
VISUAL DISPLAYS

91

UNION JACK
by David Stonebanks

This program produces a whole series of representa-
tions of the Union Jack with various aspect ratios.
The display is colourful and eye-catching, and gives
a good demonstration of the quality of Electron
graphics.

Pressing the spacebar during the running of the
program will freeze the display at the end of the
frame in progress. Pressing the spacebar again will
release it.

The flags are drawn by the procedure PROCunion-
jack, which calls two further procedures PROC box
and PROCdiag. The program lines 170-370 sequence
through the range of sizes and shapes of the flag, and
the multi-flag display. On each occasion the height
(vsize) and width (hsize) of the flag are set before
calling PROCunionjack. Note the use of VDU29 in
lines 160 and 340 to change the graphics origin (see
User Guide p.113), and so print the flag off-centre.

 10 REM Union Jack
 20 REM by D.Stonebanks
 30 REM BEEBUG

92

VISUAL DISPLAYS

 40 REM VERSION P 1.0
 50 :
 100 ON ERROR ON ERROR OFF:MODE 6:REPORT:PRINT" at
 line ";ERL:END
 110 REPEAT
 120 MODE 1
 130 VDU23,1,0;0;0;0;:REM delete cursor
 140 black=0:red=1:blue=2:white=3
 150 VDU19,blue,4;0;
 160 VDU29,640;512;:REM set graphics
 170 FOR hsize=5 TO 60 STEP 10
 180 vsize=hsize:REM square
 190 PROCunionjack
 200 PROCdelay(100)
 210 NEXT hsize
 220 CLS
 230 FOR hsize=5 TO 60 STEP 10
 240 FOR vsize=5 TO 60 STEP 10
 250 PROCunionjack
 260 PROCdelay(100)
 270 NEXT vsize
 280 CLS
 290 NEXT hsize
 300 CLS
 310 hsize=10:vsize=10
 320 FOR X=160TO1200 STEP 320
 330 FOR Y=100 TO 900 STEP 200
 340 VDU29,X;Y;:REM move graphics origin
 350 PROCunionjack
 360 NEXT Y
 370 NEXT X
 380 PROCdelay(200)
 390 UNTIL FALSE
 400 END
 410 :
 1000 DEFPROCunionjack
 1010 PROCbox(blue,12,8)
 1020 PROCdiag(white,9,8,-12,-6,12,8,-12,-8)
 1030 PROCdiag(white,12,8,-12,-8,12,6,-9,-8)
 1040 PROCdiag(white,-9,8,-12,8,12,-6,12,-8)
 1050 PROCdiag(white,-12,8,-12,6,12,-8,9,-8)

93

VISUAL DISPLAYS

 1060 PROCdiag(red,10.5,8,0,1,12,8,0,0)
 1070 PROCdiag(red,0,0,-12,-8,0,-1,-10.5,-8)
 1080 PROCdiag(red,0,0,-12,8,0,-1,-12,7)
 1090 PROCdiag(red,0,0,12,-8,0,1,12,-7)
 1100 PROCbox(white,2,8)
 1110 PROCbox(white,12,2.5)
 1120 PROCbox(red,1,8)
 1130 PROCbox(red,12,1.5)
 1140 IF INKEY-99 THEN REPEAT UNTIL NOT INKEY-99:RE
PEAT UNTIL INKEY-99
 1150 ENDPROC
 1155 :
 1160 DEF PROCbox(colour,halfx,halfy)
 1170 GCOL0,colour
 1180 MOVEhalfx*hsize,halfy*vsize:MOVE-halfx*hsize,
halfy*vsize
 1190 PLOT85,halfx*hsize,-halfy*vsize:PLOT85,-halfx
*hsize,-halfy*vsize
 1200 ENDPROC
 1205 :
 1210 DEFPROCdiag(colour,x1,y1,x2,y2,x3,y3,x4,y4)
 1220 GCOL0,colour
 1230 MOVEx1*hsize,y1*vsize:MOVEx2*hsize,y2*vsize
 1240 PLOT85,x3*hsize,y3*vsize:PLOT85,x4*hsize,y4*v
size
 1250 ENDPROC
 1260 DEFPROCdelay(t)
 1270 T=TIME+t:REPEAT UNTIL TIME>T
 1280 ENDPROC

ELLIPTO
by S. Wilkinson

This is a relatively short program which produces
varied patterns by plotting a succession of filled
ellipses of random size. The ellipses have the same
centre, so the pattern is gradually built up using so-
called 'exclusive or' plotting (achievedwith the

94

VISUAL DISPLAYS

GCOL 3,1 statement in line 160 -- see User Guide
p.153). At the start of the program you can choose
between modes 0 and 4 for the display.

 10 REM Ellipto
 20 REM by S.Wilkinson
 30 REM BEEBUG
 40 REM VERSION P 1.0
 50 ON ERROR GOTO 290
 60 MODE 6
 70 PRINT
 80 REPEAT:CLS
 90 PRINT'''TAB(12);"E L L I P T O"''TAB(12);"by
S.Wilkinson"
 100 INPUTTAB(0,15)"Mode 0 or Mode 4 :"M%
 110 UNTIL M%=4 OR M%=0
 120 MODE M%
 130 IF M%=0 M%=2
 140 VDU23,1,0;0;0;0;
 150 VDU29,640;512;
 160 GCOL3,1
 170 C%=RND(7)*16+16
 180 FORA=16 TO 512 STEP C%
 190 FORB=16 TO 512 STEP C%

95

VISUAL DISPLAYS

 200 L%=-A
 210 MOVEL%,0:DRAW-L%,0
 220 FOR Y%=4 TO B STEP4
 230 X%=A/B*SQR(B*B-Y%*Y%)/M%:X%=X%*M%
 240 MOVE X%,Y%:DRAW -X%,Y%
 250 MOVE X%,-Y%:DRAW -X%,-Y%
 260 NEXT Y%
 270 NEXT,
 280 A=GET:CLS:GOTO170
 290 ON ERROR OFF
 300 MODE6:IF ERR=17 END
 310 REPORT:PRINT" at line ";ERL
 320 END

SQUARE DANCE
by Martin Richards

This program displays a series of explanding and
contracting rectangles which change colour during
the course of execution. The actual form of the

96

VISUAL DISPLAYS

patterns is random so that re-runs will display
different pattenrs. Some patterns repeat after a while,
whilst others appear to keep on changing, giving an
interesting display of coloured graphics.

The commands GCOL and VDU19 (see User
Guide p.97 and 102) are used to good effect in pro-
ducing the many colours generated. Some interesting
fringe patterns are also produced if you watch the
output on a monochrome TV, especially if you try it
in MODE 1.

Program analysis
Line 80 Gets rid of the cursor.
Line 90 Puts the graphics origin at the centre

of the screen.
Line 100 Selects the initial height and width of

the rectangle.
Line 110 Selects the speed at which the sides

are to change.
Line 120 Selects the initial colour.
Line 130 to 200 Main Loop (press ESCAPE to stop).
Line 140 to 160 Draws any particular rectangle.
Line 170 Chooses the next width and height.
Line 180 If rectangle is too wide then change

direction and colour.
Line 190 If rectangle is too high then change

direction and logical colour.

 10 REM Square Dance
 20 REM by M.Richards
 30 REM BEEBUG
 40 REM VERSION P 1.0
 50 :
 60 ON ERROR GOTO 210
 70 MODE 1
 80 VDU23,1,0;0;0;0;
 90 VDU29,640;510;
 100 X=0:Y=0
 110 DX=RND(50):DY=RND(50)
 120 C=RND(3)
 130 REPEAT
 140 GCOL 3,C
 150 MOVEX,Y:DRAW-X,Y:DRAW-X,-Y
 160 DRAWX,-Y:DRAWX,Y

97

VISUAL DISPLAYS

 170 X=X+DX:Y=Y+DY
 180 IFABS(X)>640 THEN DX=-DX :C=RND(3)
 190 IFABS(Y)>510 THEN DY=-DY:VDU 19,RND(3),RND(7
);0;
 200 UNTIL TRUE=FALSE
 210 ON ERROR OFF:MODE 6
 220 REPORT :PRINT" @ line ";ERL
 230 END

SCREENPLAY
by I. Bell

This program shows the speed of the Electron's
graphics and the ease and speed of the Assembler. It
runs in mode 2 and uses all 16 colours. To continue
drawing each picture simply press the space bar.

This program will run in any mode, and to do this
just change the value of mode in line 60, and also set
NC to the number of colours available in that mode,
for example:

 60 MODE 1:NC=4

98

VISUAL DISPLAYS

 10 REM Screenplay
 20 REM by I.Bell
 30 REM BEEBUG
 40 REM VERSION P 1.0
 50 :
 60 MODE 2:NC=16
 70 VDU23,1,0;0;0;0;:P%=&2F00
 80 [OPT0
 90 .ST LDX#0:STX&70:LDX#&30:STX&71:LDX#0
 100 .HERE LDA&70:STA(&70,X):INC &70:BNE HERE
 110 INC &71:LDY &71:CPY#&80:BNE HERE:RTS
 120]
 130 CALL ST
 140 REPEAT
 150 VDU19,RND(NC)-1,RND(8)-1,0,0,0
 160 REPEAT UNTIL GET=32
 170 UNTIL FALSE

99

VISUAL DISPLAYS

3-D Rotator
by James Hastings

'3-D Rotator' enables shaes to be drawn in three
dimensions and then viewed from any angle.

Data statements define the object to be drawn.
These statements are easily set up, as they are the X,
YZ co-ordinates of the 'corners' of the objects. Once
these are entered and the program is run, a front
view is displayed in mode 4 graphics. The object
may then be rotated about any axis or viewed from
nearer or further simply by pressing one of 8 keys.
The program will only draw and rotate objectsmade
up from straight lines, but there is no apparent limit
to the complexity of the 'wire-frame' objects
generated.

100

VISUAL DISPLAYS

How to use the program
The main program starts from line 100 so that earlier
lines can be used for data statements defining objects
to be developed later. The data statements on lines 7
to 12 define a 3-D cube.

Run the program. You should see a cube, viewed
from one side. The cube may now be moved using
the following keys:

(a) Cursor keys LEFT and RIGHT rotate around the Y
axis.

(b) Cursor keys UP and DOWN rotate around the X
axis.

(c) 'RETURN' and the ':' key (left of RETURN key)
rotate around the Z axis.

(d) '<' and '>' reduce and increase the size of the
object.

This provides the ability to view from any point,
including actually from within the object itself. The
program always draws all the lines of the object
concerned as if it were a wire frame.

Creating a new 2-D object
Designing your own shape is very easy. To stat with
let us consider how to draw a simple square in 2
dimensions. (The program will also draw and dis-
play 2-D objects in a 3-D field of vision.)

Take a piece of paper (graph paper is best), and
draw a large cross in the middle. This will represent
the X and Y axes upon which we will sketch the
object, in this case a square. Now draw a large
square with the cross at its centre. Number the
corners of the square anti-clockwise, from 1 to 4,
starting with the top right corner as 1.

We now need to work out the X, Y and Z co-
ordinates of the square. Let's assume for convenience
that the length of each side of the square is 1000
units.

This makes the X and Y co-ordinates of point 1 . . .
500,500. As the object is flat (we are only drawing it
in 2-D), the Z co-ordinate will be 0.

101

VISUAL DISPLAYS

So the co-ordinates of point 1 are 500,500,0 (co-
ordinates are always given in the order X, Y, Z).

Similarly those of point 2 are -500,500,0

Point 3's are -500,-500,0

Point 4's are 500,-500,0

We can now compose the data statements for the
program. These will be inserted into the program on
any line numbers up to 990 and will replace those in
the program listed here on lines up to 990. The
program requires information in the following
format.

1. Number of 'corners', following by the X, Y and Z
co-ordinate of each 'corner'.

2. Number of lines to be drawn, followed by the
'corner numbers' which they should join.

This may sound complicated but is in fact very
straight-forward. The number of corners in our
square is obviously 4 and we have worked out the
co-ordinates already, so the first data statement will
read:

 70 DATA 4,500,500,500,-500,500,0,-500,-500,0,500,
-500,0

The number of lines is also 4. If you look at the
sketch you will see that we have numbered the
corners from 1 to 4. The lines of the square go from
point 1 to point 2, point 2 to point 3, point 3 to point
4, and point 4 to point 1. This is all that is required
for the second data statement, which we can now
write.

 120 DATA 4,1,2,2,3,3,4,4,1

That's all there is to it. These two lines, 70 and 120,
should replace the data statements in the program
listed below on lines 70, 80 and 120. The actual line
numbers are irrelevant as long as they are below
1000. Type them in and run the program, remem-
bring to check that previous data statements, such as
line 80, have been removed.

102

VISUAL DISPLAYS

How to draw your own 3-D object
To do this we follow exactly the same process as
above, now create an object with depth, eg. a
pyramid. As this is drawn as an extension to a
square, we will be able to use some of the co-
ordinates calculated above.

Take the sketch of the square made earlier and
consider the Z axis . This is at right angles to the
other two axes and can be thought of as extending
from above the paper, through the centre of the cross,
to below the piece of paper. When calculating 3-D co-
ordinates you have the choice of either imagining the
points are not actually on the paper, or attempting to
sketch them using perspective.

To continue with the pyramid, consider its apex,
which we will define, for convenience, at a height of
500 units. This places it exactly over the intersection
of the X and Y axes at a height of 500. Consequently
its co-ordinates will be 0,0,500. If we number the
apex as 'corner' 5, you can see that it will require
lines to be drawn joining it to 'corners' 1,2,3 and 4.
We now have an object with 5 'corners' and 8 lines.
The data statements can therefore be represented as
follows:

103

VISUAL DISPLAYS

(0,0,500)

(500,500,0)

(500,-500,0)

5

3

2

1

4

Z-Axis

X-Axis

Y-Axis

(-500,-500,0)

(-500,500,0)

 70 DATA 5,500,500,0,-500,500,0,
-500,-500,0,500,-500,0,0,0,500

 120 DATA 8,1,2,2,3,3,4,4,1,5,1,
5,2,5,3,5,4

Type in these lines instead of all the other lines up
to 990 and run the program.

If this doesn't make sense to you, compare them
with the data statements calculated above for the
square. Refer also to the picture of the pyramid
accompanying this program in order to see how the
axes would pass through it. The co-ordinates of the
'corners' are also indicated.

 10 REM 3-D Rotation
 20 REM by J.Hastings
 30 REM BEEBUG
 40 :
 50 REM Points data
 60 :
 70 DATA 8,-500,500,500,500,500,500,500,-500,500,
-500,-500,500
 80 DATA -500,500,-500,500,500,-500,500,-500,-500
,-500,-500,-500
 90 :
 100 REM Lines data
 110 :
 120 DATA 12,1,2,2,3,3,4,4,1,1,5,2,6,3,7,4,8,5,6,6
,7,7,8,8,5
 130 :
 1000 ON ERROR GOTO 1180
 1010 MODE 4
 1020 VDU 29,640;512;:VDU23,1,0;0;0;0;
 1030 *FX 4,1
 1040 PROCassembleCLG
 1050 PROCpoints
 1060 PROClines
 1070 distance%=5000
 1080 diststep%=500
 1090 anglestep=PI/16
 1100 REPEAT

104

VISUAL DISPLAYS

 1110 PROC2D
 1120 PROCdraw
 1130 PROCupdate
 1140 PROCrotate
 1150 UNTIL FALSE
 1160 END
 1170 :
 1180 REM Error trap
 1190 MODE6
 1200 IF ERR<>17 REPORT: PRINT " at line "; ERL
 1210 *FX 4,0
 1220 END
 1230 :
 1240 DEF PROCassembleCLG
 1250 REM Fast CLG routine
 1260 DIM P% 25
 1270 [OPT 2
 1280 .clg LDA #0
 1290 LDX #0
 1300 LDY #40
 1310 .loop STA &5800,X
 1320 INX
 1330 BNE loop
 1340 INC loop+2
 1350 DEY
 1360 BNE loop
 1370 LDA #&58
 1380 STA loop+2
 1390 RTS
 1400]
 1410 ENDPROC
 1420 :
 1430 DEF PROCpoints
 1440 REM Dimension point arrays and read in points
 data
 1450 READ points%
 1460 DIM X(points%),Y(points%),Z(points%),X2D(poin
ts%),Y2D(points%)
 1470 FOR count%=1 TO points%
 1480 READ X(count%),Y(count%),Z(count%)
 1490 NEXT count%

105

VISUAL DISPLAYS

 1500 ENDPROC
 1510 :
 1520 DEF PROClines
 1530 REM Dimension line arrays and read in lines d
ata
 1540 READ lines%
 1550 DIM start%(lines%),end%(lines%)
 1560 FOR count%=1 TO lines%
 1570 READ start%(count%),end%(count%)
 1580 NEXT count%
 1590 ENDPROC
 1600 :
 1610 DEF PROC2D
 1620 REM Convert to 2-D
 1630 FOR count%=1 TO points%
 1640 X2D(count%)=X(count%)*2500/(distance%-Z(count
%))
 1650 Y2D(count%)=Y(count%)*2500/(distance%-Z(count
%))
 1660 NEXT count%
 1670 ENDPROC
 1680 :
 1690 DEF PROCdraw
 1700 CALLclg
 1710 FOR count%=1 TO lines%
 1720 MOVE X2D(start%(count%)),Y2D(start%(count%))
 1730 DRAW X2D(end%(count%)),Y2D(end%(count%))
 1740 NEXT count%
 1750 ENDPROC
 1760 :
 1770 DEF PROCupdate
 1780 phi=0: theta=0: psi=0
 1790 REPEAT
 1800 *FX 15,0
 1810 key=GET
 1820 UNTIL key=13 OR key=58 OR key=44 OR key=46 OR
 key=136 OR key=137 OR key=138 OR key=139
 1830 REM Rotate about X axis ?
 1840 IF key=138 THEN phi=anglestep
 1850 IF key=139 THEN phi=-anglestep
 1860 REM Rotate about Y axis ?

106

VISUAL DISPLAYS

 1870 IF key=136 THEN theta=anglestep
 1880 IF key=137 THEN theta=-anglestep
 1890 REM Rotate about Z axis ?
 1900 IF key=13 THEN psi=-anglestep
 1910 IF key=58 THEN psi=anglestep
 1920 REM Change viewing distance ?
 1930 IF key=44 THEN distance%=distance%+diststep%
 1940 IF key=46 THEN distance%=distance%-diststep%
 1950 ENDPROC
 1960 :
 1970 DEF PROCrotate
 1980 IF phi<>0 THEN PROCXrotation
 1990 IF theta<>0 THEN PROCYrotation
 2000 IF psi<>0 THEN PROCZrotation
 2010 ENDPROC
 2020 :
 2030 DEF PROCXrotation
 2040 REM Rotate about X axis
 2050 Cosphi=COS(phi): Sinphi=SIN(phi)
 2060 FOR count%=1 TO points%
 2070 Y=Y(count%): Z=Z(count%)
 2080 Y(count%)=Y*Cosphi-Z*Sinphi
 2090 Z(count%)=Z*Cosphi+Y*Sinphi
 2100 NEXT count%
 2110 ENDPROC
 2120 :
 2130 DEF PROCYrotation
 2140 REM Rotate about Y axis
 2150 Costheta=COS(theta): Sintheta=SIN(theta)
 2160 FOR count%=1 TO points%
 2170 X=X(count%): Z=Z(count%)
 2180 X(count%)=X*Costheta-Z*Sintheta
 2190 Z(count%)=Z*Costheta+X*Sintheta
 2200 NEXT count%
 2210 ENDPROC
 2220 :
 2230 DEF PROCZrotation
 2240 REM Rotate about Z axis
 2250 Cospsi=COS(psi): Sinpsi=SIN(psi)
 2260 FOR count%=1 TO points%
 2270 X=X(count%): Y=Y(count%)

107

VISUAL DISPLAYS

 2280 X(count%)=X*Cospsi-Y*Sinpsi
 2290 Y(count%)=Y*Cospsi+X*Sinpsi
 2300 NEXT count%
 2310 ENDPROC

108

VISUAL DISPLAYS

