CHAPTER 2
A MODEL ADVENTURER

The Plan

The first stage in writing an adventure is the making of a plan with the
layout and labelling of the rooms with a system of numerical values for the
objects in each room along with the room number and name:

N
[21]
Outside
of Ship

1 I
18 20 12
[e] " [] [12]
Observation —— Lock
Point (LOCKED— (siléaéa
(WINDOW) __ DOOR)
(BOULDERS)
| 1
[27] 5] R) IR FE1
Repairs | Bright! 1 1 Areawith | Besijieesa
Room gty Dimly Lit aHole in -
(WIRE) Coloured Room Passage the Ceiling Monolith
(AERIAL) (MAGNIFIER) (HOLE) (INSCRIPTION)
r T T T (SWARCK)
|
9 7 8
|_ Signal |_ R fl_
Padded —— Transmitter —— oom o
w Cell Room Chains E
(HEADPHONES)__ (TRANS— __ (ROUGH—
MITTER) METAL)
| 1 | 1
6 2 I 1 I FEY [as]
Wall Place
with Scratches Géllqpovl\)/der " with a Rocky Muddy Frozen
onit amber Floor Area Room
(SCRATCHES)— (GRENADE) __ (GLOVES) (MUD—MAN) __ (ICE—BLOCK)
| 1 | 1
R El]]
L Lock-
Winding ~ — _Bell Smiths
i Tower
Staircase BELL (KEY—CUTTER)
(TorRCH) __ (BELL) (SHINY—
KEY)
| 1

1 I
1
Prison

Cell
(DOOR)

As can be seen from the diagram, the names of the rooms are given along
with the room number for each room, and the objects associated with the
individual rooms are placed in brackets inside the room square.

Although the method for numbering rooms may at first appear not to be
logical, therooms arein fact in alogical order. Room “1” iswhere the player
starts from, and room “2” is the first room that can be entered from this
room. Rooms “5” and “6” are to the right and left of room “4” — | give
preference in numbering to north then south then east and then west. | build
up the numbering system by looking for the room with the smallest
numerical value which has an exit, or exits, to an unnumbered room, or
rooms (numbering is done in the above priority). The above method works
because rooms beside each other have the lowest possible difference
between their numerical values — this is a key feature, especialy in larger
adventures, in the movement between rooms, which is dealt with later in this
chapter.

If this seems a little confusing, then the step by step process for deciding
the numerical values for the rooms in the given example is as follows: the
only exit from room “1” is room “2”, and the only unnumbered room from
room “2" is room “3”. From room “3”, the only yet unnumbered room, is
room “4”. However, from room “4” there are two unnumbered rooms, the
eastern being numbered first as room “5”, and the western second as room
“6". At this point, the lowest numbered room isroom “5”, and the only room
off this room without a number is labelled room “7”. Room “6” is a dead
end, so no further rooms may be numbered from this room. Room “7” is
another room which has two unnumbered rooms off it, the eastern being
labelled room “8”, and the western, which is a dead end, is labelled room
“9”. From room eight, there are two rooms yet to be numbered — the
northern is designated room “16”, and the southern, room “11”. The room
with the lowest numerical value here, with other rooms off it wanting
numbers, isroom “1”, and rooms “12”, “13", and “ 14" are to the north, east,
and west of it — rooms “12” and “13" are both dead ends. After dealing
with room “16", the next room to be dealt with is room “11” : the rooms
south and east of this room are two more dead ends, and are numbered with
“15" and “16” respectively. After this fairly complex branching, the only
room |eft that is not a dead end, with a yet unnumbered room off it, is room
“14”, and the room off this, is given the next number, which is “17”. Two
rooms reguiring numbers are north and west of room “1 7, and are labelled
with “18” and “19”, the latter being a dead end. Off room “18” is room “ 2fl”
to the east, and off room “2fj” to the north is the final room, room “21”.

WORKING OUT OF THE DISPLAY

1) Display of the Room Name — Type in the following lines into your
computer (if you own a computer other than the BBC Micro, then see
Chapter Four for conversion notes):

30 A=1
150 CLS
160 RESTORE
1310 DATA Prison cell, Bell tower, Winding staircase, Gunpowder
chamber, Place with arocky floor,Wall with scratches onit,
Signal transmitter room, Room of chains, Padded cell, Area
with ahole in the ceiling, Muddy area,Altar
1320 DATA Place beside a monolith, Dimly lit passage, Locksmiths,
Frozen room, Brightly coloured room, Observation point,
Repairs room, Air lock, Outside of ship

Variable “A” contains the room number for the adventure (i.e. the room
in which the character is situated), and is defined as being equal to “1” in
line
3a

In line 150 the screen is cleared.

Line 160 “restores’ the data pointer to the beginning of the first item of
data in the program, so that the next item of data read will be that after the
first time that “DATA” appears in the program.

Line 300 isa FOR/NEXT loop which counts along the first items of data
until the number in “A” is reached; when this number is reached, it returns
with the name of the room corresponding to it, and this name is then
stored in the variable “A$".

Line 310 has the job of printing out “A$’, the name of the room. “VDU
31,0,3” moves the cursor three lines down from the top of the screen, and to
the first character in the line — this is necessary on the BBC Micro, since
the first line or two is sometimes off the television screen. “CHR$130” isa
control code which tells the computer to print in green aphanumerics —
the semi-colon allows “A$’ to be printed directly after the control code.

Lines 1310 and 1320 are the first two lines of data in the adventure
listing, and they contain the twenty-one room names, each of which may
have a corresponding valuein “A”.

If you are wondering why the program line numbers above are in
irregular jumps, this is because there are lines omitted between the given
lines which have functions other than the display of the room name. When
the program at this early stage is run, the name of the first room (since “A”
egualsone) is printed at the top of the screen.

When you are asked to type in more lines of the program, then do not
delete any existing lines of program, for the new lines will add to those

6

already there, and you will gradually see the program grow in both size and
complexity. The complete listing of this program is given in Chapter Three
for those people who may wish to type in the program all at the one time. If
you do not come under this category, then it will allow you to make a
reasonably quick check to see if you have missed out any of the line
numbers in the sections, or even complete section which you will have to
typein.

2) A Display of the Exits from the Rooms — Type in the following program
lines:

320 PRINT’ CHR$131"Exits:- ";:RESTORE 1330:FOR C=1TO
A:READ D:NEXTC:IF D<>0 PRINT":North:";
330 RESTORE 1340:FOR C=1 TO A:READ D:NEXTC:IF D<>0

PRINT":South:";

340 RESTORE 1350:FOR C=1 TO A:READ D:NEXTC:IF D<>0
PRINT":East:";

350 RESTORE 1360:FOR C=1 TO A:READ D:NEXTC:IF D<>0
PRINT":West:";

1330 DATA 1,0,1,0,2,0,0,2,0,2,-3,0,0,0,-4,0,1,0,0,1,0
1340 DATA 0,-1,0,-1,0,0,-2,3,0,-2,4,-2,0,0,0,0,0,-1,0,0,-1
1350 DATA 0,0,-1,1,0,-2,1,0,-2,3,5,0,0,-4,0,0,-3,2,-2,0,0
1360 DATA 0,1,0,2,-1,0,2,-1,0,4,0,0,-3,3,0,-5,2,0,0,-2,0

The above routine is the first of several fairly complex routines which |
use when writing an adventure.

Line 320 prints out “Exits:-" in yellow aphanumerics. The apostrophe
after “PRINT” tells the computer to go onto the next line down on the
screen. The semi-colon after the final inverted commas allows the possible
exits to be printed directly after this on the same line. The data pointer is
then restored to line 1336, which contains the data for any movement north.
The FOR/NEXT loop counts along the line of data until it reaches “A”, the
room number, and stores the corresponding number, from the list of data, in
the variable “D”. If there is an exit north, then “D” will not equal zero, and
so “:North:” will be printed out — the semi-colon after thisis used so that if
there are any other exits from the room, then they will be printed on the
sameline.

Lines 330 340, and 350 have a similar function as line 320 — they do
not, however, print out “Exits:-” again — and instead of dealing with the
direction north, the instead deal with the directions, south, east, and west.

Hence line 1340 contains the data for movement south, line 1350 holds the
data for movement east, and line 1360 has the data for the direction west.

You may be wondering why the data statements hold various numbers
other than zero, some of them being negative. Thisis so that the computer
will know which room to go to, depending on whether it has been told to go
north, south, east, or west from a particular room. However, at this stage of
the program it is only necessary to know that if the value corresponding to a
movement in one direction from a certain room is zero, then there is no exit
from the room in that particular direction.

3) A Display of the Objects in the Rooms — Type in the following lines of
program:

360 PRINT' ' CHR$132"Objects:- ";

370 H=0:RESTORE 1370

380 FOR G=1TO 22:READ C$:IF E(G)<>A OR H=4 NEXT G
ELSE PRINT":":C$;":"::H=H+1:IF H<>2 NEXTG ELSE
PRINT' CHR$132" "NEXTG

1370 DATA GRENADE,ROUGH-METAL, SHINY-KEY, ICE-

BLOCK, GLOVES, SABRE, AERIAL, TORCH,
HEADPHONES, MAGNIFIER, LOCKED-DOOR, BELL,
SCRATCHES, KEY-CUTTER, HOLE, TRANSMITTER,
WINDOW, MUD-MAN, WIRE, INSCRIPTION, BOULDERS,
SWARCK

However, it is necesary to enter the following lines as well at his stage
so that the variables for the objects are initialised, thus preventing any
errors from occurring:

20 DIM E(22)
30 A=1.T=0:W=0:RESTORE 1390:FOR B=1 TO 22:READ
E(B):NEXTB
1390 DATA 4,8,22,16,5,12,22,3,9,17,20,1,2,6,15,10,7,18,11,19,13,22

I will deal with the initialisation of the variables for the objects first. The
location of each object is governed by the values in the dimensioned
variable of “E”, which is set to be able to hold twenty-two valuesin line 20.
“SWARCK” is a twenty-third objects, and it is in fact a magic word; it
therefore cannot at any point be printed out in aroom as an object, and so it
does not require alocation.

Line 30 istyped out again, but in addition to letting “A” equal one, there
is aroutine for setting the values in the dimension of “E”. Firstly, the data
pointer is restored to the line of data in line 1390. Next, there is a FOR/
NEXT loop from one to the number of objects, which, in this case, is
twenty-two. The computer then reads each of the values in the data

8

statement, and stores them in the corresponding values of “E”. Hence E(1)
will equal four, E(2) will equal eight, E(3) will equal twenty-two, and so on.

It should be obvious from the above information that most of the
numbersin “E” are between one and twenty-one for them to correspond to
the appropriate room numbers of the rooms that the objects are in. The
reasons for an object having a value which is not between one and twenty-
one are as follows: firstly, if the number equals twenty-two (one more than
the number of rooms), then that particular object has not yet been brought
into the game, and will be brought into it later on; similarly, if an object is
to be removed from the game, its value in the dimension of “E” will be set
to equal twenty-two. If the number in the dimension of “E” equals zero,
then the corresponding object is being carried by the player, and if the
number equals negative one, then something extra will be attributed to the
object in addition to it being carried. For example, a “TORCH” will have a
value of zero if it is being carried and if it is also lit, then its value will be
negative one.

Now the printing of the objects in a room can be dealt with. Line 360
prints “Objects:-” in blue aphanumerics, the two apostrophes putting the
cursor down two lines before printing, and the semi-colon allowing the
names of the objects to be printed on the same line.

Line 370 sets the variable “H” equal to zero, and restores the data
pointer to line 137 — “H” will contain the number of objects in the room,
and line 1370 contains the data for the names of the objects in the
adventure.

Line 380 works out if an object is in the same-room as the adventurer,
and if so, this object is printed out on the screen. This routine is based
around a FOR/NEXT loop from one to twenty-two, twenty-two, as
previously stated, being the number of objects. Each of the twenty-two
object names are read and stored in C$, and if the value in the dimension of
“E” for that object is not equal to “A”, the room number (the object is
therefore not in the room), or if “H” equals four (there would already be
four objects printed out, and so no more would be printed under this
category), then the computer goes back for the next object — when the last
object is reached the computer continues with the rest of the program. On
the other hand, if the object is in the room and there is space to print it out,
then the machine does so, incrementing the value in “H” before going back
for the next object. If C$ equals “GRENADE” (assuming that it is also in
the room and there is space to print it), then “PRINT” :C$;” " will print
out ““GRENADE:". The semi-colon allows the next object to be printed on
the sameline, but if there have been exactly two objects already printed out,
then there will not be enough room for a third object to be printed on the
same line, and as the cursor is moved onto the next line and spaces are
inserted so that the third object is printed under the first object.

9

4) A Display of the Constant Inventory — The inventory is printed out in a
similar manner as the objects. However, there are less lines to be typed in
here since the dimension of “E” has already been assigned values, and the
data for the object names need not be typed in a second time for the
inventory —the lines that do have to be typed in are as follows:

390 PRINT' ' CHR$133"Inventory:- ";

400 F=0:RESTORE 1370

410 FOR G=1TO 22:READ C$:IF E(G)<>0 AND E(G)<>-1 OR
F=4 NEXTG ELSE PRINT":":C$;":"::F=F+1:IF F<>2 NEXTG
ELSE PRINT' CHR$133" "NEXTG

Line 390 prints “Inventory:-" in magenta al phanumerics after putting the
cursor two lines down the screen — from now on | will no longer refer to
the use of the apostrophe and the semi-colon, since you should by now
realise their usesin the program.

Line 400 sets variable “F equal to zero, and restores the data pointer to
line 1370 — “F’ will contain the number of objects being carried, and line
1370 contains the data for the object names.

Line 410, like line 386, is built around a FOR/NEXT loop which covers
the numbers between one and twenty-two for each of the objects concerned.
The difference between the two categories lies in that it is the objects that
are being carried that have to be printed out, and not the objects in the
room. Again, C$ contains the room name, and “G” contains the object
number. Thistime, if the value in “E” is not equal to zero (the object is not
being carried), and it is also not equal to negative one (the object is not one
which is carried and has a special attribute), or if four objects are already
printed out (if “F’ equals four), then the computer goes back for the next
object. The rest of this part of the program is virtualy the same as for line
386 apart from that the variable “F’ is concerned instead of the variable
“G”, magenta aphanumerics are printed instead of blue alphanumerics, and
adifferent number of spaces are required to put the third object in its correct
place.

5) A Display of the Input Line — This is the final aspect of the initial
display. Although the computer asks for an input, the replies to whatever is
inputted will be dealt with later on in this chapter. The relevant lines for the
input are as follows:

420 VDU 31,0,13,134:PRINT"[- - - === === === === — = —

430 VDU 31,0,17,134:PRINT"[~ === === ———————————

440 INPUT"Command?"B$
450 CLS:VDU 31,0,19,130

Line 420 moves the cursor to the first column and thirteen lines down
from the top of the screen and prints CHR$I34, making the rest of the
characters in the line become cyan in colour (“VDU” is more versatile than
“PRINT”, initscontrol of various things to do with the screen although it is
very similar in function — “PRINT” is used in most cases when printing
things on the screen since its function is easier to understand). A line of
minus signs is then printed on the screen with side arrows at each end
which point away from the centre of the screen.

Line 430 is the same as line 426, with the exception that the line of
minus signs in this case is printed seventeen lines down from the top of the
screen, instead of fourteen. The cursor is then moved to the fifteenth line,
and the colour of the characters on that line are set to white.

Line 440 asks for the input of a command, and stores whatever is typed
in, in the variable’B$‘. The two preceding lines of program cordon off
(above and below) the line on the display which asks for the command.

Line 450 clears the screen and moves the cursor down to the nineteenth
line, setting the character colour as green, ready for the printing out of the
replies to whatever has been inputted.

WORKING OUT A ROUTINE SO THAT THE CHARACTER CAN
MOVE FREELY BETWEEN ROOMS

The next stage in the adventure, now that the djsplay has been taken care
of, is the movement between rooms. It is necessary for the character to be
able to move in the directions implied by the “Exits’ from the room, and if
adirection is typed in which is not implied, then “No exit” will be printed
on the screen. The following lines containing the routines for movement
“North”, “South”, “East” and “West”:

550 IF LEFT$(B$,1)<>"N" THEN 560 EL SE RESTORE
1330:FOR C=1 TO A:READ D:NEXTC:IF D=0 THEN 600
EL SE 590

560 IF LEFT$(B$,1)<>"S" THEN 570 EL SE RESTORE 1340:FOR
C=1TOA:READ D:NEXTC:IF D=0 THEN 600 EL SE 590

570 IF LEFT$(B$,1)<>"E" THEN 580 EL SE RESTORE 1350:FOR
C=1TOA:READ D:NEXTC:IF D=0 THEN 600 EL SE 590

580 IF LEFT$(B$,1)<>"W" THEN 610 EL SE RESTORE
1360:FOR C=1 TO A:READ D:NEXTC:IF D=0 THEN 600
ELSE 590

11

590 A=A+D:GOTO 160
600 PRINT"No exit!":GOTO 160
610 M=0:N=0:0=0

The data lines 1338 to 136{ the ones regarding movement, and they have
aready been entered in the routine to print out the exits from a room. The
main use for these lines of data will now be described.

Line 550 firstly checks to see if the inputted direction is north, and if
not, it goes on to the next program line, which is line 560. However, if the
direction entered is north, then the data pointer is restored to line 1330 and
the value corresponding to movement north from the room “A”, isread into
the variable “D”,in the FOR/NEXT loop. If the value in “D” equals zero,
then there is no exit to the north, and so the computer jumps to line 60,
where “No exit” is printed on the screen; there is then another jJump which
isback to line 6} to refresh the display for the room.

If there is an exit to the north then the value in “D” will not equal zero,
and the computer will jump to line 596. At this line, the value in “D” is
added to the value in “A”, and the result stored in “A”, so that the variable
“A” eguas the room number of the room which lies to the north of the
room from which the direction was commanded. For instance, when one
goes north from room “11” to room “8”, thevauein“D” will equal “-3" —
this value of -3 is then added to “A”, which equals “11”, so that the fina
value of “A” will be “8", for “11 + (-3)=8". In short, “D” contains the
number that must be added to “A” so that the new value of “A” corresponds
to that of the room immediately north of that room corresponding to the
previous value of “A”. The computer then jumps to line 166 to refresh the
screen display.

Lines 560, 570, and 580 perform the same function as line 550, except
that they instead operate for south, east, and west respectively, and use the
data in lines 1340, 1350, and 1360 the , which correspond to these
movements.

Lines 590 and 600 have been explained with line 55} ; line 610 is put in
here so that a “no such line” error does not arise — if a direction is not
typed in when the program is running at this stage, then the computer will
jump to line 610 from line 580. The computer would become confused if it
did not find this line, so it is just put in to keep the machine happy. In this
ling, the variables “M”, “N”, and “O” are defined as being equal to zero.

12

WORKING OUT ROUTINESFOR A RESPONSE TO THE INPUT
AND CODING IN NUMERICAL VARIABLES, OF THISINPUT

1) Commands — The first word of the two-word command to be entered is
the actual verb, or command. The following routine works out the number
of the inputted command from a line of data at line 1380, and stores the
value in the variable “M” — there is aso an error trap if the command
entered is not recognised by the computer. The program lines are:

470 IF LEFT$(B$,3)="WEA" OR LEFT$(B$,3)="EXA" OR
LEFT$(B$,3)="SAY" THEN 610

620 RESTORE 1380:FOR I=1 TO 16:READ CS$:IF
LEFT$(B$,3)=C$ M=l

630 NEXT I:IF M<>0 THEN 650

640 PRINT"I do not understand you.":GOTO 160

650 PRINT M

1380 DATA GET,DRO,WEA KIC,RIN,REA,CUT,EXA KIL,LIG,

OPE, THR,SAY,TAK,UNL,LOO

Line 470 checks for those commands which start with the letters “N”,
‘S, "B, or “W”, jumping to the “COMMAND” routine directly, and
bypassing the movement routine if such a command is found; if it is a
recognised command which starts with any of these four letters, then there
is no need to bother about the movement routine. However, if it is not a
registered command, then it is interpreted as a direction, for if the first letter
of acommand typed inis“N”, “S’, “E”, or “W”, itisread by the movement
routine to be one of these four directions, and hence a line is required to
check that no recognisable commands are mistaken for directions.

In line 620 the data pointer is restored to line 1380, where the command
names are stored. Note that it is the first three letters of each command that
are stored in this line, so that only the first three letters of each command
need to be typed in when playing the game. After this, there is a FOR/
NEXT loop which reads each name in the data for command names,
comparing each name with the first three letters of the inputted command. 1f
the two correspond, then “M” is given the value, as a number betwen one
and sixteen, for the command — the range of possible values for the
commands will vary for different adventures.

Line 630 contains the NEXT statement of the FOR/NEXT loop, and
checks to see whether or not “M” equals zero, for if no command has been
matched with that inputted, them “M” will still contain the value of zero, as
assigned in line 610. If “M” does not equal zero, then the computer goes on
to line 650 for the routine to match up the object entered, which will be
dealt with after this— at the moment the value in “M” is printed out on the
screen in line 650, showing that the command number has been correctly

13

matched, once the computer has gone through the routine; this line will be
overwritten by the next routine.

If no command has been matched with that entered, then the computer
will continue onto line 640 where “I do not understand you” is printed on
the screen; there is then ajump to line 168 to refresh the screen format.

Line 130 contains the data for the commands, but to avoid confusion
about what the commands are in full and what their functions are, then ook
up Appendix |. At present, the computer should be able to accept any
command that it recognises, and convert it into a numerical form in the
variable “M”. If it does not understand the command, then it should tell
you.

2) Objects — The second word in the two-word command is an object —
this is what the verb, or command, acts upon. The object is also assigned a
numerical value, depending on what it is; the value is then stored in the
variable “O”. Thereis, as usual, a method for trapping possible errors. Type
in the following lines:

650 RESTORE 1370:D$=RIGHT$(B$,3):FOR J=1 TO 23:READ
C$.C$=LEFT$(C$,3)

660 FORK=4TO 12:IF LEFT$(D$,1)<>" " AND
C$=MID$(D$,2,3) N=1

670 IF C$=MID$(D$,2,3) 0=J.K=12:3=23:GOTO 680 EL SE
D$=RIGHT$(B$,K)

680 NEXT K:NEXT JIF O<>0 THEN 690 ELSE
PRINT"Pardon?":GOTO 160

690 IF N=1 PRINT"Learn to type."' CHR$130;

700 PRINT M,0

In line 650, the data pointer is restored to line 137J, where the object
names are stored. D$ is set equal to the first seven characters of B$, minus
the first three characters. There then follows the first part of a FOR/NEXT
loop which encloses a good part of the next few lines. Each object isin turn
read from the list in line 1370, and the first three letters are stores in C$;
this means that only the first three letters of each object need be typed in as
well as for each command.

A routine is not required to find the object name in the entered string, for
the command may have contained more than three letters, and so the
computer has to look for where the object name starts; this is done with a
FOR/NEXT loop in the lines 660 to 686. The computer initially checks to
see if a space has been missed out by accident between the command and
the object, and then checks to see if this object is valid. “D$" initialy
contains the four charactersto the right of the second character in “B$’, and

14

acheck is made to seeiif the first of the four charactersis not a space. If this
is so, and the next three characters are the first three characters of an object
name, then a space has been missed out, and “N” is set equal to one. If the
object name has not been found, then the fourth character onwards is taken
of “B$” and so on, until “K” equalsten, whichisasui ly high number so
that the length in characters of a command will not mask what the object is.
When “K” equals ten, the computer jumps back for the next object and
continues with it.

If the object name matches up with that typed in, then “O” is set equal to
the object number, depending on the value of “J" in the FOR/NEXT loop. If
the computer comes out of this loop without having recognised your object,
then “O” will equal zero, and “Pardon?’ will be printed out before thereis a
jump back to line 168. If an object has been matched up, then “K” is set
egual to twelve, and “J’ is set equal to twenty-three, so that the computer
will not have to continue through the loops unnecessarily.

If “N” equals one — a space was missed out between the command and
the objet — then in line 690, “Learn to type” will be printed, although the
computer will still recognise your command and object.

In line 700, the values in “M” and in “O” are printed after the routines,
since both commands and objects have been gone through, and the inputted
command and object have been recognised. This allows one at this stage to
check that these words have been correctly recognised. This line will be
overwritten by another routine later on.

THE FILLING FOR THE ADVENTURE

Now that values have been assigned to variables for the inputted
command and object, it is necessary for these values to be enacted upon. In
doing so, problems are formulated for the adventure player to solve by
inputting the relevant words. An adventure should be filled with problems
to which there are logical solutions — each room should have at least one
function apart from being smply a passage, athough in some cases no
functions suitably coincide with the room name, and so it just remains a
“link” room. This is probably the hardest part of writing adventures, since
there are often many cross references which must be dealt with, and so it is
necessary to gradualy build up the actual adventure from the skeleton
adventure, to which it has so far been built up to.

There now follows a number of program lines which contain the replies
which are most frequently used when replying to commands which have
been entered — each of these lines contains a PRINT statement with the
relative information insid uotation marks, and this is followed by “GOTO
160" which makes the eomputer jump back to refresh the display:

15

720 PRINT"I cannot do that.":GOTO 160

730 PRINT"O.K.":GOTO 160

740 PRINT"I am carrying too much.":GOTO 160
750 PRINT"I do not see it here.":GOTO 160

760 PRINT"I am not carrying it.":GOTO 160

770 PRINT"I do not see aplaceto put it.":GOTO 160
780 PRINT"I do not have them.":GOTO 160

790 PRINT"I do not see them here.":GOTO 160

When the above lines are typed in no apparent difference can be seen
since the routines which use these lines have not yet been dealt with. The
first of these routines is the ability to pick up objects, or “GET” them. Type
in the following lines:

700 ONM GOTO 800

800 IFO>10THEN 720
810 IFF=4THEN 740

830 IFE(O)<>A THEN 750
840 E(0)=0:GOTO 730

In line 700, if “M” equals one, then the computer will jump to line 800
— “GET” isthefirst command. However, if “M” has any other value, then
the computer will break out of the program with an “ON range” error, since
it has interpreted the entered command and has found nowhere to go with it;
it then becomes confused and returns to the command mode. This means
that while the program is running and all the commands have not yet been
dealt with, the only commands that can safely be entered are those which
have already been covered — the computer would be unable to provide a
reply to such commands which cause these errors at this stage anyway. Line
700 will be updated every time another command is dealt with.

Line 800 checks to see whether an object is moveable or not. It iswise
to have all moveable objects below a certain value, and those which are not
moveable should be above that value to help separate them from each other;
although this may work in theory, in practise it is hard to have such a fine
line separating them, for at one point an unmoveable object may be dealt
with, and at another point, one which can be moved may be dealt with, and
so there is a tendency for an intermingling of the objects as the object
vocabulary is deadt with. An example of an unmoveable object is a
“DOOR”, and an example of amoveable object isa“TORCH”.

Line 810 sees if four objects are already being carried, for the variable
“F” contains the number of objects which are being carried by the player. If
the player is unable to carry any more, then the computer will make a jump
to line 740 to print out the relevant information depending on what the
situation is.

16

In line 830, if the value in the dimension of “E” for the variable “O”
does not equal the room number — the object is not in the same room as the
player — then a jump will be made to line 756 to print out a reply to this.
An object may only be picked up if the conditions are met to enable it to be
picked up.

The value in the dimension “E” for the variable “O” is set equal to zero
line 840, for since the conditions have been met, the player is alowed to
carry the object he/she wanted to pick up. There is then ajump to line 730
for the affirmative “O.K.” to be printed on the screen.

The next command to be analysed is “DROP’, which allows the player
to drop an object, which has been picked up, in a room — not necessarily
the room in which it was picked up. The lines that need to be typed in for
this command are:

700 ON M GOTO 800,850

850 IF E(0)<>0AND E(O)<>-1 THEN 760
860 IFH=4THEN 770

870 E(O)=A:GOTO 730

If the command inputted is “DROP”, then “M” will contain the value of
two, and so the computer will go to line 856 from line 786, since 856 is the
second number in the “ON M GOTO” statement.

Line 850 checks to make sure that the object is being carried. Remember
that an object may be carried under normal circumstances, or else it may
have a specid attribute, like a lit “TORCH”, for example; hence it could
have its value in “E” equa to zero or negative one. An object must be
carried before it may be dropped, and so if it is not being carried then the
computer jJumps to line 700 to say so.

If there are already four items in the room then “H” will equal four, and
one would not be able to drop anything else in that room until something is
picked up, and if thisis the case, a jump is made in line 860 to line 770. “|
do not see a place to put it” would then be printed before the screen format
is updated.

In line 870 the value in “E” of “O” is set equal to the room number so
that if the player moves to another room, the object dropped would remain
in the room in which it was dropped. The computer ends up by going to line
730 for aresponse in the affirmative.

Now that the more general commands of picking things up and dropping

them down again, have been dealt with, the more specialised commands can
now be covered — | will deal with them in the order in which they appear

17

in the program. The first of these commands is “WEAR” which allows the
adventurer to wear any objects that are suitable for wearing; in this
adventure two objects which may be worn are the “GLOVES’ and the
“HEADPHONES'. The following lines add this command to the commands
“GET” and “DROP”’, and the commands of movement:

700 ON M GOTO 800,850,880

880 IF O<>5AND O<>9 THEN 720

890 IF E(O)=-1 PRINT"I am already wearing them.":GOTO 160
900 IF E(O)<>0 THEN 780

910 E(O)=-1:GOTO 730

The line number for the third command is added to line 7 so that when
“M” equals three — i.e. the command is “WEAR” — the computer jumps
to line 880 to check the context at that stage of the adventure and decide
what should appear on the screen as aresullt.

Line 880 selects which objects are allowed with the command “WEAR”;
remember that “O” contains the object number. Only objects five and nine
— the “GLOVES’ and the “HEADPHONES' — will be accepted. If any
other object is typed in then the computer will jump to line 720, rejecting
this object.

Line 890 checks to see if the object is aready being worn, for if the
command had been typed in previously for the “GLOVES’ or the
“HEADPHONES’ they would aready have the specia attribute of being
worn, and the value corresponding to them in “E” would equal negative
one. This line is inserted to provide a conformation that the object is being
worn.

If the object is not being carried at al, then this is taken care of in line
900, for if this is the case the “E” of “O” would not equa zero, since the
possible value of negative one for carrying an object has already been dealt
with. It therefore follows from this that it is only possible to wear an object
if itisfirstly in one's possession.

Once the parameters have been met, the value in “E” of “O” can equal
negative one giving the special attribute to the object. There is then a jump
for areply in the affirmative.

The fourth command on the list is “KICK” which forms the first real
problem to be met by the adventurer, for in the first room, a prison cell, the
only exit is through a door, and the problem lies in how to go through it.
After fumbling about with various verbs, the adventurer may finally come
across “KICK” — what else would you do to a door once you have become
really frustrated with it? The following lines should enable you to try
kicking the door yourself:

18

540 IFLEFT$(B$,1)="N" AND E(12)=A PRINT"The door isin the
way.":GOTO 160

700 ON M GOTO 800,850,880,920

920 IF O<>12 THEN 720

930 IFE(O)<>A THEN 750

940 E(0)=22:PRINT" The hinges were weak and the door has"
CHR$130"collapsed into a pile of dust.":GOTO 160

Line 540 is positioned before the movement routines so that no
movement north can be made until the “DOOR” has been removed. The
first character of the input is taken, and if it equals “N” for north along with
“E” of twelve, the number corresponding to the object “DOOR”, equalling
the room number that the adventurer is in, then “The door is in the way”
will be printed out. The only room that the door can be found in, is the first
room, and so if it is there then “E(I12) = A”, where “A” has to equal one.
There is then a jump to refresh the display, and the provision for movement
is not allowed.

The line number corresponding to “M” equalling four isline 920, and in
this line, any other object than “DOOR” will be rejected, since no other
object has the value twelve.

In line 930 the computer makes sure that the door has not already been
removed, for if “E” of twelve does not equal one — from the above “O”
must equal twelve, and “A” must be one — then the “DOOR” is nowherein
sight and need not be bothered with.

Once the conditions have been satisfied, the “DOOR” is put out of
action by setting its “E” vaue to be twenty-two, the number one greater
than the number of room in the adventure. An explana;tion is then given for
the disappearance of the door before the computer returns to the main
program for the next command and object.

The next command | will deal with is “READ”, for | intend to leave out
“RING” until later asit concerns a possible death for the adventurer, and al
the deaths will be deat with later on. The purpose of the command
“READ” is to read information which is available for reading by the
adventurer. In the model adventure it is possible to read “SCRATCHES’
and also an “INSCRIPTION”. However, when reading the latter object it is
necessary to have a “MAGNIFIER” in your possession, for otherwise “The
writing is too small too read” will be printed out. Anyway, type in the
following lines of programme:

700 ON M GOTO 800,850,880,920,720,980
980 IF O<>14 AND O<>21 THEN 720

19

990 IF A=6 THEN 1020 EL SE IF A<>13 THEN 790
1000 IF E(10)<>0 PRINT"The writing is too small to read.":GOTO
160

1010 PRINT"The magicword is' swarck' .":GOTO 160
1020 PRINT" A transmitted signal will allow a door"CHR$130"from
the' air lock' to be opened.":GOTO 160

Since the sixth command is dealt with before the fifth, the line number
corresponding to “M” equalling fiveisline 720 — at thisline, “I cannot do
that” is printed out — and this will be changed when “RING” is finally
brought into the vocabulary. If “M” equals six then the computer will jump
to line 980

In line 980 al other objects apart from “SCRATCHES’ and
“INSCRIPTION” will be rejected since no other object can be read.
“SCRATCHES’ will have its value in “O” as fourteen, and
“INSCRIPTION” will have this value equal to twenty-one.

The next line, line 990, checks to make sure that the adventurer isin a
position to read the objects and therefore be in the same room as the
objects. If “A” equals six then the computer jumps to line I{ 2 fl to deal with
what the “SCRATCHES’ say, and any other value than thirteen, which is
the room number of the “INSCRIPTION” will be discarded.

If the “MAGNIFIER” is not in the possession of the adventurer, then
“E” of ten will not equal zero, and hence the “INSCRIPTION” will not be
read. However, if* thisis carried, then the “magic word” will be divulged —
what has to be worked out when playing the game is what this word should
be used for, but that will be covered |ater.

The seventh command is “CUT”, and in this adventure, this alows a
piece of “ROUGH-METAL” to be “CUT” into a “SHINY-KEY” provided
that a “KEY-CUTTER” is in the room. However, in other adventures,
“CUT” may have different uses, but thisisthe first time that | have used, or
seen use of, this particular use of the command “CUT”. When writing an
adventure you may find considerable pleasure in thinking up plausible and
original uses of commands. | only have this one use of this command in this
adventure, and thisis detailed below:

700 ON M GOTO 800,850,880,920,720,980,1030
1030 IF O<>2 THEN 720
1040 IF E(O)<>0 THEN 740
1050 IF A<>15 PRINT"I see no place whereit can be cut.":GOTO
160
1060 E(2)=22:E(3)=0:PRINT" The piece of metal has been cut into
a'CHR$130"key.":GOTO 160

20

Line 700 is again repeated, but this time it has an extra jump, on the
condition that “M” equals seven, to line 1030. In line 1030, if the object is
not the “ROUGH-METAL” — “O” would not equal two — then the action
would be rejected.

The computer then checks to see if the “‘ROUGH-METAL” is being
carried, for if it is not being carried then it cannot be cut. If “E” of “O” does
not equal zero then this object is not being carried.

Next, the machine makes sure that the player isin the same room as the
“KEY-CUTTER”, for if there is nowhere in sight where a key can be cut,
then there is no way that it can be done. Therefore, if this is the case, then
the action is dismissed.

In line 1060, once the conditions have been met, the “ROUGH-
METAL” is removed from the game and the “SHINY-KEY” is brought into
the possession of the player — “E” of two is set equal to twenty-two, and
“E” of threeis set equal to zero. The appropriate result is then printed on the
screen before the computer returns for the next command.

The next and eighth command is “EXAMINE” which allows the
adventurer to see something in greater detail. In this adventure, if a
“WINDOW” is examined, then the reply that a spacecraft can be seen
outside and is ready to take off, will be printed out. Thisis quite a versatile
command which may reveal objects that were otherwise not visible to the
player, but this use of it is not detailed in this adventure. Type in the
following lines:

700 ON M GOTO 800,850,880,920,720,980,1030,1070
1070 IF O<>16 AND O<>18 THEN 720
1080 IF A=10 THEN 1100 ELSE IF A<>18 THEN 750
1090 PRINT" A space ship can be seen outside. It is'CHR$130"ready
to take off.":GOTO 160

Line 700 adds the line number 1070 to the list of GOTO lines, and this
corresponds to “M” equalling eight. If any other object than the
“WINDOW” isinputted, then it will be rejected in line 1070. If the window
is not in sight — the adventurer is not in the appropriate room — then the
action would be regjected this time in line 1080. Finally, in line 1090, the
result to the command would be printed out about the space ship.

Command number nine is “KILL” which may be useful if any nasty
creatures are in your way. Although you may not always be allowed to kill
things, a “MUD-MAN?” in this adventure may be killed, but to do so it is
imperative that the “SABRE” is carried, for otherwise it will kill you, but

21

that will be dealt with later on. The necessary lines are:

700 ON M GOTO 800,850,880,920,720,980,1030,1070,1110
1110 IF O<>19 THEN 720
1120 |F E(O)<>A THEN 750
1130 PRINT"You have killed the mud-man.":E(0)=22:GOTO 160

Line 700 adds the ninth possible line number to the list, thus catering for
the possibility of the valuein “M” being nine. Line 1110 makes sure that no
other object than the “MUD-MAN” is allowed, and it also certifies that the
“SABRE” is being carried. There is a check to make sure that the
adventurer isin the same room as the “MUD-MAN” inlinell20, and in line
1130 the “MUD-MAN?” is removed from the scene by letting “E” of “O”
equal twenty-two. The result is then printed on the screen before a jump to
refresh the display.

The next command is “LIGHT” which allows the adventurer to light, for
example, a “TORCH” or a “LAMP" — a “TORCH” is used in this
adventure — and so enable the player to move about without stumbling into
anything in the dark. In the “Dimly lit passage” adventurers must carry alit
“TORCH” or else meet their fate; type in the lines below to alow this
implement to be lit:

700 ON M GOTO 800,850,880,920,950,980,1030,1070,1110,1140
1140 IF O<>8 THEN 720
1150 IFE(O)=-1 PRINT"It isaready lit.":GOTO 160
1160 IF E(O)<>0 THEN 760
1170 E(O)=-1:PRINT"Itisnow lit.":GOTO 160

Line 700 adds line 1140 as the tenth line number for the computer to
jump to, since “LIGHT” is the tenth command. The machine makes sure
that no other object than the “TORCH” is accepted in line 1140, and in
1150, a check is made to see whether or not the “TORCH” has already been
lit or not, and if it has not, then the computer will go on to the next line. If
the “TORCH” is not being carried then it cannot be lit, and so this would be
rgected in line 1160. Inline 1170 “E” of “O” is set equal to negative one to
show that it has the special attribute of being lit. The appropriate reply is
made before returning for the next command.

The eleventh command is “OPEN”, which allows a“L OCKED-DOOR”,
or a“BOX”, or some similar object to be opened, but here, the only object
that may be opened is the “LOCKED-DOOR”. Since there is aready a
“DOOR”, the prefix “LOCKED-" is put in front of the word “DOOR” to
form another object by the name of “LOCKED-DOOR”. The program lines
are:

22

700 ON M GOTO 800,850,880,920,720,980,1030,1070,

1110,1140,1180

1180 IF O<>11 THEN 720

1190 IF E(O)<>A THEN 750

1200 IF E(3)<>0 PRINT"I have no key.":GOTO 160

1210 E(O)=22:E(22)=20:PRINT"The door came away in your
hands,but" CHR$130"the exit is now blocked by
boulders™ CHR$130"which had been behind the door.":GOTO
160

The line number corresponding to “M” equalling eleven is added to the
list of line numbersin line 76. This line number, line 1180, makes sure that
no other object than the “LOCKED-DOOR” is allowed. Line 1190 checks
to see that the player is in the same room as the “LOCKED-DOOR” and in
a position to open it, provided that he/she is carrying the “SHINYKEY”
(this is checked for in line 1200). Now that the conditions have been met,
the “LOCKED-DOOR” is removed from the scheme, but the
“BOULDERS’ are brought into the action.

The next commands is “THROW” which alows an object to be thrown,
the object in this adventure being a "GRENADE”. However, in other
adventures, a popular use of this command is the “THROW” a“ROPE" —
this “ROPE” would then attach itself to asui le point high up and become
climbeable; another way of manipulating a “ROPE” in this fashion would
beto“TIE"ittoasui le point, but instead of being able to climb up, one
would be able to climb down. Now return to the typing:

700 ON M GOTO 800,850,880,920,720,980,1030,1070,
1110,1140,1180,1220
1220 IF O<>1 OR E(22)<>A THEN 720
1230 IF E(O)<>0 THEN 760
1250 E(1)=22:E(22)=22:PRINT" You have cleared a passage through
the" CHR$130"boulders.":GOTO 160

Line 700 addes the line number for the twelfth command, “THROW”, to
the list of line numbers. In this line to which the computer may jump, a
check is made to see that it is the “"GRENADE” that is being thrown, and
that the player is beside the “BOULDERS’ and therefore in a position to
clear a passage through them. The next line, line 1236, makes sure that the
“GRENADE” isbeing carried, for if it is not, then it cannot be thrown. Line
125J removes the “GRENADE” and the “BOULDERS’ from he scene
before printing out the ap ropriate result.

23

“SAY” is acommand which alows a player to say a magic word which
could perform an action which would otherwise be impossible for the
player to make. One use of saying such a word could be to reveal a hidden
exit from a room, but the use for it in this adventure is to move the player
from the outside of the space ship into it and make it take off, provided that
the player is outside the spacecraft to begin with. The following lines alow
this command to be entered while the program is running:

700 ON M GOTO 800,850,880,920,720,980,1030,1070,
1110,1140,1180,1220,1260
1270 IF A<>21 PRINT"Nothing happens.":GOTO 160
1280 PRINT" You have materialised inside your
ship"CHR$130"which has immediately taken off."
1290 END

Line 700 adds, as usual, another line number to the list — the line that it
addsisline 126} for the thirteenth command. This line, which the computer
may jump to, checks to seeif the right object, which is the magic word “SW
ARCK?”, has been entered. The only other condition that has to be met is
that the player is in the right room, and this is dealt with in the next line.
The result is printed out and the program ends in line 1290; this will be
changed later on as there will be a provision for a score for playing the
adventure.

The last three commands on the list are “TAKE”, “UNLOCK”, and
“LOOK”, which act as alternatives to the commands “GET”, “OPEN”, and
“EXAMINE” — it is useful in an adventure to have several commands
which perform the same task since the player would then have a choice of
commands, and would be able to choose the commands which he/she
prefers to use. For example, one may prefer using the command “GET” to
the command “TAKE”. The only line that needs to be typed in is an update
of line 700:

700 ON M GOTO 800,850,880,920,720,980,1030,1070,
1110,1140,1180,1220,1260,800,1180,1070
Note that the last three line numbers correspond with those for the

commands “GET”, “OPEN", and ‘EXAMINE”, since “TAKE",
“UNLOCK?”, and “LOOK?™" are aternatives to these commands.

The next feature of the adventure is the provision of various deaths
which may be encountered by the adventurer. The first death that | will deal

24

with is the one which concerns the command “RING” which has been
missed out until now. The player is tempted to “RING” a“BELL” which is
in one of the rooms — what else would one do with a bel? This is,
however, a red herring, and the noise from the “BELL” aggravates the
inhabitants of the maze, and they kill the player who then has to start again.
Thefollowing lines detail the routine:

700 ON M GOTO 800,850,880,920,950,980,1030,1070,
1110,1140,1180,1220,1260,800,1180,1070

710 VDU 23;11,0;0;0;0,31,6,23:PRINT" Press space to start
again:IF INKEY$(50)="" VDU 23;11,255;0;0;0:GOTO 30
ELSE VDU 31,6,23:PRINT" "IF
INKEY $(50)="" VDU 23;11,255;0;0;0:GOTO 30 ELSE 710

950 IF O<>13 THEN 720

960 IFA<>2 THEN 750

970 PRINT"You have woken the dead who do not
like"CHR$130"you too much.":GOTO 710

Line 700 is repeated for the last time with the line number corresponding
to “M” equalling five and the command being “RING”. In line 950, where -
the machine would jump to, any other object than the “BELL” would be
rejected. In the next line the computer then checks to see if the player isin
the same room as the “BELL”. Line 970 the prints out the reason for the
player’s death, and then jumps to line 710 which is the main part of the
death routine.

The first part of line 710 with the assortment of humbers after the VDU
statement removes the flashing cursor from the screen, and moves this now
invisible cursor to the position on the screen twenty-three lines down and
six lines aong. “Press space to start again” is then printed out at this
position — the computer waits for the space bar to be pressed, and if it is
pressed within the time limit then the flashing cursor will be restored, and
the machine will jump back to line 38 to start the game again. If the time
limit ends, however, and the space bar has not been pressed, then the
message is blanked over, and another time limit is set. The net effect of this
is to have the message flashing On and off on the screen until the
appropriate condition has been met, and then there will be a jump to the
aforementioned line number.

The next few line numbers concern other deaths which are concerned
with What commands and objects are typed in. Deaths concerning other
situations will be deat with after all the routines pertaining to the
commands have been attended to. The line numbers for the remainig deaths
directly related to the comnands are as follows:

25

1070 IF O<>16 AND O<>18 THEN 720

1080 IFA=10 THEN 1100 ELSE IF A<>18 THEN 750

1100 PRINT" Something large has fallen through the"CHR$130"hole
and flattened you.":GOTO 710

1240 IF E(9)<>-1 PRINT" The noise from the explosion has
burst"CHR$130"your ear drums.The shock of this
has" CHR$130"killed you.":GOTO 710

Thefirst of these deaths occurs if one examines a“HOLE” in the ceiling
of one of the rooms, for something large would then fall out of the hole and
flatten the player. Line 1070 makes sure that no other object than the
“HOLE" or the “WINDOW?” is examined, and if it is the “HOLE” that is
examined, then the appropriate message will be printed out before thereis a
jump to line 710 for the player to start again.

The second and last of these deaths is when the “GRENADE” isthrown
at the “BOULDERS’, for if the “HEADPHONES’ are not worn, then the
shock of the noise from the explosion will result in death; if “E” of nine
does not equal negative one, then there will be no specia attribute of the
“HEADPHONES’ being worn. The result is printed out and the player will
have to start again.

Another routine concerning the commands, but not with the death of the
adventurer, is when he/she wishes to pick up a block of ice. The condition
for doing this is, however, the wearing of a pair of gloves. The following
line should be included in the “GET” statement;

820 IF O=4 AND E(5)<>-1 PRINT"It istoo cold to carry.":GOTO
160

This line checks, first of al, to see if the object entered is the
“ICEBLOCK?”, and then makes sure that the “GLOVES’ are being worn. If
the conditions are not met then this object cannot be picked up in line 840.

When the player finishes the adventure then it is a good idea for a score
to be given along with the best score obtained, and so the next few lines
deal with this:

10 X=0
30 A=1:W=0:RESTORE 1390:FOR B=1TO 22:READ
E(B):NEXTB

190 W=W+1
1290 Y=120-W:IFY>X X=Y
1300 VDU 31,0,16,131:PRINT"Score=";Y;" Best
Score=":X:GOTO 710

26

Line 10 sets the variable “X” equal to zero, for this will contain the next
best score for the game, and must be at the lowest score possible at the
outset of the game, and therefore at zero. In line 30, the variable “W” is set
equal to zero. This variable contains the number of moves made in the
adventure, and this is incremented by one every time the computer passes
line 190.

The score for a particular game is contained in the variable “Y”, and this
is evaluated in line 1290 as the number “120” minus the number of moves
made. If the present score is better than the best score, then it become the
new best score in this same line. The next line prints out the relative scores
before jumping to line 710 to restart the game for the player to try and
better his’her score.

Now that all the routines pertaining to the commands in the main routine
have been dealt with, | will now dea with another command which does
not require an object. This routine is placed before the movement routines,
and corresponds to the command “TRANSMIT” which allows a signal to
be transmitted. This signal will open up an entrance to an “air lock”, but
several parameters are required before this may be done, although these will
be discussed below these lines which are relevant to this routine:

30 A=1:T=0:W=0:RESTORE 1390:FOR B=1 TO 22:READ
E(B):NEXTB

250 IFA=7 AND E(7)=7 PRINTCHR$130"The transmitter is fully
operational ."

260 IFE(4)=7
E(4)=22:T=1:E(7)=19:E(20)=22:PRINTCHR$130"The
transmitter has cooled down," CHR$130"but it does not have an
aeria."

280 IFA=7 AND T=0 PRINTCHR$130"The transmitter is
overheating."

510 IFLEFT$(B$,3)<>"TRA" THEN 540

520 IFA<>7 OR E(7)<>7 THEN 720

530 T=2:PRINT" An entrance has appeared into the
" ar"CHR$130"lock' .":GOTO 160

To begin with, the variable “T” is set equal to zero in line 30. This
variable controls the state of operation of the transmitter. When this
contains its Origina value of zero, then the transmitter is in a state of
overheating, and so Whenever one is in the appropriate room, then the
message, as detailed in line 280, will be printed out.

However, wh the “ICE-BLOCK” is dropped in this room, then “E” of

four will equal seven, and the transmitter will be cooled down, the ice will
be removed from the scheme since it will have taken in the heat from the

27

transmitter and melted The piece of “WIRE” in room number nineteen is
replaced by the “AERIAL”, and the variable “T” is set equal to one — the
transmitter is now working apart from it requiring the aerial as stated in line
260 of the adventure.

For the transmitter to be in a state of full operation, the “AERIAL” must
be in the correct room, as checked for in line 250. The only thing now for
the player to do is to transmit the signal. The entered command is checked
in line 510, and if it does not correspond, then the computer goes onto the
next routine. The machine then makes sure that the player is in the right
room to transmit, and that the aeria is in that room. Now that all the
conditions have been met, the variable “T” is given the value of two to
show that the entrance has been revealed. Once this action has been made,
there is then ajump back for the next command.

It is necessary for the players to be alowed to “QUIT” if they consider
their relative positions to be desperate. This is quite an easy routine, for if
the user simply types out the first three letters of the command “QUIT”,
then there is a jump to line 71fl to restart the game. This is another
command that does not require an object, and only the one line of program
given below need be typed in:

460 IF LEFT$(B$,3)="QUI" THEN 710

There often arise several instances in adventures when the player is not
allowed to go in certain directions for particular reasons. The two instances
in this adventure are contained in the next two lines:

490 IF (LEFT$(B$,1)="N" OR LEFT$(B$,1)="S" OR
LEFT$(B$,1)="E") AND E(19)=A PRINT"You cannot pass the
mud-man.":GOTO 160

500 IF T<>2 AND A=18 AND LEFT$(B$,1)="E" PRINT"You
cannot passintothe' air lock' .":GOTO 160

If the mud-man is in the same room as the adventurer then no movement
is allowed until this mud-man has been removed from the scene. The only
way of removing the mud-man is by killing it with the “SABRE”. If the
signal has not been transmitted from the “Signal transmitter room” then “T”
will not equal two. If this is the case and the player tries to go east from
room eighteen then this will not be allowed until the signal has been
transmitted.

There are two deaths which concern the room in which the adventurer is
in and what is being carried. The first requires the “SABRE” being carried
in the presence of the mud-man, or else death will result. The other has the
need for carrying the lit “TORCH” in the “Dimly lit passage” or else the

28

player will fall down a hole in the poor light. Type in the following two
fines:

270 IFA=11 AND E(6)<>0 AND E(19)=A PRINT"A mud-man has
just killed you.":GOTO 710

290 IFA=14 AND E(8)<>-1 PRINTCHR$130" You have fallen into
aholeinthe” CHR$130"dim light.":GOTO 710

Line 270 must have the player not carrying the “SABRE” in the
appropriate room, and the mud-man must be in that room before death will
result. Line 290 requires “A” equalling fourteen, and “E” of eight not
equalling negative one — the “TORCH” would not have the special
attribute of being lit —before the adventurer iskilled.

The one form of death left to be dealt with is the running out of time. In
this adventure the player is alowed 120 moves in which to complete it
before the planet, on which the player is situated, blows up. Various
warnings are given depending on how many moves have been made. Once
12 moves have been made, the adventurer has to start again. The lines to be
typed in are asfollows:

190 W=W+1:IF W>20 AND W<40 PRINTCHR$130"A rumbling
sound can be heard."
200 IFW>39 AND W<60 PRINTCHR$130"The noise is becoming

louder."

210 IF W>59 AND W<80 PRINTCHR$130"The ground is starting
to shake."

220 IFW>79 AND W<100 PRINTCHR$130"I' d advise you to get
out quickly."

230 IFW>99 PRINTCHR$130"The roof is caving in."
240 IF W=120 PRINTCHR$%$130"The planet has blown up.":GOTO
710

After the incrementing of the variable “W”, the computer checks for
values between twenty and forty, printing out the message if the value in
“W” lies within these limits. If not, then the computer may find a
corresponding value and message in the next few lines, but if “W” has the
value of 12fl, then there is no hope for the player and death results.

TIDYING UPTHE PROGRAM

1) Full Instructions — When writing programs, full instructions are
necessary in most cases, since anyone loading a certain program would be
able to work out the basis of the program without too much confusion. The
adventure is no exception, athough most of the instructions are taken up
with a storyline of the situation in which the adventurer isin before starting
the game. The following lines contain the instructions for this adventure:

29

40 CLS:PRINT' ' ' CHR$129"Do you want the instructions(Y or N)
?':Z$=GETS$:IF Z$="N" THEN 150 ELSE IF Z$="Y" THEN
50 EL SE 40
50 CLSPRINT' ' ' CHR$130" You have been captured by creatures
on"CHR$130"an uncharted planet."
60 TIME=0:REPEAT UNTIL TIME>400
70 PRINT' ' CHR$131" Unfortunately the planet happens to
be'CHR$131"unstable,and has been evacuated."
80 TIME=0:REPEAT UNTIL TIME>400
90 PRINT' ' CHR$132"You therefore have to escape before
the"CHR$132"planet blows up with you on it."
100 TIME=0:REPEAT UNTIL TIME>400
110 PRINT' ' CHR$133" The computer has afairly large
number'CHR$133"of commands,so therefore if one
command"CHR$133"does not work then try another."
120 TIME=0:REPEAT UNTIL TIME>500
130 PRINT' ' CHR$134"Thefirst three letters of each
command"CHR$134"and object need be typed
in,athough,if"CHR$134"desired,the full word may be entered."
140 TIME=0:REPEAT UNTIL TIME>500

Line 40 gives the player the option of receiving the instructions or not: a
letter is inputted and stored in the variable “Z$” — if this letter is“Y” then
the computer goes on to print the instructions, and if it is “N” then the
instructions are not printed out. However, if neither of these letters is
inputted, then the question is asked again, and the process gone through
until an appropriate reply is obtained.

Lines 50, 70 and 90 describe the situation that the player is in at the
beginning of the adventure — this just provides a story for the player to
continue. Lines 110 and 130 provide a short description on how to operate
the game, although those people who have played adventures before will
have the basic idea on how to play, for the same fundamental principles are
transferred across most true adventures.

Lines 60, 80, 100, 120 and 140 are delay loops which give the player
sufficient time in which to read each message before the next message is
displayed. The size of the number at the end of each line will vary the
amount of time before the computer prints out the next message. An
alternative to the REPEAT/UNTIL loop could be the FOR/NEXT loop in
the form; FOR Z = 1 TO TIME:NEXT Z, where “TIME” is a number
corresponding to the duration of time required for the player to read the

message.

30

2) Lower Case Graphics — As you may have noticed, lower case text is
freely mixed with upper case text. A lot of micros are unable to support this,
and so if the one you possess does not, then just type in upper case — lower
case is just more pleasing for the eye to read; it is not a terribly great
disadvantage in not having this.

3) Colour — For those people with colour micros other than the BBC
Micro, you may be interested in what the colours are corresponding to the
CHRS$ codes that | have used, and so they are as follows:

CHRS$ 129 —red alphanumerics
CHR$ 130 —qgreen a phanumerics
CHRS$ 131 —yellow a phanumerics
CHR$ 132 —blue alphanumerics
CHR$ 133 —magenta alphanumerics
CHRS$ 134 —cyan a phanumerics
CHR$ 135 —white al phanumerics

If your machine does not have colour, then just miss out these CHR$
codes from the PRINT statements.

4) Sound — Sound is another that may be included in an adventure, but also
only if your micro has this feature. Some people may find the sound
aggravating, and so it may be missed out if desired. The purpose of the
sound is to produce a changing tone which increases in volume and pitch as
the player uses up more and more moves. The program lines for the BBC
Micro are given below, and so using the information below these lines,
along with the syntax for emitting sound on your own micro, the tone
should be easily adapted for it:

30 A=1:T=0:W=0:RESTORE 1390:FOR B=1TO 22:READ
E(B):NEXTB:SOUND 1,0,1,1
170 ENVELOPE1,1,-1,1,-1,0,15,30,0,0,0,0,W,0
180 SOUND1,1,W*2,1

Line 30 has a“SOUND” command which has the volume set to zero, so
that any lingering sounds from a previous game are cancelled for the start of
a fresh game. Remember that the variable “W” contains the number of
moves aready made: line 170 defines the wavering tone that is to be
produced, and “W” controls the volume of this tone. The next line, line 180,
is the line that actually produces the sound, and “W”, in this case, controls
the frequency. The means that with every increment of “W”, the pitch and
volume of the sound increase. For those that understand the attack decay,
sustain, and release of notes, there is a release value of zero in the envelope
so that the tone is cotinuous.

31

VARIABLES
To ease the understanding of the program, alist of all the variables and
their relative usage are given below:

1) Numerical Variables
(i) A —Number of the room in which the adventurer is situated.

(ii) B — Variable of a FOR/NEXT loop which isin one instance used in the
reading of values for the positions of objects into the dimension of “E”, and
in another instance for the reading of the room name of the room in which
the player isin.

(iii) C — Variable of a FOR/NEXT loop for reading if certain directions are
to be printed on the screen and for seeing if the player can go in particular
directions.

(iv) D — The variable that decides if there is a certain exit from a room,
and this depends on whether the value iniit is, or is not, equal to zero; it will
contain the value which must be added to “A” to go in the chosen direction.

(v) F—The number of objects that are being carried by the player.

(vi) G— FOR/NEXT loop variable which counts for each object to seeiif it
should be printed on the screen display format under either “Objects’ or
“Inventory”.

(vii) H—The number of objectsthat are lying in aroom.

(viii) | — FOR/NEXT loop variable used to help determine the number of
the command entered by the player.

(ix) J — FOR/NEXT loop variable which aids the determination of the
number of the object entered after the command.

(x) K — FOR/NEXT loop variable which allows for the input of the full
number of lettersin any command chosen by the adventurer.

(xi) M —Variable in which the command number is stored.

(xii) N — Depending on whether this variable contains the value zero or
one, a space will either have been entered or missed out between the
command and the object by the player.

(xiii) O —Variable in which the object number is stored.
(xiv) T—The valuein this variable determines the status of the transmitter.

(xv) W — The number of moves made by the adventurer are stored in this
variable.

(xvi) X —This contains the value of the best score.
(xvii) Y —The current scoreisin this variable.
(xviii) TIME —The variable for the computer’sinternal clock.

32

2) Dimensioned Variables — The objects corresponding to the following
possible dimensions of “E” are given alongside each variable below:

E(1) —GRENADE

E(2) —ROUGH-METAL
E(3) —SHINY-KEY
E(4) — CE-BLOCK
E(5) —GLOVES

E(

6) —SABRE

E(7) —AERIAL

E(8) —TORCH

E(9) —HEADPHONES
E(10) —MAGNIFIER
E(11) —LOCKED-DOOR
E(12) —DOOR

E(13) —BELL

E(14) —SCRATCHES
E(15) —KEY-CUTTER
E(16) —HOLE

E(17) —TRANSMITTER
E(18) —WINDOW

E(19) —MUD-MAN
E(20) —WIRE

E(21) —INSCRIPTION
E(22) —BOULDERS

Remember that thereisafull list of the commands and the objectsin the
first two Appendices at the end of the book along with detailed descriptions
according to their relative functions.

3) Sring Variables

(i)

(i)

(iii)

A$ — The variable in which the room name is stored in. This nameis
displayed on the screen and updated every time the adventurer moves
to another room.

B$ — A string which is inputted by the player and contains, or should
contain, a command and an object, unless, however, acommand which
does not require an object is inputted.

C$ — The variable into which is read the names of the objects to be
printed under “Objects” and “Inventory”. This is aso used in the
determination of the numerical values for the commands and objects
entered, for the first three letters of each command is stored in “C$’,
and then conpared with the first three letters of the inputted command
—the same applies for the objects.

(iv) D$ — Thisis used to help search for the name of the object entered in

33

“B$", for the three letters starting from one character are compared
with those in “C$" (“D$’" is what the characters from “B$” are stored
in). Another three letters are then taken starting from the next cha-
racter, and so on, until either the object name has been found, or the
computer runs out of al possible characters to compare. The first three
letters of the next command would then be stored in “C$".

(v) Z$— Thisistheinput for whether or not the player wishes to receive
the instructions at the start of the game, with the acceple replies being
HYH ar]d HNH.

THE PURPOSES CORRESPONDING TO EACH LINE OF DATA

1) Lines 1310-1320 — In these lines, the data for the names of all the rooms
in the adventure are stored.

2) Line 1330 —the data for movement “NORTH".

3) Line 1340 — the data for movement “SOUTH”.

4) Line 1350 —the data for movement “EAST”.

5) Line 1360 — the data for movement “WEST”.

6) Line 1370 — the names of all the objects used in the adventure are
contained in thisline.

7) Line 1380 —this line contains the first three letters of the names of each
command.

8) Line 1390 — the data for the relative positions of each object at the
beginning of the game.

34

35

