a new
parameter NS (number of sides) and then modify the procedure to
make the required number of drawing steps. To see how this works try
running the program shown in Fig. 2.9.

This program will draw a series of figures of increasing size,
centred on a point near the centre of the screen, as shown in Fig. 2.10.
The figures have an increasing number of sides, starting with a
triangle and working up to a twelve-sided figure. We could modrfy

21Drawing and Plotting

this to produce a random polygon drawing program as shown in Fig.
2.11.

 100 REM Polygon drawing
 110 MODE1
 120 X = 600:Y = 500
 130 FOR NS=3 TO 12
 140 R = 40*NS
 150 PROCPOLY
 160 NEXT NS
 170 END

 500 DEFPROCPOLY
 510 MOVE X+R,Y
 520 DTH = 2*PI/NS
 530 TH=0
 540 FOR N=1 TO NS
 550 TH=TH+DTH
 560 DX = R*COS(TH)
 570 DY = R*SIN(TH)
 580 DRAW X+DX,Y+DY
 590 NEXT N
 600 ENDPROC

Fig. 2.9. Polygon drawing program.

Fig. 2.10. Display produced by program in Fig. 2.9.

Here the minimum number of sides has been set at three since this
gives a triangle. A two-sided figure would just be a straight line. The
results on the screen will be similar to Fig. 2.12.

22 BBC Micro Graphics and Sound

 100 REM Random polygons
 110 MODE1
 120 FOR N=1 TO 30
 130 X= RND(1200):Y=RND(1000)
 140 R= 30+RND(150)
 150 NS = 2 + RND(9)
 160 PROCPOLY
 170 NEXT N
 180 END

 500 DEF PROCPOLY
 510 MOVE X+R,Y
 520 DTH = 2 * PI/NS
 530 TH=0
 540 FOR N = 1 TO NS
 550 TH=TH+DTH
 560 DX = R*COS(TH)
 570 DY = R*SIN(TH)
 580 DRAW X+DX,Y+DY
 590 NEXT N
 600 ENDPROC

Fig. 2.11. Program to draw a set of random size polygons.

Fig. 2.12. Display produced by random polygon program.

Drawing circles

Rectangles and squares are fairly easy to draw, but one figure that we
shall regularly want to produce is the circle and here things are much
more complex. There are in fact three basic approaches to the drawing

23Drawing and Plotting

ofcircles using a computer and we shall take a look at each of them.
Producing the curved line that makes up a circle is actually

achieved by drawing a large number of very short straight lines at
slightly different angles and these link up to give the appearance of a
circle on the screen. The more short lines or dots there are the better
the circle will look. Some circle drawing techniques operate faster
than others but the slower techniques have advantages when we want
to divide up a circle.

If you use the polygon drawing routine and draw more and more
sides to the polygon you will notice that it becomes more and more
like a circle, so obviously one method for producing circles might be
based on the polygon drawing routine.

To draw our circle we merely calculate a series of values of X1 and
Y1 for values of theta from 0 to 360 degrees (0 to 2 × pi radians). The
number of points we need depends upon the size of the circle and how
accurately we want to draw it. A good figure to use is the number of
units of the radius, so for a circle of radius 50 we might use 50 points.
The angle theta for each step can be found by simply dividing 2 × pi
by the required number of points, so the step size would be 2 × pi/R. A
procedure for drawing a circle using this technique would be as
follows.

 500 DEFPROCCIRCL
 510 MOVE X+R,Y
 520 DT=PI*2/R
 530 TH=0
 540 FOR N=1 TO R
 550 TH=TH+DT
 560 DRAW X+R*COS(TH),Y+R*SIN(TH)
 570 NEXT N
 580 ENDPROC

Because of the SIN and COS functions this circle drawing method can
be fairly slow, especially for large size circles where a lot of points
have to be calculated. It does, however, have the advantage that it
allows us to draw segments of a circle (arcs) quite easily compared
with the other circle drawing methods.

Drawing arcs

To draw a quarter-circle we can use a. modified version of the circle
drawing technique just described. For the upper right quarter we could

24 BBC Micro Graphics and Sound

set up a FOR NEXT loop with a variable TH to run TH =0 to TH = Pl/
2 with a step size of 2*PI/R. For a half-circle the loop could run from
0 to PI. This would in fact give the upper half of the circle. To get the
lower half we set the loop to run from TH = PI to TH = 2*PI. Note
that here we must change the MOEV instruction which moves the
cursor to the first point that we want to draw so it would now become

 510 MOVE X+R*COS(PI),Y+R*SIN(PI)

Using a similar technique we could draw any of the four quarters of
the circle or for that matter any segment of the circle that we like.
Simply choose the start and finish angles and move the cursor to the
start angle position before going into the drawing loop. Two extra
variables are now required (AS and AF) to define the start and finish
angles for the arc. Th1s gives a general purpose arc or circle drawing
routine as follows:

 500 DEFPROCARC
 510 MOVE X+R*COS(AS),Y+R*SIN(AS)
 520 DT=2*PI/R
 530 FOR TH=AS TO AF STEP DI
 540 DRAW X+R*COS(TH),Y+R*SIN(TH)
 550 NEXT TH
 560 ENDPROC

where AS and AF are the start and finish angles for the arc measured
in radians from a zero along the X axis to the right of the origin point
CX CY as shown in Fig. 2.13. Note that the values for AS and AF
mutit be set up in the main program before calling the procedure to
draw the arc.

THF

THS

Fig. 2.13. Start and finish angles for drawing the arc.

If you want to work in degrees, and most of us are more familiar with
degrees, then these must be converted to radians by using

25Drawing and Plotting

 Angle(rads) = Angle(degs)*PI/180

The quadratic equation method

Calculating all those sin and cos functions makes the drawing of
circles quite slow, because sin and cos functions are relatively slow in
execution. An alternative technique for drawing circles makes use of a
different mathematical formula for a circle.

If we consider the triangle in Fig. 2.7 with sides of R, DX and DY
there is another way in which the three sides are related. Fora right-
angled triangle the square of the length of the longest side is the sum
of the squares of the lengths of the other two sides. This is our friend
Pythagoras’s famous theorem.

So now we get for our triangle

(AC)*(AC) = (RD)*(AD) + (CD)*(CD)

or alternatively putting in the variables we used for those sides we get

R * R = (DX * DX) + (DY * DV)

and this can be re-arranged to give us

DY * DY = (R * R) - (DX * DX)

from which we can get DY by simply taking the square root.
So our calculation for DY now becomes

DY = SQR((R * R) - (DX * DX))

Here we have an equation that doesn‹t involve sines, cosines or angles.
Now SQR is also a relatively slow operation but we only have to do it
once per step so the calculation and drawing should be a little quicker
than for the method using SIN and COS.

The values of DX and DY in this equation are measured with
reference to the centre point of the circle. To place the circle at some
particular point on the screen we shall have to add in the X and Y
coordinates for the point where the circle is to be drawn. To avoid
confusion we shall call these coordinates CX and CY.

To calculate all the points around the circle we need to calculate
values of DY for a series of values of DX ranging from -R to +R and
the more points we calculate the better the circle will look. A
convenient arrangement is to make the number of points equal to the
value of R.

Let us ny the circle is going to have A radius R of $0 units and be

26 BBC Micro Graphics and Sound

placed at point X,Y = 500,500, then the program required to draw it
will be

 100 REM Circle quadratic method
 110 MODE 1
 120 X=500:Y=500:R=50
 130 MOVE X-R,Y
 140 FOR DX=-R TO R
 150 DY=SQR(ABS(DX*DX-R*R))
 160 DRAW X+DX,Y+DY
 170 NEXT DX
 180 FOR DX=-R TO R
 190 DY=SQR(ABS(DX*DX-R*R))
 200 DRAW X+DX,Y-DY
 210 NEXT DX
 220 ENDPROC

Here the ABS function is included in the SQR statement, since
occasionally you may get an error message because round off errors
have made the argument of the SQR negative. The drawing is done in
two steps, since the first loop will draw only the upper half-circle so a
second loop plotting Y-DY is required. We can of course make this
into a procedure or subroutine in the same way as for squares and
rectangles and produce a program that will draw various size circles
all over the screen. Fig. 2.14 is a listing of the program and Fig. 2.15
shows the results obtained when it is run.

 100 REM Random circles (quadratic)
 110 MODE 1
 120 FOR N=1TO30
 130 X=RND(1200)
 140 Y=RND(1000)
 150 R=10 + 90*RND(1)
 160 PROCCIRCL
 170 NEXT N
 180 END

 500 DEFPROCCIRCL
 510 MOVE X-R,Y
 520 FOR DX=-R TO R
 530 DY=SQR(ABS(DX*DX-R*R))
 540 DRAW X+DX,Y+DY
 550 NEXT DX
 560 MOVE X-R,Y
 570 FOR DX=-R TO R
 580 DY=SQR(ABS(DX*DX-R*R))
 590 DRAW X+DX,Y-DY
 600 NEXT DX
 610 ENDPROC

Fig. 2.14. Program to draw random size circles

27Drawing and Plotting

Fig. 2.15. Display of random size circles produced by program of Fig. 2.14.
With this routine the number of calculations depends upon the size

of the circle, and it will be seen that the larger circles take a noticeable
time to draw. This is because the computer has quite a lot of
calculations to carry out. The square root function itself is rather slow
in BASIC. Things could be speeded up slightly by calculating R*R
outside the drawing loop and using the result in the calculation for DY.
This saves some multiplication operations but the overall calculation is
still quite slow. If we want to draw circles faster we will need to look
at other ways of calculating the points around the circle.

The rotation method

A different approach to the calculation of the X,Y values for a circle is
to base them upon the angle through which the radial line is rotated at
each step. In this case the new values for X and Y are calculated from
the previous values rahter than from the radius and the total angle.

THA B

C

D

R

Fig. 2.16. Rotation of a point from X axis.

28 BBC Micro Graphics and Sound

If we look at Fig. 2.16 the initial value of Y is zero, so that only the
original X value, which also happens to be equal to R, affects the
results. Here we get

 X1 = X * COS(TH)
 Y1 = X * SIN(TH)

Now consider the situation where the radial line is vertical and is
moved through angle theta. This is shown in Fig. 2.17. Here the initial
value of X is 0 and only the Y value affects the results. In this case the
value of Xl is negative since the X point has been shifted to the left of
the line where X=0. Here we get the results

C

B

D

TH

A
Fig. 2.17. Rotation of a point from the Y axis.

 X1 = -Y * SIN(TH)
 Y1 = Y * COS(TH)

If we combine these two results we can produce a general expression
for calculating Xl and Yl for any initial values of X and Y. The two
new equations are

 X1 = X * COS(TH) - Y * SIN(TH)
 Y1 = X * SIN(TH) + Y * COS(TH)

Now the big advantage of this approach is that the value of TH is
constant so we can work out the values of SIN(TH) and COS(TH)
before entering our coordinate calculation loop, thus eliminating
virtually all of the trigonometric calculations which tend to be slow.
The procedure for drawing a circle now becomes:

 500 DEFPROCCIRCL
 510 MOVE X+R,Y
 520 TH=PI*2/R

29Drawing and Plotting

 530 CT=COS(TH)
 540 ST=SIN(TH)
 550 DX=R:DY=0
 560 FOR N=1 TO R
 570 X1=DX*CT-DY*ST
 580 DY=DX*ST+DY*CT
 590 DX=X1
 600 DRAW X+DX,Y+DY
 610 NEXT N
 620 ENDPROC

This method can also be used for drawing arcs, but is a little more
difficult to set up so the trigonometric method is usually better suited
for that purpose.

Drawing polygons by rotation

Now if we can draw circles using this line rotation technique then it
should be possible to draw hexagons and polygons as well. For a
hexagon the angle theta will be 2 × pi/6 so a procedure for drawing
hexagons becomes:

 500 DEFPROCHEX
 510 DX=R:DY=0
 520 MOVE X+R,Y
 530 ST=SIN(PI/3):CT=COS(PI/3)
 540 FOR N=1 TO 6
 550 X1=DX*CT-DY*ST
 560 DY=DX*ST+DY*CT
 570 DX=X1
 580 DRAW X+DX,Y+DY
 590 NEXT N
 600 ENDPROC

As before we can develop this little routine into a general polygon
drawing routine by adding the variable NS (number of sides) and we
can produce a program which draws polygons with from 3 to 12 sides
in various sizes all over the screen. This is shown in Fig. 2.18.
 This procedure for drawing polygons can be used as a general
method in any program. Note that it will draw squares and triangles
but the triangles will always be equal-sided ones.

Star shaped figures and wheels

The polygon drawing routine can easily be modified to draw star

30 BBC Micro Graphics and Sound

ahaped figures. In this case a line is drawn from the centre to each
calculated point of the polygon by changing the drawing procedure.
The program listed in Fig. 2.19 will draw a pattern of random star
shaped figures on the screen.

 100 REM Random polygons by rotation
 110 MODE 1
 120 FOR NP=1 TO 30
 130 X=RND(1200):Y=RND(1000)
 140 R=25+RND(100):NS=3+RND(9)
 150 PROCPOLY
 160 NEXT NP
 170 END

 500 DEFPROCPOLY
 510 TH=2*PI/NS
 520 CT=COS(TH):ST=SIN(TH)
 530 DX=R:DY=0
 540 MOVE X+DX,Y+DY
 550 FOR N=1 TO NS
 560 X1=DX*CT-DY*ST
 570 DY=DX*ST+DY*CT
 580 DX=X1
 590 DRAW X+DX,Y+DY
 610 NEXT N
 620 ENDPROC

Fig. 2.18. Program for producing polygons by rotation.

 100 REM Random stars by rotation
 110 MODE 1
 120 FOR NP=1 TO 30
 130 X=RND(1200):Y=RND(1000)
 140 R=25+RND(100):NS=3+RND(9)
 150 PROCSTAR
 160 NEXT NP
 170 END

 500 DEFPROCSTAR
 510 TH=2*PI/NS
 520 CT=COS(TH):ST=SIN(TH)
 530 DX=R:DY=0
 540 FOR N=1 TO NS
 550 MOVE X,Y
 560 DRAW X+DX,Y+DY
 570 X1=DX*CT-DY*ST
 580 DY=DX*ST+DY*CT
 590 DX=X1
 600 NEXT N
 610 ENDPROC

Fig. 2.19. Program for producing random stars.

31Drawing and Plotting

In this case the graphics cursor is moved back to the centre before
each new point of the figure is calculated so the line radiates from the
centre like the spoke of a wheel.

Wheel shapes can be drawn by first drawing the star and then
drawing a circle of the same radius around the same centre point.

The PLOT command

So far we have been drawing using the MOVE and DRAW commands
which are simple to use, but there is another much more powerful
command available for drawing on the BBC Micro. This is the PLOT
command. It has many variations which allow moving the cursor,
drawing lines, both solid and dotted, plotting individual points and
even filling in areas of the screen.

The general format of the PLOT command is

 100 PLOT n, x, y

where N is a number which determines the type of operation the
PLOT command will actually carry out and X,Y are the coordinates.
An important difference with the PLOT command, however, is the
way in which the coordinate values X and Y are actually interpreted.

The command PLOT 4,X,Y moves the cursor to the point X,Y and
is directly equivalent to the MOVE command that we have been using
so far. Similarly, PLOT 5,X,Y draws a line in exactly the same way as
the DRAW command.

PLOT 0,X,Y also moves the cursor around the screen, but the
important difference between it and the MOVE or PLOT4 command is
that the coordinates X,Y in this case are measured relative to the
current position of the cursor. Thus if the cursor is at a position
500,500 on the screen and we use

PLOT 0,100,100

the cursor will actually move to a point 6¢¢,6¢¢ and the effect is the
same as using MOVE 600,600. In the same way PLOT 1,X,Y causes
a line to be drawn from the current cursor position to a point X,Y
measured relative to the current position.

What advantage is there in having this relative position action?
Well, if you remember when we drew squares and rectangles we had
to add the X,Y values of the comer to the calculated values for the
sides in order to place the rectangle where we wanted it on the screen.

32 BBC Micro Graphics and Sound

By using the relative plotting statements we can make the rectangle
drawing procedure much simpler, as follows:

 500 DEFPROCRECT
 510 MOVE X,Y
 520 PLOT1,W,0
 530 PLOT1,0,H
 540 PLOT1,-W,0
 550 PLOT1,0,-H
 560 ENDPROC

At present the rectangles are drawn with the X,Y point located at the
bottom left-hand, but to be more consistent with the way we have
drawn our circles and and polygons it mlght be desirable to have the
X,Y reference point at the centre of the rectangle. This can readily be
achieved by using a slightly different sequence of drawing instructions
where the move statement has an offset of half width and half height:

 500 DEFPROCRECT
 510 MOVE X-W/2,Y-H/2
 520 PLOT1,W,0
 530 PLOT1,0,H
 540 PLOT1,-W,0
 550 PLOT1,0,-H
 560 ENDPROC

Drawing diamonds

If we modify the rectangle drawing procedure slightly we can draw
diamond shapes. In this case we can move the cursor by half the width
to pick up the right-hand corner of the diamond and then the plotting
statements will each have half width and half height terms to draw
lines to the other points of the diamond. The resultant procedure is:

 500 DEFPROCDIAM
 510 MOVE X,Y
 520 PLOT1,-W/2,H/2
 530 PLOT1,-W/2,-H/2
 540 PLOT1,W/2,-H/2
 550 PLOT1,W/2,H/2
 560 ENDPROC

33Drawing and Plotting

Relative plotting for polygons and circles

We can use the relative plotting technique for circles and polygons. In
this case we have to calculate the new values for DX and DTY, which
we might call Xl and Y1, and then we use the difference in the be
updated.

For the trigonometric method the procedure would become

 500 DEFPROCPOLY
 510 DX=R:DY=0
 520 PLOT0,DX,DY
 530 DTH = 2 * PI/NS:TH=0
 540 FOR N = 1 TO NS
 550 TH=TH+DTH
 560 X1 = R*COS(TH)
 570 Y1 = R*SIN(TH)
 580 PLOT 1,X1-DX,Y1-DY
 590 DX=X1:DY=Y1
 600 NEXT N
 610 ENDPROC

For the rotation technique we would have

 500 DEFPROCPOLY
 510 TH=2*PI/NS
 520 CT=COS(TH):ST=SIN(TH)
 530 DX=R:DY=0
 540 PLOT0,DX,DY
 550 FOR N=1 TO NS
 560 X1=DX*CT-DY*ST:Y1=DX*ST+DY*CT
 570 PLOT1,X1-DX,Y1-DY
 580 DX=X1:DY=Y1
 590 NEXT N
 600 ENDPROC

Note that we no longer need to use X and Y in the procedure Provided
that we remember to move the cursor to the desired centre point (X,Y)
before going into the procedure.

Scaling and stretching

In drawing squares, polygons and circles the size of the displayed
figure depends upon the value of W or R that we used in the drawing
routine. Thus, by altering W or R we can alter the size or scale of the
figure.

In the case of the rectangle there are two scaling figures, one for the

34 BBC Micro Graphics and Sound

width (W) and one for height (H). In effect we have a square which
has been stretched or compressed in one direction. Assuming that we
imply stretching only horizontally or vertically this just means that the
X and Y scale values are different.

We could apply the stretching idea to other figures by putting in two
extra variables which would be the X and Y scale factors. To achieve
the correct results the reference point around which the figure is drawn
should be at the centre of the figure. For polygons and circles this is
always true in the drawing methods we have used. In this case the
scale factors are used as multipliers for the DX and HY terms in the
drawing calculations.

Let us consider a circle and we will use the trigonometric drawing
method. Two new terms SX and SY are now used in the procedure,
which becomes:

 500 DEFPROCCIRCL
 510 MOVE X+R*SX,Y
 520 DT=PI*2/R:TH=0
 530 FOR N=1 TO R
 550 TH=TH+DT
 560 DX=R*COS(TH):DY=R*SIN(TH)
 570 DRAW X+DX*SX,Y+DY*SY
 580 NEXT N
 590 ENDPROC

If SX and SY are both 1 then the figure drawn will be a circle. If SX>1
or SY<1 the figure becomes an ellipse with the longer axis horizontal.
If SX<l and SY>l the ellipse will have its long axis vertical. If SX or
SY is negative this will simply have the effect that the figure is drawn
backwards. If we had a figure that was not symmetrical then the left
side would be displayed at the right, or the top would move to the
bottom giving a mirror image effect.

THR

Fig. 2.20. A square rotated through an angle THR.

35Drawing and Plotting

Rotation of figures

The figures we have produced so far have all been drawn with their X
axis horizontal. Suppose, however, we want to draw a square but have
it displayed tilted at an angle as shown in Fig. 2.20. This can be done
by using the same basic technique as in the rotation method for
drawing circles. In this case the rotation equations are applied to each
point on the figure in turn to calculate its new position for the rotated
figure.

To find the rotated values for DX and DY we use

 X1 = DX*COS(THR) - DY*SIN(THR)

and

 Yl = DX*SIN(THR) + DY*COS(THR)

where DX and DY are the coordinates of each point measured relative
to the point about which we want to rotate the figure.

 100 REM Rotated rectangles
 110 MODE1
 120 X=640:Y=512:W=300:H=100
 130 THR=0:DTH=PI/6
 140 FOR N=1 TO 6
 150 THR=THR+DTH
 160 MOVE X,Y
 170 DX=W:DY=0
 180 PROCROT
 190 DRAW X+DX,Y+DY
 200 DX=W:DY=H
 210 PROCROT
 220 DRAW X+DX,Y+DY
 230 DX=0:DY=H
 240 PROCROT
 250 DRAW X+DX,Y+DY
 260 DX=0:DY=0
 270 PROCROT
 280 DRAW X+DX,Y+DY
 290 NEXT N
 300 END

 700 DEFPROCROT
 710 XR=DX*COS(THR)-DY*SIN(THR)
 720 YR=DX*SIN(THR)+DY*COS(THR)
 730 DX=XR:DY=YR
 740 ENDPROC

Fig. 2.21. Program for producing rotated rectangles.

36 BBC Micro Graphics and Sound

Fig. 2.22. Rotated rectangles

 100 REM Rotated squares using table
 105 REM of X,Y values.
 110 MODE1
 120 DIM X(4),Y(4)
 130 X(1)=300:Y(1)=0
 140 X(2)=300:Y(2)=300
 150 X(3)=0:Y(3)=300
 160 X(4)=0:Y(4)=0
 170 DTH=PI/6:TH=0
 175 CX=640:CY=512
 180 FOR NR=1 TO 6
 190 MOVE CX,CY
 200 THR=THR+DTH
 210 FOR N=1 TO 4
 220 DX=X(N):DY=Y(N)
 230 PROCROT
 240 DRAW CX+DX,CY+DY
 250 NEXT N
 260 NEXT NR
 270 END

 700 DEFPROCROT
 710 XR=DX*COS(THR)-DY*SIN(THR)
 720 YR=DX*SIN(THR)+DY*COS(THR)
 730 DX=XR:DY=YR
 740 ENDPROC

Fig. 2.23 Program for producing rotated squares

and Y1 are the new values we use for drawing. The angle of rotation is
THR radians relative to the positive X axis.

37Drawing and Plotting

Let us start with a square and assume that we are using the bottom
left-hand corner of the square as a reference point about which it will
be rotated. The program in Fig. 2.21 draws a series of rectangles
rotated successively in 30 degree steps to give the display shown in
Fig. 2.22.

This scheme could be extended to any figure by first having a table
of values of DX and DY for the points in the figure and then setting
DX and DY to each pair of values in turn before calling PROCROT
and drawing the line. So for our square we first set up a table of values
X(N) and Y(N) as shown in Fig. 2.23.

Here since we have used X and Y arrays to define the points in the
figure the variables CX and CY have been used to define the origin
point around which the figure will be drawn on the screen.

Note that if stretching and rotation procedures are used they mug;
be performed on the DX,DY values after they have been calculated
and before the lines are drawn. The results will also be different
according to the order in which the stretch and rotate operations are
carried out, since the stretch operation is applied only along the X or Y
axis of the figure.

38 BBC Micro Graphics and Sound

Chapter Three
Painting by Numbers

So far our pictures and text on the screen have all been displayed in
black und white, since these are the colours that the BBC Micro
initially selects for all modes of operation. Now the real world is
coloured and any artist would be rather limited in his activities if he
had only black and white paints to work with. Assuming that a colour
television receiver or colour TV monitor is available we can produce
much more attractive displays by making use of the colour capability
of the BBC Micro.

Even simple text displays can benefit from the use of colour.
Different parts ofthe display can readily be picked out when they are
presented in different colours. If a particular item needs to be brought
to the attention of the viewer it can be emphasised by using a colour
which contrasts with the colour used for the rest ofthe text. This is
why bank statements and bills suddenly acquire red lettering When
they are overdrawn or the payment is overdue.

When we come to games displays, of course, the enjoyment of the
game is greatly enhanced when a coloured display is used. Colour will
often add a sense of realism to a game display and it can be much
easier to pick out targets and avoid the bombs when they are displayed
in different colours.

Selecting a different text colour

As mentioned above, the BBC Micro normally selects white text or
graphics on a black background at switch-on or after a mode change.
We can change the colour of the text by using the command

 COLOUR C

where C is a number between 0 and 15 which determines the new
display colour. Let us try some experiments by typing in the following
series of commands:

MODE2
COLOUR1
COLOUR2
COLOUR3
COLOUR4
COLOUR5

The first and second commands will be displayed in white as usual but
when the return key is pressed after COLOUR1 you will notice that
the prompt arrow has changed colour to red and that as you type in
new text it too is red. After the following commands thw colours will
change through green, yellow, blue and magenta. If you continue
putting in higher numbers the numbers above 7 will produce flashing
colours and if you go on with numbers above 16 the sequence of
colours repeats. Note that if you type COLOUR0 you cannot see the
following text. This is because ¢ selects black which makes the text
the same colour as the background and therefore invisible.

Now try the same thing again but use MODE1 to select the display
mode. Now you will find that there are only four colours, including
black, and that some of the numbers give different colours from
obtained in MODE2. Finally, if you try using COLOUR commands in
MODE¢ the only colours produced will be black and white. The
different modes therefore have different colour sets and colour
numbers which are summarised in Fig. 3.1.

Now you will notice here that there is no mention of MODE7. The
as its own special commands for setting up the display colour and will
not respond to the COLOUR command.

You can in fact choose any number from 0 to 127 for the text colour
but all that happens with these higher numbers is that the sequence of
available colours for the selected mode will be repeated. In MODE2
the colour 16 is black, the same as colour 0, 17 becomes red and so
on. An important point to note is that the COLOUR command does
not affect text already displayed on the screen but only the text that is
produced after the command. This means that we can have two, four
or sixteen colours displayed at a time according to the display mode
selected.

40 BBC Micro Graphics and Sound

Modes 0, 3, 4 and 6 (two colour modes)

 0 Black
 1 white

Modes 1 and 5 (four colour modes)

 0 Black
 1 Red
 2 Yellow
 3 White

Mode 2 (sixteen colours)

 0 Black
 1 Red
 2 Breen
 3 Yellow
 4 Blue
 5 Magenta
 6 Cyan (blue-green)
 7 White
 8 Flashing black/white

 9 Flashing red/cyan
 10 Flashing green/magenta
 11 Flashing Yellow/blue
 12 Flashing blue/yellow
 13 Flashing magenta/green
 14 Flashing cyan/red
 15 Flashing white/black

Fig. 3.1, Text colours.

Graphics colour selection

If we select, say, yellow text and then draw some lines using either the
PLLOT or DRAW commands the lines will still be drawn in white
because the BBC Micro has a separate colour control scheme for its
graphics operations. Once again we can have the same colours as for
text but we must use a different command to change the graphics
colour.

The command for selecting a graphics colour is

GCOL N,C

Unlike the COLOUR command GCOL has two numbers following it.
There are several modes of operation for GCOL and the first number
N after the command determines how GCOL will operate. Normally

41Painting by Numbers

we shall use GCOL0,C which causes the graphics to be drawn in the
selected colour. Thus GCOL0,C is equivalent to the INK command
used on some other computers.

The second number after GCOL is the number of the colour to be
used. This produces the same colours as we would get with the
command COLOUR. Thus, in MODE1, GCOL0,1 will produce red
lines, GCOL0,2 gives yellow lines and GCOL0,3 draws in white.

As with text, the graphics drawing colour is automatically set to
white after a mode is selected. When a new graphics colour selected
any lines already drawn are unaffected but new lines will drawn in the
selected colour.

Making patterns

Now that we can draw various kinds of shapes and control the colour
of our display it becomes possible to experiment with producing
patterns on the screen. We can start with a simple moving line pattern
combined with colour changes.

The principle involved in drawing this type of pattern is that we
start By choosing two random points (X1,Y1 and X2,Y2) on the
screen and then draw a line between them. Next we alter the two
points by a small amount and then draw another line. We now
continue drawing lines with a small change to each end point as each
new line is drawn.

If the same change in values X and Y is made at each end point the
line remains the same length as it moves across the screen to produce a
ribbon of colour, If different amounts of change are made at the
opposite ends of the line the width of the ribbon changes and it also
curls as it moves around the screen. At the edges of the screen the
direction of the change can be reversed to send the ribbon back across
the screen again. A pattern drawing program of this type is listed in
Fig. 3.2.

Lines 140-170 set up the initial line position and step sizes. Lines
180 and 190 clear the screen and select a random colour number. Lines
210-230 set up the drawing colour and draw the line. Lines 240-330
set up the new end points for the next line and also check for screen
boundaries. At a screen boundary the X or Y step is reversed in sign
and a colour change is made.

Each picture contains 1000 lines and in line 3510 a time delay loop
is included to allow the pattern to be viewed. The program produces a

42 BBC Micro Graphics and Sound

succession of 50 different random Patterns and the results can be quite
pretty.

 100 REM Moving line pattern
 110 REM with colour changes
 120 MODE2
 130 X1=RND(1279):Y1=RND(1023)
 140 X2=RND(1279):Y2=RND(1023)
 150 FOR I = 1 TO 50
 160 DX1=8-RND(16):DX2=8-RND(16)
 170 DY1=8-RND(16):DY2=8-RND(16)
 180 CLG
 190 C% = RND(7)
 200 FOR N=1 TO 1000
 210 GCOL0,C%
 220 MOVE X1,Y1
 230 DRAW X2,Y2
 240 X1=X1+DX1:Y1=Y1+DY1
 250 X2=X2+DX2:Y2=Y2+DY2
 260 IF X1>0 AND X1<1279 THEN 280
 270 DX1=-DX1:X1=X1+DX1:C%=RND(8)-1
 280 IF X2>0 AND X2<1279 THEN 300
 290 DX2=-DX2:X2=X2+DX2:C%=RND(8)-1
 300 IF Y1>0 AND Y1<1023 THEN 320
 310 DY1=-DY1:Y1=Y1+DY1:C%=RND(8)-1
 320 IF Y2>0 AND Y2<1023 THEN 340
 330 DY2=-DY2:Y2=Y2+DY2:C%=RND(8)-1
 340 NEXT N
 350 FOR T = 1 TO 2000:NEXT T
 360 NEXT I
 370 END

Fig. 3.2 Moving coloured line program.

Producing moiré patterns

Another quite attractive type of pattern that can be produced by high
resolution graphics os the moire pattern. It is easy to produce such
patterns by simply choosing an origin point on the screen and then
drawing a pattern of radial lines from that point out to the edges of the
screen. According to the pitch of the lines and the position of the
origins we can get a variety of very pretty patterns. Now by using
different colours for alternate lines even more attractive results are
achieved. The program listed in Fig. 3.3. uses random functions to
generate the origins of the patterns and their pitch and also to select
the colours so that a continuously changing display is produced. Fig.

43Painting by Numbers

3.4 shows an example of the moire pattern display.

 100 REM Moire patterns
 110 FOR N=1 TO 100
 120 MODE RND(3)-1
 130 CX = RND(1100)+100
 140 CY = RND(800)+100
 150 ST = RND(8)+4
 160 C1% = RND(8)-1
 170 C2% = RND(8)-1
 180 IF C1% = C2% THEN C2% = 7-C1%
 190 FOR X = 0 TO 1279 STEP ST*2
 200 GCOL 0,C1%
 210 MOVE X,0
 220 DRAW CX,CY
 230 DRAW 1279-X,1023
 240 GCOL0,C2%
 250 MOVE X+ST,0
 260 DRAW CX,CY
 270 DRAW 1279-X+ST,1023
 280 NEXT X
 290 FOR Y = 0 TO 1023 STEP ST*2
 300 GCOL0,C1%
 310 MOVE 0,Y
 320 DRAW CX,CY
 330 DRAW 1279,1023-Y
 340 GCOL 0,C2%
 350 MOVE 0,Y+ST
 360 DRAW CX,CY
 370 DRAW 1279,1023-Y+ST
 380 NEXT Y
 390 FOR T = 1 TO 5000:NEXT T
 400 NEXT N
 410 END

Fig. 3.3. Moiré pattern program

Lines 120-180 set up the mode, starting position, step size and colours.
Note MODE 0, 1 or 2 is selected at random. Lines 190 - 380 draw the
pattern. Line 390 merely provides a delay to allow the pattern to be
viewed.

Setting up the background colour

So far the background against which the text has been presented has
always been black. The black background is automatically selected at
switch-on or when the mode is changed.

By using the COLOUR and GCOL commands we can change the

44 BBC Micro Graphics and Sound

background colour to any one of the colours available in the selected
mode. The command format is the same as for selectmg the text or
graphics colour but the colour numbers are different.

Fig. 3.4. Moiré pattern display

 The numbers for the background colours are simply 128 higher
than those for the foreground colours Thus 1n a two colour mode the
black background requires colour number 128 and a white background
would be 129 un four colour modes the background colour numbers
range from 128 to 131 and for mode 2 we can use the numbers 128 -
43. This is summarised in Fig 3.5.

You will very soon d1scover however that selecting the background
colour by using COLOUR or GCOL will not by itself change the
displayed background This is because the background colour must be
written into every pixel on the screen and th1s is achieved by clearing
the screen There are two commands for th1s purpose. One is CLS
which clears the text screen, and the other is CLG which clears the
graphics screen To get the new background colour we must follow the
colour select1on statement with a clear screen statement So for a red
text background 1n mode 2 we could use

 100 MODE 2
 110 COLOUR 129
 120 CLS (clear text screen)

45Painting by Numbers

Two colour modes

 128 Black background
 129 white background

Four colour mode;

 128 Black background
 129 Red background
 130 Yellow background
 131 White background

Mode 2

 128 Black background
 129 Red background
 130 Green background
 131 Yellow background
 132 Blue background
 133 Magenta background
 134 Cyan background
 135 White backgound
 136 Flashing black/white
 137 Flashing red/cyan
 138 Flashing green/magenta
 139 Flashing yellow/blue
 140 Flashing blue/yellow
 141 Flashing magenta/green
 142 Flashing Cyan/red
 143 Flashing white/black

Fig. 3.5. Background colours.

and to set the graphics background to say blue we could add

 130 GCOL0,131
 140 CLG (clear graphics screen)

as with the drawing or foreground colour we can choose to have
different background colours for text and graphics. When text is
written on to the graphics background each symbol space occupied by
text will now have the text background colour. The graphics
background will normally override the text background colour.

Filling in areas of colour

We can readily draw lines on the screen in various colours, but for

46 BBC Micro Graphics and Sound

more visual impact we will often want to fill in whole areas of colour.
Suppose we decide to draw a square and then fill it in red. One

possible solution would be to draw a set of horizontal lines one above
the other in the square to light every pixel element, and if the colour
selected is red then we have a red square. The only snag with this is
that it requires a loop to draw the lines and will be fairly slow. An
alternative and faster technique available on the BBC Micro is to use
one of the special PLOT commands. This is

 PLOT85,X,Y

or alternatively, for plotting with relative coordinates

 PLOT81,X,V

PLOT85,X,Y causes the triangle bounded by the point X,Y and the
last two sets of X,Y coordinates used to be filled with the current
graphics colour. Suppose we wanted to draw a square and fill it with
colour. First we would use a MOVE command to set the graphics
cursor at one corner of the square. Next we could draw one side using
a normal DRAW or PLOT command. The second side could be drawn
using either PLOT81 or PLOT85 and this will cause a half of the
square to be filled with colour. The third side is drawn normally and
then PLOT81 or PLOT85 is used to draw the final side and this also
fills the rest of the square with colour. You mu! save one step by
drawing first the bottom side, then across the diagonal of the square
with PLOT81 or PLOT85 and finally across the top with PLOT81 or
PLOT85. Try it out for yourself.

PLOT85 uses absolute X and Y coordinates, but we can also use
PLOT81 where the X and Y values are relative to the current graphics
cursor position. So basically to fill in a triangle we need to MOVE or
DRAW to two points of the triangle and on the third point we use the
colour fill PLOT81 or PLOT85 operation to fill in the area bounded by
the three points. Sometimes the way in which we draw a figure may
need to be changed to get the correct colour fill action.

Using the normal polygon drawing routine and PLOT85 to draw in
the lines will in fact just produce a series of small filled triangles near
the outer edge of the polygon, since only the first triangle will have a
point at the centre of the polygon. To overcome this we need to
include a PLOT statement taking the cursor to the centre of the
polygon after plotting tech point at the outer edge. A similar situation

47Painting by Numbers

arises in the case of circle or an ellipse and here again a MOVE or
PLOT to the centre ofthe figure after each point on the circumference
will ensure that the whole circle is filled. If we change the colour
whilst drawing the circle then a segment of the circle will bein one
colour and the rest in another. So when using colour fill the actual
drawing sequence may need to be altered to get the desired results.

Patterns using colour fill

In Fig. 3.6 a listing is given for a program to draw a series of varying
sized squares at random points on the screen and to fill the squares
with random colours. Mode 2 is used but the range of colours has been
limited to colour numbers 0-7 which are all steady colours. Lines 130-
150 set up the random square position, size and colour. Lines 160-210
draw and fill the square.

 100 REM Random coloured squares.
 110 MODE 2
 120 FOR N= 1 TO 150
 130 X=RND(1200):Y=RND(1000)
 140 W=40 + RND(200)
 150 C%=RND(8)-1
 160 MOVE X,Y
 170 GCOL0,C%
 180 PLOT1,W,0
 190 PLOT81,0,W
 200 PLOT1,-W,0
 210 PLOT81,0,-W
 220 NEXT N
 230 END

Fig. 3.6. Program for producing colour filled squares.

Mirror image patterns

By reversing the signs of the X and Y coordinates and plotting these
relative to a point at the centre of the screen we can produce patterns
consisting of four mirror images in each of the quarters of the screen
around the middle point. The effect is similar to that produced by a
kaleidoscope and produces very attractive patterns if we use the colour
fill method of plotting.

A program to produce a series of kaleidoscope style patterns is

48 BBC Micro Graphics and Sound

given in Fig. 3.7. Here two random X,Y points are chosen and plotted
at four different positions relative to the centre of the screen (CX CY)
This is achieved by using the four possible combination of signs on
the values of X and Y before they are added to the coordinates CX,CY
and the points are plotted. A random colour change has also been
included to provide colourful patterns which will continue to be drawn
indefinitely. Press ESCAPE to halt the program.

 100 REM Kaleidoscope patterns
 110 MODE 2
 120 CX=640:CY=512
 130 FOR N=1 TO 20
 140 X1=RND(500):Y1=RND(400)
 150 X2=RND(500):Y2=RND(400)
 160 C%=RND(8)-1
 170 GCOL0,C%
 180 MOVE CX,CY
 190 DRAW CX+X1,CY+Y1
 200 PLOT85,CX+X2,CY+Y2
 210 MOVE CX,CY
 220 DRAW CX-X1,CY+Y1
 230 PLOT85,CX-X2,CY+Y2
 240 MOVE CX,CY
 250 DRAW CX+X1,CY-Y1
 260 PLOT85,CX+X2,CY-Y2
 270 MOVE CX,CY
 280 DRAW CX-X1,CY-Y1
 290 PLOT85,CX-X2,CY-Y2
 300 NEXT N
 310 FOR T=1 TO 5000: NEXT T
 320 CLG
 330 GOTO 130

Fig. 3.7. Kaleidoscope pattern program

Lines 140-170 set up the random points and colour. Lines 180-300
draw one segment of the complete pattern. Line 310 provides a delay
to allow the pattern to be viewed before the screen is cleared by line
320 ready for the next pattern.

Windows

There will be occasions when we want to reserve a part of the screen
for text and use the rest for graphics. An example of this might be say
an adventure game where a graphics picture is used to show the
current location but we also need a separate area of screen on which
the commands, lists of objects being carried or other useful

49Painting by Numbers

information might be displayed. On the BBC Micro it is quite easy to
display text on a graphics image by simply using PRINT commands
combined with the TAB function to place the text in a particular
position. A more convenient technique in some cases is to make use of
text and graphics ‘windows'. These windows are areas of the screen
which may be set aside for the display of text or graphics as required.

Making a text window

Let us suppose we want to reserve an area of the screen for text only.
We can do this by using the VDU28 command which has two sets of
X,Y coordinates, following it as follows:

 VDU28 X1,Y1.X2,Y2

where X1,Y1 are the coordinates of the bottom left corner of the area
we want to be a window, and X2,Y2 are the coordinates of the top
right corner. Note that here the coordinates used are those for text
symbols and will vary according to the display mode in use. When the
window is set up we can set the text background colour by using
COLOUR and CLS, but instead of filling the screen it will now only
affect the text window area. If we now set up a graphics background
colour it will change the background over the rest of the screen but
will not affect the text window area.

Making a graphics window

In the same way that a text window area can be set up we can also set
aside part of the screen for exclusive use of graphics. In this case we
use the command VDU24 with two sets of graphics coordinates. The
command has the format

 VDU24,X1;Y1;X2;Y2;

and as for text X1,Yl is the bottom left corner and X2,Y2 is the top
right corner of the required window area. In the case of graphics the
coordinates are independent of the mode in use, provided of course
that it is a graphics mode. Note that there is no graphics window in the
teletext mode.

Now we can have two different background colour. Normally when

50 BBC Micro Graphics and Sound

the whole screen is used the background colour will be either a text or
graphics colour according to which was the last to be set up, since
both text and graphics clear commands will clear the whole screen.
When windows have been set up the CLS command will affect only
the text areas whilst CLG will affect only the areas set aside for
graphics.

51Painting by Numbers

Chapter Four
Graphs and Charts

By using a computer we can readily carry out lots of measurements or
calculations and end up with enormous arrays of numbers. Having
produced all of these numbers one method of presenting them is to
produce a list or perhaps a table of figures. Unfortunately such a table
or list of numbers is not particularly helpful when we come to interpret
the results. A much better method of displaying results is to show them
visually using a graphics display or perhaps a chart. One of the
simplest examples of this is a thermometer type of display as shown in
Fig. 4.1.

Fig. 4.1. Thermometer display.

Thermometer display

In a conventional mercury thermometer the length of the column of
mercury indicates the temperature. In Fig. 4.1 a narrow rectangular

52 BBC Micro Graphics and Sound

box is drawn to represent the body of the thermometer. inside the box
is a solid vertical bar which like the mercury in the thermometer will
vary in length as the quantity we are measuring changes. It is
convenient to use a different colour, such as red, for the bar
representing the quantity being measured. For the moment let us
assume that we are measuring temperature.

As each new value of temperature is entered into the computer the
ical line moves up or down proportionately. In order to understand
what the line means we need a scale drawn alongside the thermometer
display. The scale and the outline box need be drawn only once at the
start of the program but the bar is redrawn for each new reading to be
displayed.

To mark up the values on the scale we shall need to write text on to
the graphics display at the appropriate positions. This could be done
by using the normal text cursor and a TAB instruction in the PRINT
statement. Unfortunately this involves a little calculation to sort out a
suitable cursor position for the text and often it is not possible to place
the text in exactly the right place because it falls between two text
cursor spaces. On the BBC Micro there is a very useful feature which
allows the text and graphics cursors to be linked. Now the first text
symbol will be printed at the position of the graphics cursor. Here we
need to note that the top left-hand corner ofthe character is positioned
at the graphics cursor position. Knowing the size of the text symbol it
is now possible to place the text where you want it. The command to
link the cursors is VDU5 and to restore normal text operation VDU4
may be used.

Text symbols are 32 graphics units high and their width depends
Upon the mode selected. Mode 0 gives a width of 16 units, mode 1
gives 32 units and mode 2 gives 64 units. When text is printed after
using VDU5 its colour will be the graphics colour and not the text
Colour currently in use, so GCOL is needed if you want to change the
colour of linked text.

A program to produce a thermometer style display is given in Fig.
4.2. Lines 130-180 draw the thermometer outline. Lines 200-340 draw
in the scale. Note VDU5 links text and graphics cursors so that text is
printed at the graphics cursor position.

Line 290 moves the cursor to the position where we want to write
text for the scale. In mode 1 each symbol is 32 units square and the
symbol is dran with the graphics cursor at its top left corner. To
calculate the shift neeeded in line 290 four symbol spaces are allowed
for. Thus the cursor ll shifted left by 128. To align the middle of the

53Graphs and Charts

symbol with the scale mark the cursor is moved up half a symbol
space, which is 16 units. For other modes the symbol space size can be
calculated as 1280/N where N is the number of symbols per row for
the selected mode.

 100 REM Thermometer display
 110 MODE1
 120 CX=600:CY=100
 130 GCOL0,3
 140 MOVE CX,CY
 150 PLOT1,80,0
 160 PLOT1,0,610
 170 PLOT1,-80,0
 180 PLOT1,0,-610
 190 REM Draw scale
 200 VDU5
 210 PLOT1,-100,0
 220 PLOT0,20,0
 230 PLOT0,-128,16
 240 PRINT "0";
 250 MOVE CX-80,CY
 260 FOR T=20 TO 100 STEP 20
 270 DRAW CX-80,CY+T*6
 280 PLOT1,-20,0
 290 PLOT0,-128,16
 300 PRINT STR$(T);
 310 MOVE CX-80,CY+T*6
 320 NEXT T
 330 PLOT0,-80,64
 340 PRINT "C";
 350 VDU4
 360 CX=CX+4:CY=CY+4
 370 REM Display temperature
 380 INPUT TAB(0,0) "Temperature deg. C = ",T
 390 IF T<100 AND T>0 THEN 420
 400 PRINT TAB(0,0) "TRY AGAIN";CHR$$(7)
 410 FOR D=1 TO 500:NEXT:GOTO 380
 420 MOVE CX,CY
 430 GCOL0,1
 440 PLOT1,72,0
 450 PLOT85,CX,CY+T*6
 460 PLOT81,72,0
 470 GCOL0,0
 480 PLOT85,CX,CY+600
 490 PLOT81,72,0
 500 PRINT TAB(0,0):GOTO 380
 510 END

Fig. 4.2. Program to draw a thermometer display.

54 BBC Micro Graphics and Sound

Note that an absolute move is used after printing the text. This is
because there may be two or three text symbols printed and you
cannot be sure of the final graphics cursor position after the symbols
are printed.

Line 3510 restores the normal text cursor. Lines 430-4810 produce
the red bar and blank out the area above the new red bar. in this
particular routine the values for temperature are entered from the
keyboard in response to a message at the top of the screen. Of course
you could connect the computer to an electronic thermometer and
input actual temperature data via the analog input channel, then the
screen display would act as a real thermometer.

All kinds of information can be displayed using this style of
presentation and it will often be found in games where perhaps the
energy or fuel level of a spaceship or the speed of a car could be
displayed. The thermometer display could be arranged horizontally,
much like the moving strip speedometers fitted to some cars, and this
is achieved by simply exchanging X and Y in the DRAW and PLOT
statements for the thermometer part of the display. Remember of
course that the scale also needs to be drawn horizontally. Try it as an
exercise.

Bar charts

Whilst the thermometer style display is useful to show the current state
of some measurement we will often want to see how the situation
varied over a period of time. We could perhaps measure the
temperature at noon on each day of the week. This can easily be
arranged by drawing the thermometer displays for the days ofthe week
alongside one another as shown in Fig. 4.3 In this case only the
variable length bar is drawn and one common scale is included at the
left-hand side. To improve visibility the bars may be drawn with a
slight gap between adjacent bars. This type of display is called a bar
graph or more commonly a bar chart. The program for drawing a
simple bar chart showing the daily temperatures over a period of a
week is listed in Fig. 4.4.

55Graphs and Charts

Fig. 4.3. Temperature bar chart.

 100 REM Simple bar chart
 110 MODE1
 120 DIM DAY$(7),T(7)
 130 DATA "Mo",15,"Tu",18,"We",25,
 "Th",12,"Fr",17,"Sa",20,"Su",18
 140 FOR N=1 TO 7
 150 READ DAY$(N),T(N)
 160 NEXT N
 170 CX=200:CY=200
 180 VDU5
 190 GCOL0,3
 200 REM Draw axes and scales
 210 MOVE CX,CY
 220 DRAW CX+28*32,CY
 230 FOR N = 1 TO 7
 240 MOVE CX+N*128-64,CY-32
 250 PRINT DAY$(N);
 260 NEXT N
 270 MOVE CX,CY
 280 PLOT1,-16,0
 290 PLOT0,-96,16
 300 PRINT "0";
 310 MOVE CX,CY
 320 FOR C=5 TO 25 STEP 5
 330 DRAW CX,CY+C*20
 340 PLOT1,-16,0
 350 PLOT0,-96,16
 360 PRINT STR$(C);
 370 MOVE CX,CY+C*20
 380 NEXTC
 390 PLOT0,-96,96
 400 PRINT "C";
 410 MOVE CX,CY

56 BBC Micro Graphics and Sound

 420 REM Plot chart
 430 CX=CX-64
 440 GCOL0,1
 450 FOR N=1 TO 7
 460 MOVE CX+128*N,CY
 470 PLOT1,64,0
 480 PLOT85,CX+128*N,CY+T(N)*20
 490 PLOT81,64,0
 500 NEXT N
 510 VDU4
 520 PRINT TAB(10,6);"Daily Temperatures";
 530 END

Fig. 4.4. Program to draw a simple bar chart.

Lines 200-400 draw in the scales. Lines 4310-5290 draw the bars
and print the title heading for the chart.

Bar charts are frequently used in business applications to show the
trend in sales over a year, or perhaps the stock level, number of orders
or income over a period. It is very easy to see the trend of the results
on such a chart. Sometimes the colour of the bar is changed if its level
goes above or below a specified limit. This can provide an easily
recognised warning that a situation is becoming dangerous or needs
attention. In such cases either the whole bar changes colour or the part
above the limit line might change colour. Lines 130-160 set up the
data. Data could alternatively be keyed in or read from a data file by
altering this part of the program.

Fig. 4.5. Multiple bar chart.

57Graphs and Charts

Multiple bar charts

When two different variables are to be displayed on the same chart the
bars are drawn in pairs so that they become interleaved ag shown in
Fig. 4.5. To provide clearer distinction between lhe sets of bars a
different colour is used for each set of bars Thu f graphs could be
interleaved in this way if desired. A typical application for a multiple
bar chart might show the income and expenditure on a single chart. It
might also be useful to show perhaps the predicted income and
expenditure as well as to see how the actual values compare with
predicted trends. Bar graphs are often used in financial and production
charts since they provide a bolder and easier to follow presentation
than a list of figures.

 100 REM Multiple bar chart
 110 MODE1
 120 DIM DAY$(7),T1(7),T2(7)
 130 DATA "Mo",15,7,"Tu",18,10,"We",
 25,15,"Th",12,5,"Fr",17,2,"Sa",
 20,7,"Su",18,15
 140 FOR N=1 TO 7
 150 READ DAY$(N),T1(N),T2(N)
 160 NEXT N
 170 CX=200:CY=200
 180 VDU5
 190 GCOL0,3
 200 REM Draw axes and scales
 210 MOVE CX,CY
 220 DRAW CX+28*32,CY
 230 FOR N = 1 TO 7
 240 MOVE CX+N*128-96,CY-32
 250 PRINT DAY$(N);
 260 NEXT N
 270 MOVE CX,CY
 280 PLOT1,-16,0
 290 PLOT0,-96,16
 300 PRINT "0";
 310 MOVE CX,CY
 320 FOR C=5 TO 25 STEP 5
 330 DRAW CX,CY+C*20
 340 PLOT1,-16,0
 350 PLOT0,-96,16
 360 PRINT STR$(C);
 370 MOVE CX,CY+C*20
 380 NEXTC
 390 PLOT0,-96,96
 400 PRINT "C";
 410 MOVE CX,CY

58 BBC Micro Graphics and Sound

 420 REM Plot chart
 430 FOR N=1 TO 7
 440 GCOL0,1
 450 PLOT0,8,0
 460 PLOT1,48,0
 470 PLOT81,-48,T1(N)*20
 480 PLOT81,48,0
 490 GCOL0,2
 500 PLOT0,16,-T1(N)*20
 510 PLOT1,48,0
 530 PLOT81,-48,T2(N)*20
 540 PLOT81,48,0
 550 PLOT0,8,-T2(N)*20
 560 NEXT N
 570 MOVE 328,840
 580 GCOL0,3
 590 PRINT"Daily Temperatues";
 600 MOVE 200,72
 610 GCOL0,1
 620 PRINT"Max";
 630 PLOT0,64,-32
 640 PLOT1,0,32
 650 PLOT81,64,-32
 660 PLOT81,0,32
 670 PLOT0,64,0
 680 GCOL0,2
 690 PRINT"Min";
 700 PLOT0,64,-32
 710 PLOT1,0,32
 720 PLOT81,64,-32
 730 PLOT81,0,32
 740 END

Fig. 4.6. Program to produce a multiple bar chart with interleaved bars

As an example of a multiple bar chart see the program listed in Fig.
4.6, which produces a plot of the maximum and minimum
temperatures for the days of a week.

Pie charts

A rather attractive form of display chart frequently used in business is
the pie chart. This is used to show the proportions into which
something divides up. An example might be the percentage votes for
political parties derived from a poll or sample of electors. We have all
seen these charts displayed on television. Another application might be
to show how the resources ofa company are used or how its money has
been spent.

59Graphs and Charts

As its name implies the pie chart is effectively like a plan view of a
pie which has been sliced up into segments of various sizes. Each slice
of the pie represents one item and shows the percentage of the total
made up by that item. A typical pie chart is shown in Fig. 4.7. To draw
a pie chart we are effectively drawing a series of segments of a circle.
The angle for each segment can be calculated as a percentage of 2 × pi
(360 degrees). Conversion to X and Y values for plotting is carried out
in much the same way as we used to draw a circle using trigonometric
methods. In fact we are really drawing arcs of a circle and then at the
end of each arc we draw a radial line into the centre of the chart. A
simple pie chart drawing program, allowing up to five segments, is
shown in Fig. 4.8.

Fig. 4.7 A typical pie chart display.

Lines 130-160 set up the data for the segments. Line 1710 moves
the graphics origin to the centre of the screen. Line 2110 links text and
graphics cursors to allow text to be placed where we want it. Lines
220-330 draw the chart, Note that in lines 28¢-31010 a point is chosen
halfway through the segment and inside the edge of the chart to allow
the item number to be printed. Lines 369)-42¢ print the heading and
the key to the segment items.

 100 REM Simple Pie Chart
 110 MODE1
 120 DIM S(5)
 130 DATA 22,16,25,15,22
 140 FOR N = 1 TO 5
 150 READ S(N)
 160 NEXT N

60 BBC Micro Graphics and Sound

 170 VDU29,900;512;
 180 R=300:THS=0:DTH=2*PI/300
 190 MOVE0,0
 200 REM Plot chart
 210 VDU5
 220 FOR N=1 TO 5
 230 ANG=2*PI*S(N)/100
 240 DRAW R*COS(THS),R*SIN(THS)
 250 FOR TH=THS TO THS+ANG STEP DTH
 260 DRAW R*COS(TH),R*SIN(TH)
 270 NEXT TH
 280 THT=THS+ANG/2:RT=200
 290 MOVE RT*COS(THT),RT*SIN(THT)
 300 PRINT STR$(N);
 310 MOVE 0,0
 320 THS=THS+ANG
 330 NEXT N
 340 VDU4
 350 VDU29,0;0;
 360 PRINT TAB(0,7) "Pie Chart"
 370 PRINT
 380 PRINT "1 Transport"
 390 PRINT "2 Education"
 400 PRINT "3 Health"
 410 PRINT "4 Housing"
 420 PRINT "5 Miscallaneous"
 430 END

Fig. 4.8. Program to draw a simple pie chart.

Coloured pie charts

For best effect, pie charts are usually drawn with each segment filled
in a different colour. We can do this by using PLOT85 and moving
back to the centre between plotting each point around the circle. This
fills in a very narrow triangular slice of the circle at each step. item
number: can be written into each segment after the chart has been
drawn by linking the text and graphics cursors using VDU5, then
printing the appropriate text in the segment. The allocation or meaning
of each segment can either be indicated simply by colour and by
having a colour key alongside the chart, or by using segment numbers
as in the simple chart.

Scientific graphs

Although the bar chart and pie chart are well suited to business use,

61Graphs and Charts

when we come to scientific or mathematical graph plotting a slightly
different arrangement is used.

The layout is similar to that of o bar chart, with the results of the
calculation or experiment plotted vertically on the screen and the
measurement steps horizontally. Instead of drawing a bar, the value of
Y is simply shown as a dot at a point equivalent to the top of the bar
on a bar chart. Sometimes to make the point easier to see a small +
sign, triangle or circle may be used as a marker instead.

Fig. 4.9. Typical scientific type graph showing Y = SIN(X).

In a bar chart the variables are normally positive but in a scientific
graph the variables X and Y may be either positive or negative. To
cater for this the X and Y axes are drawn as shown in Fig. 4.9. Positive
values of X are to the right of the vertical Y axis and negative values
of X to the left. Similarly positive Y is above the X axis and negative
below.

As an example let us draw the graph for Y= sin(X) with values of X
from -10 to +10. Firstly the value of sin(X) will vary between -l and
+1 so this determines the scale of the Y axis. To produce a reasonable
size graph we shall arrange that 10 units of X and 1 unit of Y will be
400 units on the screen, so we set up two scale factors SX and SY. On
the scales we shall show 10 divisions each side of zero. The program
listing is given in Fig. 4.10.

Lines 170-320 draw the X axis. Lines 330-480 draw the Y axis.
Lines 500-540 calculates Y and plot the graph. The result is as shown
in Fig. 4.9, with a white set of axes and yellow dots for the plotted
points.

62 BBC Micro Graphics and Sound

 100 REM Sine Graph
 110 MODE1
 120 SX=40:SY=400
 130 VDU29,640;512;
 140 VDU5
 150 MOVE0,0
 160 REM Draw scales
 170 FOR X=-1 TO -10 STEP -1
 180 DRAW X*SX,0
 190 DRAW X*SX,-10
 200 MOVE X*SX,0
 210 NEXT X
 220 PLOT0,-112,16
 230 PRINT "-10";
 240 MOVE0,0
 250 FOR X=1 TO 10
 260 DRAW X*SX,0
 270 DRAW X*SX,-10
 280 MOVE X*SX,0
 290 NEXT X
 300 PLOT0,16,16
 310 PRINT "+10";
 320 MOVE0,0
 330 FOR Y=-0.1 TO -1.1 STEP -0.1
 340 DRAW 0,Y*SY
 350 DRAW -10,Y*SY
 360 MOVE 0,Y*SY
 370 NEXT Y
 380 PLOT0,-32,-16
 390 PRINT "-1";
 400 MOVE0,0
 410 FOR Y=0.1 TO 1.1 STEP 0.1
 420 DRAW 0,Y*SY
 430 DRAW -10,Y*SY
 440 MOVE 0,Y*SY
 450 NEXT Y
 460 PLOT0,-32,48
 470 PRINT "+1";
 480 MOVE0,0
 490 REM Plot graph
 500 GCOL0,2
 510 FOR X=-10 TO +10 STEP 0.1
 520 Y=SIN(X)
 530 PLOT69,X*SX,Y*SY
 540 NEXT X
 550 PLOT4,-160,-480
 560 PRINT "Y = SIN(X)";
 570 VDU4
 580 END

Fig. 4.10. Program to draw sine graph.

63Graphs and Charts

Interpolation

In plotting the sine function we used a very large number of values so
that the points were closely spaced and gave a good picture of the
shape of the curve produced by the function. If there were less values
for X and Y the points would tend to be spread apart, giving a less
clear impression of the function shape.

Sometimes we may wish to find the probable value for Y at a value
of X that was not included in the points used for the graph. By using a
technique known as interpolation we can obtain an approximate value
for such an intermediate point on the curve. The simplest technique for
interpolation is to join successive points on the curve by straight lines.
This is generally known as linear interpolation. We can in fact join the
points with a straight line as the graph is plotted. This gives an easier
to follow curve when the number of points available is limited. Some
care is needed, however, because unless there are a reasonable number
of points the straight line interpolation technique can be wildly
inaccurate.

To join the points the graph plotting routine is simply altered to use
a DRAW command instead of the PLOT69 command. A point to
remember here is that you will need to make a MOVE operation to get
to the first plotted point, otherwise a line will be drawn across the
graph. This usually means that you have to calculate or obtain the first
X and Y values before going into the main plotting loop.

There are more advanced techniques for interpolation which
involve fitting a mathematical curve through each three successive
points, but it is felt that these are beyond the scope of this book. For
most applications the linear interpolation technique is satisfactory
provided there are enough points on the graph to start with.

Dial and clock type displays

For some applications a dial and pointer or clock type of display may
be required. Typical uses might be in the instrument panel for a flight
simulator program or perhaps to provide an instrument readout for an
experiment where the computer is monitoring the results. In some
cases, of course, the display may show time elapsed or time remaining
in a game program. The basic display consists of a circular, or possibly
polygon shaped, dial with either one or two pointers. The pointers may

64 BBC Micro Graphics and Sound

simply be radial lines or a filled shape drawn radially from the centre
of the dial. The dial itself may also be filled with colour to make it
stand out from the background. A scale of some sort is usually drawn
around the outside of the dial.

This analogue type of display is often much more convenient where
precise readings are not required but where the general trend can be
taken in at a glance. An example of this is in digital and analogue
watches and clocks. Although the digital display is precise it is much
easier to tell the time by just glancing at a conventional clock face.

Drawing the dial is quite straightforward since it just involves
drawing and perhaps filling a circle, which may be achieved by using
one of the methods described in Chapter 2. The trigonometric or
rotation methods are usually best for this purpose, especially if the dial
is to be filled with colour.

An important point about the hand or pointer is that it normally
rotates clockwise for increasing readings. The position of the hand is
readily calculated by using the rotation equations. The angle of
rotation required is simply the ratio of the scale reading to full scale
multiplied by the total angle represented by full scale. If all 360
rlcgrees are used, as in a compass display, then the angle TH is given
by

 TH = 2*PI*X/FS

Where X is the measured value, FS is the full scale reading and TH is
the angle of rotation. Because the rotation equations assume that the
angle increases in an anticlockwise direction the sign of TH should be
changed before inserting it into the equations. An angle of -TH is
effectively the same as a clockwise rotation of TH.

Sometimes the dial may cover only 90, 180 or 270 degrees. In this
case the 2*PI term in the above equation should be reduced to the
desired full scale angle measured in radians. The angle in radians is
easily found by using the following equation:

 RAD = DEG * PI / 180

Normally the rotation equation assumes that the zero point is
horizontal and to the right. If you want zero to be at the top as in a
compass (Le. true North = 0) then 90 degrees or PI/ 2 must be added
to values of TH before the values of X and Y are calculated. Note that
in this case a simplified rotation equation is used where the old vslue
of X is assumed to be 0.

Drawing the scale marks is really similar to drawing the pointer

65Graphs and Charts

except that the start of the mark line is at some radius s bit larger than
the dial circle. The inner and outer ends of the mark are calculated
using this rotation equation with two different values for R. The centre
point of any text used for scale calibration can be calculated in the
same way using a radius larger than the outer radius of the scale
marks. Remember that having found the centre point for the text an
offset has to be calculated to place the cursor at the top left corner cf
the first symbol, using the fact that symbols are 32 units high and
either 16, 32 or 64 units wide according to the display mode used.

Usually the pointer will have to be redrawn for each new reading
and the old pointer mark must be erased by redrawing it in the same
colour as the dial fill, or the background if the dial 1S not filled
colour. A procedure can be used to erase and redraw the each time a
new reading is calculated.

The program listed in Fig. 4.11 produces a simple dial display with
a single pointer and gives a display similar to that shown in Fig. 4.12.
In this the dial starts with the pointer pointing up and has a 270 degree
scale.

 100 REM Dial and pointer display
 110 MODE1
 120 GCOL0,2
 130 CX=640:CY=512
 140 RD=240:RS1=256:RS2=296:RT=360
 150 RP=200:LP=0
 160 PZ=PI/2:FS=3*PI/2
 170 VDU5
 180 PROCDIAL
 190 GCOL0,3
 200 PROCSCALE
 210 FOR K= 1 TO 6
 220 FOR N= 1 TO 8 STEP 0.1
 230 PROCPOINT
 240 FOR T=1 TO 100:NEXT T
 250 NEXT N
 260 NEXT K
 270 VDU4
 280 END

 400 DEFPROCDIAL
 410 TH=0:DTH=2*PI/RD
 420 FOR J=1 TO RD
 430 MOVE CX+RD*COS(TH),CY+RD*SIN(TH)
 440 TH=TH+DTH
 450 DRAW CX+RD*COS(TH),CY+RD*SIN(TH)
 460 PLOT85,CX,CY
 470 NEXT J
 480 ENDPROC

66 BBC Micro Graphics and Sound

 500 DEFPROCSCALE
 510 TH=PZ:DTH=-2*PI/RS1
 520 NP=INT(FS*RS1/(2*PI))
 530 FOR J=1 TO NP
 540 MOVE CX+RS1*COS(TH),CY+RS1*SIN(TH)
 550 TH=TH+DTH
 560 DRAW CX+RS1*COS(TH),CY+RS1*SIN(TH)
 570 NEXT J
 580 FOR N=0 TO 8
 590 TH=PZ-FS*N/8
 600 MOVE CX+RS1*COS(TH),CY+RS1*SIN(TH)
 610 DRAW CX+RS2*COS(TH),CY+RS2*SIN(TH)
 620 MOVE CX+RT*COS(TH),CY+RT*SIN(TH)
 630 PLOT0,-16,16
 640 PRINT STR$(N);
 650 NEXT N
 660 ENDPROC

 800 DEFPROCPOINT
 810 TH=PZ-FS*LP/8
 820 MOVE CX,CY
 830 GCOL0,2
 840 DRAW CX+RP*COS(TH),CY+RP*SIN(TH)
 850 TH=PZ-FS*N/8
 860 MOVE CX,CY
 870 GCOL0,1
 880 DRAW CX+RP*COS(TH),CY+RP*SIN(TH)
 890 LP=N
 900 ENDPROC

Fig. 4.11. Program to draw a dial and pointer display

Fig. 4.12. Dial and pointer type display

67Graphs and Charts

If two hands are required, as in a conventional clock display, then
the same basic drawing routine may be used but with different radius
for each hand. Equally well a third pointer or hand might be added. If
the pointers are to have different shapes it may be convenient to have a
separate drawing procedure for each pointer.

Moving sector displays

A variation on the dial type display is the moving sector type, where a
sector of the dial is filled in a different colour from the rest of the dial.
As the reading increases the moving sector takes up a greater part of
the complete circle.

 100 REM Moving sector display
 110 MODE1
 120 GCOL0,2
 130 CX=640:CY=512
 140 RD=240:RS1=256:RS2=296:RT=360
 150 RP=220:LP=0
 160 PZ=PI/2:FS=3*PI/2
 170 VDU5
 180 PROCDIAL
 190 GCOL0,3
 200 PROCSCALE
 210 FOR K= 1 TO 6
 220 FOR N= 1 TO 8
 230 PROCSECTOR
 240 NEXT N
 250 FOR N= 8 TO 0 STEP -1
 260 PROCSECTOR
 270 NEXT N
 280 NEXT K
 290 VDU4
 300 END

 400 DEFPROCDIAL
 410 TH=0:DTH=2*PI/RD
 420 FOR J=1 TO RD
 430 MOVE CX+RD*COS(TH),CY+RD*SIN(TH)
 440 TH=TH+DTH
 450 DRAW CX+RD*COS(TH),CY+RD*SIN(TH)
 460 PLOT85,CX,CY
 470 NEXT J
 480 ENDPROC
 500 DEFPROCSCALE
 510 TH=PZ:DTH=-2*PI/RS1
 520 NP=INT(FS*RS1/(2*PI))

68 BBC Micro Graphics and Sound

 530 FOR J=1 TO NP
 540 MOVE CX+RS1*COS(TH),CY+RS1*SIN(TH)
 550 TH=TH+DTH
 560 DRAW CX+RS1*COS(TH),CY+RS1*SIN(TH)
 570 NEXT J
 580 FOR N=0 TO 8
 590 TH=PZ-FS*N/8
 600 MOVE CX+RS1*COS(TH),CY+RS1*SIN(TH)
 610 DRAW CX+RS2*COS(TH),CY+RS2*SIN(TH)
 620 MOVE CX+RT*COS(TH),CY+RT*SIN(TH)
 630 PLOT0,-16,16
 640 PRINT STR$(N);
 650 NEXT N
 660 ENDPROC

 800 DEFPROCSECTOR
 810 TH1=PZ-FS*LP/8
 820 TH2=PZ-FS*N/8
 830 DTH=-2*PI/RP
 840 NP=ABS(INT((TH2-TH1)/DTH))
 850 GCOL0,1
 860 IF NP=0 THEN 950
 870 IF TH1<TH2 THEN DTH=-DTH:GCOL0,2
 880 TH=TH1
 890 FOR J=1 TO NP
 900 MOVE CX+RP*COS(TH),CY+RP*SIN(TH)
 910 TH=TH+DTH
 920 DRAW CX+RP*COS(TH),CY+RP*SIN(TH)
 930 PLOT85,CX,CY
 940 NEXT J
 950 LP=N
 960 ENDPROC

Fig. 4.13. Program to draw a moving sector display.

The basic principles for generating this type of display are a little
different to those of a pointer and dial type. Here the angular valueof
the moving sector is calculated in the same way as for calculating
pointer position. The actual display is then drawn by using a variant of
the circle filling routine which draws and fills only part of the circle.
The colour is then changed and the rest of the circle is filled. Scale
markings and calibrations can be drawn in the same way as for a dial
and pointer type of display. It is usually easiest to redraw the whole
dial for each new sector position but a faster technique might be to
compare the new and current sector values and just draw or erase the
small sector representing the difference. If the new value ls larger than
the old the program draws an additional piece of sector, moving
clockwise and using the sector colour. If the new value is smaller then

69Graphs and Charts

a small sector equal to the difference is drawn anticlockwise in the
basic dial colour

Fig. 4.13 shows a simple program for drawing this type of display
and the results on the screen will be similar to Fig. 4.14.

Fig. 4.14. A moving sector type display

70 BBC Micro Graphics and Sound

Chapter Five
More About Colour and
Plot

So far we have looked at the basic arrangements for selecting colour
and for plotting or drawing on the BBC Micro. There are, however,
several more possibilities in the colour control system and in the use
of the PLOT command which we shall now explore.

Changing the palette

When an artist is painting a picture he does not take all of the paints
nut of his paint box but selects a few colours that he needs for the
picture. These are placed on that strangely shaped board which he calls
his ’palette‹. In the BBC Micro we have a similar situation, especially
in the two- and four-colour modes. Normally the colours are set up to
the combinations we have been using and this is what might be called
the ’standard’ or default palette. By using some special VDU
commands we can in fact change the set of colours available in the
two- and four-colour modes. In mode 2 we can rearrange the colours
in a different order or have the same colour displayed for several
different colour numbers.

At this point we need to look at the colour numbering in a slightly
different way. The numbers that we use in the COLOUR and GCOL
commands to specify colour are what are known as ‘logical’ colour
numbers. You will recall that in mode 1 the actual colours produced by

71

colour numbers 2 and 3 are different from those produced by the same
numbers when mode 2 is selected. This is because the display colour
assigned to these logical colour numbers is different in these two
modes.

 Colour 0 Black
 Colour 1 Red
 Colour 2 Green
 Colour 3 Yellow
 Colour 4 Blue
 Colour 5 Magenta
 Colour 6 Cyan
 Colour 7 While
 Colour 8 Flashing Black/white
 Colour 9 Flashing Red/cyan
 Colour 10 Flashing Green/magenta
 Colour ll Flashing Yellow/blue
 Colour 12 Flashing Blue/yellow
 Colour 13 Flashing Magenta/green
 Colour 14 Flashing Cyan/red
 Colour 15 Flashing white/black

Fig. 5.7. Actual colour numbers.

The colour that is actually displayed on the screen in response to a
colour command is called the ‘actual’ colour number. These actual
colour numbers are listed in fig. 5.1. You will notice that the numbers
and colours are the normal ones that apply for mode 2.

All of the colours produced are combinations of the primary colours
red, green and blue and if we examine the numbering scheme we shall
see that for the foreground or ink colour only the least significant four
bits of the number are used to define the colour. One bit in the number
is assigned to each of the colours red, green and blue, whilst a fourth
bit indicates whether the colour is flashing or not. The bit assignment
is shown in Fig. 5.2. Thus for yellow, which is a combination of red
and green, we find that bits 1 and 2 are both at 1, giving the number 3
and the colour R+G = Yellow.

In the BBC Micro there is a small section of memory set aside to
hold the set of actual colour numbers which make up the current
palette. As each pixel is scanned on the screen the logical colour
number is used to select one of the locations in this palette memory
and the corresponding actual colour number is read out. This colour
number determines the combination of red, green and blue that
isdisplayed on the screen for that pixel.

72 BBC Micro Graphics and Sound

Colour

Data
Bit

Value

EXAMPLE

COLOUR 5

8

Flash

Bit 4

4

Blue

Bit 3

2

Green

Bit 2

1

Red

Bit 1

= 4 + 1
= Bit3 + Bit1

= Blue + Red

= Magenta

Fig 5.2. Assignment of bits and numerical values for actual colour
numbers.

By using a VDU command we can in fact assign any of the actual
display colours to a logical colour number. Thus if we wanted to have
green text or graphics in mode 0 we would assign the actual colour
number 2 (green) to logical colour l. In effect we have taken a
different colour paint out of the box and put it on our brush. In the
actual computer a different pattern of R,G and B is set up for logical
colour number 1 in the palette memory. The command which performs
this extremely useful trick is VDU19 which has five parameters
associated with it and takes the form

 VDU19,LC,AC,0,0,0

The first number after VDU19 is the logical number of the colour that
we want to change and the second number is the actual colour that we
want displayed on the screen. Thus to produce red text in mode 0 we
might use the instructions.

 100 MODE 0
 110 VDU19,1,2,0,0,0
 120 COLOUR 1
 130 PRlNT"This is red text in mode 0"
 140 END

Here the VDU19 command has changed logical colour 1 (normally
white) so that it now displays actual colour 2 which is red. We can in
fact set more than one logical colour to the same actual colour. ln
mode 2 for instance we could easily replace the flashing colours
(numbers 8-15) by the steady colours or we could make them all
produce blue on the screen. A program for foreground colour
switching is given in Fig. 5.3.

The other three parameters for VDU19 are there for future

73More about Colour and Plot

expansion and with the present operating system and hardware they do
nothing. These three parameters must be included in the command,
otherwise an error will be flagged so they are all set at 0. To save a
little typing effort it is possible to shorten the VDU19 command to the
following form:

VDU9,1,4;0;

In this form the semicolon after a number indicates that it will take
up two bytes of memory. Here one of the three 0 terms is combined
with the actual colour number (4 in this case) whilst the remaining two
0 terms are combined as the 0 followed by a semicolon. It is important
here to include the final semicolon otherwise an error will be reported.

 100 REM Foreground colour switching
 110 REM using VDU19
 120 MODE1
 130 COLOUR1
 140 GCOL0,2
 150 PRINT TAB(3,3)"MODE1 "
 160 PRINT TAB(3)"Colour switching"
 170 PRINT TAB(3)"Text colour = 1"
 180 PRINT TAB(3)"Graphics colour = 2"
 190 MOVE 100,100
 200 PLOT1,200,0
 210 PLOT81,-200,200
 220 PLOT81,200,0
 230 FOR N=1 TO 64
 240 CT=N+1
 250 CG=N+2
 260 VDU19,1,CT,0,0,0
 270 VDU19,2,CG,0,0,0
 280 FOR T=1 TO 5000:NEXT T
 290 NEXT N
 300 END

Fig. 5.3. A program for foreground colour switching.

 100 REM Background colour switching
 110 MODE1
 120 GCOL0,129
 130 CLG
 140 VDU28,1,15,38,1
 150 COLOUR128
 160 CLS
 170 COLOUR 2
 180 PRINT TAB(0,0)"MODE 1"
 190 PRINT "Background colour switching"
 200 PRINT "Text background=128"
 210 PRINT "Graphics background=129"
 220 PRINT "Text colour=2"
 230 PRINT "Graphics colour=3"

74 BBC Micro Graphics and Sound

 240 MOVE 100,100
 250 PLOT1,200,0
 260 PLOT81,-200,200
 270 PLOT81,200,0
 280 FOR N=1 TO 50
 290 TB=N
 300 GB=N+1
 310 VDU19,0,TB,0,0,0
 320 VDU19,1,GB,0,0,0
 330 FOR T=1 TO 5000:NEXT T
 340 NEXT N
 360 END

Fig. 5.4 A program for background colour switching.

At this point we must consider what happens to background colours
when we change the meaning of the logical colour numbers. In fact
when we change the colour displayed by a foreground logical number
the corresponding background colour will also change. Thus if we
change the colour displayed by logical colour 0 then the background
colour will change immediately. This assumes that the logical
background colour has not been changed from its normal value of 0 by
using a GCOL command. If the background had been set to colour 1
then changing the actual colour for colour 1 will cause the background
colour to change. A program demonstrating background colour
switching is shown in Fig. 5.4.

The advantage of being able to switch colours in this way is that the
change is instant and affects everything that is drawn on the screen in
a particular logical colour. When we set background colour you will
remember that we used a COLOUR or GCOL command followed by
clearing the screen to produce the new background colour. This
unfortunately erases anything that is already drawn on the screen. If
we use a VDU19 command to change the palette then we can switch
the background from black to perhaps green instantaneously without
affecting anything that is already drawn on the screen. Of course
anything that has been drawn in green using the green foreground
colour would disappear against a green background but it has a
different logical colour number from the background. These
foreground objects may be rendered visible again by changing their
actual colour to something other than green by using VDU19.

Suppose we are in a four-colour mode but we wish to have blue as
colour 1 instead of red. This can be achieved by using the VDU19
command as follows:

75More about Colour and Plot

 1100 VDU19, 1, 4, 0, 0, 0

and this will cause logical colour 1 to be blue in future in the program.
Thus in a two-colour mode we can have any two colours as the
foreground and background colours but only two colours can be
produced on the screen at any time. In a four-colour mode we can
select any four colours for display in place of the normal default
colours black, red, yellow and white. Note that the background will
always take up one of the logical colours in any mode. Some
interesting effects occur when the background colour is changed in
mode 3 or mode 6. In these modes ten rows of dots are allocated to
each row of text but only eight rows of dots are controlled by the
colour palette system. As a result if we use the command

 VDU19,0,4,0,0,0

we will get a blue background with black lines across it, which makes
the screen look like a piece of ruled notepaper. Of course we could use

 VDU19,0,7,0,0,0

to produce a lined white screen and then use

 VDU19,1,0,0,0,0

to make the text black so that the screen looks like writing paper. You
could equally well choose to have yellow or pale blue green (cyan)
paper and any contrasting colour for the text by using VDU19
commands.

More about GCOL

So far we have always used GCOL0 when setting up the graphics
drawing colour and this as we have seen sets up the actual foreground
colour that we are going to draw with. There are other variations of
GCOL where the first parameter number is 1, 2, 3 or 4. These carry
out various logical operations before putting the logical number into
the display. These GCOL functions are as follows:

GCOL0,C SC = C
GCOL1,C SC = C OR EC
GCOL2,C SC = C AND EC
GCOL3,C SC = C XOR EC
GCOL4,C SC = NOT C

76 BBC Micro Graphics and Sound

where C is the new logical colour, SC is the logical colour produced
on the screen, EC is the existing logical colour on the screen. Note that
here we refer to the colours at the point or along the line being drawn.
OR, AND, XOR and NOT are logical functions, whose actions on
four-bit binary words are shown in fig. 5.5.

1 0 1 0

1 001

1 001

1 0 1 0

1 001

1 000

1 0 1 0

1 001

1 001

1 0 1 0

0 011

↓ ↓ ↓ ↓

AND OR XOR NOT

Fig. 5.5. Logic function actions on four-bit binary words.

Each logical colour number consists of one, two or four binary data
bits giving two, four or sixteen possible colours respectively according
to the display mode selected.

GCOL4 is perhaps easiest to understand. The NOT function is also
known as the complement or invert function and means that the state
of each of the data bits in the logical colour number is changed from 0
to 1 or vice versa. Suppose we select colour 2 in mode 1 which will
normally be yellow. The binary number is (1,0). If we use (GCOL4
then this is complemented to give binary number (0,1) which produces
red on the screen. In mode 2 the GCOL4 function would normally
convert a steady colour into one of the flashing colours with numbers
from 8 to 15.

If we use GCOL1 this causes the colour we specify to be ORed
with the colour that is already on the screen at the drawing position.
Now to understand the action of this command we need to look at the
way in which the BBC Micro stores its information about the pixel
colour. In mode 1 and other four colour modes two data bits in lhe
memory word are used for each pixel and each word in memory
represents four adjacent pixels on the screen. Each bit can be either on
(1) or off (0). With two bits per pixel there are four possible
combinations giving colour 0 (0,0), colour 1 (0, l), colour 2 (1,0) and
colour 3 (1,1). Here the states of the two bits for the pixel are shown in
brackets.

77More about Colour and Plot

When we carry out a logical OR operation between two sets of two
bits then if a bit in one word is a 1 the corresponding bit in the result
will also be a 1 irrespective of the state of the same bit in the other
word. Thus if the colour already on the screen is black (0,0) and we
select GCOL,1 the bit in the red colour (0,1) that we are asking for
overrides the 0 in the black word and the result will be a red colour
(0,1) display. If however the colour already displayed were yellow
(1,0) then a 1 bit will appear in the result from each of the colours to
give (1,1) in the memory and the resultant display will be white. With
an OR function our new specified colour effectively ldds bits to the
existing colour data to produce the new colour.

GCOL2 causes the new colour to be ANDed with the existing
colour. Here there will be a 1 in the output colour word only when the
corresponding bit in both the existing and new colour words is at 1.

The AND function can effectively be used to switch off colours
from the display. In mode 2 data bit 0 (the least significant) is red, bit
1 is green, bit 2 is blue and bit 3 selects the upper eight (flashing)
colours. ANDing red with any existing colour that contains red will
produce red only. If there is no red component in the existing colour
the display will be black since all colour bits will be turned off. In the
AND operation only those bits which are common to both logical
colour words will be set at 1 in the new colour that is written to the
screen.

Let us look at some examples ofthe AND operation. If we AND red
(0001) with green (0010) there are no common bits so the result is
black (0000). If we take white (0111) which contains red, green and
blue and we AND it with green (0010) the result will be green (0010)
since the red and blue bits are only at 1 in one of the two colour
numbers.

GCOL3 produces the third basic logical function which is called
EXCLUSIVE OR (or XOR in its shortened form). Here if the bits in
the two words are in the same state (either both at 0 or both at l) then
the resultant bit from the output is at 0. If the bit states differ the result
will be a 1. If we use a word with all bits at 1 as the GCOL3 colour
then the existing colour will be complemented so that red would
become cyan and so on. If the GCOL3 colour is 0 the display colour is
unaffected. An interesting feature is that if the GCOL3 colour is the
same as the one already being displayed then the result will be black
or the background colour. This can be useful in animation since it will
effectively erase the image already present. Another useful fact is that
VDUl8 is identical in action to GCOL so that we could use either

78 BBC Micro Graphics and Sound

GCOL1,3 or VDU18,1,3 and they would perform the same function.
Since GCOL has less characters, however, it would seem logical to use
GCOL rather than VDU18 in practice.

Using the GCOL logical functions

One problem frequently encountered in games type programs is that
we will want to have different objects passing in front of or behind one
another on the screen. Let us consider the situation where we have a
yellow planet and a red spaceship on a black background. Now
suppose we want to show the spaceship passing behind the planet.

If we draw the planet and spaceship using GCOL0 and we draw the
planet first then the part of the spaceship overlapping the planet would
be red and the spaceship would appear to be in front of the planet. If
we drew the planet after the spaceship this would produce the desired
effect because the planet colour will overwrite the red of the spaceship
where the objects overlap. Now if we want to show the spaceship in a
new position we will have to erase it and then redraw it in the new
position. If we erased the spaceship by drawing it in black then in the
area of overlap part of the planet would also be erased. The snag here
is that we will have to erase and redraw both objects to get the proper
result with the spaceship in a new position.

If we drew the planet using GCOL¢ and the spaceship with GCOL1
then where they overlap the logical colour numbers are yellow (0011)
and red (0001). When these are ORed together the result is logical
colour (001 l) which is yellow. As a result the spaceship is partly
hidden by the planet although it has been drawn on top of the planet.
Before moving the spaceship to a new position we need to erase it. If
we use GCOL¢,¢ this would also erase part of the planet. To overcome
this we might use the AND (GCOL2) with logical colour 2 (green).
This erases the spaceship since there is no red component in colour 2.
Unfortunately it also turns the overlap area green. To overcome this
problem we would allocate the actual colour yellow to logical colour
2. Now the planet will be restored and the spaceship erased. We can
now redraw the spaceship in red at its next position and provided that
we use GCOL1 there is no need to redraw the planet. So by careful
choice of logical colours and the use of GCOL1 we can have objects
passing one another without interference. If you wanted a red planet
and a yellow spaceship then you could use VDU19 to assign actual
colour red to logical colour 3 and yellow to colour 1. Of course you

79More about Colour and Plot

would have to make logical colour 2 red as well. Fig. 5.6 gives a
program listing which will demonstrate this application of GCOL1 and
GCOL2.

The most useful of the other GCOL options is GCOL3 where the
EXCLUSIVE OR function is carried out between the colour already
present and the new colour. An interesting feature here is that if a line
is drawn using GCOL3 and then the same line is redrawn with
GCOL3 and the same colour it will be erased but will not erase those
other coloured areas that it overlaps.

 100 REM Spaceship passing planet
 110 REM using GCOL logic functions
 120 MODE2
 130 VDU19,2,3,0,0,0
 140 X=640:Y=512
 150 R=300
 160 GCOL0,3
 170 PROCCIRCL
 180 FOR XS=50 TO 1100 STEP 50
 190 YS=500
 200 GCOL1,1
 210 PROCSHIP
 260 FOR T=1 TO 200:NEXT T
 270 GCOL2,2
 280 PROCSHIP
 290 NEXT XS
 300 GOTO 180
 310 END
 320 REM
 480 REM
 490 REM Draw planet
 500 DEFPROCCIRCL
 510 MOVE X+R,Y
 520 TH=2*PI/R
 530 CT=COS(TH):ST=SIN(TH)
 540 DX=R:DY=0
 550 FOR N=1 TO R
 560 X1=DX*CT-DY*ST
 570 DY=DX*ST+DY*CT
 580 DX=X1
 590 DRAW X+DX,Y+DY
 600 PLOT85,X,Y
 610 DRAW X+DX,Y+DY
 620 NEXT N
 630 ENDPROC
 640 REM
 690 REM Draw spaceship
 700 DEFPROCSHIP
 710 MOVE XS,YS
 720 PLOT1,100,0
 730 PLOT81,0,50

80 BBC Micro Graphics and Sound

 740 PLOT1,-100,0
 750 PLOT81,0,-50
 760 ENDPROC

Fig. 5.6. Spaceship passing a planet using GCOL logic operations.

Considering the spaceship and planet picture when the spaceship is
drawn using GCOL3, the first time the spaceship is drawn the parthat
overlaps the planet will be green. This is because both yellow and red
contain the red colour bit and this bit will be set to 0 in the displayed
colour. The green colour bit of the planet area is unaffected by the
XOR operation so the result in the area of overlap will be green. The
rest of the spaceship is drawn in red since the hackground colour has
both red and green bits set at 0. If the spaceship is now redrawn the
red component is restored to the planet overlap area, thus returning the
planet to its normal yellow colour. The spaceship is erased because we
now have two identical colour codes which produce an all 0 result
after the XOR operation. So by successively drawing objects using
GCOL3 we can draw and erase them without destroying the image of
other objects that they overlap. This is particularly useful in animation
of objects.

Plotting in background and inverted colours

We have used PLOT0 and PLOTI and also PLOT4 and PLOT5, but
you may have wondered what happened to PLOT2 and PLOT3; and
how about PLOT6 and PLOT7? Well there are such commands and
they perform some interesting functions. These commands allow us to
plot in different colours from the normal drawing or foreground
colour.

If we use PLOT2 or PLOT6 then we draw the line in the
complementary colour to the current foreground colour. Thus if we
have selected logical colour 1 the PLOT2 command will actually draw
in either colour 0, 2 or 14 depending upon the mode selected. This is
equivalent to using GCOL4 before a normal drawing command.

PLOT3 and PLOT7 are rather more useful since they will cause the
lines to be drawn in the current background colour (see Fig. 5.7). In
effect this is an erase command because the line will now become
invisible since it is the same colour as the background. Note that this is
not always the same as drawing a line in colour 0 because the
background may not be black. This is useful because we can now

81More about Colour and Plot

make the background any colour and erase lines using PLOT3 or
PLOT7 without having to work out which colour the lines have to be
in order to erase them. We can also erase an area of colour by using
PLOT83 or PLOT87. Note that PLOT3 and PLOT83 use relative X,Y
coordinates whilst the other two use absolute X,Y positions on the
screen.

A single dot on the screen can be erased by using PLOT67 with
relative X,Y or PLOT7l with absolute X,Y values.

 100 REM Effect of PLOT82 and PLOT83
 110 MODE1
 120 GCOL0,129
 130 CLG
 140 COLOUR3
 150 PRINT TAB(0,1)"Horizontal rectangle"
 160 PRINT"in colour 3 with PLOT81"
 170 MOVE 200,200
 180 GCOL0,3
 190 PLOT1,600,0
 200 PLOT81,-600,200
 210 PLOT81,600,0
 220 PRINT:PRINT"Vertical rectangle"
 230 PRINT"in colour 2 with PLOT81"
 240 MOVE 400,100
 250 GCOL0,2
 260 PLOT1,0,600
 270 PLOT81,200,-600
 280 PLOT81,0,600
 290 FOR T=1 TO 20000:NEXT T
 300 VDU 31,0,5
 310 PRINT"in colour 2 with PLOT82"
 320 MOVE 400,100
 330 PLOT2,0,600
 340 PLOT82,200,-600
 350 PLOT82,0,600
 360 FOR T=1 TO 20000:NEXT T
 370 VDU31,0,5
 380 PRINT"in colour 2 with PLOT83"
 390 MOVE 400,100
 400 PLOT3,0,600
 410 PLOT83,200,-600
 420 PLOT83,0,600
 430 END

Fig. 5.7. Plotting in inverse or background colour

Producing dotted lines

There are a whole series of PLOT commands which permit the

82 BBC Micro Graphics and Sound

drawing of dotted lines instead of the normal continuous lines. They
have numbers running from 16 to 31 and are arranged in two groups of
eight commands. The first group from 16 to 23 draw dotted linen from
the cursor position to the position specified in the PLOT command.
The second group from PLOT24 to PLOT32 also draw dotted lines but
the last dot of the line is not plotted.

Of these commends the useful ones are:

PLOT17 and PLOT21 dotted line in selected colour (see Fig. 5.8).

PLOT19 and PLOT23 dotted line in background colour.

PLOT17 and PLOTI9 use relative X,Y whilst PLOT21 and
PLOT23 use absolute X,Y values.

 100 REM Dotted and solid lines
 110 MODE2
 120 GCOL0,3
 130 X=640
 140 Y=200
 150 R=600
 160 DTH=PI/18
 170 TH=0
 180 FOR N=1 TO 9
 190 PLOT4,X,Y
 200 PLOT21,X+R*COS(TH),Y+R*SIN(TH)
 210 TH=TH+DTH
 220 PLOT4,X,Y
 230 PLOT5,X+R*COS(TH),Y+R*SIN(TH)
 240 TH=TH+DTH
 250 NEXT N
 260 END

Fig. 5.8. Drawing dotted lines using PLOT21.

To suppress the last dot of the line simply add 8 to the PLOT number.
Thus PLOT29 draws a dotted line without the last dot using absolute
X,Y coordinates.

A summary of all PLOT commands is given in Fig. 5.9.

PLOT0
PLOT8
PLOT16
PLOT24
PLOT64
PLOT86

Drawing in selected colour

PLOT1 Solid line

83More about Colour and Plot

PLOT10 Solid line without last point
PLOT17 Dotted line
PLOT25 Dotted line without last point
PLOT65 Single dot
PLOT81 Filled triangle to last 2 points

Drawing in inverse colour

PLOT2 Solid line
PLOTl0 Solid line without last point
PLOT18 Dotted line
PLDT26 Dotted line without last point
PLOT66 Single dot
PLOT82 Filled triangle to last 2 points

Drawing in background colour

PLOT3 Solid line
PLOT1l Solid line without last point
PLOT19 Dotted line
PLOT27 Dotted line without last point
PLOT67 Single dot
PLOTB3 Filled triangle to last 2 points

NOTE These commands all use relative
coordinates. For PLOT operations where
the absolute X,V coordinates are to be
used add 4 to the PLOT number (e.g.
PLOT1 is relative and PLOT5 is the
corresponding absolute coordinate
command).

Fig. 5.9. Summary of main PLOT commands.

Producing more colours

Normally we can draw in only eight basic colours if we ignore the
flashing colours of mode 2. Whilst this number of colours is quite
useful there will be times when it would be nice to have more colours
available. This could be very useful if pictures are being produced for
say an adventure type game. In fact it is possible to produce many
more colours by simply mixing colours from the available set. A
simple approach to this would be to fill an area with colour by drawing
a series of adjacent lines and having alternate lines in different colours.
bet us try this with a simple figure such as a square. Instead of using
the normal triangle colour till we shall actually fill the square with

84 BBC Micro Graphics and Sound

lines by drawing them one above the other from the bottom of top.
The program listed in Fig. 5.10 perform this task end uses two colours
with which it draws alternate lines as it fills the square. After the
square has been filled it is erased and then redrawn with a different
pair of colours. The program sequences through all of the possible pair
combinations of the eight basic colours to give 64 colours. Some of
the colours produced are duplicates where the colours of the adjacent
lines are simply interchanged and the resultant colour on the screen is
the same for both combinations in such cases. This technique relies for
its effect upon the fact that the eye tends to merge the colours of the
adjacent lines to produce a new colour. On a normal television
receiver there will probably be moving coloured patterns with some
combinations of colour. This is due to the way the colour signals are
processed in a television receiver and should not occur on a colour
monitor.

 100 REM Colour mixing using lines
 110 MODE2
 120 CX=440:CY=320
 130 W=400
 140 GCOL0,7
 150 MOVE CX-8,CY-4
 160 PLOT1,W+16,0
 170 PLOT1,0,W+8
 180 PLOT1,-W-16,0
 190 PLOT1,0,-W-8
 200 FOR C=0 TO 7
 210 FOR D=0 TO 7
 220 FOR N=0 TO W STEP 8
 230 MOVE CX,CY+N
 240 GCOL 0,C
 250 PLOT1,W,0
 260 PLOT 0,0,4
 270 GCOL0,D
 280 PLOT1,-W,0
 290 NEXT N
 300 NEXT D
 310 NEXT C
 320 END

Fig. 5.10. Colour mixing using alternate lines.

Dotted lines may also be used to provide colour mixing. In this case
a dotted line is drawn in one colour then a second dotted line is drawn
over it but is shifted by one dot position along the X axis. The second
line is drawn using GCOL1 to select the second colour. This
effectively places dots of the second colour between the dots of the

85More about Colour and Plot

first colour. The result is similar to drawing solid adjacent lines which
run vertically and a regular line pattern can still be seen. To overcome
the regular line pattern the adjacent dotted lines may be staggered by
one dot position relative to one another so that the dots form a
checkerboard pattern. This tends to give very good results even in
mode 2 where the resolution is relatively low. In the program shown in
Fig. 5.11 three colours are combined to produce about 500 different
colour combinations. Here one colour appears on alternate dots of all
lines whilst the others fill in the blank spaces on alternate dotted lines.

 100 REM Colour mixing using dots
 110 MODE2
 120 CX=440:CY=320
 130 W=400
 140 FOR C=0 TO 7
 150 FOR D=7 TO 0 STEP -1
 160 FOR E=1 TO 7
 170 FOR N=0 TO W STEP 8
 180 MOVE CX,CY+N
 190 GCOL 0,E
 200 PLOT17,W,0
 210 PLOT 0,8,4
 220 GCOL1,E
 230 PLOT17,-W,0
 240 PLOT0,0,-4
 250 GCOL1,D
 260 PLOT17,W,0
 270 PLOT0,-8,4
 280 GCOL1,C
 290 PLOT17,-W,0
 300 NEXT N
 310 CLG
 320 NEXT E
 330 NEXT D
 340 NEXT C
 350 END

Fig. 5.11. Listing to show production of more colours by mixing dots.

Elastic band drawing program

By using GCOL3 we can produce a rather better sketching program
than the one given in Chapter l. You will probably have found with
that one that even drawing a straight line is not so easy because of
course we don‹t have a convenient ruler to run the pen along as we
would if we were drawing on paper. In the program listed in Fig. 5.12
we start off with a short line drawn near the centre of the screen. The

86 BBC Micro Graphics and Sound

end of the line at point X1,Y1 is fixed but the other end of the line
(X2,Y2) can be moved around the screen by using the arrow keys.
When the end of the line is moved the original line is erased and a new
line drawn to the new position of X2,Y2. As the point X2,Y2 moves
around the screen the line stretches and contracts in much the same
way as if it were a piece of elastic.

 100 REM Elastic band sketching program.
 110 *FX4,1
 120 MODE1
 130 CLG
 140 X1=0:Y1=0
 150 X2=X1+5:Y2=Y1+5
 160 GCOL3,3
 170 DRAW X2,Y2
 180 A=GET
 190 GCOL3,3
 200 IF A=81 THEN 250
 210 IF A=68 THEN GCOL0,3
 220 IF A=69 THEN GCOL0,0
 230 MOVE X1,Y1
 240 DRAW X2,Y2
 250 IF A=137 THEN X2=X2+5
 260 IF A=136 THEN X2=X2-5
 270 IF A=139 THEN Y2=Y2+5
 280 IF A=138 THEN Y2=Y2-5
 290 IF A=68 OR A=69 OR A=77 THEN X1=X2:
 Y1=Y2:X2=X2+5
 300 GCOL3,3
 310 MOVE X1,Y1
 320 DRAW X2,Y2
 330 GOTO 180
 340 *FX4,0
 350 END

Fig. 5.12. A drawing program using the elastic band technique.

When the line is placed where we want it then it can be fixed in
place by hitting the D (draw) key to write the line permanently on the
screen. Now the original free end of the line becomes the fixed point
about which a new line can be drawn.

Sometimes of course we may just want to move to 9. new point on
the screen without drawing the line. In this case the M (move) key is
pressed to erase the line and place the fixed point at position X2,Y2
ready to draw a new line. With this scheme we have effectively
produced a ruler for drawing straight lines.

The key to this program is the use of GCOL3. An initial line is
drawn using GCOL3,3. One end is effectively fixed whilst the other

87More about Colour and Plot

end may be moved by using the arrow keys. Each time a key is
pressed the line is redrawn using GCOL3,3, which effectively erases
it. After the required function for the key has been carried out a new
line is drawn.

The arrow keys merely cause the free end of the line to move
tround. When the D key is pressed the current line is drawn in
permanently. The E key causes the line to be erased permanently and
he M key allows the drawing point to be moved to a new position. In
fact the D, E and M keys all cause the fixed point of the elastic line to
move to the old free point and we now start drawing a new line from
where the last one finished.

The difference between M and E is that M does not affect any other
lines already on the screen, whereas E erases all points along he elastic
line. This is useful for erasing lines that have already been drawn.

Line 110 disables the arrow keys and allows them to return an
XSCII code instead of moving the text cursor. Lines 1410-1710 set up
graphics coordinate values and draw an initial line on the screen tear
the centre. Line 180 reads the ASCII code number of any key hat is
pressed. Line 2¢¢ detects a Q key and causes the program to quit.
Lines 120 and 130 detect the D and E keys respectively and set he
drawing colour to either white (D) or black (E). Lines 140 and 150
redraw the line. If neither D nor E has been pressed the line already
drawn is erased because the GCOL3,3 in line 100 is still effective.

Lines 250-280 detect the cursor arrow keys and adjust the values of
X2 and Y2 to move the free end of the line to a new position. Line 290
detects the D, E or M keys and if any of these were pressed then
X1,Y1 are updated to be equal to X2,Y2. This moves the fixed end of
he line to the new position. X2 is also increased to produce a new hort
line ready to be moved about. Lines 300, 310 and 320 draw the new
line and then the program loops back to wait for another key nput.
Finally, before exiting the program restores the operation of he arrow
keys by using *FX4,0.

88 BBC Micro Graphics and Sound

Chapter Six
The Teletext Mode

Mode 7 on the BBC Micro is rather different in operation to the other
display modes, particularly where colour and graphics are concerned.
It is known as the teletext mode and is designed to be compatible with
the teletext services such as Ceefax and Oracle which are transmitted
along with the television programmes from the BBC and ITV. It is also
compatible with viewdata services such us British Telecom‹s Prestel,
where data is transmitted via the public telephone network.

In the teletext mode you will notice that there are some differences
in the text character set. Some of the bracket symbols have changed
and there are now some fractions which can be displayed. The reason
for this is that in mode 7 the BBC Micro uses a different system for
generating the teletext type display on the screen. Teletext is basically
a text display mode although as we shall see, relatively low resolution
graphics can be produced by using the mosaic graphics technique.

When the BBC Micro is working in modes 0 to 6 it actually stores
in its display memory the dot pattern for each character being
displayed. These dot patterns are actually held as a table in another
part of memory but each time you use the machine to print some text
on the screen it will call up the appropriate dot pattern and write it into
the screen memory.

Now this approach to displaying text does allow very flexible
mixing of text and graphics on the same screen, but the price paid for
this is that a large part of the available computer memory is tied up for
the display.

A very important difference when you select mode 7 is that the
computer now uses a dedicated character generator chip. In fact it is
the same chip that is used in many television receivers that have a
teletext capability. The character generator will in fact produce the dot
pattern as the television screen is scanned and needs only a single 8-bit
data word for each symbol to tell it which pattern of dots to produce.

89

Now instead of having to store all the dot patterns we need only have a
single memory word for each displayed symbol. To produce the
display on the screen the symbol code for each successive text symbol
is read from the display memory and applied to the special teletext
character generator chip. This chip then selects the required dot pattern
and produces the appropriate video signal to produce the dot pattern
on the screen. Typical mode 7 mosaic graphics symbols are shown in
Fig. 6.1, and the bit allocation and value for mosaic graphics symbols
in Fig. 6.2.

NORMAL SEPARATED

Fig. 6.1. Typical mosaic graphics symbols in mode 7.

The screen format for teletext is 24 rows of 40 characters per row
and since only one byte of data is needed to define a character the total
memory requirement for the display is 960 bytes. In fact 1000 are
actually allocated because the BBC Micro does allow 25 rows of text
in this mode. This is a great saving, however, compared with the 10K
or 20K of memory required for the other modes. There are no high
resolution graphics facilities in the teletext mode since it is basically a
text display mode. We shall see in a moment, however, that graphics
displays can be produced, albeit in relatively low resolution.

Bit 1
1

Bit 7
64

Bit 5
16

Bit 4
8

Bit 3
4

Bit 2
2

Fig. 6.2. Bit allocation and value for mosaic graphic symbols in mode 7.

90 BBC Micro Graphics and Sound

Colour selection

As with the other display modes, when mode 7 is first selected the
display will automatically be set up for white text on a black
background. Unlike the other modes the teletext mode will not
respond to commands such as COLOUR and GCOL. We can in fact
produce colour displays in this mode but the technique for setting up
colours is somewhat different.

Whereas the other display modes actually store a pattern of bits in
the display memory to define which colour is to be produced, the
teletext mode merely stores symbol codes so a different technique is
used to set up colour. At the start of each row of text the colour is
automatically set at white. If we want to change the text colour a
control code is inserted into the row in one of the text symbol
positions. This control code tells the display chip that the colour of the
following text is to be changed. The display system is so designed that
these extra control characters are displayed as blank spaces on the
screen. One disadvantage of this control code approach is that each
time the text colour is changed in a row one character space is lost,
which reduces the amount of text that can be displayed across the row.
Usually this lost space will be at the left-hand edge of the display.

The control codes for text colours are:

128 Black text
129 Red text
130 Green text
131 Yellow text
132 Blue text
133 Magenta text
134 Cyan text
135 White text

The control codes are placed into the display by using a PRINT
statement in the same way as for printing text, but because they are
special codes the CHRS form has to be used. Let us see how this
works by entering some direct commands.

First select the teletext mode by typing

 MODE 7

If the cursor is off the top of the screen then type

*TV 254
MODE 7

91The Teletext Mode

which should move the cursor down on to the screen. Next type in

 PRINT CHR$(129)="RED TEXT"
 PRINT CHR$(130);"GREEN TEXT"

At this point the two messages should have appeared with the first in
red and the second in green.

If we want to change the colour in a single line of text a new colour
control code is inserted before the second segment of text, as follows:

PRINT CHR$(129);"RED TEXT";CHR$(134)="CYAN TEXT"

This will produce red and cyan coloured text on the same row. The
text colour will apply only to text following the control code in one
row. At the start of the next display row the text colour is
automatically reset to its normal white colour. This means that if every
row is to have coloured text then each row must start with a colour
control code.

Now typing in all those CHR$ commands is rather tedious.
Fortunately on the BBC Micro there is another way to send text and
control codes to the screen. This uses the VDU command followed by
the numbers representing the codes. So we could equally have used

VDU 129:PRINT"RED TEXT";:VDU 134:PRINT "CYAN TEXT"

The TAB command works in the same way for the teletext mode as it
does in other modes so that we can write text to any part of the screen
by using TAB(X,Y). The thing to remember here is that if you want
coloured text then you must allow a space before the text symbol for
the colour control code. Try running the program listed in Fig. 6.3.
This will write 100 random text symbols in different colours all over
the screen by using random X,Y values in the TAB X,Y) term of the
PRINT statement. The maximum value forX is 39 and for Y it is 24.

Setting background colour

In the other modes we were able to set up the background colour by
using either COLOUR or GCOL followed by clearing the screen. The
background colour for the teletext mode is normally set at black is in
the other modes. We can in fact set up the teletext background colour
to any of the available eight colours, but the process is rather more
complicated than for the other modes.

92 BBC Micro Graphics and Sound

 100 REM Random coloured letters
 110 MODE 7
 120 FOR N=1 TO 100
 130 X=RND(39)-1
 140 Y=RND(39)-1
 150 C=128+RND(7)
 160 TS=32+RND(50)
 170 VDU31,X,Y
 180 VDU C,TS
 190 NEXT N
 200 END

Fig. 6.3. Program to produce random coloured letters in mode 7.

When teletext was first devised the background colour could only
be black. When it was decided that different coloured backgrounds
would be a nice idea the problem was that most of the 32 available
control codes had already been allocated for other purposes and only
two could be made available for background colour control. This
problem was overcome by using one control code to set the
background colour to the current display colour. The second control
code was used to switch back to the normal black background. As with
other control codes the background will only be affected during one
row of the display. If the whole screen background is to be changed
then control codes are needed at the start of every row.

The two control codes to deal with background colour are

157 SET NEW BACKGROUND
156 BLACK BACKGROUND

At the start of every display row the background is automatically set to
black and the text to white. If the first control code at the start of a row
is 157 then the background will change to white. If a different colour
background is required then the text must first be set to the required
background colour and then the 157 code is used to set the background
colour. Try typing in the following, after selecting mode

VDU l57:PRINT"WHITE TEXT"

You will notice that the whole line, including the space containing the
control code, now has a white background but what has happened to
the text message?

When we insert a new background control code the background will
change to the current text or graphics display colour. Any following

93The Teletext Mode

text will be in the same colour so it will be invisible. To deal with this
we must have a colour change control code after the background set
control to make the text a different colour. Try the following:

 VDU 157,129:PRINT"RED ON WHITE"

This should produce red text on a white background. If we had wanted
a yellow background then the text colour would first have to be set at
yellow as in the following command:

 VDU 131,157,129:PR1NT"RED ON YELLOW"

which should produce red text on a yellow background. As you can
see, this process has already used up three of our available forty
characters in the text row. This may seem rather complicated but is
unfortunately a consequence of the limited number of control codes
available in the teletext mode.

The black background code merely returns the background to its
normal black colour. This can be seen in the following command:

 VDU 131,157,l29:PRINT"RED":VDU 156:PRlNT

Here the background switches from yellow to black after the text
message.

A program illustrating the use of background colour in mode 7 is
given in Fig. 6.4.

 100 REM Starry night
 110 MODE 7
 120 FOR N=1 TO 24
 130 PRINT CHR$(132)+CHR$(157)
 140 NEXT N
 150 FOR N=1 TO 20
 160 X=RND(36)+1
 170 Y=RND(20)-1
 180 VDU31,X,Y
 190 PRINT CHR$(135);"*";
 200 NEXT N
 210 VDU31,0,24
 220 PRINT"Starry night ";
 230 END

Fig. 6.4. Use of background colour in mode 7.

94 BBC Micro Graphics and Sound

Graphics in mode 7

Although the teletext mode is primarily a text display mode it is
possible to produce graphics pictures. In the teletext mode graphics
displays are produced by using the mosaic graphics technique. An
extra 64-character symbol set is provided for this purpose. These extra
symbols are produced by dividing up the symbol space into six smaller
blocks arranged as two columns of three blocks each, as shown in Fig.
6.1.

With 40 characters per row and two blocks across each graphics
symbol this gives 80 blocks across the screen. The 25 text rows with
three blocks in each symbol gives 75 blocks down the screen. Since a
control code is needed to select graphics at the start of a text row the
maximum number of graphics elements across the screen is reduced to
78, giving an overall graphics resolution of 78 × 75. This is much less
than we have in the high resolution modes but nevertheless quite
respectable pictures can he produced by using these rather coarse
graphics displays. This can be seen by looking at some of the graphics
displays produced on the broadcast teletext services. Although there
are 25 display rows it is generally advisable to use only 24. If you use
the 25th row and end with a return the screen will scroll so that all of
the text moves up one line to leave an empty line free at the bottom for
new input. If the display scrolls you will lose the top line of the
original picture. Broadcast teletext uses only 24 lines and it is as well
to stick to that format.

Selecting the graphics mode and the graphics display colour is
achieved in much the same way as we selected a text colour. A control
code is inserted into the display row to switch from text to graphics.
This technique is used because there are not enough spare character
codes to cope with the set of graphics symbols. In fact the graphics
symbols share the same character codes as the text symbols. When the
graphics mode is selected the following symbol codes select mosaic
block patterns instead of text symbols.

There are in fact seven different control codes to select graphics.
Each of these codes selects not only the graphics symbol set but also
the display colour so they operate in a similar fashion to the text
colour control codes. The codes for selecting graphics have numerical
values from 145 to 151 and have the following functions:

145 Red graphics
146 Green graphics

95The Teletext Mode

147 Yellow graphics
148 Blue graphics
149 Magenta graphics
150 Cyan graphics
151 White graphics

The change from graphics back to text is achieved by simply inserting
a text colour control code which switches the display mode back to
text. Mixing graphics and text along the same line is quite
straightforward but for each change one symbol space is lost because
it is occupied by the control code.

Let us see how this works. Try typing in the following command:

 VDU 147:PRINT "Graphics";CHR$(134);›TEXT"

You should have a yellow G, then a pattern of yellow blocks followed
by cyan text. The word ‘graphics’ has in fact been displayed as the
equivalent mosaic graphics symbols.

The mosaic symbols

Each of the six blocks that make up a graphics symbol is allocated one
data bit in the 8-bit character code. These are bits 1-5 and bit 7. Bit 6
is not used in this case and there is a very good reason for this. In the
example we tried a moment ago you will notice that although the
lower case letters of the word ‘Graphics’ were replaced by graphics
patterns the capital G appeared normally. This is achieved by using bit
6 to allow capital letter text to be displayed amongst graphics symbols
without the need to switch back to the text mode. This feature can be
very useful at times, but it does make the allocation of bits to the
mosaic blocks rather illogical.

Since each block corresponds to one bit then each has a particular
numeric value when it is lit and 0 when it is unlit. We can therefore
arrive at the actual graphics code for any mosaic symbol merely by
adding together the values of those blocks that are lit in the pattern we
want to display. This can be useful if you want to use the computer to
calculate which code numbers it requires to produce a particular
mosaic pattern. For most purposes it is easier to look up a table which
shows the pattern of the symbol and the corresponding code number.
There is a very useful table of this kind in the User’s Manual for the
BBC Micro.

96 BBC Micro Graphics and Sound

Setting up graphics symbol data

One disadvantage of using the CHR$ type of notation for feeding in
the graphics character codes is that it involves a lot of typing. Also,
since the lines are longer the BASIC interpreter takes more time to
execute the line. This means it will take longer to draw the picture on
the screen.

There are two alternative approaches to this situation. One is to
convert the graphics into a string first by using an instruction of the
form

 100 A$=CHR$()+CHR$()+CHR$()+ etc.

and then in the PRINT line we simply have

 110 PRINT AS

or alternatively we can use the VDU command. If we use VDU
followed by a string of numbers this is equivalent to PRINT followed
by a series of CHR$ terms. So now our graphics line might become:

 100 VDU 147,190,210 etc.

The only disadvantage of this method compared with creating a string
A$ is that the string of graphics data is not retained in memory. Thus
the A$ string approach is best if the same pattern of graphics codes is
likely to be required on several lines. When there is a lot of data the
best approach is to set up a DATA list and then use a READ statement
in a loop to read the data and set up the character string as follows:

 100 A$=""
 110 FOR N = 1 TD NDATA
 120 READ A
 130 A$ = A$ + CHR$(A)
 140 NEXT N
 150 PRINT AS

Note here that a numeric variable A is used for reading the data and
this is converted to a string by CHR$ and added to the string A$. This
is probably the best approach for reading in the data to produce a full
screen graphics picture in this mode. Note that you could also read the
data from a cassette file if desired.

97The Teletext Mode

A different kind of graphics

There are in fact two versions of the graphics symbol set. The normal
set of symbols has the six blocks inside the character space touching
one another and is called the contiguous graphics symbol set. The
alternative graphics symbol set also has six mosaic blocks but here a
small border is left around each graphics block element. This is called
the separated graphics set. Two control codes are used to select the
particular type of graphics symbol to be displayed and these are:

 153 Contiguous graphics symbols
 154 Separated graphics symbols

At the start of a display row the contiguous symbols are set up so that
if graphics are selected this is the type that would be displayed. To see
the difference between the two sets try the following little program:

 100 MODE 7
 110 VDU31,0,11
 120 VDU 150
 130 FOR N=160 TO 180
 140 VDU N
 150 NEXT N
 160 PRINT:PRINT
 170 VDU 150,154
 180 FOR N=160 TO 180
 190 VDU N
 200 NEXT N
 210 PRINT
 220 END

These separated graphics symbols can be useful in building up a
picture because they have a different texture from the normal graphics
symbols.

Producing flashing symbols

In mode 2 we can readily produce flashing symbols by choosing a
colour in the range 8-15 and in other modes we can use the VDU19
command to set up a flashing text colour. Teletext has no COLOUR or
VDU commands for this purpose but it is possible to have flashing
text or graphics symbols.

98 BBC Micro Graphics and Sound

At the start of each row of the display the text is always displayed
normally. To make a section of text or graphics in a row start flashing
on and off we simply insert a control code in the symbol space at the
point where the symbols are to be flashing. If we just want one word
in a row to flash then after the word another control code is inserted
which returns the following symbols in the row to the steady display
state again. The control codes for this are

 136 for flashing text or graphics
 137 for steady text or graphics

Note that in teletext mode the symbols simply flash on and off,
whereas in mode 2 the flashing is between the selected colour and its
complementary colour. The flashing symbols are useful for drawing
attention to a particular item but should not be overdone since a
flashing display tends to be rather uncomfortable to watch.

Double height text and graphics

For some types of display it is useful to be able to have some text in
larger letters than the rest of the display. The teletext mode allows the
display of double height text or graphics symbols as well as the
normal size symbols. At the start of each row single height is always
set up. As with most options in the teletext mode there are two control
codes which allow selection of either double or single height text or
graphics symbols. These are

 140 Normal height symbols
 141 Double height symbols

An example of this can be seen by typing in:

100 VDU 130,14l:PRINT"DUUBLE";:VDU140:
 PRINT"SINGLE"
110 VDU 130,141:PRINT"DOUBLE";:VDU140:
 PRINT"SINGLE"

Note here that you have to repeat the data on two successive lines of
the display to get the correct results.

It is possible to mix double and single height in a line. To return to
single height after a double height word the single height command
must be inserted.

A point to note is that if single height is used with double height
text the following row cannot be used for single height text.

99The Teletext Mode

Even bigger text

Apart from double height text it is often desirable to have even larger
symbols for the page title. Many examples of this will be seen on the
broadcast teletext services where almost every page uses a banner title
of very large symbols. These large letters are simply built up from the
graphics symbol blocks. An example of this is shown in the program
listing of Fig. 6.5.

 100 REM BBC Logo in Mode 7
 110 MODE 7
 120 A$="":B$="":C$=""
 130 FOR N=1 TO 15
 140 READ A,B,C
 150 A$=A$+CHR$(A)
 160 B$=B$+CHR$(B)
 170 C$=C$+CHR$(C)
 180 NEXT N
 190 VDU31,0,11:VDU 147,157:PRINT
 200 PRINT A$
 210 PRINT B$
 220 PRINT C$
 230 VDU 147,157:PRINT
 240 DATA 147,147,147,157,157,157
 250 DATA 148,148,148,255,255,255
 260 DATA 175,172,252,253,247,191
 270 DATA 160,160,160,255,255,255
 280 DATA 175,172,252,253,247,191
 290 DATA 160,160,160,232,234,170
 300 DATA 191,181,253,239,160,254
 310 DATA 180,160,165
 320 END

Fig. 6.5. Program to produce banner size text in mode 7.

Graphics hold

Because the colour and other control codes are embedded in the
displayed text and graphics one problem does occur when we want to
make a change in the colour of a graphics area. A control code must be
inserted to change the colour and this will normally be displayed as a
space which will leave an unsightly gap in the graphics display. This
can be overcome by using a feature known as graphics hold.

When graphics hold is selected then if a control code occurs in the

100 BBC Micro Graphics and Sound

middle of some graphics symbols the space which it occupies is filled
by repeating the last graphics symbol to be printed before the control
code. The control code for graphics hold is normally inserted close to
the start of a text row.

The two control codes used to select and disable graphics hold are

 158 Hold graphics
 159 Release graphics

If the hold graphics mode is selected by using CHRS (158) early in the
row then when graphics are selected and a colour change occurs the
space normally occupied by the control code will be filled by
repeating the last used graphics code in that row. This will in fact be
displayed in the old colour. The effect of graphics hold is shown by the
listing of Fig. 6.6.

 100 REM Graphics hold demonstration
 110 MODE7
 120 A$=""
 130 FOR K=1 TO 4
 140 A$=A$+CHR$(255)
 150 NEXT K
 160 FOR N=1 TO 23
 170 PRINT TAB(0,N-1) CHR$(158)
 180 NEXT N
 190 FOR N=1 TO 23
 200 VDU31,1,N-1
 210 FOR K=1 TO 7
 220 C=K+144
 230 PRINT CHR$(C);A$;
 240 NEXT K
 250 NEXT N
 260 VDU31,5,23
 270 PRINT"WITH GRAPHICS HOLD"
 280 FOR T=1 TO 10000:NEXT T
 290 CLS
 300 FOR N=1 TO 23
 310 VDU31,1,N-1
 320 FOR K=1 TO 7
 330 C=K+144
 340 PRINT CHR$(C);A$;
 350 NEXT K
 360 NEXT N
 370 VDU31,5,23
 380 PRINT"NORMAL GRAPHICS"
 390 FOR T=1 TO 10000:NEXT T
 400 GOTO 160

Fig. 6.6. Demonstration of the effect of graphics hold

101The Teletext Mode

In the hold graphics mode, text can also be inserted into the
graphics area without losing spaces for the control codes. Some care is
needed in using this feature, however, and generally it is arranged that
the graphics code which is being repeated is a solid block.

Drawing on the teletext screen

Although the teletext mode can produce graphics it does not have the
equivalent of DRAW, PLOT and MOVE commands and is not
particularly suited to drawing graphs or charts in the same way as the
other modes are. It is possible to calculate where each graphics block
element is on the screen and by choosing the appropriate symbol for
the text position it is possible to light individual points on the screen
and plot a graph. This is however a rather complex business and there
seems little point in the exercise when perfectly good graph and chart
drawing facilities are available in the other modes.

 100 REM Random coloured blocks
 110 MODE 7
 120 FOR N=1 TO 24
 130 PRINT CHR$(158)
 140 NEXT N
 150 FOR N=1 TO 5000
 160 X=RND(37)
 170 Y=RND(24)-1
 180 VDU31,X,Y
 190 C=RND(7)+144
 200 PRINT CHR$(C);CHR$(255);
 210 NEXT N
 220 END

Fig. 6.7. Program to produce random coloured blocks in mode 7.

Teletext is quite useful for providing pictures of the locations in an
adventure type game since the pictures take up little memory space.
Here the pictures can be constructed by marking off a sheet of graph
paper with the screen pattern of symbol spaces and individual graphics
block elements are then filled in to produce the picture. This can then
be translated into a data list and read in as required using a READ
loop and building strings of characters for printing on successive lines
of the display to produce the picture (see Fig. 6.7).

102 BBC Micro Graphics and Sound

 100 REM Random coloured dots
 110 MODE 7
 120 FOR N=1 TO 24
 130 PRINT CHR$(158);CHR$(154)
 140 NEXT N
 150 FOR N=1 TO 5000
 160 X=RND(36)+1
 170 Y=RND(24)-1
 180 VDU31,X,Y
 190 C=RND(7)+144
 200 S=RND(96)+159
 210 S=S OR 32
 220 PRINT CHR$(C);CHR$(S);
 230 NEXT N
 240 END

Fig. 6.8. Program to produce coloured patterns using segmented symbols
in mode 7.

The possibilities for creating quite attractive pictures in the teletext
mode are great and a look through the broadcast teletext magazines
will give some idea of what can be achieved. Fig. 6.8 provides a
further example.

103The Teletext Mode

Chapter Seven
Making Things Move

For many applications and in particular for games we will want to
produce moving objects on the display To achieve movement or
animatlon the object is simply displayed 1n a slightly different
position every 1/10 second or so. Because the eye cannot follow fast
changes the image appears to move smoothly across the screen This is
the basic principle used in producing cartoon films.

In Chapter 5 where we had an elastic line which could be moved
around the screen we had effectively used the basic technique of
animation on a computer graphics dlsplay In games type programs
various objects such as spaceships, rockets or alien creatures may be
moved around the screen by successively erasing and then redrawing
the object in a new position further along the line of travel. This was
demonstrated in Chapter 5 in the example of the spaceship pass1ng
behind the planet. Sometimes however the drawing is changed
according to the direction in which the object is moving. For instance
if we have an aeroplane on the screen 1ts image will need to be
redrawn lf the plane changes direction so that the nose is pointed in the
direction of motion.

For more relistic results the object on the screen may need to
change shape as it moves. An example of this would be a man walking
across the screen. If the lmage of the man were left constant he would
appear to glide across the screen. To give the impression of walking or
running the position of the legs 1n the drawing of the man must be
changed as the image moves from one position to another on the
screen. For a bird flying on the screen the wings will need to flap and
for realism this is not just a simple up and down motion but the whole
shape of the wing changes as it makes a beat in the air.

104 BBC Micro Graphics and Sound

A simple moving ball

For many games type programs we will want to move a simple object
such as a ball around the screen and th1s is conveniently done by
using a text symbol for the ball. We could perhaps use an O but in the
following examples we shall use an asterisk (*).

We saw in Chapter 1 that by using the TAB(X Y) function in a
PRINT statement we could place a symbol m any desired character
space on the screen To produce animation the symbol is moved
successively from one character space to the next either horizontally,
vert1cally or diagonally at high speed.

Horizontal motion is quite straightforward s1nce all we have to do
is add one to the X value to move right or subtract one from X to
move left The symbol may then be printed again. A point to note here
is that the actual cursor will have moved one position to the right after
printing the symbol. As the object moves around the screen we shall
have to keep track of its position. Th1s can be done by storing the
current X,Y position of the moving object. These stored position
values may be used in conjunction with TAB and PRINT to place the
object in its new positron and erase the last image. For vertical motion
we add one to Y to move down and subtract one from Y to move up.

X,Y-1
X+1,Y-1

X+1,Y

X+1,Y+1
X,Y+1

X-1,Y+1

X-1,Y

X-1,Y-1

X,Y

X,Y+1
X+1,Y+1

X+1,Y

X+1,Y-1
X,Y-1

X-1,Y-1

X-1,Y

X-1,Y+1

X,Y

Fig. 7.1. (a) X,Y coordinate changes for motion in various directions using
TAB(X,Y) (b) X,Y coordinate changes for motion when using PLOT, MOVE
or DRAW.

105Making Things Move

Diagonal motion is a little more difficult. Here we have to alter both
X and Y values using a combination of either add or subtract one.
Thus to go up to the right we need X+1,Y-1. Up to the left is X-1,Y-1
and for the downward motions we will need Y+1 with either X-1 for
moving left or X+1 for moving right. Fig. 7.1 shows the arrangement
for all eight directions. In these horizontal, vertical or diagonal moves
the values of X and/or Y are altered one at a time

It would also be possible to produce some intermediate directions
by altering one value by two and the other by one, for example X+2,Y-
1 give a direction just above horizontal to the right. A problem in using
this type of motion is that the distance travelled varies according to
direction

Having moved the symbol we need to blank out the previous
position and this is easily done by printing a space at position X,Y.
Finally, we need to update the current position X,Y to point to the new
position of the symbol ready for the next animation step. So the
complete sequence for moving our * one position diagonally upwards
to the right is

 100 PRINT TAB(X+1,Y-1)"*";
 110 PRINT TAB(X,Y)" ";
 120 X=X+1:Y=Y-1

A more convenient scheme is to make the change in X a new
variable DX and the change in Y becomes DY. Now these can be set to
-1, or +1 as required and the printing operation can become a
procedure as follows:

 500 DEFPROCMOVE
 510 PRINT TAB(X+DX,Y+DY);
 520 PRINT TAB(X,Y) " ";
 530 X=X+DX:Y=Y+DY
 540 ENDPROC

Bouncing off the walls

If you tried moving the ball with the simple program above and started
from the centre of the screen all would be well until the ball reaches
the edge of the screen. Here the message ‘Illegal quantity’ will occur
as the program crashes. The reason is that X or Y has going beyond its
permissible limit value. To avoid this state of affairs we need to

106 BBC Micro Graphics and Sound

arrange that when the ball reaches an edge of the screen it is reflected
back towards the middle as if it had bounced off a wall.

This is quite easy to do by comparing X+DX and Y+DY, the new
position for the ball, with the limits for X and Y. Suppose we are using
mode 1 where X is 0 to 39 and Y is 0 to 31. First we check for X+DX
= 0 and then for X+DX = 39 and if either of these is true we change
the sign of DX. Similar checks are made on Y-l-DY using the values 0
and 31 and again if either is true the sign of DY is changed.

The test routine becomes:

 400 IF X+DX <> 0 AND IF X+DX <> 39
 THEN 420

 410 DX=-DX
 420 IF Y+DY <> 0 AND IF Y+DY <> 31
 THEN 440
 430 DY=-DY

Now the * will turn back without actually entering the final
character position at the edge of the screen. This is useful if you have
drawn a border around the play area since it prevents the border being
overwritten by * symbols and then being erased. Normally the text
cursor will move to the position after the printed symbol and erase
anything that is already there but this is easily overcome by
suppressing the text cursor at the stan of the program by using

 10 VDU23,1,0;0;0;0;

When the * is travelling horizontally or vertically it is reflected
straight back off the boundary, but when motion is diagonal it comes
back at an angle to its original movement. Thus if the ball is travelling
up to the right and hits the right wall it will now travel left but
continue to move upward. At a corner the * bounces off two walls and
comes back on a course parallel to its original one.

Reflection off a bat

In games such as Breakout the ball bounces off a movable bat and
depending upon where it hits the bat will travel straight or diagonally
after reflection. Here we need to keep track of the bat position by
using say BX and BY. In our tests for reflection offs wall routine we
now include a check to see if X+DX,Y+DY is equal to BX,BY. If they

107Making Things Move

are equal the reversal of direction is arranged by reversing DY. We
might check for BX+1,BY and B-1,BY, then produce diagonal
motions by setting up the required values for DX and DY. In a game
such as Breakout the bottom wall, containing the bat, may be checked
for coincidences with the ball and if there is a match the ball is lost
and the game ends or a new ball is used up. Here again the check is
simply made for coincidence between Y+DY and 31 and if this is true
a further check is made against BY to see if the bat is present.

Collisions with other objects

In many games type programs, such as Space Invaders, the object is to
fire missiles or drop bombs on other objects to destroy them. This
means that we must detect when the missile reaches the same position
as a target object. One technique for this is to maintain a table of the
X,Y positions of the objects on the screen. Before moving the missile
to its new position a check is made by comparing this position with
that of each of the other objects in turn. If a match occurs, the program
will branch to a subroutine or procedure which produces the required
explosion effect and erases both the missile and the target object.
Some housekeeping operations will now be required to delete the
target from the list and perhaps shuffle the list to make the next search
easier by moving up the X,Y values for other targets in the table. The
process of keeping track of targets and missiles using this technique
can become complicated.

A technique often used on computers for target-missile coincidence
checks is to read out the character code for the symbol occupying the
space where the missile is about to go. This can often be done by
simply peeking the video memory, but is not practicable with the BBC
Micro in modes 0 to 6 because of the way in which symbol data is
stored in the memory. The BBC Micro actually stores the pixel pattern
for the symbol rather than an ASCII code. It might be possible to
compare the pixel pattern with the known pattern for the object being
checked, but this is difficult. By using the machine operating system it
is possible to check which particular symbol is present at the position
of the text cursor, but again this seems to be a relatively complex
process.

108 BBC Micro Graphics and Sound

Making new symbols

In most cues we shall want something better than one of the available
set of text symbols for our moving object. We might for instance want
to have one of the familiar invaders or ‘puckman’ type figures. In the
BBC Micro there is a facility for creating new text symbols to your
own custom requirements. We can make use of these new symbols to
make up the moving object.

Suppose we want to have a small moving man. The man can be
created as a new text symbol which will have a code in the range 224-
255 whereas the normal text codes fall in the range 32-127. To
produce the image on the screen we simply use the command

 PRINT CHRS(N)

where N is the code number we have allocated to the new symbol.
How do we create one of these new symbols? This may seem a

relatively complicated business so let us go through it step by step.
The symbol space is effectively divided up into eight squares

horizontally, and there are eight rows of dots in the symbol. The first
step is to draw up the image you want by filling in the required dots in
an 8 × 8 grid as shown in Fig. 7.2.

8

28

62

127

127

42

8

8

128 64 32 16 8 4 2 1

VDU23,240,8,28,62,127,127,42,8,8

Bit value for dots

Fig. 7.2. Layout of dot pattern for a special symbol and the bit and word
values related to the pattern.

In the BBC Micro the symbol dot pattern for these custom symbols
is stored in memory as a set of eight data words. Each word represents
one row of dots in the character pattern. In each word those dots in the
row which are to be lit are set at 1 and the dots that are dark are
represented by bits set at 0. Each data bit in the word has a binary
numeric value. This starts with the bit at the right-hand end having a

109Making Things Move

value of 1. The next bit to the left has 1 value of 2 and the rest double
in value for each bit, so that the left-hand bit is equivalent to 128.

To calculate the numerical value for each of the data words
representing the symbol we simply have to add together the values of
all of the dots in the row that are lit. This has to be done for each row
of dots starting at the top row and working down. At the end of this
stage we should have eight numbers. This is shown in Fig. 7.2, where
the dot pattern for the symbol and the numeric values of the data
words are shown. Next the data pattern for the new symbol must be set
up in the computer memory.

To set up the pattern in memory we use the VDU command

 VDU 23

This has the form

 VDU 23, code,n1,n2,n3,n4,n5,n6,n7,n8

where CODE is the code value you want to use for the symbol and this
must be in the range 224 -255. The set of eight numbers after the
CODE are the numerical values for the eight rows of dots in the new
symbol.

Suppose the pattern we want to produce is too complex to be
properly shown as a single character. The solution here is to make up
the desired symbol by using two special symbols side by side. In this,
case draw up two character grids alongside one another and mark on
them the pattern of dots. Then the left half of the pattern might bee
defined as character code 225 and the right-hand half as character code
226. To produce the object on the screen we simply use the command

 PRINT CHR$(225);CHR$(226)

whenever we wish to display the symbol.
There are some problems with using multiple symbols to produce

an object. When the object is being moved around the screen using the
TAB commands it is important to check that the print position is not at
the right edge of the screen, otherwise part of the object will
automatically be shifted down to the start of the next line. Therefore a
check must be made of the character position before trying to print the
symbol and if it is at the edge some action needs to be taken to correct
for the possible error in the display. If you wish to have true wrap
around where the object reappears on the same line but at the other
side of the screen then you will need a different PRINT routine for this

110 BBC Micro Graphics and Sound

condition and you would print the two parte of the symbol individually
at the points where you wish them actually to appear.

Sometimes the complete object may be built up from two symbols
printed one above the other and moved as a pair. It is also possible to
produce more complex objects using a group of four special symbols.
Whilst these more complex patterns are fairly easily set up they can
present problems if you are going to try to produce fast animation
since there will now be two or four symbols to deal with.

 100 REM Animated man
 110 MODE1
 120 VDU23,1,0;0;0;0;
 130 VDU23,240,0,56,56,16,16,24,52,50
 140 VDU23,241,24,16,24,24,24,16,48,48
 150 VDU23,242,0,56,56,16,16,56,52,50
 160 VDU23,243,24,20,28,24,48,16,16,16
 170 VDU23,244,0,56,56,16,16,56,54,80
 180 VDU23,245,80,80,24,20,36,66,65,65
 190 VDU23,246,0,56,56,16,16,56,56,56
 200 VDU23,247,56,16,24,24,24,40,40,40
 210 FOR T1=300 TO 25 STEP -25
 220 FOR X=2 TO 32 STEP 4
 230 PRINT TAB(X,16) CHR$(240);TAB(X,17)
 CHR$(241);
 240 PRINT TAB(X-1,16) CHR$(32);TAB(X-1,
 17) CHR$(32);
 250 FOR T=1 TO T1:NEXT T
 260 PRINT TAB(X+1,16) CHR$(242);TAB(X+1
) CHR$(243);
 270 PRINT TAB(X,16) CHR$(32);TAB(X,17)
 CHR$(32);
 280 FOR T=1 TO T1:NEXT T
 290 PRINTTAB(X+2,16) CHR$(244);TAB(X+2
 ,17) CHR$(245);
 300 PRINT TAB(X+1,16) CHR$(32);TAB(X+1,
 17) CHR$(32);
 310 FOR T=1 TO T1:NEXT T
 320 PRINT TAB(X+3,16) CHR$(246);TAB(X+3
 ,17) CHR$(247);
 330 PRINT TAB(X+2,16) CHR$(32);TAB(X-2,
 17) CHR$(32);
 340 FOR T=1 TO T1:NEXT T
 350 NEXT X
 360 PRINT TAB(X-1,16) CHR$(32);TAB(X-1,
 17) CHR$(32);
 370 NEXT T1
 380 END

Fig. 7.3. Animated man program.

111Making Things Move

Fig. 7.3 shows a simple program to produce an animated moving
man made up from a pair of special symbols one above the other. In
this program four pairs of symbols are used, each providing a different
picture of the man as he steps forward. This process of adding steps
between the basic step movements gives smooth action. It is a
relatively crude simulation of walking. By choosing the proper set of
positions for the man, more realistic walking action could be achieved.

Smoother movement using linked cursors

Using TAB and PRINT allows us to move our little symbol around he
screen but the action is inevitably rather jerky because of the relatively
large steps between character positions on the text screen.

The BBC Micro, however, treats text symbols in the same way as
graphics ones by shifting the dot pattern of the symbol into the lisplay
memory. A very useful byproduct of this is that we can link the text
and graphics cursors together and then the text symbol will be
displayed at the point indicated by the graphics cursor. This means that
we can move the symbol about on the screen one pixel at a time,
giving much smoother animation.

Linking of the cursors is achieved by using the command VDU5.
We have already used this technique to allow text to be inserted into a
graph or chart at a particular position. The next point to note is hat the
text symbol is set up with its top left corner at the current graphics
cursor position. If we are working about the centre of the symbol this
can be arranged by offsetting the graphics cursor from the centre of the
desired character position in both X and Y directions. This could be
done by simply shifting the origin or by allowing for the offset in any
cursor position calculations. Here you must remember that the width
of the symbols may be 16, 32 or 64 graphics units, although the
vertical height of the symbol is always 32.

With the graphics and text cursors linked the symbol can be moved
by one pixel at a time to any point on the screen by using the graphics
MOVE command, The TAB function is not really applicable in this
mode of operation, so now to keep track of an object‹s position we
would need to store the current graphics X,Y position,

112 BBC Micro Graphics and Sound

Using colour switching and logic functions

Once the VDU5 command has been used the new displayed text will
be written in the current graphics colour and its colour is now selected
by using GCOL instead of COLOUR.

A useful advantage of this state of affairs is that we can make use of
the GCOL logic functions on our new text symbols. We can now erase
the symbol by simply printing it twice in the same position. The first
PRINT will cause the symbol to appear in the selected colour und the
second PRINT statement will cause the symbol to be erased. We can
also move our new symbols in front of or behind other objects by
using the logical OR, and AND operations provided by GCOL.

The actual process of printing the symbol on the screen may take a
short time and the build up might be noticeable. A solution to this is to
use colour switching. Before erasing the symbol from its old position
its actual colour could be changed using VDU19, After changing its
colour instantaneously to say black we can erase the symbol by using
GCOL1,0. This will leave unaffected the colour of any other objects
overlapped by the symbol.

Using text scrolling to produce motion

When we use the screen to display text and we have filled the page
and write in the bottom line you will notice an interesting action
occurs. There are two possible ways of finding a space to put the next
line of text on the screen. One is simply to start again at the top of the
screen and overwrite the top line, then slowly fill the screen again. The
other and much more common technique moves all of the lines up by
one position to leave a free line at the bottom of the screen. Of course
the original top line is now lost. This technique works very much as if
we had a scroll of paper and were rolling it past the window formed by
the screen, and it is called scrolling. Now when we scrolled the text
the whole block of it moved up the screen just like a sort of moving
map. Suppose we had two lines of symbols running down the screen to
represent the sides of a road and at the top of the screen roughly in the
centre of the top row we placed a symbol representing a car. If we
scroll the display and write the car symbol back into the new top
display row and then draw in a new segment of road at the bottom of
the screen we have an animated game of a car running down a road.

113Making Things Move

By adding control of the car position using the horizontal arrow keys
and arranging that the position and width of the road varies in some
random fashion as we write in each new segment, we have the basis
for a simple game.

114 BBC Micro Graphics and Sound

Chapter Eight
The Third Dimension

So far all of our graphs and charts have had just two variables X and Y
which we have plotted horizontally and vertically on the screen. In the
real world, however, we will often find that three variables are
involved. The third variable is usually given the name Z. As an
example we might want to plot the height of various points in a small
area of land. In this case our X and Y coordinates would represent say
length and width and would locate a particular point on the surface of
the land. The third term Z will now be the height of the land surface at
that point. Here the value of Z will depend upon both X and Y, since a
change in either X or Y will take us to another point on the land
surface.

Drawing a three-axis graph presents us with some problems. If X
and Y are plotted as usual on the screen then the Z coordinates should
theoretically be plotted out from the surface of the screen. We could
plot Z against X on the screen for different values of Y to give a series
of graphs, one for each value of Y. If these are plotted on top of one
another the results would be rather confusing. We could use a different
colour for each graph, but even this is not very satisfactory.

If we were building a model of the three-axis plot we would
probably take each graph of Z against X and stand it up behind the
others so that the series of graphs for different Y values are spaced out
one behind the other. How can this be done on our display screen?

One solution to displaying such a series of graphs might be to draw
them so that the graph for each new value of Y is displaced to the left
and up on the screen. This helps to separate the individual graphs for
the different values of Y. In effect we are now drawing the Y axis
along a sloping line which runs upwards and to the left of the X,Y,Z
origin point where X, Y and Z are all equal to 0. This is an
improvement on superimposed graphs.

115

Y X

Z

Fig. 8.1. Usual layout for X,Y,Z axes of three-axis graph.

The usual solution to displaying a three-axis plot is to draw the X
and Y axes at about 30 degrees to the horizontal axis of the screen,
with the Z axis vertical as shown in Fig. 8.1. Now as X increases the
plotted point moves upwards and to the right whilst as Y increases the
plotted point moves upwards and to the left. Finally, Z just displaces
the point vertically on the screen.

Three-axis bar charts

Let us start with a three-axis version of a bar chart. The first step is to
choose an origin point where the values of X, Y and Z are all at zero.
We will call this point CX,CY on the screen. The next step might be to
draw a grid showing the X and Y coordinates in the plane where Z = 0.

To draw the X axis at 45 degrees we need a Y movement which is
half the X movement so our screen coordinates for points along the X
axis (Y and Z both = 0) will be

 XS = CX+X
 YS = CY + X/2

Now consider the Y axis when X and Z are both at 0. Here the line
must go up and to the left. The movement being to the left of the
origin point CX,CY means that the screen X coordinate must be less
than CX. To get the 30 degree angle to the left the X movement is
made the same as the movement but negative and the Y movement s
halved. The screen coordinates here become

 XS = CX - Y
 YS = CY + Y'2

If we consider any other point on the Z= 0 plane then the position of

116 BBC Micro Graphics and Sound

XS,YS will be produced by combining the two results we obtained
above to give

 XS = CX + X - Y
 YS = CY + X/2 + Y/2

Let us now turn this into a piece of program as shown in Fig. 8.2. This
gives us a picture of the X,Y plane of the graph when Z=0 as shown in
Fig. 8.3.

 100 REM X,Y axes for a 3 axis graph.
 110 MODE 1
 120 GCOL0,1
 130 CX = 600:CY=200
 140 FOR Y=0 TO 400 STEP 50
 150 MOVE CX-Y,CY+Y/2
 160 DRAW CX+400-Y,CY+200+Y/2
 170 NEXT Y
 180 FOR X = 0 TO 400 STEP 50
 190 MOVE CX+X,CY+X/2
 200 DRAW CX+X-400,CY+X/2+200
 210 NEXT X
 220 MOVE CX,CY
 230 DRAW CX+500,CY+250
 240 PLOT0,16,16
 250 VDU5
 260 PRINT"X";
 270 MOVE CX,CY
 280 DRAW CX-500,CY+250
 290 PLOT0,-48,16
 300 PRINT"Y";
 310 VDU4
 320 END

Fig. 8.2. Program to draw X,Y axis for Z = 0.

Fig. 8.3. Display of the X,Y axes of the three-axis plot when Z = 0.

117The Third Dimension

The Z term is plotted vertically so it will only affect the YS value and
is simply added to YS, so that our final equations become

 XS = CX + X - Y
 YS = CY + X/2 + Y/2 + Z

Let us draw a graph in which Z = (X+2*Y)/3. Here the X and Y
plane is drawn in one colour and the Z coordinates are drawn in a
different colour so that they are easily picked out on the screen. A
program to draw such a graph is shown in Fig. 8.4.

 100 REM Simple 3 axis graph
 110 REM for Z=(X+2*Y)/6
 120 MODE 1
 130 CX=600:CY=100
 140 GCOL0,2
 150 REM Calculate and plot Z ordinates
 160 FOR X = 0 TO 500 STEP 100
 170 FOR Y = 0 TO 400 STEP 80
 180 Z = (X+2*Y)/6
 200 MOVE CX+X-Y,CY+X/2+Y/2
 210 PLOT1,0,Z
 220 NEXT Y
 230 NEXT X
 240 REM Draw X and Y axes
 250 GCOL0,3
 260 MOVE CX,CY
 270 DRAW CX+550,CY+275
 280 PLOT0,32,16
 290 VDU5
 300 PRINT"X";
 310 MOVE CX,CY
 320 DRAW CX-450,CY+225
 330 PLOT0,-48,16
 340 PRINT"Y";
 350 MOVE CX-16,CY-16
 360 PRINT"0";
 370 VDU4
 380 END

Fig. 8.4. Program to produce a simple three axis display.

The result is now a pattern of vertical lines looking like a bed of
nails where the height of each line indicates the value of Z. To avoid
the Z coordinates being merged together the steps on the X and Y axes
must be different.

To produce an easier to follow display we could use a different
colour for the needles at each value of Y. This will now give us rows

118 BBC Micro Graphics and Sound

of lines running diagonally across the graph. In a four-colour mode we
might use say three colours repeated in sequence, or in mode 2 of
course up to seven colours might be used in sequence.

Producing solid bars

Now the three-axis bar chart we have produced has a simple line for
each Z coordinate. We can make it look more attractive by making the
line into a bar aligned along say the X axis, The changes to the
program are quite simple and for our first example the program
becomes as shown in Fig. 8.5.

 100 REM 3 axis bar graph
 110 REM for Z=(X+2*Y)/6
 120 REM with wide bars
 130 MODE 1
 140 CX=600:CY=100
 150 GCOL0,1
 160 FOR X = 500 TO 0 STEP -100
 170 FOR Y = 400 TO 0 STEP -80
 180 Z = (X+2*Y)/6
 200 MOVE CX+X-Y,CY+X/2+Y/2
 210 PLOT1,0,Z
 220 PLOT81,50,25-Z
 230 PLOT81,0,Z
 240 PLOT3,-50,-25
 250 PLOT3,0,-Z
 260 PLOT3,50,25
 270 PLOT3,0,Z
 280 NEXT Y
 290 NEXT X
 300 GCOL0,3
 310 MOVE CX,CY
 320 DRAW CX+550,CY+275
 330 PLOT0,32,16
 340 VDU5
 350 PRINT"X";
 360 MOVE CX,CY
 370 DRAW CX-450,CY+225
 380 PLOT0,-48,16
 390 PRINT"Y";
 400 MOVE CX-16,CY-16
 410 PRINT"0";
 420 VDU4
 430 END

Fig, 6.5 Program to draw a three-axis bar chart with wide bars along the X
axis.

119The Third Dimension

Lines 210-230 draw and fill the bar. The resultant bars are spaced
equally apart with the space between them equal to the bar width.

Fig. 8.6. Display of a three-axis chart with wide bars.

The top and bottom of the bars are drawn parallel to the X axis. Note
that both X and Y are decremented from maximum to zero so that bars
at the rear of the graph are drawn first. Lines 240-270 outline the bar
in the background colour and this makes the bars in front stand out
where they overlap another bar as shown in Fig. 8.6. The width of the
bars is easily altered by changing the step size in PLOT statements
used to fill and outline the bar. A further development is to combine
these two moves and make an apparently solid bar. The program now
becomes as shown in Fig. 8.7 and the result on the screen is shown in
Fig. 8.8.

The result is vertical bars with different coloured sides and also a
top in a third colour. Mode 1 has been used with the tops ofthe bars
drawn in white. By changing the palette the colours could be set to any
desired combination to produce a suitable artistic effect. Mode 2 could
also be used to permit the use of more colours,

X,Y bar chart with solid bars

A simple X,Y two-dimensional chart could also be drawn using this
type of technique to produce pseudo solid bars. In this case the X axis
is tilted to 30 degrees and the background to the bars is drawn in first

120 BBC Micro Graphics and Sound

and filled with colour. The bars are then drawn on top using say half
the X step ’for bar thickness and width. The program for this is shown
in Fig. 8.9. Here the bars will appear to be standing out from a blue
wall with a red front face and yellow side face on each bar. The bar
tops will be white.

 100 REM 3 axis bar graph
 110 REM for Z=(X+2*Y)/6
 120 REM with solid bars
 130 MODE 1
 140 CX=600:CY=100
 150 REM Plot chart
 160 FOR X = 500 TO 0 STEP -100
 170 FOR Y = 400 TO 0 STEP -80
 180 Z = (X+2*Y)/6
 190 REM Draw face of bar
 200 GCOL0,1
 210 MOVE CX+X-Y,CY+X/2+Y/2
 220 PLOT1,0,Z
 230 PLOT81,50,25-Z
 240 PLOT81,0,Z
 250 REM Draw top of bar
 260 GCOL0,3
 270 PLOT1,-40,20
 280 PLOT81,-10,-40
 290 PLOT81,-40,20
 300 REM Draw side of bar
 310 GCOL0,2
 320 PLOT81,40,-20-Z
 330 PLOT81,-40,20
 340 NEXT Y
 350 NEXT X
 360 REM Draw X and Y axes
 370 GCOL0,3
 380 MOVE CX,CY
 390 DRAW CX+550,CY+275
 400 PLOT0,32,16
 410 VDU5
 420 PRINT"X";
 430 MOVE CX,CY
 440 DRAW CX-450,CY+225
 450 PLOT0,-48,16
 460 PRINT"Y";
 470 MOVE CX-16,CY-16
 480 PRINT"0";
 490 VDU4
 500 END

Fig. 8.7. Program to draw three-axis bar chart with solid bars.

121The Third Dimension

Fig. 8.8. Three-axis bar chart with solid bars.

 100 REM Bar chart with solid bars
 110 MODE2
 120 GCOL0,4
 130 CX=400:CY=100
 140 REM Draw background
 150 MOVE CX,CY
 160 PLOT1,680,320
 170 PLOT81,-680,80
 180 PLOT81,680,320
 190 REM Draw graph
 200 FOR X = 640 TO 0 STEP -80
 210 Y=0.6*X
 220 MOVE CX+X,CY+X/2
 230 REM Draw side of bar
 240 GCOL0,3
 250 PLOT0,40,-20
 260 PLOT81,-40,Y+20
 270 PLOT81,40,-20
 280 REM Draw front of bar
 290 GCOL0,1
 300 PLOT1,0,-Y
 310 PLOT1,40,20
 320 PLOT81,-40,Y-20
 330 PLOT81,40,20
 340 REM Draw top of bar
 350 GCOL0,7
 360 PLOT81,-80,0
 370 PLOT81,40,20
 380 NEXT X
 390 END

Fig. 8.9. Program for a two-axis bar chart with solid bars.

122 BBC Micro Graphics and Sound

Surface maps

Instead of drawing vertical lines for the Z coordinates we could draw a
picture showing the contours of the surface made up by the tips of the
Z coordinates. Here we would take all Z coordinates with Y=0 and
draw lines linking them together. Then we repeat the process for each
value of Y to give a series of lines running diagonally up to the left.
Next we take all Z coordinates for X=0 and again link them with lines.
This is repeated for all X coordinates and finally we have at patchwork
pattern which will give an impression of the way that Z varies over the
X,Y plane. Again we might use colour to pick out the different strips
across the plane.

The results obtained using either the vertical Z coordinates or the
linked points on the surface will be best if there are a large number of
points since this gives a smoother contour to the figure. However, if
too many points are used the solid image effect will tend to be lost as
some points will overwrite others and produce some confusion. Best
results will generally be obtained by arranging the drawing sequence
so that it starts at the points toward the back of the X,Y plane, that is
with both X and Y at their highest values. Any lines that do overlap
will now be overwritten by the line that should appear in front. This is
particularly important if different colours are used at the successive X
or Y coordinates.

Circular three-axis plots

A rather interesting variation of three-axis plotting is the circular
three-axis plot. This produces some rather attractive patterns. In this
version of the three-axis graph the X,Y plane of the chart is made
circular and is displayed on the screen as a sort of disc viewed from an
angle with circular ridges produced by the Z coordinates. The
technique of plotting uses the quadratic method for drawing a circle
but with the X scale set at perhaps two or three times the Y scale. This
produces an elliptical figure on the screen. Z values are simply added
to the calculated Y coordinates and points are plotted at the tops of the
Z coordinates.

The program of Fig. 8.10 gives an example of this type of plot.

123The Third Dimension

Function FNZ determines the contour shape of the chart and you could
try a variety of functions here. A typical display appears like Fig. 8.11.

If you have a Model A machine use mode 4 for this plot. You could
use mode 0 on a Model B and will get very good results from a
momtor, but the average television receiver tends to give a relatively
poor display in this mode.

 100 REM Circular 3D plot program
 110 MODE1
 120 GCOL0,2
 130 VDU19,0,4,0,0,0
 140 GCOL0,128:CLG
 150 K=5*PI/10000
 160 DEF FNA(Z)=10*SIN(K*(X*X+Y*Y))
 170 FOR X=-100 TO 100 STEP 2
 180 Z1=0
 190 Y1=5*INT(SQR(10000-X*X)/5)
 200 FOR Y=Y1 TO -Y1 STEP -5
 210 Z=INT(80+FNA(SQR(X*X+Y*Y))-.707*Y)
 220 IF Z<Z1 THEN 270
 230 Z1=Z
 240 SX=640+5*X
 250 SZ=300+3*Z
 260 PLOT69,SX,SZ
 270 NEXT Y
 280 NEXT X
 290 END

Fig. 8.10. Program for a circular form of a 3D graph.

Fig. 8.11. Circular 3D plot produced by the program listed in Fig.10.

124 BBC Micro Graphics and Sound

Perspective drawings

So far we have produced three-axis charts or graphs which give some
impression of depth, but they are in fact what are known as isometric
drawings. This basically means that a vertical line always has the same
scale factor wherever it is on the X-Y plane. This type of drawing is
often produced by draughtsmen because it allows correct
measurements to be made of the object along all three axes. To create
the illusion of depth an artist uses what is known as perspective in his
drawings. Artists had discovered many centuries ago the effect that as
an object is moved further away from the viewer it appears to get
smaller and vice versa. They also found that by applying this idea to
drawings and paintings they could produce a much more realistic
picture. This technique is known as perspective drawing and over the
years mathematicians have evolved formulae to allow the shape and
size of objects to be calculated to give a perspective view. We can also
apply this technique in computer graphics.

To see how perspective works, imagine that you are standing on a
flaat plain and that in front of you is a road that stretches away to the
horizon. Although the sides of the road are actually parallel it will
appear that the road gets narrower as it approaches the horizon. The
cars and trucks travelling along the road also appear to get smaller as
they move away from your position toward the horizon. In fact the
optical image they produce does get smaller as they move away. lf we
apply this basic rule to our pictures on the screen we can also produce
an illusion of depth despite the fact that our display is really a flat
screen.

First, we need to decide on some system of coordinates by which
we can measure the positions of points on the objects being viewed
and the corresponding points needed to produce the screen image. We
shall assume that the X axis runs across from left to right as usual. The
Z axis is normally the vertical direction as we had it in our three-axis
graphs. This leaves the Y axis and the best arrangement is to have the
Y axis along the direction of view. If you viewed the road across the
desert from actual road level (that is with your eye actually at the road
surface) the view would be rather uninspiring because every point on
the road and the desert would lie along a single line through the X
axis. In order to see the road properly we need to be located above it.

Fig. 8.12 shows a side view of the situation where we are viewing
the road from an altitude Z. In order to project the image on our flat
screen we shall assume that we are looking through a window at

125The Third Dimension

distance D.
Eye Screen

D

SY

Z

0 Y2 Y1

Fig. 8.12. Diagram showing relationship between Y and Z, and SY and D
in perspective viewing.

Suppose we take a point on the road at distance Y1. This wil
lappear to be below the horizon line on the screen by an amount SY.
We have assumed here that the horizon is effectively at eye level
which it will be if we are looking along a line parallel to the Y axis.
Now the small triangle between the screen and eye is of the same
shape as the large triangle passing through point Yl. This means that
all of the sides of the two triangles have the same proportions, so we
can say that

 SY/D = Z/Y1

and rearranging this we get

 SY = Z*D/Y1

Now you will note that the size of the image on the screen is inversely
proportional to the distance Yl. If we took another point on the road at
a different distance Y2 then it would produce a different line length on
the screen, giving a new value for SY of

 SY = Z*D/Y2

Now suppose there were a series of equal length lines drawn along the
centre line of the road. Each line will produce a short vertical line on
the screen and as the point on the road gets farther away the image
produced on the screen by each line gets shorter. If we drew a similar
view of the road looking down on it we would find that the same basic
formula applies for the SX image size on the screen which represents
the road width. As Y1 becomes greater the width of the image on the
screen decreases according to the formula

126 BBC Micro Graphics and Sound

 SX = W*D/Y1

where W is the width of the road.
Vertical objects alongside the road will also produce images that

follow this general rule of being inversely proportional to distance Y.
Let us start with the road. First, we need to draw a horizon line

across the screen, since this acts as a visual reference. Now if we draw
lines from the bottom two corners of the screen to a point halfway
across the horizon line we have a road. Suppose the mud is 25 feet
wide and we are viewing a I4 inch TV screen from, say, a distance of 4
feet. The TV screen will be 1 foot wide and this is equal to SX. D will
be 4 and X will be 25. Now

 SX = D*X/Y = 4*25/Y =1

therefore

 Y = 4*25 or 160 feet

The scaling factor for our screen drawing SCX can now be worked out
since when Y= 100 and X=25 and D=4 then the screen value for X
must be 1280. If we rewrite our equation with a multiplier SCX we get

 SX = SCX*D*X/Y

and inserting our calculated values we shall get SCX = 1280, so to plot
any point we calculate its X value from

 SX = 128*4*X/Y = 5120*X/Y

We can apply a similar process to calculate the Y scale factor,
assuming that our viewpoint is at a height of 10 feet and that for a
distance of 100 feet the point plotted is at the bottom of the screen. We
shall assumed that the horizon line is at Y = 500 on the screen. From
this

 SY = SCY*4*10/100 =500

and

 SCY = 5000

so to calculate the Y points on the screen we would use

 SY = 5000*Z/Y

Note that here we have incorporated the distance D into the scale
factor, since D is a constant at 4 feet.

To plot a point on the road itself Z=10 and the actual Y value for

127The Third Dimension

use in the PLOT instruction will be 500-SY, since as we get closet the
point moves down the screen. If there is a vertical pole then to plot the
top of the pole we subtract the height of the pole from 100 obtain the
value for Z. Thus a 10 foot high pole will always produce A Y value of
500 and would line up with the horizon, since we are actually looking
along a line 10 feet above the road. If the pole is higher than 10 feet
the value of SY is negative and the top of the pole is above the centre
line of the screen.

To draw a perspective view of a road with, say, trees alongside, you
will need to set up a table of values of height and distance for the trees
and then their base and top points can be calculated using

 SX = 640 + 5120*X/Y
 SY = 500 - 5000*(10-Z)/Y

where SX and SY are the screen plotting coordinates, X is the distance
measured from the centre of the road with positive values to the right,
and Z is the height of the object. For road markings Z will be 0.

Fig. 8.13 shows a program listing to draw a perspective view of
road, and Fig. 8.14 shows the result on the screen.

 100 REM Program to draw picture of road
 110 MODE 2
 120 REM Draw sky
 130 GCOL 0,6
 140 PLOT0,0,512
 150 PLOT1,1279,0
 160 PLOT81,0,511
 170 PLOT1,-1279,0
 180 PLOT81,0,-511
 190 REM Draw desert
 200 GCOL0,3
 210 PLOT1,1279,0
 220 PLOT81,0,-512
 230 PLOT1,-1279,0
 240 PLOT81,0,512
 250 MOVE 640,512
 260 REM Draw road
 270 GCOL0,0
 280 PLOT1,639,-512
 290 PLOT81,-1279,0
 300 SCX=5120:SCY=5000
 310 Z=10:W=1:WR=25/2
 320 REM Draw road markings
 330 GCOL0,7
 340 FOR Y1=100 TO 2000 STEP 100
 350 SY=512-SCY*Z/Y1
 360 X=SCX*W/Y1

128 BBC Micro Graphics and Sound

 370 SX=640-X
 380 PLOT4,SX,SY
 390 SX=640+X
 400 PLOT5,SX,SY
 410 Y2=Y1+50
 420 SY=512-SCY*Z/Y2
 430 X=SCX*W/Y2
 440 SX=640-X
 450 PLOT85,SX,SY
 460 SX=640+X
 465 PLOT85,SX,SY
 470 NEXT Y1
 480 REM Draw trees
 490 FOR Y1=120 TO 1000 STEP 100
 500 H=15:HT=5
 510 SY=512-SCY*Z/Y1
 520 X=SCX*WR/Y1
 530 SX=640-X
 540 MOVE SX,SY
 550 PROCTREE
 560 SX=640+X
 570 MOVE SX,SY
 580 PROCTREE
 590 NEXT Y1
 600 END

 1000DEFPROCTREE
 1010GCOL0,1
 1020SH=SCY*H/Y1
 1030PLOT1,0,SH
 1040SH=(H-HT)*SCY/Y1
 1050PLOT0,0,0
 1060SW=2*SCX/Y1
 1070GCOL0,2
 1080PLOT81,-SW,-SH
 1090PLOT81,2*SW,0
 1100ENDPROC

Fig. 8.13. Proqram to draw a perspective view of a road

129The Third Dimension

Fig. 8.14. Perspective view of a road produced using the program in Fig.
8.13.

Wire frame models of solid objects

When we come to drawing perspective images of three-dimensional
objects we use an array of X, Y, Z coordinates to define points on the
object. When the image is drawn these points are linked together by
lines to produce an outline of the edges of the object. If we were
drawing a rectangular block then the reference points would be the
eight corners of the block and the linking lines represent the edges of
the block. This form of drawing is called a wire frame image because
it is as if we made up the object by building a wire frame marking out
its edges.

For viewing the object along its Y axis we can use the same basic
proportional technique that was used for the perspective view of a
road. If we want to be able to move all around our object so that we
can view it from all directions then the equations become more
complex. We shall now go on to look at this situation.

All round viewing of objects

To produce a perspective view of a wire frame object from any point
around the object becomes fairly complex. First, we need to define the
object as a set of X,Y,Z coordinates relative to its own centre. We shall
also need a set of information which shows where the edges are

130 BBC Micro Graphics and Sound

relative to the X, Y. Z. points. In addition we will need some
information to tell the computer whether it must use MOVE or DRAW
when tracing out the image from point to point on the screen. This can
be arranged by creating three arrays of data describing the object. The
X, Y and Z coordinates of the object in its descriptive array are all
measured relative to a point at the centre of the object itself. Next we
have a viewer at some point XV, YV, ZV relative to the object.

The first stage in the process is to translate the X,Y,Z coordinates of
the object so that the viewer is placed at the origin of the X,Y,Z axes.
This is the point where X, Y and Z are all 0. This translation process is
quite straightforward since it simply involves subtracting XV,YV,ZX
from X,Y and Z respectively to give a new set of values for or the X,Y
and Z coordinates of the points on the object.

At this point we have assumed that the viewer is absolutely level.
For all round viewing we can assume that the line of sight of the
viewer has three angular components, which we shall call heading,
pitch and roll. To understand these it is useful to imagine that you are
flying in an aeroplane. The Y axis of the aeroplane is assumed to be
along the fuselage and the X axis along the wings.

Heading is the direction of view of the viewer measured relative to
the Y axis. A change in heading is equivalent to turning to the left or
right. This is effectively a rotation of the aircraft around its Z or
vertical axis. Next there is_ pitch, which shows whether you are
looking above or below the horizontal. This shows whether the aircraft
has a nose down or nose up attitude and is equivalent to rotating the
plane around the line along its wings. This is effectively a rotation
about the X axis of the aircraft. Finally, there is roll which indicates if
your view is inclined to the right or left. This is like rotating the plane
around a line along its fuselage, which is what happens when an actual
aircraft rolls. Here the rotation is around the Y axis of the aircraft.

After shifting the origin of the X, Y, Z map we will have the
position where the viewer and the object being viewed are on the Y
axis but the viewer is in fact looking at a point away from the Y axis
by his heading angle. This could place the object off the screen. In
order to place the object in the centre of the field of view and at its
correct orientation we will need to rotate its points about the three axes
to correct for the heading, pitch and roll of the viewer. This is done in
three stages.

First, the points are rotated around the Z axis until the viewer is
looking directly through the centre of the object. This is done by
rotating all of the points on the object through the heading angle of the

131The Third Dimension

viewer. The rotation equations are the same as those used in Chapter 2,
but now they are applied to X,Y and Z. In this first roation Z1 will be
equal to the original Z value since we are rotating around the Z axis
itself. The new X and Y values become

 X1=X*COS(H)-Y*SIN(H)
 Y1=X*SIN(H)+Y*COS(H)

In the second stage of calculations these X1,Y1,Z1 values are
rotated by the pitch angle to produce a new set of values X2,Y2,Z2. In
this rotation the X values are unchanged since the points are being
rotated around the X axis. The second set of values X2, Y2, Z2 are
finally given a further rotation by the roll angle to produce the
coordinates X3,Y3,Z3. In this last rotation, which is around the Y axis,
the Y2 values will be unchanged.

Having produced these rotated coordinates we have reached
roughly the position we were in with the road view. It remains to
project the points on to the screen and this basically involves dividing
X3 and Z3 respectively by Y3 to obtain the screen coordinates XS and
YS.

The whole process of rotation and projection is carried out for each
coordinate point on the object and then the appropriate lines are
plotted between the points to form the picture on the screen,

 100 REM All round viewing of a block
 110 MODE 1
 120 SCX=50:SCY=50
 130 DIM V(50,3),E(100),C%(100)
 140 REM Read object data
 150 READ NV
 160 FOR P=1 TO NV
 170 READ V(P,1),V(P,2),V(P,3)
 180 NEXT P
 190 READ NE
 200 FOR J=1 TO NE
 210 READ E(J),C%(J)
 220 NEXT J
 300 REM Set viewer position
 310 D=80:P=PI/16:R=0:H=PI/4
 320 PROCMF
 330 XV=-D*CP*SH
 340 YV=-D*CP*CH
 350 ZV=-D*SP
 400 REM Project object on screen
 410 FOR J=1 TO NE
 420 N=E(J)
 430 X=V(N,1):Y=V(N,2):Z=V(N,3)

132 BBC Micro Graphics and Sound

 440 PROCTRANS
 450 GCOL0,C%(J)
 460 DRAW XS,YS
 470 NEXT J
 500 INPUT TAB(0,1)"Another view? Y/N "A$
 510 IF A$="Y" OR A$="YES" THEN 540
 520 IF A$="N" OR A$="NO" THEN 600
 530 PRINT TAB(0,1):PRINT:GOTO 500
 540 INPUT TAB(0,1)"Heading (deg)= "H
 550 INPUT "Pitch (deg)= "P
 560 INPUT "Roll (deg)= "R
 570 H=H*PI/180:P=P*PI/180:R=R*PI/180
 580 CLG
 590 GOTO 320
 600 END

 1000 REM Multiplier factors
 1010 DEFPROCMF
 1020 CH=COS(H):SH=SIN(H)
 1030 CP=COS(P):SP=SIN(P)
 1040 CR=COS(R):SR=SIN(R)
 1050 MF1=CH*CR-SH*SP*SR
 1060 MF2=-SH*CR-CH*SP*SR
 1070 MF3=CP*SR
 1080 MF4=SH*CP
 1090 MF5=CH*CP
 1100 MF6=SP
 1110 MF7=-CH*SR-SH*SP*CR
 1120 MF8=SH*SR-CH*SP*CR
 1130 MF9=CP*CR
 1140 ENDPROC
 1200 DEFPROCTRANS
 1210 REM Translate viewer position
 1220 X=X-XV:Y=Y-YV:Z=Z-ZV
 1230 REM Rotate view of object
 1240 X3=MF1*X+MF2*Y+MF3*Z
 1250 Y3=MF4*X+MF5*Y+MF6*Z
 1260 Z3=MF7*X+MF8*Y+MF9*Z
 1270 REM Project points to screen
 1280 XS=INT(640+SCX*D*X3/Y3)
 1290 YS=INT(512+SCY*D*Z3/Y3)
 1300 ENDPROC
 2000 REM Number of points
 2010 DATA 8
 2020 REM X,Y,Z coordinates
 2030 DATA 5,-3,4
 2040 DATA -5,-3,4
 2050 DATA -5,-3,-4
 2060 DATA 5,-3,-4
 2070 DATA 5,3,4
 2080 DATA -5,3,4
 2090 DATA -5,3,-4
 2100 DATA 5,3,-4

133The Third Dimension

 2110 REM Number of edges
 2120 DATA 16
 2130 REM Edge and colour data
 2140 DATA 1,0,2,1,3,1,4,1
 2150 DATA 1,1,5,3,6,2,7,2
 2160 DATA 8,2,5,2,2,0,6,3
 2170 DATA 3,0,7,3,4,0,8,3

Fig. 8.15. Perspective view of a block.

Fig. 8.16. Display of a wire frame object in perspective.

The program listing given in Fig. 8.15 carries out this process on an
object which is a wire frame model of a simple block. The front and
rear faces of the block are plotted in different colours on the display to
make it a little easier to interpret the picture. By inputting the direction
of view in terms of heading, pitch and roll as seen from the viewer’s
position, the corresponding view of the object is displayed. In effect
we are rotating the object itself to present the correct view. Fig. 8.16
shows a typical view on the screen.

Aircraft landing sequence

Now let us look at the problems of animation in a perspective view. As
you will have seen, the calculations needed to produce a perspective
view are very slow when BASIC is used. One solution is to write the

134 BBC Micro Graphics and Sound

program in machine code, and this has been done in 3D simulation
games. An alternative is to simplify the problem to make the
calculations faster.

Let us assume that we are in an aircraft coming in to land on a
runway and we are going to display the view from the aircraft. The
aircraft is assumed to be flying with a level attitude above the ground
and the height varies as it approaches the runway. To simplify the
calculations we shall assume that the plane docs not deviate from a
line along the centre of the runway.

If we consider two points, one at each end of the runway, then
initially when the distance is large the two points will be close
together near the horizon. As we move closer the points will separate
and move down the screen with the nearer point being lower. As in the
case of the road the Y position of each point on the screen is
proportional to the ratio A/ D for that point. Now we would run into
problems if D were zero, since this produces a ’divide by zero‹ error.
To avoid this it has been assumed that the angle of view from the
cockpit is limited so that the nearest point that is displayed is at a
distance D equal to altitude A. By carrying out a test for this before
calculating the Y term we can avoid problems. When we consider
points off the centre of the runway we can apply the same ratio
technique.

First we must set up a table of points representing the runway, all in
terms of real distances relative to the centre line at the far end of the
runway. To draw the picture each point X(N),Y(N) in the real world is
processed to produce a new point SX(N),SY(N) for the screen display.

In the display procedure a second set of coordinates LX(N),LY(N)
is used to represent the previous position of the aircraft. First the
image is erased by drawing the LX,LY picture in the background
colour. The new picture is then drawn using the points SX,SY, and
finally the LX,LY points are made equal to the SX,SY points ready for
the next picture to be drawn.

The calculations of aircraft position are governed by a simple
aerodynamic calculation which takes into account the pitch angle P
and the engine power E. These variables are controlled by the arrow
keys on the keyboard. Here the vertical arrows control the plane‹s
pitch with the up arrow being equivalent to pushing the joystick
forward, which increases both speed and rate of descent. The up-
down arrows move the pitch in steps of 5 degrees up to a maximum of
30 degrees. Engine power is controlled by the left/right arrows, with
the right arrow giving increased power. Power is displayed as a

135The Third Dimension

percent value on the screen and changes in power level will affect both
rate of climb and speed.

 100 REM Aircraft landing program
 110 MODE1
 120 *FX4,1
 130 VDU28,0,4,39,0
 140 GCOL0,3
 150 DIM X(12),Y(12)
 160 DIM SX(12),SY(12),LX(12),LY(12)
 170 SCX=1000:SCY=1000
 180 CX=640:CY=500
 190 FOR N=1 TO 12
 200 READ X(N),Y(N)
 210 LX(N)=0:LY(N)=0
 220 NEXT N
 230 DATA 25,4000,50,3800,100,3600
 240 DATA 50,3200,50,2800,50,2400
 250 DATA 50,2000,50,1600,50,800
 260 DATA 50,400,100,0,50,0
 270 K1=10:K2=5:K3=.95:K4=.05
 280 K5=-0.5:K6=.1:K7=100:K8=50
 290 K9=.9:K10=.1:K11=.2:K12=.05
 300 K13=.4:K14=-20:VS=75
 310 D=19000+RND(2500):E=50:P=0
 320 V=125:A=(D-3000)*.06
 330 CL=-400:DA=-8
 340 PROCDRAW
 350 PROCAERO
 360 IF A<10 THEN 390
 370 PROCINSTR
 380 GOTO340
 390 CLS
 400 PRINT"You have ";
 410 IF V>150 OR CL<-200 THEN PRINT
 "CRASHED";
 420 IF V<151 AND CL>-199 THEN PRINT
 "LANDED";
 430 IF D>0 AND D<3800 THEN PRINT" on
 the runway"
 440 IF D>3800 THEN PRINT'INT(D-3800);
 " feet short of the runway"
 450 IF D<0 THEN PRINT'INT(-D);
 " feet beyond the runway"
 460 PRINT "Do you want to try again -
 Y/N ? ";
 470 B$=INKEY$(100)
 480 IF B$="Y" THEN 310
 490 IF B$="N" THEN 510
 500 GOTO 470

136 BBC Micro Graphics and Sound

 1000 DEFPROCDRAW
 1010 FOR N=1TO12:Y1=D-Y(N):IF Y1<A Y1=A
 1020 SY(N)=SCY*A/Y1:SX(N)=SCX*X(N)/Y1:NEXT N
 1030 FOR N=1TO12:PLOT4,CX-LX(N),CY-LY(N
):PLOT3,2*LX(N),0
 1040 MOVE CX-SX(N),CY-SY(N):PLOT1,2*SX(N),0:
 NEXT N
 1050 MOVE CX-LX(12),CY-LY(12):PLOT7,CX-
 LX(3),CY-LY(3)
 1060 PLOT0,2*LX(3),0:PLOT7,CX+LX(12),CY-
 LY(12)
 1070 MOVE CX-SX(12),CY-SY(12):DRAW CX-S
 X(3),CY-SY(3)
 1080 PLOT0,2*SX(3),0:DRAW CX+SX(12),CY-
 SY(12)
 1090 FOR N=1TO12:LX(N)=SX(N):LY(N)=SY(N):NEXT
 1100 ENDPROC

 2000 DEFPROCAERO
 2010 K=INKEY(20)
 2020 IF K=136 THEN E=E-K1
 2030 IF K=137 THEN E=E+K1
 2040 IF K=138 THEN P=P+K2
 2050 IF K=139 THEN P=P-K2
 2060 IF E>100 THEN E=100
 2070 IF E<0 THEN E=0
 2080 IF P>30 THEN P=30
 2090 IF P<-30 THEN P=-30
 2100 V=K3*V+K4*(K5*P+K6*E+K7)
 2110 CL=K8*DA
 2120 A=A+DA
 2130 DA=K9*DA+K10*(K11*E+K12*V+K13*P+K14)
 2140 D=D-V
 2150 IF V<VS THEN DA=-40
 2160 ENDPROC
 3000 DEFPROCINSTR
 3010 CLS
 3020 PRINT TAB(0,1)"ALT = ";INT(A);TAB(
 6);"DIST. FT. ";INT(D-3600)
 3030 PRINT"POWER%= ";INT(E);" SPEED K
 TS.= ";INT(V)
 3040 PRINT"CLIMB RATE FT/MIN= ";INT(CL);
 3050 COLOUR2
 3060 PRINT TAB(30,3)" "
 3070 IF D<4000 THEN 3100
 3080 IF A>.065*(D-3000) THEN PRINT TAB(
 30,3);"TOO HIGH"
 3090 IF A<.055*(D-3000) THEN PRINT TAB(
 30,3);"TOO LOW"
 3100 COLOUR3:ENDPROC

Fig. 8.17. Aircraft landing program.

137The Third Dimension

Pitch, engine power, height, distance to the end of the runway and
rate of climb are displayed at the top of the screen. Note that the plane
does not respond immediately to a new power or pitch setting but
gradually changes its attitude because there is an integration effect
built into the equations to give a better simulation of a real plane.

The lower the plane is as it approaches the runway the more
effective the perspective effect will be. In this simple demonstration
the plane starts at varying height and distance for each run. The plane
will stall at speeds less than 75 knots and the rate of descent will then
increase very rapidly. A descent rate of about 500 feet per minute is
required on the approach and a warning message will tell you if you
are too high or too low relative to a 3.5 degree glide path. At about
5000 to 6000 feet from the end of the runway you should level out by
increasing the pitch angle to give a descent rate of about 100 to 150
feet / min for landing. Power setting of about 20% is quite good for
landing where the speed should be less than 150 knots and the rate of
descent less than 200 feet / min.

The program shown in Fig. 8.17 is a relatively basic simulation
program intended to show the possibilities of animation with
perspective. You could alter the characteristics of the runway by
changing the data in lines 230 to 260. The characteristics of the plane
can be altered by changing the constants K1 to K14. It would also be
possible to rearrange the program to allow a take-off from the runway
and then after a short flight a landing on the same runway. The main
problem, however, is that the more complex the program becomes the
slower will be the steps between displayed pictures and eventually the
real time operation will be lost.

138 BBC Micro Graphics and Sound

Chapter Nine
Making Sounds

So far we have been concerned with producing pictures on the screen
and we have in effect the equivalent of a silent film in the cinema. The
addition of sound effects or music would greatly enhance the overall
results, particularly when we are dealing with a game type program. In
fact the BBC Micro has a very versatile sound producing capability
and we could in fact use it as a form of musical instrument, where the
sound performance would be more important than the picture on the
screen.

Early personal computers were fitted with very simple sound
generators which could produce a ‘beep’ to attract the user‹s attention
in much the same way as the bell on a typewriter. Most modern types,
however, have more sophisticated sound generators which permit a
range of different tones to be produced and perhaps the amplitude to
be controlled. A few machines, such as the BBC Micro, provide
several independent sound generation channels so that two or more
notes may be produced simultaneously. These more complex sound
generators allow the computer to produce A wide range of sound
effects which are useful in games programs and will also permit music
to be produced by the computer.

The BBC Micro uses a special sound generating chip called the
SN76489, made by Texas Instruments. This chip, or others like it, has
been used in many of the newer personal computers. There are in fact
four separate sound generators in the SN76489 chip, each of which
may be controlled independently of the others by the computer itself.
Three of the four sound channels provide a tone output which can be
programmed for pitch (frequency), loudness (amplitude) and duration.
The fourth channel is rather different, because it produces a noise
output which may also he programmed to give various kinds of noise.
You might wonder why we should want a noise generator at all, but as
we shall see later, noise is often an important component in producing

139

sound effects and this can be particularly useful in providing the
sounds required for games programs.

Although the sound generator chip itself is quite versatile, an
important feature of the BBC Micro is the software available to
control the actual sounds that are produced. A particularly useful
feature is the envelope control which allows us to control the loudness
and pitch of the sounds, as they are being generated. This allows us to
control the way in which the sound builds up or dies away and enables
us to imitate the ‘voices’ of musical instruments and to produce special
sound effects without having to use a lot of computer instructions. We
shall be looking more closely at this later. It is also possible to
synchronise the sound channels so that we can play several notes at
once, producing a chorus effect. The possibilities of the sound
generation of the BBC Micro seem to be almost limitless and all we
can hope to do in this book is show how the various parts work and
give some leads so that the reader can experiment for himself and
discover what can be achieved.

Surprisingly enough for such a complex sound capability, there are
only two BASIC commands which control the sound generation in the
BBC Micro. These are SOUND, which governs the basic pitch,
loudness and duration of sounds and actually causes them to be
produced, and ENVELOPE, which sets up the way in which the
loudness and pitch will vary as the sound is being generated. In fact
you could have a lot of fun producing sounds without using the
ENVELOPE command at all. Although there are only two basic
commands, each has a wide range of options and the ENVELOPE
command may seem to be particularly complicated when it is first
encountered, but as we shall see, it can be broken down into simple
terms. Let us now explore these commands and see how they can be
applied to the business of producing sounds from the BBC Micro.

The sound command

Let us start by taking a look at the SOUND command which governs
the actual production of a sound from the loudspeaker on the BBC
Micro. Using this command alone it is possible to produce a wide
variety of sound effects. The command itself has four parameters
which control the actual sound that is generated. The basic form of the
command is

140 BBC Micro Graphics and Sound

 SOUND C, A, P, D where

C is the channel number
A is the sound amplitude
P is the pitch of the note

and D is the duration of the sound.

The four channels are numbered 0, 1, 2 and 3. Channels 1, 2 and 3 are
identical but separate channels for generating tones. Channel 0 is
rather different in operation and it generates various kinds of ‘noise’
sounds. We shall look at this noise channel more closely in a moment,
For a start let us experiment with using the tone channels.

The channel, or channels, which produce signals to drive the
loudspeaker are selected by the first parameter C. If we want to select
channel 1 then C is made equal to 1, so that the command becomes

 100 SOUND 1,A,P,D

Similarly to select channel 2 or 3 we would simply put C equal to 2 or
3.

As we shall see later, the first parameter C also performs a number
of other functions, but the moment we can look upon it as simply a
channel selection code.

Controlling the loudness

An important characteristic of any sound is its loudness or amplitude,
and this is governed by the value of A which can range from +15 to -
15. Putting A=0 as we might expect produces no sound at all. This
may seem a bit pointless but as we shall see later the sound generator
will effectively just produce a pause in its output governed by the
duration D.

For some strange reason the loudness actually increases as the value
of A becomes more negative until at -15 the loudest output is
produced. Let us try an experiment with the following small program:

 100 FOR A = 0 TO -15 STEP -1
 110 SOUND 1, A, 101, 20
 120 SOUND 1, 0, 101, 1
 130 NEXT
 140 GOTO 100

This should produce a single note with its volume rising in steps

141Making Sounds

from zero to the maximum value and will repeat indefinitely. Here the
second SOUND statement (line 120) shows the use of zero amplitude
and merely provides a short pause to separate successive notes. Use
ESCAPE to stop the program. Note here that the volume remains
steady whilst each note is sounded and only changes to a new level
when the next SOUND command is executed.

Positive values for A do not directly control the loudness of the
sound produced. These values are in fact used in conjunction with the
ENVELOPE command which allows the loudness of the sound to be
varied as the note is being played.

Making different notes

The second important characteristic of any tone or note is its
frequency or pitch. All sounds are produced by a variation in air
pressure which for a pure tone follows a sinusoidal waveform. The
frequency or pitch is the number of complete cycles of pressure
variation that occur in one second. This may be expressed either as
cycles per second (c/ s) or in hertz (Hz), but both have the same
numeric value. The normal range of sounds that we can hear extends
from about 30 Hz, which is a low frequency hum, up to about 15,000
Hz (15 kHz) which is a very high pitched whistle. Most of our basic
sounds of speech and music, however, tend to fall in the range from
about 100 Hz to 4 kHz.

The parameter P controls the pitch of the tone produced by the
sound generator. The value of P can extend from 0 to 255 and should
be an integer, so the P variable will normally be of the form P%. A
value of 0 gives the lowest frequency tone and the pitch increases as
the value of P is increased.

A value of 1 for P gives a frequency of about 122 cycles per second,
equivalent to roughly the note B an octave below middle C on the
musical scale. Middle C on a musical scale has a frequency of 261.6
Hz and needs a P value of 52. At the upper end of the range a value of
255 for P gives a note of about 4200 Hz.

To see the range of tone pitch that can be produced, try running the
following short program:

 100 FOR P = 0 TO 255
 110 SOUND 1, -15, P, 20
 120 SOUND 1,0,P,2
 130 NEXT

142 BBC Micro Graphics and Sound

 140 GOTO 100

This should produce a steadily rising note and shows the effect of
varying the parameter P. The second SOUND statement at line 120
merely provides a short silent period between successive notes to
prevent them from just running into one another. The pitch produced
remains constant throughout the period when the note is produced and
only steps up to a new value when the next SOUND command is
executed. We shall see later that it is possible to vary the pitch during
the sounding of a note by using the ENVELOPE command and this
can completely alter the character of the sound being produced.

Controlling the length of sounds

Apart from setting the loudness and pitch we also need to be able to
control the length of time for which the sound is produced. This is
known as the sound duration and is governed by the value of D, the
last parameter in the SOUND command. D is an integer number with a
value from 1 to 255 and in fact represents the number of 1/20 second
intervals that the sound will last for. The timing here is accurate and is
independent of the computer program. Once the SOUND command
has been executed the computer can go on and do something else, but
the sound will still continue to be produced until the duration D has
expired. So by using D we can produce notes varying in length from 1/
20 second up to about 12 1/2 seconds.

We can in fact turn on a sound channel for an indefinite t1me by
using a value of -1 for the parameter D. Now even if the program ends
the sound would continue. After a SOUND command with D = -l we
must either issue another SOUND command to end the note or press
ESCAPE to abort the whole program action. Let us now see how the
basic scheme works. Enter the following small program:

 10 SOUND 1,-15,100,100
 20 FOR T=1TO200:NEXT:GOTO10

When run, this will produce a continuous series of ’beeps‹, Now add
the lines

 20 SOUND 2,-10,160,75
 30 SOUND 3,-6,200,200

and rerun the program. You should now have a shorter and lower

143Making Sounds

pitched beep and a longer higher pitched beep and these two new
tones will be quieter than the first.

Because the three sound channels are independent we can in fact
sound up to three notes at once to produce richer sounds or to produce
musical chords.

The noise channel

Channel 0 is unlike the other three channels because it generates
various ’noise‹ types sounds instead of tones. The SOUND command
to control channel 0 is basically the same as for the other channels but
there are some differences in the way the pitch parameter is used.

Noise is made up from a mixture of sounds with random pitch and
amplitude. When we consider this type of sound the pitch value has
little meaning, except in general terms such as high, medium or low
pitch. In fact for channel 0 there are only eight possible values for P,
which run from P=0 to P=7. Instead of controlling pitch the P term
now selects the type of noise produced.

P values 0, 1 and 2 produce periodic noise of high, medium and low
pitch respectively. This sounds like a rather raspy sort of note similar
to that produced by a buzzer.

P values of 4, 5 and 6 are similar to 0, 1 and 2 except that the noise
produced is white noise. Whereas the periodic noise has a regular
frequency component and produces a rather rough note, white noise
contains a wide mixture of random frequencies and amplitudes. The
effect of setting P=4 is to produce a high pitched hiss which sounds
like escaping steam. The values of 5 and 6 for P produce lower
frequency noise similar to that produced by a radio or television
receiver when it is not tuned to a station.

 100 REM Steam engine effect
 110 FOR N=4 TO 160
 120 D=12-N/4
 130 IF D<2 THEN D=2
 140 SOUND0,-15,4,D
 150 FOR T=1 TO D*120:NEXT T
 160 NEXT N
 170 END

Fig. 9.1. Program to show effect of using white noise.

As an example of the use of white noise we can imitate the effect of

144 BBC Micro Graphics and Sound

a steam engine with the program listed in Fig. 9.1. By adjusting
thetiming rather more realistic results might be produced but this
serves to give a general idea of this type of sound effect.

 100 REM Noise linked to Channel 1 pitch
 110 CLS
 120 PRINT
 130 PRINT"Periodic noise (P=3)"
 140 FOR P=1 TO 200
 150 SOUND1,0,P,5
 160 SOUND0,-15,3,5
 170 NEXT P
 180 PRINT
 190 PRINT"White noise (P=7)"
 200 FOR P=1 TO 200
 210 SOUND1,0,P,5
 220 SOUND0,-15,7,5
 230 NEXT P
 240 END

Fig. 9.2. Program showing effect of noise linked to channel 1 pitch.

When we put P=3 we get a rather interesting effect because
although we still get noise its pitch is governed by the pitch being used
on channel 1. So here we have a variable pitch capability of sorts. In
the short program listed in Fig. 9.2 the effect of this is tried by running
channel 1 up through its pitch range but using an amplitude of 0 so
that only the noise channel is actually heard. At the lower frequency
end the effects are similar to those ofa car engine and this could well
be used to produce car type sound effects for say a road race type of
game. Here the pitch on channel 1 would be related to the engine
speed to get the correct effects as the car speeds up or slows down. As
the pitch of channel 1 becomes higher we find that we now have notes
of much lower frequency than was possible on the other sound
channels. This provides a possible means of extending the range of
sounds down into the bass region. Finally we can use P=7 which
produces a white noise related to the pitch value used on channel 1.

Shaping up the sound

So far we have, by using the SOUND command, been able to produce
a variety of sounds of different pitches and amplitudes. In all of these
sounds, however, the pitch and amplitude have remained constant

145Making Sounds

throughout the duration of the sound. In real life the amplitude and
pitch of sounds actually change as the sound is produced and it is these
changes which give many sounds their own particular character.

At this point we shall introduce the ENVELOPE command which
tends to set the BBC Micro apart from many other personal
computers, because it allows us to control the character of the sounds
that we can produce with the SOUND command. A point to note here
is that the ENVELOPE command by itself does not cause any sound
to be produced and its sole function is to modify the sounds actually
generated by a SOUND command. ENVELOPE is a very complex and
versatile command and its possibilities seem to be limited only by the
imagination and ingenuity of the user. Here we shall explain how it
works and try to show some of the things that you can do by playing
with the values of the ENVELOPE command parameters. Although at
first this command may seem to be very complicated it can be broken
down into a set of relatively straightforward functions.

The actual command has a total of 14 different parameters which
can be set up, and to avoid confusion we shall use the same
abbreviations for these as in the BBC Micro User‹s Manual. The
format for ENVELOPE is

 100 ENVELOPE N,T,PI1,PI2,PI3,PN1,PN2,
 PN3,AA,AD,AS,AR,ALA,ALD

Let us look at them in a little more detail.
The first parameter N is quite straightforward because it is the

envelope number. We can in fact set up as many as 15 different
envelopes and these are identified by this envelope number. When we
wish to use a particular envelope to control a sound the amplitude A
term of the SOUND command is set to the envelope number. So if we
want a SOUND to be controlled by envelope number 2 we would
write the SOUND command as follows:

 SOUIND C,2,P,D

If envelope numbers above 4 are used, this may conflict with the
operation of the filing system, so if files are being used it may be wise
to limit the envelope numbers to the range 1 to 4.

When an envelope is generated it is divided up into a series of short
time intervals or steps. The second parameter T sets up the length of
each step time of the envelope and is measured in hundredths of a
second. The value of T can range from 0 to 127 although there leeml

146 BBC Micro Graphics and Sound

little point in setting T = 0. Generally the value for T will be 1 or 2 for
most purposes.

The next six parameters are concerned with controlling variations in
pitch as the sound is produced. The first three of these (PI1,PI2 und
PI3) determine the rate at which pitch will change during each step
time of the envelope. The other three terms (PN1,PN2 and PN3)
control the number of steps over which the pitch change occurs. This
effectively controls the amount of pitch change produced. We shall
look more closely at these terms later.

The remaining six terms are all concerned with controlling the
amplitude variations and levels and we shall look at these more closely
in a moment.

Attack and decay

The whole character of a sound is governed by the way in which it
builds up in volume and then dies away. The build up of sound is
called the attack and the process of dying away is called decay. The
rate of build up and the maximum loudness as well as the rate at which
the sound dies away can be controlled by the last six terms in the
ENVELOPE command.

-ALA

ALD -

Attack Decay Sustain Release

Fig. 9.3. The amplitude envelope.

Basically the amplitude envelope is divided into four phases, as
shown in Fig. 9.3. The first is the attack phase and in theENVELOPE
command two terms (AA and ALA) control the attack characteristics
of the sound produced. The term AA is the rate of change of amplitude
per step. Note that the amplitude will change at each step whose length
is determined by the term T measured in hundredths of a second. For

147Making Sounds

most purposes we will have set T to 1 so each envelope step is 1/100
of a second. The second attack term is the attack amplitude limit level
ALA which can have values from 0 to 127. Whereas the SOUND
command allowed us only 16 steps of loudness the ENVELOPE
command permits much finer control with its 128 steps.

The values of AA and ALA will actually determine the length of the
attack phase. Suppose we set AA at 2 and ALA at 100, then since each
step produces an increase of 2 it will take 50 steps to reach the ALA
level assuming that the amplitude starts off at 0. If T is set at 1 then
each step is 1/ 100 second so the length of the attack phase will be 1/2
second. The larger we make AA the faster the volume will rise and the
larger we make ALA the louder the sound will be.

The attack step size can be in the range -127 to +127, with negative
numbers indicating a fall in amplitude. This may seem a bit silly but in
fact can be useful if the new sound interrupts a previous sound which
ended with the amplitude still high. For most purposes, however, the
value of AA will be positive. There is little point in using a value of 0
for AA unless you can be certain that a previous sound will always end
with some useful amplitude level.

After the attack phase is completed the operation moves into the
second phase of the ENVELOPE control, the decay phase. Here the
amplitude will usually fall away. As for the attack phase there is a
decay step size AD and a decay limit value ALD. Again the length of
the decay phase will be determined by the rate of decay per step and
the number of steps needed for the amplitude to reach the level ALD.

As with the attack stage the value of AD can be from-127 to +127
but would normally be a negative number. Making AD zero is not
recommended since the phase will tend to go on forever unless ALD
and ALA are equal. A positive value for AD could be used to make the
sound increase perhaps at a different rate from that in the attack phase.
In this case ALD must be greater than ALA. Normally ALD will be
less than ALA.

Following the decay phase there is a third stage in the ENVELOPE
generation called the sustain phase. Here there is only a step size term,
which is between 0 and-127 in value. No limit value is specified but
this phase will end when the amplitude has fallen to zero or
alternatively when the duration time specified in the SOUND
command has run out. This allows the decay to have two different
rates if desired, or it may act as the decay control if the decay phase
were used to increase the amplitude. Finally there is what is called the
release phase which occurs when the note duration specified by the

148 BBC Micro Graphics and Sound

SOUND command runs out and this phase allows any remaining
amplitude to die away to zero. lf there is another SOU ND command
for the same channel waiting to be executed then the sound is cut off
immediately to allow the next sound to be produced. The release phase
may continue after the end of the duration period of the SOUND
command. As with sustain there is only one term (AR) which
determines the step size and it can have values from 0 to -127. This
phase can be useful in terminating notes that are decaying very slowly
or it can be used as a further rate of decay for a sound after the normal
decay and sustain phases. If AR is set at 0 then any sound being
produced at the end of the sustain period will continue indefinitely
unless a new SOUND command is issued for that sound channel.

Now all of this may seem a little complicated at first, so let us look
at a few examples of the ways in which these various ENVELOPE
phases can be used.

Bells and chimes

Let us start by considering the sound produced by a bell or chime. The
actual tone produced is simply a constant note, but the thing which
gives the bell its characteristic sound is the way that the loudness
builds up and dies away. In other words the attack and decay of the
sound.

To produce sound from a bell it is struck by some kind of hammer.
The impact of the hammer causes the bell to vibrate violently and the
sound amplitude rises very rapidly to its maximum level. After being
struck the bell continues to ring and the sound slowly dies away until
all of the energy of the hammer blow has been used up. The resultant
sound envelope is as shown in Fig. 9.4.

ENVELOPE 1,1,0,0,0,0,0,0,126,-1,0,-1,126,0

Fig. 9.4. Envelope for bell and chime type sounds

149Making Sounds

We can emulate a bell sound by arranging that the attack phase of the
envelope is very short and the decay is very slow. This is done by
making AA=126 and ALA also 126 so that the attack phase is just one
1/100 second step. For the decay phase we might use AD at-l and ALD
at 0, giving about 1 1/4, second decay time. The sustain and release
terms might also be set at -1 and in the SOUND term we might set a
duration of say 2 seconds or D=40.

Try the following program and you will see that quite a realistic bell
type sound is produced:

 100 ENVELOPE 1,1,0,0,0,0,0,0,126,-1,
 -1,-1,126,0
 110 FOR N=53 TO 113 STEP 4
 120 SOUND 1,1,N,40
 130 NEXT N

Drums and other instruments

If instead of using a tone channel we had used the noise channel with a
pitch value of 4 and the amplitude envelope ofa bell type sound we
would get a cymbal like sound. Better results are obtained if the decay
rate is increased to about -2 or -3.

If the decay rate is increased to about -10 the effect becomes more
like a side drum. By using pitch number 5 or 6 other different drum
like sounds can be produced. Explosion noises are produced in a
similar way to drum sounds. If a normal tone channel is used with the
rapid attack and with a decay rate of about -5 the effect becomes
similar to that ofa plucked instrument. This noise can also be effective
as a bat meets ball sound for games.

ENVELOPE 1,1,1,-1,0,1,1,200,126,-2,-1,-20,126,60

Fig. 9.5. Envelope for piano type sounds.

150 BBC Micro Graphics and Sound

For a piano type mound the attack is made very fast but a slow
decay to an amplitude level of perhaps 60 is used followed by a zero
change in the sustain period and a fairly rapid decay in the release
phase. This is shown in Fig. 9.5.

For organ and other wind type instruments the attack is rather slow
and decay and sustain may keep the amplitude more or less level
followed bya rapid decay in the release period, as shown in Fig.

ENVELOPE 1,1,0,0,0,0,0,0,50,0,0,-50,126,126
Fig. 9.6. Envelope for organ type sounds.

Fig. 9.7 shows a selection of envelope commands for various types
of instrument sound.

 Side drum

 100 ENVELOPE1,1,0,0,0,0,0,0,126,-10,0,0,126,0
 110 FOR N=1 TO 30
 120 SOUND0,1,4,10
 130 SOUND0,1,4,5
 140 SOUND0,1,4,15
 150 NEXT N
 160 END

 Drum and cymbal

 100 ENVELOPE1,1,0,0,0,0,0,0,60,-2,0,0,126,0
 110 ENVELOPE1,1,0,0,0,0,0,0,126,-4,0,0,126,0
 120 FOR N=1 TO 30
 130 SOUND0,2,6,5
 140 SOUND0,2,6,10
 150 SOUND0,1,4,10
 160 SOUND0,2,6,15
 170 NEXT N

151Making Sounds

 180 END

 Vibraphone

 100 ENVELOPE1,1,1,-1,1,1,2,1,30,0,0,-30,126,126
 110 FOR N=100 TO 180 STEP 4
 120 SOUND1,1,N,10
 130 SOUND1,0,0,2
 140 NEXT N
 150 END

 Woodwind

 100 ENVELOPE1,1,1,-1,0,1,1,0,40,0,0,-40,120,120
 110 FOR N=1 TO 10
 120 READ P
 130 SOUND1,1,P,10
 140 SOUND1,0,0,2
 150 NEXT N
 160 DATA 100,100,116,120,128
 170 DATA 136,144,148,156,164
 180 END

Fig. 9.7. Selection of envelope commands for various types of instrument
sound.

Setting up the pitch terms

Normally when we use the SOUND instruction alone, the pitch of the
note produced remains constant throughout the duration of the sound.
This is of course perfectly adequate for some purposes, such as
producing a beep, but in many cases we will want to be able to vary
the pitch of the note as it is being produced. This could be done by
having a succession of sound commands with different pitch values,
but a better solution is to use the ENVELOPE command to control the
pitch as the note is generated.

For pitch control the ENVELOPE allows three separate periods of
time during which the pitch can be varied. These three segments
follow one another and the length of each segment is determined by
the value of PNI, PN2 or PN3. Each of these numbers gives the length
of that envelope segment in hundredths of a second and each may be a
number from 0 to 255. Fig. 9.8 shows the general idea of the pitch
envelope. Here the pitch rises during the first section, then falls slowly
during the second section and finally rises again during the third
section.

152 BBC Micro Graphics and Sound

Pi1 Pi2

Pi3
Pitch

Time

Pn1 Pn2 Pn3

Fig. 9.8. The pitch envelope.

The rate at which the pitch changes during each section of the
envelope is governed by the numbers PII, PI2, and PI3. These
numbers give the change of pitch at each step in the section of the
pitch envelope. Since the steps are always 1/100 second then it is the
rate of change of pitch per hundredth of a second. If the pitch is
required to rise the PI number will be positive. Negative numbers of PI
causes the pitch to fall during that segment of the envelope. So in our
envelope the PII value will be positive, PI2 will be negative and PI3
will be positive.

 100 REM Siren type sounds
 110 FOR J=1 TO 5
 120 FOR K=2 TO 10 STEP 2
 130 ENVELOPE 1,1,1,-J,1,K*J/2,K,K*J/2,126,0,0,-
100,126,126
 140 SOUND1,1,125,80
 150 SOUND 1,0,0,10
 160 NEXT K
 170 NEXT J
 180 FOR J=1 TO 5
 190 FOR K=2 TO 10
 200 ENVELOPE 1,1,J,-J,0,K,K,K,26,0,0,
 -100,126,126
 210 SOUND1,1,125,80
 220 SOUND1,0,0,10
 230 NEXT K
 240 NEXT J
 250 END

Fig. 9.9. Program to demonstrate siren sounds.

Normally the pitch changes will follow the three stages set up by
the envelope and then the pitch sequence repeats for the rest of the

153Making Sounds

sound duration, assuming that the duration is longer than the time
specified by the pitch envelope. For some sounds, however, we may
want the pitch change pattern to occur once only and this can be
achieved by adding 128 to the value ofthe T term in the ENVELOPE
statement. The pitch then remains at its last value until the duration
specified in the SOUND statement is complete.

Using pitch variations

One obvious possibility of the pitch control is to produce various
kinds of siren type sounds. Try out the program listed in Fig. 9.9 to see
how this works. In all of these only the first pair of PI and PN terms
are used. The pitch step is alternately 1 or -1 and the number of steps
is large to give a large pitch change in most of these effects. By using
a + 1,-1 pitch change per step and perhaps 1 to 5 steps for each pitch
change, a vibrato effect is produced. This is shown by the short
program of Fig. 9.10. Here again it is interesting to experiment with
the size and number of pitch steps. Note that pitch changes of +1,-1
can be applied to the noise channel if a pitch number of 1 or 5 is used,
and this produces interesting results.

 100 REM Vibrato type sounds
 110 FOR J=0 TO 3
 120 FOR K=2 TO 4 STEP 2
 130 ENVELOPE 1,1,1,-J,1,K*J/2,K,K*J/2,
 126,0,0,-100,126,126
 140 SOUND1,1,125,40
 150 SOUND 1,0,0,10
 160 NEXT K
 170 NEXT J
 180 FOR J=0 TO 5
 190 FOR K=1 TO 4
 200 ENVELOPE 1,1,J,-J,0,K,K,K,26,0,0,
 -100,126,126
 210 SOUND1,1,125,40
 220 SOUND1,0,0,10
 230 NEXT K
 240 NEXT J
 250 END

Fig. 9.10. Demonstration of vibrato type effects.

154 BBC Micro Graphics and Sound

For the sound of a bomb dropping, which might be useful in an
arcade type game, the pitch starts high and then runs down over a wide
range. Here only one of the pitch envelope segments need be used, as
shown in the program of Fig. 9.11. By using a similar pitch envelope
with a sharp attack and fairly fast decay of amplitude, a chirping type
of sound can be produced.

The possibilities of using the amplitude and pitch controls provided
by the ENVELOPE command are almost limitless and the best way to
explore the possibilities is just to experiment with a range of different
envelopes and make a note of the parameters when an interesting
sound is produced.

 100 REM Bomb drop, explosion and laser
 110 ENVELOPE1,132,-1,0,0,50,0,0,20,-1,
 -1,-12,126,0
 120 ENVELOPE2,1,0,0,0,0,0,0,126,-1,0,
 -20,126,30
 130 FOR N=1 TO 8
 140 SOUND 1,1,150,30
 150 SOUND 0,0,0,30
 160 SOUND 1,0,0,20
 170 SOUND 0,2,6,20
 180 FOR T=1 TO 5000:NEXT T
 190 NEXT N
 200 ENVELOPE3,129,-2,0,0,40,0,0,126,-1,
 -1,-1,126,0
 210 FOR N=1 TO 10
 220 SOUND 1,3,150,20
 230 FOR T=1 TO 1000:NEXT T
 240 NEXT N
 250 END

Fig. 9.11. Demonstration of bomb drop and explosion noises.

155Making Sounds

Chapter Ten
Making music

Now that we can produce tones of selected frequency or pitch and of
any desired duration, it becomes possible to turn the BBC Micro into a
musical instrument. It can either be arranged to play some
predetermined tune or alternatively we can arrange that the computer
keyboard acts as the keyboard of our instrument so that it can be
played in much the same way as a piano might be played. First,
however, we need to take a brief look at some of the principles of
music.

In music, the tones, or notes as they are usually called, have a
definite relationship to one another. The complete pitch range is
divided up into a series of octaves and each octave contains a set of 12
notes. As we move up in pitch the notes in one octave have
approximately twice the frequency of the corresponding notes in the
next lower octave.

C D E F G A B C'
52 60 88 72 80 88 96 100

56 64 76 84 92 104
C# D# F# G# A# C#

Fig. 10.1. Relationship between notes on a piano and pitch numbers for
the SOUND command over one octave above middle C.

156 BBC Micro Graphics and Sound

The ratio of pitch between two successive notes in an octave is
constant and equal to the twelfth root of 2. The pitch change between
successive notes is called a semitone. If we examine an octave of notes
on, say, a piano as illustrated in Fig. 10.1 it consists of seven natural
notes which are produced by the white piano keys. The natural notes
are labelled A, B, C, D, E, F and G in order of ascending pitch.

Note Frequencv Pitch
name Hertz number
C 262 52
C# 277 56
D 294 69
D# 311 64
E 530 69
F 349 72
F# 379 76
G 592 80
G# 415 84
A 440 88
A# 466 92
B 494 96
C 523 166
C# 554 104
D 587 108
D# 622 112
E 659 116
F 698 129
F# 746 124
G 794 129
G# 831 132
A 880 136
A# 932 140
B 953 144
C 1047 148

NOTE frequencies in Hertz given as nearest integer number.

Fig. 10.2. Musical notes with their frequencies and pitch numbers.

Between these natural notes there are a set of sharp notes which are
a semitone higher in pitch than the adjacent natural note. The sharp
notes use the same letters as natural notes but the letter is followed by
a # symbol. Thus the note C# is a semitone higher than C. Note,
however, that there are only five sharp notes. Most of the natural notes
are separated from the next natural note by a sharp note so the pitch

157

difference between adjacent natural notes is two semitones or a whole
tone. The exceptions are B and E, which have no corresponding sharp
note so the pitch difference between B and C or between E and F is
only a semitone. This rather odd arrangement is called the chromatic
scale and if the natural notes are played in succession we get the
familiar musical scale. Try running the following program which will
generate the scale for the octave starting at middle C.

 100 DIM P%(7)
 110 P%(1)=52:P%(2)=60:P%(3)=68:P%(4)
 =72
 120 P%(5)=80:P%(6)=88:P%(7)=96:P%(8)
 =100
 130 FOR I=1 TO 10
 140 FOR N=1 TO 8
 150 SOUND 1,-15,P%(N),20
 160 SOUND 1,0,0,0
 170 NEXT N
 180 NEXT I
 190 END

In Fig. 10.2 a listing of the note names, frequency in hertz and the
required pitch number for the SOUND command are given for the two
octaves above middle C. In music you will also find references to flat
notes which are a semitone below a natural note. Sharps and flats are
just different ways of labelling the same note so that A sharp, which is
a semitone above A, is the same as B flat, which is a semitone below
B. In written music the flat is denoted by a symbol like a small b
placed after the note, whilst a sharp is denoted by the crosshatch
symbol (#) after the note.

52 60 68 72 80 88 06 100 108 116
C D E F G A B C D E

Fig. 10.3. The treble stave in music showing relations between pitch
numbers and musical notes.

52 48 40 32 24 20 12 4
C B A G F E D C

Fig. 10.4. The bass stave of music and related pitch values for notes.

158 BBC Micro Graphics and Sound

Note that middle C is on the line above the stave, and is equal to the C
below the line on the treble stave.

When notes are written on paper they are usually shown as large
dots with vertical tails drawn on or between a series of horizontal lines
called the slave, and will appear as shown in Fig. 10.3. This diagram
shows the treble stave and indicates the pitch numbers for each of the
notes. A second stave for lower notes is called the bass stave and is
shown in Fig. 10.4.

It will be noted that for each semitone increase in pitch the pitch
number increases by four. Thus most natural notes are eight counts
apart except that B,C and E,F, and the sharp notes are four higher than
their corresponding natural notes. Thus moving to a note a complete
octave higher adds a count of 48 to the pitch value. Musical timing
Apart from the pitch, music also makes use of variable duration of the
notes, organised on a binary system. The basic note length is called a
crotchet and corresponds to a duration of about I0 or roughly half a
second. The crotchet is shown as a black filled circle with a tail.
Shorter notes are the quaver (1/2), semiquaver (1/4) and
demisemiquaver (1/8) which are drawn like crotchets but have one,
two or three ticks on the tail respectively. A longer note is the minim
which is twice the length of a crotchet and is shown like a crotchet but
with the circle not filled in. Finally, there is the semibreve which is
four times as long as a crotchet and is shown with no tail. These note
durations are summarised in Fig. 10.5.

Demisemiquaver

Semiquaver

Quaver

Crotchet

Minim

Semibreve

Ratio Name Duration (D)

1

2

5

10

20

40

1/8

1/4

1/2

1

2

4
Fig. 10.5 Duration of musical notes showing the symbol used, rslative
timing and duration number.

159

Sometimes in written music you may also come across notes with a
dot alongside the note symbol. These notes have the duration
increased by half. Thus a dotted crotchet would have a duration value
of 15 instead of the normal 10.

To make the computer play a tune we can simply set up a data
statement with a pair of numbers, one for pitch and one for duration,
for each note of the tune to be played. To make the computer play the
music, the program simply takes successive values for pitch and
duration and then inserts these into the SOUND statement. This
playing sequence may be a simple FOR-NEXT loop which runs
through all of the notes in the tune. Try running the program listed in
Fig. 10.6 to see how this works.

 100 REM Tune playing program
 110 DIM P%(32),D%(32)
 120 FOR N=1 TO 26
 130 READ P%(N),D%(N)
 140 NEXT N
 150 O%=0
 160 FOR K=1 TO 3
 170 FOR N=1 TO 26
 180 SOUND 1,-15,P%(N)+O%,D%(N)
 190 SOUND 1,0,0,0
 200 NEXT N
 210 SOUND 1,0,0,20
 220 O%=O%+48
 230 NEXT K
 240 DATA 96,10,108,5,96,10,96,10
 250 DATA 108,5,96,10,100,5,108,5
 260 DATA 100,5,88,10,96,5,100,5
 270 DATA 96,5,80,10,96,10,108,5
 280 DATA 96,10,96,10,108,5,96,10
 290 DATA 100,5,108,5,100,5,88,10
 300 DATA 96,5,80,10
 310 END

Fig. 10.6, Program to play a simple musical tune.

Making richer sounds

So far we have tended to use only one sound at a time, but musicians
discovered many centuries ago that by playing two or more different
totes at the same time a much richer and more harmonious sound
could be produced. Not all combinations of notes are successful in his
respect. Some combinations of notes harmonise together to produce a

160 BBC Micro Graphics and Sound

pleasant sound but other combinations will produce a discordant and
harsh result. Understanding the best combinations really requires some
knowledge of musical principles but for our purposes we can perhaps
suggest some possible combinations. First, we can use notes spaced
one octave apart so that the C of one octave is combined with the C of
the next octave above. The higher note has roughly twice the
frequency of the lower note and is therefore the second harmonic. In
the BBC Micro this is easily done since the higher of the two notes
will always have a pitch value 48 higher than that of the lower note.
Other combinations with notes two or more tones above the basic note
will also produce interesting results. To see the effect of adding these
notes, try running the following program. This alternately plays a set
of notes alone and with a second note added

 100 FOR K% = 16 TO 48 STEP 8
 110 FOR J = 1 TO 2
 120 FOR P% = 100 TO 148
 130 A=-15
 140 SOUND 1,-15,P%,10
 150 IF J=1 THEN A=0
 160 SOUND 2,A,P%+K%,10
 170 SOUND 1,0,0,2
 180 SOUND 2,0,0,2
 190 NEXT P%
 200 FOR T=1 TO 1000:NEXT T
 210 NEXT J
 220 NEXT K%
 230 END

Since there are three sound channels, you could modify the program
to add a third note to the combination. It is important, however, to
ensure that SOUND commands for all three channels are used in each
pass through the loop and that the unwanted notes are suppressed by
making their amplitude zero rather than leaving out the SOUND
command. We shall see the reason for this later.

Queueing and flushing

When SOUND commands are processed by the BASIC interpreter in
the BBC Micro the computer does not wait for each sound to complete
before going on to the next instruction. Try running the following
short program.

161

 100 REM SOUND QUEUE
 110 CLS
 120 SOUND 1,-15,110,100
 130 PRINT"NOTE 1"
 140 SOUND 1,-15,120,100
 150 PRINT"NOTE 2"
 160 SOUND 1,-15,130,100
 170 PRINT"NOTE 3"
 180 SOUND 1,-15,140,100
 190 PRINT"NOTE 4"
 200 SOUND 1,-15,150,100
 210 PRINT"NOTE 5"
 220 SOUND 1,-15,160,100
 230 PRINT"NOTE 6"
 240 SOUND 1,-15,170,100
 250 PRINT"NOTE 7"
 260 SOUND 1,-15,180,100
 270 PRINT"NOTE 8"
 280 SOUND 1,-15,190,100
 290 PRINT"NOTE 9"
 300 SOUND 1,-15,200,100
 310 PRINT"NOTE 10"
 320 END

When this program is run you might expect that the messages
"NOTE 1", "NOTE 2", etc., would be printed as each note is
produced. In fact you will see that the first six PRINT statements are
executed almost immediately whilst the first sound is being generated.
When the first note ends, the PRINT statement for note 7 is printed
and then a new PRINT occurs as each sound completes.

When the first SOUND command occurs it is executed immediately
and the program goes on to process the following PRINT command.
When the second SOUND request for channel 1 is reached, the sound
generator is busy producing the first note. To avoid holding up the
program this new SOUND command is accepted and placed in a
queue in memory and program execution continues with the following
PRINT statement. Further SOUND commands may be added to the
queue as they occur. In the BBC Micro the queue for each sound
channel can hold up to four SOUND commands. Whilst the queue is
filling, the computer continues to execute its BASIC program and just
pushes SOUND commands on to the queue. When the queue is full the
computer will wait at the next SOUND command. When the first
sound completes, the next in the queue is executed automatically. The
commands in the queue now shuffle up and a new command can be
entered at the end of the queue so the computer can move a little
further through its program. In the program you will see that when the

162 BBC Micro Graphics and Sound

first note ends, the message "NOTE 7" is printed indicating that a new
SOUND command has been accepted and placed in the queue.
Similarly the messages for notes 8, 9 and 10 will appear as earlier
notes in the queue are completed.

One problem with this queuing scheme is that if you want to
produce a sound in response to some event, such as pressing a key on
the keyboard, the queue scheme is inconvenient. If there are already
some SOUND commands in the queue then the new sound will not be
produced until these have been dealt with. There is, however, a way to
overcome this problem. The BBC Micro provides a facility which
allows any commands already in the queue for a sound channel to be
cleared out or flushed so that the new SOUND command is executed
immediately.

Earlier we mentioned that the channel number parameter did more
than just select a channel. In fact the parameter C is a four-digit
hexadecimal number with digits H, S, F and N. We have already used
the last, or least significant, digit N, since this is the channel number.
The other three digits are:

 SOUND &HSFN

Here the F digit is used to flush the sound queue. Under normal
conditions where F=0 nothing happens to the orders in the queue and
they are processed in sequence. If F=l then all existing SOUND orders
in the queue are cancelled and the new order is executed next.

To see how this works change the SOUND statement at line 2610 to
the following:

 260 SOUND &11,-15,180.100

Now when the program is run the first note sounds and the first six
messages are printed. After the first note has ended, the messages for
notes 7,8,9 and 10 will appear and the sound for note 8 is generated
followed by notes 9 and 10. In this case notes 2 to 7 were flushed out
of the sound queue when the statement for note 8 was read by the
computer.

When the flush order or the digits H or S of the C parameter in the
SOUND command are used, the C value is preceded by the & sign to
indicate that the number is hexadecimal.

This technique of flushing the sound queue is useful when we make
use of the computer keyboard as a musical keyboard. As soon as a new
key is pressed for a different note then any notes that may be in the
sound queue are flushed out so that the new note starts immediately.

163

Another application for flushing is in games, where there may be some
more or less continuous background sound but when a hit is scored or
some other event occurs we want to interrupt the sound and introduce
some new sound such as an explosion or perhaps a victory or defeat
tune. Sometimes when flushing the sound queue we may want to
allow the current sound to complete before starting the new note. This
is where the H digit of the C parameter comesinto play. Normally H is
0 and if the queue is flushed the current sound being generated is also
terminated. If H is set at 1 then the current sound will go on to
completion. Note that if H is set at 1 then all four digits of the C term
must be included, so that if we want to flush channel 1 and complete
the current sound the command becomes

100 SOUND &1011,A,P,D

Chords and synchronisation

We have seen that combining two tones together produces a richer
sound. This technique is used regularly in music where the
combination of two or three notes played together is called a chord. To
play a chord the two or three notes of the chord are generated at the
same time by producing each note from a different channel of the
round generator.

The sound queue system can cause problems when we are playing
chords, since each sound channel has its own queue and these operate
independently of one another. All would be well if, say, we were
playing pairs of notes and there were the same number of notes from
each channel, since the queues of notes for the two channels will be
equal in length and the pairs of notes will move along the two queues
in step. In music, however, we find a mixture of chords and single
notes following one another. In this case one channel may rave a
different number of notes in its queue. When a single note is played
from, say, channel 1 there is no corresponding note in the channel 2
queue, but the sound generator will simply produce the next note in
that queue which will in fact be one of the notes for the text chord. At
this point the two channels will get out of step and within a very short
time chaos will reign. Obviously we need some scheme that will keep
the two queues of notes in step, even when here are single notes
between the chord notes in one queue. One possible approach to this
problem would be to insert dummy notes into the second queue. These

164 BBC Micro Graphics and Sound

dummy notes would have zero amplitude and the same duration as the
corresponding note in the first queue, Now the two queues will step
along together and the chord notes will be played together as required.

The alternative technique for keeping the queues in step is to use
some method of marking the notes in the two queues that have to be
played together. Now whilst queue 1 plays any single notes in the
sequence the second queue waits. This can be achieved on the BBC
Micro by using the synchronisation (S) digit in the channel code
number of the SOUND command. In this case the S digit acts as a
label and effectively marks those notes in the channel 1 queue which
have to be played with a note from the channel 2 queue. In fact the
common notes in both queues are marked with an S digit of 1. Notes
to be played singly in the channel 1 queue are marked with S = 0. Now
as the notes are played, if the S value in channel 1 is 0 the channel 1
note is played but the channel 2 queue is held in position and no sound
is produced on channel 2. When an S value of 1 occurs in channel 1
the note will not be produced until a corresponding note with S = 1 is
available for channel 2. Looking at this a different way, the channel 2’s
sound queue will wait on the channel 1 queue and will only produce a
note when there is a note marked with S = 1 in the channel 1 queue.

The synchronisation process can be extended to cover three or even
four notes by setting the S value of the notes to be played together to 2
or 3. The S digit will in fact tell the sound generator how many other
notes with that same flag number it has to wait for before the chord is
sounded.

Making a keyboard instrument

To turn the computer into a playable instrument we can allocate keys
on the keyboard to musical notes and the logical arrangement is to
select a layout similar to that on a piano. In the program listed in Fig.
10.7 the keys Q to @ are used for the natural notes and correspond to
the white keys on a piano. The number keys 2,3,5,6,7,9 and 0 are used
for the sharp notes and correspond to the black piano keys. The
relative positions of the black and white keys is the same as for a
piano keyboard.

By using INKEY with a negative argument it is possible to find out
if a particular key on the keyboard is being pressed. This command,
unlike the normal INKEY function, actually reads the state of the keys
on the computers keyboard. To find out which key is being pressed,

165

each of the keys used is tested in turn by INKEY (-K%(N)) in a loop.
When the key is being pressed the result of the test is -l but otherwise
the result is 0. The key codes K% are initially read in as an array using
READ and DATA statements and a READ loop. A second array F% is
also set up and this is used to store the opposite of the last state of each
key. The INKEY result for each key is compared with the state of its
flag F%(N) to see if there is any change. If not, the loop goes on to the
next key. Thus at the start all F% values are set to 0 which is the state
from INKEY when the key is pressed. If the key is pressed then its F%
is changed to -l so that following INKEY commands, check to see if
that key has been released.

 100 REM Musical keyboard instrument
 110 DIM K%(32),F%(32)
 120 MODE1
 130 PROCDISPL
 140 FOR N=1 TO 32
 150 READ K%(N)
 160 F%(N)=0
 170 NEXT N
 180 O%=48
 190 E%=1
 200 ENVELOPE 1,1,0,0,0,0,0,0,126,-1,0
,-1,126,0
 210 ENVELOPE 2,1,0,0,0,0,0,0,126,-1,-1,
-5,126,80
 220 ENVELOPE 3,1,1,-1,0,1,1,0,20,0,0,-
20,126,126
 230 ENVELOPE 4,1,0,0,0,0,0,0,50,-1,0,-
10,120,90
 300 REPEAT:FOR N=1 TO 32
 310 IF INKEY(-K%(N))=F%(N) THEN PROCSN
D
 320 NEXT N:UNTIL 0
 340 END
 500 DEFPROCSND
 510 IF F%(N)=0 SOUND &1011,0,0,0:F%(N)
=-1:GOTO 560
 520 IF N>29 THEN O%=48+48*(N-30)
 530 IF N>22 AND N<27 THEN E%=N-22
 540 IF N<23 THEN SOUND 1,E%,O%+4*N,-1
 550 F%(N)=0
 560 ENDPROC
 600 DEFPROCDISPL
 610 MOVE 120,500
 620 PLOT1,1040,0
 630 PLOT0,0,300
 640 PLOT1,-1040,0
 650 VDU5
 660 FOR J=1 TO 13

166 BBC Micro Graphics and Sound

 670 PLOT1,0,-300
 680 READ N$,S$
 690 PLOT0,24,-16
 700 PRINT N$;
 710 PLOT0,-56,316
 720 IF S$=" " THEN 800
 730 PLOT0,-16,48
 740 PRINT S$;
 750 PLOT0,-36,-48
 760 PLOT0,0,-100
 770 PLOT81,40,100
 780 PLOT81,0,-100
 790 PLOT0,-20,100
 800 PLOT0,80,0
 810 NEXT J
 820 PLOT1,0,-300
 830 VDU4
 840 PRINT TAB(0,20)"f8=Normal"
 850 PRINT"f9=One octave higher"
 860 PRINT
 870 PRINT"f0=Bell":PRINT"f1=Piano"
 880 PRINT"f2=Woodwind":PRINT"f4=Organ"
 890 PRINT"f5=Electronic"
 900 PRINT:PRINT"PLAY NOW"
 910 ENDPROC
 920 DATA "Q"," ","W","2","E","3","R"
 930 DATA " ","T","5","Y","6","U","7"
 940 DATA "I"," ","O","9","P","0","@"
 950 DATA " ","[","^","_","\"
 960 DATA 17,50,34,18,35,52,20,36
 970 DATA 53,69,37,54,38,39,55,40
 980 DATA 56,72,25,57,121,41,33,114
 990 DATA 115,116,21,117,118,23,119,120

Fig. 10.7. Program to convert the BBC Micro into a simple keyboard
instrument.

When a change of key state occurs the program goes to a procedure
which interprets the key action and sets up the sound generator
operation. On entry to the procedure the value of the loop count N
indicates which key has changed state. If the current state F%(N) of
the key is 0 then the key has just been pressed and a new note must be
started. The pitch of the new note is calculated by simply multiplying
N by 4 and adding this to a fixed number representing a note one
semitone lower than the first note on the keyboard. In this case the
reference value is 48 which corresponds to the B below middle C. By
setting the keys up in the correct sequence in the test loop, all notes
will now have the required pitch. The note duration is set at -I so the
note will sound until it is cancelled by a new SOUND command.

167

Function keys f8 and 19 are used to select two alternative octaves
for the keyboard. Function keys f0 to f5 are used to select different
envelopes for the sound and will give the keyboard a selection of
different voices, such as bells, organ, piano and a vibrato effect.

168 BBC Micro Graphics and Sound

Index

actual colours, 72
aircraft landing program, 134
all round viewing, 130
amplitude envelope, 147
amplitude of sounds, 141
animated man, 111
animation, 104
arcs, drawing o£ 24
arrow keys, use of, 13
attack phase, 147

background colour, 44, 46, 92
background colour numbers, 46
bar charts, 55, 116
bell type sounds, 149
bomb dropping sound, 155
bouncing ball, 106

chime sounds, 149
circles, drawing of, 23, 26, 28, 34
circular plots, 123
circular scales, 65
CLG command, 45
clock displays, 64
CLS command, 45
collisions, detection of, 108
colour bit allocation, 72
COLOUR command, 39
colour control codes, 91
colour 511, 46
colour, inverted, 76, 81
colour, logical, 72
colour mixing, 83
colour numbers, 72
colour palette, 71
colour switching, 74
colours, normal set of, 41
contiguous graphics, 98
continuation of sounds, 164
crotchet, 159

cymbal sound, 150

decay phase of sounds, 147
dials, drawing, 64
diamonds, drawing of, 33
display memory, 8
display modes, 6, 7
dot matrix for text, 5
dotted lines, 82
double height symbols, 99
DRAW command, 12
drawing scales, 53
drawing solid bars, 120
drum type sounds, 150
duration of sounds, 143
engine sounds, 145

ENVELOPE command, 148
erasing objects, 79
explosion sounds, 150
filling with colour, 46
flashing symbols, 98
flat notes, 158
flushing of sounds, 161
foreground colour numbers,

GCOL command, 41, 76
graph axes, 62
graph drawing, 61
graphs scientitic, 62
graphs three axis, 115
graphics colour, 41, 95
graphics coordinates, 10
graphics cursor, 10, 53
graphics hold, 100
graphics pixel, 5
graphics release, 101
graphics symbols, 4, 90, 95
graphics window, 50

hexagon drawing, 19
hit detection in games, 108
interpolation. 62
inverted colours, 81

kaleidoscope, 49
keyboard instrument, 165

line drawing, 12, 82
linking the cursors, 53, 112
logical GCOL operations, 77

making new symbols, 109
memory requirements. 8
minim, 159
mirror image patterns, 48
moiré patterns, 43
mosaic graphics, 5, 90, 95
MOVE command, ll
moving ball, 105
moving sector display, 68
multiple bar charts, 57
music, chords in, 161, 164
musical octave, 156
musical scale, 158

natural notes, 157
new symbols, making, 109
noise channel, 144

organ sounds, 151

palette, 72
periodic noise, 144
perspective, 121
perspective equations, 125
perspective scaling, 126
piano sound, 151
pie charts, 59
pitch envelope, 153
pitch, setting up, 142
pitch values for music,157
pitch variations, 151, 154
pixel graphics, 5
PLOT command, 32, 46, 81, 84
plotting single dots, 64
polygons, drawing of, 21, 30, 34
projection of 3D views, 126, 132

quadratic equation method, 26
quaver, 159

queueing of sound commands, 161

rectangle drawing. I8
relative coordinates, 32
release phase of sounds, 148
ribbon patterns, 42
rotation equations, 28, 36
rotation of figures, 36
rubber band drawing, 86

scales, drawing graph, 52
scaling. 34
scrolling of text, 113
semibreve, 159
semitones, 156
separated graphics, 98
sharp notes, 157
siren sounds, 153
sketching program, I3
SOUND command, 140
sound generator, 139
sound queue, 161
special symbols, creation of, 109
squares, drawing, 15
steam engine effect, 144
stretching, 34
surface maps, 123
sustain phase of sounds, 148
symbol space, 4
synchronisation of sound, 164

TAB function, 9
teletext background, 92
teletext mode, 89
text colour, 39, 91
text cursor, 9, 53
text window, 50
text with graphics, 53
thermometer display, 52
three axis graphs, 115
translation of points, 131

varying noise pitch, 145
VDU19 command, 73
VDU23 command, 110
vibrato effects, 154
video display, 3

white noise, 144
windows, 49
wire frame models, 130

