
Creative Graphics
on the BBC Microcomputer

JOHN COWNIE

Creative Graphics
on the BBC Microcomputer

JOHN COWNIE

Acknowledgement

Thanks to Tim Dobson for contributing the program
entitled 'CIRCLES'.

Copyright © 1982, Acornsoft Limited

All rights reserved

First published in 1982, by Acornsoft Limited. No part
of this book may be reproduced by any means without
the prior consent of the copyright holder. The only
exceptions are as provided for by the Copyright
(photocopying) Act or for the purposes of review or in
order for the software herein to be entered into a
computer for the sole use of the owner of this book.

FIRST EDITION

ISBN 0 907876 03 X

Published by:

Acornsoft Limited
4a Market hill
Cambridge
CB2 3NJ England

DIGITALLY REMASTERED ON ACORN RISC OS COMPUTERS,
NOVEMBER 2011.

2

Contents
Index to programs

Introduction

1 Graphics Commands 13

2 Functions and Symmetry 13

3 The Third Dimension 25

4 Animation 41

5 Recursion 63

6 Functions and Symmetry 87

Appendix A: Running programs on the Model A 107

Index

4

Index to programs
2 Functions and Symmetry
CIRCLE l 1

CIRCLE 2 Circle drawing 14

CIRCLE 3 15

LISS1 Lissajoux figures 16

LISS2 Lissajoux pattern 17

WOOLBAL Ball of wool 18

CARPET Persian carpet 20

PATTERN Pattern 21

FLAG Union Jack 22

SKETCH Sketchpad 24

3 The Third Dimension
POLO Mint 25

MOUNTS Mountains 28

CUBES Advancing cubes 31

SPHERE Sphere 33

PLANET1 Planets 36

PLANET2 Character-defined planets 37

4 Animation
KALEIDO Kaleidoscope 42

SPIRAL1 Spiral 44

ROTSQ Rotating square 45

SPIRAL2 Multicoloured spiral 47

ROTFAN Rotating fan 49

BEACHBA Beach balls 51

BOX Tumbling box 55

CONDOR Flight of the condor 58

PLANK Plankton 60

5 Recursion
RECDTA Recursive diamonds 67

REGSQ Recursive squares 70

CIRCLES Circles 73

KOCH Koch flake 75

C-CURVE C-Curve 79

DRAGON Dragon curve 81

TREE Asymmetric recursion 83

6 Pictures

FIELD* Windy field 88

MERRYGO Merry-go-round 93

RAINBOW Rainbow 98

ISLAND* Desert island 101

*Model A users should refer to Appendix A for program
modifications. All other programs will run on the
Model A if the initial MODE statement is changed to
MODE 5 (see Appendix A).

6

Introduction
The BBC microcomputer provides high resolution
graphics at a remarkably low cost, and the programs in
this book arise from a desire to show off this
machine's immensely powerful graphics capabilities.

Usually programs like these are consigned to a
backroom inhabited by hairy programmers, only to be
revealed to the public at exhibitions and
demonstrations. Here a wealth of useful techniques are
explored to provide some remarkably compact and potent
programs. In most cases the program as printed is
readily adaptable to produce new and interesting
effects.

Programs will run on either Model A or B

As listed all the programs will run directly on the
Model B.

Programs can be run on the Model A simply by altering
the mode statement at the start of the programs from
MODE 1 to MODE 5. The price paid for this alteration
will be some loss of resolution or a reduction in the
number of colours used, but despite this the visual
impact of most of the programs will hardly be
affected. In the case of two programs (FIELD and
ISLAND) further modifications are necessary, and these
are listed in Appendix A at the back of the book.

1

2

1 Graphics Commands
At first sight the BBC Microcomputer provides a
bewildering range of graphics commands. In most
applications it is possible to achieve the same result
in a number of different ways, and while this provides
great scope for individuality and expressive power, it
can also appear very baffling to the novice, Superb
effects can be produced with a small subset of the
many facilities available. The most useful facilities
are explained below.

Modes

The MODE command clears the screen and sets up the
mode specified. For graphic programs the most
important differences between modes are:

1 The number of colours allowed

2 The resolution, or size, of each pixel

Modes with high resolution and many colours require
the most memory.

MODE Resolution Colours Memory
0 640x256 2 20k

1 320x256 4 20k

2 160x256 16 20k

4 120x256 3 10k

5 160x256 4 10k

MODE 0 provides very high resolution but only 2
colours. In MODE 1 the resolution is quite good and
the pixels are square. MODE 2 gives rather chunky
graphics but lots of colours. MODEs 4 and 5 can be
regarded as watered-down versions of 1 and 2, and are
the only graphics modes available on the Model A (l6k)
machine. All the programs in this book use MODES I or
2, but they can easily be converted to run in MODEs 4
or 5.

Pixel sizes

All graphics modes use the same coordinate system to
refer to points on the screen. The screen of the
monitor or TV set is divided into a grid of hundreds
of tiny squares (or, more accurately, rectangles).

There are 1280 squares from left to right on the
screen (graphically speaking the x-axis) and 1024

3

squares from top to bottom (which by the same analogy
can be thought of as the y-axis). The origin (0,0) is
at the bottom left-hand corner of the screen.

To refer to these squares individually we use the same
method as used to refer to points on a graph: each
square is referred to by its (x,y) coordinates.

Every picture drawn on the screen is composed of
clusters of these squares called 'pixels': if
magnified, even rounded shapes on the screen will be
seen to be made up of squares. Small pixels (composed
of few squares) will give a smoother curve and a more
accurate picture than large pixels, and so small
pixels are said to give 'high resolutlon' images,
whereas large pixels cause chunky, jagged results.

The only disadvantage of having small pixels is that
more pixels are needed to fill the screen and so more
memory is required. In all modes the pixels are
composed of more than a single square on the
coordinate grid.

MODE Pixel size in coordinate units
0 2x4

1 4x4

2 8x4

4 4x4

5 8x4

One of the advantages of the coordinate system is that
programs can be run in different modes since the size
and shape of an object drawn will be the same
regardless of the mode.

Drawing

All drawing is done by controlling the location of the
graphics cursor. The cursor is like the tip of a pen
with which you would draw on a piece of paper. You can
control where the cursor moves and whether it draws a
line as it moves. The location of the graphics cursor
is not shown on the screen.

Useful commands

MOVE X,Y
Move the cursor to the point (X,Y). Note that X and Y
can be numbers, expressions, variables or functions.

4

DRAW X,Y
Draw a line from the current position of the cursor to
the point (X,Y), It does not matter if (X,Y) is off
the screen.

PLOT 69,X,Y
Put a dot at (X,Y).

PLOT 85,X,Y
Fill in the triangle formed by the last two points
visited by the cursor and the point (X,Y),

PLOT 0,X,Y
Move the position of the cursor relative to the
current position.

PLOT 1,X,Y
Draw a line relative

PLOT 81,X,Y
Fill the triangle formed by the last two points
visited and the point obtained by moving (X,Y)
relative to the current position.

Examples

(Note: Example programs are not provided on the
Creative Graphics cassette,)

1 This sequence will fill a triangle with vertices at
(200,200), (800,200) and (200,800):

l0 MODE 1
20 MOVE 200,200:MOVE 800,200:PLOT 85,200,800
30 END

2 This will scatter white dots at random over the
screen:

l0 MODE 1:REPEAT
20 PLOT 69,RND(l279),RND(l023)
30 UNTIL FALSE

3 A random walk:

l0 MODE 1
20 MOVE 640,512
30 REPEAT
40 PLOT 1,RND(3l)-l6,RND(3l)-l6
50 UNTIL FALSE

Colours

To understand the way in which colours are controlled
it is important to grasp the idea of 'physical' and
'logical' colours. Actually, it is best to discover

5

how the palette works through trying it out at the
keyboard, but here is an explanation of sorts.

The logical colour is just a number which is assigned
to any of l6 physical colours and causes that colour
to appear physically on the screen. The logical
colours are numbered as follows: 0,1,2, or 3 in the
case of 4-colour modes and 0-15 in the case of lti-
colour modes. The physical colours are numbered from 0
to 15.

Logical colour produces Physical colour

(Code) 2-colour modes (Code)
0 0 Black

1 7 White

4-colour modes

0 0 Black

1 1 Red

2 3 Yellow

3 7 White

16-colour mode

0 0 Black

1 1 Red

2 2 Green

3 3 YelIow

4 4 B1ne

5 5 Magenta

6 6 Cyan

7 7 White

8 8 Flashing black-white

9 9 Flashing red-cyan

10 10 Flashing green-magenta

11 11 Flashing yellow-blue

12 12 Flashing blue-yellow

13 13 Flashing magenta-green

14 14 Flashing cyan-green

15 15 Flashing white-black

Note that it is only in the 16-colour mode that all
the logical colours are set up to correspond to the
physical colour with the same number.

The relationship between physical colours that appear
on the screen and the internal logical colours is
referred to as the palette. This specifies which
physical colour will appear on the screen for a given
internal logical colour, as shown diagrammatically

6

below.

Logical
colour
number

8 Flashing Black/White
9 Flashing Red/Cyan
10 Flashing Green/Magenta
11 Flashing Yellow/Blue
12 Flashing Blue/Yellow
13 Flashung Magneta/Green
14 Flashing Cyan/Red
15 Flashing White/Black

0 Black
1 Red
2 Green
3 Yellow

4 Blue
5 Magenta
6 Cyan
7 White

0
1

2
3

A MODE 1 or MODE 5 statement sets up a palette as
described by the black arrows in this diagram - to
start with, logical colour 0 is black, logical colour
1 is red, and so on.

To change the palette, you just 'change the arrows' as
you wish using a VDU statement reserved specially for
this purpose. The white arrows in the diagram show a
possible set of changes.

Changing the palette

To change the palette use the VDU 19 statement as
follows :

VDU 19,L,P;0;

where the logical colour number L is made to appear as
the physical colour number P on the screen.

Example

Enter MODE 1 or MODE 5, and then enter

VDU 19,0,4;0;
7

In MODEs 1 and 5 logical colour 0 is black to begin
with, so this statement causes the black on the screen
to change colour to physical colour 4 (blue).

Similarly, a further statement

VDU 19,3,6;0;

causes the logical colour 3 (the white text) to become
physical colour 6 (cyan). Now to change the background
colour (blue at present) we must refer back to its
logical colour - ie 0 (since it was black to begin
with). The statement

VDU19,0,1;0;

will change the background colour to red.

Changing the palette is a powerful facility, and can
be used to dramatic effect since the colour on the
screen can be changed almost instantly. Here are some
of the effects that can be produced:

1 If the logical colour is set to the background
colour while an object is being drawn and the
palette is changed, 'instant' plotting is produced.

2 In modes with few colours it is possible to select
from any of the 8 possible steady colours which
will appear on the screen at a given moment.

3 Palette changes can produce moving images.

Selecting a colour

The GCOL command selects which logical colour to draw
with and the action that drawing will have on colours
already on the screen. After a GCOL command any DRAW
or PLOT command will use the colour specified by GCOL.
The format of GCOL is as follows:

GCOL A,C

where A specifies the mode of action and logical
colour to use.

There are five possible modes of action:

A=0 plot colour specified regardless of anything
already there (paste on top)

A=1 OR logical colour with logical colour already
there

A=2 AND logical colour with logical colour already
there

8

A=3 EOR logical colour with logical colour already
there

A=4 invert logical colour already there

The most common actions used are 0 and 3. GCOL0,C
could be used to paint over all or part of an object
in the background — when drawing a cloud in the sky
for example. GC0L3,C, the Exclusive-OR action, is
important in animated pictures, where an object can
move around over the background without affecting it.
So, in the arcade game Monsters, your man can run up
and down between levels without 'wiping out' the
ladders as he goes. Note also that with GCOL3,C
plotting the same line twice will erase that line.

Moving the origin

It is possible to move the origin to any point on the
screen with the command:

VDU 29,X;Y;

which moves the origin to the absolute point (x,y).
This is useful when drawing objects that are not
naturally defined with the origin at the bottom left-
hand corner of the screen.

Turning off the text cursor

In graphics programs the blinking text cursor can be
turned off in two ways:

VDU 5

This links the text and graphics cursors, and anything
that is printed will appear at the position of the
graphics cursor.

VDU 23,10,32,0;0;0;

This is harder to remember but has no side effects.
The text cursor is turned off by loading register l0
of the 6845 screen controller 1C with 32.

Interlace

Interlace causes the screen to judder up and down
slightly. This produces the effect of rounding the
characters on the screen. Some people find interlace
irritating, particularly in graphics programs. It can
be turned off like this:

VDU 23;8,0;0;0;

9

Sideways scrolling

The region of memory that the screen displays can be
altered by reprogramming registers 12 and 13 of the
6845 screen controller 1C. This allows you to scroll
the screen sideways. Together these registers bold the
l4-bit start address (divided by 8) of the top of the
screen; register 13 holds the 8 lower bits, while
register 12 holds the top 6 bits.

These registers can be altered like this:

VDU 23;register number,value,0;0;0;

The FIELD program in Chapter 6 gives more details on
using this technique.

Procedures in BASIC

Many of the programs in this book depend for their
success on the use of procedures. However small the
program, using procedures is good programming
practice, and it will be well worth your while getting
the hang of how they work. You will inevitably become
familiar wi th their use and appreciate their val ne
more as you work through this book, but to begin with,
here is a brief introduction.

A procedure is like a subroutine in which certain
values, called parameters, are set up automatically
when the procedure is called. Here is an example that
fills the screen with random squares, using the
procedure PROCSQ to draw each square:

Example

 10 MODE 1
 20 REPEAT
 30 PROCSQ(RND(1300),RND(1000),72)
 40 GCOL 0,RND(3)
 50 UNTIL FALSE
 60 END
 70 DEF PROCSQ(X%,Y%,S%)
 80 VDU 29,X%;Y%;
 90 MOVE 0,0:MOVE S%,0:PLOT 85,S%,S%
100 MOVE 0,S%:PLOT 85,0,0
110 ENDPROC

Description of the program

10 4-colour mode

20 Each time around this loop a square is
drawn.

10

30 Call the procedure PROCSQ to draw a square
at a random point with a side length 72.

40 Select a random colour.

50 Carry on forever.

60 This is never reached, but helps to show
where the body of the program ends and the
procedure declarations begin.

70 PROCSQ draws a square at the point (X%,Y%)
with a side length S%.

80 Put the origin at (X%,Y%).

90-100 Fill in the square.

110 Return to the point at which PROCSQ was
called.

Here, a procedure that draws a square is defined in
70-110. The procedure takes three parameters: and S%,
and these specify the position and size of the square.

Each time the procedure is called at line 30 the
'formal parameters' X%, Y% and S% used in the
definition take the values of the 'actual parameters'
given for that particular call of the procedure; here
these are RND(l300), RND(l000) and 72. The procedure
is then executed and on completion control is returned
to the statement after the call.

Procedures can be called from anywhere within a
program, and the order in which procedures are
declared does not matter.

A few of the advantages of procedures are listed
below.

1 Procedures make programs much easier to understand.

2 Dividing a problem into small chunks makes to write
and test programs.

3 Different effects can be produced simply by
altering the parameters supplied to a procedure.

4 Modular programs are less likely to suffer from
obscure bugs due to unwanted interactions between
different parts of the program.

11

12

2 Functions and Symmetry
BBC BASIC provides a large number of built-in
functions which can greatly simplify many programs.
The diversity and power of the functions available
often make it possible to produce the same effect in
many different ways. This allows the user to adopt the
clearest and most natural construction to express his
ideas, without being unduly inhibited by the
limitations of the language. An analogy can be found
in natural languages, which include a vast spectrum of
expressive words making it possible to communicate
ideas in many subtle and colourful ways.

Three ways of drawing a circle

The next three programs all draw a circle. They
demonstrate that even a simple circle offers a wealth
of opportunities for selecting the particular
technique you feel happiest with.

1 Iterative method

This method can produce a good approximation to a
circle very rapidly . I t does not call any
trigonometrical functions, which tend to be rather
slow. The disadvantages of this technique are that it
can produce some unpredictable results, and that it is
not immediately obvious how it works:

CIRCLE1

 0 REM Iterative method
 20 MODE 1
 30 S%=20
 40 VDU29,640;512;
 50 X=500
 60 Y=90
 70 MOVEX,Y
 80 REPEAT
 90 DRAWX,Y
 100 X=X+Y/S%
 110 Y=Y-X/S%
 120 UNTIL POINT(X,Y)<>0
 130 END

Description of program
13

30 Determine the size of the steps around the
circle.

50-70 Define (X,Y) as the starting point.

100-110 Calculate next point.

120 Carry on until the line bumps into itself.

2 Polar coordinate method

This method is based on the polar coordinate equation
for a circle. A polar coordinate consists of an angle
and a length. In this system a circle is described by
specifying a fixed length and an angle. To draw a
circle each of the polar points must be converted into
an (x,y) coordinate. The polar point with angle A and
length S Is the same as the point S*COS(A),S*SIN(A).

The method is very simple to program; the size of the
circle is easily altered, and it is very clear what is
going on. This method can easily be adapted to draw
ellipses and forms the basis for many interesting
patterns like lissajoux figures.

CIRCLE2

 0 REM Polar method
 20 MODE1
 30 VDU29,640;512;
 40 S%=400
 50 MOVE0,S%
 60 FORA=0 TO 2*PI STEP PI/30
 70 DRAWS%*SIN(A),S%*COS(A)
 80 NEXT
 90 END

Description of program

40 Make the radius of the circle S%.

60 Take angle A (measured in radians), and step
around the circle.

70 Draw a line to the next point on the circle.

3 Quadratic solution method

This method is based on the fact that the equation for
a circle, centred about the origin, is X*X+Y*Y=S*S,
where S is the radius of the circle.

By rearranging the equation we get Y=SQR(S*S-x*x), and
using this we can substitute many values for X and
obtain the corresponding Y-coordinate on the edge of

14

the circle.

CIRCLE3

 0 REM Quadratic method
 20 MODE1
 30 VDU29,640;512;
 40 S%=400
 50 FOR T%=0 TO 1
 60 MOVE -S%,0
 70 FOR X%=-S% TO S% STEP 8
 80 Y%=SQR(S%*S%-X%*X%)
 90 IF T%=1 THEN Y%=-Y%
 100 DRAWX%,Y%
 110 NEXT X%,T%
 120 END

Description of program

50 Determine which half of the circle is being
drawn.

70 Generate X-coordinates.

80 Calculate Y-coordinates.

90 Pick either positive or negative. square-
root depending on T%.

100 Draw the next part of the circle.

Lissajoux figures

Lissajoux figures are fascinating patterns that can
form the basis for many weird and wonderful programs.
The method for drawing lissajoux figures is similar to

15

the polar-coordinate method for drawing a circle. For
the circle , the angle from which the x- and y-
coordinates are derived is the same. Different
lissajoux figures are obtained when these angles are
out of phase. The following program draws a different
lissajoux figure each time the Space Bar is pressed.

LISS1

 0 REM Lissajoux figures
 20 MODE1
 30 VDU23;10,32;0;0;0;
 40 VDU29,640;512;
 50 FORF=0 TO 4 STEP 0.2
 60 MOVE 0,400
 70 A=0
 80 REPEAT
 90 A=A+0.1
 100 DRAW 400*SIN(A),400*COS(A*F)
 110 UNTIL INKEY(0)=32
 120 CLS
 130 NEXT
 140 END

Description of program

30 Turn off the cursor.

40 Make (0,0) the centre of the screen.

50 Determine step size.

60-90 Start at the top left-hand corner of the
screen, and increment A by 0.1 each time
round the loop.

100 Draw the pattern.

110 Wait for the Space Bar to be pressed.

130 Start another pattern.

16

Lissajoux pattern

There are many ways in which the basic lissajoux
patterns can be enhanced. Here is a program that uses
straight lines to join the points that trace out two
intermeshing figures. The pattern obtained depends on
the random numbers chosen at lines 50 and 60. If you
press ESCAPE at any stage a new pattern will begin.

LISS2

 0 REM Lissajoux pattern
 20 ON ERROR GOTO 30
 30 MODE1
 40 VDU5
 50 B%=RND(5)
 60 C%=RND(5)
 70 VDU29,640;512;
 80 GCOL0,RND(3)
 90 FORA=0TO 1000 STEP PI/30
 100 X%=250*COS(A)
 110 MOVE X%,Y%
 120 DRAW500*COS(A/B%),500*SIN(A/C%)
 130 NEXT

Description of program

20 Jump to line 30 when ESCAPE is pressed.

50-60 B% and C% effect the shape of the outer
figure.

100-110 Move the point back and forth along the line
x=y

120 Draw a line to the point that runs around
the lissajoux figure.

17

Ball of wool

Here is an example of the kind of pattern that can be
created starting from the basic idea of lissajoux
figures. A wealth of similar patterns can be explored
simply by piling up different combinations of SIN and
COS functions and seeing what comes out.

WOOLBAL

 0 REM Ball of wool
 20 MODE1
 30 VDU5
 40 GCOL0,RND(3)
 50 S%=400
 60 VDU29,640;512;
 70 MOVE0,0
 80 FORA=0 TO 125.7 STEP 0.1
 90 DRAW S%*SIN(A),S%*COS(A)*SIN(A*0.95)
 100 NEXT
 110 REPEAT UNTIL FALSE

Description of program

50 S% is the radius of the ball.

80 The value 125.7 is about the angle at which
the pattern starts repeating itself.

90 Believe it or not this will trace out a
ball.

110 Loop forever on this line once the pattern
has been drawn.

18

Symmetry

By exploiting the symmetry of a pattern it is often
possible to simplify and speed up the program used to
generate it. In graphic applications much calculation
can be avoided by using reflections in the axis to
generate the symmetric parts of the object being
drawn.

Apart from straightforward reflection like this, there
is also the invaluable option on the BBC Microcomputer
of moving the origin from one place to another during
the program, and this used in con junction with
reflection can produce some even more impressive
designs.

Persian Carpet

This program produces a pattern similar to that of a
Persian carpet. To achieve this effect the program
draws a series of radial lines through the centre of a
square. The symmetric nature of the carpet is
exploited in line 90 where the x— and y-coordinates of
the previous line are interchanged.

The GCOL action Exclusive-OR causes lines that overlap
either to cancel out or to produce a new colour.

Interference patterns of this kind are known as 'Moiré
patterns'. The carpet is produced by superimposing
many of these patterns, each of a different size.

19

CARPET

 0 REM Carpet
 20 MODE1
 30 VDU5
 40 VDU29,640;512;
 50 FORS%=20TO500STEP40
 60 GCOL3,RND(3)
 70 VDU19,RND(3),RND(8)-1;0;
 80 FORX%=-S%TOS%STEP 8
 90 MOVE -S%,X%:DRAW S%,-X%
 100 MOVE X%,-S%:DRAW -X%,S%
 110 NEXT X%,S%
 120 GOTO50

Description of program

20 4-colour mode.

30 Remove text cursor.

40 Put the origin in the centre of the screen.

50 S% is the size of the pattern being drawn. A
new layer of pattern is drawn each time
round this loop.

60 Select drawing action EOR and one of the
three colours at random.

70 Change the palette so that any of the non-
flashing colours can appear.

80-110 Draw the pattern.

120 Start again.

Possible changes

This program offers many opportunities for exploring
variations on the original. Some interesting
alterations are suggested below.

1 Try running the program in MODE 0 or MODE 2.

2 The step size at line 50 can be changed.

3 The step size at line 80 has a critical effect on
the type of pattern produced. Interesting effects
can be produced with smaller, larger or random step
sizes here.

4 By moving the origin for each pattern you could
fill the screen with lots of small carpets to
produce a patchwork quilt.

20

Multicoloured pattern

This program draws a pattern that is constructed from
a series of diverging lines running down the screen.
The program produces a fascinating combination of
colours, and shows how the appearance of a colour can
be affected by the colours next to it.

PATTERN

 0 REM Multicoloured pattern
 20 MODE1
 30 VDU5
 40 VDU29,640;0;
 50 FORP%=0 TO 640
 60 GCOL0,P%AND3
 70 MOVEP%*4,0:DRAWP%,1024
 80 MOVE-P%*4,0:DRAW-P%,1024
 90 NEXT
 100 REPEAT
 110 VDU19,RND(3),RND(7);0;
 120 A=INKEY(60)
 130 UNTIL FALSE

Description of program

60 Select a logical colour between 0 and 3.

70-80 Draw symmetric lines to the left and right

of the y-axis.

21

100 Loop around changing the palette forever.

120 Wait for 0.6 of a second.

Flag

This program uses a procedure which will draw
rectangular Union Jacks. The procedure allows the flag
to be any size or shape of rectangle, and it be can
positioned anywhere on the screen. The drawing method
exploits many of the symmetrical elements in the flag.
(Actually the 'real' flag has some subtle asymmetric
bands but this procedure should produce a flag that
satisfies all but the most pedantic readers.)

FLAG

 0 REM Flag
 20 MODE1
 30 VDU23;10,32;0;0;0;
 40 PROCJACK(640,512,600,500)
 50 REPEAT UNTIL FALSE

Description of program

30 Turn off the blinking text cursor.

40 Draw a flag centred about the point
(640,512) with sides of length 1200 and
1000.

50 Do nothing forever.

22

PROCJACK

This procedure draws a flag centred about (X%,Y%) with
sides of length 2*SX% and 2*8*1%.

 60 DEFPROCJACK(X%,Y%,SX%,SY%)
 70 VDU24,X%-SX%;Y%-SY%;X%+SX%;Y%+SY%;
 80 VDU29,X%;Y%;
 90 VDU19,2,4;0;
 100 GCOL0,130
 110 CLG
 120 GCOL0,2
 130 FORJ%=5 TO 8 STEP 3
 140 Y1%=SY%+SY%/J%:Y2%=SY%-SY%/J%
 150 IF J%=5 THEN GCOL0,3ELSE GCOL0,1
 160 FORI%=0 TO 1
 170 MOVE-SX%,-Y1%:MOVE-SX%,-Y2%:PLOT85,SX%,Y2%
 180 MOVESX%,Y1%:PLOT85,-SX%,-Y2%
 190 Y1%=-Y1%:Y2%=-Y2%
 200 NEXT I%,J%
 210 FORJ%=3 TO 5 STEP 2
 220 IF J%=3 THEN GCOL0,131 ELSE GCOL0,129
 230 VDU24,-SX%/J%;-SY%;SX%/J%;SY%;
 240 CLG
 250 VDU24,-SX%;-SY%/J%;SX%;SY%/J%;
 260 CLG
 270 NEXT
 280 VDU26
 290 ENDPROC

Description of PROCJACK

70 Define a graphics window around the whole
flag.

80 Put the origin at the centre of the flag.

90 ake logical colour 2 appear as dark blue.

100 Select the graphics background colour to be
logical colour 2.

120 Fill the graphics window with the selected
graphics background colour. This method of
filling a rectangle will not work if the
rectangle is partially off the screen.

130-200 Draw the diagonal bands.

210-270 Draw the horizontal bands.

280 Restore the default text and graphics
windows.

Sketch Pad

This program allows you to draw lines on the screen,
using the keyboard to control the pattern produced.

23

The cursor starts in the middle of the screen and
leaves a trail behind it as you move it about the
screen. The control keys are shown below:

 0 REM Sketch Pad
 20 MODE1
 30 VDU5
 40 MOVE 640,512
 50 REPEAT
 60 PLOT1, 4*(INKEY(-98)-INKEY(-67)),
4*(INKEY(-105)-INKEY (-73))
 70 UNTIL FALSE

Description of program

30 Remove text cursor.

60 INKEY(—98) returns -1 if the 'Z' key is
depressed; otherwise it returns zero. The
other INKEY functions on this line perform
similar functions for the keys 'X', '/' and
':' .PLOT 1,x,y draws a line relative to the
current cursor positon.

24

3 The Third Dimension
To represent a 3-dimensional object on the screen a
number of tricks can be used to fool the observer into
interpreting the flat image as a 3—dimensional view.
Luckily, because the brain is very good at extracting
3—dimensional information from a flat picture, only a
few simple depth cues are required to create the
illusion of the third dimension.

These simple techniques are very easy to program, and
simple programs can produce excellent results. For
more general 3-D views and truly lifelike effects much
more complicated techniques and considerable computing
power are needed.

Colours

The choice of colours for different parts of an object
can help give an impression of depth. Cold or dark
colours tend to appear to be further away than warm
bright colours. This is especially marked on the BBC
machine with the colour dark blue, which gives the
impression of great distance.

Polo

Here is a program that uses different colours to give
the illusion of depth. The object drawn is a hoop
composed of a spiral looping around a circle which
gives a similar shape to the popular mints of the same
name. To draw the hoop we trace around a small circle
as its centre moves round the hoop. The impression of
depth is obtained by squashing the small circle in the
y-direction, and colouring the most distant half of
each loop dark-blue.

POLO

 0 REM Polo
 20 MODE1
 30 VDU19,2,4;0;
 40 VDU29,640;512;
 50 VDU5
 60 R%=40
 70 MOVE 12*R%,0
 80 FORA=0 TO 2*PI STEP 0.01
 90 T=A*50

25

 100 S=SIN(T)
 110 IF S>0 THEN GCOL 3,2 ELSE GCOL 0,RND(2)*2-1
 120 DRAW R%*(10*COS(A)+2*COS(T)),R%*(10*SIN(A)+S)
 130 NEXT
 140 GOTO80

Description of program

20 Select a 4-colour mode.

30 Change the palette so that logical colour 2
appears as dark blue.

40 Put the origin in the centre of the screen.

60 R% affects the size of the circles.

70 Move to the first point.

80 Step around the large circle.

90 Save A*50 as T to give a marginal increase
in speed.

100 This avoids calculating SIN(T) more than
once each time around the loop.

110 Select the colour and plotting action. The
action EOR ensures that the blue lines will
always appear behind the red and white line.
RND(2)*2—l selects either red or white.

120 Draw a line to the next point around the
spiral. COS(A) and SINUA) control the
position in the large circle. COS(T) and S
control the position in the small circles.

140 Start again.

Hidden line removal

One of the most obvious observations about a
3.imensional view is that you cannot see an object if
it is behind something. While this is very simple to
understand in a 3—dimensional world it causes many
complications if we want to represent a [s-dimensional
view on a flat screen.

To give the impression of depth distant objects must
be obscured, or partly obscured, by the objects in the
foreground. The main problems are how to tell which
parts of a distant object are not visible and how to
draw a partly-obscured object, which may be a very
different shape from the original. The next program
uses a very simple method to achieve the required
effect.

26

Mountains

This program draws a view of randomly-generated snow-
capped mountains as shown in the photograph above. The
colours are chosen at random, and although this can
produce some ridiculous effects, it can also produce
colour schemes that are reminiscent of the subtle hues
of an alpine landscape.

The largest most distant mountains are drawn first,
and then 'closer' mountains are put on top of these
obscuring them where they overlap. This technique for
eliminating hidden lines, by drawing from the back and
then over-plotting, is useful in many applications.
Although at first sight it may seem to be rather slow
and extravagant, the alternatives are considerably
more complicated and probably not much faster. The
method to use will obviously be governed by the nature
of the object being drawn, but the 'pasting on top'
approach, as used here, gives an easy solution for
irregular objects.

The technique relies on the ability to fill in areas
of colour rapidly. For line drawings a mask around the
foreground object is filled in black (or whatever the
background colour is) and then the object is drawn on
top of the mask.

When the entire picture is complete the program will
wait for any key to be pressed before starting again.

27

Each mountain is drawn as follows:

1 Choose a random point (X_PEAK%,Y_PEAK%) to be the
summit.

2 Choose two values X_SLOPE% and Y_SLOPE% to
determine the slope of the right-hand side of the
mountain.

3 Draw in steps down the mountain-side by adding
random x and y values, determined by the slope, to
the current position. The space below the line
drawn is filled in with the logical colour 2. If we
are still near the top of the mountain the area
below the edge down to the snow-line is filled with
logical colour 3.

4 The side is followed until it goes off the screen.

5 The method above is repeated for the left-hand
side.

6 The mountain is now complete.

MOUNTS

 0 REM Mountains
 20 MODE1
 30 VDU19,0,6;0;
 40 VDU5
 50 FOR MOUNTAIN%=900 TO 0 STEP -60
 60 X_PEAK%=RND(1200)
 70 Y_PEAK%=MOUNTAIN%+RND(50)
 80 FOR SIDE%=0TO1
 90 X_SLOPE%=RND(40)+20
 100 Y_SLOPE%=RND(20)+30
 110 MOVE X_PEAK%,Y_PEAK%
 120 X%=X_PEAK%:Y%=Y_PEAK%
 130 REPEAT
 140 IF SIDE%=0 THEN X1%=X%+RND(X_SLOPE%) ELSE
X1%=X%-RND(X_SLOPE%)
 150 Y1%=Y%-RND(Y_SLOPE%)
 160 SNOW_LINE%=Y_PEAK%-Y1%/5-50:GCOL0,2
 170 MOVEX1%,Y1%: PLOT85,X1%,0: MOVEX%,
0:PLOT85,X%,Y%
 180 IF SNOW_LINE%<Y1% THEN GCOL0,3:MOVEX1%,Y1%:
PLOT85,X1%,SNOW_LINE%:MOVEX%,SNOW_LINE%:PLOT85,X%,Y%
 190 X%=X1%:Y%=Y1%
 200 GCOL0,1:DRAWX%,Y%
 210 UNTIL POINT(X%,Y%)=-1
 220 NEXT SIDE%
 230 VDU19,RND(3),RND(8)-1;0;
 240 NEXT MOUNTAIN%
 250 A=GET:GOTO50

28

Description of program

30 Have a light-blue sky.

40 Remove the text cursor by linking the text
and graphics cursor.

50 Each time around this loop a mountain is
drawn. The y-coordinate of the peak is
slightly above MOUNTAIN%.

60-70 Select a point for the peak.

80 Each time around this loop a single side of
the mountain is drawn.

90-100 Select the slope of the mountain-side.

110 Move to the top of the mountain. '

120 The point (X%,Y%) is the current position on
the mountain-side.

130 In this loop we step down the slope until we
run off the edge of the screen.

140-150 (Xl%,Yl%) is the next point down the
mountain-side.

160 Calculate where the snow-line will be, and
select the mountain colour.

170 Fill the region below the line between
(X%,Y%) and (Xl%,Yl%).

180 If we are above the snow-line draw some
snow.

190 Move (X%,Y%) one step down.

200 Draw a line along the mountain-side, so that
it will stand out from more distant
mountains.

210 Carry on until we run off the edge of the
screen.

230 Change the colour scheme at random.

250 Wait for a key to be pressed then start
again.

Perspective

It is not too hard to write a generalised routine that
will produce a perspective view of a ii-dimensional
object. The routine could take a stored representation
of the object and allow you to view it from any point.

This approach requires 3-dimensional information about
the object to be stored in the program, and the stored
representation is then acted on by the viewing routine
to give the required perspective image which is
projected onto a flat plane. The perspective view is
rather like the shadow cast by the object.

For simple programs this method would be rather

29

cumbersome and slow, and has many facilities that are
not required to give just one view of the object.

A more straightforward method is to draw a single
perspective view of the object directly on the screen,
the illusion of depth being created by suitably
distorting the shape of the flat object. Some of the
techniques used to give the impression of ti-
dimensional objects are illustrated below:

1 Axis

In this view of a 3-D axis
it is easy to imagine the
y-axis running out of the
screen. Distant points on
this axis are represented
by displacing the point to
the right and moving it up
slightly.

x

y

2 Small distant objects;
more numerous

he further away an object
is the smaller it appears.
Also you can see more
objects the further away
they are.

3 Squashed circles

Here, simply squashing a
circle gives the
impression of viewing a
flat disc from an angle.

4 Converging lines

These are often used to
depict a road stretching
into the distance.

30

Cubes

This program uses a procedure that draws a very simple
perspective view of a cube to fill the screen with
advancing cubes. The most distant cubes are drawn
first and then obscured by the foreground cubes which
are 'pasted on top'. The 3-13 effect is enhanced by
drawing a large number of small cubes in the distance,
drawing fewer in the foreground, and increasing the
size of the cubes as they approach the observer.

CUBES

 0 REM Cubes
 20 MODE1
 30 VDU5
 40 VDU19,2,4;0;
 50 REPEAT
 60 FORY%=0 TO 1200 STEP 10
 70 H%=1100-RND(Y%)
 80 PROCCUBE(RND(1300)-50,H%,(1200-H%)
/6,RND(4)-1)
 90 NEXT
 100 VDU19,RND(3),RND(7);0;
 110 UNTIL FALSE
 120 DEFPROCCUBE(X%,Y%,S%,C%)
 130 D%=S%/3:E%=S%+D%

31

 140 VDU29,X%;Y%;
 150 GCOL0,C%
 160 MOVE0,0:MOVE0,S%:PLOT85,D%,E%
 170 MOVE0,0:PLOT85,E%,E%
 180 MOVE0,0:PLOT85,E%,D%
 190 MOVE0,0:PLOT85,S%,0
 200 GCOL0,C%+3
 210 DRAWS%,S%:DRAW0,S%:DRAW0,0:DRAWS%,
0
 220 MOVE0,S%
 230 DRAWD%,E%:DRAWE%,E%
 240 DRAWE%,D%:DRAWS%,0
 250 MOVES%,S%:DRAWE%,E%
 260 ENDPROC

Description of program

20 4-colour mode.

30 Link text and graphics cursors to get rid of
the text cursor.

40 Make logical colour 2 appear as dark blue.

50 Each time around this loop the cubes advance
to the front of the screen.

60 Move Y% down the screen.

70 Make H% the Y% coordinate at which a cube is
drawn. Calculating H% like this ensures that
fewer cubes are drawn in the foreground.

80 Draw a cube with random colour and x-
coordinate. The size grows as the y-
coordinate decreases.

100 Change the palette at random.

120 PROCCUBE(X%,Y%,S%,C%) draws a cube of size
S% in logical colour C% at the point X%,Y%.

130 E% and D% are used to draw the far side of
the cube.

160-190 Fill in the cube.

210-250 Draw the edges of cube.

32

Sphere

The following program draws a 3-dimensional view of a
sphere. The sphere is represented by a series of flat
circular discs. The program reads in the following
values:

ST% controls the step size around the loop that
draws each disc, and how many discs are drawn. Good
results are obtained when ST% is 50.

S% is the radius of the sphere. To fill the screen
make 8% about 500.

C1% and C2% specify the colours of the centre and
edge of the discs. They must be in the range 0 to 3.

SPHERE

 0 REM Sphere
 20 MODE1
 30 VDU29,640;512;
 40 DIM C(300)
 50 INPUT"Step size ? "ST%
 60 INPUT"Size ?"S%
 70 INPUT"Central colour ? "C1%
 80 INPUT"Edge colour ? "C2%
 90 CLS
 100 VDU23;10,32,0;0;0;

33

 110 I%=-2
 120 FORA=0TO 2*PI+PI/ST% STEP PI/ST%
 130 I%=I%+2
 140 C(I%)=S%*COS(A)
 150 C(I%+1)=S%*SIN(A)
 160 NEXT
 170 FORFI=-PI/2 TO PI/2 STEP PI/ST%
 180 VDU29,600;500+S%*0.8*SIN(FI);
 190 MOVE0,0
 200 CS=COS(FI)
 210 F=CS*SIN(PI/ST%)
 220 GCOL0,C1%
 230 FORJ%=0 TO I% STEP 2
 240 X%=CS*C(J%):Y%=F*C(J%+1)
 250 MOVE0,4:PLOT85,X%,Y%
 260 NEXT
 270 GCOL0,C2%
 280 MOVE CS*C(0),F*CS*C(1)
 290 FORJ%=2 TO I% STEP 2
 300 DRAW CS*C(J%),F*C(J%+1)
 310 NEXT J%,FI
 320 GOTO50

Description of program

20 4-colour mode.

30 Move the origin to the centre of the screen.

40 The array C will hold the coordinates of
points around the edge of each disc that is
drawn .

50-80 Read in values for the step size around each
loop, the size of the sphere, and the
logical colour numbers of the centre and
edge of each disc.

100 Remove the text cursor.

110 I% is used to index the array C(200).

120-160 In this loop we store all the coordinates
the points around the edge of the largest
disc.

170 Draw a disc each time around this loop.

180 Move the origin to the centre of the disc to
be drawn.

200-210 CS and F are used to reduce the size of the
x- and y-coordinates of the stored disc, so
that the discs give the outline of a sphere.

220 Select the colour of the centre of the disc.

230-260 Draw the centre of the disc.

270 Select the colour of the line around the
edge of the disc.

280-310 Draw the line around the edge of the disc.

34

320 Go back and start again.

Planets

One of the limitations of the graphics on the BBC
microcomputer is that there is no control over the
brightness and intensity of the colours, making it
hard to produce the shading effects that are required
to represent lifelike 3-dimensional objects.

This program gets round this problem by using a random
distribution of coloured dots to give the impression
of different colour intensities.

The intensity of colour in a region depends on the
number of pixels that are set - for maximum brightness
all the pixels will be on, the dimmest effect is
achieved when all the pixels are off, and there is a
range of values between these extremes. For each pixel
in the region we choose a random number between I and
a maximum value (for example 100 to give 100 different
shades). If the random number chosen is less than the
region's intensity number then we set that pixel;
otherwise it is black.

35

The limitation of this method is that it is rather
slow since the random function is called for every dot
in the region. It could be speeded up by using a
pseudo-random number obtained by incrementing a
randomly-chosen pointer into part of the ROM.

PLANET1

 0 REM Planets
 20 MODE1
 30 VDU5
 40 REPEAT
 50 VDU29,RND(1000)+100;RND(800)+100;
 60 LC%=RND(3)
 70 SIZE%=RND(150)
 80 SIZES%=SIZE%*SIZE%
 90 FORY%=-SIZE%TOSIZE%STEP4
 100 X%=SQR(SIZES%-Y%*Y%)
 110 X2%=2*X%
 120 FORI%=-X%TOX%STEP4
 130 IF RND(X2%)-X%<I% THEN GCOL0,LC% E
LSE GCOL 0,0
 140 PLOT69,I%,Y%
 150 NEXT I%,Y%
 160 VDU19,LC%,RND(7);0;
 170 UNTIL FALSE

Description of program

20 4-colour mode.

30 Remove text cursor.

40 Draw a planet each time round this loop.

50 The centre of the planet will be at the
origin, defined to be at a random position
not too close to the edge of the screen.

60 LC% is the logical colour in which the
planet is drawn.

70 SIZE% is the radius of the planet.

90 The planet is drawn with lines of dots. In
MODE 1 each dot is a 4x4 square, hence STEP
4.

100 The point (X%,Y%) is the end of the current
line of dots.

120 This loop draws a line of dots.

130 This determines whether a dot is light or
dark. For each dot a random number is picked
and compared with the position of that dot.
This ensures that there is 100% chance of a
dot being bright on the far right-hand side
and 0% on the left, with a smooth range of

36

intermediate values across the planet.

140 Draw a dot at the point (I%,Y%).

160 Change the palette so that any of 7 colours
can appear.

Character-defined planets

The disadvantage of the previous program is that it
runs very slowly. The following program produces a
similar effect but is much faster - it also
demonstrates how to define your own characters.

PLANET2

 0 REM Character Defined Planets
 20 MODE1:VDU5
 30 FORF=0TO1:CLG:GCOL0,3
 40 VDU29,500;500;:C%=2
 50 SIZ%=C%*32:SIZS%=SIZ%*SIZ%
 60 FORY%=-SIZ%TOSIZ%STEP4
 70 X%=SQR(SIZS%-Y%*Y%)
 80 X2%=2*X%
 90 FORI%=-X%TOX%STEP4
 100 R%=RND(X2%):IFF=0THEN R%=0
 110 IFR%<I%+X%THEN PLOT 69,I%,Y%
 120 NEXT,
 130 PROCCH(504-SIZ%,500+SIZ%,SIZ%*2,SI
Z%*2,224+15*F)
 140 NEXT
 150 REPEAT
 160 VDU29,RND(1000);RND(1000);
 170 FORI=0TO1
 180 IF I=0 THEN R%=225:GCOL0,0 ELSE R%
=240:GCOL0,RND(3):VDU19,RND(3),RND(7);0;
 190 FORJ%=0TO 32-SIZ%*2STEP-32
 200 FOR I%=0TOSIZ%*2-32STEP 32
 210 MOVEI%,J%:VDUR%:R%=R%+1:NEXT,:NEXT
 220 UNTIL0

Description of program

30 The first time around this loop we draw a
solid cirle, then a shaded planet; both are
saved as a sequence of characters.

60 STEP 4 determines the number of characters
needed to save the planet. Valid values are
in the range 1 to 4.

37

Draw the planet or background mask.

130 Call PROCCH to define characters to

represent the shape we have just drawn.

150 We now run all over the screen dumping
characters.

170-180 First draw a back mask, and then the planet
on top of this in a random colour.

190-210 Put the characters defined in PROCCH in
their original positions.

PROCCH

This routine takes a region of the screen and defines
characters to reproduce the pattern in that region.
The routine will only work in modes in which the
pixels are 4x4. The region to be turned into
characters is specified as shown below:

Shape to
be defined

X%
32

characters

Y%
32

characters

(OX%,OY%)

The parameters X% and Y% must be multiples of 32 so
that the region is exactly covered wi th whole
characters. The parameter ST% is the code for the
first character to be used. Memory is reserved for
defining characters with codes 224 to 255, so when
PROCCH is first called it would be sensible to supply
the value 224 to ST%.

 230 DEFPROCCH(OX%,OY%,X%,Y%,ST%)
 240 DIM B%8
 250 CN%=0
 260 FOR J%=0TO 32-Y% STEP -32
 270 FOR I%=0TOX%-32 STEP 32
 280 VDU29,OX%+I%;OY%+J%;:C%=-1:CN%=CN%+1
 290 FOR IY%=1TO-32STEP-4
 300 V%=0:C%=C%+1
 310 FOR IX%=1TO32STEP4

38

 320 IF POINT(IX%,IY%)=3 THEN PIX%=1 ELSE PIX%=0
 330 V%=V%*2+PIX%:NEXT
 340 B%?C%=V%:NEXT
 350 IF ST%+CN%=256:PRINT"TOO BIG":ENDPROC
 360 VDU23,ST%+CN%,B%?1,B%?2,B%?3,B%?4,B%?5,B%?6,
B%?7,B%?8
 370 MOVE0,-4:GCOL0,1:VDU(ST%+CN%)
 380 NEXT,
 390 ENDPROC

Description of PROCCH

240 The byte array B% will hold the eight values that
specify the bit pattern of each row of the character
being defined.

260-270 These loops move the point (I%,J%) to the
top left-hand corner of each character that
is defined.

280 Put the origin at the top left-hand corner
of the current character. C% is used to
index the array B%; it counts the rows of
pixels within the character. Since we are
about to define a new character we add one
to CN%.

290 This loop moves the scan down one row.

300 V% will hold a number that describes the bit
pattern on a row.

310 This loop scans across the 8 pixels which
will form a row within the character.

320 If the pixel at the point (IX%,IY%) is white
then make PIX%=l.

330 Alter V% so that it also describes;the last
pixel.

340 Save the value of V% describing that row of
pixels in the array B%.

350 Make sure that we are not going to try to
define an illegal character.

360 Define the character number ST%+CN% using
the bit patterns we have saved in B%.

370 Put the character just defined on top of the
pattern it is derived from to make sure it
is correct.

39

40

4 Animation
While it is relatively easy to draw complex static
objects, animation is considerably harder. The
processing power and memory size of the BBC machine
limit the quality of animated images that can be
produced. To achieve a fully--animated picture, a
series of views of the scene must be rapidly displayed
in sequence. This requires a large amount of
processing to be done. Despite this, it is possible to
derive good effects by exploiting the ability to
change the palette of logical-physical colour
relationships.

Redrawing

One way of producing movement is to continuously alter
the picture that is being displayed. The following
program uses this technique to simulate a
kaleidoscope. This does not produce a smoothly-
animated image, but the pattern produced is animated
in the sense that it is always in a state of f1ux. The
program also demonstrates that simply redrawing a
pattern is not fast enough to produce true animation.

Kaleidoscope

41

In a mechanical kaleidoscope coloured flakes are
randomly shaken up, and a symmetrical pattern is
produced by reflecting these in two mirrors. This
program generates three random points that form the
edges of a triangle, and then rotates and reflects the
triangle to produce a similar effect to that produced
by the mirrors.

KALEIDO

 0 REM Kaleidoscope
 20 MODE2
 30 VDU5
 40 VDU29,640;520;
 50 REPEAT
 60 FORL%=12TO500STEP20
 70 GCOL0,RND(8)-1
 80 X%=RND(L%):Y%=RND(X%)
 90 X1%=RND(L%):Y1%=RND(X1%)
 100 X2%=RND(L%):Y2%=RND(X2%)
 110 MOVEX%,Y%:MOVEX1%,Y1%:PLOT85,X2%,Y2%
 120 MOVE-X%,Y%:MOVE-X1%,Y1%:PLOT85,-X2%,Y2%
 130 MOVEX%,-Y%:MOVEX1%,-Y1%:PLOT85,X2%,-Y2%
 140 MOVE-X%,-Y%:MOVE-X1%,-Y1%:PLOT85,-X2%,-Y2%
 150 MOVEY%,X%:MOVEY1%,X1%:PLOT85,Y2%,X2%
 160 MOVE-Y%,X%:MOVE-Y1%,X1%:PLOT85,-Y2%,X2%
 170 MOVEY%,-X%:MOVEY1%,-X1%:PLOT85,Y2%,-X2%
 180 MOVE-Y%,-X%:MOVE-Y1%,-X1%:PLOT85,-Y2%,-X2%
 190 NEXT L%
 200 UNTIL FALSE

Description of program

20 16-colour mode (actually, only 8 non-
flashing colours).

30 Remove text cursor.

40 Define the centre of the kaleidoscope to be
at the origin - here this is just off-centre
of the screen.

60 L% controls the size of the kaleidoscope.
This loop makes the pattern grow outwards.
Select a colour at random, including black.

80-100 Choose the corners of the initial triangle.

110-180 Fill in the initial triangle with 5 other
rotations and reflections of it.

190 Start again.

42

Palette changes

Drawing or redrawing an object is a relatively slow
process, but palette changes can alter the appearance
of an object very rapidly. If a single object is drawn
with a number of different colours you can give the
illusion of motion simply by changing the palette, and
this avoids the need to redraw each view of the
object. A similar technique is commonly used in neon
signs that appear to move by changing the coloured
lights that are turned on.

Animation by palette changes alone is most easily
applied to a rotating object such as a beach ball,
where the rotating object does not 'change shape' but
stays within the confines of its original outline as
it turns.

In programs that use rapid palette changes 'you may
notice that the display is subject to dark bands and
flicker. This is because the palette changes are not
synchronised to the video scan time. To avoid this you
could wait for vertical sync before changing the
palette. This can be done using the operating system
call *FXl9 which exists in release 1.0 of the MOS.

Flat Spiral

Here is a short program that uses palette changes to

43

rotate a flat spiral as it is being drawn. The spiral
grows outwards from the centre of the screen, rotating
as it expands. The pattern drawn is in fact an
ellipse, and this gives the impression of a 3-
dimensional spinning disc. SPIRAL1

SPIRAL1

 0 REM Flat Spiral
 20 MODE1
 30 VDU5
 40 C%=1:F%=RND(5)
 50 VDU29,640;512;
 60 MOVE0,0
 70 FORA=0TO300STEP0.2
 80 GCOL0,1+(3.8*A)MOD3
 90 DRAW3*A*SIN(A),2*A*COS(A)
 100 FORI%=1TO3
 110 VDU19,I%,(C%+I%)MOD3+F%;0;
 120 NEXT
 130 C%=(C%+1)MOD3
 140 NEXT
 150 GOTO 20

Description of program

40 C% keeps track of the current state of the
palette. F% determines which physical
colours will appear.

50 Put the origin in the centre of the screen.

70 The variable A determines the angle around

the spiral and the size.

100-120 Change the colours of the arms as we draw
around the spiral. The factor 3.8 makes the
arms reasonably straight.

100-120 Change the palette to give the impression of
movement by moving each of the physical-
logical colour relationships on one step.

130 Alter C% so that next time the palette is
changed the colours will move on one step.

150 Start again.

44

Rotating squares

This program produces a curious spiral pattern by
rotating squares that gradually increase in size. When
the pattern has been completed a moving effect is
produced by changing the palette.

ROTSQ

 0 REM Rotating Square
 20 MODE1
 30 VDU5
 40 VDU29,640;512;
 50 C%=1
 60 FORI%=0TO900 STEP 12
 70 A=I%/200
 80 X%=I%*SIN(A)
 90 Y%=I%*COS(A)
 100 MOVEX%,Y%
 110 DRAW-Y%,X%:DRAW-X%,-Y%:DRAWY%,-X%:
DRAWX%,Y%
 120 GCOL0,C%
 130 C%=(C%+1)MOD3+1
 140 NEXT
 150 F%=3
 160 REPEAT
 170 FORJ%=1TO3
 180 VDU19,J%,(J%+C%)MOD3+F%;0;
 190 NEXT

45

 200 C%=(C%+1)MOD3+1
 210 DELAY=INKEY(10)
 220 UNTIL FALSE

Description of program

20 4-colour mode.

30 Remove text cursor.

40 Put the origin in the centre of the screen.

50 Hold the the current logical colour.

60 The size of the squares is determined by I%.

70 A is the angle through which each square is
rotated.

80-90 Calculate the coordinates of one corner.

100-110 Draw a rotated square.

120 Select colour.

130 Choose the colour of the next square.

140 On leaving this loop the pattern has been
drawn. All that follows is the palette
changes which give the impression of
animation.

150 F% determines which three physical colours

will be displayed.

170-190 Change each colour to the one next to it.

200 Select the next colour.

210 Cause a short delay. (Pressing any key will
cancel the delay.)

Multi-coloured spiral

46

Animation using palette changes becomes smoother as
more logical colours are used. Here all the non-
flashing colours are used to fill a spiral, which is
then rotated when any key is pressed. The spiral is
filled using rings of triangles that alternately point
inwards and outwards, so that adjacent rings mesh
together.

SPIRAL2

 0 REM Spiral
 20 MODE2
 30 VDU29,640;512;23;9;0;0;0;
 40 MOVE0,0
 50 MOVE0,0
 60 Z=512
 70 A%=180
 80 P=8
 90 DIMA(480):FORQ=0TO480:A(Q)=SINRADQ
:NEXT
 100 R%=1
 110 VDU5
 120 REPEAT
 130 R%=R%-1:IFR%=0 R%=6
 140 FORB%=0TO5
 150 FORA%=B%TOB%+359STEP6
 160 GCOL0,R%:R%=R%+1:IFR%>6 R%=1
 170 PLOT&55,A(A%+90)*Z+1,A(A%)*Z+1
 180 MOVEA(A%+93)*(Z-72),A(A%+3)*(Z-72)
 190 NEXT
 200 Z=Z-P
 210 NEXT
 220 UNTILZ<=120
 230 FORI%=0TO7:VDU19,I%,0;0;:NEXT
 240 A%=GET
 250 DIM A$(7)
 260 FORZ=1TO6:FORY=1TO6
 270 A$(Z)=CHR$19+CHR$Y+CHR$((Y+Z-1)MOD
6+1)+CHR$0+CHR$0+CHR$0+A$(Z):NEXT
 280 NEXT
 290 FORQ%=1TO6:N%=TIME+4:REPEATUNTILTI
ME>N%:PRINTA$(Q%);:NEXT
 300 GOTO290

Description of program

30 Set up the origin at the centre of the
screen and turn interlace off.

90 Compile a table of sine values to save time
later on.

110 Turn cursor off.

47

120 This outer loop, in conjunction with the
loop starting at line 140, decrements the
radius of the circles drawn by the inner
loop (lines 150-190), thus making the spiral
grow inwards.

150-190 This inner loop draws the circle of
triangles.

200-220 Close outer loop

230 Make the screen go black.

240 Wait for a key to be pressed.

250-280 Set up string array A$ to change the
palette.

290-300 Change the palette using predefined array.

Rotating Fan

Here is a program that simulates the rotating fans
inside a jet engine. The fan blades are coloured red,
white and blue, and are drawn to give a perspective
view of the fan. Three fans are drawn, and then
rotated. The central fan appears to rotate in the
opposite direction to the other two; this is because
when this fan is drawn it is coloured in the opposite
direction to the outer fans.

48

ROTFAN

 0 REM Rotating fan
 20 MODE1
 30 VDU19,2,4;0;
 40 VDU5
 50 X%=740:Y%=612:S%=400:C%=1:N%=TRUE
 60 FOR FAN=1 TO 3
 70 N%=NOT N%
 80 X%=X%-100:Y%=Y%-100:S%=S%-50
 90 FORA=1.25*PI TO PI/4-PI/35 STEP -P
I/35
 100 C%=(C%+1)MOD3
 110 IF N% THEN CT%=2-C% ELSE CT%=C%
 120 PROCSIDE(X%,Y%,S%,A,CT%+1)
 130 PROCSIDE(X%,Y%,S%,2.5*PI-A,3-CT%)
 140 NEXT A,FAN
 150 C%=1
 160 REPEAT
 170 FORI%=1 TO 3
 180 J%=(C%+I%)MOD3 +1
 190 IFJ%=2 THEN J%=4
 200 IF J%=3 THEN J%=7
 210 VDU19,I%,J%;0;
 220 NEXT
 230 C%=C%+1
 240 DELAY=INKEY(12)
 250 UNTIL FALSE
 260 DEFPROCSIDE(X%,Y%,S%,A,C%)
 270 X1%=S%*COSA:Y1%=S%*SINA
 280 D%=S%/3
 290 VDU29,X%;Y%;
 300 GCOL0,C%
 310 MOVE0,0:PLOT0,X1%,Y1%:PLOT81,D%,D%
 320 PLOT0,-X1%,-Y1%:PLOT85,0,0
 330 ENDPROC

Description of program

30 Redefine the palette to make logical colour

2 appear as dark blue.

50 Position the centre of the current fan at
the point (X%, Y%) . S% gives the radius,
C% controls the colour of the blades, and N%
affects the order in which the colours are
altered and thus the directions in which the
fans will rotate.

60 Draw a fan each time round this loop.

70 Toggle N% so that adjacent fan will rotate
in opposite directions.

49

80 Alter X%,Y% and S% so that the fans appear
to approach the observer and get smaller
towards the front.

90 Draw a fan with two vanes for each value of
A.

100 Select the colour of the next vane.

110 Alter the order in which colours are
selected depending on the value of N%,

120-130 Draw two vanes. This ensures that the closer
vanes obscure the more distant ones.

On leaving these loops the entire picture has been
drawn, and all that follows is concerned with palette
changes.

150 C% keeps track of the state of the palette.

160 Move all the logical-physical colour
relationships on one step each time around
this loop.

170 I% runs through all the logical colours for
this mode.

180 J% is the next physical colour to select,

190-200 Alter J% so that the colours dark blue and
white appear.

210 Change the palette for each value of I%.

230 Update C% so thegt the colours will move on
one step.

240 Wait 12 centi--seconds.

250 Carry on forever.

260 PROCSIDE draws a single vane of the fan,
which resembles a page of an open book, and
takes the following parameters:

X%,Y% gives position of the centre of the
fan.

S% is the radius of the fan.

A is the angle of the vane.

C% is the logical colour of the vane.

280 (Xl%,Yl%) is the point on the front edge of
the vane.

290 D% is used to draw to the back the vane.

310-320 Put the origin at (X%,Y%).

50

Beach balls

This program draws a ring of multicoloured beach
balls. These are then rotated by palette changes. The
procedure PROCEALL draws a single ball. Since it takes
quite a long time to draw the entire ring it might be
best to alter the program to draw and rotate a single
ball first. This will avoid delays if the palette-
changing code does not work the first time you run it.

BEACHBA

 0 REM Beach Balls
 20 MODE 1
 30 VDU 5
 40 S%=100
 50 FOR T=0 TO PI-PI/6 STEP PI/6
 60 S%=S%+10
 70 PROCBALL(S%,640+500*SIN(T),512+150*COS(T),1)
 80 NEXT
 90 S%=100
 100 FOR T=-PI/6 TO -PI STEP -PI/6
 110 S%=S%+10
 120 PROCBALL(S%,640+500*SIN(T),512+150*COS(T),1)
 130 NEXT
 140 REPEAT
 150 FOR F=1 TO 6 STEP 0.02
 160 FOR I%=1 TO 3
 170 VDU 19,I%,(C%+I%)MOD3+F;0;

51

 180 NEXT
 190 C%=(C%+1)MOD3
 200 A=INKEY(10)
 210 NEXT
 220 UNTIL FALSE
 230 END

Description of program

40 S% gives the radius of the ball.

50-80 Draw the balls on the right-hand side of the
ring, increasing the size of the balls as
they come towards the viewer.

90-130 Draw the balls on the left-hand side of the
ring, starting with the most distant ball as
before.

140 Now rotate the balls forever.

150 Determine which physical colours will appear
in the ball. This loop makes the balls
change colour after rotating for a while.

160-210 Rotate the balls using palette changes.

PROCEALL

The ball is drawn by running round and round an
ellipse that gradually gets thinner and thinner. The
impression of depth results from the way in which the
differently-coloured ellipses are overlayed to
resemble the segments of a beach ball. The procedure
uses the following parameters:

SIZE% gives the radius of the ball.

(X%,Y%) is the position of the centre of the ball.

C% is the first colour to be used. This affects the
direction in which the ball will rotate when the
palette changes begin.

 240 DEFPROCBALL(SIZE%,X%,Y%,C%)
 250 VDU 29,X%;Y%;
 260 MOVE 0,0
 270 MOVE0,SIZE%
 280 FOR A=0 TO 60.4 STEP 0.2
 290 SA=SIN(A)
 300 Q%=1+(1+A/(PI*2))MOD3
 310 GCOL 0,Q%
 320 IF SA<0 THEN GCOL 0,4-Q%
 330 X%=SIZE%*SA*COS(A/40)
 340 PLOT 85,X%,SIZE%*COS(A)

52

 350 PLOT 85,X%,0
 360 NEXT
 370 ENDPROC

Description of PROCBALL

250 Put the origin at the centre of the ball.

260 Move to the first point on the shrinking
ellipse path.

280 Sweep round and round the ellipse
incrementing the angle A.

290 Save SIN(A) as SA so that this is only
calculated once.

Instant plotting

The idea behind 'instant plotting' is to use' palette
changes to obscure the next view while it is being
drawn. Then by altering the palette it is possible to
swap instantly from one frame to the next.

The simple approach of using a different logical
colour for the next view is complicated by the fact
that in each frame the object being drawn will
probably overlap with the previous view. To overcome
this the next view can be drawn using the graphics
action OR, while the palette changes take care of the
added complication of overlapping parts that this
introduces.

The various stages in the method are illustrated in
the diagrams that follow.

53

1 Start with the initial view drawn in logical colour
l.

2 Draw the next view in logical colour 2 using
graphics action OR.

3 Change the palette to show logical colour 2 and
obscure logical colour l.

4 Remove the old view by redrawing it in logical
colour 2 using graphics action AND.

5 Repeat from step I but now the initial view is in
colour 2.

54

Tumbling box

This program demonstrates how the 'instant plotting'
technique can be used to produce a remarkably
effective animated view. The program shows a box
tumbling towards you.

BOX

 0 REM Tumbling box
 20 MODE1
 30 VDU29,640;512;
 40 VDU5
 50 COL%=RND(7)
 60 VDU19,3,COL%;0;19,1,COL%;0;
 70 C%=1:A=4
 80 GCOL0,C%:PROCBOX(A,A*10)
 90 PROCBOX(A,A*10)
 100 VDU19,C%,COL%;0;19,3-C%,0;0;
 110 REPEATA=A+0.1
 120 C%=C%EOR3
 130 GCOL1,C%:PROCBOX(A,A*10)
 140 VDU19,C%,COL%;0;19,3-C%,0;0;
 150 GCOL2,C%:PROCBOX(A-0.1,10*(A-0.1))
 160 UNTIL FALSE

55

Description of program

50 Determine the physical colour of the moving
box.

60 Make logical colours 3 and I appear as
physical colour COL%.

70 C% determines the physical colour to use. A
gives the size and orientation of the box.

80-90 Draw the first view of the box.

100 Ensure the next view will not appear while
it is being drawn.

110 Each time around this loop a new box is
drawn and the previous view is undrawn.

120 Toggle the value of C% between I and 2. OR
the new box.

140 Show the new view and obscure the old one.

150 Remove the old box by ANDing with logical
colour C%.

160 Carry on forever.

PROCBOX

This draws a wire-frame view of a box. The position
and orientation of the box are determined by the value
of AN. S% gives the size of the box. The box is
constructed by first drawing the 'front' face, and
then drawing an identically-shaped 'back' face running
up and down the connecting edges as this is done.

Description of PROCBOX

280 Draw one face.

210 Draw an edge joining the 'front' and 'back'
faces.

220-240 Draw three lines of the 'back' face with
back-front connecting edges.

250 Draw the final line of the back face.

Condor

Here, four lines are used to represent a majestic
condor soaring above the Andes. The image is
convincing because of the way in which these simple
lines are smoothly-animated to capture the motion of

56

the bird's wings. The various wing positions used in
this animation are shown below:

1 2

3 4

5 6

7 8

The background landscape is built out of random lines.
These give the impression of dark peaks rising from a
seething mass of vegetation.

CONDOR

 0 REM Condor
57

 20 MODE1
 30 VDU5
 40 PROCANDES
 50 C%=1:L%=FALSE
 60 ANGLE=0
 70 REPEAT
 80 ANGLE=ANGLE+0.2
 90 C%=C%EOR3:GCOL1,C%
 100 OX%=640+500*COS(ANGLE/12)
 110 OY%=712+200*SIN(ANGLE/12)
 120 X%=(OY%-1030)/4:Y%=X%*COS(ANGLE)
 130 A%=X%*1.5:B%=A%*COS(ANGLE-0.4)
 140 PROCBIRD(X%,Y%,A%,B%,OX%,OY%)
 150 VDU19,C%,2;0;19,3-C%,0;0;
 160 IF L% THEN GCOL2,C%:PROCBIRD(X1%,Y
1%,A1%,B1%,OX1%,OY1%) ELSE L%=TRUE
 170 X1%=X%:Y1%=Y%
 180 A1%=A%:B1%=B%
 190 OX1%=OX%:OY1%=OY%
 200 UNTIL FALSE
 340 ENDPROC

Description of program

50 L% is used to decide whether there is an old
view of the bird that has to be undrawn.
ANGLE determines both the wing position and
the bird's location.

100-110 Calculate the new position of the bird.

120-130 Calculate the new wing positions.

140 Draw the new bird.

150 Flip to view the new bird.

160 Undraw the old bird, unless this is the
first time around the loop and there is no
old bird to undraw.

170-190 Make the new bird the old bird.

PROCANDES

 210 DEFPROCANDES
 220 GCOL0,3
 230 VDU19,3,2;0;
 240 MOVE0,0:DRAW1279,0:DRAW1276,1020:D
RAW0,1020:DRAW0,0
 250 FORJ%=-50 TO 100 STEP 4
 260 MOVE0,J%
 270 FORI%=0TO130
 280 PLOT1,10,RND(25)-12
 290 NEXT I%,J%
 300 ENDPROC

58

Description of PROCANDES

220 Logical colour 3 is not altered by the
animation palette changes.

240 Draw a frame around the screen.

250 For each value of J% we draw a random jagged
line across the screen.

270-290 Draw a wiggly line from left to right.

PROCBIRD

 310 DEFPROCBIRD(X%,Y%,A%,B%,OX%,OY%)
 320 VDU29,OX%;OY%;
 330 MOVE-A%,B%:DRAW-X%,Y%:DRAW0,0:DRAWX%,Y%:DRAW
A%,B%

Description of PROCBIRD

310 PROCEIRD takes the following parameters:

OX% and OY% define the origin for the bird

A% and B% are the ends of the wings

X% and Y% are the elbows, or 'bends' in the
wings

59

Plankton

This program draws a weird pattern that looks a bit
like a microscopic bug that pollutes the water supply.
The program picks a random physical colour for the
parts of successive views of the bug that overlap.

PLANK

 0 REM Plankton
 20 MODE1
 30 VDU5
 40 DIM S(121)
 50 I%=-2
 60 FORA=0TO 2*PI STEP PI/30
 70 I%=I%+2
 80 S(I%)=400*COS(A)
 90 S(I%+1)=400*SIN(A)
 100 NEXT
 110 C%=1:L%=FALSE:COL%=RND(7)
 120 VDU19,2,COL%;0;19,3,RND(7);0;
 130 REPEAT
 140 FOR J%=0 TO 118 STEP 2
 150 C%=C%EOR3:GCOL1,C%
 160 PROCPAT(J%)
 170 VDU19,C%,COL%;0;19,3-C%,0;0;
 180 IF L% THEN GCOL2,C%:PROCPAT(J%-2)
ELSE L%=TRUE
 190 NEXT

60

 200 UNTIL FALSE

Description of program

40 The array S will hold a table of
coordinates.

50-100 Save the coordinates that are calculated
from the slow trig functions SIN and COS in
the array S.

140 J% has the same effect as an angle that
rotates once as J% goes from 0 to 118.

160 Draw the new pattern.

180 Remove the old pattern.

PROCPAT

This draws the micro-organism in an orientation
determined by J%.

PROCPAT

 210 DEFPROCPAT(J%)
 220 FORI%=0TO500 STEP 20
 230 J%=(J%+2)MOD120
 240 X%=S(J%):Y%=S(J%+1)
 250 VDU29,400+I%;512;
 260 MOVE X%,-Y%:DRAW0,0:DRAW X%,Y%
 270 NEXT
 280 ENDPROC

Description of PROCPAT

220 I% runs along the backbone.

230 This puts the legs at different angles.

240 Look up the (X%,Y%) position from the value
of J%.

250 Move the origin.

260 Draw a pair of 'legs'.

61

62

5 Recursion
Recursive patterns

A large number of complicated patterns can be defined
very simply using recursion, whereby a simple shape is
drawn over and over again until a complete pattern is
built up. Recursion means, simply, repetition and the
term can be used to describe any repetitive process.

A 'replacement rule' is repeatedly applied to the
initial pattern, and this principle may also determine
the size and position of successive versions of the
shape relative to the original.

Here is a simple example:

1 2

3 4

In this case the initial pattern is a diamond. The
rule applied here is to draw a smaller diamond centred
about each of the corners of the original. As you can
see, this rule does not have to be applied many times
before a complicated pattern emerges.

Recursive procedures

The BASIC interpreter on the BBC machine allows you to
define recursive procedures. A recursive procedure has
a call to itself within its definition. Here is an
example showing how a recursive procedure can be used
to mimic the action of a FOR... NEXT loop. (Obviously

63

in this case the FOR... NEXT loop would be much neater
and more efficient.)

Example

 10 PROCLOOP(0)
 20 END
 30 DEF PROCLOOP(N%)
 40 IF N%=11 THEN ENDROC
 50 PRINT N%
 60 PROCLOOP(N%+1)
 70 ENDPROC

Description of program

10 Call PROCLOOP with 0.

20 Stop.

30 PROCLOOP takes one parameter N%. The value
of N% determines the number of times we
recurse.

40-60 If N% is equal to 11 then return, otherwise
print out N% and call PROCLOOP with the
value N%+1.

70 This final ENDPROC is vital.

This program will print the numbers from 0 to l0. The
recursive procedure PROCLOOP consists of three parts
which are:

1 A test for an end condition that will terminate the
recursion

2 An action that the procedure printing out N%

3 A recursive call that alters the parameters in some
way

In general these parts can be found in some form in
every recursive procedure. The order in which these
sections appear is important; for example, if the
procedure calls itself before it has tested for the
end condition it will never be able to stop recursing
and will run out of room.

Each time a new call of the procedure is made the
'depth' of recursion increases. The depth of recursion
is in some cases similar to the number of times a loop
is executed. When a program leaves a procedure it
returns to the level it was at just before entering
it. The deeper a program recurses the more information
it has to store about how to get back to the top

64

level.

Local variables

Local variables can only be altered inside the
procedure in which they appear, and have no effect on
any variable outside their own procedure. This is
generally useful since it is possible to define a
procedure without worrying about name clashes.

In recursive procedures it is often vital to declare
variables to be local. If this is not done recursive
calls of the procedure will alter the variables in
calling the procedure, and the effects of this can be
obscure.

In BBC BASIC the parameters of a procedure are
automatically treated as local variables; for any
other variable to be local it must be explicitly
declared to be so. This program, which prints out
coloured blobs, demonstrates a typical case in which a
local variable is required:

Example

 l0 MODE 7
 20 PROCDO(I)
 30 END
 40 DEF PROCDO(L%)
 50 LOCAL I%
 60 IF L%=5 THEN ENDPROC
 70 FOR I%=1 TO 7
 80 PROCDO(L%+1)
 90 VDU (l28+I%),255
 100 NEXT
 110 ENDPROC

Each time PROCDO is called it should call itself seven
times in the loop starting at line 70. If I% is not
declared to be local the recursive calls of PROCDO
would affect the value of I% in the first procedure.
Try removing line 50 to see how this affects the
program.

Advantages and limitations of recursion

The great power of recursion is that it can provide a
very neat solution to certain kinds of problem. This
power must be judged against some of its limitations.

65

The main problems are:

1 Recursion can be slow

2 Recursion requires a lot of memory

The first problem can arise because each time a
procedure is called there is a delay while the
parameters are passed to the procedure and local
variables are set up. The speed at which this is done
depends on how efficiently this mechanism has been
implemented.

Luckily the interpreter on the BBC machine is quite
fast and the overheads incurred each time a procedure
is called are not very large. Since recursive
procedures require many procedure calls they will run
faster if the cost of each call is kept to a minimum.
This can be achieved by not passing unnecessary
parameters that do not change, and keeping the number
of local variables to a minimum.

Each time a procedure is called some more memory is
required to hold the local variables and the return
address from which the procedure was called. Recursion
allows procedures to call themselves, and at each new
level some more memory is needed. It is very easy to
define a procedure which can gobble up memory at an
alarming rate, for example if a large number of local
variables are used and if the procedure recurses many
times. To avoid this care must be taken to ensure that
the end condition stops the recursion before it runs
out of room. Also, because all the parameters are
saved every time the procedure is called, the number
of parameters used should be limited to avoid passing
parameters that do not alter, thus avoiding possible
wastage of valuable memory.

Replacement patterns

The next two programs are examples of patterns that
are derived from repeatedly applying a replacement ,
rule to an initial pattern. Both start from a very
simple pattern. Surprisingly, the outline of the final
pattern depends more on where the replacements are
made than on the original shape.

66

Recursive diamonds

This program illustrates how a complicated pattern
crew easily be defined and rapidly drawn using a
recursive procedure. The pattern is formed by drawing
a diamond followed by four diamonds, each half the
size of the original, centred about its corners, as
shown on page 63. On each of these diamonds a further
four smaller diamonds are drawn. This continues until
the size of the diamonds has become less than the
minimum size spec if ied.

RECDIA

 10 MODE 1
 20 VDU 5
 30 M%=400
 40 REPEAT
 50 VDU 19,RND(3),RND(7);0;
 60 GCOL 3,RND(3)
 70 PROCDIA(640,512,512)
 80 M%=M%/2
 90 UNTIL M%<16
 100 GOTO 30
 110 DEFPROCDIA(X%,Y%,S%)
 120 IF S%<M% THEN ENDPROC
 130 S%=S%/2
 140 PROCDIA(X%+S%,Y%,S%)
 150 PROCDIA(X%-S%,Y%,S%)

67

 160 PROCDIA(X%,Y%-S%,S%)
 170 PROCDIA(X%,Y%+S%,S%)
 180 VDU 29,X%;Y%;
 190 MOVE 0,S%
 200 DRAW S%,0:DRAW 0,-S%:DRAW -S%,0:DR
AW 0,S%
 210 ENDPROC

Description of program

10 4-colour mode

20 Remove text cursor

30 M% gives the minimum size a diamond can be.

40 Call the recursive procedure PROCDIA
(X%,Y%,S%) each time round this loop.

50 Redefine one of the three logical colours to
appear as any of the possible non-flashing
colours.

60 Select a random colour and graphics action

EOR.

70 Call PROCDIA in the centre of the screen
with an initial size of 512.

80 Halve the maximum line length; this will
cause PROCDIA to recurse one level deeper
next time it is called.

90 If M% was less than this the recursion would
take too long and the lines very small.

100 Start all over again.

110 Each time PROCDIA(X%,Y%,S%) diamond of size
S% is drawn the point (X%,Y%), provided
drawn would be is called a centred about
that S% is bigger than M%; otherwise, the
procedure does nothing,

120 Do nothing if the size is less than M%.

130 Halve the size.

140-170 Call PROCDIA to draw half-sized diamonds at
each corner.

180 Put the origin at the point (X%,Y%).

190-200 Draw a diamond of size S%.

68

Recursive squares

This pattern is similar to the recursive diamonds
pattern. Here the recursive step is to replace one
square by the original square plus four smaller
squares lying on its sides. Because the squares are
drawn with the graphics action Exclusive-OR, in a
random colour, this step can cause parts of the
original square to be erased. The procedure is called
repeatedly recursing to a deeper level on each call.
This method produces a wide range of dynamic patterns.

69

Pattern construction

1 2

3 4

RECSQ

 0 REM Recursive Squares
 20 MODE1
 30 VDU5
 40 V%=300
 50 REPEAT
 60 GCOL3,RND(3)
 70 VDU19,RND(3),RND(7);0;
 80 PROCC(500,400,256)
 90 V%=V%/2
 100 UNTILV%<8
 110 GOTO40
 120 END
 130 DEFPROCC(X%,Y%,S%)
 140 IF S%<V% THEN ENDPROC
 150 PROCC(X%+S%/4,Y%+S%,S%/2)
 160 PROCC(X%+S%,Y%+S%/4,S%/2)
 170 PROCC(X%-S%/2,Y%+S%/4,S%/2)
 180 PROCC(X%+S%/4,Y%-S%/2,S%/2)
 190 VDU29,X%;Y%;
 200 MOVE0,0
 210 DRAW0,S%:DRAWS%,S%:DRAWS%,0:DRAW0,
0
 220 ENDPROC

Description of program

70

40 V% controls how many times PROCC will
recurse.

50 Each time around this loop we call PROCC.

60 Select graphics action EOR with a random
logical colour.

70 Display any of the 6 colours.

80 Call PROCC in the centre of the screen with
initial size 256.

90 Reduce V% causing PROCC to recurse one level
deeper next time it is called.

100 Limit V%. Since each pixel is 4x4 this seems
a reasonable limit. If V% were much less
than this then the time required for PROC
would be excessive.

110 Start again.

120 (We never get here.)

130 Draw a square at (X%,Y%) of size S%.

140 Do nothing if S% is less than V%.

150-180 Call PROCC on each side of the square.

190 Move the origin to (X%,Y%).

200 Draw the square.

Intelligent parameters

In the previous examples the number of recursive calls
and the way in which the parameters are altered at
each call remain the same at every level. This
introduces a very strict regularity to the pattern
produced. It is possible to have a parameter that
controls the nature of the recursive calls. This leads
to exciting possibilities in which different actions
can be taken at different levels of recursion,

71

Circles

This program draws a pattern built up from circles of
decreasing size growing outwards from the central
circle. The program uses recursion and has a very
simple way of ensuring that circles are not drawn on
top of each other.

This is done by having a parameter in the circle-
drawing procedure that indicates where the current
circle is joined to its parent. By examining this
parameter it is possible to avoid any recursive calls
that would cause circles to be overwritten. A result
of this is that the final pattern is square and fills
the screen in a surprisingly intelligent way.

72

Effect of the parameter P%

CIRCLES

 0 REM Circles
 20 MODE1
 30 VDU5
 40 VDU19,0,4;0;
 50 PROCCIRCLES(640,512,240,0,0)
 60 REPEATUNTIL0
 70 DEF PROCCIRCLES(OX%,OY%,R%,L%,P%)
 80 IFL%=5 THEN ENDPROC
 90 VDU29,OX%;OY%;
 100 GCOL3,L%MOD3+1
 110 FORA=0TO2*PI-PI/R% STEPPI*4/R%
 120 MOVE0,0:DRAWR%*COSA,R%*SINA
 130 NEXT
 140 IFP%<>3 PROCCIRCLES(OX%-R%,OY%-R%,
R%/2,L%+1,1)
 150 IFP%<>4 PROCCIRCLES(OX%+R%,OY%-R%,
R%/2,L%+1,2)
 160 IFP%<>1 PROCCIRCLES(OX%+R%,OY%+R%,
R%/2,L%+1,3)
 170 IFP%<>2 PROCCIRCLES(OX%-R%,OY%+R%,
R%/2,L%+1,4)
 180 ENDPROC

Description of program

40 Make the background dark blue.

73

50 Call PROCCIRCLES. The centre of the first
circle will be at (640,512) and it will have
a radius of 240. The next parameter
determines the level of recursion and the
colour. The last value determines where
circles are drawn around the current circle.

60 This stops the prompt from BASIC appearing
once the pattern has been drawn.

70 PROCCIRCLES takes the following parameters:

OX%,OY% are the coordinates of the centre of
the circle.

R% The radius of the circle.

L% The depth of recursion, also used select
a new colour at each level.

P% The position at which the current is
joined to its parent circle.

80 Stop after 5 recursions.

90 Move the origin.

100 Select a colour specified by L% with action
EOR.

110-130 Draw the radial circle lines.

140-170 Call PROCCIRCLES at a maximum of four
positions around the edge of the original.
Omit the position that connects the current
circle to its parent.

170 Leave the procedure.

Recursive calls within a loop

If a procedure is to call itself a large number of
times, it would be very inconvenient to have to write
out each call explicitly. By placing the call in a
loop the desired effect is produced. However, there
are some pitfalls to avoid if this is done.

The value of the control variable of the loop must not
after while the procedure in the loop is being
executed. If the procedure being called is the same as
the calling procedure it is bound to have a loop
contr'ol Variable with the same name. To ensure the
variable retains its value across the recursive call
the loop variable must be declared to be a local
variable. The following program uses this method.

74

Koch flake

The Koch flake is sometimes called the snowflake
curve, because its curious shape resembles a
snowflake. Here it is constructed by repeatedly
drawing smaller stars on the arms of stars that have
already been drawn. The resulting pattern has the
outline of two koch flakes embedded in it. These may
show up more clearly when the entire pattern has been
finished and the palette changes begin. At this stage
there is a two-second delay between each colour
change, unless you hold down any key, in which case
this delay is removed and you can rapidly step through
the colours until an interesting colour scheme is
found.

KOCH

 0 REM Koch Flake
 20 MODE1
 30 VDU5
 40 VDU19,1,4;0;:VDU19,2,6;0;
 50 CS=COS(PI/6)
 60 PROCSTAR(640,512,500,2)
 70 REPEAT
 80 VDU19,RND(3),RND(8)-1;0;
 90 A=INKEY(200)

75

 100 UNTIL FALSE
 110 END
 120 DEFPROCSTAR(X%,Y%,S%,C%)
 130 LOCAL I
 140 IF S%<12 THEN ENDPROC
 150 IF C%=0 THEN GCOL0,2 ELSE GCOL0,C%
 160 VDU29,X%;Y%;
 170 XL%=S%*CS:YL%=S%/2
 180 MOVE 0,S%:MOVE XL%,-YL%:PLOT85,-XL
%,-YL%
 190 MOVE 0,-S%:MOVE XL%,YL%:PLOT85,-XL
%,YL%
 200 FORI=0 TO 2*PI-PI/3 STEP PI/3
 210 PROCSTAR(X%+S%*SIN(I)*0.68,Y%+S%*C
OS(I)*0.68,S%/3,(C%+1)AND3)
 220 NEXT
 230 ENDPROC

Description of program

40 Make cold colours appear while the flake is
being drawn.

50 This value is going to be used often so to
speed things up save it as CS.

60 Call PROCSTAR to draw the pattern centered
about (640,512) with initial size 500 and
logical colour 2.

70 Change the colours on the screen at random.

80 Do a random palette change.

90 Wait 2 seconds if no key is pressed.

100 Carry on until someone presses ESCAPE.

110 We never get here but this helps to show
where the procedure declarations start.
PROCSTAR(X%,Y%,S%,C%) draws a star in
logical colour C% centred about the point
(X%,Y%) of size S%, it then calls itself on
each of the arms of the star it has just
drawn.

130 This will hold an angle that determines
which arm the next call of PROCSTAR is for.

140 Do nothing if the size is less than 12.

150 Choose the colour.

160 Put the origin at (X%,Y%).

170 Draw the star using XL% and YL%.

180-190 Draw two overlapping triangles to form a
star.

200 This loop calls PROCSTAR for each arm of the
star just drawn.

210 Call PROCSTAR to draw a star centred in the
middle of the arm pointing at an angle I,

76

with S% one third its previous value and a
new colour.

230 Leave the procedure.

Line replacement patterns

The next two programs produce patterns obtained by
repeatedly applying a replacement rule to every
straight line in the pattern. In both cases the
initial pattern here is simply one straight line.

The two programs produce very different results
despite the fact that there is only a slight
difference in the two replacement rules. Many other
interesting patterns could be produced by modifying
the way in which the parameters are altered in the
recursive line-drawing procedure.

C-Curve

A C-curve is produced by recursively replacing a
straight line between two points by two shorter lines
at right-angles to each other that form an elbow
connecting the points. The curve is plotted when the
length of the lines has become less than a given
value. The first few steps in the construction are
shown on the next page:

77

1 2

3 4

5 6

7 8

The pattern that results depends on the length 6f the
initial line and the depth of recursion. As given, the
program is quite slow since it has to calculate a sine
and a cosine for each line drawn. One simple way to
speed this up would be to save all the possible values
of sin and cos that will be required in an array.

78

C-CURVE

 0 REM C-Curve
 20 MODE1
 30 VDU5
 40 MIN%=15
 50 GCOL0,2
 60 MOVE300,200
 70 PROCC(700,0)
 80 REPEAT UNTIL FALSE
 90 DEFPROCC(L%,ANGLE)
 100 IF L%<MIN% THEN PLOT 1,L%*COS(ANGL
E),L%*SIN(ANGLE):ENDPROC
 110 L%=L%/SQR(2)
 120 PROCC(L%,ANGLE+PI/4)
 130 PROCC(L%,ANGLE-PI/4)
 140 ENDPROC

Description of program

40 MIN% gives the maximum length of any line
that will be plotted. This is a way of
controlling the depth of recursion. If MIN%
is large the program will not recurse very
far.

60 This is the starting point from which the
curve grows.

90 PROCC(L%,ANGLE) will draw a line of length
L% at an angle ANGLE starting at the current
position if L% is less than MIN%.

100 If the length is short enough, draw the line
and then stop.

110 Reduce the length.

120-130 Call PROCC twice for each of the new shorter
lines.

79

Dragon Curve

The dragon curve is so called because of its contorted
shape which resembles a Chinese dragon. It is produced
by a very similar technique to that used to draw the
C-curve, Here the recursive step is to replace a
straight line between two points by two shorter lines,
forming a hat to one side of the original line. In the
C-curve the hat formed is always put on the same side
of the line being replaced, whereas to produce a
dragon curve the hat is placed alternately on
different sides of the line. The first few stages of
the construction are shown on the next page.

80

1 2

3 4

5 6

In this program the drawing process has been speeded
up by saving a table of the trig functions so that
these do not have to be calculated for each line
drawn. The curve is drawn using the triangle fill
relative command, PLOT 81, which does not fill the
curve exactly but is a reasonable approximation when
the lines composing the curve are small.

DRAGON

 0 REM Dragon Curve
 20 MODE1
 30 VDU5
 40 DIM S(7),C(7)
 50 A=0
 60 FORI%=0TO7
 70 S(I%)=SIN(A):C(I%)=COS(A)
 80 A=A+PI/4
 90 NEXT
 100 M%=12

81

 110 GCOL0,RND(3)
 120 MOVE200,700:MOVE200,700
 130 PROCC(1024,0,-1)
 140 REPEATUNTIL FALSE
 150 DEFPROCC(L%,I%,T%)
 160 IF L%<M% THEN PLOT 81,L%*C(I%),L%*
S(I%):ENDPROC
 170 L%=L%*1000/1414
 180 PROCC(L%,(I%+T%)AND7,1)
 190 PROCC(L%,(I%-T%)AND7,-1)
 200 ENDPROC

Description of program

40 These will hold SIN(A) and COS(A) for all
the values A can take in the construction.

60-90 Store sine and cosine values in arrays S and
C. This makes the drawing of the curve much
faster because all the trig functions can
rapidly be found from the values stored in
these arrays.

100 M% gives the maximum length of any line that
will be drawn.

120 Select a colour at random. Set the point
from which the curve will start. Two moves
are required since the curve is to be filled
in using PLOT 81.

130 Call PROCC. This will grow out to join a
point 1024 units to the right. The first hat
is to be placed below the original line.

140 Do nothing until ESCAPE is pressed (this
stops the ">" appearing).

150 PROCC takes these parameters:

L% is the length of the line

I% is a value used to index the tables of
trig functions, the value of I% corresponds
to the angle of the line.

T% is a value that determines on which side
of the line the new lines, forming a hat,
are to be placed.

160 If the length is short enough draw a line
then stop.

170 Reduce the length, prior to the recursive
calls of PROCDRAG. This has the same effect
as L%=L%/SQR(2] or L%=L%/l.4l4, but is
slightly faster than either of these more

82

obvious methods.

180 Call PROCC. L% is the new length. The new
trig table index depends on the value of T%;
we either add or subtract PI/4 to the angle.
AND 7 ensures that the index wraps around
for angles 0 and 2*PI. Draw the next hat
'above'

190 Call PROCC for the other line in the hat.
This line is at right angles to the line
produced in the call above, and the first
hat growing from it is on the opposite side.

200 Leave the procedure.

Tree

Recursive procedures can be used quite effectively to
produce irregular patterns; here is one that draws a
tree. Each branch of the tree can be thought' of as a
separate tree growing out at an angle from the
previous branch. The procedure takes parameters that
determine the length of the branch, its angle and the
number of sub-trees that grow from it. The parameter
DEPTH% controls the depth of recursion.

83

TREE

 0 REM Tree
 20 MODE1
 30 MOVE500,200
 40 VDU19,2,2;0;
 50 PROCTREE(PI/2,200,5,4)
 60 END
 70 DEFPROCTREE(ANGLE,HEIGHT%,BRANCHES%,DEPTH%)
 80 LOCAL I%,X%,Y%
 90 IF DEPTH%=0 THEN ENDPROC
 100 X%=HEIGHT%*COS(ANGLE)
 110 Y%=HEIGHT%*SIN(ANGLE)
 120 FOR I%=1TO BRANCHES%
 130 IF DEPTH%=1 THEN GCOL0,2 ELSE GCOL0,1
 140 PLOT1,X%,Y%
 150 PROCTREE(RAD(RND(180)),HEIGHT%/2,BRANCHES%,
DEPTH%-1)
 160 PLOT0,-X%,-Y%
 170 NEXT
 180 ENDPROC

Description of program

30 Define the point from which the tree will
grow.

40 Set logical colour 2 to appear as green, the
colour of the leaves.

50 Call PROCTREE. The effect of these parameter
values is as follows:

PI/2 makes the trunk vertical

The trunk will be of length 200.

There will be 5 branches growing from each
fork point.

Recurse 4 times.

60 Stop.

70 PROCTREE takes these parameters:

ANGLE (in radians measured anti-clockwis
from 'east') determines the angle at which a
branch will be drawn.

84

HEIGHT% gives the length of the branch.

BRANCHES% is the number of subtrees that grow from
each fork point.

DEPTH% is a measure of the depth of recursion.

80 Declare 1%, X%, Y% to be local variables,
otherwise their values would be altered in
recursive calls of PROCTREE at line 150.

90 Have we recursed enough? If so then stop.

100-110 The point (X%,Y%) is the tip of the current
branch.

120 PROCTREE is called once each time round this
loop.

130 Select the colour.

140 Draw the branch.

150 Draw a subtree from the fork point, with new
parameters:

RAD(RND(l80)) is a random angle between 0
and 180 degrees (RAD converts this into
radians).

HEIGHT%/?. halves the length of the
branches.

BRANCHES% makes the same number of branches
grow from each fork in the subtree.

DEPTH%-1 - we have recursed, so reduce
DEPTH%.

160 Move back to the fork point.

180 Leave the procedure,

Ideas that have grown from PROCTREE

This tree program is very readily-modified to produce
a vast number of different effects. The shape of the
tree drawn depends on the values used for the initial
parameters. Try altering these to get an idea how each
one affects the final result. The way the parameters
are altered in the recursive call of PROCTREE at line
150 is very important. See how the structure of the

85

tree can be changed by altering this line.

More complicated tree procedures could easily produce
very life-like trees. One way to do this would be to
have separate procedures to draw different parts of
the tree. For example the branch-drawing procedure
could call PROCLEAF to draw solid leaves along the
shorter branches.

Another possible improvement would be to draw solid
branches using the PLOT 85 command, This could be done
by introducing a parameter, WIDTH, that would
determine the thickness of each branch. A 3-
dimensional effect could be produced by shading these
solid branches with the random dot technique.

86

6 Pictures
The programs in this chapter make use of many of the
techniques described in the preceding chapters to
create four quite complex pictures. Each program is
composed of a number of procedure calls that deal with
different aspects of the picture. In this way a
complicated view is built up from simple parts, each
of which can be written and tested separately.

Windy field

Here is a program that uses both horizontal and
vertical scrolling to produce an animated picture. The
program draws first a view of a windy field above
which clouds drift across the sky. Next, the clouds
sink below the horizon and the view shifts upwards to
the sun.

Scrolling the screen in this way is a neat way of
moving from one scene to the next. This technique
could also be used in a wider context to clear the
screen while avoiding the use of the rather sudden CLS
or CLG commands.

The program is built up from a series of procedures,
each one drawing a different part of the view or
performing a special action. The main program is quite
short and is described below. The procedure

87

declarations that follow could be in any order; these
give the details of how to draw a particular object.

The colour scheme chosen for the view is very much a
matter of individual taste. You can easily alter the
way the palette is set up at lines 30 and 210, or you
could write a procedure that would read in logical and
physical colour numbers and alter the palette
according to the numbers supplied each time the
program is run. This way you can draw the picture and
{:hen experiment with different colour schemes
Interactively.

FIELD

 0 REM Windy field
 20 MODE1
 30 VDU23;10,32;0;0;0;
 40 VDU19,0,4;0;19,2,2;0;
 50 WIND%=0
 60 FORY%=860 TO 700 STEP -40
 70 PROCCLOUD(200+RND(870),Y%,100+RND(
100),80+RND(20),TRUE,3,0)
 80 NEXT
 90 REPEAT
 100 WIND%=WIND%-1
 110 VDU23;13,WIND%;0;0;0;
 120 A=INKEY(12)
 130 UNTIL WIND%=0
 140 PROCGROUND(16)
 150 VDU28,0,9,39,0
 160 COLOUR128
 170 A=INKEY(300)
 180 PROCDOWN(10,80)
 190 VDU28,0,31,39,10
 200 PROCDOWN(22,0)
 210 VDU19,2,3;0;19,3,7;0;
 220 PROCSUN(600,700,1000,TRUE,3)
 230 PROCSUN(600,700,200,FALSE,1)
 240 PROCCLOUD(400,600,300,200,FALSE,2,
3)
 250 A=INKEY(300)
 260 REPEATVDU19, RND(4)-1, RND(8)-1;0;
 :A=INKEY(200):UNTIL FALSE
 270 END

Description of program

30 Remove the flashing text cursor.

40 Change the palette so that logical colours 0
and 2 appear as blue and green.

88

50 The variable WIND% will determine how far
the screen has been scrolled. It is altered
in PROCCLOUD as the clouds are moved.

60-80 Draw some white clouds, scrolling the screen
as they are drawn.

90-130 This loop scrolls the screen back to its
orignal position.

110 Re-program register 13 of the 6845 video
controller chip, with the value of WIND%.

The effect of this is to move the portion of
memory displayed on the screen.

140 Draw the ground.

150 Define a text window around the sky.

160 Set the text background colour to logical
colour 0, the same colour as the sky,

170 Wait 3 seconds, unless a key is pressed.

180 Scroll the sky down so that the clouds sink
below the horizon.

190 Define a text window around the ground.

200 Quickly scroll the ground down to leave an
empty blue screen. change the palette to
make logical colours 2 and 3 appear as
yellow and white.

220 Draw the rays in white.

230 Draw the sun in red.

240 Draw a cloud to slightly obscure the sun.

260 Sit there changing the palette at random.

PROCDOWN

This is a procedure that scrolls the current text
window downwards. The procedure takes two parameters:
N% and D%. N% determines how far to scroll the window
and D% specifies the delay between each movement.

 280 DEFPROCDOWN(N%,D%)
 290 FORI%=1 TO N%
 300 VDU11
 310 A=INKEY(D%)
 320 NEXT
 330 ENDPROC

Description of PROCDOWN

290 Each time around this loop the text window
scrolls down one line.

300 This scrolls the screen down one line. We

89

assume the text cursor is at the top left-
hand corner of the window when PROCDOWN is
called.

PROCGROUND

This draws the field, which consists of a solid
background colour and lines that give the impression
of depth as they converge towards the horizon. The
background is filled in very rapidly by defining a
text window around the region, and then clearing the
text window wi th the col our set to be the text
background colour.

 340 DEF PROCGROUND(S%)
 350 VDU28,0,31,39,10
 360 COLOUR129
 370 CLS
 380 VDU26
 390 GCOL0,2
 400 VDU29,640;0;
 410 MOVE-640,700:DRAW640,700
 420 FORX%=-640 TO 640 STEP S%
 430 MOVEX%,700:DRAW4*X%,0
 440 NEXT
 450 ENDPROC

Description of PROCGROUND

350 Define a text window around the ground.

360 Select text background colour to be logical
colour 1.

370 Clear the text area, thus filling the region
red.

380 Get rid of the text window.

390 This will be the colour of the lines.

400 Move the origin to the centre of the bottom
line of the screen.

410 Draw a line along the horizon.

420-440 Draw lines from the horizon to the bottom of
the screen, spreading out to give an
impression of depth.

PROCCLOUD

This procedure draws a cloud. The cloud outline is
obtained by tracing round a small circle as the centre
of the circle moves round a larger circle. It takes 7

90

parameters:

X% is the absolute X-coordinate of the centre of the

cloud.

Y% is the absolute Y--coordinate of the centre of the

cloud.

SX% is the size of the cloud in the X-direction.

SY% is the size of the cloud in the Y--direction.

SCROL% is a boolean that determines whether to scroll
the screen sideways as the cloud is being drawn.

C1% is the logical colour of the solid centre of the

cloud.

C2% is, the logical colour of the line around the edge

of the cloud.

 460 DEFPROCCLOUD(X%,Y%,SX%,SY%,SCROL%,C1%,C2%)
 470 VDU29,X%;Y%;
 480 L%=6+RND(8)
 490 MOVE0,0:MOVESX%+SX%/L%,0
 500 X1%=SX%+SX%/10:Y1%=0
 510 IF WIND%>120 THEN S%=-1 ELSE S%=1
 520 FORI=0TO 6.3 STEP 0.1
 530 IF SCROL% THEN VDU23;13,WIND%,0;0;
0;:WIND%=WIND%+S%
 540 X%=SX%*COS(I)+SX%/L%*COS(I*L%)
 550 Y%=SY%*SIN(I)+SY%/L%*SIN(I*L%)
 560 GCOL0,C1%
 570 MOVE32,12:PLOT85,X%,Y%
 580 MOVEX1%,Y1%
 590 GCOL0,C2%:DRAWX%,Y%
 600 X1%=X%:Y1%=Y%
 610 NEXT
 620 VDU29,0;0;
 630 ENDPROC

Description of PROCCLOUD

470 Move the origin to the centre of the cloud.

480 L% controls the number of lumps the cloud
will have.

490 Move to the centre and then to the first
point on the edge.

500 (Xl%,Yl%) is the first point on the edge of
91

the cloud; as we trace round the cloud this
will always be one step behind the point
(X%,Y%).

510 Scroll the screen to the left or the right,
as required (this prevents the screen from
getting too far out of place).

520 I is the angle that measures how far round
the cloud we are. 6.3 is approximately PI*2.

530 Scroll the screen if required.

540-550 Calculate the next point along the edge.

560 Select the interior colour (silver not
allowed!).

570 Move to a point inside the cloud and fill a
triangle to the edge.

580 Move back to the previous edge point.

590 Select the edge line colour and draw along
the cloud edge.

600 Move (Xl%,Yl%) along the edge.

620 Return the origin to the usual place.

PROCSUN

This procedure will either draw a solid circular sun
or a circle of rays reaching out from the central
point. The boolean variable RAYS% determines which to
draw.

The parameters are described below: (X%,Y%) is the
absolute position of the centre of circle or rays.

S% is the radius of the circle.

RAYS% is either TRUE or FALSE; draw rays or draw a
solid circle.

C% is the logical colour to be used.

 640 DEFPROCSUN(X%,Y%,S%,RAYS%,C%)
 650 VDU29,X%;Y%;
 660 GCOL0,C%
 670 MOVE4,12
 680 T%=TRUE
 690 FORA=0 TO 6.3 STEP 0.1
 700 MOVE0,0
 710 X%=S%*SIN(A)
 720 Y%=S%*COS(A)
 730 IF RAYS% AND T% THEN MOVE X%,Y% EL
SE PLOT 85,X%,Y%
 740 T%=NOT T%
 750 NEXT

92

 760 ENDPROC

Description of PROCSUN

650 Put the origin at the centre of the sun.

660 Select the colour specified.

670 Define a point inside the sun.

680 T% toggles on and off as the rays are drawn.

690 Go round a circle. (X%,Y%) is a point on the
edge of the circle .

730 Either fill a triangle to the edge, or leave
a gap between rays.

740 Toggle T%.

Merry-go-round

This program draws a multi-coloured merry-go-round.
The merry-go-round has a base, a roof with a flag on
the top and four horses. These are drawn by the
procedures PROCEASE, PROCTOP, PROCELAG and PROCHORSE.

The routine PROCRECT fills in a rectangle in a given
colour . It does this by defining a graphics window
around the region and then clearing this region with
the colour required as the graphics background colour.
This method must be used with care since if any point

93

of the window is off the screen the entire screen will
be filled. Despite this, the rectangular fill using a
window is a useful complement to the more common
triangle fill technique. A similar method can be used
with text windows; these give much faster filling but
the window cannot be positioned to a single pixel
resolution.

MERRYGO

 0 REM Merry-Go-Round
 20 MODE2
 30 VDU5
 40 PROCRECT(0,600,1272,1020,6)
 50 PROCRECT(0,0,1272,600,2)
 60 PROCBASE(640,150)
 70 PROCTOP(640,760)
 80 PROCFLAG(640,868)
 90 FORX%=460 TO 820 STEP 360
 100 PROCHORSE(X%,300,90,5,FALSE)
 110 PROCRECT(X%,340,X%+8,710,3)
 120 NEXT
 130 PROCRECT(600,150,680,760,1)
 140 FORX%=340 TO 940 STEP 600
 150 PROCHORSE(X%,200,110,0,TRUE)
 160 PROCRECT(X%,250,X%+16,760,3)
 170 NEXT
 180 END

Description of program

40 Draw the sky.
50 Draw the ground.
60 Draw the base of the merry-go-round.
70 Draw the top.
80 Draw a flag.
90-120 This loop draws two horses, facing right, on
the far side of the platform.
130 Draw the central pillar.
140-170 Draw the front two horses facing left.

PROCRECT

This procedure fills in a rectangle in a given colour.
It does this by defining a graphics window around the
area to be filled, and then clearing the graphics
screen with the colour specified.

 190 DEFPROCRECT(X%,Y%,SX%,SY%,C%)

94

 200 VDU24,X%;Y%;SX%;SY%;
 210 GCOL0,128+C%
 220 CLG
 230 VDU26
 240 ENDPROC

Description of PROCRECT

200 Define graphics window.

210 Select graphics background colour.

220 Fill the window with that colour.

230 Get rid of the window.

PROCBASE

The base consists of two parts; the floor drawn in
blue, and the side.

This procedure draws a perspective view of the base,
which can be thought of as a rather flat drum, or a
very large coin.

 250 DEF PROCBASE(X%,Y%)
 260 VDU29,X%;Y%;
 270 FORX%=-500 TO 500 STEP 4
 280 Y%=60-(X%*X%)/4000
 290 MOVE X%,Y%
 300 GCOL0,4:PLOT1,0,-2*Y%
 310 GCOL0,1:PLOT1,0,-50
 320 NEXT
 330 ENDPROC

Description of PROCBASE

260 Move the origin to the centre of the base.

270 The base is 1000 units across - it is filled
in by drawing lots of lines next to each
other.

280 Calculate the Y-coordinate of the next line.

290 Move to the top of the next line.

300 Draw the floor in blue.

310 Draw the edge.

PROCTOP

The top of the merry-go-round is similar to the base.
The main difference is that the roof has turrets along

95

its side.

 340 DEFPROCTOP(X%,Y%)
 350 VDU29,X%;Y%;
 360 FORX%=-500 TO 500 STEP 4
 370 Y%=60-(X%*X%)/4000
 380 MOVEX%,-Y%
 390 GCOL0,4
 400 PLOT 1,0,2*Y%
 410 GCOL0,1
 420 IF((500+X%)DIV90)MOD2=1 THEN 440
 430 PLOT 1,0,80:PLOT0,0,-80:GOTO450
 440 PLOT1,0,50:PLOT0,0,-50
 450 NEXT
 460 VDU26
 470 ENDPROC

Description of PROCTOP

350-400 As for the first few lines of PROCEASE.

420 Decide whether to draw a line in a turret.

430 Draw a turret line.

440 Draw a line in the gap between turrets.

460 The VDU 26 statement causes a return to the
default text and graphics windows; one side
effect of this, utilised here, is to return
the origin to its normal place.

PROCFLAG

This draws a flag with its base at the point (X%,Y%).

 480 DEFPROCFLAG(X%,Y%)
 490 PROCRECT(X%,Y%,X%+16,Y%+120,5)
 500 MOVEX%+16,Y%+120
 510 GCOL0,3:PLOT0,500,-30:PLOT81,-500,-30
 520 ENDPROC

Description of PROCFLAG

490 Draw the flag-pole.

500 Move to the top of the pole.

510 Move to the tip of the flag and fill the
flag in.

PROCHORSE

96

This draws a horse. The procedure requires the
following parameters:

(X%,Y%) is the location of the horse.

S% controls how large the horse will be.

C% is the logical colour of the body of the horse.

RIGHT% is a boolean value that determines the
direction the horse is facing.

 530 DEF PROCHORSE(X%,Y%,S%,C%,RIGHT%)
 540 PROCRECT(X%-S%,Y%,X%+S%,Y%+S%/1.5,C%)
 550 VDU29,X%;Y%;
 560 GCOL0,C%
 570 MOVE0,0
 580 FORI%=-S% TO S% STEP 2*S%
 590 MOVEI%,-S%/8:PLOT85,1.5*I%,-S%/8
 600 MOVE2*I%,-S%/4:PLOT85,2.5*I%,-S%/4
 610 MOVE1.5*I%,0:PLOT85,0,0
 620 NEXT
 630 IF RIGHT% THEN D%=-S% ELSE D%=S%
 640 MOVE D%/2,S%/1.5
 650 MOVE D%,S%*2/1.5
 660 PLOT 85,D%,S%/1.5
 670 MOVED%*1.5,S%*1.2/1.5
 680 MOVED%,S%*1.2/1.5
 690 PLOT85,D%*1.5,S%
 700 PLOT85,D%,S%*1.2
 710 MOVE -D%,S%/1.5
 720 MOVE-D%*2,S%/1.5
 730 PLOT85,-D%*2,S%/2
 740 GCOL0,7:PLOT69,D%*1.2,S%
 750 VDU29,0;0;
 760 PROCRECT(X%-S%/3,Y%+S%/3,X%+S%/3,Y
%+S%/1.5,3)
 770 ENDPROC

Description of PROCHORSE

540 Draw the body.

550-520 Draw the legs.

630 Is the horse to be facing right or left?

640-700 Draw the head.

710-730 Draw the tail.

740 Draw the eye.

760 Draw the saddle.

97

Rainbow

This program draws a view of a rainbow spanning a road
that shoots through a snow-covered grassland. There is
plenty of scope for adding more features to this rural
scene. For example clouds, hills, houses or trees
might enhance the bleak landscape.

Even the simplest picture can be dramatically improved
by introducing some animation. Here clouds could be
made to blow across the sky and their shadows could
drift across the grass. The large number of logical
colours make animated effects possible by drawing
several different picture frames. Palette changes can
then be used to reveal each of these in turn.

RAINBOW

 0 REM Rainbow
 20 MODE2
 30 VDU5
 40 PROCSKY(550)
 50 PROCBOW(600,550,80,32)
 60 PROCGRASS(550)
 70 PROCROAD(600,550)
 80 END

All that remains to do now is to declare the
procedures that are to be called above. The order in

98

which these procedures are declared has no effect on
the operation of the program.

PROCBOW

This draws a rainbow whose centre is at the point
(X%,Y%). D% is the radius of the innermost band of
colour in the rainbow. S% is the thickness of the
bands. The rainbow is drawn by filling in small
triangles formed between the two concentric circles on
the edges of each band of colour.

 90 DEFPROCBOW(X%,Y%,D%,S%)
 100 VDU29,X%;Y%;
 110 FORI%=0TO10
 120 MOVE-(I%*S%+D%),0:MOVE-((I%+1)*S%+
D%),0
 130 GCOL0,(I% MOD 5)+1
 140 FORA=-PI/2-0.1 TO PI/2+0.2STEP 0.2
 150 PLOT85,(D%+I%*S%)*SIN(A),(D%+I%*S%
)*COS(A)
 160 PLOT85,((I%+1)*S%+D%)*SIN(A),((I%+
1)*S%+D%)*COS(A)
 170 NEXT A,I%
 180 ENDPROC

Description of PROCBOW

100 Move the origin to the centre of the
rainbow.

110 Each time round this loop we draw a band of
colour.

120 Move to the left-hand side of the rainbow.
Two moves are needed since PLOT 85 fills up
to the last two points visited.

130 Select the colour for that band. The order
of colours is not the same as for a real-
world rainbow.

140 Move round the circle by increasing the
angle A.

150 Fill in the triangle whose tip is on the
inner circle.

160 Do the same moving to the outer circle.

170 carry on until all the bands have been
drawn.

PROCGRASS

99

This procedure draws a perspective view of snow
covered grass up to the line Y=H%. First the grass is
drawn by simply filling the area green, next the snow
covering is produced using a dot shading method.

 190 DEFPROCGRASS(H%)
 200 VDU29,0;0;
 210 GCOL0,2
 220 MOVE0,0:MOVE0,H%:PLOT85,1300,H%
 230 MOVE1300,0:PLOT85,0,0
 240 GCOL0,7
 250 FORX%=0TO1300STEP8
 260 FORY%=4TOH%STEP4
 270 IF RND(H%)<Y% THEN PLOT 69,X%,Y%
 280 NEXT Y%,X%
 290 ENDPROC

Description of PROCGRASS

200 Make sure the origin is in the right place.

210-230 Fill the grass area green.

250 Move along the x-axis drawing lines of dots.
In MODE 2 pixels are 8x4 coordinate units.

260 Draw a line of dots to the horizon.

270 Make the dots become denser as we approach
the horizon.

PROCROAD

This draws a straight road from the origin to a point
(X%,Y%). The road consists of a dark background (the
tarmac surface) and a central white line (no
overtaking).

 300 DEFPROCROAD(X%,Y%)
 310 VDU29,0;0;
 320 GCOL0,0
 330 MOVEX%,Y%
 340 MOVE300,0:PLOT85,0,0
 350 GCOL0,7:MOVE150,0:DRAWX%,Y%
 360 ENDPROC

PROCSKY

This simply fills the region above the line y=Y% in
the logical colour 6. This is pale blue with the
default palette settings. The sky is drawn using two

100

triangle fill commands.

 370 DEFPROCSKY(Y%)
 380 GCOL0,6
 390 MOVE0,Y%:MOVE0,1200:PLOT85,1300,1200
 400 MOVE1300,Y%:PLOT85,0,Y%
 410 ENDPROC

Desert Island

This program draws a view of a desert island with palm
trees on it. The program is quite long but is divided
up into fairly simple procedures that each draw a part
of the picture. Once the entire picture has been drawn
the sea springs to life as waves go dancing across it.
Because of the modular nature of the program it should
not be too hard to get each section to work before
joining them together to draw the entire picture.

ISLAND

 0 REM Island
 20 MODE2
 30 VDU5
 40 PROCSEA(650)

101

 50 PROCISLE(700,400,250)
 60 PROCPALM(700,500,300)
 70 PROCPALM(800,450,300)
 80 REPEAT
 90 PROCSURF
 100 UNTIL FALSE
 110 END

The main program simply calls the various procedures
one by one. All that follows are the procedure
declarations that go into the details of how to draw
these objects.

PROCSEA

The sea is composed of a series of sine waves drawn
next to each other. To speed up the drawing a table of
sine values is stored in the array S. The waves are
drawn using 8 different logical colours, and this is
exploited later in PROCSURF to give the impression of
motion. The horizon is at the line y=650; above this
PROCSEA fills in the sky which grows out of the sea.

 120 DEFPROCSEA(YL%)
 130 DIM S(100)
 140 FORI%=8TO15:VDU19,I%,4;0;:NEXT
 150 FORI%=0TO100:S(I%)=SIN(I%):NEXT
 160 FORY%=0 TO YL% STEP 12
 170 VDU29,0;Y%;
 180 S%=8+RND(10):MOVE0,S%*S(Y% MOD 100)
 190 C%=7+RND(8)
 200 FORX%=0 TO 1279 STEP 24
 210 GCOL0,C%:C%=C%+1:IF C%=16 THEN C%=8
 220 DRAW X%,S%*S((X%+Y%) MOD 100)
 230 NEXT,
 240 YL%=Y%:S%=8
 250 VDU29,0;YL%;
 260 MOVE0,S%*S(YL% MOD 100)
 270 FORX%=0 TO 1279 STEP 24
 280 NY%=S%*S((X%+24+YL%) MOD 100)
 290 GCOL0,6:Y%=S%*S((X%+YL%)MOD 100)
 300 MOVE X%,1200:PLOT 85,X%+24,1200:
MOVE X%+24,NY%:PLOT85,X%,Y%
 310 GCOL0,C%:C%=C%+1:IF C%=16 THEN C%=8
 320 DRAWX%+24,NY%
 330 NEXT
 340 ENDPROC

Description of PROCSEA

150 Define logical colours 8-15 to appear as

102

dark blue.

160 Save sine values in the array S.

170 Draw lines of waves up to the horizon.

180 Put the origin at the start of the line.

190 S% is a slightly random amplitude. Move to
the start of the wave.

200 Select a random logical colour to start.

210 Move across drawing the wave.

220 Select a new colour for each part of the
wave

230 Draw the wave.

240 On leaving these loops all that remains is
to fill in the sky, and draw one more wave
along the horizon.

250 Fudge the horizon to be above the last wave
drawn. Make the amplitude 8.

260 Put the origin at the start of the horizon
wave .

270 Move to the start of the horizon wave.

280 Now move along the horizon.

290 NY% is the next Y value on the horizon wave.

300 Select logical colour 6 for the sky, and
calculate the current Y value,

310 Fill in the rectangle of sky above the next
step along the horizon wave. The aim of all
this business is to get the sky and sea to
knit together.

320 Select the colour of the next segment of the
horizon wave.

330 Draw that part of the wave.

PROCISLE

The island has the outline of a slightly squashed
oval. The first two parameters give the position of
the island, and the third specifies its size. There
are two stages in drawing the island: first, the
outline is drawn and the whole next, curved lines are
drawn give an impression of depth.

 350 DEFPROCISLE(XO%,YO%,S%)
 360 GCOL0,3
 370 VDU29,XO%;YO%;:MOVE0,0
 380 FORA=0 TO 2*PI+0.2 STEP 0.2
 390 X%=S%*SIN(A):Y%=COS(A)*S%
 400 IF Y%>0 THEN Y%=Y%/2 ELSE Y%=Y%/3

103

 410 MOVE0,0:PLOT85,X%,Y%
 420 NEXT
 430 GCOL0,2
 440 FORA=PI/2 TO PI STEP 0.05
 450 S1%=S%*SIN(A)
 460 VDU29,XO%;YO%+COS(A)*S%/3;
 470 MOVE-S1%,0
 480 FORB=-PI/2 TO PI/2+0.2 STEP 0.2
 490 X%=S1%*SIN(B):Y%=COS(B)*S1%/2
 500 DRAWX%,Y%
 510 NEXT,
 520 ENDPROC

Description of PROCISLE

370 The colour of the sand.

390 This loop traces the outline of the island
in colour.

400 The point (X%,Y%) moves around a circle.

410 Squash this circle.

420 Fill in a segment.

440 The colour of the grass

450 We draw a curved line each time around this
loop.

460 S1% is the X-coordinate of a point on the
edge of the island.

470 This moves the origin and specifies the
vertical displacement of each curved line.

480-510 Draw a curved line.

PROCPALM

This draws a palm tree of size S% with its base at
(X%,Y%). The palm is composed of two parts: the trunk
and the leaves. The curved trunk of the tree is formed
by filling the region between portions of two circles,
one slightly larger than the other. The leaves are
filled using a random walk along radial lines of a
circle whose centre is at the top of the trunk.

 530 DEFPROCPALM(X%,Y%,S%)
 540 VDU29,X%-S%;Y%;:MOVES%,0
 550 S1%=1.1*S%
 560 ST=40/S%
 570 FORA=0TO PI/3 STEP ST
 580 GCOL0,1
 590 SI=SIN(A):CO=COS(A)
 600 MOVES%*CO,S%*SI:MOVES1%*CO,S1%*SI
 610 PLOT85,S1%*COS(A+2*ST),S1%*SIN(A+2*ST)
 620 MOVES%*COS(A+ST),S%*SIN(A+ST):PLOT85,S%*CO,S%*SI
 630 GCOL0,7:DRAWS1%*CO,S1%*SI

104

 640 NEXT
 650 VDU29,X%+S%*(COS(PI/3)-1);Y%+S%*SIN
(PI/3)+0.05*S%;
 660 GCOL0,2:MOVE0,0:MOVE0,4
 670 FORA=0 TO 2*PI STEP 0.8
 680 FORI%=0TOS% STEP 16
 690 IF RND(2)-1 THEN GCOL0,0 ELSE GCOL0,2
 700 X%=I%/2*SIN(A)+RND(I%/4)-I%/8
 710 Y%=I%/3*COS(A)+RND(I%/4)-I%/8
 720 PLOT85,X%,Y%
 730 NEXT I%,A
 740 ENDPROC

Description of PROCPALM

550 S% gives the radius of the inner circle used
to draw the trunk.

560 Sl% will be the radius of the outer circle.

570 ST% is the angular step size; this
determines the number of segments in the
trunk.

580-650 Move round the circle filling the segments
in logical colour I (red) and drawing lines
between them in logical colour 7 (white).

660 Put the origin at the top of the trunk.

670 Move roughly to the centre of the leaf
circle.

680 Go all the way round the circle.

690 I% moves out to give radial lines.

700 Either draw in green or black.

710-720 Introduce some randomness.

730 Fill that part of the leaf.

PROCSURF

This procedure redefines the physical colours that
correspond to the logical colours numbered 8-15. Two
effects are produced: first, an impression of ripples
moving across the waves, and secondly, the impression
of more substantial waves.

In the first case only one of the 8 logical colours is
changed at one time. To produce more surf the next
section introduces a gap between the two 'points' at
which the palette changes occur. The groundwork for
this procedure has been done in PROCSEA where the
multicoloured sea is drawn. There is enormous scope

105

for further effects to be produced.

 750 DEF PROCSURF
 760 C%=8
 770 FORI%=0TO100
 780 VDU19,C%,7;0;
 790 A=INKEY(12)
 800 VDU19,C%,4;0;
 810 C%=C%+1:IF C%=16 THEN C%=8
 820 NEXT
 830 FORJ%=1TO100
 840 R%=RND(5)
 850 FORK%=0TO20
 860 C%=C%+1:IF C%=16 THEN C%=8
 870 VDU19,C%,4;0;
 880 VDU19,(C%+R%)MOD 8 +8;0;
 890 A=INKEY(12)
 900 NEXT K%,J%
 910 ENDPROC

Description of PROCSURF

770 C% gives the logical colour to be changed.

780 While in this loop simple ripples are
produced.

790 Make logical colour C% appear white.

800 Wait 12 centi-seconds.

810 Make log1cal colour C% appear dark blue
again.

820 Increase C%; this causes the ripple to move
to the right.

840 While in this loop more complicated waves
appear.

850 The value of R% determines how large the
area of white surf will become.

860 Do 20 surf movements before changing R%.

880 Make logical colour C% appear as dark blue.

890 The effect of this is to make a gap between
where the wave becomes white and the point
at which it reverts to being blue. This
means that instead of a small dash, a
portion of the wave appears in white.

106

Appendix A
Running programs on the Model A

The programs in this book and on the cassette are
supplied as versions that take advantage of the high-
resolution graphics capabilities of the BBC
Microcomputer Model B. Although on the Model A there
will be lower resolution and fewer colours, Model A
users will lose very little in terms of overall
effect. The following instructions show how to alter
the programs so they will run on the Model A.

All but two of the programs in this book will run on
the Model A if the MODE statement at the beginning of
the program we, changed to MODE 5. The procedure is as
follows:

1 To load programs from cassette use the LOAD command
instead of CHAIN. So to load the program MOUNTS,
for example, type

LOAD "MOUNTS"

2 When the program has loaded, type

LIST 10,40

which wall list lines l0 to 40 inclusive when you
press RETURN.

3 Find the MODE statement at line 20, or line 30 of
the program. It will probably read

20 MODE 1

All you have to do change it is enter (next to the
prompt)

20 MODE and press RETURN.

Now when you LIST the program you will see that
line 20 reads 'MODES'.

4 To run the program, type RUN.

Modifications for FIELD and ISLAND

FIELD and ISLAND require further modification as
listed below.

107

FIELD

Change line 20 to read MODE 5
Change line 150 to read VDU 28,0,9,19,0
Change line 190 to read VDU 28,0,9,19,0
Change line 350 to read VDU 28,0,31,19,10

ISLAND

Change line 20 to read MODE 5.

Delete lines go and 150 from the program. The way to
do this is to type at the end of the listing:

 90 (RETURN)
 150 (RETURN)

When you LIST the program you will see that lines 90
and 150 have been removed.

PROCSURF, the procedure giving the effect of white
surf on the waves, will not operate on the Model A.

108

Index
AND 9, 54

animation 4l
ellipse 43

instant plotting 53

memory requirement 41

palette changes 7,42,43,
47, 51, 53

redrawing 41

rotating objects 43

rotation and reflection 42

scrolling l0, 87, 89

successive views 60

tumbling box 55

vertical sync 43

ball of wool 18

beach balls 51

box 55

C-curve 77

carpet 19

character definition 36

circle drawing

iterative method 13

polar-coordinate method
14, 16

quadratic solution method
14

circles (pattern) 72

circles (squashed) 30, 94,
102

clouds 90

colours 6

logical and physical 6

intensity of colour 35

commands 4,5

condor 57

coordinates 3

cubes

advancing cubes 31

perspective view 31

tumbling box 55

cursor

graphics 4, 9

text 9

diamonds (recursive) 67

dragon curve 80

DRAW commands 5

drawing 4, 23, 56

ellipse 14,43,52,53

Exclusive-OR (EOR) 9,19

fan 48

field 87

flag 22, 96

functions 4

SIN and COS 18

GCOL 8, 19

graphics commands 4

graphics cursor 4

grass 99

high resolution 3

horse 96

INKEY 24

instant plotting 53,55

interlace 9

introduction 1

island 100 ,102

kaleidoscope 41

Koch flake 75

Lissajoux figures 15-17

Lissajoux pattern 17

local variables 65

memory 3, 41, 66

merry-go-round 93

MODE 3,4

109

4-colour 6

l6-colour 6

Moire pattern 20

mountains 27

obscured objects 26

OR 8, 53, 54

origin, moving the 9,20

over-plotting 27

palette 6

changes 7

(see also 'animation')

palm tree 103

parameters 10,11

actual 11

formal 11

intelligent 71

pattern 21

perspective 29££

view of fan 48

view of base 94

pixel 3 ,4

planets 35££

PLOT commands 5

polo 25

procedures

rainbow 97

random dots

random walk

rapid drawing 36

rapid filling 27

rectangular fill

recursion 63££

asymmetric £33

depth of 65, 83

intelligent parameters 71

recursive calls 66, 74

diamonds 67

patterns 63

procedures 64

squares 69

redrawing 41

reflection 19,42

replacement pattern 66,76

replacement rule 63

resolution 1, 3

rotating objects

beach balls 51

fan 48

spiral 43, 46

squares 45

rotation 42

scrolling

sideways 10

vertical 87,89

sea 101

sine waves

sketch pad

sky 100

sphere 33

spiral 43, 46

squares 45

sun 92

surf 104

symmetry 19 ,22

synchronisation 43

text cursor 9

three-dimensional 25ff

converging lines 30,90,99

dot shading 35,99

hidden line removal
(overplotting) 26,27

impression of depth
25,26,30,52,90,102

squashed circles 30,94,10

tree 83 ,103

triangle fill 5,81,100

tumbling box 55

variables 4

boolean 92, 96

control 74

local 65

110

