

Discovering
BBC Micro
Machine Code

How to Get More Speed and Power

A. P. Stephenson

GRANADA
London Toronto Sydney New York

Granada Technical Books
Granada Publishing Ltd
8 Grafton Street, London WIX 3LA

First published in Great Britain by
Granada Publishing 1983
Reprinted 1983, 1984 (3 times)

Copyright © 1983 by A. P. Stephenson

British Library Cataloguing in Publication Data
Stephenson, A. P.

Discovering BBC Micro machine code.

I. BBC Microcomputer— Programming

I. Title

001.64'04 QA76.8.B3

ISBN 0 246 12160 2

Typeset by V & M Graphics Ltd. Aylesbury, Bucks
Printed and bound in Great Britain by
Mackays of Chatham. Kent

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system or transmitted. in any form. or by any
means, electronic, mechanical, photocopying, recording or otherwise,
without the prior permission of the publishers.

Contents

Preface

- hn2 W B W N

Introducing the Assembler

Number Representation

Registers, Transfers and Arithmetic
Branching, Comparisons and Subroutines
Indexed Addressing and ROM Subroutines
Logical Instructions and BCD Format

Programming Guidelines

Appendix A: List of 6502 Assembly Mnemonics
Appendix B: ASCII Character Codes (Modes 0-6)
Appendix C: Where to Locate Machine Code

Appendix D: Binary and Hex Summary

Appendix E: Operating System Subroutines

Glossary of Terms

Index

iv

20
31
47
68
92
117
142
145
146
148
149
150
154

Preface

Owners of the BBC Microcomputer will be aware of the resident
machine code assembler but many will hesitate to use it because they
feel it may be far too complicated and unfriendly. It must be
admitted that machine code manipulations on most popular micros
are far from soothing. This is because the interaction between
programmer and machine is usually via a piece of software called a
moniror. Machine code monitors are very low-level and offer very
little help to a programmer. Nothing can be less inspiring than a
program listing from a monitor.

The BBC machine is different. Instead of a monitor, it has a full-
blooded assembler, which allows vou to enter machine code in
intelligible form. It is an extraordinary assembler in that it is
embedded within the BASIC interpreter, allowing easy transitions
back and forth between BASIC and assembler code.

This book may help vou to overcome the fear of machine code and
to make use of the assembler properties. The exercises are simple,
deliberately so, in order to encourage cxperimentation and to
prevent the onset of premature gloom. They are intended to trigger.
rather than present, idecas. In keeping with this ‘softlv-softly’
approach. no attempt has been made to present an exhaustive view
of the 6502. Some of the more exotic addressing modes like “indexed
indirect’ and ‘indirect indexed’ have been excluded. Such omissions
will not be found serious until vour abilities in machine code reach
the next stage. Some prior knowledge of BASIC, however. as used
on the BBC machine has been assumed. Indeed. it would be unwise
to plunge straight into machine code without a preliminary
‘apprenticeship’ in BASIC. The excellent {ser Guide (written by
John Coll) which accompanies the machine should be on hand when
reading this book.

This book 1s to be considered the first of two: the second will
repair the above omissions. will treat some of the ground again but
in more detail and will present more advanced program examples.

A. PP, Stephenson

Chapter One
Introducing the Assembler

Why machine code?

Buried inside a ROM in the BBC Microcomputer is one of the most
powerful BASIC interpreters likely to be found in machines
designed for the home enthusiast. It would take the average
beginner, however enthusiastic, several months to realise its full
potential because the designers of the ROM have included many
advanced structures new to traditional BASIC. The vast BASIC
vocabulary is only one of the attractive features. Itis also quite a fast
interpreter of programs in the relative sense.

Nevertheless, however, brilliant the operating system and the
language interpreter, there is little point in denying that BASIC 1s a
sluggish high-level language when compared with most other
computer languages. The slow execution speed is due to the method
of translation. When you write a program in BASIC, itis translated
and then executed line by line. However many times you run the
same program, the whole laborious business of translation is re-
inacted at every line because it is the inherent mechanism of an
interpreter. The more professional high-level languages use a
compiler to translate. The essence of a compiled language is the
separation of the translation phase from the execution phase. The
program is first ‘compiled’ (translated) into a form the machine
understands. This is a once-only operation (see Figure 1.1). The
program is then run from this compiled version and, consequently,
is a much faster operation. Unfortunately, a language which is
compiled, rather than interpreted like BASIC, lacks flexibility and
friendliness because it is a difficult task to edit out corrections once it
has passed the original translation phase. BASIC was deliberately
designed as an interpretive language because it was considered that
user-friendliness was a more important factor than execution speed.
In the last few years, several software firms have designed BASIC

2 Discovering BBC Micro Machine Code

INTERPRETER ACTION

BASIC STATEMENTS INTERPRETER

1
| 1st Statement Al-lr-l Translate J—D-I Execute

|

r 2nd Statement I-IH Translate Hﬁ I
r 3rd Statement J-Irr Translate H Execute J
il i

1
]
lat
[4th Statement J-.I-l Translate
etc. 1 etc. etc.

Execute

Execute

- e = mm we w wm m= = =

COMPILER ACTION

COMPILE RUN or SAVE
¥ ¥
COMPILER
SOURCE PROGRAM (Translates entire OBJECT PROGRAM
i in hi = . — (Complete machine
(Written in high program into plinstt
level language) machine code)

Fig. 1.1. Interpreter and compiler action.

compilers and no doubt one of these will be available (if not already)
for the BBC machine. Although these will execute much faster, they
will still not be able to compete with the speed of machine code.
It is never an easy task to seduce confirmed BASIC lovers away
from their cosy environment. This is understandable because so
much apparent power is available by typing in a few keywords. After
all, most programs written in BASIC appear to execute ‘instan-
taneously’. If we try the usual persuasive technique, extolling the
speed advantages of machine code, the response may be little more
than lukewarm. If a program runs in a few milliseconds (and most of
them do) there is little to be gained by pointing out that a machine
code version would run in microseconds. As far as humans waiting
for the ‘answers’ to appear on the screen are concerned, milliseconds
are just as instantaneous as microseconds! However, there are some
programs which run so slowly in BASIC that machine code versions
are practically a necessity. There are two obvious areas which cry
out for machine code - animation and input/output control. There
are many popular games portraying moving graphics which would
be greatly improved if at least parts of the program were written in
machine code. In the field of robotics, it would be virtually
impossible to attempt any degree of sophistication by sticking
entirely to BASIC. It is easy to make the robot’s arm move but for it

Introducing the Assembler 3

to sense by itself when to move it is quite another matter, demanding
fairly high processing speed. Those amazing animated diagrams we
see on TV science programs in which a complex drawing of, say, an
aircraft revolves so as to view it from all angles would be quite out of
the question in BASIC. In all fairness, 1 hasten to add that you will
need more advanced textbooks if you are attempting programs of
this order of complexity.

So apart from execution speed, which should not be considered
the overriding factor in most programs, what other inducements are
there for delving into the jungle of machine code? Perhaps this may
seem a tame, perhaps pompous statement, but I think the greatest
attraction of machine code is the satisfaction derived from using it.
Studying machine code, even at an elementary level, helps you to
understand how computers work. It gives you the feeling you are
really controlling the computer instead of just using it. When you
write in machine code you know what is going on in the computer at
every line. You can almost visualise the bits racing along the printed
circuit board. I get much satisfaction from such a simple act as filling
the accumulator with a string of ‘ones’ because it is done directly
rather than via a faceless chunk of interpretive software. In machine
code, you are ‘talking’ face to face with the microprocessor, one of
the most advanced pieces of silicon magic ever devised. The BBC
Micro uses the 6502 microprocessor in the basic system but allows
growth in the form of an add-on unit which contains a second
processor. This can be another 6502 or the equally powerful Z80.
Indeed, if money is no object, the second processor can be one of the
new marvels — the 16/ 32 bit 16032 which upgrades the BBC machine
almost to the status of a minicomputer! This book however is
devoted only to the 6502 species although much of the treatment,
particularly the details of binary codes and arithmetic processes, is
common to other microprocessors.

There is another strong inducement for learning machine code. It
tends to be less wasteful of memory although the advantage is
unlikely to be felt on small programs.

Assembly code

Up to now, the term ‘machine code’ has been used loosely so we had
better understand the possible meanings attached to what is, after
all, a term with two or three meanings. We must distinguish between
binary machine code, hexadecimal machine code and assembly

code.

4 Discovering BBC Micro Machine Code

(a) Binary machine code
Each instruction to the computer would be a meaningless string of
‘ones’ and ‘zeros’.

Example: 1010 1001 0000 0011 would be an instruction to place
the decimal number 3 into the ‘accumulator’. Fortunately, this type
of machine code is a relic of a bygone age when each tiny bit of
information had to be entered from a long row of switches.
However, if we could somehow get this pattern into our 6502
microprocessor it would be a valid instruction to perform the above
action.

(b) Hexadecimal machine code

Example: A9 03 is the same instruction as defined in the previous
example but written in a slightly less formidable fashion. It is called
hexadecimal code and, if it weren’t for the excellent assembler built
into the BBC machine, would be our only way to program in
machine code.

(c) Assembly code

Example: LDA #3 is again the same instruction. It is an
abbreviation for LoaD Accumulator with the number 3. You may
agree that this form, although still lacking the friendliness of
BASIC, has at least some pretence towards an intelligible code.
Thus, A9 in hexadecimal code, which is quite meaningless to
humans (except perhaps the code and cypher boffins in MIS5), has
been replaced by LDA which at least has some mnemonic value.

In this book, our examples will be in assembly code but, when
considered helpful, will be supported by hex code. We should first
explain that an ‘assembler’ is not a physical piece of hardware. It is
simply a subsection of the operating system resident in one of the
ROM chips. It is a program which helps you to program in machine
code. Amongst other things, it enables you to use three-letter
mnemonics (like LDA above) instead of looking up those dreary hex
codes (like A9 above). Another advantage is the use of symbolic
names for addresses instead of hex code addresses. It is also possible
to use independently chosen /abels for destination addresses in
‘jump’ type instructions. An assembler also provides some assistance
in debugging and editing but, unfortunately, the help given is not of
the same standard as we are used to in BASIC.

In spite of some shortcomings, owners of the BBC Micro (and its
generic ancestor, the Acorn Atom) are lucky to have a resident
assembler. Few other microcomputers arrive with assembler

Introducing the Assembler 5

facilities. They are normally available from software firms but must
be purchased on tape or disk which means that a preliminary load
action is required before programming in assembly code. On the
other hand, most machines incorporate a ‘machine code monitor’
but, compared with an assembler, it is a crude substitute. In fact, the
absence of an assembler is probably the major reason why few home
computer enthusiasts tackle machine code. If only a monitor is
available, it is an irksome and painstaking task to program because
all those hex codes for each instruction must be memorised or
continually looked up. And, because there is no mnemonic content
in hex code, it is almost inevitable that many mistakes will be made
which are difficult to find. On the other hand, a good assembler -
although the program is still fundamentally machine code -
minimises the probability of error and makes program writing
tolerably pleasant.

How to use machine code

One of the unusual and comforting things about the BBC assembler
is the ability to jump easily back and forth from machine code to
BASIC. Because it is so easy, beginners in machine code can tackle
the subject gently, a few lines at a time, knowing they have the solace
of BASIC to return to at any time should the going get tough. In
fact, it is probably better for the beginner to tackle machine code in
such a piecemeal fashion. In other words, use chunks of machine
code sandwiched in between a BASIC program rather than attempt
to write the lot in machine code. The great thing is to avoid
ambitious programs until you gain confidence.

At the risk of dissuading readers before they have had a chance to
progress further, it must be said that machine code demands much
study, extraordinary patience and determination! It is an additional
benefit if you have (or can acquire) a thick skin to survive the jeers of
colleagues when you proudly display your first machine code brain-
child. ‘Is that all?" is the typical reaction. For the first month, unless
you are one of these fortunate individuals who find machine code
easy, don’t expect to write ‘worth-while’ programs. Be content to
plod on, moving data around between the various registers and
memory slots and performing simple arithmetic. It would be unwise
to contemplate writing, say, a complex games program with fast-
moving graphics as a first exercise.

6 Discovering BBC Micro Machine Code
Where to store programs

When entering a BASIC program, few people show the slightest
interest in where their program is stored in memory. Indeed, why
should they? The resident operating system takes care of all the
mundane tasks associated with the storing of variables and program
lines. In any case, it would be unwise to leave such decisions, which
are fraught with hidden dangers, to the users of BASIC. We should
remember that BASIC, in common with many other high-level
languages, was designed to cater for the majority of people who just
want to use a computer without having to bother with the sordid
details of computer science.

Students of machine code, however, must be prepared to take
considerably more interest in the hidden technical mysteries,
particularly in the area of memory ‘addresses’. For example, it is
practically essential to have a working knowledge of hexadecimal
code, not simply because it sounds academic but because it is the
most concise and logical method of labelling memory locations. In
general, the writer of a machine code program is free to store a
program starting at any address in the memory map. But freedom
carried to excess is anarchy which, in the area of microcomputers,
can be catastrophic. The easiest thing in the world to cause the
dreaded ‘crash’ is to locate your program at some arbitrary address.
The operating system will then, almost certainly, exhibit symptoms
of paranoia and destroy your program.

There are several ways of telling the system where your program is
to be stored but, for the moment, we shall consider a simple and
reasonably safe method which will not cause a crash by over-writing
data in the operating system. There is an area of memory specially
reserved for ‘user-subroutines’ in the BBC computer memory map
located at the hex address 0D0O0-0DFF. There is room for 255 bytes,
which doesn’t seem much but is adequate for most experimental
purposes. (Remember that machine code programs are far superior
to BASIC programs with regard to memory efficiency.) It is as well
to emphasise this safe area:

The safe area for machine code is 0D00 to ODFF using hex
notation. In decimal terms, this becomes 3328 to 3583.

Perhaps some are wondering at this stage what exactly is *hex’ and

Introducing the Assembler 7

may even be a little unsure what a ‘byte’ is. These terms are usually
treated ad nauseam in the first chapter of books on machine code,
together with scores of other jargon terms. The trouble is that too
much of this ‘scientific’ stuff can be a little off-putting if introduced
too early. The terms hex and byte are well defined in the BBC Micro
User Guide and treated at reasonable depth in my second book, Get
More From BBC Micro Machine Code (Granada). In any case, you
can stick to decimal if you want to because the machine caters for
lovers of both number systems. Type on your machine, PRINT
&0D00. The machine knows it is hex by the ‘& symbol and will
immediately print out the decimal equivalent 3328 (which checks
with the figures above).

The next important question is, of course, how do you tell the
system to store a machine code program starting at the hex address
0D00? This is where the protected variable P% comes into its own.
This variable is associated with the most important register in the
microprocessor, the program counter which is responsible for the
smooth sequential execution of your orders. Any number you
initialise into P% is interpreted as a starting point for the machine
code. For example, if we set somewhere at the beginning of the
program the line P% = &0DO00, the following machine code program
will be lodged in a memory block starting at &0D00.

It should be stressed that there are other ways of initialising the
program but, until some confidence is gained, stick to our friend
0D00.

Simple machine code program

It may seem premature to discuss a complete program before even
describing the actual machine codes but it is hoped that you will key
this simple machine code program (Example 1.1) into your computer,
if only for practice in interpreting the assembler output.

What does it do? Not very much 1 am afraid. It just displays the
characters ABC round the middle of the screen. Nevertheless, it is a
start and well worth studying carefully. It can be divided into three
parts, the BASIC program with the machine code routine inside it,
the machine code assembled and finally the single direct command
CALL. Let’s analyse the parts separately:

(a) The BASIC program
Note that it has the familiar /ine numbers on the left, lines 10 to 130.
Line 20 simply ensures MODE 7 and clears the screen. Line 30 is to

8 Discovering BBC Micro Machine Code

190 REM XEXAMPLE 1.1x%
20 MODE 7:CLS
30 P%=4D029

42 C

50 LDA #&5
68 LDX #66

79 LDY #67

89 STA 32320
99 STX 32321
18@ STY 32322
11@ RTS
129 1

132 END

YRUN

a0es

2082 A3 41 LDA #63
oDr2 A2 42 LD¥ #66
2094 AQ 43 LDY #67
B80ee 30 42 7E STR 32329
20@9 8E 41 7E ST 32321
apec oC 42 7E STY 32322
apeF c@ RTS

Example 1.1. Display characters using registers A, X and Y.

inform the system that a machine code program is to be located at
the hex address 0D00. (Note carefully the ‘&’ prefix and also that the
leading ‘0’ in the full address 0D0O0 can be dropped - it is optional).
Line 40 is short and sweet — the square bracket informs the system
that what follows is machine code and the part requiring
‘assembling’. Lines 50, 60 and 70 place (‘LoaD’) data into the
Accumulator, the X-register and the Y-register. The hash-mark #
defines the numbers as data rather than addresses. The numbers
65, 66 and 67 are the ASCII codes for the characters A, B and C
respectively.

Lines 80, 90 and 100 STore the contents of the three registers into
three consecutive addresses. These addresses are permanently
allocated to the Mode 7 screen (around the middle of it). Any
number placed in this area is interpreted as an ASCII code for that
character and the hardware circuitry lights up the screen in the right
place. Only Mode 7 recognises ASCIL.

Line 110 is RTS meaning ReTurn from Subroutine. Line 120 is
the square bracket again but in the closing position to signal the
completion of the machine code. (Remember that in Mode 7, the

Introducing the Assembler 9

square brackets come out as arrows.) Incidentally, the Mode 7
screen addresses in Example 1.1 are for the model B version. For
model A, the addresses are 15376,7,8.

(b) The assembled version of the machine code

After the BASIC code is entered and we type RUN, something
rather unexpected happens, as you can see from the weird-looking
output in Example 1.1. All the command RUN does is to assemble
the code. It does not execute it. The assembly process consists of
converting all the mnemonic letter groups into hexadecimal
machine code versions called OPERATION CODES and converting
any decimal numbers we may have used for our convenience into
hex to suit the machine’s convenience. Having completed these
conversions, the assembler then stores the resultant code into the
RAM area defined by P% and finally displays on the screen a
formalised report of its labours. It is this display, shown in Example
1.1, which is the assembled output.

(c) The command CALL

As previously stated, the command RUN merely assembles the
program. To actually execute it, you must give the command CALL
&D00. The result is the appearance on the screen of the characters
ABC. (See Figure 1.2 which illustrates assembler action.)

- »—| Hexumachine code
> ASSEMBLER - version which can
SOUH{E;EE;O,’E B 2~ (Translates line by »—{ be saved if required
assembly code) L line to hex machine - Must be CALLED
e o code) _ before it will
1 - = execute
1 |
| | l
| |
| |
L - - = — = = — — — — = d

Two passes through assembler . .
required for some programs Optional listing
of assembled version

Fig. 1.2. Assembler action.

Making sense of the assembly listing

A casual glance back at Example 1.1 again will confirm that a

10 Discovering BBC Micro Machine Code

certain amount of explanation is called for before it starts to make
sense. We will pick one line at random to start with:

0D06 8D 40 7E STA 32320

|

address machine code form assembly code form

There are, in fact, three separate pieces of information in each line:

(a) The address

This is always a four-digit hex number. It is the address in memory
where the first pair of hex digits in the machine code are located.
Thus, in the example line, 8D is in address 0D06. The next pair will
automatically be in the next consecutive address. Thus, 40 will be in
0D07 and 7E will be in 0DO08. Perhaps it may be understood now
why the address column appears to progress in such a disorganised
sequence. The address in the row beneath our example 1s 0D09
which is the next vacant location for the first hex pair (8E) on the
next line. The assembly listing is done in this manner because if it
were displayed in the way the actual addresses are allocated it would
have a toilet roll appearance:

0D06 8D
0DO07 40

0D08 7E
0D09 8E
etc.

(b) The machine code

The first pair of hex digits is the operation code (known as the op-
code). It is the code, chosen by the designers of the 6502
microprocessor for the action ‘load some data into the accumulator’
and is 8D. Every instruction has its own unique op-code — there are
over seventy of them in the complete repertoire.

The next part of the instruction is called the operand which in this
case (but not always) happens to be an address in the form of two
pairs of hex digits, 40 7E. There are two hex digits in a byte so this
particular instruction has a rwo bytre address as its operand. (As a
point of interest, not all instructions have a two byte operand; some
have one and some have no operand at all.)

It isimportant to note that: In all iwo-byte operands, the hex pairs
are back to front. Thus the operand 40 7E should be read as 7E 40.
This is confusing for mere humans but where the internal logic of the

Intraducing the Assembler 11

6502 microprocessor is concerned, humans are of little importance.
If it’s better for the machine for the operand to be back to front, then
that is all that matters. As a matter of interest, hex 7E 40 is 32320 in
decimal.

(c) The assembly code

STA 32320 is the way we entered our order to STore the
Accumulator in the original BASIC program. (See Figure 1.3 which
shows how the program rests in the memory.)

Memory Memory Assembly

address form
A T

ow [A] | DA # 65
2 K4 LDX# 66
« B TDY # 67
’ [g] STA32320
; ?;E STX 32321
: _B;‘é; STY 32322
- &1 RTS

Fig. 1.3. How the program appears in memory.

The above analysis of the assembler action highlights its advantages.
Remember that even though you use the assembler to enter your
machine code it is still machine code you are using. All the assembler
does is to take a little of the tedium out of the task. Just consider the
horrors of writing a program directly in machine code without the
help of an assembler.

The op-code and the operand

Itis very important to grasp the difference between the op-code and
the operand. Since they are component parts of a machine code
instruction it is wise to begin with the definition of an instruction:

An instruction is one complete order to the microprocessor.

Because the microprocessor has an extremely limited ‘intelligence’,

12 Discovering BBC Micro Machine Code

any instruction given to it must be simple, in a strict format with
symbols recognised by the assembler. Unlike a statement in BASIC,
each instruction is ‘atomic’ rather than ‘molecular’ in action and
consequently doesn’t do very much.

Most orders given in real life consist of two parts, the verh which
informs what particular action you want and a noun which informs
which particular object is to receive the action. For example ‘kick’ is
an example of an incomplete order because it is only the verb - there
is no indication of who or what is to be kicked. However the order,
‘Kick the cat!” is now complete and unequivocal (the fact that it is
unkind is irrelevant). Returning now to the question of op-code and
operand, we may relate them to the previous sentence. ‘Kick’ is the
op-code and ‘the cat’ is the operand. However, in similar words to
dear old Mrs Beeton’s, it may be a case of ‘first get your cat’. The cat
may not be immediately available but you may remember where it
can be found. All this may appear to be useless for understanding
assembly code but you will find the analogies may help.

Now examine a real instruction in assembly code:

LDA #20

LDA is the op-code which is a mnemonic for ‘LoaD the
Accumulator’ and is the verbh. The operand is the number 20, whi¢h
is ‘immediately’ available because the ‘# sign is the coded
information to this effect. Thus the effect is to load (place) the
number 20 into the accumulator. If the *#’sign is absent, the operand
has a different significance. Instead of being immediately available,
the operand is the address in memory where the number or data is
residing.

Storing a machine code program

Example 1.1, although it contains a section of machine code. is a
BASIC program from the operating system’s viewpoint. This means
we can store it on tape with the usual SAVE"name" procedure and
retrieve it later by LOAD“name™. But suppose we want only the
machine code part? After all, the BASIC part was only to enter the
program by means of the assembler so. after this has been done and
RUN, the machine code is assembled into the chosen RAM
addresses.
To store only the machine code portion, use:

*SAVE“name” SSSS EEEE

Introducing the Assembler 13

where“name” is arbitrarily chosen; SSSS is the starting address
in hex; and EEEE is the end address plus one in hex.

Suppose we name our machine code part of Example 1.1 BLOGS.
The store command would be:

*SAVE“BLOGS” 0D00 0D10

The start address is easy but the end address may be puzzling.
However, if you remember that the last byte in the assembly was in
0DOF and you know enough hex to add 1, this becomes 0DI10.

There is an alternative format for storing which saves you the
bother of finding out the end address:

*SAVE“name” SSSS + NNNN

Where NNNN is the number of bytes in the machine code
program plus 1. If you count the number of hex pairs in the listing of
Example 1.1 you will see there are fifteen, so we want the hex for
sixteen which is 0010. Thus, we could save by the command:

*SAVE “BLOGS” 0D00 + 0010

The exact number of bytes required need not be exact. Providing
you order enough it doesn’t matter if you carry a few garbage bytes
along. Guessing, well on the generous side, is slovenly but involves
no risk apart from wasting time. In fact, while we continue to use
0D00 as the starting point, there is no reason why the save line
couldn’t be standardised to:

*SAVE“name” 0D00 ODFF

This would store the entire reserved memory area and, on my tape
machine, only takes about 15 seconds.

Loading a machine code program

To retrieve the program again, the format is: *)LOAD*name” or, if
you have forgotten the name under which it was stored, simply
LOAD” (remember there must not be a space within the two
quotes). The machine code will then be located in the same memory
block as ordered during the original store operation. However, if for
some reason (probably not very often) you wish to load it into a
different starting address, then use: *LOAD*name™ SSSS where
SSSS is the starting address required.

14 Discovering BBC Micro Machine Code
Running a machine code program/subroutine

You cannot execute a machine code program (which has just been
loaded from tape or disk) by typing the usual RUN. Only a BASIC
program understands RUN. However, assuming it is a machine
code subroutine, it can be executed by CALL &SSSS, where SSSS
is the starting address. Our Example 1.1 was of course a subroutine
because it ended in RTS, so CALL &0D00 will execute it. However,
if the machine code had ended with BRK instead of RTS some
rather weird things happen.

BRK means ‘break’ - stop or break out of the program. It stops
dead instead of returning from wherever it was called. Alter line 110
in Example 1.1 from RTS to BRK. When you later try to call it with
CALL &0DO00 the result is a stream of garbage on the screen.
However, if instead of loading the machine code from tape with
*LOAD"name” we use *RUN“name” then all is well. The program
will load from tape and then automatically execute, producing the
expected “ABC’ on the screen followed by the usual winking cursor
of BASIC. In spite of this information regarding BRK endings, it
should be emphasised that the vast majority of machine code
exercises will terminate with RTS. They can then be called from
BASIC at any time.

Once a machine code subroutine is in siru, itis satisfying to learn it
remains unperturbed by hitting the BREAK key. We know that
hitting BREAK will destroy BASIC programs (unless it is followed
by hitting OLD) but has no effect on any machine code located in a
protected area such as 0D00. This is why it is feasible, indeed
desirable, to build up a library of machine code subroutines which,
providing you know where they are stored, can be called up at any
time by either BASIC or by other machine codes.

Symbolic operands

The BBC assembler has quite sophisticated features, including the
ability to recognise symbolic operands. This is a new piece of jargon
but simply means that the operand of a machine code instruction
(the hex pair or pairs which follow the op-code) can be a meaningful
name of your own choice rather than a dry, uninformative hex
number. For example, the operand in line 80 of Example 1.1 is 32320
which is an address around the centre of the Mode 7 screen display.

Introducing the Assembler 15

Suppose we chose the name ‘Screen’ for this number. The complete
instruction would then be written as:

80 STA Screen

However, it may be clear that somehow we must previously inform
the assembler that the name ‘Screen’ must henceforth be associated
with the address 32320. In other words, we must assign this in the
BASIC part of the program. Once assigned, it is allowable to
introduce arithmetic processes to the symbolic operand. Thus, we
can rewrite Example 1.1 into an alternative form as shown in

Example 1.2.

10 REM ¥EXAMPLE 1.2%
20 MODE 7:CLS
30 P%=D0Q

95 Screen=32320
40 C

59 LDA #65

60 LDX #66

70 LDY #67

80 STA Screen
90 ST Screen+i
10@ STY Screen+2
119 RTS

120 1

13@ END

YRIUN

2009

o092 A9 41 LDA #€5

erp2 A2 42 LD¥ #€6

2084 AR 43 LDY #67

@DeE 2D 49 7E STA Screen
2009 BE 41 7E STX Screen+!
apaC 8C 42 7E STY Screent2
ADOF €9 RTS

Example 1.2. Using symbolic addresses.

Note that the assignment instruction has squeezed in at line 35.
There is no doubt that the use of symbolic operands increases the
readability and ‘friendliness’ of machine code and anything that
does that should be exploited shamelessly, evenif it does waste a few

lines for assigning.

16 Discovering BBC Micro Machine Code

Remarks

In BASIC, the keyword REM can be used for explanatory remarks.
This is illegal in machine code. However, the BBC assembler allows
remarks if preceded by the backward slash (\). This is the key to the
left of the ‘back-cursor’ on the BBC machine. (When in Mode 7, this
comes out as a rather funny looking ‘%4’). Example 1.3 shows typical
remarks or comments at lines 50, 60 and 70. An alternative to the
backward slash is the semicolon.

I have mixed feelings about the over-liberal use of machine code
remarks. There are times when a remark on every line makes the
program look fiercer than it really is, probably because it is not
immediately obvious (as in BASIC) that they are indeed remarks
and not valid instructions. Use remarks by all means but only when
the intention may not be obvious to those who know a little machine

code.

19 REM XEXAMPLE 1.3%

20 MODE 7:CLS

3@ P%=RD@0:REM SET PROG COUNTER
35 Screen=32320

40 C

5@ LDR #63 ~ ASCII for’A’
€60 LDX #66 ~ ASCII for’'B’
78 LDY #67 N\ ASCII for’'c’
88 STA Screen

98 STX Screen+i
100 STY Screen+2
118 RTS
129 1
130 END

RUN

2Deg

0P A9 41 LDA #6353 \ ASCII for’R’
9092 A2 42 LDX #66 . ASCII for’B’
#0724 ARG 43 LDY #67 N\ RASCII for’'C’
o0ae 280 49 7E STA Screen

aDee 8E 41 7E STX Screen+l

aDaC 8C 42 7E STY Screen+2

ADBF 68 RTS

Example 1.3. Using remarks with the backslash.

Introducing the Assembler 17
Multistatements per line

As in BASIC, the colon can be used to separate two or more
machine code instructions on the same line. This is a facility whichis a
mixed blessing and you are strongly advised to ignore it until you
can read machine code like reading a book. Unless there is an
absolute need to save every byte of memory or save a few inches of
printing paper then stick to one instruction per line. It is easier to
follow, and any dodge which makes machine code easier is an
overriding consideration.

The OPT statement in assembly listing

After typing in one of the previous example programs, a listing is
produced on the screen when you type RUN. However, this
assembly listing may not always be required. The main purpose of
RUN was to assemble the mnemonics or symbolic operands into hex
machine code; the listing of the result on the screen may be a
nuisance. The OPT statement allows individual choice from a range
of four options:

OPT 0 Stops the listing and any assembly error reports.
OPT 2 Stops the listing but reports any assembly errors.
OPT 1 Gives a listing but no assembly error reports.
OPT 3 Gives a listing and reports assembly errors.

The statement is not BASIC. It is only valid in the machine code
square brackets region.

To see the effect, add the following line in any of the previous
examples:

45 OPT O

When the program is RUN, no familiar assembly listings will
appear.

If no OPT statement is given, it assumes OPT 3 which obviously is
the form most frequently required during program development.

It will be seen later that some machine code subroutines require
assembling twice. In such programs, the poor assembler fails to
make head or tail of the listing during the first ‘pass’ but masters the
situation on the second. It would be better to delay discussion on this
quirk until later.

18 Discovering BBC Micro Machine Code

Upper-case and lower-case characters

When writing a BASIC program, the BBC allows the use of upper-
or lower-case characters for variable names but insists that upper-
case 1s used for BASIC keywords. This is an excellent facility and
apart from the added freedom and readability of the listings, it
ensures that keywords stand out from variables.

However, when it comes to the machine code part (within the
square brackets) the assembler recognises upper- and lower-case not
only for operand names but also for machine code mnemonic op-
codes! Even mixtures are allowable. Thus, line 60 in the examples
could be written as LDX,ldx,1Dx or LDx in the op-code position.
Personally, 1 hate this freedom. Machine op-codes have always been
written in upper-case, and the manufacturers of microprocessors
(including the 6502) have consistently defined the instruction
repertoire in upper-case letter groups. I shall never take ‘advantage’
of the freedom to use lower-case for op-codes and 1 hope you won't.
The effect is awful and confusing!

Practising use of the assembler

This chapter has concentrated on one very simple machine code
program with a few variations thrown in. The program, of course,
has no practical value and is absurdly simple. Even worse, it is
inefficient. But the intention was merely to enable you to get used to
the assembler. Try and practice its use for an hour or so for a week. It
is hopeless tackling the details of advanced programs unless you can
operate the assembler instinctively. Try a few simple variations onit.
Find out for yourself if you can amend a line direct from the
assembly listing using the usual cursor facility. You may find it won’t
work when you try to execute it. You may find it is necessary to re-
list it in BASIC first, before a line can be amended. After a time, you
will discover that the BBC assembler is indeed a fine piece of work
and marvel that all this power is free - buried in the ROM language
interpreter.

Summary

® Machine code executes rapidly, is economical on memory and
assists understanding of the inner workings of a computer.

Introducing the Assembler 19

® ‘Machine code’ is a loose term which covers binary machine code,
hexadecimal machine code and assembly code.

e Writing in assembly code is possible only if specialised software is
available called an assembler. The BBC machine has an assembler
in ROM form.

® An assembler allows the use of mnemonic letter groups for the
operation codes, decimal instead of hex numbers - with symbolic
operands and labels.

® Machine code can only be stored in ‘safe’ areas of memory. One
safe area is from 0DO00 to ODFF hex. In decimal, this is 3328 to
3583.

® The BBC assembler operates within a BASIC program but RUN
does not execute the machine code; it only assembles it.

® Anassembly listing is in three parts - the address, the hex machine
code and the equivalent assembly ‘language’ form.

® An instruction consists of the op-code and, in most cases, an
operand.

o A machine code segment, lying within a BASIC program, can be
stored on tape or disk separately.

¢ A machine code segment is not destroyed by operating the
BREAK key once.

e Providing a machine code segment is a subroutine (it ends with
RTS) it can be executed by CALLing it; i.e. CALL &0D00.

® Symbolic operands can only be used if previously assigned.

Arithmetical expressions can be used in operands.

® Remarks are allowed on assembly lines providing they are
prefixed by a backward slash ().

® As in BASIC, the colon can be used to separate two or more
instructions on the same line.

Assembly listings can be modified or omitted altogether by use of
OPT.

@ Upper- or lower-case characters can be used for op-codes.

Chapter Two
Number Representation

There are two entirely different types of computer, depending on the
method used to represent and manipulate numbers. The analogue
computer represents a number by relating it to the magnitude or
intensity of a physical quantity (see Figure 2.1). The physical
quantity chosen is usually, but not necessarily, electrical voltage.
Number representation could be achieved by using a voltage scaling
factor of, say, one millivolt per unit. Then the number 45 would be
simulated by a voltage of 45 millivolts. The actual scaling factor is
unimportant providing there is consistency in the system. The BBC
machine, like all other home computers, is a digital computer but,
because an analogue to digital converter (AD converter)is provided
on the circuit board, it is important not to despise analogue
techniques. Digital computers have all the glamour in the modern
world, mainly because the popular press considers the analogue type
of little news value. Nevertheless, many so-called high technology
systems include substantial areas of analogue computing techniques
intermixed with digital. Unfortunately for the poor old analogue
computer it has one major drawback which makes it quite
unsuitable for commercial calculations. It has a low standard of
accuracy. It is fast, indeed much faster than the most powerful main-
frame digital computer but it has great difficulty in displaying results
to greater than four decimal figures with consistency. Thus it
couldn’t have handled the late Howard Hughes’ bank account.
Why is the digital computer so accurate and the analogue not so?
The answer lies in the difference between counting and measurement.
The digital computer is essentially a counting machine. It is always
possible to count accurately. It is impossible, even in the most
sophisticated machine, to measure accurately because it will always
be dependent on the ‘accuracy’ of the measuring standard. You
cannot measure, say, 5 volts with absolute accuracy but you can say
with absolute certainty whether a voltage is there or not there. You

Number Representation 21

OUTPUT DISPLAY
(Voltmeter, XY recorder or
oscilloscopes)

A

GENERAL PURPOSE ANALOGUE COMPUTER

Complex electronic circuits which can
add, subtract, differentiate and integrate
the various input voltages

‘Programmed’ by altering jumper leads to
set up particular equations

Input voltages proportional to the
dial readings

GO0

Operator sets up the ‘numbers’

SPECIAL PURPOSE ANALOGUE COMPUTER

Compares input voltages with what
they should be

JL

alter conditions Voltages representing
until correct existing conditions

External system controlled
by computer

Fig. 2.1. General and special purpose analogue computers.

can tell whether a switch is ON or OFF. Digital computers rely on
detecting whether a ‘switch’ is ON or OFF. In fact, a digital
computer is nothing more than a gigantic bank of switches — not the
type of switch you can handle physically, of course, but tiny
electrical circuits which are two-state, either in one state or the other.
By counting the number of circuits in the ON state, it is possible for
the computer to treat the result numerically.

22 Discovering BBC Micro Machine Code

CENTRAL PROCESSOR
(6502 microprocessor)

Address ¥ Data
information ROMs information
Fixed programs

for operating
system and =
BASIC with the
assembler

RAM
Read/write
memory
el 1
Only part of
this is free
Code for selected for programs
memory location

or device

] KEYBOARD |l

VIDEO DISPLAY
circuitry

» CASSETTE TAPE
circuitry F‘.

._: INTERFACES FOR:
floppy disk, printer, elc.ﬁ
i

Fig. 2.2. Simplified block diagram of the BBC Micro (a digital computer).
Figure 2.2 shows a simplified block diagram of the BBC Micro as

an example of a digital computer.
Binary

Binary is a two-state counting system using only two characters 1
and 0 and is therefore the system of choice. It may be tedious for

Number Representation 23

humans, used to ten characters 0,1,2,...9 but tedium is unimportant
to those tiny circuits. To become proficient at machine code it is
necessary to have at least a nodding acquaintance with binary
although it is certainly not essential to delve into all its ramifications.
When first confronted with binary it is a little startling to see strange
arithmetic statements like 1 + 1 = 10 and even worse to learn that
10+ 10= 100. However, this will make sense when we memorise the
simple progression, 1,2,4,8, 16,32,64. .. etc. and understand that the
‘weighting’ of any binary digit increases by a power of two from right
to left, instead of a power of ten in the familiar decimal system.

Examples:
I1in binary is a | and a 2 in decimal, representing 3.
101 in binary is a | and a 4 in decimal, representing 5.
I111 in binary is a 1 and a 2 and a 4 and 8, representing I5.

A rather important binary number is 11111111 which you should
now be able to translate to 255 in decimal. This number
continuously appears in computing manuals and textbooks.

Addition in binary is exactly the same as in decimal except that a
carry to the next column takes place when the sum exceeds | rather
than 9.

Examples are better than wordy descriptions, so spend a few
minutes in order to agree that the following makes sense:

3=0011 7=01I11 5= 0101
+2 = 0010 +_8—1@ +6=10110
~5=10101 15 = 1111 11 = 1011

The byte

The meaning of the term byre in microcomputing is a string of eight
bits. A ‘bit’ (a corruption of Blnary digiT) isa 1 or a 0.

Why the byte is so important is the fact that most popular
machines are, at the moment, ‘eight-bit’ types. The 6502 is an eight-
bit microprocessor, meaning that all transfers of binary data
between the memory and the microprocessor take place in blocks of
eight bits - the memory is therefore eight bits ‘wide’. Each tiny cellin
abyte can store a 1 or a 0 so, if the byte is full up (all cells containing
1) the pure binary number 11111111 would equal 255 in decimal.
You may be wondering why it was necessary to state the word ‘pure’
binary. This is because there is an alternative way of stating binary

24 Discovering BBC Micro Machine Code

bits called two's complement in order to cover both positive and
negative numbers (see later).

For convenience and clarity, it is customary to consider the byte
as if it were made up of two equal 4-bit halves called nibbles. The
separation has no real significance to the computing circuits.

Hexadecimal notation (hex)

It was necessary to find some quick method of describing the
contents of a byte. We could, of course, describe it in terms of the
decimal equivalent but this is not quick enough. Perhaps you can,
but I certainly couldn’t, blurt out instantly the value of 1011 1101. 1
could, however, describe it as BD hex almost instantly and probably
you will be able to as well - soon.

Hexadecimal is Latin (or maybe Greek) for ‘sixteen’. It is a
counting system, like binary and decimal, but uses sixteen
characters:

0,1,2,3,4,5,6,7,8,9,A,B,C,D,E.F

A nibble is a block of four characters, so there must be 24 (sixteen)
different combinations of arranging the bits in a nibble. Each
combination can be uniquely represented by one hex digit as
follows:

Binary Hex

0000 0

0001 l

0010 2 Examples:
0011 3 11y 1111
0100 4 F F
0101 5

0110 6 I(i\l() OOIOI
0111 7

1000 8 1000 0000
1001 9 8 0
1010 A

1011 B 1011 0011
1100 C B3
1101 D

1110 E

1111 F

Number Representation 25

Although used primarily for describing the contents of a byte in
terms of a pair of hex digits, we must not forget that it is a legitimat
counting system (although a little cumbersome). When adding two
hex numbers, a carry is required to the next higher place when the
sum exceeds 15 in decimal (F in hex). Care must be taken in
intepreting hex in relation to decimal so the following examples may
help:

10 in hex is 16 in decimal.

32 in hex is 50 in decimal.

6F in hex 1s 111 in decimal.
FFFF in hex is 65535 in decimal.

To understand these conversions examine the following place
weightings of four-hex-digit numbers which progress to the left in
increasing powers of 16:

163 16> 16 1 = (4096 256 16 1)
Example: 0 0 5 F =(5X16)+ 15= 95 decimal
Example: 0 2 D A =(2X25)~(13X16)+ 10=
730 decimal
Example: F F F F = (15X4096) ~ (15 42
(15X 16) +~ 15 = 6553

Here are a few examples in the addition of two hex numbers:

E o o AF ABCD
3 01 C o1t
[2 100 EB ACDE

Manipulations like the above may take some while before they can
be carried out instinctively although. tortunately. the majority of
hex arithmetic 1s carried out on one-byvte numbers which require
only two hex digits. Although the machine code column in an
assemblv listing alwayvs uses hex digits both tor the code and
operand. the assembly code columnis entirely up to vou. It vou want
the operands to be interpreted ax hex then vou must prefix with &'
If the prefix is omitted the assembler will assume vou mean decimal
although. during the internal assembly action. it will be “silently?
converted into binary, via hex, first

Since vou can use decimal at any time. why s 1t necessary to
bother with learning hex? Strange das 1t may scem. using hex can
often be easter than decimal. simply becausce itis so closely related to

26 Discovering BBC Micro Machine Code

binary bits. Until you become convinced of this, however, by all
means use only decimal.

Negative numbers and two’s complement

A computing system which can deal only with positive numbers
would have little use in the real world. In decimal, there is no
problem - we just place a ‘—' before the number to indicate it is
negative. But this is out of the question in binary because there are
no other characrers but Qand 1. Apart from this restriction, there are
problems involved with the internal electronic hardware. Inside the
microprocessor is a complex area which can add numbers together
but it cannot perform (or rather has not been designed for) direct
subtraction. However, an adding device can be ‘persuaded’ to
subtract by supplying one of the numbers in negative form. The 6502
and,indeed, other common microprocessors use ‘two’s complement’
to represent negative numbers,

Before describing two’s complement, it is advisable to understand
a few formal definitions used to identify particular bit positions
within a byte (see Figure 2.3). The bit at the extreme right of Figure
2.3 is referred to as the Isb (Least Significant Bit). The bit on the
extreme left is the msb (Most Significant Bit). Note that the bits are
numbered bit-0 to bit-7 for reference purposes so the Isb is bit-0 and
the msb is bit 7.

7 6 5 4 3 2 1 [
msb Isb
(sign bit)

Fig. 2.3. Bit labelling in a byte.

Returning to the case of negative numbers, these can be identified
by the msb. This qualifies the msb for the additional title of sign bit.

A negative number has a | in the msb position.

Number Representation 27

Thus, 0110 1101 is a positive number but 1010 1110 is a negative
number. Since 0000 0010 is clearly how +2 would be held, it may
come as a shock to learn that —2 is held as 1111 1110. The sign bit is
certainly a 1 but why are there so many other positions with a 1 in
them? This is the fault of the microprocessor designed for two’s
complement. The rule to find the equivalent negative numbers is:

To find the equivalent negative of a binary number, change every
bit of the equivalent positive and then add 1.

Here is how +2 can be changed to —2, using the above rule:

0000 0010 is +2
Change the bits: 1111 1101
Now add I: 1111 1110 is —2

Note that in hex, +2 is 02 but —2 is FE. If the process of adding the
the extra 1 causes a carry to propagate through and ‘drop’ out at the
msb end, it doesn’t matter and can be ignored. There is an
alternative and less error-prone method of finding the negative:

As an alternative method, to find the negative equivalent of a
positive binary number, start from the right and copy down up
to and including the first 1. Thereafter, change every bit.

Examples:
+2 = 0000 0010 +1 = 0000 0001 +127=0111 1111
-2=1111 1110 —1= 1111 1111 —127 = 1000 0001
In hex terms, +2 = 02 +1 =201 +127=TF

—2=FE -1 =FF —=127 = 81
Maximum capacity of one byte

It is clear from the above that a single byte is limited in the size of
numbers it can handle. It is worth memorising the following:
The largest positive number in one byte is 7F hex (4127 decimal).
The largest negative number in one byte is 80 hex (— 128 decimal).
The largest number in unsigned-binary is FF hex (255 decimal).

The term unsigned-binary is used when negative numbers are not
catered for, in which case the msb is not ‘wasted’.

28 Discovering BBC Micro Machine Code

If larger numbers than the above have to be handled it is necessary
to reserve more than one byte per number. The programmer must
imagine that the separate bytes are joined end to end with only the
most significant byte acting as the sign bit (see Figure 2.4).

{a) Actual situation in memory:

Sign bit —l’ Lower-order byte
Sign bit + Higher-order byte

(b} As visualised by the programmer:

True sign bit Treated as magnitude instead of sign
]

j T

1

1 I
| Higher-order byte | Lower-order byte |
1 | [

Fig. 2.4. Storing double-byte signed numbers.

Example:
OI11 1111 1111 1111 would be +32,767 in decimal
(TFFF hex)

Employing more than one byte number is called multi-precision
and must be organised by the programmer; the 6502 will have no
idea what you are supposed to be doing. As far as the 6502 is
concerned it knows it is an 8-bit micro and is unconcerned (perhaps
even slightly amused) at the human's awkward attempts to enlarge
its girth! One advantage of the new 16-bit microprocessors is the
ability to handle larger numbers without using multi-precision
techniques. Multi-precision, using two 16-bit registers or memory
cells, would handle two’s complement numbers in the range of plus
or minus 2000 million. If you can tolerate yet another formula, the
following is a quick way to discover the largest positive number:

The largest positive number in a set of N bitsis 2~ ' 1
(where N is the number of bits).

Number Representation 29

Examples:

With 8 bits, this becomes 27 — 1 = 127
With 16 bits, 215 — | = 32767

With 32 bits, 23! — | = 2147483653

The largest negative number is always one more than the equivalent
positive. Justification for this rather startling snippet is due to the
convention that zero is a positive number and therefore a passenger.
(See Figure 2.5 for the circular nature of two’s complement.)

-1 0

4 3

Fig. 2.5. Visualising two’'s complement numbers. (For simplicity a three-bit
word is used.)

Summary

¢ Analogue computers measure. Digital computers count.

® Abitisa | or a0, a nibble is four bits and a byte is eight bits.

@ The binary counting system is based on powers of rwo instead of
ten so each binary bit 1s worth double the value of the bit on its
right.

® The contents of a byte can be described easily by two hex digits.

® The hexadecimal counting system is based on powers of sixteen so
each hex digit is worth sixteen times the value of the digit on its
right.

® Numbers in assembly code are interpreted as decimal unless
prefixed by ‘&’, in which case they are assumed to be hex.

@ Numbers of either sign can be represented in rwo's complement
form.

o If the extreme left-hand bit (the msb) is a 1, the number is treated
by the microprocessor circuits as negative.

e [t is conventional to identify each bit by numbering them bit 0 to
bit 7 - bit 0 being the Isb and bit 7 the msb.

30 Discovering BBC Micro Machine Code

® The largest positive number in a byte is +127 and the largest
negative is 128.

® Two or more bytes considered end to end can represent larger
numbers although this technique is a software dodge. It is not
hardware implemented.

@ If the msb is not considered by the programmer as a sign bit, the
number is said to be in unsigned binary and raises the maximum
absolute number in a byte to 255 decimal (FF hex).

Chapter Three
Registers, Transfers and
Arithmetic

It is never easy to decide how much detail should be written on the
technicalities of the microprocessor. It is possible to understand
machine code and compose useful programs without wading
through masses of Silicon Valley jargon. On the other hand, it is
certainly advisable to cultivate a mild curiosity. It is absolutely
necessary to be aware of the various registers in the 6502 which are
programmable but whether or not it is equally necessary to study the
other bits and pieces is open to question. The trouble with
microprocessors is the mind-bending complexity of their electronic
intestines. Even a superficial attempt to unravel the timing
sequences alone would take many pages of difficult text and almost
certainly dissuade many readers from progressing further. Con-
sequently, this chapter will be based on the ‘need to know’
philosophy rather than attempt an over-simplified treatment which
would be of little real assistance.

The internal registers

Aregister is similar to a normal memory location in RAM, in that it
can hold a string of eight bits (one byte). It differs in two ways; it is
inside the microprocessor chip and capable of more sophisticated
action than a RAM location. The most important register of all is
the program counter but, because it is mainly automatic in action
rather than directly programmable, is not of much interest to us at
this stage. The most important registers for our present purpose are
the accumulator, the X-register and the Y-register (see Figure 3.1).
During the course of a program, one or more of these will be holding
data or modifying it in some way. There will be a continuous
interchange of data between these registers and the memory system
external to the microprocessor. It would appear, from a superficial

32 Discovering BBC Micro Machine Code

MICROPROCESSOR CHIP

Lifof +[of+]+fofs] [fs[1]o]+fo]o]]

Y register X register

Liltfof1Jofofof]

Accumulator

-

address MEMORY
0000 f1lo0]o|1|1]ol1]o0
0001 0 of110f0}1|1 T
J 0002 1{1]0]10(0|j0|0]0
0003 111 opv1f1}
0004 ol1j0j0| 1|11}
0005 1111111 1]1 l
0006
Address information Data information

FFFB |1 |11 [1]1]1]0}0
FFEC |0 [o]o o1 [1]1]
Frep (1 (1|11 [1] 1]
FrrE [1o 1]{of1[o]of1
FREF [1 {1 {1 [1]o]1[1]1

Fig. 3.1. Programmer’s view of the registers A, X, Y and memory. {Contents
of registers and memory are fictitious.)

glance at some of the assembly listings which appear in magazines
and books, that machine code programming consists of pointless
transfers of data from one register to another then back again
rushing back and forth getting nowhere! This impression is
excusable if you are unfamiliar with the limitations imposed on
some of the registers. The following is a brief outline of the
capabilities of each register:

(a) The accumulator (referred to as “A’)

This is the most powerful and consequently the most overworked
register in the microprocessor. It is the only register with true
arithmetic capabilities but, even so, only addition and subtraction
are possible. Its contents can be transferred to any other register or
to memory.

Registers, Transfers and Arithmetic 33

(b) The X-register (referred to as ‘X’)

This register cannot perform addition or subtraction. It can,
however, be incremented (increased by 1) or decremented
(decreased by 1). Transfers to other registers and memory are
possible. It is also used for a special kind of addressing known as
indexed-addressing.

(c) The Y-register (referred to as ‘Y’)
The Y-register is similar to the X-register in nearly every respect and
is also used for indexed addressing.

Table | shows the assembly op-codes of register operations and the
corresponding actions. The reference to szack-pointer is anticipating
later discussion.

Table 1. Simple register operations.

Mnemonic

op-code Action

TAX Transfer contents of A to X

TXA Transfer contents of X to A

TAY Transfer contents of Ato Y

TYA Transfer contents of Y to A

INX Increment contents of X

DEX Decrement contents of X

INY Increment contents of Y

DEY Decrement contents of Y

TXS Transfer contents of X to stack-pointer
TSX Transfer contents of stack-pointer to X

It is important to understand the rather specialised computer
meaning of the term transfer. When, for example, the action is
described as: ‘Transfer contents of A to X', it means a copy of the
contents of A is transferred to X. The contents of A remain the same
but the original contents of X are over-written by the transfer action.
It is worth emphasising this with an example:

Suppose A contains 52 and X contains 67 now. After TAX,
X will contain 52 and A will still have 52.

The operations defined in Table | have one common attribute in
that they are complete instructions to the 6502. They require no

34 Discovering BBC Micro Machine Code

operand because the op-code itself tells the system all it needs to
know. The jargon term for this implied addressing and is clearly an
efficient programming weapon. Refer back to Example 1.1 of
Chapter One to confirm that, apart from RTS, none of the assembly
instructions have used implied addressing - they all required an
operand of some sort.

Example 3.1 performs the same objective (displays the characters
‘ABC’ at the centre of the screen) but is re-arranged in order to
illustrate implied addressing. The revised program saves two bytes
and only uses one register. Not perhaps an exciting improvement,
but the intention was to illustrate implied addressing.

12 REM XEXAMPLE 3.1%

2@ MODE 7:CLS

30 P%=4D@Q2:REM SET PROG COLNTER
35 Screen=32320

42 C

99 LDX #63 ~ ASCII for’A’
£@ STX Screen

78 IN¥

88 STHX Screen+i

92 INX¥
188 STX Screen+2
119 RTS

129 1

139 END

Example 3.1. Using implied addressing.
The INX lines modify the ASCII code to produce ‘B’ and ‘C.

Clearing registers and memory locations

It is often required to set a register to 0000 0000 (00 hex). Some
microprocessors have special op-codes to ‘clear’ the accumulator or
other registers such as CLA,CLX,CLY etc,, but the 6502 is a little
mean in this respect. If a register is to be set to zero (cleared) it must
be done by setting the number zero into the register by using
immediate addressing. Example 3.2 illustrates the clearing of all
three registers and one memory location - just for luck.

The accumulator has been cleared first by LDA #0. The Xand Y
registers have been cleared by transfers from the accumulator and,
finally, the address 32320 (centre of screen) is cleared by forcing the
accumulator data into it.

Registers, Transfers and Arithmetic 35

10 REM XEXAMPLE 3.2 CLERARINGX
20 MODE 7:CLS
39 P%=4000
35 Screen=32320
43 €

59 LDR #0
60 TRX
78 TRY
g0 STR 32320
99 NOP
188 NOP
119 RTS
129 1

138 END

YRUN

2020

2080 A9 @9 LDR #8
a082 AR TAX

o083 A8 TRY

ADb24 8D 408 7E STR 32329
a0a7 EA HOP

Abes EA NOP

2009 €9 RTS

Example 3.2. Clearing registers and use of NOP.

Note that two, previously undefined ‘“NOPs’ have been slipped in
at lines 90 and 100. NOP means No OPeration and it certainly lives
up to its name because it literally does nothing. The obvious
question is ‘Why use the stupid thing? Strangely enough, there are
times when it is useful, particularly during program development
because it provides a temporary and tidy breathing space which can
be exchanged for a useful operation at any time. In our example, it
merely occupies two line numbers which were formerly occupied in
the previous examples. All examples up to now have been fitted into
lines 40 to 120 as far as the assembly code is concerned - for no
reason other than consistency. NOPs are also useful for ‘fine-tuning’
a timing loop - it takes time even to do nothing!

Addition and subtraction

There are only two arithmetical operations possible with the 6502,
ADC, which means ‘ADd with Carry’ and SBC, which means

36 Discovering BBC Micro Machine Code

‘SuBtract with Carry’. Forgetting the reference to ‘carry’ for the
moment, ADC and SBC can add orsubtract any mixture of positive
and negative numbers. That is to say, ADC canadd 3to 5, 3to—S5,
—3 to—5etc. SBC has similar flexibility. But, and it is a big but, there
is a miserably low limit to the size of numbers which can be handled.
In BASIC, we tend to be spoon-fed and take enormous numbers for
granted, thinking perhaps the ‘computer’ is clever enough to take
such numbers in its stride. In reality, the poor old 6502
microprocessor (and indeed most other 8-bit types) fails to handle
two’s complement numbers greater than +127 or —128. You will
remember this limitation was discussed in the previous chapter. Itis
the intellect and craftiness of human programmers which give the
computer its apparent arithmetical dexterity. It is system program-
mers which fool the microprocessor into performing multiplication,
division, sines and cosines, etc. Returning now to the subject of our
primitive ADC and SBC, it is time we set out a formal definition,
including the use of the ‘carry bit".

Table 2. Addition and subtraction.

Mnemonic

op-code Action

ADC Add the number, as defined by the operand. to the
existing contents of the accumulator. Any carry is
taken into consideration.

SBC Subtract the number. as defined by the operand.
from the existing contents of the accumulator.
Any carry is taken into consideration.

CLC Clear the carry bit. (Make 1t 0.)

SEC Set the carry bit, (Make 1t 1.)

CLY Clear the overflow bit. (Make it 0.)

INC Increment contents of memory.

DEC Decrement contents of memory.

Note from Table 2 that the result is ¢/wavs in the accumulator, The
phrase ‘as defined by the operand’ may seem a bit frightening but is

Registers, Transfers and Arithmetic 37

necessary in a formal definition. Remember, the operand is that part
of the instruction which follows the op-code. The meaning of the
operand, however, depends on the addressing mode. The 6502 is a very
‘powerful’ species of microprocessor, due mainly to the rich variety
of addressing modes available. Some of the modes are fiendish in
their subtlety and will not be attempted in this book.

Up to the present, the addressing modes encountered have been:

(a) Implied addressing, in which no operand is necessary.

(b) Immediate addressing, in which the operand is the actual data.
The assembler recognises this mode by the prefix #.

(c) Absolute addressing, in which the operand is the address at which

the data is stored.
1A REM XEXAMPLE 2.3 ADDINGE
28 MODE 7:CLS
38 P¥%=t0002
42 C
99 CLC
£ LDA #24
72 3TR %ADFF
23 LDA #32
99 ADC &QDFF
180 STR &ADFE
119 RTE
128 1
1389 CARLL%ACARA
140 PRIMT"Rccumulator contains " 7R80FE
15@ EMD

7RIIM

apaa

g0aa 18 CLE

a0e1 A% 18 LDR #24
2083 80 FF @0 STR &@DFF
pDRE AZ 209 LDA #32
apes 60 FF 2D ADC &ADFF
AUEB S0 FE B0 STA LG0FE
aboE &9 RTS
Recumylator contains S€

Example 3.3. Addition of numbers.

It would be as well to glance back at Example 3.2 to confirm the
symbols for the addressing modes. Thus line 50 is an example of
immediate addressing because of the #. The data is 0. Line 60 is
implied addressing because there is no operand. Line 80 is absolute

38 Discovering BBC Micro Machine Code

addressing because it refers not to the actual data but the address in
memory where the data is to be placed.

We return now to a simple program to illustrate addition (see
Example 3.3). The program adds 24 and 32 together and stores the
result in address &0DFE which is subsequently printed out by the
BASIC statement ?&0DFE in line 140. In most other machines, this
would be a PEEK instruction but the equivalent in BBC BASIC is
by using the ‘?” operator (see page 409 in the User Guide). The first
number, 24, is placed in the accumulator using immediate
addressing and is then stored temporarily at the bottom end of our
safe area using absolute addressing. The second number, 32, is now
placed in the accumulator, overwriting the previous contents. The
original number, stored in &0DFF is then added to the accumulator
using ADC with absolute addressing (line 90). The result is then
stored in another safe area, &0DFE, before returning to BASIC.

The program claims no merit with regard to efficiency or memory
economy. These points have been ignored in order to illustrate the
addressing modes previously discussed. For example, there was no
need to waste two memory locations in the safe area because the
result could have been stored back in the original &0DFF. Valid
criticism could also be directed at the use of immediate addressing
for the two numbers. The program can only act on the two constants
24 and 32; consequently the only way to add two other numbers
would be to alter the operands in lines 60 and 80. But then it could
also be argued that the program is silly anyway - all this messing
around just to add a couple of numbers which would be child’s play
in BASIC!

A well-known platitude states that ‘you can’t run before you can
walk’. When you first attempt to learn machine code a more
pertinent version would be ‘you can’t walk until you can crawl’. This
is the first and only apology I make for subsequent programs which
may appear too low-brow for high-brow readers.

There remains one line in the example unexplained - the CLC in
line 50. When any program or segment of a program uses ADC it is
essential that the ‘carry-bit’, which may have been left over from a
previous arithmetic bout, is rendered harmless. Before the details
can be discussed we must find out a little more about this carry-bit.

The carry-bit (C)

We must first establish where this mysterious C-bit lives. Apart from

Registers, Transfers and Arithmetic 39

the accumulator, X- and Y-registers, there is another register within
the microprocessor called the Process Status Register (PSR). Unlike
the three registers previously described, it is a hotchpotch of entirely
unrelated flag-bits. The term flag-bit is used to describe a single bit
which, depending on whether it is a 1 or a 0, signals that some
condition is true or false — something has happened or not
happened. When certain of the op-codes are executed, one of the bits
in the PSR called the C-bit is automatically set to 1 if the operation
has resulted in a 1 being pushed out at the left-hand end of the
‘destination’ register. Instead of this bit ‘falling on the floor’ it is
popped into the C-bit position in the PSR. The C-bit may be
thought of as the ninth bit of the other registers. It is this bit, and the
other flag bits in the PSR, which decide the course of events which
follow conditional branch type instructions. These are not dealt with
until later.

Our main concern at the moment is its effect on the ADC
instruction. Suppose we use ADC to add, say, 3to 5and by chance
the C-bit contained a 1, left as residue from a previous operation.
Since it is taken into consideration during an ADC action (refer
back to Table 2) it would make the answer 9 instead of 8. For this
reason, it is prudent always to clear it with CLC before using ADC.
Some microprocessors have two ‘add’ type instructions. One is a
normal ADD which ignores the C-bit and the other is an ADC
which doesn’t. The 6502, however, is not favoured in this direction
so the onus of clearing the flag is always the responsibility of the
machine code programmer. My follow-up book to this one, Ger
More From BBC Micro Machine Code (Granada) includes examples
of multi-precision addition or subtraction where it will be apparent
how useful the C-bit is for joining’ two registers end to end in order
to handle larger numbers.

To try out the effect of the C-bit, change line 50 in Example 3.3
from CLC to SEC which pushes a 1 directly into the flag. When you
re-run the program again, the answer will be one too many.

The overflow-bit (the V-bit)

The other flag bit in the PSR associated with arithmetic operations
is concerned with detecting an overflow condition. If, as the result of
using ADC or SBC, the result is invalid from a two’s complement
arithmetic viewpoint, due to the result being too large for the register

40 Discovering BBC Micro Machine Code

to handle, the V-bir is automatically set. This can subsequently be
tested for by one of the conditional branch instructions.

It may seem puzzling to some what exactly is the difference
between a carry-out condition and overflow. If there is a carry-out,
there must also be an overflow condition - surely? From a common-
sense viewpoint this is true but arithmetic circuits in microprocessors
do not work on common-sense — and a good thing too, because
humans would not always agree on what is a particular ‘common-
sense’ interpretation.

Without plunging into a dry discourse on the ramifications of
two’s complement arithmetic it may be accepted at this point that it
is possible to have an overflow condition without a carry-out.
Conversely, it is equally possible to have a carry-out with no
overflow so it is necessary for the PSR to have botha C-bitanda V-
bit to distinguish the computer status at any time. When we deal
with branch instructions it will be seen that the C and V bits can be
tested to establish a wide variety of conditions besides addition and
subtraction.

Subtraction

To examine the SBC facility, two changes are required to Example
3.3. Obviously, line 90 must be changed from ADC to SBC but it
may come as a mild shock to discover that line 50 must also be
changed from CLC to SEC. It is yet another infuriating quirk of
two’s complement arithmetic that the carry-bit must be set to |
before performing subtraction. The reason for this is due to the
back-handed way subtraction is performed. The micro circuits use
the same adding circuitry to subtract, relying on the mathematical
dodge that ‘adding the negative’ is the same as subtraction. Because
the ‘negative’ is formed by changing all the bits from 0 to | (and vice
versa) then the carry bit must also suffer the same fate.

Using the in-built subroutines

It is understandable if the previous description of simple arithmetic
leaves you with the impression that it is all too fiddly and error-
prone to bother with. However, before you sigh wearily and rush
back to BASIC there is a bright patch - you really needn’t bother too
much about all this detail. One of the valuable features of the BBC

Registers, Transfers and Arithmetic 41

assembler is the ease with which the subroutines, already resident in
the ROM, can be called up in your machine code. Itisimpossible to
compete with the professionally written subroutines for the
handling of arithmetic and mathematical functions. Acorn have
been generous in allowing easy access to their internal software and,
instead of the usual cloud of secrecy practised by some other
manufacturers, openly encourage you to utilise them by giving the
starting addresses and instructions on their use. Also, it is possible to
mix complex operations normal to BASIC with machine code and
we shall be illustrating some of these useful aids later.

There is one snag, however, with the over-use of these pre-written
subroutines when you are learning machine code for the first time. If,
for example, you write a program which produces flashly pictures
on the screen in ‘machine code’ by simply stringing together other
people’s subroutines, can you really say to your friends: *Look what
I've done with machine code’? Apart from matters of conscience, it is
as well to think hard about your objectives. I think the best advice is to
learn the basic elements of machine code a bit at a time, mixing in
some pre-written subroutines whenever you are stuck or when the
need for the program is more important than the methods used to
write it. There is one question worth answering regarding over-
dependence on pre-written subroutines: ‘What happens if there is no
subroutine which fits your particular requirements?’

X- and Y-register arithmetic

As mentioned before, the accumulator is the only register that can
make use of the add and subtract instructions. If numbers are to be
added or subtracted from, say, the X-register then a choice of two
courses is open to you:

(a) Transfer from X to A, perform the arithmetic and transfer the
result back to X.

(b) Perform a series of separate increments (using INX) or separate
decrements (using DEX).

To add small numbers less than, say, five, method (b) can be used
although it must be admitted that too many consecutive INX lines
do have an amateurish appearance.

Method (a) can be used with any numbers, providing they are
within the previously defined limits. There is, however, a pitfall
which can cause unexpected corruption of data. It is highly probable

42 Discovering BBC Micro Machine Code

that the existing contents of the accumulator are important, so the
act of using it as an intermediary for the X-register arithmetic will
certainly play havoc with the contents. The only way out would be a
temporary storage of the accumulator contents into a memory
location whilst the X-register transfers take place. It is evident from
this short dissertation on the possible perils that a considerable
amount of care must be taken, even when the objective is a simple
addition. There is one brilliant little dodge, provided by the 6502, for
taking care of temporary storage of the accumulator contents
without bothering to trouble about any particular memory address.
This useful piece of hardware is called the srack.

19 REM XEXAMPLE 3.4 THE STACK¥
29 MODE 7:CLS
30 F%=8D00

48 C
5@ CLC “Clear C-bit
fA LDA $#65 SASCII for R
78 PHA “Push Acc
20 ADC #3 “Add 3
QB STR 32320 “Print to screen
109 PLA “Pull Acc
118 STR 32322 “Print to screen
128 RTS
139 1
142 END
*RLM
209
2000 18 CcLC “Clear C-bit
A0B1 A9 41 LDR #65 “ASCII for R
2093 48 PHAR “Push Rcc
A0B4 £9 03 ADC #3 “Add 3
@026 8D 48 7E STAR 32329 “Print to screen
a0p9 f4 PLA “Pull Acc

@DBA 80 42 7E STR 32322 \Print to screen
o0aD c0 RTS

»CALL&BDAY
Example 3.4. Using the stack.

The stack

What use is the stack? The short answer is to provide a handy, no-
nonsense dumping ground for the accumulator. It is not proposed to

Registers, Transfers and Arithmetic 43

deal intimately with the sordid details of the thing at this stage.
Instead, just let’s use it.

Suppose you want temporarily to store the accumulator contents
while it is used to help out the X- or Y-register. All you have to do
is write PHA. This will push the accumulator contents on to the
stack (PHA is the mnemonic op-code for PusH Accumulator).
When you are ready to put it back use PLA. This means PulL
Accumulator. Note there is no operand required because the stack is
the implied address. Example 3.4 shows a simple stack operation.

The remarks on the listing explain what is happening but a few
words may help to explain why the result, after CALL&0DO0, is
‘D A’ on the screen. If you study the code carefully you will be
satisfied that the stack has done its job. The original accumulator
contained the ASCII for A but the last contents became ASCII for
D. The fact that D appears, then A, confirms that the Push and Pull
did their job properly. Although only the accumulator is involved, it
is of course possible to push X or Y onto the stack via the
accumulator, by the use of TXA and TYA. There are times when 1t
may be necessary to push the contents of the PSR onto the stack and
this can be done directly by the use of PHP and recalled by PLP.

The four stack op-codes are collected together in Table 3.

Table 3. Stack operations.

Mnemonic

op-code Action

PHA Push Accumulator onto stack

PLA Pull Accumulator from stack

PHP Push Process Status Register (PSR) onto stack
PLP Pull PSR from stack

The stack can be used without knowing all the details of the rather
complex hardware behind it, There is one aspect, however, which is
of paramount importance - it behaves as a Last In First Qut (LIFO)
memory. This means you can keep pushing data onto the stack, one
on top of the other like a pile of dinner plates. But, you can only
retrieve them in the inverse order. The last dinner plate on the pile
must be the first to be taken off in most sensible kitchens. Thus, if
you wish to store all registers on the stack, say, in the order A then X

44 Discovering BBC Micro Machine Code

then Y then PSR, you must retrieve them in the order PSR then Y
then X and finally A. The computer will give you no help in this
matter and it will be up to you to keep track of the order of retrieval.
The microprocessor employs a special device called the stack pointer
(SP) to organise the stack addresses, although it is unnecessary to
worry too much about it at this stage.

Example 3.5 shows one way of pushing all the registers onto the
stack.

18 REM EXAMPLE 2.5 Stack allx
20 MODE 7:CLS

32 PY%=%099

44 C

o2 PSH NPush Reoc
&2 T#A

72 PSH “Push ¥
26 TYR

98 PSR “Push ¥
188 PHP ~Push PSR
114 RTS
129 1
12@ END

Example 3.5. Saving registers on the stack.

It should be emphasised that storing on the stack is both
convenient and economical in memory space because there is no
operand required. There is a limit to the amount of data which can
be stored. If the stack is caused to ‘rise’ too much without periodic
‘falls’ (too many pushes and not enough pulls) there is a danger of
overflow. Unlike BASIC, the assembler doesn't always offer kindly
warnings so it is possible for stack overflow to occur without
knowing it except. of course, the difficulty of locating the bug.

Register/memory transfers

Although the X and Y registers cannot use the stack directly, they
can be stored anywhere in memory and loaded back. Table 4 is the
collection of op-codes applicable, including the accumulator
transfers.

Registers, Transfers and Arithmetic 45

Table 4. Register/ memory transfers.

Mnemonic

op-codes Action

LDA Load the data, as defined by the operand, into the
accumulator

STA Store the accumulator contents in memory as
defined by the operand

LDX Load the data, as defined by the operand, into the
X-register

STX Store the X-register contents in memory as defined
by the operand

LDY Load the data, as defined by the operand, into the
Y-register

STY Store the Y-register contents in memory as defined

by the operand

As explained earlier in the discussion on register to register
transfers, there is no actual transfer of data from ‘source’ to
‘destination’. Only a copy of the source data is transferred. The rule
can be stated concisely in the following terms:

The data at the source still remains intact.
The original contents at the destination is
replaced by the new data.

The above rule is worth an example:

Suppose X contains 34 and address &0DFF contains 56. After
LDX &0DFF, X will contain 56 and so will address &0DFF.

Page zero addressing

If the address is within the range &0000 to &00FF, although still an
‘absolute’ address in the academic sense, it is sub-classified as page
zero. The two leading zeros can be dropped allowing the operand to
be expressed in only two hex digits. Page zero addressing is
economical but, unfortunately, most of it is utilised by the operating
system.

46 Discovering BBC Micro Machine Code

Summary

A register is an 8-bit storage device like any memory location but
s situated within the microprocessor and has a more sophisticated
action.

The accumulator is the most important general purpose register
and the most sophisticated.

The X-register and the Y-register can be used for general purpose
transfers, can be incremented, decremented and are fundamental
to the process of indexed addressing.

Whenever data is transferred from source to destination, the
source data is retained but the original destination data is
overwritten.

All instructions have an op-code but not all have an operand.
Op-codes which require no operand rely on implied addressing.
If the operand is prefixed by #, it is using immediate addressing
because the operand is the data.

If the operand is not prefixed by # it is called absolure addressing
and is the address at which the data is to be found.

Addresses can be assumed to be decimal unless the operand is
prefixed by &, in which case they are assumed to be hexadecimal.
Addition and subtraction can only be carried out with the
accumulator, the result always being left in the accumulator.
Addition uses ADC, which takes into consideration the C-bit.
Subtraction uses SBC and also takes into consideration the C-bit.
The C-bit is situated within the microprocessor register called the
Process Status Register (PSR) and is set to | automatically when
a carry occurs.

The C-bit should be cleared by CLC before commencing an
addition.

The C-bit should be set to 1 by SEC before commencing a
subtraction,

The V-bit in the PSR is set to 1 automatically if the result is too
large to be contained in a register.

The stack is a last-in-first-out memory. useful for the temporary
dumping of a register content.

Data pushed onto the stack must be retrieved in inverse order.

Chapter Four
Branching, Comparisons
and Subroutines

A microprocessor executes all instructions in strict address order
unless it comes across a ‘jump’ or ‘branch-if’ op-code. In BASIC, of
course, there is the dreaded GOTO (virtually outlawed by the
exponents of structured programming) and the IF THEN state-
ments. The ease with which these can be incorporated in programs
disguises the quite difficult machine code which they make use of.
Without the help given by the BBC assembler. branch instructions
would become a nightmare. Table 5 defines the BRANCH type of
instructions.

Table 5. Conditional branching.

Mnemonic

op-codes Action

BNE Branch if Not Equal to operand destination

BEQ Branch if Equal to operand destination

BPL Branch if Plus (if positive) to operand destination
BMI Branch if Minus (if negative) to operand destination
BCC Branch if Carry Clear to operand destination

BCS Branch if Carry Set to operand destination

BVC Branch if Overflow Clear to operand destination
BVS Branch if Overflow Set to operand destination

The action column descriptions clearly call for some additional
explanation. We will pick one of the most commonly used branches
as an example, BNE. There are two problems:

(a) Precise meaning of the op-code BNE
Itis all very well to say *‘Branch if not equal’ but it poses the question

48 Discovering BBC Micro Machine Code

‘Branch if what is not equal?. The answer is simply the result of the
previous operation. Only if this was non-zero, will the branch take
place. If zero, the normal sequential address rhythm continues.

(b) Significance of the operand

If the branch conditions are met, the operand informs the system
where to branch to. That is to say, at what address the next
instruction lies. In common with operands of previously discussed
op-codes, the operand can be an actual address although, in the case
of branch instructions, disguised in a strange form called relative
addressing. Fortunately we can, with no great loss of continuity in
this book, skip the depressing details of relative addressing and go
straight onto symbolic address labels. The operand is then a name of
your own choice, telling the system to find a line labelled by this
name. The label, which marks the destination line, must begin witha
full-stop (or ‘period’ as it is called in America).

The following plan may help:

BNE GRANADA
other instructions
.GRANADA STA &0DFE

If the branch conditions are met (the previous operation resulted in
zero), the control passes to the line labelled GRANADA. Be very
careful not to miss the full-stop in the destination line and ensure
there is one space between the end of the label and the beginning of
the op-code (STA is purely an example and could be any other op-
code).

The importance of the PSR

We had a cursory introduction to the PSR when dealing with the C-
bit and the V-bit. Because the branch instructions rely heavily on the
bits in this register, the time has come to delve a little deeper into its
private parts. Figure 4.1 shows the various bits and their respective
positions within the PSR.

After nearly every instruction except branch instructions, the
relevant bits in the PSR are up-dated. When a branch instruction is
encountered, it is the appropriate bit in the PSR which is ‘consulted’
before the machine decides to branch or not branch. Thus, if the last
instruction resulted in a negative number, the N-bit would have been

Branching, Comparisons and Subroutines 49

N v B D | Zz C
Negative —— L Carry
Overflow ——— ' Zero
tused. Always 1 Interrupt disable
Break Decimal mode

Fig4.1. The Process Status Register (PSR).

set. On the other hand, if the result was a positive number, the N-bit
would have been reset.

Suppose, for example, we use the branch code BPL (which is
branch if plus). The machine will examine the N-bit in the PSR and
will only take the branch if it is 0. In other words, it is nor-negative! It
is worth mentioning again here that zero is a positive number (see
also Chapter Three). Forgetting this is a common cause of teeth-
gnashing due to a loop behaving unpredictably. If we use BNE
(branch if not equal), the branch will take place only if the Z-bit is 0.

10 REM XEXAMP 4,1 BNE BRANCHX
2@ MODE 7:CLS
30 P%=0000

409 C

30 LDX #2355

€0 .BACK DEX

70 BNE BRCK

80 RTS

99 1

180 END
YRUN
2000
oD2R A2 FF LDX #2535
oDz CA .BACK DEX
2093 D8 FD BNE BRCK
apes &9 RTS

Example 4.1. Single loop delay.

It should be emphasised that the PSR bits (with the exception of
the D and 1 bits) are automatically set or reset every time an
instruction is executed, irrespective of whether it is a branch
instruction. In fact, the actual branch instructions are unusual in

50 Discovering BBC Micro Machine Code

that they themselves do not up-date the PSR bits; they only act upon
their advice.

Example 4.1 is an example of a simple loop to illustrate the BNE
op-code. The number 255, the largest which can be held in a single
byte, is set into X and counted down (decremented by DEX) until it
is ‘empty’. Note the label BACK, which is the destination of the BNE
branch each time round. It could be used as a delay subroutine
although the actual delay would be of the order of a millisecond.
Both BNE and DEX both take two ‘clock’ cycles. The clock
frequency in the BBC machine is 2 million cycles per second (2 MHz)
so the time for each cycle is 1/(2 million) which is half a
microsecond. To finish the 256 revolutions of the loop will take 128
microseconds.

With an assembler, the machine code equivalent can remain a
merciful mystery but it is worth the occasional glance, if only for
mental stimulation. Take a look at the assembly listing of Example
4.1 and compare the machine code with the equivalent assembly on
the right. Note that LDX 255 has been assembled to A2 FF. The ‘A2’
part is the machine code for LDX (using immediate addressing) and
the operand FF is the hex for 255 decimal. The next line DEX is
assembled to CA and the label BACK has vanished from the
machine code. This is because ‘labels’ are not part of machine code,
merely an assembler artifice for the convenience of the programmer.
How much of a convenience this can be is vividly illustrated in the
BNE BACK line which is assembled to DO FD. The ‘D0’ part is
easy; the machine code for BNE. But why is the operand FD? It is
because the intention is to branch three bytes back (—3). In two’s
complement binary, (—3) decimal is 1111 1101 or FD hex, It was
mentioned previously that the branch instructions use ‘relative’
addressing which means relative to the present address. However, it
is a relief to know that the BBC assembler is kind enough to take on
this messy operation - all you have to dois to decide the name of the
label!

Two-pass assembly

The previous examples required one pass only through the
assembler. Thus, when we typed RUN, the system has been able to
assemble your instructions into machine code. Even the last
example, including the branch label, was sorted out successfully
because the label was encountered before the branch instruction.

Branching, Comparisons and Subroutines 51

However, if the program is such that a branch instruction refersto a
label which has not yet been encountered, the assembly fails. The
first time the assembly is initiated, the label is noted and
‘remembered’. If it was passed through the second time the previous
label is found and the assembly is valid.

In general, it is advisable to force two passes for all programs
which contain branching labels. The method for implementing the
double-pass has become ‘standardised’ to a FOR/NEXT loop.
Example 4.2 shows the method and also a few branches to work out.

1@ REM XEXAMPLE 4.2 TWO PASSESX
20 MODE 7:CLS

30 SCREEN=32320

32 REM
48 FOR PASS=0 TO 3 STEP 3

58 P%=4Q0002

68 C

78 OPT PRSS

80 LDX #80 ~ASCII FOR 'P’
99 LDY #78 “ASCII FOR N’
102 LDA #127 ~TEST NUMBER
110 BMI NEG

120 STX SCREEN

139 RTS

140.NEG STY SCREEN

158 RTS

160 1

170 NEXT

172 REM
180 CALL %0089

*RUN

2029

eDoa

2boe OPT PASS

2bee R2 359 LDX #88 ~ASCII FOR ‘P’
a0e2 ARG 4E LDY #78 ~RSCII FOR ’N’
@04 R9 TF LDA #127 ~TEST NUMBER
epes 30 024 BMI NEG

2098 SE 4@ TE STX SCREEN

Q0O 69 RTS
20AC 8C 4@ 7E .NEG STY SCREEN
eDarF €8 RTS

Example 4.2. Two-pass assembly.

52 Discovering BBC Micro Machine Code

The object of the program is to print out P on the screen if the ‘test’
number is positive, but N if it is negative. The test number is at line
100 and is fixed at 127. You will remember that this is the highest
number in two’s complement arithmetic recognised as ‘positive’ 7F
in hex. When the program is RUN the character ‘P’ appears as we
should expect. It is a valuable exercise to alter the number a few
times. If you try any number between 128 and 255 (7F to FF hex) the
character ‘N’ should appear.

So much for the object, which is the simple part. The next obstacle
is the two-pass action of the FOR/NEXT. During the first pass, the
assembly is under OPT 0 which, as explained in Chapter 1, stops the
assembly listing and any error reports. The second pass is under OPT
3 which gives the listing and errors (if any). The part within the FOR
loop is demarcated by dotted lines to emphasise the bits and pieces
which must be enclosed in future programs requiring two-passes.
Note particularly that the program counter assignment (P%) must
be within the loop and OPT must be within the square bracket area.

The next example (Example 4.3) is concerned with the overflow
test BVS. It also shows how variables from the BASIC area can be
passed to the assembler. There are more efficient ways of doing this
but it is wise to progress gradually from the familiar to the
unfamiliar.

The objective is to add two numbers, both of which can be passed
from BASIC, and test for the overflow condition. A secondary
objective is to provide practice in the interpretation of two’s
complement numbers. Instead of the test numbers being embedded
as constants, the operands in lines 140 and 150 are symbolic names,
passed from INPUT statements. The numbers you decide to enter
may result in assembly error messages which provide training
material. Some typical results are as follows:

(a) Numbers entered greater than 255 decimal

If either of the numbers entered exceed 255 decimal, the error
message will be ‘BYTE AT LINE 140’ (or line 150) as appropriate.
This is because the assembler cannot place such numbers into a
single byte register.

(b) Numbers entered with a negative sign such as —34

A negative sign is quite intelligible to us but a microprocessor is
‘trained’ on two’s complement arithmetic for negative numbers and
fails to recognise ‘—’. A similar error message as in (a) above is
displayed.

Branching, Comparisons and Subroutines 53

10 REM XEXAMPLE 4.3 OVERFLOWX

20 MODE 7:CLS

39 SCREEN=323520

48 INPUT"Enter number "First_number

52 INPUT"Enter another number "Second_number
69 REM
78 FOR PRSS=0 TO 3 STEP 3
82 P%=k0020

L
198 OPT PASS
110 cLY

128 LD¥ #83 “ASCII for’8’
139 LDY #8€ SASCIT for’ W
140 LDOA #First_number

150 ADC #Second_number

168 BYS OWF

178 STY SCREEN

1892 RTS

190,0%F STY SCREEN

209 RTS

218 1

228 HEXT

239 REM
242 CALL %0048

YRUN
Enter number 127
Erter another number 2

AC09

A00¢

a0aa OPT PRSS
ape9 BE cLy

a0A1 A2 33 LD¥ #33 “RASCII for’S’
2093 AB 56 LDY %86 SRSCII for'y’
apas A9 7F LDR #First_number

ape7 £3 082 RDC #Second_nunber

A0e9 79 24 BYS OWF

ADEB RE A% 7F ST< SCREEN

QUOE &0 RTS
pLAF B8C @8. 7F .OYF STY SCREEN
a2 <9 RTS

Example 4.3. Testing for overflow.

Try entering 127 and 1. Note the character displayed at the
bottom of the listing is ‘V’, signifying overflow has occurred (the
largest positive number in a byte is 127).

54 Discovering BBC Micro Machine Code

Now try entering 255 and 255 which results in an ‘S’, signifying
that the sum is valid! This could seem incomprehensible until it is
realised that 255 decimal is 11111111 in binary (FF hex) which, in
two’s complement form is —1. The result of adding —1 to —1 is —2,
which is quite within the capability of ADC action. Finally, try
entering 128. This will cause overflow and will output a V'
Mysterious perhaps, but 128 decimal is 80 hex and, in two's
complement, is—128. Adding two of these is outside the capacity of a
single byte register, hence the ‘V’ ouput. You are strongly advised to
experiment with a wide range of input numbers to get two’s
complement firmly in your blood. It will be a great help when you
reach a more advanced standard. Before leaving this example, note
the SCREEN has been initialised to 32520 instead of our customary
32320. This is because the assembly listing is longer than in previous
examples and the available clear space is lower down the screen.

Comparisons

Codes like BNE or BEQ are testing for the presence of zero. In fact
they mean branch if not equal (or equal) to zero as the case may be.
There will often be a requirement to test for the presence of a certain
number other than zero. This can be achieved in either of two ways:

(a) By starting a register with the number, decrementing to zero and
testing with BNE until zero is detected.

(b) Starting with a register empty and incrementing. After each
increment, one of the compare instructions, followed by BNE can be
used. This is a slightly longer method (one line more) but more
flexible.

Table 6 defines the comparison codes.

Branching, Comparisons and Subroutines 55

Table 6. Comparison operations.

Mnemonic Action
op-code
CMP Compare contents of the accumulator with the

number defined by the operand

CPX Compare contents of the X-register with the number
defined by the operand

CPY Compare contents of the Y-register with the number
defined by the operand

The compare instructions do not alter the contents of the registers or
the operand data. The comparison is done by performing a trial
subtraction in a separate register so as not to degrade the active
register’s data. The direction of subtraction is always ‘Register -
Operand’. After the subtraction, the relevant bits in the PSR are
updated as follows:

If operand data = register data, both the Z and C bits are set.

If operand data is Jess than register data, C is set and Z is reset.

If operand data is greater than register data, both Cand Z are
reset.

If operand data is less than or equal to register data, C is set.

It is important to realise that there is no point in using a compare
instruction unless you follow it immediately by one of the branch
tests. The compare instruction produces the PSR bits; the branch
tests them. Example 4.4 is a simple example to get the feel of
‘comparison’ by incrementing the X-register until it equals the
number entered in line 30.

The final content of X is first stored in &0DFF and later pulled
back into BASIC by using the byte operator (?). Line 190, although
BASIC, looks a little involved. The tilde (~) operator simply means
‘print out in hex’; the ‘7 means ‘the contents of’ the hexadecimal
address 0ODFF. When the program is RUN, the number entered in
decimal will match the hex number printed out, confirming that the
comparison CPX and the following BNE have done their job
correctly.

Example 4.5 illustrates various branch instructions as well as

56 Discovering BBC Micro Machine Code

19 REM XEXAMPLE 4.4 COMFARISONX

20 MODE 7:CLS

22 INPUT"Enter number for comparison "Compare
40 REM
54 FOR PRSS=@ TN 3 STEP 3
60 PY=£0000

74 C

88 OPT PASS

=l LDX #2
199.BACK INX

118 CP¥ #Compare
120 BHE BARCK

130 STX %QDFF
142 RTS

152 1

168 NEXT

179 REM —

188 CALL %9022
198 PRINT"X now contains the hex number ";~74B0FF

PRUN

Enter number for comParison 32
apaa

208l

029 NPT PASS

abea R2 79 LD¥ #2

2092 E8 LBACK THA

a0a3 EA 23 CPY #Compare

A0aS DA FB BHE BACK

db@a? 2E FF aAD STX &@0FF

BDAAR &9 RTS

A now containg the hex number 23

Example 4.4. Comparing numbers.

consolidating the information on the comparison technique. A fixed
number is in the accumulator and the number entered (N) is
compared, using CMP. Note the order in which the tests are made:

First test (BCC) Is C clear? If yes, operand must be greater so
branch to GREA which displays .

Second test (BEQ) Since C is set, we ask is Zset? If yes, operand
must be equal so branch to EQUA which
displays ‘=".

Branching, Comparisons and Subroutines 57

19 REM XEXAMPLE 4.5 COMPRRISONX

20 MODE 7:CLS

30 PRINT"Accumulator IS CONSTANT at 20 decimal"’
42 INPUT"Enter oPerand number for comParison "N
%@ SCREEN=32680

€0 REM
78 FOR PRSS=@ TO 3 STEP 3
80 P%=R0A020

9 C
109 OPT PASS
110 LDA #29
120 CMP #N \OPERAND IS N
139 BCC GRERA “C=2
140 BER® EQUA *~C AND Z=1
150 LDX #6@ ~ASCII FOR <
164 STX SCREEM
179 RTS
18@.GREA LDX #62 “ASCII FOR >
19@ STX SCREEN
200 RTS
219.EQUA LDX #61 ~ASCII FOR =
220 5TX SCREEN
238 RTS
240 1
29@ MEXT
260 REM
270 CALL %0093
YRUN.

fAccumilator 18 CONSTANT at 20 decimal

Enter oPerand number for comparison 21
000

a0en

3029 OPT PASS

a029 RI 14 LDR #20

@apez .29 15 CHMP #N ~OPERAND IS N

2004 59 93 BCC GRER ~C=2

aDge Fo aC BER ECUA ~C AND Z=1

a00e8 AZ 2C LDX #68 “ASCII FOR <

@ADOR 2E AS 7F ST SCREEN

a0eb 8 RTS

8DRE A2 3E LGREA LDY #62 ~ASCII FOR >
o012 SE A 7F STH SCREEM

a013 60 RTS

a014 R2 30 LEQUA LD #6861 SAZCII FOR =
AD16 SE AS ?F STX SCREENM

B013 69 RTS

Example 4.5. Testing for greater than, less than or equal to.

58 Discovering BBC Micro Machine Code

Third ‘test’ This is not necessary because at this point, it
can be assumed that C is already set and Z
must be reset. These are the conditions for
operand /ess than, so the character *<’ can be
displayed.

The program exits (by RTS) at any one of the three positions,
which indicates that the ‘laws of structure’ have been violated -
modules should have one input and one output! It is not easy in
machine code to obey such laws. ‘Structure’ is fundamentally a high-
level language concept. It is unconcerned with execution speed but
very much concerned with elegance and readability. Machine code is
used primarily to save memory and to speed up execution. If too
strong an attempt is made to twist machine code into structured
form then the primary qualities may be sacrificed.

Flowcharts

Programs with plenty of branch actions can be very difficult to
follow from an assembly listing and various diagramatic aids exist.
The more traditional, but not necessarily the currently respected,

Process or action Connector
Visual Displ
Keyboard Input/output

Fig. 4.2. Standard flowchart symbols.

Branching, Comparisons and Subroutines 59

forms are the flowchart symbols shown in Figure 4.2. The outlines
are standardised but what is written inside them is the responsibility
of the programmer. The two fundamental outlines are the process
(rectangle) and the decision (diamond). Too much detail writtenina
box can be counter-productive to the aim - to gain a broad outline of
the data flow. It is pointless enclosing actual mnemonic op-codes all

Enter
operand

Acc - 20

I

Compare Acc
with operand

Operand is
greater
X - ‘>’

Display
X

Operand is
equal.
X - '='
m Opel'and iS
less than.
X - '<
RTS

Fig. 4.3. Flowchart for Example 4.5.

60 Discovering BBC Micro Machine Code

over the place because the flowchart would then become a ‘copy’ of
the listing rather than a supplementary aid to its understanding. To
illustrate the use of a flowchart, examine Figure 4.3 which may help
to explain the various branches of Example 4.5.

1 have always had a suspicion that a flowchart is usually written
after the program rather than before. It should, however, be used to
pre-plan a program rather than be a device for ‘post-explanation’.

The BIT test

The compare op-codes, CMP, CPX and CPY are used to investigate
the whole of a byte. There are times, however, when certain bitsina
byte have individual importance. For example, the bit pattern sent
out to the user port is often used to switch, or receive yes/no signals
from several unrelated sources. The pattern would therefore have no
arithmetical significance and each bit would be unrelated to the
others. The BIT test allows specific bits to be tested but, to obtain
the full value of the code, requires familiarity with the class of
instructions known as ‘logical’. It is better not to deal with these at
the moment. Fortunately, the BIT test can still be valuable without
logic knowledge because it enables the state of bit-6 and bit-7 to be
tested. (Bit-7 is the msb and bit-6 is the one next to it.)

Mnemonic
op-code Action
BIT If bit-7 of the operand is 1, the N-bit in PSR is made |
If bit-6 of the operand is 1, then V-bit is made |
Example:

BIT 32564: will examine the decimal address 32564 and update
the PSR bits as described above.

It may be puzzling why bit-7 and bit-6 have been given VIP status
over the other bits. Bit-7 is, of course, the sign-bit in two’s
complement but it is also an important link in inzerrupt handling.
Bit-6 is also special in this way. It is not proposed to deal with
interrupt facilities in this book although a pretty hefty dollop of
theory is offered in the next one.

The BIT test, like the CMP test, must be followed by one of the

Branching, Comparisons and Subroutines 61

branch instructions. Thus, if BIT is followed by BMI, a negative
number can be detected in an operand. One important difference in
the BIT test is that, unlike CMP, there is no need to bother the
accumulator. There is no dummy subtraction although, when the
extra logic functions are brought in, an AND operation does take
place with the help of the accumulator.

Example 4.6 may help in understanding the BIT test, providing
the program is understood! A number is entered (under BASIC) and
isstored in ODFF. This is done to emphasise that the BIT test can be
conducted whilst the operand is still in memory. After the test (in
line 120) a problem arises with regard to the display of the PSR.
There is no instruction to ‘Store SWR’. It is possible, however, to
push it onto the stack with PHP and then pull it back into the safety
of the accumulator and subsequently store.

The program should be run many times in order to consolidate
previous work. The final hex figure result, FO in the example run,
should be scribbled out in binary before trying to relate it to the PSR
contents. Thus, FO is 1111 0000. Referring back to Figure 4.1, the
bits in the PSR are then seen to be:

N=1 Indicating the operand has caused bit-7 to be set.
V=1 Indicating the operand has caused bit-6 to be set.

The remaining bits are incidental but, for the record, bit-5 is always
1. Bit-4, the B bit, is 1 because the program has stopped or Breaked.
The number originally entered in the example was 255 decimal so we
expect the Z bit to be 0 (because the number was not Zero). Finally,
the C bit is 0 because this was cleared by CLC in line 100.

There remains the 1 bit, which is the Interrupt disable. Interrupt is
treated in the next book Get More From BBC Micro Machine Code
so, for the moment, note that it is 0, indicating it is not disabled.

The following results should be studied, to see if they make sense:

Enter 0 Result is 32 hex which in binary is 0011 0010.
Enter 1 Result is 30 hex which in binary is 0011 0000.
Enter 128 Result is BO hex which in binary is 1011 0000.
Enter 193 Result is FO hex which in binary is 1111 0000.

Unconditional jumps

There are times when it is required to branch, whatever the
conditions. This would be called an unconditional branch and, if
provided in the 6502, would have been given the mnemonic BRA.
However, there is no BRA, although it is possible to simulate one by

62 Discovering BBC Micro Machine Code

18 REM XEXAMPLE 4.6 BIT TESTX

20 MODE 7:CLS

38 INPUT"Enter a number "N

40 PRINT"The hex edquivalent is ";~N
5@ REM
608 FOR PASS=@ TO 3 STEP 3
79 P%=20000

80 L
99 OPT PRSS
1928 cLc

118 LDA #N sNumber to Rce
120 STR &BDFF “Store it
130 BIT &@DFF

148 PHP SPSR to stack
150 PLA \Stack to Rcc
169 STR %ADFE “Store

179 RTS

189 1

192 MEXT

20¢ REM

219 CALL ta0eoa
220 PRIMT"Procese Status Redister cont
a ins v ADFE" HE:“I. "

“RIJM
Enter 3 number 2355
The hex eduivalent is FF

2009

B0e9

apae OPT PASS
BaCo8 18 cLC

oD21 A9 FF LDA #N SMumber Lo RAcc

2003 8D FF @D STR %@DFF “\Store it
apas 2C FF 80 BIT &Q0FF

009 @3 PHP “PSR to stack
AnGR €3 PLA “gtack to RAcc
PDOB S0 FE OD STR &G@DFE “Store
PUBE 69 RTS
Process Status Register contains

FB® HEX

Example 4.6. Using the BIT test.

Branching, Comparisons and Subroutines 63

using one of the conditional branch codes and ensuring the branch
takes place by suitable trickery. There is one aspect of the branch
codes, however, which can be disagreeable. Although not previously
mentioned, there is a limit on the range of the operand in a branch
instruction. In all cases so far, our examples have used symbolic
labels for branch destinations but this facility is provided only by
kind permission of the assembler. In pure machine code which, of
course, the assembler has the job of producing, the operand is a hex
number which must not exceed two hex digits. Destinations with a
higher address are considered positive and those with a lower
address, negative. Since the highest positive number in a byte is 7F
hex (127 decimal) and the highest negative is 80 (—128 decimal) it
follows that these are the limits of relative addressing. In plain
English, the furthest forward we can branch is 127 bytes and the
furthest backward is 128 bytes. If it is intended to branch outside
these limits, a new type of ‘branch’ is needed. The 6502 calls them
jumps’ and they are given in Table 7.

Table 7. Unconditional jumps.

Mnemonic

op-code Action

JMP Jump to the destination as defined by the operand
JSR Jump to the subroutine as defined by the operand

The assembler allows symbolic operands (labelled destinations as
in branch codes). There is still a limit to the range but this is
academic because it is possible to access any address over the 64K
map with JMP or JSR. JMP in BASIC is the familiar (over-
familiar?) GOTO and JSR is equivalent to GOSUB.

Subroutines

Previous treatment of JSR leads naturally to the subject of
subroutines, with which users of BASIC will already be familiar.
However, it is advisable at this stage to investigate certain features
which we can afford to take for granted in BASIC but not in
machine code. Although users of the BBC Micro will probably have
little use for the ‘old-fashioned’ GOSUB in view of the more

64 Discovering BBC Micro Machine Code

sophisticated PROCEDURE, it should be understood that it is still
a disguised subroutine. A GOSUB goes to a line number, a
PROCEDURE goes to an independently chosen /abel and also
includes provision for parameter passing. Nevertheless, whether it is
a PROCEDURE or a GOSUB, the concept of a ‘return address’ is
inherent in both. As soon as we leave the present sequential line
number (or sequential address in machine code) there must be stored
a return destination and, in both cases, the stack is involved.
When, in machine code, the mnemonic JSR is used, the return
address is automatically pushed onto the stack and the machine
‘jumps’ to the location where the subroutine is stored. When the
subroutine has been executed, the machine pulls back from the stack

10 REM XEXRMPLE 4.7 SR DELAY¥
20 MODE 7:CLS

30 REM
40 FOR PRSS=0 TO 3 STEP 3
30 P%=2DDD

60 L

78 OPT PRSS

80.DELRY LDX #2355
90.0uter LDY #2355

199, Inner DEY

119 BNE Inner

129 DEX

139 BNE Outer

140 RTS

15 1

168 NEXT

178 END

FRUN

@aobo

eoDD

LI OFT PRSS

20DD A2 FF .DELAY LDX #2355
@0DF RO FF Outer LDY #2553

@DE1 88 « I'ner DEY
aDE2 D2 FD BME Irnner
ACE4 CA DEX

ADEZ DB F8 BME Quter
ADE? €@ RTS

Example 4.7. Double loop subroutine.

Branching, Comparisons and Subroutines 65

the return address and promptly shoves it into the program counter,
ensuring that the original flow is resumed.

In all our examples so far, the machine code portion (between the
square brackets) has ended with RTS, indicating they were all
‘subroutines’. And yet, where was the JSR which called them? The
explanation lies in the close linkage between BASIC and the
assembler. It is probable that nearly all machine code ‘programs’
written by home enthusiasts will actually be subroutines. Instead of
JSR, which is a legitimate 6502 op-code, the keyword CALL is used
from BASIC to call a machine code subroutine. Our examples have
used CALL &0ODFF because the programs have been located at this
address. However, if it is required to use another machine code
subroutine somewhere within the machine code area, it is not

Fill X with
255

|
1

Fill Y with
255

S —

Subtract 1
fromY

A
] . Yes

Subtract 1
from X

Yes

Fig. 4.4. Flowchart of the delay subroutine in Example 4.7.

66 Discovering BBC Micro Machine Code

permissible to use CALL because it is BASIC. We must use JSR.

Example 4.7 is a simple subroutine called ‘DELAY’ (note the label
at line 80). If this is RUN, it will store itself in address &0DDD and
be available for future use by any subsequent program which likes to
use it. It will, of course, remain undisturbed by ESCAPE or BREAK.
There are two loops, one inside the other. The inner loop revolves
256 times for each rev of the outer loop so the total revs = 2562 =
65,536. These ‘useless’ revs consume time but not much - a fraction
of a second. It may be asked, why go to all this bother when the
BASIC clock ‘TIME’ is available? In defence, the example was
chosen simply to indicate how a subroutine can be stored and
subsequently called up by name. The function of the actual
subroutine is incidental when used for illustration. (See Figure 4.4
for flowchart.)

It can be called up by any other BASIC program, such as the
following simple loop, providing we know the address where it was
stored; the label DELAY will not work from BASIC unless it is
previously assigned.

100 FORA=1TO 10
110 CALL &0DDD
120 PRINT A

130 NEXT

The numbers 1 to 10 are printed with the delay interposed. To
estimate the delay, run it again without line 110.

If the subroutine is to be called up by another machine code
program, it will recognise the label DELAY. The calling line would
be JSR DELAY. There are other ways of calling a subroutine from
BASIC. The CALL keyword is equipped with powerful parameter-
passing facilities and the alternative USR function is of great use.
However, too much choise at one time can be confusing rather than
helpful. It is more important to take these things slowly - it aids
digestion.

Summary

® Unless otherwise directed, the individual op-codes (with their
operands) are executed in strictly sequential address order.

® There are eight conditional-branches, BNE,BEQ,BPL,BMI,BCC,
BCS,BVC and BVS.

® The operand of a branch instruction in pure machine code is a

Branching, Comparisons and Subroutines 67

two-hex-digit relative address, but the assembler allows an
arbitrary label.

e All branch decisions are made according to the current state of the
PSR bits.

o Itis always the result of the previous instruction which determines
whether or not the branch takes place.

® Destination labels must be preceded by a full stop.

@ A branch can only be 127 bytes forward from the present address
or 128 bytes backwards.

® Most programs written in assembly code require two passes
before the equivalent machine code can be produced.

® The three comparison codes, CMP, CPX and CPY produce no
action other than up-dating the PSR. They must be followed by
one of the branch codes.

e Flowcharts may help in the pre-planning of a program. They are
also of great help in explaining how it works.

o The BIT test, like the comparison codes, merely update the PSW.
Bit-6 and bit-7 in the operand data determine the same bits in the
PSR.

o The BIT test can be carried out directly on a memory addressed
location without necessarily being involved with the accumulator.

¢ Unconditional jumps, JMP and JSR, can have destinations
anywhere in the 64K memory area. Unlike the branch codes, they
have no forward or backward limit.

o To use a machine code subroutine within a machine code
program, JSR is used to call it up.

® The keyword CALL or USR is used to call a machine code
subroutine from BASIC.

Chapter Five
Indexed Addressing and
ROM Subroutines

Address modification

The best way to learnindexed addressing is by plunging straight in at
the deep end with a program - so study Example 5.1 with great care.

19 REM XEXAMPLE 5.1 INDEXED LOOPX
28 MODE 7:CLS

3@ REM -
49 FOR PASS=A TO 3 STEP 3

5@ P%=8@000

69 L
78 OPT PASS
80 LD¥ #2 ~Initialise ¥
99 LDA #36 “ASCII for &
19@.BACK STA 32204, X
110 IN%
120 CPX #240
1308 BNE BACK
140 RTS
199 1
168 NEXT
178 CALL %9ADon
129 END
SRIUN
abea
L[p1%]%)
apea OPT PRSS

a0ea A2 09 LOX #@ ~Initialise %
208z A9 24 LDA #36 ~ASCII for %
0G4 9D 30 7E .BACK STA 32304,
a0e7 ER INX

ap9s EQ FO CP¥ #2492

@0BA DB F2 BNE BRCK

abecC &2 RTS

Example 5.1. Using indexed addressing.

Indexed Addressing and ROM Subroutines 69

The end result is 240 dollar signs printed on the lower half of the
screen, achieved mainly by the ‘magic’ inherent in line 100. Clearly,
the first mystery requiring explanation is the meaning of:

STA 32304,X

The STA part is obviously storing the accumulator in address 32304.
This address is the leftmost character position about halfway down
on the Mode 7 screen. So we can assume that the contents of the
accumulator (ASCII for the dollar sign) will eventually appear in
this position. But what is the significance of the comma followed by
. X?

X is, of course, the X-register but it is being used in its true
capacity as an index register for the first time. In previous programs,
the X-register has been employed on comparatively mundane
duties. Here, it comes into its own as an address modifier. The rule is
as follows:

To find the effective address of an indexed instruction, the
operand address and the contents of X are first added
together. The result is the effective address.

A few examples may help to clarify the above:

The operand is fixed at 32304. If X is 0, then the effective
address is 32304 + 0 = 32304. Thus if X is zero, there is no
address ‘modification’. If X is 5, the effective addressis 32304 +
5=32309. Finally, if X eventually ‘grows’ to 240, as it does in
Example 5.1, the effective address is 32304 + 240 = 32544.

The essential quality of indexed addressing is the ability to make
one instruction act on a variety of addresses, providing the index
register is changed each time round a loop. Referring to Example 5.1
again, note that the index register is changed each time round the
loop by INX. X is initialised to 0in line 80 and increased by one each
time round the loop. Before branching to BACK, the comparison
code CPX checks to see if X has yet reached 240. When this value is
finally reached, the loop exits. Because the address is increased each
time round, the dollar sign is printed in the next screen positions.
The flowchart in Figure 5.1 may help. Consider how cumbersome
this program would have looked if indexed addressing was not
available. It would have this appearance:

70 Discovering BBC Micro Machine Code

Clear the
Index Reg.

l

Load Acc
with ASCII
for S

I—_

Store Acc
n 323@4+X

Increase X
by 1

]

Compare X
with the
number 24¢

Return to
BASIC

Fig. 5.1. Flowchart for Example 5.1.

STA 32304
STA 32305
STA 32306
ad nauseam until
STA 32544

Although the X-register has been used in the example, the Y-register
could have been used because it is also capable of address
modification.

Base, relative and effective address

Here are a few terms and their definitions, representing traditional
jargon. They may be of some use, even if only to increase your image
at the local pub:

Indexed Addressing and ROM Subroutines 71

The operand is the base address.
The contents of the index register is the relative address.
The sum of the two is the effective address.

Since the X- and Y-registers are only 8 bits wide, the maximum
relative address range is 256 onwards from the base address. This is
one of the more severe (and justifiable) criticisms of the 6502
microprocessor. It is customary to have a 16-bit index register
available so as to cover the entire 64K address range. Disgressing for
amoment into the realms of history, it is interesting to note that the
Motorola 6800 microprocessor was the ancestor (if this is the right
term) of the 6502. The 6800 was equipped with only one X register
but it was 16 bits wide. So, apparently, the designers of the 6502, in
their wisdom, decided it would be better to have two index registers
of 8 bits each. However, the 6502 has a far more powerful addressing
mode, known as indirect, which makes up for the 8-bit penalty. With
indirect addressing, to be discussed in the second book, it is possible
to cover the full memory map in a single loop.

Using OSRDCH

Previous examples have not been ‘keyboard interractive’. In
Example 5.2 we have cheated a little by using one of the machine
code subroutines already in the ROM which provides the BASIC.

There are a number of beautiful subroutines in ROM and,
providing we know the hex address where they are stored, they are
free for the taking. They are given rather funny letter groups which,
until you get used to them, seem, like gibberish. They all begin with
‘0S’, meaning Operating System and the remaining letters are
alleged to have mnemonic value. The one used in Example 5.2 uses
OSRDCH which means, ‘Read Character from keyboard and send
to accumulator’, It is surprising how difficult it can be to write a bug-
proof subroutine to ‘read a keyboard character’ so we must be
thankful that it is provided free. Apart from the difficulty of writing
sucha subroutine, there is another reason why the existing operating
routines (which affect input/output) should be used. The reason is
connected with the Tube protocol. All owners of the BBC Micro are
potential owners of the ‘second processor’ which connects via the
rather mysterious interface known as the Tube®. The software
driving the tube is very touchy about ‘unauthorised’ direct
interference with the input/output system but lives harmoniously

72 Discovering BBC Micro Machine Code

10 REM XEXAMPLE 5.2 KEYBOARD CONTROLX
20 MODE 7:CLS

30 REM
40 OSRDCH=4FFE®

5@ FOR PASS=@ TO 3 STEP 3
€8 P%=%0D920

70 C
80 OPT PARSS
92.START LDX #0
109 JSR OSRDCH “KB %o Rcc
119.BACK STR 323084, X
1209 CHP #42 NIs it x7
139 BEQ@ FINI
149 INX
159 CPY #2409
160 BNE BACK
170 JMP START
180.FINI RTS
190 1
200 NEXT
210 CALL #8008
220 END
»RUN
a000
ADre
2002 NPT PARSS

a09@ AZ 99 .START LDX #0

A082 20 E@ FF JSR OSRDCH “KB to Acc
8085 9D 38 7E .BACK STA 32384, X
eD@8 CI 2R CMP #42 s it Xx7
@DaR F@ a8 BER FINMI

poac ES INX

Q090 EQ FO CPX #240

ADOF DA F4 BNE BACK

9011 4C @9 8D JMP START

aDi14 €0 FINI RTS

Example 5.2. Using OSRDCH subroutine.

with the existing ROM subroutines. These have been written with
the Tube software in mind. In view of all this, it is not advisable to
write your own subroutines for keyboard action - even if you feel
quite capable of the task.

The listing in Example 5.2 should be examined together with the

Indexed Addressing and ROM Subroutines 73

Clear the
Index R

I

Read key
into Acc
(OSRCDH)

I

Store Acc
in
323p4+X

1

Compare Acc
with ASCII
A for *

@ Yes

Increase X
by 1

l

Compare X
with 249

No

Return to
BASIC

Fig. 5.2. Flowchart for Example 5.2.

flowchart of Figure 5.2. When the program is run, and any
character key is pressed, a block of 240 similar characters appear on
the screen. Pressing any other key changes the characters. The
program remains in an endless loop, responding to the keyed

74 Discovering BBC Micro Machine Code

character, until an “*' is entered. Only this character will cause the
loop to exit.

The example is the first in the book to show up the high speed of
machine code; the screen response appears virtually instantaneously.
To compare the speed with the equivalent BASIC, enter the
following few lines and note the sluggish response to a key change:

10 REPEAT

20 A% = GETS

30 CLS

40 FOR A=1TO 240
50 PRINT AS;

60 NEXT

70 UNTIL A§ = “*»
80 END

Using OSWRCH

The object of Example 5.3 is similar to the previous example but, for
the first time, we have left Mode 7 and its associated screen memory.
Instead of using indexed addressing to store the accumulator on the
screen, the subroutine OSWRCH is used. This resident subroutine is
complementary to OSRDCH - instead of reading the keyboard into
the accumulator, it outputs the accumulator to the screen. The
flowchart is given in Figure 5.3.

OSWRCH stands for ‘Write Character’ which freely interpreted
means ‘send the contents of the acc to the screen’. The subroutine is
written such that the printing position on the screen is under cursor
control and it is automatically adjusted to whichever Mode is used.
It is obviously far more flexible than our previous ‘poking’ to a
memory location. Another advantage is the compatibility with the
Tube, similar to OSRDCH. It may be strange to many readers why
these resident ROM subroutines have been left till now. Why were
they not brought into use in earlier examples? The answer lies in the
title of the book. It would not be easy to ‘discover’ machine code if
the groundwork was skipped in favour of the pre-written
subroutines. A program, proudly presented as ‘machine code’ but
which consisted of nothing more than a string of ROM subroutines
would have little intrinsic substance to justify such pride. Carried to
excess, the end result would develop into disguised BASIC. The
language BASIC is, after all, a selection of ROM subroutines.

Indexed Addressing and ROM Subroutines 75

19 REM XEXAMPLE 3.3 SCREEN CONTROL ¥
20 MODE 4

30 REM

40 OSROCH=4FFEQ

50 OSWRCH=&FFEE

69 FOR PASS=@ TO 3 STEP 3
70 P%=%.0000

gor

9@ OPT PRSS
100 .START LDX #0

110 JSR 0QSRDCH “KB to Rcc
120.BACK JSR OSWRCH “Acc to screen
139 CHP #42 Ns it %7
140 BE® FINI

150 TNX

160 CPX #2490

170 BNE BRCK

189 JMP START

190.FINI RTS

2001

219 NEXT

220 CALL %BDea

23@ END

PRUM
a0oo

oDe9
2099 OPT PASS
@9Dee A2 08 LSTART LDX #@
o082 29 E@ FF JSR OSRDCH “KB %o RAcc
@DRS 20 EE FF .BRCK JSR OSWRCH “Acc %o
screen

p0A3 C9 2A CMP #42 NIs it %7
ADOR F2 82 BE® FINI

aDaC E8 THX

2020 EQ FO CPY #2409
@DOF DO F4 BNE BRCK

D11 4C 29 2D JMP START
o014 602 .FINI RTS

Example 5.3. lllustrating machine code display speed.

Machine code can only be mastered by practice in arranging the
op-codes to suit a particular objective. Your arrangement may be

76 Discovering BBC Micro Machine Code

Clear X

I

Place keyed |...Subroutine

character in
accumulator OSRDCH

o

Send ASCIl | . subroutine
accumulator
code to screen OSWRCH

A o Yes
A

No

Add 1to
X

No

Yes

Fig. 5.3. Flowchart for screen control (Example 5.3).

inferior to the pre-written version in ROM (they are written by
expert programmers with much experience) but they will have
individuality and you will be learning all the time. Eventually you
may even be able to improve on the expert versions.

However, you are strongly advised in the User Guide not to write
your own subroutines which act directly on the input/output
stream. This means the keyboard, the screen and the various filing
systems so it is better to stick rigidly to this advice unless you have
mastered the complete details of the operating system. This could
take months or even years!

Relating OSWRCH to the VDU

The BBC Micro has been praised (and deservedly so) for its

Indexed Addressing and ROM Subroutines 77

graphics. The intricate hardware to handle the graphics is buried in
a ULA chip on the board. With regard to the software, the rich
selection of colour graphic operations are available as direct BASIC
keywords or as one of the VDU’ set (see page 378 of the User Guide).
There is a very convenient ‘bridge’ between the VDU statement in
BASIC and OSWRCH. Providing we master the bridging formula,
a wide range of graphic effects can be controlled within machine
code.

It should be appreciated from the start that OSWRCH (resident
at the hex address & FFEE) is a most sophisticated subroutine,
capable of far more than its title suggests. However, let’s start by
reaffirming its titled role:

OSWRCH Write contents of Accumulator to Screen

Thus, whatever is in the accumulator at the time we write JSR
OSWRCH. it is sent to the screen as a ‘character’. If the accumulator
happens to contain a number within the ASCII range for the
standardised keyboard characters (ASCII codes 32 to 126 decimal)
then this character is displaved on the screen at the cursor position.
If we ensure that, say. 82 is planted in the accumulator. then JSR
FFEE will display ‘R’.

Codes between 0 and 31 are not strictly defined in ASCII and are
known as control codes they control or do things, other than
displaying characters on the screen. They are best examined on page
378 of the User Guide which lists all the 32 control codes specific to
the BBC Micro. Consider the example. VDU 7, which ‘makes a
short beep’ on the internal speaker. The VDU kevword is. of course.
BASIC so how do we make use of this in machine code? VDU in
BASIC calls on subroutine OSWRCH anyway. so it is not
surprising to learn that if we wish to employ it withina machine code
program, JSR OSWRCH must be involved. But. since the same
subroutine has to take care of all 32 control codes. it is left to the
accumulator to inform which particular control code is to be
activated. 1t is therefore up to us to ensure that it is popped in their
before OSWRCH is called. So we need the following two lines to
cause the speaker to beep once:

LDA #7

JSR OSWRCH
Perhaps it is as well to point out again that ‘OSWRCH?' 1s only
recognised if it has been previously assigned to address & FFEE. If
not. it must be written as JSR SFFEE.

78 Discovering BBC Micro Machine Code

However, this was one of the easy VDU examples because there
was only one item of data required by OSWRCH, the number 7.
Incidentally, numbers less than 9 are the same indecimal and hex so
it is immaterial which form you use. The above LDA #7 could have
been written as LDA #87 but, clearly, the decimal form in this case
would have been the easier of the two.

Many of the VDU forms are more complex and OSWRCH
requires more ‘information’ before it can complete its allotted task.
There will always be at least one data item, the control code, but the
number of additional items, if any, can be as many as nine. (See page
378 againin the User Guide under the column heading ‘Bytes extra’.)

For example, VDU 17 is used to define the text colour. Assuming
that we are in Mode | and that we write VDU 17,2 the text will be in
yellow. Here is a case where the OSWRCH routine requires two
items of data, one for the code and one to inform which particular
colour out of the four is available in Mode [. Since all data sent to
OSWRCH must arrive via the accumulator, then it follows that each
item must be separately assigned. Thus, to cause text to be yellow,
the machine code version of VDU 17,2 becomes:

LDA #17

JSR OSWRCH
LDA #2

JSR OSWRCH

The subroutine is designed such that once it receives its firsr data
item (which is always the code) it ‘knows” how many more deliveries
to expect via the accumulator. There is a danger here. If you are not
certain how many deliveries are required or perhaps miscount by
one, the subroutine will scoop up the next byte (even if it was not
intended to be part of the VDU command). This could have
catastrophic results to your program, although it provides
temporary ‘excitement’. To guard against this, always look up the
equivalent VDU statement in BASIC to ensure you know exactly
how many bytes OSWRCH needs.

Semicolons and commas

This may seem a silly title but you can get into a lot of trouble when
converting VDU forms to OSWRCH forms unless you distinguish
semicolons from commas. Let’s take one of the mixed forms, used to
define a graphics window:

Indexed Addressing and ROM Subroutines 79

VDU 24,left;bottom;right;top;

VDU 24 is used to set a graphics window and in BASIC, a particular
setting could be, say:

VDU 24,200;100;1000;500;

An obvious problem arises with the accumulator capacity. It is
only one byte wide so the maximum number is 255 decimal. The
problem is overcome by sending the numbers in two instalments
according to the rule, ‘low byte-high byte’. To work this out in
machine code, it is first necessary to convert the numbers to hex.
This can be done easily by direct commands to the machine using the
4ilde’ (~). PRINT~1000 gives the hex equivalent as 3E8, which in
two separate-byte form is 03 E8. But these must be entered low-byte
first so, as far as the accumulator is concerned, we first send E8 and
then 03. Even if the number is within the capacity of the
accumulator, it is still necessary to send it in two-byte form. Thus the
decimal number 200, when converted to hex, is only C8 and yet this
must be thought of as 00 C8. The accumulator is therefore expecting
C8 first and 00 next.
. Returning now to the subject of semicolons and commas, the ruleis:

If a semicolon follows the number, it must be two bytes.
If a comma follows a number, it is only one byte.

The above example VDU 24,200;100;1000;500; is the BASIC format
butin machine code it will require a total of 9 bytes - one for the code
24 and two each for the other four numbers.

If you refer to page 378 of the User Guide which is the ‘VDU code
summary’, the column headed ‘Bytes extra’ may now have more
meaning. Looking up VDU 24, the number of ‘extra’ bytes is given
as 8. This, of course, means extra to the VDU code byte (24), making
atotal of 9 bytes. The four decimal numbers are thus sent in hex
form, in the following reverse-byte order:

200 = C8 00 100 = 64 00
1000 = E8 03 500 = F4 01

Example 5.4 sets a graphics window assuming the above parameters.
When this is run, the lines 330 and 340 will prove the small graphics
window has been set as programmed. The effect is a red rectangle,
left superimposed over the assembly listing. It is worth checking
with the graphics chart on page 495 of the User Guide.

It is quite clear from the example that using machine code just to

80 Discovering BBC Micro Machine Code

19 REM XEXRAMPLE 5.4 VDU 24x%
20 MODE 1

30 REM
49 DOSWRCH=4FFEE

5@ REM XMACHINE CODE VERSION OF
62 REM %VDL) 24,200,100;1009;500;
70 FOR PASS=@ TO 3 STEP 3

80 P%=80D00

9L

198 OPT PASS

119 LDA #24 “CODE

129 ISR OSWRCH

132 LDA #&C8 ~208

140 JSR OSWRCH

159 LDR #4020

169 JSR OSWRCH

179 LDR #8654 1022

180 JSR OSWRCH

199 LDAR #2092
202 JSR OSWRCH
219 LDR #&ER ~100a
2208 JSR DSWRCH
230 LDR #883
242 JSR OSWRCH
250 LDA #&F4 el
26@ JSR OSURCH
272 LDR #5021
280 JSR DSHRCH
290 RTS
39a 1]
318 NEXT
329 CALL &Q00a
339 GOOL 9,129
342 CLG

Example 5.4. Setting the graphics window.

set a graphics window is not exactly a simple or indeed a concise
method. It is unlikely that it would ever be a worthwhile alternative
to the relatively simple BASIC version. It would be better to nip
back quickly into BASIC for such a task and then return to machine
code again. This is the beauty of BBC assembly language, the ease
with which you can enter and depart from machine code. However,
the example was intended only as a guide to the entry of double-byte
numbers and the significance of commas and semicolons when
writing to OSWRCH. It would have been possible to save a few odds

Indexed Addressing and ROM Subroutines 81

and ends in the coding. For example, the assembler is ‘clever’ enough
to handle line 150, LDA #&00 as LDA #0 but, in the interests of
uniformity and to keep faith with the previous text on double-byte
numbers, two hex digits have been used throughout.

Using OSBYTE

BBC BASIC allows a certain amount of interference with the
internal operating system, using the FX format. The letters ‘FX’ are
phonetic shorthand for ‘Effects’ and page 418 of the User Guide lists
them all. Unfortunately, they are a bit of a mixed bag as far as the
species of ROM is concerned. The majority of owners who
purchased their machines before the first month or so of 1983 were
unlucky enough to have the first version of the operating systemina
9.1 ROM". This version was a rather rushed job, 99% superb but
cursed with a few niggling features which were left to be ironed out in
later versions. The major fault was a certain unreliability during
cassette tape loading, particularly with long data tapes. This was not
serious for long because Acorn gave their blessing to a short
machine code ‘patch’ which could be entered to circumvent the
problem. Apart from this, the main defects were omissions, rather
than errors, in software. The next ROM (or rather EPROM) to
appear was entitled the 1.0 version which was intended, presumably,
to replace the earlier 0.1 version. But it appears that even this new
version was only given ‘temporary’ status giving way to the final
definitive version which is the 1.2 ROM. Change and improvement
is always exciting but is always at the expense of something or other.
As far as we are concerned, the changes leaves the use of FX calls
subject to certain provisos. Some work on system 0.1, others will
not, so it is necessary to check the User Guide for guidance.

Before examining OSBYTE it is helpful to relate it to the FX
format which, in the general case has three parameters:

*FX code, first parameter, second parameter

The code defines which particular effect is required and the
parameters provide any additional information required by the
function. Not all FX codes require both parameters; some require
neither of them, FX is called from BASIC but, in machine code, the
equivalent subroutine is names OSBYTE and is called with JSR
&FFF4.

The name ‘OSBYTE’ provides a clue to the parameters required -

82 Discovering BBC Micro Machine Code

they are only one byte wide. This should be a relief; no worries about
working out double bytes in reverse order. The accumulator and the
two index registers must, in the general case, supply the parameters
in the following order:

1. Accumulator supplies the code
2. X-register supplies the first parameter
3. Y-register supplies the second parameter

It is up to the machine code programmer to set the required values in
these registers before using JSR &FFF4. If any of the parameters
are not necessary for the particular code, the appropriate X or Y
register is automatically set to 0. With some codes, the subroutine
will supply ‘answers’ back again in the X or Y registers.

To illustrate the use of OSBYTE and the required register data,
study the following:

(a) To flush printer output buffer use OSBYTE 21,3 the machine
code would be:

LDA #21
LDX #3
JSR &FFF4

(b) To disable all analogue/digital channels use OSBYTE 16.4 the
machine code would be:

LDA #16
LDX #4
JSR &FFF 4

(c) To read ADC channel into X and Y use OSBYTE 128,3 the
machine code would be:

LDA #128
LDX #3
JSR &FFF4

The parameter (3 in this example) is the channel number which is
any one between | and 4 inclusive. On return from OSBYTE, the
current AD conversion value is available in X and Y. Both registers
must share the result because the maximum conversion number is
outside the range of a single register. X contains the low-order byte
and Y the high-order byte.

Note that the last example is one which uses the X-register to
supply the necessary information before JSR & FFF4 is used but the

Indexed Addressing and ROM Subroutines 83

contents after return is the result of OSBYTE action.

If OSBYTE 128 is called without any following parameters, it
refers to the ‘firing buttons’ on the A/D device. The two least
significant bits of X on return from OSBYTE will indicate which, if
any, of the buttons have been pushed. Any other bits in X must be
considered as dangerous garbage and must be ‘masked out’.
Masking out bits is carried out with logic operations (op-codes
AND,ORA and EOR) which are discussed later. It would be
unprofitable to give the full (formidable) list of all the OSBYTE calis
in this book. To do so would be repeating good information already
existing in the User Guide, pages 416 to 441.

Using OSWORD

Operating system subroutines which require, or deliver, more
information than can be handled by using only the three registersare
catered for by OSWORD. The term ‘word’ in traditional computing
jargon was used to describe the maximum number of bits which
could be passed to or from memory in one go. It was essentially a
main-frame term because the ‘word length’ was seldom less than 32
bits and, in some of the larger giants, as many as 128 bits. The term
‘byte’ was then needed to refer to subdivision of the ‘word’ into
manageable groups of 8 bits. Soa computer witha word length of 32
bits would consist of four bytes. Because the BBC Micro can
eventually be expanded to a second processor system and the
internal architecture of the microprocessor used will be 32 bits, it
was logical to call a collection of four bytes a ‘word’. However,
OSWORD calls are not limited to four bytes. In fact, the parameters
required by, or delivered to, OSWORD are steered to a particular
block in memory, the machine code programmer having the power
to decide where the block should be. It is also the programmer’s
responsibility to ensure that any necessary data is sent to the
parameter block before using OSWORD.

OSWORD is called from address & FFF1 and the address of the
parameter block must be set into the X- and Y-registers before
calling. The low-order byte must be in X and the high-order byte in
Y.

The accumulator, as usual, must contain the code which
distinguishes which of the OSWORD facilities is required. There are
twelve accumulator codes given on page 458 of the User Guide
within the range A=0 to A=B (in hex). They are a mixed bag,

84 Discovering BBC Micro Machine Code

including setting or reading the time clock, the internal timers in the
VIA, pixel colours and sound effects, It is understandable that such
off-beat functions demand a lengthy setting up process before the
final JSR &FFF]I1 can be employed.

Example:

Assume the time clock is to be read. The accumulator must be set
to 1 first, because this is the code for ‘Read the elapsed-time
clock’.

The clock information is five bytes long, so a decision must be
made where these five bytes of memory can be spared. Let’s squeeze
them in at the bottom end of our usual safe area, &0DFO0 to
&0DF4. The low-order byte will be in &0DF0.

The procedure for calling OSWORD then becomes:

LDA #1 (Code for read clock)

STX #&F0 (Low byte of result address)
STY #&0D (High byte of result address)
JSR &FFFI

Note that it is necessary only to inform OSWORD of the siarting
address of the five bytes - it ‘knows’ that five bytes will follow. The
result is in hex of course, with the lowest-order byte in 0DFO0. The
prior setting up for writing into the clock (setting it to a new starting
point) will be more involved than the above. Itis necessary to set the
X- and Y-registers to the starting address of the reserved five-byte
area first then fill up the five locations with the new clock data.

Before worrying about this added complication, study Example
5.5 which reads the clock by using OSWORD and utilises the block
of addresses as described above. The lines 170 to 190 prove that the
clock is being read by the machine code. Four locations, starting at
address &0DFQ, are printed out as a single number by using the
‘indirection’ operator (!). The numbers at the bottom were the result
of the GOTO endless loop at line 190. The print-out was stopped
manually to save paper!

Storing at the top of BASIC

For consistency and to avoid cluttering the mind with too many
alternatives, all our programs have been packed into the ‘User
Subroutine Area’ which, in the Model B machine, is the 256 byte
space at addresses &0D00 to ODFF inclusive. It is better in the

Indexed Addressing and ROM Subroutines 85

1@ REM ¥EXAMPLE 5.5 @SWORD RERD T#
290 MOCE 7:CLS

30 REM
49 OSWORD=4FFF1

50 FOR PRSS=0 TO 3 STEP 3
60 P%=%0008

70 C

8@ OPT PASS

99 LA #1

198 LD¥ #F@
119 LDY #&0D
120 JSR OSWORD
130 RTS

140 1

158 NEAXT

160 REM

170 CALL &e0ae
180 PRINT !&BDFQ:REM 4-BYTE HUMBER
199 COTOL7@

JRUN

avee

a0oe

2000 OPT PASS
@088 R 21 LDA #1
o082 A2 FO LDK #&F@
@024 RO QD LDY #%00
@006 28 F1 FF JSR QSWORD
2099 50 RTS

Example 5.5. Using OSBYTE on four-byte numbers.

long run to use hex for machine addresses because it is the more
concise notation and indeed, more logical. The third hex digit from
the right in a four hex digit address is the ‘page’ number within the
address map. Thus we can say that our programs have been
allocated space on page D. However, if hex still remains an
ynnatural’ counting system to you, then page D extends from 3328
to 3583 in decimal form. For those interested in the conversion
method, the position of ‘D’ in the hex form is in the 16 weighting
(256). Since D is thirteen in decimal, then 0D00 hex is 13 X 256 =
3328.

The advantage of storing in this area is purely safery. Any
machine code loaded into this space is sacrosanct as far as the

86 Discovering BBC Micro Machine Code

ESCAPE and BREAK keys are concerned - it remains there until
the machine is switched OFF or a ‘hard-reset’ is invoked.

There is one snag with page D however. It is not very big. It is
surprising the power which 256 bytes of machine code can unleash
but there will naturally be times when much more room is required.
Providing the BASIC program interracting with the machine code is
within reasonable bounds, a large space can be made available by
using the DIM keyword of BASICin a special form. The format is as
follows:

DIM name N
As a specific example:
DIM PROGY% 100

This means, ‘reserve 100 bytes of memory above the BASIC
program for a machine code program called BLOGS%'. (To be
strictly accurate, this will reserve 101 bytes because the counting is
from 0 to N rather than 1 to N - but why haggle over one silly byte?)

Note carefully that, unlike the normal DIM statement used to
organise arrays in BASIC, there are no brackets used. The
allocation of bytes is ‘dynamic’. The actual address at which the

19 REM XEXAMPLE 3.6 DIM P%%
28 DIM PROGY 100

38 REM
49 P%=PROG%

59 STORE%=PX%+350
60C

79 LDA #22

88 STA STOREX

99 RTS

199 1
119 CALL PROGX
12@ PRINT 7STOREX
130 END

»RUM
RECZ
BEC2 R9 14 LDA #20
QEC4 8D F4 BE STR STOREX
QECY 62 RTS

29

Example 5.6. Locating machine code by using DIM.

Indexed Addressing and ROM Subroutines 87

machine code starts will depend on the length of the BASIC
program. If we slip in extra BASIC lines, the entire machine code is
‘dynamically’ moved up. This seems a precarious situation but rest
assured that everything remains under control - of the operating
system, that is! Study the simple program shown in Example 5.6,
particularly machine addresses allocated by the assembler.

Line 20 informs the system that a program called PROG% will
inhabit a block of 100 bytes ‘somewhere’ in memory. The
programmer leaves the responsibility of deciding where this block is
located to the operating system. The starting address of PROG% is
sent to the program counter (P%) in line 40.

Data, which requires storage space within the block, is named
STORE% and, as line 50 shows, is 50 bytes ahead of the beginning.
The exact number of bytes ahead is not too important providing it
leaves sufficient room for the program. The number 50 was a
conservative estimate, well on the safe side, chosen before the
program was written. If you underestimate, data used by the
program will be superimposed (overwritten) on the program bytes.
If you are too generous, however, STORE% will stretch beyond the
limits of PROGY% and this is hazardous.

The machine code within the square brackets is quite trivial,
merely storing the number 20 in STORE%.

The proof that 20 has been stored correctly is left to BASIC (line
120) which prints out the contents of STORE%.

Notice in the assembly listing the machine addresses which have
been allocated by the operating system, 0EC2 to OEC7 hex. To
illustrate that the allocation is dynamic, write and additional line of
BASIC, such as:

25 REM THIS IS A TEST

and run the program again. The assembly addresses will all move up
by the exact amount needed by the operating system to
accommodate the extra line.

After a provisional run, it is easy to clean up the program. Thus it
is obvious from the assembler listing that far too many bytes have
been wasted by the provisional DIM allocation. It could fit
comfortably, and with a few bytes to spare, in 20 DIM PROG% 20.
A suitable data store would be STORE%=P%15.

88 Discovering BBC Micro Machine Code
Mixing locations

Most programs require data of some sort or other. The program
itself could be long but use only small amounts of data. Conversely,
a program of a few lines could operate on vast amounts of data. To
cater for all types, it is better to distribute the two sections. For
example, to gain the added protection of the User Subroutine area in
page D, it is often wise to place the machine code program there, but

1@ REM EXAMPLE 3.7 SORT DEMO

20 DIM N¥% 200:REM PLACE FOR RANDOMS
32 REM ___GENERATE 208 NUMBERS._-
42 FOR A=1 TO 209

S99 7T(N%+R)=RND{2355>

69 NEXT
78 REM
8@ FOR PASS=8 TO 3 STEP 3

92 P%=82000

149 C

119 OPT PASS

120.ITER LDX #20@ ~LENGTH OF DRTR

138 DEX ~LENGTH-1
142.BRCK LDA M¥%,X “BRING NUMBER
15@ CMP N%+1, ®SNEXT MUMBER
160 BCS MOSWP

178 LDY#1 ~FLAG

130 PHA =SAYE ACC

15@ LDA M¥%+1,¥NSWOP PAIR
2aa STA N%. %

21@ PLA ~RETRIEVE RACC
228 STR M%+1,¥

228.NOSWP DEX

24 BHME BACK “MNEXT PRIR
239 DEY

269 BER ITER =I2 FLAG @7
27e RTS

286 1

296 MEXT

322 CALL %a0oa

318 REM ____PRINT OUT DRATA_._
322 FOR A=1 TO Zo@

330 PRIMT TC(MZ+A>

348 WEXT

Example 5.7. Ultra-fast machine code bubble sort.

Indexed Addressing and ROM Subroutines 89

ifa large amount of data is required, it could be located by means of
the DIM statement.

An obvious candidate for this kind of treatment would be a
numerical sort program. See Example 5.7 which is using the DIM
statement for storing 200 random numbers. The numbers are

X - 20¢
X = X—1

Compare

the current
pair

@ Yes

Set the
flag

Swop the
pair over

—

Reduce the
index by 1

?

Fig. 5.4. Flowchart for the sort routine of Example 5.7.

90 Discovering BBC Micro Machine Code

generated by the BASIC lines 40 to 60 and include randoms between
I and 255 (the largest pure binary number in a single byte).

The machine code program is stored in the User Subroutine space
at &0DO00 onwards. It is based on the well known ‘bubble sort’
routine in which each pair of numbers is tested for their correct
order, lines 140 and 150. If a swop is found to be unnecessary, the
program branches to NOSWP where the necessary preparation for
the next pair is made. If a swop is required, it is carried out by lines
180 to 220 and a ‘flag bit’ is set in the Y-register. The procedure is
repeated for as many times as the flag bit remains at 1. When it is
found to be 0 it indicates that no swops were necessary.

The flowchart shown in Figure 5.4 will help to clarify the
procedure.

When the program is RUN, the sorted numbers are printed out by
the BASIC lines 320 to 340. Any slight delay experienced is due to
the BASIC loops. The machine code sort, even although it is one of
the most despised sort routines (in terms of execution time) is
virtually ‘instantaneous’.

Summary

® An indexed address has an effective value equal to the operand
plus the current contents of the index register.

@ Indexed addressing is identified by a comma after the operand,
followed by either X or Y.

® Effective address = base address (the operand) + relative address.

® Subroutines resident in ROM can be used by writing JSR
followed by the machine address of the subroutine.

® Resident subroutines having names beginning with OS (Operating
System) are useful for communicating with the display screen.

® OSWRCH writes the ASCII character number in the accumulator
to the screen.

® OSRDCH reads the character from the keyboard to the
accumulator.

® Sending information direct to screen or other output devices is
not recommended because it will interfere if the Tube is ever used.

® OSWRCH can be used to send control codes to the screen as well
as ASCII characters.

® The VDU keywords, used in BASIC, can all be implemented in
machine code using OSWRCH, providing the parameters are
sequentially sent via the accumulator.

Indexed Addressing and ROM Subroutines 91

‘When transposing VDU statements to the OSWRCH version,
remember that a comma, terminating a parameter, signifies it is
one byte but a semicolon signifies two bytes.

Two byte operands in hex must be sent in the order low-byte then
! high-byte.

THE group of statements in BASIC called FX can be converted

to machine code by using OSBYTE.

ALL OSBYTE calls require at least a following code, supplied by
- the accumulator. If more parameters are required, they are passed
“via X- and Y-registers.

P OSWORD is a powerful subroutine which requires too many

parameters for handling by the three registers alone. The extra
¢ parameters must be placed in a memory block in the right order.
P The starting address of the OSWORD memory block must be
| sent via the X-and Y-registers. The low-byte of the address should
 be in X and the high-byte should be in Y.

OSWORD sometimes places results back in the parameter block.
; Machine code programs can be stored outside the BASIC
' program space by using the DIM statement in a special way
- (without brackets round the parameter).

Programs stored by the DIM method have not the protection

afforded by the User Defined Subroutine area.

The number of bytes reserved for the machine code program in a

DIM statement is often a conservative guess in the first instance.

Chapter Six
Logical Instructions and
BCD Format

Manipulating bits

Most of the op-codes in the 6502 repertoire act upon the complete
byte. Forexample, the store and load operations STA and LDA, the
arithmetic operations ADC and SBC are obvious examples of byte
replacement and byte re-arrangement. There have been one or two
exceptions, notably in the area of the program status register where
each bit enjoyed a separate identity and consequently demanded
special instructions to change the state. The carry flag has one of
these special instructions tosetitto | (SEC)and another to clearit to
0 (CLC). Another pair of instructions act on the decimal flag, SED
and CLD. When this flag is set, the behaviour of the arithmetic unit
is drastically altered. These flag bits are equivalent to a set of
separate switches, not in the hardware sense of the term but
programmable, software switches.

Apart from these specialised applications of the software switch,
there is frequently a need to treat the contents of a register or
memory location as a set of switches rather than a binary number,
ASCII code etc. An obvious example of such a need is in the
interface area to peripheral devices. We may want to connect wires
to the user port in order to activate or detect signal changes in
external gadgetry. Each separate gadget can be switched on or off by
changing the particular bit in an output register which is dedicated
to that gadget. It is understandable, therefore, that microprocessor
designers always include a range of instructions which are capable of
acting selectively on certain bits within a byte. For example, we may
wish to change the state of bit 3 in address &0DFE without
disturbing the remaining bits. It would be possible to achieve this by
laboriously working out a number which, added to the contents of
the address, would carry out the necessary selective change of bit 3.
Mercifully, there are easier ways of achieving the task by using a set

Logical Instructions and BCD Format 93

op-codes which exist under the heading of logical instructions.
nfortunately, the word ‘logic’ has a variety of meanings in
ryday language. To some, it is connected with clear thinking, to
thers it may conjure up visions of George Boole and his mind-
ding algebra of classes.
As far as we are concerned, the ‘logical’ instructions are those
Bhaving the following assembly mnemonic codes:

AND,ORA,EOR,ASL,LSR,ROL and ROR

“All of them do queer things to the accumulator or, in some
addressing modes, to the contents of a memory location.

Although they have some effect on the arithmetical value of a byte
this must be considered entirely incidental. None of them are
intentionally arithmetic in action although crafty programmers can
sometimes trick them into producing valid arithmetical results.
They merely change bits or push bit patterns along or remove certain
bits altogether. Table 8 provides a formal definition of them:

Table 8. Logical instructions.

Mnemonic

op-code Action

i AND Perform the logical AND operation between the

: pattern defined by the operand and the accumulator
(the result being in the accumulator)

EOR As above but perform the logical Exclusive Or

ORA As above but perform the Logical Or

ASL Arithmetic Shift Left the pattern defined by the
operand

LSR Logical Shift Right the pattern defined by the
operand

ROL Rotate Left the pattern defined by the operand

ROR Rotate Right the pattern defined by the operand

The AND operation

The primary use of AND is to reset selected bits within the accumu-
lator to 0, leaving the remaining bits undisturbed. To achieve this, a

94 Discovering BBC Micro Machine Code

pattern of bits known as a mask is sent to the accumulator by means
of the AND op-code. The problem is to work out first the particular
pattern of bits which provide the correct mask.

It is easier to grasp the essentials by a preliminary example:

Problem: Ensure that the three right-hand bits in the
accumulator are all at 0.

Solution: AND #&F8

Writing out F8 hex in binary, 1111 1000, may give some hint of the
process. It would appear intuitively (to some!) that the mask must
have ‘0’s in those positions in the accumulator which are to be reset.
The rule for the mask is indeed:

To clear bits to 0, place ‘0’s in the mask to ensure corresponding
bits are at 0.

Also place ‘I's in the mask to ensure that existing bits are
unchanged.

Example:
Assume existing contents of accumulator were: 1011 1100
Mask bits: 1101 1111
After the AND mask the accumulator contents
would be: 1001 1100

The mask has one ‘0’ which has reset the corresponding bit in the
accumulator, the other bits remaining undisturbed.

The ORA operation

The primary use of ORA is to set selected bits within the
accumulator to 1, leaving the remaining bits undisturbed. Note this
is the direct opposite to the AND operation.

The mask requirements are also the exact opposite to the AND
case, the rule being:

To set bits to 1 place ‘I’s in the mask to ensure the corresponding
bits are at 1.
Also, place ‘0’s in the mask to ensure existing bits are unchanged.

Logical Instructions and BCD Format 95

Example:
Assume existing contents of accumulator were: 0010 0001
Mask bits: 1000 1000
After the ORA mask the accumulator contents
would be: 1010 1001

The EOR operation

The primary use of EOR is to change selected bits within the
accumulator, leaving the remaining bits undisturbed.
The mask requirements are:

To change bits, place ‘I’s in the mask to ensure that the
corresponding bits are changed.
Also, place ‘0’s in the mask to ensure existing bits are undisturbed.

Example:
Assume existing contents of accumulator were: 0010 1101
Mask bits: 1111 0001
After the EOR mask the accumulator contents
would be: 1101 1100

Boolean relations

There is a branch of mathematics known as Boolean Algebra which
some readers may have studied, although those who have escaped
seem to bear the loss with equanimity. The alternative definitions of
the three logical operators are as follows:

AND If both bits are 1 then the result is 1
ORA If either or both bits are 1 then the result is 1
EOR If both bits are the same then the result is 0

All three operations exist in BASIC on the BBC machine but are
used in what would appear to be, an entirely unrelated way to the
descriptions given above. Take, for instance, the BASIC line:

100 IF A = 4 AND B = 60 THEN etc.

This is using AND in the everyday usage of the term, having little
resemblance to the ‘bit-wise’ usage. And yet, the two viewpoints are

96 Discovering BBC Micro Machine Code

compatible (see page 205 of the User Guide for a well-written
description of the relationship).

Practical uses

As previously described, a string of bits in a register is not necessarily
interpreted by the programmer as a number or an ASClII character.
It could represent information in coded form in which each bit
indicates whether some condition is present or absent.

For example, it would be possible to store an employee’s personal
record in a bit pattern providing the code used was known and used
consistently. Each bit would then represent ‘yes’ (if 1) or ‘no’ (if 0).
There would clearly come a time when a particular bit required to be
added or changed without affecting the other bits.

Even if the contents of a location did represent a simple number, it
might be necessary to find out if, say, it were an odd or even number,
We couldn’t just ask it: ‘Are you odd or even?. However, if we
cleared all bits to 0 except the Isb (the bit on the right) this bit would
determine whether the number was odd or even.

Example: To find out if the contents of address &0DFF is an odd or
even number:

LDA &O0DFF
AND #&01
BNE 0DD

The number is loaded into the accumulator and ANDed with 01 hex.
In binary, this is 0000 0001 which will clear all bits except the Isb. If
the result is not zero (indicating that the accumulator must have had
a | in the Isb position) the branch is activated.

When working out the correct mask, you should scribble out the
binary bits required, then convert to hex. You can convert to
decimal if you want but it is much harder!

Communicating with the outside world via the user port of the
machine is another area in which the three logical instructions are
valuable. These will be discussed under a separate heading. In the
meantime, a few computer examples will help in getting the feel of
the subject.

Example 6.1 is the ‘find out how many odd numbers’ problem, in
the 200 random set. Every time an odd number is found, the Y-
register is incremented.

Logical Instructions and BCD Format 97

12 REM EXAMPLE €.1 ’AND’ DEMD

20 DIM N%Z 209:REM PLACE FOR RANDOMS
32 REM ___GENERATE 209 NUMBERS...
42 FOR A=1 TN 200

58 PCNZ+A Y=RHND(2335)

£@ NEXT
70 REM
89 FOR PRSS=A TO 3 STEP 2
99 P%=40000

100 C

118 OFT PRSS

120 LOY #a@ SCLEAR COUMT
130 LC¥ #20@ “LENGTH OF DATA
149.BACK LDA M%,X¥ “BRING NUMBER
159 AND #8081 “MASK

160 BEQ EVEM

170 INY SADD 1 TO COUNT
180.EVEM DEX ~REDUCE INDEX
199 BNE BRCK “BRING MEXT HUMBER
200 STY KADFF

21@ RTS

220 1

238 NEXT

240 CALL 20009

250 REM ____PRINT QUT DRTA__.

260 PRINT"There were ";7&O0DFF" add out
of the 204"

Example 6.1. Distinguishing odd from even numbers.

Example 6.2 is another case of finding how many odd numbers
but, to step up the heat a little, it also finds how many negative
numbers there are and how many have a 1 in bit-2 position
(emember that bit-2 is the third from the right in a byte). A
flowchart is shown in Figure 6.1. To make it easier to check the
validity of the results, the numbers loaded into the area above
BASIC are the integers from 1 to 200. When this program is run,
you should get the answers: 73 negative numbers, 100 odd numbers
and 100 in which bit-2 was 1. If you don’t see why this should be so,
refer back to Chapter 2.

The user port

One of the numerous socket outlets of the BBC machine is called the

98 Discovering BBC Micro Machine Code

Clear three
addresses
for results

209 X

[

Bring out
number

Yes

Y Add 1 to
negative
total

L

Copy Acc
to stack

AND mask
for odds

Add 1 to
odd total

Fig. 6.1. Flowchart for Example 6.2.

Bring back
Acc from stack

|

AND mask
for bit-2

Yes Bit-2
zero

Add 1 to
bit-2 total

]

Reduce index
by 1

Return to
BASIC

Logical Instructions and BCD Format 99

10 REM EXAMPLE 6.2 COMPLEX’AND’

20 DIM N% 200:REM PLACE FOR RANDOMS
30 REM ___GENERATE INTEGERS 1 TO 200
42 FOR R=1 TO 209

50 TN%+R =R

£0 NEXT

70 REM
B2 FOR PRSS=Q TO 3 STEP 3

90 P%=k2000

109 C

112 OPT PASS

120 LDY #2

139 STY &ODFC

149 STY &%@0OFD

150 STY &4BDFE

169 LDX #2088 “LENGTH OF DATA
170.BACK LDA W%, X N\BRING NUMBER
189 BPL 3KIP1

1982 INC &@DFC “UPDATE NEGS
209.SKIP1 PHA

219 AND #5281 “MASK

220 BE® SKIPZ

230 INC %@DFD “UPDRTE QDDS
240.5KIF2 PLA

258 AMD #&@4 “BIT 2 MASK
269 BER SKIP3

279 INC &@DFE “~UPDARTE BIT.2
280.SKIP3 DEX

299 BNE BRACK “HEXT HUMBER
300 RTS

31 1

320 NEXT

332 CALL &eDe3
34@ REM ____PRINT QUT DRTA._.
350 PRIMT ?7%@DFC" WERE NEGATIVE"

362 PRINT 7&@DFD" LERE QDD"
37@ PRINT T4@DFE" HAD BIT 2 AT 1"

Example 6.2. Searching a random list for odd and negative numbers.

wer port. Like all the other channels for communicating with the
sutside world, it is ‘memory-mapped’, meaning that it occupies a
dlock of machine addresses. The advantages of memory-mapped
ixternal devices has been exploited in most microprocessor designs.
Because memory-mapping allows a peripheral port to be treated as a

100 Discovering BBC Micro Machine Code

normal memory location, the entire instruction repertoire of the
microprocessor is available for processing. It is not, however,
proposed to delve too deeply into the user port. It is part of a very
complex input/output chip known as the VIA (Versatile Interface
Adaptor). The band of addresses from &FE00 to &FEFF have
been given the strange but rather nice title of SHEILA. Within this
band lives a variety of peripheral interface locations including not
only the VIA but also analogue/digital converters, the ULA chips
which handle the complex graphics, etc.

The VIA chip is a 6522 and occupies sixteen addresses, &FE60 to
FEG6F, but only two of these are of interest:

Address & FE60 (the user port data register)
Address & FE62 (the user port direction register)

The data register can behave as an output register or an input
register but obviously it cannot be both at the same time. The
ambiguity is resolved by the direction register which, once set up
with the correct bit pattern, determines which bits in the data
register are to be inputs or outputs.

Figure 6.2 illustrates the user port hardware lines to and from the
outside world.

DIRECTION REGISTER

Address &FE62

DATA REGISTER

Address &FE6f

A A A

(B A A A A
] | Y | |]

Handshake Handshake

oéooooéo

Input/Output data lines

Fig. 6.2. Simplified diagram of the user port.

Logical Instructions and BCD Format 101

The rule for the direction register is:
Any I’s in the direction register define the corresponding lines

in the data register as OUTPUTS.
Any 0’s in the direction register define the corresponding lines
in the data register as INPUTS.

Example: To make all eight lines in the data register behave as
outputs:

LDA #&FF (put all I's in the accumulator)
STA &FE62 (store in direction register)

It is allowable to use a ‘mix’. Some lines can be defined as outputs
and some as inputs according to the whim of the programmer.

Example: To make bit-2 and bit-5 inputs and the remaining bits
outputs:

LDA #&DB (1101 1011 in accumulator)
STA &FE62 (store in direction register)

Setting the bits in the direction register is normally a one-off
operation, serving to initialise the system at the head of the program.
It is unlikely that the peripheral device, connected to the particular
data line, is going to undergo a ‘sex change’ during the life of the
program. Once an output, always an output!

It should not be thought that setting the direction register has any
direct effect on the data register. The actual bits in the data register
are defined by a separate address, &FE60. All the direction register
does is to ‘tell’ the data lines whether they are to deliver information
from the computer to the peripheral or to receive information from
the peripheral to the computer.

To illustrate this, we shall first define all lines in the data register
as outputs and then ‘switch on’ bits 2,3 and 7:

LDA #&FF (make all data lines outputs)
STA &FF62 (direction register)

LDA #&8C (1000 1100 in accumulator)
STA &FF60 (store in data register)

A word of warning is appropriate at this point regarding damage
to the computer by haphazard connections to the user port. Unless
you have some experience in soldering and have at least a smattering
of theoretical knowledge of electronics, don't connect up external
devices to the user port. If you want to practice with external lamps
and switches connected to the port, either buy commerical plug-in
‘boxes’ or enlist the aid of a colleague who is an electronics buff.

102 Discovering BBC Micro Machine Code
Applying the logic op-codes to the user port

Although the data register behaves as a normal memory location, it
is likely that each wire connected to the port is used as an entirely
separate signal line. Suppose we want to ensure that the signal line
connected to bit-2 is suddenly to be changed from 0 to 1 (switching
‘something’ on, perhaps). Clearly, if this line is independent from the
others, it would be catastrophic if setting this bit to | altered any of
the other lines. This is where the logic codes are so valuable because
they are ‘bit-wise’ operations rather than byte-wise. You may
remember from the definition of the ORA code that it is ideally
suited for any task involving the setting of a 1 somewhere.

Example: First assume that all data lines are outputs. If we wish to
ensure that bit-5 is in the 1 state without disturbing the remaining
bits, we could proceed as follows:

LDA #&20 (0010 0000 mask for bit 5)
ORA &FF60 (Data register ORed into accumulator)
STA &FF60 (Store back in data register)

Suppose, instead, that we wished to change the state of bit-5 (instead
of ensuring it was in the 1 state). The only difference in the above

example would be to change ORA to EOR.
Finally, if we wished to ensure that bit-5 was in the 0 state, the

appropriate logic code would be AND but remember the bit pattern
must now be changed in the accumulator. The following example
shows how this should be done:

LDA #&DF (1101 1111 mask for bit-5)
AND &FF60
STA &FF60

Shift and rotate instructions

These four instructions, shown previously in Table 8, have one thing
in common - they move the existing bit pattern. They behave as if
there were a piston at one end, pushing the pattern along one way or
the other. The difference between shift and rotate is whether or not
bits are pushed out at one end and lost, or whether they are re-
inserted at the other end in a closed loop fashion. In all cases,
however, there is one mysterious extra bit involved, often referred to
as the ‘ninth bit’. This ninth bit is actually the carry (the C-bit),

Logical Instructions and BCD Format 103

situated physically in the process status register of the micro-
processor. However, from the programmer’s viewpoint, it can be
treated as a one-bit extension of the shifted or rotated byte. The
following exaplanations should be read in conjunction with Figure
6.3.

7 6 54 3 2 19

[TTTTT T T as

MEEEEEEEENE
[T T T TP
sl TT T T LT [}{cH

Fig. 6.3. Shift and rotate instructions.

Arithmetic shift left (ASL)

ASL has the effect of moving the bit pattern in the accumulator (or
memory location) one place to the left.

Examples:
ASL A will shift the accumulator left.
ASL &0DFF will shift the contents of address &0DFF left.

Suppose the present contents of the accumulator are 00000111,
After ASL A, the accumulator would now contain 0000 1110.

Note the arithmetical significance of this example. Before ASL, the
accumulator contained 7 decimal. After ASL it contained 14
decimal, indicating that a shift left operation can be used to double a
number. There is, however, an inherent danger that shifting left
could, if the original number was large enough, cause a ‘1’ at the left-
hand end to drop out. This of course would result in an invalid
multiplication by two. This is the advantage of the carry bit which is
assumed to be a ninth bit extension. Instead of the accumulator bit
at the end dropping on to the ‘floor’, it is caught by the carry bit. This
means that, if we use ASL as a doubling up exercise, we should
always use the BCS test to determine whether or not such a bit has
been lost.

It is interesting to note, before leaving the subject, that a unique

104 Discovering BBC Micro Machine Code

addressing mode called accumulator addressing is available on ASL
and indeed the other similar operations LSR,ROR and ROL. These
are the only four op-codes in the 6502 repertoire which have this
addressing mode.

If we wish to use ASL on the accumulator then we must write ASL
A. To write just ASL would provoke an error message from the
assembler because it would be treated as an unrecognised code.

Logical shift right (LSR)
LSR has the effect of moving the bit pattern one place to the right.

Examples:
LSR A will shift the bit pattern in the accumulator right.
LSR &0DFF will shift the contents of address &0DFF to the

right.

Suppose the present accumulator contents are 0110 1000. After
LSR A, the accumulator would then contain 0011 0100.

The arithmetical significance is the opposite to ASL because it
halves, rather than doubles a number. As in ASL, there is a hidden
danger if LSR is used for a divide by two exercise. If a ‘I’ is spilled
out of the register or location at the right-hand end, the arithmetical
result is invalid. For example, if the original contents are 0000 0011
(decimal 3) and we shift right, the result would be 0000 0001 (decimal
1). Again, we can use the carry bit to test if this happens because it is
effectively attached to the right-hand end of the register or location.
Incidentally, why the shift right operation is called ‘logical’, rather
than ‘arithmetical’, is due to the position of the carry in the scheme of
things. It is natural for the carry to be at the most significant end,
which indeed it is in the case of ASL. In LSR, the carry is at the least
significant end which is ‘illogical’ from the arithmetic viewpoint -
perhaps this is why the boffins call it logical! Yes, I find it confusing,
too, but then I am not a boffin.

Rotate left (ROL)

ROL is still a shift left kind of operation but there is an end-around
loop connection so that bits which are shifted beyond the carry
position are reinserted at the least significant end. Unlike a normal
shift, the bit patrern is never lost, it merely circulates. The carry bit is
within the loop.

Logical Instructions and BCD Format 105

Example:
Assume existing contents of accumulator and
carry were: 1 0001 1100
After ROL A, the contents would be: 00011 1001

If, for example, you wanted to clear the left-hand nibble in a byte
and replace it with the right-hand nibble the procedure could be a
two-part one. First AND mask the left nibble to 0000 and then four
ROL operations. This could have been achieved by four ASL
operations but it is a question of individual taste. A better example
for ROL action is the concept of a rotating ‘I’, which is often useful
in the area of user port devices.

Rotate right (ROR)
ROR is identical, except in direction, to ROL. Bits entering the
carry bit at the right are re-inserted at the left.

Example:
Assume existing contents of accumulator and
carry were: 1 0001 1101
After ROR A, the contents would be: 1 1000 1110

Practical use of Rotate

Although ROL or ROR can be used for various trick effects,
particularly by programmers with cunning minds, they are most
useful in the input/output areas. Suppose the user port is connected
to a set of eight separate devices and it is required to energise them
one at a time in a sequential fashion from right to left (Isb first, msb
last). This can be achieved by causing a ‘I’ to rotate around the
system. This assumes that a device is switched ON by a | and
switched OFF by a 0. Strangely, depending on the logic circuitry
which energises the device, the exact opposite may apply so it is
worth digressing for a moment to examine the relationship between
ON and OFF when applied to logic devices.

Devices which are switched ON by applying a ‘0’ to the control
input are said to be active low because, in a two-state system, the
individual states are referred to as the HIGH state and the LOW
state. A HIGH means a ‘high’ voltage although in practice this will
be somewhere near 5 volts. A LOW, on the other hand, is a voltage
near zero volts. Relating these relative values of voltage to our
binary I’s and 0’s, the convention is:

Binary 1 is the HIGH state.
Binary 0 is the LOW state.

106 Discovering BBC Micro Machine Code

Returning now to our original problem of switching devices
sequentially (one at a time) it can now be seen that one of the
following procedures must be chosen:

(a) If the devices are active low, we must cause a ‘0’ to rotate round
the data register. We start with every bit a 1.

(b) If the devices are active high, we must cause a ‘1’ to rotate round
the data register. We start with every bit a ‘0’.

Study the following, which illustrates the two methods of attack:

(a) Assuming active high devices:

LDA #&00 (Place all 0’s in output)

STA DATA REGISTER

SEC (Place 1 in carry)
.BACK ROL DATA REGISTER

BCC BACK

The data register starts empty with all devices OFF but thereisa lin
the carry position. On the first rotate left, this carry bit is passed into
the Isb position of the data register and the device connected to this
position is energised. The C-bit is now clear.

Subsequent ‘rotates’ cause the solitary 1 to move progressively up
the register towards the msb end, switching on each device
momentarily on the way. The end of loop test causes a branch back
while the C-bit remains 0. Finally, the bit from the msbis caught by the
C-bit and the loop exits. Thus there is one complete cycle of device
activity before the loop terminates.

(b) Assuming active low devices

LDA #&FF (Place all ‘I’sin output)

STA DATA REGISTER

CLC (Place ‘0’ in carry)
.BACK ROL DATA REGISTER

BCS BACK

This time, the data register starts ‘full-up’ but no active low deviceis
working. The only ‘0’ in the system is in the carry position. The first
‘rotate’ causes the ‘0" in the C-bit to pass into the register which
switches the first device ON and a 1 at the far end is pushed into the
carry. Thus the ‘0’ travels along the register, switching each device on
in turn until it finally enters the carry position. At this point, the loop
exits because the test this time is Branchif Carry Set (instead of clear).

The coding shown is only to illustrate the procedure and is not

Logical Instructions and BCD Format 107

suitable in the present form forenteringinto the machine. A complete
program must, of course, prepare the data register for behavingasan
output by initialising the direction register withall ‘I’s. Also, the use of
the symbolic operand (DATA REGISTER) would require prior
assigning to the address & FE60. There is an additional factor, which
has not been taken into consideration so far — speed. Suppose the
devices in question were simple lamps and we expected that the
previous program/s would enable ustoseealightappearingto ‘travel’
along, The result would be disappointing because there would be
nothing visible happening. The speed of thecomputerinswitchingthe
bank of lights sequentially is about four orders of magnitude faster
than the human eye can perceive. Thus the burst cycle would be over
before we could release the RETURN key. In all programs which
energise external devices of ‘brute force’ dimensions like lamps,
motors, robots or any form of logic-controlled machinery there may
be some kind of ‘time’ interface to compensate for the differences in
response time. The simple way toslowdownthe computeris by means
of a delay loop, which could be spliced straight into the program or,
alternatively, called as a subroutine.

Problems with the C-bit

Acommon bug, often difficult to find in assembly coding, istoforget
that the C-bit (and indeed most other bitsinthe PSR)isautomatically
updated after most of the instruction codes. This can cause problems
when testing the result of the C-bit because you could be testing it in
the wrong place. For example, in the previous twoexamples of ROL,
it may be thought thata delay subroutine could beinserted toslowthe
process down. Unfortunately, the state of the C-bit could very well
have been altered by the subroutine causing the BCS or BCC test at
the bottom to be based onincorrectinformation. This could very well
cause an infinite-loop situation. It is easy t savethe C-bitatitscurrent
value by pushingthe PSR onthe stack with PHP and retrievingit with
PLP.

Examples to illustrate logic codes
Example 6.3 is a simple exercise in the shift left operation. Any

number, subject to the limited capacity of a single-byte result, entered
atline 30 will be printed out at line 120. The machine codeis onlythree

108 Discovering BBC Micro Machine Code

18 REM EXAMPLE 6.3 ASL

20 CLS

28 INPUT"Enter a rnumber "N%
40 7%A0FF=HY%

58 PYu=%0002

68 C

79 LDA 28DFF
80 ASL %A0FF
ad RTS

108 1

118 CALL &R2DAg
128 PRINT"After ASL,4our number iz now
" 72.0DFF

¥RUN

Enter a number 33

abea

ap2a Al FF oD LDR &A0FF

PUB3 AE FF aD ASL &ADFF

ALRe &9 RTS

After ASL.sour number is now 66

Example 6.3. Use of Shift Left.

lines and because there are no branch forward operations, it is not
necessary to pass twice through the assembler. The program should
be tried out with various input numbers. If we assume the byte is
unsigned integer, the largest number which gives a valid result will be
127 as input; the result being 254. However, if you try inputting 128,
the result is 0. This is understandable if the bit pattern for 128 is
written out as:

1000 0000 (128 in unsigned integer form)

After ASL, the msb is shifted into the C-bit position, leaving 0000
0000 in the location.

Example 6.4 is similar in structure but allows practice with the
effects of ROL. The carry is set in line 70 in order to observe its
influence on the result. During the example run, 8 was entered and,
if it weren’t for the carry, the effect of ROL would be to double it to
16. But the answer given by line 130 is 17 due to the carry circulating
into the Isb position. You should try several different inputs to prove
that, subject to the limitations of a single byte result, the program is
producing 2N+1.

Example 6.5deals with ROR. Again, thecarry is setin order to see

Logical Instructions and BCD Format 109

10 REM EXAMPLE 6.4 ROL

29 CLS

38 INPUT"Enter a number "N%
42 7RODFF=N%

%0 P%=80000

60 L

70 SEC

80 LDA &2DFF
99 ROL &QDFF
100 RTS

118 1

129 CALL %@Daa
130 PRINT"After ROL,sour number iz now

" 700FF

YRUH

Enter a number 8
aDR9

p0BA 38 SEC

A021 AD FF 2D LDA %@DFF

004 2E FF @0 ROL %BDFF

20?7 €0 RTS

After ROL.your number is now 17
Example 6.4. Use of Rotate Left.

its effect on the result. After ROR, the carry is pushed into the msb
position which is worth 128 in unsigned binary integer format. So, if
0 is entered, the result is 128. The example run shows that 5 was
entered, producing the result of 130 so we had better find out if this is
reasonable:

carry bit
Before ROR 1 0000 0101 (5)
After ROR 1 1000 0010 (130)

Note that the carry starts at 1 but, because the Isb was rotated into
the carry position, it is still at 1 after ROR.

The exclusive-or operation (EOR) can be used to produce the
logical complement of a byte:

Number 0110 1101
Logical complement 1001 0010 (all bits reversed state)

This can be achieved by ‘exclusive-oring’ with all the I's because you
will remember from previous work that any 1 in the EOR mask
pattern will reverse the corresponding bit of the number. However,
if an extra | is added afterwards, the result is the two’s complement.

110 Discovering BBC Micro Machine Code

16 REM EXAMPLE 6.5 ROR

20 CLS

30 INPUT"Enter a number "H%
40 7%BDFF=N%

59 PYx=80DR0

62 L

79 SEC

g0 LDR &QDFF
99 ROR %ODFF
10@ RTS

1192 1

128 CALL #2099
139 PRINT"After ROR,vour number is now

" TRODFF

»RUN

Enter 3 number S
a0pea

oDog 38 SEC

2021 RD FF BD LDR &@DFF

P024 €E FF @D ROR &ADFF

PDA7 €09 RTS

After EOR,your number is now 130

Example 6.5. Use of Rotate Right.

Example 6.6 shows the effect of EOR #&FF on any number
entered. The number 33 apparently turns into 222 which we can
check as follows:

Number 0010 0001 (33)
FF mask 1111 1111 (FF hex)
Result 1101 1110 (DE hex=222 decimal)

It may be of interest to those who found Chapter 2 stimulating, to
use this example to prove the two’s complement version.

The result above is the logical or one’s complement and by adding
I the two’s complement is obtained as follows:

1101 1110
add 1
result 1101 1111 (DF hex)

Now this is a negartive number if we consider it as a two’s
complement number rather than an unsigned integer and is
representing —33 decimal. From this, it appears that if it is required
to change N into —N, or vice versa, the coding lines would be:

Logical Instructions and BCD Format 111

LDA Number
EOR #&FF
ADC #1

18 REM EXAMPLE £.& EQR

28 CLS

30 IMPUT"Enter a number "NX
68 TRBDFF=NX

70 Px=40009

80 C

=) LDR &ODFF
100 EOR #4&FF
119 STR S@DFF
129 RTS

120 1

148 CALL #9098
152 PRINT"After EOR #FF,wour number is
now " TRADFF

#RUN

Enter a number 33

uin]sl

@aped AL FF @D LDR 2@DFF

2083 49 FF EOR #&FF

a02sS 80 FF 2D STA %@LFF

008 69 RTS

After EOR #FF,wour vumber is now 222

Example 6.6. Use of Exclusive Or,

Itis well to emphasise here that a number in any register or memory
location has the significance which the programmer attributes to it.
If the programmer wants it to be considered as a two's complement
number then the V-bit (overflow) in the PSR is meaningful. Ifitis to
be considered an unsigned binary integer, the PSR can be ignored.
Referring back to our example, whether we consider the ‘answer’ is
222 decimal or —33 decimal is entirely up to us!

Binary Coded Decimal (BCD)
There is still another way of representing numbers which, on

occasions, may be useful. It is called BCD for short and relies on a
sharp division of a byte into two four-bit nibbles.

112 Discovering BBC Micro Machine Code

Consider the following pattern:
1001 0111

In unsigned binary this means 151 decimal. In two’s complement it
means —107 decimal, but in BCD it means 97 decimal. The nibbles
are independent of each other and are read as separate four-bit
patterns; the high-order nibble is 9 and the low-order 7. The decimal
digits 0 to 9 are written as simple binary 0000 to 1001. The six
combinations 1010 to 1111 are illegal in BCD.

Troubles arise because of these illegalities if we try to add some
numbers in BCD format. Some examples will show up the problem:

(a) Add 5to 23 0000 0101 (5)
0010 0011 (23)
0010 1000 (28)
This result is correct and legal in BCD.
(b) Add 8 to 23 0000 1000 (8)
0010 0011 (23)
0010 1011 Illegal result

The lower order nibble is an illegal combination in BCD. However,
a strange but relatively simple dodge can be used to legalise the
result:

If the result contains illegal nibbles, add six.
To test this, refer back to the previous result:

Illegal result 0010 1011
Add 6 0000 0110
Result 0011 0001 Legal BCD for 31

So the procedure for adding BCD numbers would appear to be:

Test if either nibble of the result is illegal.
If so, add a further six.

This works because there are six illegal patterns after 1001. This is
clearly a tiresome procedure but the 6502 micro has a powerful and
rather unusual op-code called SED which handles all this
automatically, SED means Set Decimal Mode and causes a | to be
set in the D-bit position in the PSR. Once this is set, the micro will
assume that the arithmetic codes ADC and SBC are intended to
operate with numbers in BCD format, making the necessary
adjustments to avoid illegal results.

Logical Instructions and BCD Format 113

Once the D-bit is set, it will remain set until cancelled with CLD
which means Clear Decimal mode. It is important to clear the
decimal mode before you start on another program or you will get
very strange results. Example 6.7 is a simple exercise to illustrate
BCD addition. There are several pitfalls in using BCD which, unless
you study the example closely, might cause trouble if you write your
own programs. In the first place, itisimportant to realise that illegal
codes entered are not automatically corrected by the SED action.
All SED does is to correctly adjust the results of an addition to BCD
- it will not correct illegals before ADC operates. Thus, when you
enter the numbers, they must be single digits in the range 0to 9. The
program is sprinkled with remarks but the flowchart of Figure 6.4
should help in following the coding.

10 REM EXAMPLE 6.7 ARDDING IN BCD
15 REM XONLY SINGLE DIGIT NUMBERSX
20 INPUT"Enter first number "N1i%
30 INPUT"Enter second number "N2%
49 INPUT"Enter third number "N3%
5@ 7%ODF1=N1%

€0 7&%A0F2=H2%

7@ 74BDF3=N3%

80 Px=%0000

99 C

1992 ELE

11@ SED \Set BCD mode

129 LDA #@

139 ADC &ADFI1vadd the numbers
140 ADC %&BDF2

150 ADC &BDF2

1£2 PHA Ngave RAcc

170 AMD #&OF “clear hioh nibble
180 STA &Q0F4~low digit result
159 PLA \get Acc back

2008 LSR A

219 LSR A \shift hisoh nibble
220 LSRR A

239 LSR A

249 STA 4BDFS\high digit result
250 RTS

268 1

272 CALL %6009
289 PRINT"BCD sum iz "7?%@DF35;78QA0F4

114 Discovering BBC Micro Machine Code

»RUN

Enter first rnumber 9
Enter second number 8
Enter third number 7

2000
epea
apa1
ave2
204
ape?
pDAA
2020
90OE

apia
2013
abid4
ap1s
Die
ap17

18
F8
A9
&0
&0

&0 F2 9D

48
29

80
€8
4
4R
4R
4/

20
F1 @D
F2 a0

aF
F4 @D

a012 80 FS aD
aD1B 6@
BCD sum is

Example 6.7. Adding in BCD format.

CLC

SED “Set BCD mode

LDR #9

ADC &ODF1-add the numbers
ADC a@DF2

ROC %@DF3

FHR “gave Ace

AND #50F sclear high nibble

STA KADF4N1low digit result
PLA “get Ace back

LSR A

LSR R “shift high nibble
LSR A

LSR A

STA &BDFINhish digit result
RTS
24

Logical Instructions and BCD Format 115

Clear Carry
Set Dec mode.

Clear Acc.

Add the
numbers

Save Acc on
stack.

Mask out
high nibble.
Store.

Get Acc
from stack.

I

Shift high
nibble into
low nibble.

|

Store high
nibble.

Print high
low digit (BASIC)
result

Fig. 6.4. Flowchart for Example 6.7.

116

Discovering BBC Micro Machine Code

Summary

Logical instructions are used for bit rather than byte processing.
They have op-codes AND,EOR,ORA,ASL,LSR,ROL.ROR.
AND is used to clear bits to ‘0, ORA to set bits to ‘1’and EOR is
used to change bits.

The user port is positioned within a band of addresses known as
SHEILA.

The data register communicates with the outside world via 8 data
lines and has the address & FE60. The direction register has the
address & FE62 and is used to define which data lines are input
and which output.

Shift and rotate instructions are used to shuffle bits along the
register or memory location, the C-bit acting as the ninth bit.
To change the state of all bits, use EOR #&FF.

BCD format treats each nibble separately; the highest decimal
value allowed in each nibble is 9. The highest number in a byte is
therefore 99 decimal.

To cause the arithmetic unit to add or subtract in BCD, the D-bit
in the PSR must be set by using SED.

SED will only initiate correct BCD addition and subtraction if the
operands contain no illegal patterns (above 1001).

Chapter Seven
Programming Guidelines

Mental attitude

Programming in BASIC is often a relaxing pastime. So much power
appears available with such little effort because each statement
triggers off a large number of hidden machine code instructions. It is
rather like building a house from pre-fabricated walls and roof. The
advantage of pre-fabrication is the relative ease and simplicity of
erection; the disadvantage is the limitation imposed on the design.

Machine code, even with the aid of the assembler, is a slow
painstaking operation due to the building-brick level of each
instruction. Each line of assembly code produces only one line of
machine code but the program can be structured with freedom and
individuality apart from the occasional employment of OSWRCH,
OSRDCH, etc. However, it is essential to cultivate the right mental
attitude toward machine code programming. Until confidence is
gained, which will take some time, the most formidable enemy is
frustration. When you write a program in BASIC it may not work
first time; if you write it in machine code it almost certainly will not
work first time ... or the second or indeed the n'" time in many cases.
You are fighting the machine with its own weapons which are little
more than flint axes and cudgels! The examples in this book, simple
as they are, were no exception. In fact, only two of them behaved
themselves first go but I have survived years of frustration. I seem to
have reached the stage of feeling slightly disappointed if the first run
is errorless! The great thing to remember is that grappling with the
machine is essentially a learning process. Every time you clear a bug
you have learned just a little more about the workings of the
microprocessor which, after all, is the central processor of the
computer.

118 Discovering BBC Micro Machine Code
De-bugging orgies

Fault symptoms are conveniently classified into the following neat
categories:

(a) Nothing happens at all.

(b) Something is happening but completely different to what was
intended.

(c) The program nearly works as intended.

Category (a), in which nothing happens at all, is often the easiest of
the error situations. That is to say, the bug or bugs which cause it are
often trivial and easily spotted. The following are some of the more
likely causes:

Forgetting to set P% before entering the assembly bracket area.

® Forgetting to CALL up the machine code.

® Forgetting RTS at the end.

® If the program was located by using DIM, it is possible that you
have underestimated the number of bytes used.

@ CALL with an incorrect address.

® Using one pass through the assembler instead of two.

Category (b) is also fairly easy to correct, perhaps due to:

® Use of STA with a wrong address causing a crash into an
operating system area.

® The address could be correct as far as the digits go but perhaps ‘&’
has been missed out, or inserted in error.

® Using the wrong branch code, say BNE instead of BEQ or BPL
instead of BMI.

® Branch label in the wrong place.

® Using one of the registers without saving the original contents
before use.

® Using the stack in the incorrect order - it should be last-in first-
out.

Category (c) is often the most frustrating of all the error conditions,
making it difficult to think up reasonable causes. However, try:

® Carry bit not cleared before addition or not set before
subtraction.

® One outin a loop count - forexample, forgetting that zero to four
is in reality five counts not four.

® Mixing up immediate addressing with absolute addressing.

® Assuming a register is zero whenin fact it starts with garbage in it.

Programming Guidelines 119

Mixing up DEX with DEY in a loop. This one is quite common.
Forgetting the +127 and —128 limits of two’s complement.
Forgetting the 255 limit on unsigned integers.

Failing to realise that an overflow condition is not an error as far
as the microprocessor is concerned. It is up to you to test the V bit
with BVS or BVC.

® Forgetting to clear decimal mode flag with CLD after use. The
subroutines OSWRCH, OSWORD, etc. will not operate while the
D bit remains set.

The assembler error messages will help, of course, but not to the
same extent as we may be used to under the BASIC interpreter. It
may be that the program is failing because of a bug in one tiny
segment. It is often possible to nail down the offending line or lines
by short-circuiting the suspect segment with a temporary JMP to the
next segment. The program obviously won’t be fully operational
but, allowing for the inactive lines, it may be possible to locate the
troublesome area.

It is quite common to misjudge the dividing line between the
program lines and the data storage locations. Programs use data so
it is natural that data is stored somewhere. If the storage locations
have been haphazardly addressed, it is possible for the data to be
deposited within the program area instead of outside it. The
program is then corrupted by its own data. Wherever possible, data
should be placed at the end of the program. You can get into a
frightful mess if data and program lines are intermingled.

Although the above suggestions may be helpful, by far the most
likely faults in the early stages are the result of careless input,
particularly mistakes in absolute machine addresses. There will be a
tendency to stick to decimal addresses because of familiarity, but
effort should be made to stifle this inclination. After all, hex code is
as natural to machine code addressing as decimal is to counting and
arithmetic. If you use decimal numbers for addressing, you are
increasing the chance of error due to the conversion process. All the
operating system subroutines in the User Guide are addressed in hex
and it is pointless converting these to decimal.

Allocating resources

Is there any point in writing a complete program in machine code? |
think the answer to this depends to some extent on your

120 Discovering BBC Micro Machine Code

temperament. It is certainly satisfying to the ego if a lengthy and
complex program is written entirely in machine code. There is
satisfaction in overcoming enormous odds - the Everest complex is
present in most of us. However, overcoming difficulties just for the
sake of overcoming them may be a desirable trait but seldom
justifiable in terms of energy conservation. To restrict yourself to
machine code will certainly demand a deal of mental energy, much
of it expended in re-inventing the wheel.

The BBC Micro, perhaps more than any other machine available
in its price bracket, appears to be designed deliberately to encourage
a healthy mix between BASIC and machine code. Because of this, it
iIs wise to optimise the resources available. There are several
recognisable software tools in the machine. There is the standard
BASIC language with its fairly advanced vocabulary, the set of
powerful VDU statements, the operating system *FX statements,
the machine code subroutines such as OSWRCH,OSRDCH,
OSBYTE,OSWORD, etc. and the standard 6502 machine code
repertoire. It seems to me to be quite pointless to use machine code
in situations where BASIC lines can perform the particular sub-task
without observable speed penalties. It is equally pointless to write
your own machine code for tasks which are already catered for by
the built-in machine code subroutines. Unless you are very
experienced (in which case this book is not for you) you would be
hard pressed to improve on OSWRCH or the other subroutines
available.

Because the BBC system is so flexible it is easy to stick to BASIC
but, wherever it 1s found wanting, leave it temporarily to activate a
machine code splice and return again. In fact, it is not a bad idea to
write the complete program in BASIC first and get it working. After
this, it can be carefully scrutinised for time bottlenecks and the
offending area earmarked for subsequent conversion to machine
code. Apart from speed penalties, it may sometimes be more
economical to use BASIC as far as memory economy is concerned.
For example, I see little point in using machine code to output
messages on the screen. The actual ASCII codes can, of course, be
placed into chosen absolute addresses but the procedure to put them
there might just as well be achieved with BASIC. To use the ‘right
tools for the job’ is as true in software engineering as in nut and bolt
engineering. Machine code can certainly give you enormous speed
and power if it is used correctly and in its proper place.

Programming Guidelines 121
BASIC structures and the machine code equivalents

Because BASIC is so well known, particularly amongst home
enthusiasts, it is a good plan to be able to reproduce in machine code
some of the familiar statements. This may be putting the cart before
the horse but at least you will be treading on familiar ground. Some
may argue that such a procedure is arguing in a circle. Why try to
imitate BASIC with machine code? If BASIC is so slow, what is the
point of writing machine code equivalents - won’t they be equally
slow? Such arguments, however, are based on a mistaken idea as to
the prime cause of BASIC’s slow speed reputation. All BASIC
statements are translated to machine code but, due to the interpreter
action, they must be translated each time they are run. If, however,
they are simulated by our own machine code subroutines, they are in
a direct form for immediate running. Once they have been
assembled they are ready for use.

The following examples may be found useful for those who are
familiar with BASIC since they are reasonable equivalents in
machine code to the BASIC statements. The line numbers given are
purely arbitrary, as are the labels and variable names. They are not
complete programs and obviously cannot be run as they stand. They
are, however, simple frameworks upon which useful programs can
be designed. Be careful with the size of numbers because of the
limitation on single byte working.

Assigning a constant to a variable:
BASIC example: Machine code equivalent:
10 Speed = 30 10 LDA #30
20 STA Speed

Assigning variables:

BASIC example: Machine code equivalent;
I0S=B 10 LDA B
20 STA S
Addition of a constant:
BASIC example: Machine code equivalent:
I0S=S+4 10 CLC
20 LDA S
30 ADC #4

40 STA S

122 Discovering BBC Micro Machine Code

Subtraction of a constant:

BASIC example:
10S=S8-25

Machine code equivalent:
10 SEC

20 LDA S

30 SBC #25

40 STA S

Mixed addition and subtraction:

BASIC example:

I0S=S+V-3

Doubling a number:
BASIC example:
10 S = 2*S

Expressions with parenthesis:

BASIC example:

10 S=4*%K + 3)

Incrementing by 1:
BASIC example:
I0S=S+1

Decrementing by 2:
BASIC example:
S=8=2

Calling a subroutine:

BASIC example:

10 GOSUB line
100 RETURN

Machine code equivalent:
10 LDA S

20 CLC

30 ADC V

40 SEC

50 SBC #3

60 STA S

Machine code equivalent:
10 ASL S

Machine code equivalent:
10 LDA K

20 CLC

30 ADC #3

40 ASL A

50 ASL A

60 STA S

Machine code equivalent:
10 INC S

Machine code equivalent:
10 DEC S
20 DEC S

Machine code equivalent:
10 JSR label
100 RTS

Programming Guidelines 123

Clearing graphics:
BASIC example: Machine code equivalent:
10 CLG 10 LDA #16

20 JSR OSWRCH

Clearing text:
BASIC example: Machine code equivalent:
10 CLS 10 LDA #12
20 JSR OSWRCH

Printing text:
BASIC example: Machine code equivalent:
10 MESSAGE = 10 LDX #0
“DANGER” 20 .BACK LDA MESSAGE,X

30 JSR OSWRCH
40 INX
50 CPX #6
60 BNE BACK

Note: The machine code shown depends on certain initial actions
carried out in BASIC. Thus, we must use the string indirection
operator to store the ASCII codes of the text: MESSAGE=
“DANGER” and ensure that the text is located at the end of the
program by setting MESSAGE=P% + n, where n is the number of
bytes in the machine code program or a conservative estimate.

Wait for space key:

BASIC example: Machine code equivalent:
10 K$ = GETS 10 .BACK JSR OSRDCH
20 IF K$ = “” THEN 20 CMP #32

GOTO 10 30 BNE BACK

Note: 32 is ASCII for space

Respond within 2 seconds:

BASIC example: Machine code equivalent:
10 CITY$S = INKEY$(200) 10 LDX #200

20 LDY #0

30 LDA #&81

40 JSR OSBYTE

124 Discovering BBC Micro Machine Code

Loop structure (advancing by 1):

BASIC example: Machine code equivalent:
10 FOR S=1TO 50 10 LDX #1
20 .BACK ...
100 NEXT .
100 INX
110 CPX #51
120 BNE BACK
Loop structure (advancing by n):
BASIC example: Machine code equivalent:
10 FORS=0TO 20
STEP 2 10 LDX #0
20 .BACK ...
100 NEXT ;
100 INX
110 INX
120 CPX #22
130 BNE BACK
Loop structure (reducing by 1):
BASIC example: Machine code equivalent:
10 FOR S= 50 TO 1
STEP —1 10 LDX #50
20 .BACK ...
100 NEXT .
100 DEX

110 BNE BACK

Programming Guidelines 125

Loop Structure (reducing by nj:

BASIC example: Machine code equivalent:;
I0FORS=10TO 1
STEP -2 10 LDX #10
20 .BACK ...
100 NEXT :
100 DEX
110 DEX
120 BNE BACK
Loop structure with variable:
BASIC example: Machine code equivalent:
IOFORS=1TOBLOGS 10 LDX #1
20 .BACK ...
100 NEXT ;
100 INX
110 CPX BLOGS+1
120 BNE BACK

Note: BLOGS must be a number greater than 1 but less than 128.

Loop structure with two variables:

BASIC example: Machine code equivalent:
IOFORS=NTOZ 10 LDX N
20 .BACK ...
100 NEXT :
100 INX
110 CPX Z+1
120 BNE BACK

Nore: Z must be greater than N and both must be greater than I but
less than 128.

126 Discovering BBC Micro Machine Code

Loop structure with decreasing variable:

BASIC example: Machine code equivalent:
IO FORS=NTO I
STEP —1 10 LDX N
20 .BACK ...
100 NEXT ;
100 DEX
110 BNE BACK
Loop structure with two variables:
BASIC example: Machine code equivalent:
IDFORS=NTOZ
STEP —1 10 LDX N
20 .BACK ...
100 NEXT :
100 DEX
110 CPX Z

120 BNE BACK

Conditional to zero test:

BASIC example: Machine code equivalent:
10 IF S = 0 THEN
GOTO 200 10 LDA S

20 BEQ FORWARD

200 ... ;
100 . FORWARD ...

Conditional to not-zero test:

BASIC example: Machine code equivalent:
10 IF S<> 0 THEN
GOTO 200 10 LDA S

20 BNE FORWARD

200 ;
100 . FORWARD ...

Programming Guidelines

Conditional to negative test:

BASIC example: Machine code equivalent:
10 IF S< 0 THEN
GOTO 200 10 LDA S

20 BMI FORWARD

200 ’
100 . FORWARD

Conditional to greater than zero test:

BASIC example: Machine code equivalent:
10 IF S> 0 THEN
GOTO 200 10 LDA S

20 BEQ FORWARD
30 BPL FORWARD

200
100 FORWARD

Conditional to positive test:

BASIC example: Machine code equivalent:
10 IF S> 0 THEN
GOTO 200 10 LDA S

20 BPL FORWARD

200 ;
100 . FORWARD

Change variable on positive test:
BASIC example: - Machine code equivalent:
IFS>=0THENK=Z I10LDAS
20 BPL FORWARD
30 LDA Z
40 STA K

100 .FORWARD ...

127

128 Discovering BBC Micro Machine Code

Increment variable on negative test:

BASIC example: Machine code equivalent:
I0IFS<O0THENK =
K+1 10 LDA S
20 BMI FORWARD
30 INCK
100 .FORWARD ...

Change sign of variable on zero test:
BASIC example: Machine code equivalent:
I0IFS=0THENK=-K I10LDA S
20 BNE FORWARD
30 LDAK
40 EOR #&FF
50 CLC
60 ADC #1
70 STA K

100 .FORWARD ...

Note: Changing the sign means to replace with two’s complement, so
we reverse all the bits and add 1.

Conditional comparison test:

BASIC example: Machine code equivalent:
10 IF K= Z THEN
GOTO 500 10 LDA K
20 CPM Z

30 BEQ FORWARD

500 ;
100 .FORWARD

Programming Guidelines

Comparison to constant test:
BASIC example: Machine code equivalent:

10 IF S =25 THEN K =

K-G 10 LDA S
20 CMP #25
30 BNE FORWARD
40 LDA K
50 SEC
60 SBC G
70 STA K

100 .FORWARD ...

Comparisons with AND connective:

BASIC example: Machine code equivalent:
I0IFS=5AND K= 23
THEN GOTO 500 10 LDA S
20 CMP #5
30 BNE NOTEQ
. 40 LDA K

500 50 CMP #23
60 BEQ FORWARD
70 .NOTEQ ...

100 .FORWARD ...

Comparisons with OR connective:

BASIC example: Machine code equivalent;
IDIFS=50RK=23
THEN GOTO 500 10 LDA S
20 CMP #5
30 BEQ FORWARD
: 40 LDA K
500 50 CMP #23

60 BEQ FORWARD

100 . FORWARD ...

129

130

Sound a short beep:
BASIC example:
10 VDU 7

Move cursor down one line:

BASIC example:
10 VDU 10

Move cursor up one line:
BASIC example:
10 VDU 11

Forward cursor one space:
BASIC example:
10 VDU 9

Backward cursor one space:

BASIC example:
10 VDU 8

Turn on printer:
BASIC example:
10 VDU 2

Turn off printer:
BASIC example:
10 VDU 3

Discovering BBC Micro Machine Code

Machine code equivalent:
10 LDA #7
20 JSR OSWRCH

Machine code equivalent:
10 LDA #10
20 JSR OSWRCH

Machine code equivalent:
10 LDA #11
20 JSR OSWRCH

Machine code equivalent:
10 LDA #9
20 JSR OSWRCH

Machine code equivalent:
10 LDA #8
20 JSR OSWRCH

Machine code equivalent:
10 LDA #2
20 JSR OSWRCH

Machine code equivalent:
10 LDA #3
20 JSR OSWRCH

Programming Guidelines 131

The software multiway switch:

BASIC example: Machine code equivalent:
100N S GOTO 100,200,300 10 JSR OSRDCH
. 20 CMP #1
100 ... 30 BEQ DESTI
. 40 CMP #2
200 ... 50 BEQ DEST2
; 60 CMP #3
300 ... 70 BEQ DEST3
100 .DESTI ...
200 .DEST2 ...
300 .DEST3 ...

Indirection operators

Page 409 of the User Guide is concerned with rather frightening
information on indirection operators. The word itself is distinctly
unfriendly but its meaning is benign. The only trouble is the
tendency to confuse it with indirect addressing which has an entirely
different meaning.

An indirection operator is used when machine addresses are used
to locate variables instead of leaving the operating system to arrange
it automatically. For example, when we write in BASIC the line, A
= 25, it is the operating system in the background which decides
where to store the number 25 and how many bytes to use for it. In
fact, although 25 is only a small number which is easily
accommodated in a single storage byte, it will occupy five bytes
because the variable ‘A’ is recognised by the interpreter as a floating
point variable. Indirection operators allow us not only to choose the
precise storage address but also the number of bytes used. Those of
us who have used other machines, apart from the BBC model, will be
familiar with the keywords PEEK and POKE which were, in fact,
indirection operators although the term was not then used. The BBC

132 Discovering BBC Micro Machine Code

machine version of BASIC does not include PEEK or POKE for
indirection. Instead, the query (?), the pling(!) and the dollar sign($)
are used. I think the term ‘pling’ may be unfamiliar to some readers
(as it was to me before I read the User Guide) but apparently it is the
posh word for the exclamation mark.

The operators have the following significance:

? is used for signifying single byte storage.

!is used for signifying four-byte storage (four bytes is one word
in BBC BASIC).

S 1s used for signifying character strings from 1 to 256
characters.

I found the use of these operators very confusing, having been
weaned on PEEK and POKE, because it is only the position of these
operators which distinguish whether you are peeking or poking.

The byte indirection operator

Some examples follow which show the position of the byte
indirection operator. BLOGS = ?2&0DFF will place the contents of
address &0DFF into the variable BLOGS. This is the same as
BLOGS = PEEK (&0DFF) in other BASICs. In contrast,
?7&0DFF = BLOGS will place the contents of the variable BLOGS
into the address &0DFF. This is the same as POKE &0DFF,
BLOGS in other BASICs.

It is often required to input a variable from the keyboard and
place it into one of the registers. There are several ways of doing this
but they all involve byte indirection. It is often more convenient, and
certainly easier, to use the normal INPUT statement in BASIC to
input the variable because a prompt message is almost mandatory,
After the variable has been entered, it can be transferred by an
indirection operator into a machine address and subsequently
loaded by machine code into the accumulator by LDA or in the X
register by LDX. The following illustrates the procedure:

100 INPUT“ENTER MISSILE VELOCITY IN Km/sec”
SPEED

110 ?&0DFF = SPEED :REM BYTE INDIRECTION

120

130 LDA &0DFF

It is, of course, the responsibility of the keyboard operator to ensure

Programming Guidelines 133

that the number entered for velocity is within the capacity of a single
byte. A good programmer, of course, would include some kind of
input validation loop to guard against improper magnitudes but to
include such detail in our examples would appear so much trivia.

The word indirection operator

The BBC machine uses four bytes to hold BASIC integers. Torelate
this to machine code the word indirection operator is used in the
following manner. BLOGS = !&0DF0 would place a four-byte
length number into BLOGS from the consecutive memory addresses
&0DFO0,&0DF1,&0DF2 and &0DF3. The lowest significant
byte is always the one stated in the operand (in this case &0DFO).
The following example may help in the understanding.
Assume the contents of the four locations to be:

&0DFO0 = 34
&0DF1 = 57
&0DF2 = B5
&0DF3 = 04

If we write PRINT BLOGS, we shall see a very large number,
878163204, and not the expected result. This is because the BASIC
line PRINT BLOGS always converts everything to decimal. To
confirm that nothing is amiss, use that funny little sign called the
tilde. PRINT~BLOGS will cause the printout to be in hex. It will be
&3457B504 if nothing has gone wrong.

The above description confirms that BLOGS = !&0DFO is the
four-byte equivalent of the byte indirection operator, equivalent to
PEEK in other BASICs. The equivalent to POKE, using the same
numerical addresses and variable names would be written:
1&0DF0 = BLOGS. This would put the number defined by the
variable BLOGS into the four consecutive addresses &0DFO,
&0DF1,&0DF2 and &O0DF3, the least significant digits in
&0DFO.

The string indirection operator
It might be as well to remind you that the term ‘string’ in BASIC is

used when referring to any character on the keyboard, such as the
letters and punctuation marks as well as figures (although arithmetic

134 Disscovering BBC Micro Machine Code

processes cannot be carried out when figures are in string form). A
collection of characters is also called a ‘string’ and the dollar sign is
well known as the defining operator. Thus a string variable such as
BLOODS$ can hold a string of characters such as the word
“Haemoglobin”. Note that the dollar sign is at the end of the variable
- a very important point.

The string indirection operator also uses the dollar sign but at the
beginning of the variable.

Example: $&0D00 = “Haemoglobin”. Now what exactly will this
do?

It will place each individual character (in ASCII form) into a
consecutive block of addresses, the first letter ‘H’ going into the
quoted address &0D00, the next letter ‘a’ into &0DO0! and so on,
until the final ‘n’ goes into &0DOA. This, the string indirection
operator provides us with a very convenient tool for inserting
messages or general text into machine locations. The following few
lines show how text can be safely passed by BASIC into a machine
address block:

100 INPUT“ENTER YOUR NAME "Name$
100 $&0D00 = Name$

Of course, if the person at the keyboard happens to have one of
those long hyphenated names preceded by imposing titles there
could be a byte shortage in memory. Remember that string
indirection can handle up to 256 characters in one string. If text of
this order is to be handled, it is well to use the space above BASIC
for the machine code, using the DIM method. Here is an example:

100 DIM SPACE 500
110 $SSPACE = “BLOOD”

The machine code area is given the starting address SPACE. We
don’t need to know the absolute hex address where the SPACE area
starts because it is the responsibility of the operating system. Line
110 is the string indirection statement. Try typing PRINT $SPACE.
You will get the word BLOOD on the screen. Now try typing
PRINT ?SPACE and you will get the number 66 on the screen. This
may appear mysterious until you realise that ?SPACE is the order to
print the contents of the starring byte of the block SPACE. Since the
text was BLOOD, it should print the ASCII for the first letter (B)
which is 66. It is appreciated that much of this material is BASIC
rather than machine-oriented but the BBC assembler is unique in

Programming Guidelines 135

having a close relationship with the interpreter. It would be pointless
to use a lengthy block of STA immediate type instructions to store
the ASCII code for each letter of text when it is so convenient to use
the strong indirection operator. After all, the indirection operators
are intended for machine code interaction so it is not really cheating
to take advantage of them. Finally, it is worth drawing attention
once more to the possible confusion which may arise regarding the
position of the dollar sign. It is so easy to mix up normal string
variable names with indirection operators, thus:

BLOGSS is a normal string variable.
$BLOGS is using the string indirection form.

Speed considerations

Relative to BASIC, all machine code programs or segments of
programs will be fast but some will be faster than others. When you
are in the initial learning phase of machine code writing it is
understandable that subtleties of coding will not play a large partin
program construction. Getting a program to work at all is the
overriding aim in the first few weeks or months. Nevertheless, it is
worth delving into the principles governing program speed. It is
mainly a question of keeping the coding within a loop as short as
possible. Loops, by their very nature are the worst speed offenders
because the same set of lines must be executed many times. Because
of this, it obviously pays to make adequate preparations before
entering a loop. Any operations which can be executed prior to loop
entry will prevent those annoying delays. This advice is, of course,
applicable to BASIC or any high-level language as well as machine
code. There are, however, certain little rules which apply exclusively
to machine code. Some of these are now discussed.

Effect of instruction cycles

Not all instructions take the same time to execute. The fundamental
speed of any computer is determined by a quartz crystal which
stabilises the frequency of the master timing pulses which are taken
to various parts of the system. As mentioned in a previous chapter,
the crystal frequency in the BBC machine is two million pulses per
second (2 MHz in electronic engineering terms), The time for one

136 Discovering BBC Micro Machine Code

clock pulse is therefore half a microsecond (0.5 uS) and this time is
termed one clock cycle. It is convenient to express the speed of an
individual instruction in terms of clock cycles - the more clock cycles
required, the slower is the instruction execution time.

The manufacturers of the 6502 microprocessor publish, in the
data sheets, the number of clock cycles required by each instruction.
In fact, the data sheets are drenched with masses of data and one
glance is enough to frighten the stoutest heart away from the subject.
Too much detailed information in the early stages of any subject
achieves the opposite of the effect intended. For this reason, a list of
instruction clock cycles is not given in this book. Rough guidance
can be more helpful than detail.

It would be very nice if we could say, for example, that LDA takes
2 clock cycles and that is the end of it. Unfortunately, this is not the
case because the addressing mode used in the operand must be taken
into consideration. In fact it is the addressing mode chosen which is
the primary factor in determining the number of clock cycles.
Wherever possible, use register to register transfers for temporary
storage because no operand is required; the addressing is implied.
This brings us to the first rule when choosing an addressing mode:

When choosing an addressing mode use implied addressing
wherever possible.

Implied addressing, such as TAX,TXA,TYA etc. require only 2
clock cycles. For example, in the design of loops, try to use X or Y as
the loop counter because DEX,DEY or INX or INY can be used to
change the loop variable. Unfortunately, the accumulator cannot be
incremented or decremented with an implied address mode: there is
no INA or DEA. The only way would be to subtract I (or add 1)
using immediate addressing which, although still only taking 2 clock
cycles, will require one extra instruction to set or reset the carry as
appropriate.

Apart from implied addressing, other instructions require an
operand. The quickest addressing mode in the op-code-plus-operand
type of instruction is immediate, which as we have just seen, takes
only 2 clock cycles. There is, of course, a kind of penalty associated
with this addressing mode - the operand must be a numerical
constant. Evenifitisan ASCII character code, it is still a constant so
it must be restrictive in many applications. Whilst on the subject of
constants, it is important to realise that all constants, even those

Programming Guidelines 137

written in decimal, are converted by the assembler into the
corresponding hex code. Although we have frequently used decimal
operands in our examples it is worth steeling yourself to use hex
wherever possible when writing machine code. Although it is an
unfamiliar notation, if you stick at it you will benefit in the long run.
It is, after all, the ‘natural’ numbering system in machine code.

Direct, or absolute addressing takes at least 4 cycles, although one
less if the reference is to page zero (0000 to 00FF hex). The shift and
rotate instructions used are rather expensive if carried out on
memory with direct or absolute addressing. They take 6 cycles in
general but 5 if the reference is to page zero. We can, in fact, take this
as a general rule - addresses in page zero will always take one clock
cycle less than in any higher memory address. Unfortunately, not
much of it is free (as we have discovered earlier).

Indexed addressing is powerful but because the index register has
to go through an adding cycle it is understandable that 4 cycles are
required in most instructions but in the case of the shift and rotate
this is increased to 7 cycles.

There is a rather complicated addressing mode called indexed
indirect and another called by a confusingly similar title, indirect
indexed, but you may remember that we agreed to shelve these two
until my second book — Get More From BBC Micro Machine Code.

Troubles with two-byte numbers

There is no denying that working out the correct contents of each
byte, given a large decimal number, is a fiddling task. For example,
it can be quite a problem in the early stages to handle high resolution
graphics in machine code. The graphics screen on the BBC Micro is
considered to be a matrix of pixels 0 to 1279 wide and 0 to 1023 high
which means that, in general, we require to work in two-byte format.
To understand how awkward this can be, try working out how the
number 1000 decimal must be divided into low-byte, high-byte
form. Here is the solution:

1000 decimal is held as 232 in low-byte and 3 in high-byte.

Does this make sense? It does if we realise that the high-byte is worth
256 times as much as the low-byte. To check this, examine the
following working:

138 Discovering BBC Micro Machine Code

3isin the high-byte so is worth 3 X 256 = 768
232isinthe low-byte =232
Collectively, these are worth: 1000

This is the result, but it may not be immediately obvious how it was
arrived at. Using pencil and paper arithmetic, we first divide the
original number 1000 by 256. This gives us 3 with 232 over which
means that the 3 goes in the high-byte and 232 in the low-byte. It may
be helpful to spend an hour or so trying out simple exercises on byte
allocation. There is no need to use pencil and paper when you have
the BBC machine around because on pages 238 and 299 of the User
Guide will be found two most useful aids in the form of DIV and
MOD. They are well described so it is pointless to re-describe them
here. Instead, examine Example 7.1 which is a simple program
written in BASIC which provides good practice material. On
entering a decimal number, it will print out the low-byte, high-byte
forms in both decimal and hex.

18 REM EXAMPLE 7.1

2¢ REM Low-byte,high-bute conversion

20 CLS

48 REPERT

78 INPUT"Enter a number "H

S8 PRIMT"Low bute = " HW MOD 256

7@ FRINT"High bute = " H DIV 256

88 PRIMT

98 PRINT"In hew, these become:"
198 PRINT"Low bute = "~N MOD 256
118 PRIMT"High bute = "~N [IY 256
122 PRIMT

133 UNTIL 2=2
Example 7.71. Converting numbers to two-byte form.
The largest number it can handle is limited by two-byte capacity
which is 65,535 in decimal. On entering this number, the program
will print out:

Low byte = 255
High byte = 255

In hex, these become:

Low byte = FF
High byte = FF

Since the number is FFFF in hex, the binaryequivalentis 1111 1111
LI 111

Programming Guidelines 139

The program is intended for practice but there is an even shorter
cut which exploits the truly remarkable assembler in the machine. It
is possible to use any of the BASIC keywords to modify operands
even within the assembly brackets. We have avoided using this
facility in most of the previous examples because the primary

19
20

248
259
268
278
284
299
320
1@
228
339
342
358
366
3re

REM EXAMPLE 7.2 DRAW LINE
MODE 4

P%=%.0000

OSWRCH=&FFEE

C

LDA #25

JSR DSWRCH

LOA #4

JSR OSUHRCH

LDH # 208 MDD 236
JSE DSWRCH

LDA # 200 DIY 256
JSR OSLRCH

LDA # 20@ MOD 236
JSR OSWRCH

LDR # 260 DIV 236
JSR DSWRCH

LDR #23
JSR OSWRCH

LOA #5

JSR DSURCH

LDA # 12982 MOD 256
JER DSWRCH

LDA 4 102@ DIV 23€
JSR OSWRCH

LDA # 288 MOD 25
JaR OSHRCH

LDR # 208 DIV 25
JSE OSWRCH

Lnl}

Ty

RTE

]

cLs

CALL 2a0ae

32BEHD
Example 7.2. Draw line using MOD and DIV.

140 ODiscovering BBC Micro Machine Code

intention has been to learn machine code techniques. Since this
book is nearing completion there is little point in pursuing restrictive
practices any further. For example, we can include the MOD and
DIV keywords within machine code programs to relieve us of the
tedium of working out the above byte allocation.

Suppose, within a program, we want to draw a line in MODE 4

18 REM EXAMPLE 7.3 RANDOM TRIANGLES
29 MODE 2
3@ REPERT
49 GCOL 9,RNDC 16D
98 P%=80000
€8 OSURCH=LFFEE
79 C
8@ 0OPT @
99 LDA #25
109 JSR OSWRCH
119 LDA #4
128 JSR OSWRCH
120 LA # RNDC 1000 M0 256
148 ISR OSWRCH
150 LDR # RNDC 1802)0IY 256
16@ SR 0SMRCH
172 DR # RND(1080@)MOD 256
188 SR NSWRCH
198 LDA # RMNDC 180230IY 256
298 JER OSWRCH
219 LDA #25
228 JSR DZWRCH
228 LDR #85
242 JSR 0OSWRCH
239 LDR # RMDY 120@ MO0 256
2eR JSR OSWRCH
2728 LDA # RND(16@@°01Y 256
288 ISR 0SWRCH
22 LUA # RNDC 199GIMOD 256
390 ISR OSWRCH
218 LDA # RMDC 10@@)30IY 256
32¢ JSR 0SWRCH
330 RTS
248 7
3@ CALL &e0ee
368 CLG
372 UNTIL 2=3

Example 7.3. Random triangles.

3

Programming Guidelines 141

graphics using the machine code equivalent of PLOT 5,X,Y. From
page 378 of the User Guide we know that this will draw a line from
the last referenced co-ordinates to X,Y. The assembly lines would
take the form:

LDA #5

JSR OSWRCH
LDA #X MOD 256
JSR OSWRCH
LDA #X DIV 256
JSR OSWRCH
LDA #Y MOD 256
JSR OSWRCH
LDA #Y DIV 256
JSR OSWRCH

The complete listing is shown in Example 7.2.

Finally study Example 7.3 which illustrates well how BASIC
keywords can be combined in assembly lines. It draws random
coloured triangles over the screen.

Appendix A

List of 6502 Assembly
Mnemonics

To avoid complication, no distinction is made between ‘page zero’
and absolute addressing.

Mnemonic

Code Action Adressing details
TAX Copy contents of A to X

TXA Copy contents of X to A

TAY Copy contentsof Ato Y

TYA Copy contents of Y to A

INX Add 1to X

INY AddltoY

DEX Subtract 1 from X

DEY Subtract 1 from Y

TSX Copy contents of SP to X

TXS Copy contents of X to SP

PHA Push A onto stack))
PLA Pull A from stack All op-codes in this
PHP Push PSR onto stack section use implicit
PLP Pull PSR from stack addressing. They have
CLC Clear C bit in PSR no operands.

SEC Set C bit in PSR

CLV Clear V bit in PSR

SED Set D bit in PSR

CLD Clear D bit in PSR

SEI Set I bitin PSR

CLI Clear 1 bit in PSR

NOP No operation at all

RTS Return from subroutine

RTI Return from interrupt

BRK Break (stop)

Appendix A 143

Mnemonic
Code Action Addressing details
All op-codes in this

BNE Branch if not equal section use relative

BEQ Branch if equal addressing.

BPL Branch is positive (plus) The operand can be

BMI Branch if negative (minus) an arbitrary chosen

BCC Branch if C=0 label.

BCS Branchif C=1 Branching depends

BVC Branch if V=0 on the result of the

BVS Branch if V=1 previous instruction.

LDA Load A All op-codes in this

ADC Add with carry section use either

SBC Subtract with carry immediate, absolute or

CMP Compare indexed addressing.

AND Perform logical AND Either the X or Y

ORA Perform logical OR register can be used for

EOR Perform logical Exclusive- indexing. All resultsare

OR. in A.

STA Store A As above but without
immediate addressing.

STX Store X Absolute or indexed by
Y addressing

STY Store Y Absolute or indexed by
X addressing

LDX Load X Immediate, absolute or
indexed by Y
addressing.

LDY Load Y Immediate, absolute or
indexed by X
addressing.

CPX Compare X Immediate and absolute
addressing.

CPY Compare Y Immediate and absolute

addressing.

144 Discovering BBC Micro Machine Code

Mnemonic

Code Action Addressing details
ASL Arithmetic shift left These canact on A alone
LSR Logical shift right Oor on memory using
ROL Rotate left absolute or indexed by
ROR Rotate right X addressing.

INC Add 1 to memory Absolute or indexed by
DEC Subtract 1 from memory }X addressing.

BIT Bit test on memory Absolute addressing.
JMP Jump to absolute address .

JSR Jump to subroutine }Absolute addressing.

Appendix B

ASCII Character Codes
(Modes 0-6)

Decimal Hex Character| Decimal Hex Character | Decimal Hex Character
32 20 Space 64 40 @ 96 60 £
33 21 ! 65 4] A 97 61 a
34 22 ” 66 42 B 98 62 b
35 23 # 67 43 C 99 63 c
36 24 $ 68 44 D 100 64 d
37 25 % 69 45 E 101 65 e
38 26 & 70 46 F 102 66 f
39 27 ’ 71 47 G 103 67 g
40 28 (72 48 H 104 68 h
4] 29) 73 49 | 105 69 i
42 2A * 74 4A J 106 6A j
43 2B + 75 4B K 107 6B k
44 2C s 76 4C L 108 6C 1
45 2D - 77 4D M 109 6D m
46 2E : 78 4E N 110 6E n
47 2F / 79 4F O 111 6F 0
48 30 0 80 50 P 112 70 p
49 31 1 81 51 Q 113 71 q
50 32 2 82 52 R 114 72 r
51 33 3 83 53 S 115 73 s
52 34 4 84 54 T 116 74 t
53 35 5 85 55 U 117 75 u
54 36 6 86 56 A% 118 76 v
55 37 7 87 57 w 119 77 w
56 38 8 88 58 X 120 78 X
57 39 9 89 59 Y 121 79 y
58 3A : 90 S5A Z 122 TA z
59 3B : 91 SB] 123 7B f
60 3C < 92 5C \ 124 7C |
61 3D = 93 5D 1 125 7D l
62 3E > 94 5E A 126 7E ~
63 3F ? 95 5F - 127 7F Delete

Appendix C
Where to Locate Machine
Code

FIXED ABSOLUTE ADDRESS BANDS BELOW &E00

Hex addresses Sacrifices

&900-&AFF |Cannot use cassette tape on OPENIN/OPENOUT
(512 locations) |commands.

Cannot use RS423 serial interface.

Normal SAVE and LOAD commands are still usable,

&CO00-CFF | Cannot use programmed characters under the extended
(256 locations) | ASCII codes 223-255 inclusive,

&B00-&BFF | Cannot use the programmable keys.
(256 locations)

&DO00 to &DFF | Quite safe providing disk interface is not used.
(256 locations)

&70-&8F These are page zero locatiaons free from the demands of
(32 locations) |the operating system.

Appendix C 147

DYNAMIC ALLOCATION OF ADDRESS SPACE

Below BASIC:

First type PAGE = PAGE + 256

Then P% = PAGE — 256 (256 locations)
Above BASIC:

First type LOMEM = LOMEM + 250

Then P% = TOP (256 locations)

Type P% = TOP + 1000
(The extra 1000 allows for BASIC dynamic variables which should be
sufficient for most programs)

Type DIM P% N% where N% is the number of bytes to be reserved.

Appendix D
Binary and Hex Summary

Capacity of single byte

® The largest unsigned integer in one byte = FF hex or 255 decimal.

® The largest positive two’s complement number = 7F hex or+127
decimal.

® The largest negative two's complement number = 80 hex or —128
decimal.

® The largest number in BCD format = 99 hex or 99 decimal.

Absolute addresses

® The total address range = 0000 hex to FFFF hex = 0 to 65,535
decimal.

® One page of memory = 256 bytes. Four pages = 1K of memory.

® In the general address &PPZZ, PP is the page and ZZ the address
on the page.

® There are 256 pages in a 64K address map.

® The 6502 stack is situated in page 1, &0100 to &01FF.

Paged ROMs, including the BASIC interpreter, are situated in

pages &80 to &BO0.

® Operating system ROM is situated in pages &CO to &FB.

® Memory mapped input/output is situated in page &FC.

The remainder of the operating system ROM is situated in page

&FF.

Appendix E

Operating System
Subroutines

Objective

Parameter passing

Name Address
OSRDCH &FFEO
OSWRCH &FFEE
OSBYTE &FFF4
OSWORD &FFF1

To read character
from selected input
stream.

Writes character
and/or control codes
to selected output
stream. All VDU
commands can be
driven. (See page 378
in the User Guide)

Produces a variety of
machine operating
system actions. The
*FX commands can
be driven. (See page

Inputs into A.

Outputs from A. If
more than one control
code is required they
must be passed via A
one at a time to
OSWRCH.

First parameter must
be in A, second in X
and third in Y before
calling OSBYTE. X
and Y are set to zero if

418 in theUser Guide.)only one parameter is

Produces more
complex operating
system actions,
requiring many
parameters, such as
sound effects, timers,
elapsed time clock,
pixel colours and dot
patterns. (See page

required.

Control code in A.
Address of parameter
block in X and Y,
low-byte in X.

458 in the User Guide.)

Glossary of Terms

Absolute address: the numerical number identifying an address.

Accumulator: the main register within the microprocessor and the
only one equipped for arithmetic.

Address bus: the 16lines from the microprocessor which activate the
selected memory location or device.

Address: a number which is associated with a particular memory
location. This number can be in decimal or hexadecimal.

ANDgate: a gate which delivers a logic 1 outonlyifallinputsarelogic
L

Anding: using a mask to ensure selected bits become or remain 0.

Assembler mnemonics: a three-letter group uniquely defining an op-
code. ‘

Assembler: a program which converts a program writteninassembly
code to the equivalent machine code.

Base address: the operand address of an indexed instruction.

Base: the number of different characters used in a counting system.
Decimal is base 10, binary is base 2 and hex is base 16.

Bit: one of the two possible states of a binary counting system, | or 0.

Block diagram: a simplified diagram of an electrical system using
interconnected labelled boxes.

Boolean algebra: a strange kind of algebra used by electronic
engineers to handle switching systems (see logic gates).

Byte: a group of 8 bits.

Chip: accepted slang for an integrated circuit.

Compiler: system software which translates a program written in
high-level language into a machine code equivalent. The entire
program is translated before it is run.

Data bus: the 8 lines from the microprocessor which carry thedatato
and from memory or external devices.

Decimal: the normal counting system using thetencharacters0,1,...9.

Glossary of Terms 151

Direct addressing: the operand is a two-byte address as distinct from
zero page addressing which is a single byte address. Also called
absolute addressing.

Disassembler: a program which will display a machine code program
in assembly language. The opposite process to assembly.

Effective address: the sum of the base and relative address.

Exclusive OR gate: a gate whichdeliversalogic 1 onlyiftheinputsare
at different logic states.

Exclusive or-ing: using a mask to ensure selected bits assume the
opposite state.

Firmware: programs already in ROM.

Flag: a single bit used to indicate whether something has happened or
not (see program status register).

Handshaking: atermused to describe the method of synchronisingan
external device to the computer,

Hardware: all the bits and pieces of a computer such as the chips,
circuit board, keys, etc. That which you can see, feel and break!

Hex: see hexadecimal.

Hexadecimal: a counting system using sixteen characters 0,1...9,A,
B,C,D,E,F.

High byte: the most significant half of a two-byte number.

High-level language: a language written in the form of statements,
each statement being equivalent to many machine code instruc-
tions. BASIC is a high-level language.

Immediate addressing: the operand is the data itself rather than an
address.

Implicit address: see implied address.

Implied address: an address which is inherent in the op-code,
therefore requiring no following operand.

Index register: either the X or Y register when used to modify an
address.

Indexed address: anaddress which has beenformed by the addition of
an index register’s contents.

Integer: a whole number without a fraction.

Integrated circuit: a chip containing a number of interconnected
circuits.

Interpreter: system software which translatesand executeseach high-
level language statement separately. BASICis normally interpreted
although compiler versions exist.

Logic gates: electrical circuits which behave as switches. The input
conditions determine whether the switch is ‘open’ or ‘closed’.

Low-byte: the least significant half of a two-byte number.

152 Discovering BBC Micro Machine Code

Low-level language: a series of codesratherthanalanguage,eachline
resulting in one order to the microprocessor.

Isb: the least significant bit in the byte (the rightmost bit).

LSI: large scale integration. Normally taken to mean in the order of
tens of thousands of circuits on a single chip. The 6502 micro-
processor is LSI.

SS1I: small scale integration. Normally taken to mean a few circuits,
often simple logic gates, on a single chip.

Machine code: strictly, this term should be used for instructions
written in binary but is now used loosely to include hex codingand
assembly language.

Mask: a bit pattern used in conjunction with either AND, EOR or
ORA to act on selected bits within a byte.

Microprocessor: the integrated circuit which is the central processor
or ‘brain’ of the computer. The BBC machine usesthe 6502species.

Mnemonic: code groups chosen so we can memorise them easily.

msh: the most significant bit in the byte (the leftmost bit).

MSI: medium scale integration. Normally taken to mean up to a few
hundred circuits on a single chip.

Nibble: a group of 4 bits.

Nybble: see nibble.

Object code: the translated version of the source code.

One’s complement: anumber formed by changing the state of all bits
in a register.

Op-code: abbreviation for operational code. It is that part of a
machine code instruction which tells the computer what kind of
action 1s required.

Operand: that part of a machine code instruction which gives the data
or where to find the data.

Operating system: the software already in ROM which is designed to
help you use the computer.

OR gate: a gate which delivers a logic 1 out if any one or more inputs
are logic 1.

Oring: using a mask to ensure selected bits become or remain 1.

Page one address: any address within the range 256 to 511 decimal or
0100 to O01FF hex.

PC: see program counter.

Program counter: the only 16-bit register in the 6502. Contains the
address of the next instruction byte.

Program status register: a register containing flag bits whichindicate
if overflow, carries etc. have been caused by the previous
instruction.

Glossary of Terms 153

PSR: see program status register.

Relative address: the contents of the index register.

Resident assembler: an assembler whichisalreadyin ROM whenyou
purchase the machine.

Resident subroutines: those in ROM which you can use, providing
you know their starting address.

ROM: abbreviation for Read Only Memory. Information stored is
permanent even when the power supply is off.

Rotate: similar to shift but any bit pushed out from the carry is
reinserted at the other end.

Shift: to move the bit pattern, one place to the left or right.

Signed binary: the binary system which uses the msb as a sign bit.

Silicon chip: most chips are fabricated from a silicon base although
some of the super-fast modern varieties may be using a mixture of
gallium and arsenic.

Software: general term for all programs.

Source code: the program in its high-level form.

Subroutine: a program segment which will normally have general
purpose use and which can be used in other programs.

Symbolic address: an arbitrary chosen name used in place of the
numerical address. It is only recognised if it has been previously
assigned to this number.

Two pass assembly: passing the source code twice through the
assembler. Essential if branches are to forward addresses.

Two's complement: a number formed by adding 1 to the one’s com-
plement. Used for negative number representation.

Unsigned integer:abinary number without usingthe msbasasignbit.

User port: one of the output sockets which can be used tocontrol your
own special devices.

User subroutines: subroutines which you make up for yourself.

Volatile memory: one which loses all data when powerisinterrupted.

X-register: a general-purpose register which can be used in indexed
addressing.

Y-register: similar to X-register.

Zero page address: any address withintherange Oto 255decimal or 00
to FF hex.

Index

&, 25

absolute addressing, 37
accumulator, 31
active-low, 108

AD conversion, 20
addition, 38

address, 10

address modification, 68
address modifier, 69
analogue computer, 20
AND, 93

assembly code, 11
assignment, 15

base address, 71

BCD, 111

binary, 23

binary coded decimal, 111
bit, 23

bit-6, 60

bit-7, 60
bit-manipulation, 92
bit-test, 60

bit-wise, 95

branch instructions, 47
branch range, 63
bubble sort, 90

byte, 23

byte indirection, 133
byte-operator, 55

character strings, 132
clock, 50

clock cycle, 136
commas, 79
comparisons, 55
control codes, 77
counting, 20

data register, 100

de-bugging, 118
decimal flag, 92
decrement, 50

delays, 66

direction register, 100
DIV, 138

dynamic storage, 87

effective address, 69
Everest complex, 120
Exclusive OR, 95
execution time, 136

flag-bit, 38
floating point variable, 131
flowcharts, 58

hex, 24
hexadecimal, 24
high-byte, 79

illegal codes, 112
immediate addressing, 34
implied addressing, 34
index register, 69
indexed addressing, 69
indirect addressing, 71
indirection operators, 131
initialise, 101

inner-loop, 66

inputs, 101

instruction, 11

labels, 48
last-in-first-out, 43
loading programs, 13
logic, 93

logical complement. 109
logical instructions, 93
low-bye, 79

lower-case, 18
Isb, 26

mask, 94

measurement, 20
memory-mapped, 99
microprocessor, 3
microsecond, 136

mixing machine code, 120
MOD, 138

msb, 26

multi-precision, 28

nibble, 24

odd numbers, 96
op-code, 10
operand, 10
operation code, 10
OPT, 17

ORA, 94
outer-loop, 66
outputs, 101
overflow-bit, 39

page, 85

page zero addresses, 137
page-zero addressing, 45

PEEK, 131

pixel, 137

plot, 141

POKE, 131

process status register (PSR), 39
pure binary, 23

quartz crystal, 135

RAM, 31

register, 31

relative address, 71
relative addressing, 48
remarks (REM), 16
rotate, 102

rotate left, 104

rotate right, 105

Index

saving programs, 12
semicolons, 78

shift, 102

shift-left, 103
shift-right, 104

sign bit, 26
software-switches, 92
speed, 136

stack, 42
stack-pointer, 44
starting address, 84
statement, 12

string, 134

string indirection, 133
structure, 58
subroutine, 14, 63
subtraction, 40
swop, 90

symbolic labels, 48
symbolic operand, 14

tilde operator, 55
transfer, 33

Tube, 71

two-byte form, 79
two-pass assembly, 50
two's complement, 24
two-state, 21

unconditional branch, 61
unconditional jump, 61
unsigned binary, 27
upper-case, 18
user-port, 99
user-subroutine area, 84

V-bit, 39
vDuU, 77
VIA, 100

word, 83
word indirection, 133

X-register, 31

Y-register, 31

155

t GET MORE SPEED AND POWER FROM YOUR BBC MICRO!

Understanding machine code opens up the way to a
| whole new experience in computing. Fascinating effects
g ccldunalinpreinusbnlarean rboud Moecoraerposinine.

Sooner or later all micro users feel the need for some

‘ A P Stephenson has a long and distinguished record as
oagiter no, plectrnoice nodroonnutinafoe the aothsinst.,,
‘ He is a regular contributor o the more popular computin

=Eae s sp TR BES AMISr oo e e r BTy e O
Mmoo I

	Discovering BBC Micro Machine Code_page_0001.jpg
	Discovering BBC Micro Machine Code_page_0002.jpg
	Discovering BBC Micro Machine Code_page_0003.jpg
	Discovering BBC Micro Machine Code_page_0004.jpg
	Discovering BBC Micro Machine Code_page_0005.jpg
	Discovering BBC Micro Machine Code_page_0006.jpg
	Discovering BBC Micro Machine Code_page_0007.jpg
	Discovering BBC Micro Machine Code_page_0008.jpg
	Discovering BBC Micro Machine Code_page_0009.jpg
	Discovering BBC Micro Machine Code_page_0010.jpg
	Discovering BBC Micro Machine Code_page_0011.jpg
	Discovering BBC Micro Machine Code_page_0012.jpg
	Discovering BBC Micro Machine Code_page_0013.jpg
	Discovering BBC Micro Machine Code_page_0014.jpg
	Discovering BBC Micro Machine Code_page_0015.jpg
	Discovering BBC Micro Machine Code_page_0016.jpg
	Discovering BBC Micro Machine Code_page_0017.jpg
	Discovering BBC Micro Machine Code_page_0018.jpg
	Discovering BBC Micro Machine Code_page_0019.jpg
	Discovering BBC Micro Machine Code_page_0020.jpg
	Discovering BBC Micro Machine Code_page_0021.jpg
	Discovering BBC Micro Machine Code_page_0022.jpg
	Discovering BBC Micro Machine Code_page_0023.jpg
	Discovering BBC Micro Machine Code_page_0024.jpg
	Discovering BBC Micro Machine Code_page_0025.jpg
	Discovering BBC Micro Machine Code_page_0026.jpg
	Discovering BBC Micro Machine Code_page_0027.jpg
	Discovering BBC Micro Machine Code_page_0028.jpg
	Discovering BBC Micro Machine Code_page_0029.jpg
	Discovering BBC Micro Machine Code_page_0030.jpg
	Discovering BBC Micro Machine Code_page_0031.jpg
	Discovering BBC Micro Machine Code_page_0032.jpg
	Discovering BBC Micro Machine Code_page_0033.jpg
	Discovering BBC Micro Machine Code_page_0034.jpg
	Discovering BBC Micro Machine Code_page_0035.jpg
	Discovering BBC Micro Machine Code_page_0036.jpg
	Discovering BBC Micro Machine Code_page_0037.jpg
	Discovering BBC Micro Machine Code_page_0038.jpg
	Discovering BBC Micro Machine Code_page_0039.jpg
	Discovering BBC Micro Machine Code_page_0040.jpg
	Discovering BBC Micro Machine Code_page_0041.jpg
	Discovering BBC Micro Machine Code_page_0042.jpg
	Discovering BBC Micro Machine Code_page_0043.jpg
	Discovering BBC Micro Machine Code_page_0044.jpg
	Discovering BBC Micro Machine Code_page_0045.jpg
	Discovering BBC Micro Machine Code_page_0046.jpg
	Discovering BBC Micro Machine Code_page_0047.jpg
	Discovering BBC Micro Machine Code_page_0048.jpg
	Discovering BBC Micro Machine Code_page_0049.jpg
	Discovering BBC Micro Machine Code_page_0050.jpg
	Discovering BBC Micro Machine Code_page_0051.jpg
	Discovering BBC Micro Machine Code_page_0052.jpg
	Discovering BBC Micro Machine Code_page_0053.jpg
	Discovering BBC Micro Machine Code_page_0054.jpg
	Discovering BBC Micro Machine Code_page_0055.jpg
	Discovering BBC Micro Machine Code_page_0056.jpg
	Discovering BBC Micro Machine Code_page_0057.jpg
	Discovering BBC Micro Machine Code_page_0058.jpg
	Discovering BBC Micro Machine Code_page_0059.jpg
	Discovering BBC Micro Machine Code_page_0060.jpg
	Discovering BBC Micro Machine Code_page_0061.jpg
	Discovering BBC Micro Machine Code_page_0062.jpg
	Discovering BBC Micro Machine Code_page_0063.jpg
	Discovering BBC Micro Machine Code_page_0064.jpg
	Discovering BBC Micro Machine Code_page_0065.jpg
	Discovering BBC Micro Machine Code_page_0066.jpg
	Discovering BBC Micro Machine Code_page_0067.jpg
	Discovering BBC Micro Machine Code_page_0068.jpg
	Discovering BBC Micro Machine Code_page_0069.jpg
	Discovering BBC Micro Machine Code_page_0070.jpg
	Discovering BBC Micro Machine Code_page_0071.jpg
	Discovering BBC Micro Machine Code_page_0072.jpg
	Discovering BBC Micro Machine Code_page_0073.jpg
	Discovering BBC Micro Machine Code_page_0074.jpg
	Discovering BBC Micro Machine Code_page_0075.jpg
	Discovering BBC Micro Machine Code_page_0076.jpg
	Discovering BBC Micro Machine Code_page_0077.jpg
	Discovering BBC Micro Machine Code_page_0078.jpg
	Discovering BBC Micro Machine Code_page_0079.jpg
	Discovering BBC Micro Machine Code_page_0080.jpg
	Discovering BBC Micro Machine Code_page_0081.jpg
	Discovering BBC Micro Machine Code_page_0082.jpg
	Discovering BBC Micro Machine Code_page_0083.jpg
	Discovering BBC Micro Machine Code_page_0084.jpg
	Discovering BBC Micro Machine Code_page_0085.jpg
	Discovering BBC Micro Machine Code_page_0086.jpg
	Discovering BBC Micro Machine Code_page_0087.jpg
	Discovering BBC Micro Machine Code_page_0088.jpg
	Discovering BBC Micro Machine Code_page_0089.jpg
	Discovering BBC Micro Machine Code_page_0090.jpg
	Discovering BBC Micro Machine Code_page_0091.jpg
	Discovering BBC Micro Machine Code_page_0092.jpg
	Discovering BBC Micro Machine Code_page_0093.jpg
	Discovering BBC Micro Machine Code_page_0094.jpg
	Discovering BBC Micro Machine Code_page_0095.jpg
	Discovering BBC Micro Machine Code_page_0096.jpg
	Discovering BBC Micro Machine Code_page_0097.jpg
	Discovering BBC Micro Machine Code_page_0098.jpg
	Discovering BBC Micro Machine Code_page_0099.jpg
	Discovering BBC Micro Machine Code_page_0100.jpg
	Discovering BBC Micro Machine Code_page_0101.jpg
	Discovering BBC Micro Machine Code_page_0102.jpg
	Discovering BBC Micro Machine Code_page_0103.jpg
	Discovering BBC Micro Machine Code_page_0104.jpg
	Discovering BBC Micro Machine Code_page_0105.jpg
	Discovering BBC Micro Machine Code_page_0106.jpg
	Discovering BBC Micro Machine Code_page_0107.jpg
	Discovering BBC Micro Machine Code_page_0108.jpg
	Discovering BBC Micro Machine Code_page_0109.jpg
	Discovering BBC Micro Machine Code_page_0110.jpg
	Discovering BBC Micro Machine Code_page_0111.jpg
	Discovering BBC Micro Machine Code_page_0112.jpg
	Discovering BBC Micro Machine Code_page_0113.jpg
	Discovering BBC Micro Machine Code_page_0114.jpg
	Discovering BBC Micro Machine Code_page_0115.jpg
	Discovering BBC Micro Machine Code_page_0116.jpg
	Discovering BBC Micro Machine Code_page_0117.jpg
	Discovering BBC Micro Machine Code_page_0118.jpg
	Discovering BBC Micro Machine Code_page_0119.jpg
	Discovering BBC Micro Machine Code_page_0120.jpg
	Discovering BBC Micro Machine Code_page_0121.jpg
	Discovering BBC Micro Machine Code_page_0122.jpg
	Discovering BBC Micro Machine Code_page_0123.jpg
	Discovering BBC Micro Machine Code_page_0124.jpg
	Discovering BBC Micro Machine Code_page_0125.jpg
	Discovering BBC Micro Machine Code_page_0126.jpg
	Discovering BBC Micro Machine Code_page_0127.jpg
	Discovering BBC Micro Machine Code_page_0128.jpg
	Discovering BBC Micro Machine Code_page_0129.jpg
	Discovering BBC Micro Machine Code_page_0130.jpg
	Discovering BBC Micro Machine Code_page_0131.jpg
	Discovering BBC Micro Machine Code_page_0132.jpg
	Discovering BBC Micro Machine Code_page_0133.jpg
	Discovering BBC Micro Machine Code_page_0134.jpg
	Discovering BBC Micro Machine Code_page_0135.jpg
	Discovering BBC Micro Machine Code_page_0136.jpg
	Discovering BBC Micro Machine Code_page_0137.jpg
	Discovering BBC Micro Machine Code_page_0138.jpg
	Discovering BBC Micro Machine Code_page_0139.jpg
	Discovering BBC Micro Machine Code_page_0140.jpg
	Discovering BBC Micro Machine Code_page_0141.jpg
	Discovering BBC Micro Machine Code_page_0142.jpg
	Discovering BBC Micro Machine Code_page_0143.jpg
	Discovering BBC Micro Machine Code_page_0144.jpg
	Discovering BBC Micro Machine Code_page_0145.jpg
	Discovering BBC Micro Machine Code_page_0146.jpg
	Discovering BBC Micro Machine Code_page_0147.jpg
	Discovering BBC Micro Machine Code_page_0148.jpg
	Discovering BBC Micro Machine Code_page_0149.jpg
	Discovering BBC Micro Machine Code_page_0150.jpg
	Discovering BBC Micro Machine Code_page_0151.jpg
	Discovering BBC Micro Machine Code_page_0152.jpg
	Discovering BBC Micro Machine Code_page_0153.jpg
	Discovering BBC Micro Machine Code_page_0154.jpg
	Discovering BBC Micro Machine Code_page_0155.jpg
	Discovering BBC Micro Machine Code_page_0156.jpg
	Discovering BBC Micro Machine Code_page_0157.jpg
	Discovering BBC Micro Machine Code_page_0158.jpg
	Discovering BBC Micro Machine Code_page_0159.jpg
	Discovering BBC Micro Machine Code_page_0160.jpg
	Discovering BBC Micro Machine Code_page_0161.jpg

