graphic art
for the BBC computer

turtle graphics and art

boris allan

Graphic Art for the BBC Computer

First published 1983 by:

Sunshine Books (an imprint of Scot Press Ltd.)
12-13 Little Newport Street,

London WC2R 3LD

Copyright (c) Boris Allan

ISBN 0946408 08 4

All rights reserved. No part of this publication may be reproduced, stored
in a retrieval system, or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording and/or otherwise, without
the prior written permission of the Publishers.

Cover design by Graphic Design Ltd.
Illustration by Stuart Hughes.
Typeset and printed in England by Commercial Colour Press, London E7.

DIGITALLY REMASTERED ON ACORN RISC OS COMPUTERS,
NOVEMBER 2011

To Ruth, Mark, and Maggie

In the dime stores and bus stations. . .

Graphic Art for the BBC Computer

CONTENTS

Page

Artist’s Tools 9

1 Turtle Graphics 19
2 Turtle Geometry 39
3 Turtle Graphics II 53
4 Driving Graphics 67
5 Drawing Charts and Graphs 79
6 Turtle Graphics III 93

7 Generative Graphics 109

Graphic Art for the BBC Computer

Contents in detail

INTRODUCTION
Artist’s Tools

Functions, local and global parameters, procedures with multiple
parameters. The resolution of text and characters in varying modes; pixels
and graphics resolution; text and graphics windows; the use of ‘split
screen’ graphics; the first use of VDU commands; setting the graphics
origin.

CHAPTER 1
Turtle Graphics 1

The drawing of a shape with normal BASIC commands, and problems
therewith; the idea of an intrinsic geometry, dependent upon the internal
structure of a shape; turtle geometry as an intrinsic geometry. The basic
turtle commands MOVE and TURN; Version 1.1 of my Turtle Graphics
routines.

CHAPTER 2

Turtle Geometry

Angles and ratios of sides are the key intrinsic aspects of geometry; the
trigonometrical ratios, sine, cosine and tangent; measuring angles in
degrees and radians. How the turtle graphics routines use trigonometrical
ratios. Drawing regular polygons; an examination of different plotting
styles.

CHAPTER 3
Turtle Graphics II

Modes 1 and 5, the four colour modes; the design of the colours to be used
by multi-coloured turtle graphics. Implementing multi-coloured turtles;

Graphic Art for the BBC Computer

example effects, and the game NORT.

CHAPTER 4

Driving Graphics

The VDU command, and what it is; the reasoning behind ASCII codes;
control codes on computers. Routines to assist in the design of shapes;

saving the character routines as ASCII files; saving and loading user-
designed shapes

CHAPTER 5
Drawing Charts and Graphs

The normal distribution, the Central Limit Theorem; a simulation of
random sampling; the drawing of histograms and frequency polygons,
using graphics windows; the effects of sample size, and number of
categories.

CHAPTER 6
Turtle Graphics III

The square as a special rectangle; modifying turtle graphics to allow
simple sketching of designs; a rectangle is a stretched square, and an
ellipse is a stretched circle.

CHAPTER 7

Generative Graphics

Programming style, creative programming does not follow rules; ideas for
extensions to the work in this book; suggested reading; Cities in Flight.

INTRODUCTION
Artist’s Tools

The science of painting begins with the
point, then comes the fine, the plane
comes third, and the fourth the body in
its vesture of planes. This is as far as
the representation of objects goes.

Leonardo da Vinci, Trattato delta
pittura

This is a book about the BBC computer, and how to use graphics which fit
that machine.

This is not a book about graphics, which then uses the BBC computer
merely as an example of how graphics can be implemented. What is it,
then, that makes the BBC computer so different when we come to discuss
the artistic uses of graphics? Not only is it the way in which its graphics
are implemented; but also, more importantly, it is the way in which the
programming language (BBC BASIC) differs from all other versions of
BASIC on other microcomputers.

The single most important feature of BBC BASIC, and the feature
which has to influence any implementation of any graphics system, is the
ability to use procedures and functions with multiple parameters. This
ability produces a highly effective, yet very compact system of great power
and flexibility.

In this chapter, therefore, I will first discuss just why BASIC on the
BBC computer is so different, then why and how this affects the way in
which we produce a graphics system.

Functions

Suppose we wish to calculate the square root of the number 3, and we wish
to store the value of the square root in a variable called SQUAREROOT.
We can enter a fine in a program such as

1000 SQUAREROOT = SQR(3)

and the value of the square root is then stored in the desired variable.
If we wished to find the square roots of all the values from 1 to 10, we
would use a loop from 1 to 10 and have a line

1000 PRINT SQR(I)

where I was the loop counter (ie FOR I = 1 TO 10). At each time the SQR
function was encountered, the variable I would be replaced by the value

Graphic Art for the BBC Computer

stored there, and the square root calculated. The value stored in I would
not be affected. In jargon, I was called by value and not by name. If a
variable is called by name then it is possible to alter the value stored at that
name: to call by value means that the function only knows about the value
stored, and not the name.

The function SQR has only one parameter (ie there can only be one
input value), so suppose that we need to define a function which will give
the square root of the product of two values. To work out the square root of
2 multiplied by 3 we can simply enter

1000 PRINT SQR(2*#3)

But suppose that we wanted to appear rather more sophisticated (note: I
say only appear). We define a function of our own to produce the square
root of the product — the function we call FNsqr(X,Y).

Function FNsqr has two parameters (X and Y) but, before we discuss
the status of the symbols X and Y, the function definition:

1000 DEF FNsqr (X,Y)
1010 X = X*Y

1020 = SQR(X)

1030 REM end of FNsqr

in which we see that (1000) the function is defined as having two
parameters, X and Y. In fine 1010 the two values are multiplied together,
and the result stored in the variable the function calls X (this variable has
no relationship to any other X outside the function definition). In fine 1020
there is an assignment statement (ie there is an =) with no variable to the
left of the assignment: the system assumes, therefore, that the assignment
is to the function.
If the function is then used for the variables I and J by

100 PRINT FNsqr(L,J), I, J

then (when this line is activated) the value stored at I is substituted into the
temporary variable X in the function definition, and the value at J is stored
at Y. The variables X and Y take values, and have an existence, which is
"local" to that function. The values printed out for I (in particular) and J are
not affected by the action of the function (ie I does not become equal to I*
J).

If lines in the function definition are altered, eg:

1010 Z = X*Y
1020 = SQR(Z)

to then have a line

100 Z= 0 : PRINT FNsqr(L,J), Z

shows that the value Z is modified in the function. The value stored at Z is
10

INTRODUCTION Artist’s Tools

modified because it is not one of the parameters, and has not been defined
as being local to the function: the scope of operation of Z is global,
compared with the function. Finally add one line,

1005 LOCAL Z

and then activate line 100. In this case the global value of Z is unaltered, as
the Z in the function definition has been explicitly defined as being local to
that function.

Procedures

A key difference between functions and procedures is that a function
always produces a value (or, "delivers a result"). In many BASICs another
key difference is that functions take parameters.

A few BASICs now allow multiple parameters for functions (and some
even allow function definitions to extend over more than one statement)
but the use of parameters in routines is rare. On mainframes and
minicomputers (eg Hewlett-Packard) there are various very sophisticated
BASIC systems, but BBC BASIC stands out from most other
microcomputer BASICs in terms of its sophistication.

Nearly all of the comments we would wish to make about parameters
for procedures have been already made about functions, but the
distinctions between the various types of variable in procedures are far
more important than they are for functions. After all, functions do not tend
to be used as much as procedures, functions deliver a result, whereas
procedures do something.

In BBC BASIC (and from now on this will be shortened to BB) the
command to plot at a certain point is

PLOT 69, X, Y

where the coordinates are X and Y (see page 320 of the User Guide, or
alternatively (UG page 386)

VDU 25,69, X; Y;

VDU driver commands will be discussed in later chapters. To define a
procedure which will plot a diagonal fine from coordinates s,s to f.f
without using parameters is obviously possible, but to use parameters
makes it so much simpler. Watch:

1000 DEF PROCdiag(s,f,inc)
1010 LOCAL i

1020 FOR i=s TO f STEP inc
1030 PLOT 69, i, i

1040 NEXT i

11

Graphic Art for the BBC Computer
1050 ENDPROC : REM diag

and to draw an instant diagonal line from 0,0 to 1000,1000 we enter (in
immediate mode, so no fine numbers)

PROCdiag (0, 1000, 10)

where the points are plotted in gaps of 10 units.

PROCdiag has three parameters s, f, and inc, the scope of which is
merely that of the procedure; there is another variable i (used as the loop
counter) whose scope is also defined as being local to the procedure; and
there are no global variables. If there is a variable i in the main program (or
s, f, or inc) the values of these variables are unaffected — the procedure
does not even recognise their existence.

If there were variables s and f in the main program (with the correct
interpretation), it might be possible to define a different procedure, which
did more than just draw a diagonal line of blobs. It might make the finish
of the fine (f) the start of a new line (s):

1000 DEF PROCnewdiag(inc)
1010 LOCAL i

1020 FORi=sTOf

1030 PLOT 69, i, i

1040 NEXT i

1050s =1

1060 ENDPROC : REM newdiag

For this procedure both s and f are global to the procedure: they have to be
so, because we need to modify their values. With PROCdiag we are able to
use variables with names other than s or f in the main program. As long as
the names are in the correct position in the list of parameters, the name
does not matter.

Recursion

Sometimes (not very often) when writing a program, or a routine, there
may be a case where what you want to do is fairly simple, but to achieve
the result by normal methods seems to be overly tedious in terms of the
mental commitment necessary to solve the problem (a classic example is
the Kasner snowflake, discussed in the next chapter).

It is not that the solution is impossible to find by normal methods, it is
just that the solution is difficult to code simply. One way sometimes used
to solve such problems is called ‘recursion’; and, though there is a great
mystique surrounding the term, it is very simple to use recursion — though
remarkably wasteful.

Examine this function and routine:

1000 DEF FNwalk = RND(55) - 28
2000 DEF PROCrndwalk(x, y ,z)

12

INTRODUCTION Artist’s Tools

2010 x =x + FNwalk : y =y + FNwalk
2020 PLOT z,x,y : PROCrndwalk(x,y,z)
2030 ENDPROC : REM rndwalk

where the function is without parameters because it does not depend upon
any input value to produce its result.

The procedure has three parameters: two (x and y) are co-ordinates,
and the third sets the style of plotting (U G page 319). The input
coordinate values are modified by FNwalk up to a limit of plus or minus
27 units (independently); the new coordinates are then used to plot to new
coordinates (with the style of plotting set by z); and then the new values
are used as parameters for yet another call to the same procedure (ie
PROCrnd walk)

The call to PROCrndwalk within PROCrndwalk is what is termed a
recursive call. If you use PROCrndwalk in immediate mode, eg

MODE 4 : PROCrndwalk (500,500,5)

the screen will show randomly drawn lines, usually called a ‘random walk’
(similar to Brownian motion). After a short while the plotting will stop
with an error message at line 1000: by repeatedly calling itself (and the
BASIC system having to remember where it has been) the program runs
out of room.

Repeating the above fine (still in Mode 4) for different values of z (eg 5, 6,
21,22, 69, 70, 85, or 86) is a very good way of investigating the effects of
the flexible plotting command. My favourite is 86, plot triangles in the
logical inverse colour. Mode 5 is also worth trying at this stage, possibly
using GCOL to change the graphics colour (UG pages 163, 262).

Using Modes 0,1, and 2, produces a surprise: the plotting is over much
more quickly than for Modes 4 and 5. A glance at the memory map (UG
page 500) shows that, as the graphics memory increases, so the memory
available for BB is less. As the memory map shows, the BASIC stack
reaches from the graphics memory boundary (ie HIMEM) until it reaches
the BB program. When it reaches the program, we find there is no room at
fine 1000.

Recursion can be fun, but — unless you are very careful — your
program will crash, particularly with a large program in higher resolution
modes. However, as I noted above, PROCrndwalk is a useful way of
investigating plotting styles. Another useful exercise is to write
PROCrndwalk ‘iteratively’ , ie by use of a FOR. . NEXT loop (or possibly
a REPEAT . . . UNTIL loop). Also worth trying is to write the (iterative)
PROCdiag in a recursive manner.

It is interesting to note that in the definition of PROC (UG page 329)
there is an example of recursion — without any explanation — so the
designers of BB must have thought that recursion was important. The

13

Graphic Art for the BBC Computer
definition of recursion is, of course,

RECURSION : See Recursion

Screen resolution

To draw pictures on the screen we need to know something about the
screen. Start by trying out this procedure

1000 DEF PROC_ORIGIN TO_(X,Y)
1010 MOVE 0,0 : DRAW X, Y
1020 ENDPROC : REM ORIGIN_TO_

and then use the procedure by entering (in direct mode, ie without line
numbers)

PROC_ORIGIN_ TO_(800,800)

which will draw a fine from the bottom left corner of the screen to
somewhere towards the top right corner. Holding the RETURN key down
succeeds in moving the fine up the screen: there is no distinction between
the drawing of lines on the screen, and the entering in of the characters. To
repeat the call of the procedure is to draw a second fine, parallel to the
first.

If nothing has happened, you are probably in mode 3, 6, or 7, none of
which allow high resolution graphics: in fact, if in mode 7, the space
symbol ‘_’ will appear as a hyphen ‘-’. At this point it is worth turning to
UG page 59, which gives the number of characters per line, and numbers
of lines, for the various modes. Keeping note of the numbers there: Figure
0.1 Character Resolution

Figure 0.1 Character Resolution

MODE CHARACTERS LINES TOTAL CHARS
0 0 to 79 (80) 0 to 31 (32) = 2560

1 0 to 39 (40) 0 to 31 (32) = 1280

2 0 to 19 (20) 0 to 31 (32) = 640

3% 0 to 79 (80) 0 to 24 (25) =2000

4 0 to 39 (40) 0to 31 (32) =1280

5 0 to 19 (20) 0 to 31 (32) = 640

6% 0 to 39 (40) 0 to 24 (25) = 1000

7% 0 to 39 (40) 0 to 24 (25) = 1000

Note: The * indicates that this is not a graphics mode.

Figure 0.2 Graphics Resolution

14

INTRODUCTION Artist’s Tools

MODE RESOLUTION COLOURS

0 640 x 256 2 =20K
1 320 x 256 4 =20K
2 160 x 256 16 =20K
4 320 x 256 2 = 10K
5 160 x 256 4 =10K

The total characters column shows that in mode O there can be 2560
characters on the screen at one time. As each character (U G page 170) is 8
elements wide by 8 elements high, then an 80 by 32 characters mode is the
same as 640 by 256 elements.

If you now refer to the top of page 161 in the UG, you find that in the
graphics modes the screen is divided up into imaginary rectangles: mode 0,
we are told, has 640 x 256 squares. The number of squares correspond to
what I termed elements, or what in other places are called ‘pixels’. The
‘higher’ the resolution of the graphics (or the greater the number of
characters on the screen) the larger the memory needed. Different modes
also have different numbers of colours: the greater the number of colours
which can be used on the screen at the same time, the greater the memory.

The memory requirements are those given at the bottom of page 160 of
the UG, and it is worth noting how the calculation is made. Each group of
8 pixel/elements occupies one byte (one memory location); each bit within
the byte can be set or not (two colours); if another byte is associated with
that byte, there are now two bits per pixel (four colours); and to have 16
colours requires 4 bits per pixel. Therefore, to calculate the requirement for
mode 2:

(160/8) x 256 x 4 20480 or 20K (=20480/1024)

which — if not immediately obvious — should be studied carefully.

The theoretical dimensions of the plotting screen are (in the same order
as we gave the characters and fines) O to 1279 across and 0 to 1023
upwards (or downwards). For each mode, therefore, there is a minimum
resolution: for mode 5 (with 160 pixels across) each pixel is 1280/160
units wide, and thus the maximum discrimination in the X direction is 8
units. The maximum discrimination in the Y direction is thus 1024/256 = 4
units: each pixel is of size 8 x 4. There are 32 fines of text, so each fine
will be 1024/32 = 32 units wide.

Figure 0.3 Pixel Resolution

15

Graphic Art for the BBC Computer

MODE PIXELSIZE LINE WIDTH
0 2x4 32
1 4x4 32
2 8 x 4 32
4 4x4 32
5 8 x 4 32
Splitting the screen

As there are two ways in which the screen may be used, there are two
pointers to where we are using the screen. There is a text cursor, which
points to where the next character is to be placed (usually flashing); and
there is a graphics cursor which gives the start of the next graphics plot.
Normally the two cursors are distinct, but it is possible to use a command
which allows text to be entered at the position of the graphics cursor. The
VDU command

VDU 5

will mean that only one cursor is active (ie the graphics cursor), and text
can be entered at any part of the screen — without the screen scrolling up a
line when on the bottom line.

As the normal discrimination for text in mode 5 is 1280/20= 64 units
wide, characters can only be placed in increments of 64 units, whereas
characters can be placed in increments of 8 units (see Figure 0.3) by use of
the graphics cursor. On page 173 of the UG, an example is given of a
rocket rising more smoothly, due to the increased discrimination obtained
by using the graphics cursor. To separate the cursors we use VDU 4.

Though the association of text with the graphics cursor is useful,
sometimes it is even more useful to make sure that text and graphics never
occupy the same place on the screen. What is frequently needed is a ‘text
space’ and a distinct ‘graphics space’. Many computers (eg the Apple II)
provide this distinction automatically. We need to use text windows and
graphics windows (see pages 56-61, and 385-388 of the UG).

The question is: where should the two spaces be situated? Following
the example of the Apple, and other computers, I propose that the best
place is with the text at the bottom of the screen (often four fines of text),
and graphics to fill the rest of the screen. The reason I like this
arrangement is that this allows the user to enter, interactively, drawing
commands and it allows the user to study the command (it does not
disappear) if something goes wrong — as it often does.

The origin for text is at the top left hand corner and (using mode 4 as
an example) extends to 39 across (x axis) and 31 down (y axis). To place a
window in the bottom four fines, we need to occupy lines 28, 29, 30, and

16

INTRODUCTION Artist’s Tools

31; and to use the full width we need to occupy character positions O to 39.
Note that for all modes which use graphics (Figure 0.1) there are 32
fines, so that the only difference for other modes to mode 4 is in the
numbers of characters across the screen.
To set the text window we use a VDU command

VDU 28, leftchar, bottomline, rightchar, topline

where the labels are as they say. To set a text window in the manner we
have discussed, we enter

VDU 28, 0, 31, 39, 28

to give a window which extends from character O to 39, and fine 28 to 30.
One ofthe following VDU commands is for mode 5, and one is for mode 0:
work out which is which -

VDU 28, 0, 31, 79, 28
VDU 28, 0, 31, 19, 28

No answers supplied.

To set up the graphics window is similar, but different. The command
is
VDU 24, leftcoord; bottomcoord; rightcoord; topcoord;

and, whereas in the text command we differentiated between fines and
characters, we only have coordinates in the graphics command.

The most important distinction is that between the use of the comma °,’
in the VDU 28 command, and the use of the semi-colon ‘;’ in the VDU 24
command. The dimensions of the text window (in any direction) are never
greater than 255 (check Figure 0.1 if you are not sure); whereas the
dimensions of the coordinates often extend beyond 255. BB, therefore,
makes a distinction between numbers of 255 or less (which can be treated
as one byte — 8 bits), and numbers which might be up to 65535 (two bytes
of 16 bits). The difference is explained on page 386 of the UG, by
reference to the command

VDU 24, 150; 300; 100; 700;
and then
VDU 25, 4, 100; 500;

which is actually equivalent to the command PLOT 4, 100, 500. The VDU
25 command given is (the UG claims) the same as

VDU 25, 4, 100, 0, 244, 1

because 100 = 100 x 1 + 0 x 255 and 500 =244 x 1 + 1 x 255. The comma
sends the preceding number to the system as if it were one byte (and if the
number is greater than 255 it sends the value MOD 256). A semi-colon
informs the system that the preceding number has to be sent as two bytes

17

Graphic Art for the BBC Computer

— there is no need for the last comma, but BB always has to have the last
semicolon.
The above VDU 25 could be written more explicitly as

VDU 25, 4, X MOD 256, X DIV 256, Y MOD 256, Y DIV 256

and, later — Chapter 4 — I will analyse the use of VDU commands in
detail; for now, however, all we really need is the important difference
"twixt comma and semi-colon.

Each fine of characters corresponds to 32 units in graphics, so the
graphics screen (if it is not to overlap with the text screen) will have to
start up 4 x 32 units (ie 128) and then extend from side to side and to the
top

VDU 24, 0; 128; 1279; 1023;

will do very nicely. To play with graphics constructively, therefore, we
need to start with the two screens and then clear them both:

VDU 28, 0, 31, 39, 28 : CLS
VDU 24, 0; 128; 1279; 1023; : CLG

We are away, apart from one little extra chore.

If we now use PROC_ORIG IN_TO we would find that part of the line
was missing: the origin is outside the graphics window . We change the
graphics origin to a new point by use of VDU 29 (U G page 388). To set
the origin to 640,566 (ie the middle of the graphics window) we

VDU 29, 640; 566;

and now we really are away.

18

CHAPTER 1
Turtle Graphics

There is

one art,
no more,
no less:

to do

all things
with art-
less ness

Piet Hein, Ars brevis

In Mindstorms, Seymour Papert (1980 : 219) gives a short BASIC program
to draw a house. Converted to BB, this little program is

1000 MOVE 0,0
1010 DRAW 100,0
1020 DRAW 75,150
1030 DRAW 0,100
1040 DRAW 0,0
1050 END

and Papert notes that this is not suitable as a general method for drawing a
house, for it also requires quite a good deal of work to prepare. "This
demand would be less serious if the program, once written, could become a
powerful tool for other projects . . . the BASIC program allows one
particular house to be drawn in one position. In order to make a BASIC
program that will draw houses in many positions, it is necessary to use
algebraic variables. . ."

Papert proves his own point (perhaps deliberately) by giving a routine
for drawing a lopsided house — try the program to see.

How is the house constructed? Essentially the house is a square (or
rectangle) with a triangle on top: forget about inessential aspects such as
doors and windows for the moment. To draw a house, therefore, we draw a
square, and place the triangle on top. Start with the square. Let our square
be of side SIDE, and let it be drawn from any arbitrary coordinate X,Y:
make it into a procedure.

1000 DEF PROCL-SQUARE(X,Y, SIDE)

1010 PLOT 0,X,Y : REM MOVETO X, Y

1020 PLOT 1,SIDE,0 : REM A RELATIVE PLOT
1030 PLOT 1,0,SIDE

1040 PLOT 1,-SIDE,0

1050 PLOT 1,0,-SIDE : REM BACK TO BASE

Graphic Art for the BBC Computer
1060 ENDPROC : REM SQUARE COORD VERSION 1

As you will note, I have used ‘relative’ plots in constructing the routine
(UG page 319), partly because it means that we only refer to X and Y at
one point. Suppose that the graphics cursor was already at the point X, Y?
We can ignore line 1010, and treat X and Y as global to the procedure
(really we never have to refer to X or Y):

1000 DEF PROC_SQUARE(SIDE)

1010 PLOT LSIDE,0 : PLOT 1,0,SIDE

1020 PLOT 1,-SIDE,O : PLOT 1,0,-SIDE

1030 ENDPROC : REM SQUARE COORD VERSION 2

lines 1010 then become similar. PROC_SQUARE can be prettified

1000 DEF PROC_SQUARE (SIDE)

1010 PROC LSHAPE (SIDE) : PROC_LSHAPE(-SIDE)
1020 ENDPROC : REM SQUARE COORD VERSION 3
1025

1030 DEF PROC_LSHAPE (LIMB)

1040 PLOT 1,LIMB,0 : PLOT 1,0,LIMB

1050 ENDPROC : REM LSHAPE (by Lynne Reid Banks?)

and we now have two routines where once there was one. The second
routine (ie PROC_LSHAPE) could be used for other shapes, other than the
square: PROC_LSHAPE could become part of a library of ‘useful
routines’ but really there is little point to the exercise. PROC_LSHAPE is
not exactly memorable: can you remember which way it bends, and could
you remember it in acons to come, together with many other little gobbets
of program?

How are we to tilt the house? How are we even to tilt the LSHAPE?

Intrinsic geometry

To draw a square we go forward a fixed distance and turn left (or fight)
through 90 degrees. This we do four times: why not draw a square in this
way? There seems to be an internal logic to a square, which does not
depend upon sides being horizontal and vertical.

A geometrical figure, such as a square, has a certain ‘intrinsic’
property, which depends only upon that type of figure: that a square has
four equal angles, and four equal sides, is independent of position and
orientation. To say that the sides of a square must be parallel to the axes
(as in the above routines) is an ‘extrinsic’ property: an external frame of
reference is needed to decide which direction is horizontal.

Rather than concentrating on external properties, which is what one has
to do if one concentrates on coordinates and transformations of
coordinates, the routines herein concentrate upon the intrinsic properties of
shapes. As Piet Hein implies, simplicity is the way to true art (‘Ars brevis’
20

CHAPTER 1 Turtle Graphics

means ‘Art in short’).
A procedure:

1000 DEF PROCL-SQUARE (SIDE)

1010 LOCALI: FOR I=1 TO 4

1020 PROC_MOVE(SIDE,]) : PROC_TURN(90)

1030 NEXT I

1040 ENDPROC : REM SQUARE INTRINSIC VERSION

which uses two other procedures PROC_MOVE and PROC_TURN, of
which more later. To draw a square of side 100, instantly we have to enter.

PROC_SQUARE(100)

where the square is drawn at the current cursor position. Highly complex
shapes can be produced by use of a very few essential procedures. Design
a procedure to draw an equilateral triangle:

1100 DEF PROC_TRIANGLE(SIDE)

1110 LOCALT: FORI=1ITO3

1120 PROC_MOVE(S1DE,1) : PROC_TURN(20)

1130 NEXT I

1140 ENDPROC : REM TRIANGLE INTRINSIC VERSION

and it is simplicity itself. We can draw a triangle in exactly the same way
as we drew the square, entering

PROC_TRIANGLE(SIDE)
then to tilt the square through 25 degrees counter clockwise
PROC_TURN(25) : PROC_SQUARE(100)

in instant mode. To move to coordinates 20,250 (without plotting) and then
draw a square turned through 43 degrees counter clockwise

PROC_MOVETO(20,250,0): PROC_TURN(43):
PROC_SQUARE(100)

- no calculation whatever, purely a concentration on the intrinsic nature of
the problem. Note that in PROC_MOVE and PROC_MOVETO the final
parameter is 1 for plot; and O for do not plot, just move.

One last example:

1200 DEF PROC_QUIZ(SIDE)

1210 LOCAL1: FORI=1ITO 6

1220 PROC_MOVE(SIDE) : PROC_TURN(60)
1230 NEXT I

1340 ENDPROC : REM QUIZ - GUESS WHAT

to whet your analytical appetite.

21

Graphic Art for the BBC Computer
Turtle geometry

The above form of analysis, which concentrates on intrinsic properties of
geometrical figures, is commonly called Turtle geometry. Papert’s book, to
which I earlier referred, is the classic text for explaining the reasons behind
turtle geometry. The subtitle to Papert’s book is ‘Children, computers, and
powerful ideas’ and this has led some to believe that turtle geometry is
‘kid’s stuff’, to be ignored, or left to little children.

This is not only wrong, but very short sighted: Turtle Geometry
(Abelson and diSessa, 1980) is far beyond a child’s picture book. Like any
powerful methodology (or powerful computer language) the scope is vast:
from the very simple (but never trivial) triangle to, eg, Lorentz
transformations in relativistic mechanics. Turtle geometry is a powerful
and accessible means of producing computer graphics which is not only
creative but also of great utility.

Though using turtle graphics is a powerful tool, turtle graphics is also
part of a philosophy and style of using computers. Two fundamental ideas
which underlie much of the work in this book are:

It is possible to design procedures which make the communication with
computers a more natural process than is possible with more traditional
methods of programming graphics;

Learning to use graphics in this manner can assist in the learning of
general thinking about program design — by considering the intrinsic
nature of the problem and not its merely extrinsic aspects.

Experience is an important element in learning how to perform any
task, and the computer can assist tremendously in producing many varied
forms of experience. Many of the procedures (eg PROC_INSPIRALI)
produce results which surprise myself, so expect to be surprised.

The approach through turtle graphics, and similar styles of application,
are not the old ‘discovery methods’ they used to practise at school. With
discovery methods the teacher or author of the book is supposed to know
what is to be discovered — often the results of turtle routines are news to
me as well.

In turtle graphics the user has control of a little (hypothetical) creature
called a turtle, and the turtle fives on the surface of the visual display (TV
or VDU). The turtle responds to a few very simple commands MOVE
forward, and TURN through and angle (in the LOGO and SMALLTALK
languages the commands are the same but differently named, see Papert,
1980, and Smalltalk-80 by Goldberg and Robson, 1983). The intrinsic
routines PROC_SQUARE, PROC_TRIANGLE, and PROC_QUIZ could
all be followed by a little turtle on the screen. Turtle geometry (eg
constructing shapes by use of turtle(s)) is a useful alternative to traditional
methods of ‘doing graphics’ — this will become clearer as we progress.

At more advanced levels, in the geometry of curved surfaces (ie
differential geometry), the turtle always faces and turns in the tangent
plane of the point on the surface at which the turtle is located. As the

22

CHAPTER 1 Turtle Graphics

geometry of space in Einstein’s theory of relativity is a differential
geometry, the turtle can explore Einstein’s universe — but we will not (for
more details see Abelson and diSessa, 1980).

Turtle commands

The basic turtle commands are very few, a move command, and a turn
command: theoretically these are all that are needed (a moveto command
is not really necessary). The turtle commands I have implemented for
Version 1.1 are — apart from housekeeping commands — the following:

PROC_TURN (A) Turn through A degrees
PROC_TURNTO(A) Turn to angle A degrees
PROC_MOVE(D,S) Move forward D units, S=1 to plot,
S=0 to just move.
PROC_MOVETO(X,Y,S) Move to coords X,Y, S=1 to plot,

S=0 to move
plus a command
PROC_LOC What are the coords, and what is the
present angle?
However, to use these commands the screen needs to be organized in
such a manner that text and graphics can be separated.

The screen housekeeping commands are:

PROC_START Clear the screen and set up separate
text and graphics screens, centre
cursor

PROC_RESTART Clear only the graphics screen and
set the cursor to the centre

PROC_CENTRE Centre the cursor

PROC_INVERT Change the drawing colour from

black to white or vica versa
But a program is worth a thousand words — so enter in routines Turtle
Graphics Version 1.1. T will then discuss the routines in the order in
which they appear in the listing.

LR R = o

FEH CRAPHILC FART

FEM tor Borizs Allen, 19832

1EsE
ligg REM Turtle Graphics ¢ 1.1

23

Graphic Art for the BBC Computer
1iig
LAEE FE] o o oo o o o o s e
1iz8
1i48 DEF PROC_CLEZCE
1158 PROC_CLE @« PROC_CLG
1igd EMDPREOC @ EEM CLESCE
1i7E
lige DEF PROC_CLG
1a9E GUOL 8,PEM ¢ GOOL 8,
lz0E VI 24,.8:128; lb.ﬂ,lH]
1218 REM LlEiF: ar s oraehics windo
1

1z VIO 29840 5Es
1 : bl ordigin o cermhbre of o
rambiios winciow
1248 EMNDPROC ¢ REM CLG
1256
1zl DEF PROC_CLE
1276 COoLoUR 41— FEH : COLOUR 128+PEM
VIO 22.8,31,539,28 @ OLE
FEM O 1:55:1': Towsr hext window
REM CLES

DOl PR

REM Ol

A DEF FPROC_CEMTRE
TE OFMOVE 8,8 @ AMNGLE=E @ o ==8 @ Y=
A EMDFREOC ¢ REM CEMTRE

XX
33

1488 DEF PROC_RESTART
1418 PROC_CLG @ PROC_CEMTRE
i428 EMDPROC @ REM RESTART
14328
id48 DEF PROC_START
1458 PROC_COLCE: @ PROC_CLRESCR @ PROC_C
EMTRE
i4c8 EMDPROC @ REM STRRET
1478
1488 DEF PROC_INVERT
1498 PEM=1-FEMN : GCOL 8,.FPEM
1588 EMDPROC @ REM IMVERT
1518
1328 DEF PROC_TURMTOCA
15328 AMGLE=Fr_AMNGLE (R
1348 EMDPROC @ REM TURMTO
15508
138 DEF PROC_TURMOA
24

CHAPTER 1 Turtle Graphics

15378 AMGLE = FroAMGLE(AMGLE+RD
: A ERDFPROC @ REM TURM

l!:Eiﬁ DEF PROC_LOC
ledd PRIMT "COORDIMATES ARE "i=.Y ' "AMMGL
E IS "AMGLE

5 ERDFROC @ REM LOC

4
S8 k=R -]:II THHI E+ IH FHD‘HHHLE"
=8 Y=Y o+ DISTAMCE#COS CRADCAMGLE Y 3
TEOIF STYLE=1 THEM DREAM =% ELSE MOVE

S |T| T

i
i
1e
i
1
i

1718 LOCAL DIF, ‘DIF 1 HDIF=HH—H': WOIF
_.ll__leH

1728 IF YDIF<3:@® THEM PROC_TURMTOCDEGCAT

CHDIFYDIF 3 3+ 18E% CYHCY 3 3 ELSE PROC_TURN
10 ~HDIF 2 #9E

LTEE M=k o2 Y=Y
1748 IF STYLE=1 THEN DRAW X,7 ELSE MOVE
:. .:.! T

TEE EMOFROC @ REM MOVETO

178

1778 DEF Fro_AMGLE A

ivea IF A FMOD Zed <8 THEM =/ MOD 2e8 +
Zed ELSE =/ PMOD 20

20 REM AMGLE

DEF PROC_MER
A OV 22 o COLS
EMNDFROC ¢ REM MHER

PROC_CLRSCR consists of two routines PROC_CLS

PROC_CLG, defined later.

and

PROC_CLG sets the graphics foreground and background colours by
use of GCOL (UG page 262) and a global variable PEN. Usually the
foreground is black and the background white. Line 1210 sets a graphics
window (see above) and clears the graphics window; line 1220 sets the

origin to the centre of the window.

PROC_CLS sets the text foreground and background colours (UG page
222) to the reverse of those normally set by PROC_CLG. A text window,

for the lower four lines, is established and the text window is cleared.

25

Graphic Art for the BBC Computer

PROC_COL is the first routine with a parameter, and is merely a way
of altering the value stored in the global variable PEN. PEN normally has
the value O, but this allows that value to be changed procedurally (another
way — less consistent — is PEN = PE).

PROC_CENTRE moves the cursor to the centre, and sets the global
variables X,Y, and ANGLE all to zero.

PROC_RESTART clears the graphics window (PROC_CLG) and then
centres the cursor (PROC_CENTRE) — the text is unaffected. The global
variable PEN is not affected.

PROC_START sets the PEN to zero, clears both screens
(PROC_CLRSCR) and centres the cursor (PROC_CENTRE). This routine
has to be activated before any of the others, otherwise some of the global
variables might be uninitialized.

PROC_INVERT changes the foreground colour in graphics, without
altering the background colour (black to white and vice versa). To alter the
value from O to 1 (or vice versa) the value is subtracted from I. Another
way of changing the value might be PROC_COL(1-PEN). This routine is
used for erasing existing lines.

PROC_TURNTO sets the value stored in the global variable ANGLE
to the value supplied. To make sure that values do not go outside the range
0 to 359, the value is normalized by FN_ANGLE. Not a true turtle
command because it refers to an absolute (rather than relative) angle, the
name of this command derives from UCSD Pascal (Bowles, 1977), as do
most of the routine names herein.

PROC_TURN takes the value of the parameter, and adds it onto the
global variable ANGLE, where counting of angles is in a counterclockwise
direction and uses FN_ANGLE.

PROC_LOC is simply an environmental enquiry ‘What is my location,
and in which direction am I facing?’ . In my turtle graphics procedures you
cannot see the turtle, and so this is to help when lost.

PROC_MOVE has two parameters: the first (DISTANCE) gives the
distance to be moved, and the second (STYLE) indicates whether there is
to be a plot or a move (many versions of turtle graphics have PENUP and
PENDOWN commands). The calculations in fines 1650 and 1660 need not
detain us.

PROC_MOVETO is not a true turtle command, because it is absolute
not relative taken from UCSD Pascal. The first two parameters are the
coordinates, and the final parameter is the plotting style (comparable to
PROC_MOVE). Do not bother about the calculations needed, except to
notice that the IF in line 1720 is to trap a possible division by zero.

PROC_NEW returns both graphics and text windows to their full
26

CHAPTER 1 Turtle Graphics
screen values, and both cursors are horned (see UG page 387).

FN_ANGLE constrains the angle between 0 and 359, and the
conditional (in line 1780) is to account for negative as well as positive
angles — all negative angles become positive.

A square dance

As I have already noted, the only really essential commands are
PROC_MOVE(DISTANCE,STYLE) and PROC_TURN(A): though the
routines I shall discuss in the rest of this chapter make use of many of
BB'’s facilities, they use only the basic two turtle commands. The routines
are designed to operate in mode 4, though they will run under mode O.

The routines are fisted as Turtle Routines 1.1, and the first to be examined
will be that to draw a square. To draw a square we first draw the side of a
square (ie PROC_SIDESQ), which — as we have seen — is move forward
a distance and then turn through 90 degrees. The distance move forward
corresponds to the parameter SIDE, and is the length of the side of the
square.

o

FEH ERAPHILC ART

REM (c) Boris Allem, 1993

FEM-—-——mm—m e e e
REM Turtle Rowubines @ 1.1

PR o e
TEF FROC

PROC 0 .
EMDFPROC ¢ REM SIDESQ

SIDESQOSIDE Y
FROCZ_TURMCZE

DEF PROC_SOUARRECSIDE
LOCAL T ¢« FOR I=1 TO 4
FROZ_SIDESQOSIDEY @ MERT I
EMDPROC @ REM SOUARRE

5 DEF PROC_SGTURM
40 LOCAL T.a% ¢ FOR I=1 TO 88
2250 PROC_FOVECT B2 @ PROC_SOUARECT 2

27

Graphic Art for the BBC Computer
EPROC_TURMOZEY shf=IMEEY$00

EMDFROC @ RBEM SOTURM

EMDFROC ¢ REM IMSFIRALE
FEFEAT

UMTIL A$="F"
EMDFROC : REM IMSPIRALI

DEF PROC_CIRCLE

LoCAL I @ FOR I = 4 TO 28
FROZ_FMOVECL, 13 ¢ PROC_TURMOL
EMDFROC ¢ REEM CIRCLE

DEF PROC_
LOCAL l'-'-'lf '-i,.I

ARG = 3 SIDES
FOR I= l Tl_l SIDES

MERT 1
EMDFROC : REM FPERIFIHED

DEF PROC_POLYGOMS
LOCAL I

XX
X3

DR

FFUL C EHTFE 2 PROC_TURMCI=10

EMDFROC ¢ REM POLYGEOMNES

DEF PROC_SMHOWFLAKECODER, THC
FROC_DECISIOMOODER 28, THC
FROZ_DECISIOMOODER, 126, THC
FROC_DECISIOMOODER, 426, THCS
ERDPROC @ REM SHOWFLARE

[R

1

ot O,
% 2% I K B K B KR

]

FROC_TURMCAMGE S
IF ODER:D

Hl:... EL B PROC_FOWVE TS, 4
Z7EE EMDPROC ¢ REM]:IELIEiIE!H
28

= o TO 2o STER © ¢ FPROC_

IF A%="F" THEM EMDPROC ELSE MEXT I

DEF PROC_IMSPIRALECSIDE AMG, THCS
FROC_FOVECSIDE 13 ¢ PROC_TURMOAMGE
FROZ _IMSPIRALROSIDE AMGHTMHE, THCS

DEF PROC_IMSPIRALICSIDE AMG, THCS

FROZ_FOVECSIDE, 43 ¢ PROC_TURMOAME
ARG = AbGE + IMC 2 A% = IMNREY$0E82

FERIFISEDCFERIM,. SIDES Y

FROZ_FOVECPERIM.-SIDES, 1y ¢ PROC_TU

FERI

HE

DEF PROC_DECISIONCODER AMG, THO

THEM PROC_FOIMNTCODER-1,1

CHAPTER 1 Turtle Graphics

DEF PROC_POIMTOO, I
FROC_DECISIOMOO, 8,1
FROC_DECISIONCD, -a8, 12
FROC_DECISIOMCO, 128,10
FROC_DECISIONCO, -a8, 12
EMNDFROC @ REM POIMNT

DEF PROC_OUTSPIRAL AL THCS

LOCAL T.A%

FROC_CEMTRE ¢ REFEAT
FROZ_TURMOAY ¢ PROC_HMOVECT 13 2 I
IMHC

AF=IMKEY 0186y @ UNTIL Ag="F"
EMDFROC ¢ REM OUTSFIRAL

To draw a square we have to draw four sides, which is just what
PROC_SQUARE does. The loop counter (I) is declared as being local to
the procedure, as it is only operative within that procedure. Another way of
writing the procedure would be on the one fine, say. Now to use
PROC_SQUARE.

First, we clear the decks for action by setting up the special text and
graphics screens, and, second, we draw the square (of side 200):

PROC_START : PROC_SQUARE (200)

We enter this interactively, and see a square (almost) instantly appear.
To draw a bigger square, tilted through 50 degrees, keeping the first square
on screen:

PROC_TURN(50) : PROC_SQUARE(300)
a tilted square appears. Try
PROC_TURN(-100) : PROC_SQUARE(300)

and a similar larger square will appear — tilted in the opposite direction
(50 - 100 = -50). Now clear the graphics, keep the text, and move the
square away from the centre:

PROC_RESTART : PROC_MOVE(100,0)
PROC_SQUARE(200)

and it is worth entering the two lines separately.

The latter two lines will: (a) clear the graphics screen; (b) move 100
units in a upwards direction — without plotting; and (e) draw a square of
side 200 units at that point. Note the different effect.

PROC_RESTART : PROC_TURN(160) : PROC_MOVE(200,0)
PROC_SQUARE(200)

29

Graphic Art for the BBC Computer
produces (a tilted square, bottom leftish). Finally, try

PROC_RESTART : PROC_MOVETO0(200,-300,0)
PROC_SQUARE(200)

to see how it is possible to use non-basic turtle commands. Try to let the
squares dance by using PROC_SQTURN.

In this routine I and A$ are local to the procedure: I is used as a loop
counter, and A$ is used as a means to produce early termination (the F key
is pressed). For up to 600 times the cursor (or turtle) moves forward a
distance I (without drawing), draws a square of side I, and then the turtle
turns through 30 degrees. The keyboard is checked by INKEY$(0) to see if
a key is pressed (saved in A$); if the key was an F, then ENDPROC else
the loop counter is incremented.

The routine is activated by

PROC_RESTART : PROC_SQTURN

and it runs remarkably quickly. If you want to slow it down, put a pause in
the INKEYS, eg INKEY$(20), but this does not slow down the drawing of
the squares — it just increases the time between squares (see UG page 276,
for INKEYS). This is a tediously predictable routine — it is the same every
time. The predictability is shown in Icon 1.1.

Note that Figures are not computer output, they may be diagrams or tables

which are there to assist in the understanding of the text. An Icon — which

is ‘an image, picture, or representation’ according to the dictionary — is an

exact copy of a display on the screen, it is a screen dump onto a printer.
Need a rest? Take Five.

An unsquare dance

I walk forward a certain, fixed, distance and turn through a certain,
changing, angle: what happens?
Solution: see PROC_INSPIRALL

AS$ is local again, tedious but safe, and the routine repeats until the F
key is pressed. The distance is kept constant (ie SIDE), but the angle
(ANG) is incremented (by INC) at each pass through the indefinite loop (ie
REPEAT. . .UNTIL. . .). This routine produces a vast array of
unpredictable results, which, once known, are completely predictable. It is
named PROC_ANSPIRALI because it is an INward SPIRAL, coded
Iteratively. Iteration means, as explained in the previous chapter, that the
control of the procedure is by a loop mechanism — in this case REPEAT. .
JUNTIL.

30

CHAPTER 1 Turtle Graphics

LY

mlz

-]

il
ICOH 1.1 ff

An outward SPIRAL is shown by PROC_OUTSPIRAL, in which the
angle remains constant and the distance increases, and is what we normally
mean by a spiral. Icons 1.2 and 1.3 show two examples of outward spirals
for varying values of the fixed angle.

31

Graphic Art for the BBC Computer

An outward spiral — as the name spiral suggests — keeps on spiralling
outwards, but an inward spiral does nothing as common as that. Icons 1.4
to 1.7, are examples of four highly different shapes. Try to watch what
happens as the plotting unfolds: if it helps to slow down the process,
change the value of the parameter in the INKEYS.

Z28,8,11

32

CHAPTER 1 Turtle Graphics

ICOH_ 1.6

188,155,488

33

Graphic Art for the BBC Computer

The path begins by spiralling inwards, that is, turning in on itself. After
a varying number of turns (depending upon INC) the angle becomes
greater than 180 degrees, and so the path appears now to unwind. Allowing
PROC_INSPIRALI to carry on until completion always results in a closed
figure, ie the path ends up where it started, and it retraces the original path.
Using PROC_INSPIRALLI is a beneficial exercise for the imagination.

As a further way of producing the same (well, almost) effect, examine
PROC_INSPIRALR. The final R is for Recursive, and this is a less
efficient method for producing the same effect as the iterative version. The
routine is recursive because in its own body it calls itself (ie
PROC_INSPIRALR(SIDE,ANG + INC,INC)). That it is less efficient can
be seen when some of the effects are duplicated — we are forever running
out of room before it has ended. It’s a Raggy Waltz.

Both sides now

Between the inward and the outward spirals there is the limbo spiral (if
you are not in or out you must be in limbo). The limbo spiral has a rather
more familiar designation as the circle. To draw a circle you can use the
formula XA2 + YA2 = RA2, or use the two equations X = R*COS
(ANGLE) and Y = R*COS(ANGLE). The best way to draw a circle is to
move forward a fixed distance, turn through a fixed angle, and carry on
until you are back where you started. Try the Circle Game, use
PROC_CIRCLE.

It is a circle it is true, but remember that the resolution on the screen is
not perfect: perhaps it is possible to get away with less work?

34

CHAPTER 1 Turtle Graphics

PROC_PERIFIXED takes as a parameter the perimeter of the shape you
wish to draw, and as the second parameter the number of sides in the
shape.

To draw a regular (ie equilateral) triangle of side 400, therefore, we
enter.

PROC_RESTART : PROC_PERIFIXED(400,3)

and a triangle is drawn. To draw a succession of shapes, all with the same
perimeter being the parameter. It can be seen that the shape soon
approaches that of a circle, given the imperfections of the screen
resolution. A circle is a shape of constant curvature — a limbo spiral.

By examination of the result of PROC_POLYGONS, I think that a
polygon of 30 sides is more than adequate (even for large perimeters), and
24 sides is a good approximation (see Icon 1.8). We will develop the circle
motif further, next chapter: note that to draw a circle of 30 sides with
PROC_PERIFIXED (not an optimal method of drawing a circle) takes
about two seconds, depending on size.

The snowflake curve

In Mathematics and the Imagination (Kasner and Newman, 1940), there is
a chapter on "Change and changeability”, and what we have been
discussing is all about change and changeability

There is an appendix to their chapter, on Pathological Curves, ". . .each
of whom has an individual history resembling no other", and Kasner and
Newman start by discussing a normal and healthy set of curves: the
polygons which approach closer and closer to circles, as we found with

35

Graphic Art for the BBC Computer

PROC_POLYGONS.

The first pathological curve they discuss is the Snowflake curve, which
starts out life as an equilateral triangle (Icon 1.9). Each side of the triangle
is trisected (cut into three equal parts), and on each middle third an
equilateral triangle is drawn (a first order snowflake, Icon 1.10). The
trisection process is repeated again on each side, to produce a second order
snowflake (Icon 1.11). The process then continues as long as desired.

This curve is called ‘pathological’ because — as you can see — the
perimeter of the snowflake increases with each trisection (it is an extra
third larger), however, — as is also clear to see — the area enclosed by the
snowflake is not infinite, it approaches a limit (as do the polygons).
Ultimately, we have a curve of an "infinite" perimeter enclosing a finite
area: this is why the snowflake is pathological.

The snowflakes are very pleasing and satisfying to draw: this is why I
draw them. As you may be able to appreciate from my description, the
snowflaking process is "Take one snowflake, and then modify it". This is
an example of recursion: which is another reason why I chose this subject.
To clarify what happens I have split the drawing of the snowflakes into
three routines.

Just consider what happens along any side. One goes forward a third of
the distance, and turns through 60 degrees; one moves forward the same
distance, and turns through — 120 degrees; the same distance again, and
turn through 60 degrees; and then that distance again. If the final stage of
the snowflaking has been reached, a straight line (without bumps) is
drawn.

36

CHAPTER 1 Turtle Graphics

ICOH_1.18

37

Graphic Art for the BBC Computer

There are three procedures: (a) to set the basic shape of the equilateral
triangle (PROC_SNOWFLAKE); (b) to decide upon whether a straight
line or bump is to be drawn (PROC_DECISION); and (c) to draw a bump,
with possibly smaller bumps on the bump (PROC_POINT which makes
four calls to PROC_DECISION).

These procedures are recursive in a slightly different manner, no
procedure refers immediately to itself. What happens is that
PROC_DECISION refers to PROC_POINT which refers to
PROC_DECISION (and so it continues, until ODER is zero — not
ORDER because OR is a BB keyword).

There are now three ways we can draw an equilateral triangle: we can
use a purpose built routine, we can use PROC_PERIFIXED with the
number of sides being three, or we can use PROC_SNOWFLAKE with the
order equal to zero. The latter:

PROC_START : PROC_SNOWFLAKE(@450,0)
and to draw snowflake of order 1 on top of the triangle
PROC_SNOWFLAKE(150,1)

The rest is up to you. Try to move the snowflake to other positions, other
sizes, and with different orientations.

As a last task, design routines to draw the Anti-snowflake Curve
(Kasner and Newman, 1940 : page 299, and also my Icon 1.12). The
triangles are drawn inward, towards the centre, rather than outward. Hint:
the only routine which needs altering is PROC_POINT. No answer is
supplied.

ICOH_1.12

38

CHAPTER 2
Turtle Geometry

Don’t talk to me about mathematics —
I’ve come to the conclusion that I've
learnt to live without it.

Prince Philip, The Duke of Edinburgh
There is no ‘royal road’ to geometry.

Euclid

The turtle procedures are simple to use because they accentuate the
intrinsic properties of shapes.

When we study the intrinsic properties of shapes, we look at the angles
(which never vary, though the size be doubled), and at the ratios of the size
of one side compared to another. To talk of angles and ratios of sides, is to
talk of trigonometry.

Triangulation

Enter the following procedure, which is not well-written TG because it
uses too many moveto and turnto commands:

4000 DEF PROC_TRI(SIDE)

4010 PROC_MOVETO0(200,-200,0) : PROC_TURNTO(30)
4020 PROC_MOVE(SIDE,1) : PROC_TURN(-120)

4030 PROC_MOVE(SIDE/2,1) : PROC_TURN(-90)

4040 PROC_MOVETO(200,-200,1)

4050 ENDPROC : REM TRI

(it is assumed that the basic TG procedures are already there). If the
following instant one-line program is entered, eg

FORI=1TO 7 : PROC_TRI(100*I) : NEXT I

then there are seven superimposed triangles drawn, each getting bigger
enclosing the smaller triangles. The angles in the triangle are (bottom) 30
degrees, (top right) 90 degrees, and (top left) 60 degrees; these angles are
the same for each triangle — see Icon 2.1, which shows a similar type of
triangle.

Graphic Art for the BBC Computer

Opposite

Hupotenuse Adjiacent

The longest of the lines (ie the first to be drawn) is always twice as
long as the shortest line (second to be drawn) — how long (relatively) is
the other fine? Hint: use PROC_LOC to work out the coordinates, after the
second fine is drawn (ie after fine 4030). What happens if we try to

PRINT SIN(RAD(30)); COS(RAD(60))

should not be very surprising, but has to be explained.

Both SIN(RAD(30)) and COS(RAD(60)) are equal to 0.866025404,
and if the value of sine 30 degrees is found from a book of tables, it is
0.8660 (as is the value of cosine 60 degrees). Check that the value of sine
60 degrees (and of cosine 30 degrees) is 0.5. The question now is to relate
this to the triangle.

Enter

PROC_RESTART : PROC_TRI(500)

where the coordinates of the lower apex of the triangle are (as one would
expect from the content of the routine) 200, — 200 (X axis, Y axis). By
dextrous use of PROC_LOC (twice) it can be found that the upper left
apex is at -50,233.012702 with the upper right apex at 200,233.012702.

We know from the routine that the long side of the triangle is 500. This
is called the hypotenuse of the right angled triangle (the right angle is that
of 90 degrees at the top fight apex). The hypotenuse is always opposite the
right angle. The vertical side (ie the medium sized side) is 233.012702 —
200 — 433.012702, and the small side is 250 (both from the coordinates,
and from the routine, ie 500/2).

40

CHAPTER 2 Turtle Geometry

If we concentrate on the angle at the lower apex, an angle of 30
degrees, then we can give names to the sides of the right angled triangle.
The side opposite the angle (in this case the shortest side) is called the
opposite; the side next to the angle, which is not the hypotenuse, is called
the adjacent (Icon 2. 1). The sine and cosine of an angle are defined by

sine = opposite/hypotenuse
cosine = adjacent/hypotenuse

so that

sine(30) 250/500 = 0.5
cosine(30) = 433.012702 = 0.866025404

which checks. Check that it checks.

Degrees of radians

We have been working in degrees, and this is the means by which most of
us find it easiest to conceptualise angles. In mathematics (and computer
arithmetic) it is easier to work in terms of radians rather than degrees. For
example (and do not lose any sleep over it), if X is given in radians

sine(X) = x - XA3/3! + xA\5/5 - xNT/7V + ...
cosine(x) 1- xA2/2! + xN/4! - xN6/6! + . . .

which is very nice and simple (xA3 — for example — is x*x*x and 3! is 1*
2*3). So that we can still work in degrees, even though the calculations are
simpler for the machine in radians, BB (UG page 331) has a RAD function
to change an angle measured in degrees to its equivalent in radians.

To turn completely round is to go through 360 degrees, or to turn
through 2*PI radians (PI is a BB constant equal to 3. 14159265, see UG
page 318). A radian is also called a circular measure. One radian is the
angle at the centre produced by an arc on the circumference of a circle,
where the length of the arc is the same as the radius — a form of circular
equilateral triangle.

You would expect that, as the circumference is curved, the other two
sides would be slightly closer together than for a normal equilateral
triangle. They are. The angle is about 57 degrees for the arc, as against 60
degrees for the equilateral triangle (compare UG page 331). If you know
that the length of the circumference is 2*PI*RADIUS, you might like to
work out why the radian is equal to 180/PI degrees.

Note that in the TO routines we always use degrees, and the conversion
into radians is done within the routines. This is how it should be, though
radians have a certain mathematical felicity degrees have an overwhelming
familiarity.

41

Graphic Art for the BBC Computer
Further functions

The classic three functions of trigonometry are the sine, cosine, and the
tangent, with the definition of the tangent being

tangent = opposite/adjacent
which, for our example triangle, produces

tangent(30) = 250/433.012702
=0.577350269

in agreement with
PRINT TAN(RAD(30))

the way we refer to the tangent in BB (UG page 362). We use all three
functions in the TO routines, and, interestingly, in the notes of Kasner and
Newman’s discussion of ‘Change and Changeability’ (used last chapter,
when examining pathological curves) they give a good brief explanation of
what they term trigonometrical ‘ratios’ (ie functions).

Actually we do not use the tangent in the routines, rather we use the
‘arctangent’. The arctangent (written as ATN in BB — see UG page 210)
gives the angle corresponding to a tangent value. T AN(RAD(30)) is equal
to 0.577350269, and so ATN(0.577350269) is 30 degrees, but expressed in
radians: DEG(ATN(.577350269)) converts the result so that it is given in
degrees — DEC is the reverse of RAD. ACS (arccosine) and ASN
(arcsine) are also available in BB (U G pages 201, 209). Another name for
the arctangent is the ‘inverse’ tangent, and similar for the others.

At this point it is worth examining PROC_MOVE and
PROC_MOVETO.

Moving commands

If we return to the triangle example, it can be seen that if we start at the
lower apex (call it X1, Y1), then the coordinates of the upper left apex
(X2,Y2) are related to the distance between the two apexes (DIST) by

X2 = X1 - DIST*SIN(RAD(30))
Y2 =Y1 + DIST*COS(RAD(30))

If there is no need to remember where are X1 and Y1 then there is no need
to distinguish between, say, X1 and X2 in the equations; and if instead of
30 degrees we insert any angle, then we arrive at

X = X - DIST ANCE*SIN(RAD(ANGLE))
Y =Y + DIST ANCE*COS(RAD(ANGLE))
(see PROC_MOVE).

42

CHAPTER 2 Turtle Geometry

Though this is, at least on the face of it, perfectly acceptable, we do not
know that it will work for angles outside the range of 0 degrees to 90
degrees. To prove that it works, we need to find the sign of the
trigonometrical ratios for various angles: try it for yourself, and prove to
yourself that the equations always work. If the equations do not work, let
me know.

To move to a certain position at first appears to be a simple exercise:
merely a use of the commands DRAW or MOVE from BB. This is true,
but we need to know at what angle the turtle is pointing after the move. We
need to know the angle — this is the key. We know the coordinates, the
distances, we do not know the angle.

If we know the sides of a triangle, and we want to know angles, we use
the inverse trigonometrical functions: in this case we know the opposite
and the adjacent sides, so we use the arctangent. In PROC_MOVETO the
local variables XDIF and YDIF correspond to distances along the side of a
right angled triangle, in the X and Y directions respectively. The angle (in
radians) corresponding to these distances is the arctangent of (XDIF/
YDIF), with certain adjustments.

The first adjustment is to try to account for angles outside the range 0
degrees to 90 degrees. If

PRINT DEG(ATN(1)); DEG(ATN(-1))

is tried, the results are 45 and -45 (ie degrees). Relating this to the value of
the ratio (XDIF /YDIF) indicates that, when the angle is 45 degrees, both
XDIF (equivalent to X2 - X1) and YDIF (ie Y1 - Y2) are negative, so that
the ratio is positive. This is correct so far. When both XDIF and YDIF are
positive (bottom left corner) the angle is 225 degrees.

For -45 degrees, XDIF is positive and YDIF is negative, so the ratio is
negative: again correct. When XDIF is negative and YDIF is positive, the
ratio is also negative, but the angle corresponds to 135 degrees.

If YDIF is negative, the angle lies between -90 (270) degrees and 90
degrees (ie is upwards) — the range of values given by ATN. When YDIF
is positive (ie Y1 is greater than Y2) then 180 degrees has to be added to
the angle between -90 degrees and 90 degrees — the adjustment being
accomplished by +180*(YN<y) in PROC_MOVE. (On the use of logical
comparisons see UG pages 99 to 101, and 369).

The second adjustment is of a different nature: it stops the computer
having to divide by zero. In the division XDIF/YDIF, if YDIF is zero (a
horizontal fine) then the result is indeterminate, and the computer produces
an error. The check in the IF statement is to stop such an error, and after
the ELSE the turn is either 90 degrees (if XDIF is negative) or -90 degrees
(if XDIF is positive), that is, SGN(-XDIF)*90. FN_ANGLE turns the
negative values into the correct positive angle.

43

Graphic Art for the BBC Computer
Circular motion

A knowledge of trigonometry is not necessary to use TG commands, but to
advance in graphics a knowledge of trigonometry is valuable if not totally
necessary . In this section we will investigate the drawing of a circle, with
an adjustable centre and variable radius.

Start simple. What is a circle? A circle is no more than a polygon with
30 sides — at least the way we will draw it. 30 sides is too many to easily
examine: why not start with a square (a polygon of four sides)? Two calls
to PROC_PERIFIXED :

PROC_PERIFIXED(1600,4) : PROC_PERIFIXED(-1600,4)

to produce the arrangement of Icon 2.2. If instead of four sides we request
30 sides, then we also get two slightly skewed circles (only the skewness
of the squares amplified).

ICOH_2.2

To draw circles, we need to ‘de-skew’ them, only we do not de-skew
the 30 sided polygons at first: we start simple, and de-skew the squares. To
de-skew the squares all we need to do is tilt the squares through 45
degrees:

PROC_TURN(45) : PROC_PERIFIXED(1600,4) :
PROC_PERIFIXED(-1600,4)

This arrangement is shown in Icon 2.3, with the addition of a few extra
fines and labels. The dotted line from a to d (ie ad), is at an inclination of 0
degrees; the line ab is at 270 degrees; the fine be is at 45 degrees; and the
line an is at 3 1 5 degrees.

44

CHAPTER 2 Turtle Geometry

These angles are only true for a square, but certain intrinsic properties
are true for all polygons:

ac = ab*sine(abc)
angle(cad) = angle(abc)

so that if ab is the radius, then the distance through which the turtle moves
at each side is twice the length of ac. The distance is thus 2*ac = 2*radius*
sine(abc) — the angle a be for a 30-sided polygon is 360/30*2 = 6 degrees
(why?). The distance moved along each side is thus 2*radius*sine(6). We
also have to start by turning through six degrees.

It makes sense to work through the preceding argument, if it is not too
clear, because this is the justification of PROC_C30 (shown in Turtle
Routines 1.2). The routine is called C30 as it draws a circle by actually
drawing a 30-sided polygon.

The local variable J refers to the size of each side of the polygon,
where R is the radius, and the local variable I is a loop counter. The routine
assumes that the turtle is at the centre of the circle to be drawn, but that the
angle at which the turtle is facing is unknown. The turtle moves forward a
distance R without drawing, and is turned through 96 degrees (ie to the left
90 degrees and down six degrees from this).

The circle is drawn in a conventional manner as a 30-sided polygon,
where the move is J forward and the turn is through 12 degrees. Finally the
turtle turns to point back, returns to the centre of the circle, and is then left
pointing in the original directlon.

45

Graphic Art for the BBC Computer
Changing plotting styles

I suggested that when investigating the random walk that different values
of the PLOT parameter be tried, to see their differing effects. The MOVE
and MOVETO routines in Version 1.1 only offer two styles — draw a line,
or do not draw a fine — so why not expand the scope to use more of the
BB plotting variants?

In Turtle Graphics Version 1.2 most of the routines are the same, the
only differences come in the two moving commands. If the UG (pages 3 I
9, 320) is consulted, it can be seen that plotting commands come in groups
of eight: within each group of eight we want the sixth command — which
always draws a fine absolute in the current graphics foreground colour.

Wanting to keep the commands MOVE and MOVETO compatible
with those of Version I. I, I decided that O should remain as move, do not
draw, and kept I as draw a fine. In terms of the plotting commands, O in
MOVE corresponds to 0 in PLOT, and I in MOVE corresponds to 5 in
PLOT. This explains how the plotting mode is calculated in the new
moving commands — the style parameter of the moving commands, and
their action, are shown in Figure 2. L.

Figure 2.1 Drawing Styles

MOVE PLOT ACTION

0 0 Just move

1 5 Draw line

2 13 Draw line without last point

3 21 Dotted fine

4 29 Dotted fine without last point
69 Plot point

11 85 Fill triangle
It is also possible to use the PLOT parameters directly as a parameter in
MOVE and MOVETO, but using my method is fairly simple, and
comprehensive: if you want to do more, then do so.

These different styles are illustrated by Icons 2.4 to 2.8. All these
examples are obtained by use of the same routine PROC_SINFN, with
different parameters. PROC_SINFN is an example of the use of TG to
provide ‘polar’ plots: a polar coordinate of a point is the distance of the
point from the origin, together with the angle at which the point is in
relation to the origin (sounds very TG?).

PROC_SINFN relates the angle of inclination to the distance away
from the origin by some function of the sine of the angle, with the factor
being variable. The first example (Icon 2.4) shows a ‘cardoid’, with a
factor of 1/2 and a plotting style of 11 (ie PLOT with 85, filling in
triangles, effectively filling the shape). Icon 2.5 also fills triangles, and the
factor is 8.

O

46

CHAPTER 2 Turtle Geometry

Icon 2.6 uses a style of 9 (ie PLOT with 69), that is, plot a point: the
factor is less than 1/2, I will let you discover which value it is. A dotted
line (style 3, PLOT with 21) is shown in Icon 2.7, the factor is greater than
I, but work it out (note the differences between even and odd factors
greater than I). The use of the dotted fine produces some interesting
interference patterns.

Last of all, we have another circle — Icon 2.8. In this case the style is |
(PLOT with 5) — draw a fine. It reinforces the relationship between
trigonometrical ratios, and shapes in general. The interference patterns are
again quite intriguing, and also known as Moire Effects.

47

Graphic Art for the BBC Computer

o ————

-
—_—— e

|_.

I
|||I||_:!!.__-..:__ .._...II

|||||||||||||

,.__.. ===l

Ll||:|_|—|—|: | I.!

T __--J

48

CHAPTER 2 Turtle Geometry

ICOH_ 2.8

The time has now come to move up a gear, to a mode of many colours.

R [o o
1848

SRAaFPHIC ARET

1H4H-
1E50REM cod Boris Allen, 19832
1lEss

llHHFEH Turtle Graphics ¢ 1.2

1iia

L AR] o o o o s s e
11z

1148 DEF PROC_CLREZCE

158 PROC_CLS @ PROC_CLG

1ied EMDFROC @ REM CLRESCR

1478

lis8 DEF FPROC_CLG

lisE GOl 8,PEM ¢ GO0l 8, 129-FEM

1288 VDU 24, 8128127916823 CLG
1248 REM Clesars an weese oraehics windo

WO 29,848 S8E
A REF Sets the origin to cembre of o
FraElcE Wi o

49

Graphic Art for the BBC Computer

iz48 EMDPROC @ REM CLG
1_JU

DEF FPROC_CLE

CoOLoR 4 FEH : COLOUR 122+PEM
VO 2E.8,31,539,28 « OLE

FEM Clears lowsr test window
EMDFROC = REM CLES

DEF PROC_COLCPES
FEM=FE
EMDFROC ¢ REEM COL

DEF PROC_CEMTRE
MOVE B.8 @ AMGLE=S @ H=8 @ Y=8
EMDFROC @ REEM CEMTREE

A DEF PROC_RESTART

1448 PROC_CLG ¢ PROC_CEMTRE

1428 EMDFROC @ REM RESTART

1436

1448 DEF PROC_STERT

1458 PROC_COLOE @ PROC_CLESCR @ PROC_C
EMTRE

1468 EMDPROC @ REM START

1476

14258 DEF PROC_IMVERT

1498 PEM=1-FEMN @ GCOL &,FEM

1568 EMDPROC @ REM IMVERT

1518

1526 DEF PROC_TURMTOOA

1538 AMGLE=FR_AMNGLE (A

1548 EMDPROC @ REM TURMTO

15568

15668 DEF PROC_TURMOAD

1578 AMGLE = FH_AMNGLE (AMNGLE+A

1586 EMDPROC @ REM TURM

1598

1865 DEF PROC_LOC

1618 PRIMT "COORDIMATES ARE " 3H,Y' "AMGL
E IS "AMGLE

SoE EMDFROC @ REM LOC

ieds DEF PROC_MOVECDISTAMCE . STYLED
1258 H=H - DISTAMNCERSIMORADOAMNGLE Y 3
lesd Y=Y + DISTAMCExCOZRADOAMNGLE X S
ieva IF STYLE<C:>B THEM PLOT CSTYLE-1l#2+
Sarst ELSE MOVE =.Y
ie88 EMDPROC @ REM FOVE
1e98
50

CHAPTER 2 Turtle Geometry
17EE DEF PROC_PFOVETOOSM, YHN.STYLES
1748 LOCAL WDIFLYDIF @ sDIF=sM-2 @ YDIF
=1 i
17E6 IF YOIF<X8 THEM PROC_TURMTOCDEG AT
SURsDIFSYDIF *+l_u+* Yy ELSE PROC_TURM
L-mDIF S ETE S

HEHN @ Y=YN

2 IF STYLE<>@ THEM PLOT (STYLE-1)#s+
' ELSE MOVE Y

EMDPROC : REM MOVETO

DEF FrH_AMGLECA?
=0 IF A FOD 2 <8 THEM =/ FOD Ze8 +
EL E o=/ FMOD 3

THE REM AMGLE

=00

i8 DEF PROC_MNELR

3 VMO Ze o OLE
EMDFROC @ REM MHELR

mrnﬁuny&Hrﬂ&r&W

SRET GCRAFPHIC ART

SRET Coy Boriz Allen, 19232

48 DEF PROC_C2ECR

B LoCAL T.0

Zien J o= ZERSIMOREADCSY Y ¢ PROC_TURMTOC
B3 2 PROC_FOVECR,B @ PROC_TURMOZE+S
2T FOR I = 4 TO 268 @ PROC_PMOVECT 1M @
FROZC_TURMOLZY ¢ MEST I

Zign PROC_TU lFH' DO-c o PROC_POVECR. B
L TURM L8

EMDFROC

FEM C328

DEF PROC_SIMFMOSIZE FROTOR,,STYLE?
LOCAL T FAe
IF FRCTOR <= 1 THEM MM
Frn=108- CIMT OFRCTOR.Z

128-.FRCOTOR
dEZ=FRCTOR %1

]
L
X

ZZ4dn FOR I=1 TO MR- 2 PROC_CEMTRE @ FRO
51

Graphic Art for the BBC Computer
COTURMTOOIy ¢ PROC_FOVECSIZESSIMOREADC T#F
ACTORY 2, 5TYLEY ¢ MEST I

2258 EMDFROC @ REM SIMFH

52

CHAPTER 3
Turtle Graphics 111

Whatever colors you have in your mind
I’ll show them to you and you’ll see them
shine

Bob Dylan, "Lay, Lady, Lay"

The next obvious extension to TG is to have more than one turtle, with
each turtle drawing lines of a specific colour — a colour which might be
different from the other turtles. We need a four colour mode: one colour
for the background, and three colours for the turtles.

Mode 1 takes up more memory, though with an increase in resolution,
so we will normally use mode 5 to allow more space for complex
applications. The question is then which four colours? (and then how to
control three different turtles at once). The choice of colours, and the three
turtles, incorporates the distinction between ‘actual’ and ‘logical’ colours.

Choosing colours

There are four colours available in modes 1 or 5 at any one time. These are
the four ‘logical’ colours labelled 0, 1, 2, and 3: normally these colours are
black, red, yellow, and white. Black has an ‘actual’ colour number O, red is
1, yellow is 3 and white is 7 (see UG pages 162-168, 222-224, and 262).

It is possible, therefore, to change the logical colour O from black
(actual colour 0) to flashing cyan-red (actual colour 14), by assigning the
logical colour to a new actual colour number. The logical number is like
the address of a house, which never varies, but whose occupant (the actual
colour) may vary, without the house number altering.

The logical numbers O to 3 are ‘foreground’ colours, they define the
colours of the text, or fines in graphics: corresponding to logical
foreground colour 0 is background colour 128, and for 3 there is 131. If we
printed in logical 2 on a logical 130, we would not be able to see what had
been printed (text and background would be the same actual colour).

The normal association of logical and actual colours for mode 5 (as
well as mode 1) is shown in Figure 3.1.

Figure 3.1 Colours in Modes 1 and 5

Graphic Art for the BBC Computer

LOGICAL ACTUAL COLOUR
NUMBER NUMBER

0 128 0 Black

1 129 1 Red

2 130 3 Yellow
3 131 7 White

To change the association we use another VDU command (UG pages 224,
382)

VDU 19, logicalnumber, actualnumber, 0, 0, 0
that is:
VDU 19, logicalnumber, actualnumber; 0;

where the second sends two bytes at a time by use of ";". To understand, an
example might help — Mode 5

1000 COLOUR 131 : CLS : REM SET THE BACKGROUND TO
WHITE (LOGICAL 3)

1010 REPEAT COLOUR 0 : PRINT "#s#sisdsaiiokiastkiosiionn o
REM PRINT IN FIRST LOGICAL COLOUR

1020 COLOUR I : PRINT "#sssksksssbbsddsiisiirs . REM AND
SECOND

1030 COLOUR 2 :PRINT "#s#sskadssiisdisiiciitittx" : REM AND
THIRD

1040 INPUT LGICAL, ACTUAL : REM COLOUR NUMBERS
1050 VDU 19,LGICAL,ACTUAL;0; : REM WATCH THE
OUTPUT CHANGE COLOUR

1060 UNTIL FALSE : REM AND AGAIN

This little program helps you to investigate the effects of various actual
colours, in differing combinations. An important consideration with colour
graphics is how well the different colours can be distinguished on a
monochrome television. (My colour TV is used for watching TV, most of
the time).

By dint of much playing around with the above program, I came to the
conclusion that I would use the following logical and actual associations

VDU 19, 0, 7; 0;
VDU 19, 1, 1; O;
VDU 19, 2, 6; 0;
VDU 19, 3, 3; 0;

that is:

Figure 3.2 New colour associations
54

CHAPTER 3 Turtle Graphics 11l

LOGICAL ACTUAL COLOUR
NUMBERS NUMBER

0 128 7 White

1 129 1 Red

2 130 6 Cyan

3 131 3 Yellow

I propose to use 131 for the graphics background (ie yellow), and £29 for
the text background (ie red); 0, 1, and 3, for graphics foreground (the three
turtles), and O (ie white) for the text. The means to change these
assignments are provided — for graphics — within the program.

The three turtles

Within the programs for the first version of turtle graphics, there were four
global variables: X, Y, ANGLE and PEN. Though some of the other
routines have to be slightly altered to cope with mode 5 rather than mode 4
(eg PROC_CLS) not much else needs great alteration — as long as it is
remembered which turtle is which.

The way I propose to code the routines is to have only one set of
routines, without any extra parameters for whichever turtle is to be used.
The reason I intend to implement the graphics in this way is universality:
all T want to say is PROC_CIRCLE(SIZE) for the routine to work with
whichever turtle is being used at that time.

To have routines such as PROC_CIRCLE(SIZE, T_NUMBER) makes
the whole programming process far more tedious than needs be. There will
be special procedures to define the turtle to be used; and once so defined,
the definition will stay until another turtle is defined. We will, however,
within the basic TG routines have to keep track of where each turtle is
located, and in which direction it faces.

We need at least one extra global variable: TURTLE, which holds the
number of the turtle being used at that time (0, I, or 2). Instead of PEN we
need three PENSs, one for each turtle, just as we need three Xs, three Ys,
and three ANGLESs. This all sounds like the place to use arrays, and it is
for X, Y , and ANGLE — but not for PEN. The difference comes from the
fact that PEN is a small integer less than 255 (it can fit in a byte), whereas
X, Y , and ANGLE can be fractional numbers.

We need to have three examples of each of the above, where PEN is a
set of three small integers, and the others are sets of three fractional
numbers. We set aside space for these sets of three by a BB statement such
as

1000 DIM PEN 2, X(2), Y(2), ANGLE(2)
and we refer to each element in this manner:

Figure 3.3 TURTLE global variables

55

Graphic Art for the BBC Computer

TURTLE PEN X Y ANGLE

0 PEN?0 X(0) Y(0) ANGLE(0)
1 PEN?1 X(1) Y(1) ANGLE(1)
2 PEN?0 X(2) Y(2) ANGLE(2)

Note that PEN, which was ‘dimensioned’ differently to the others, and is
different to the others in the way in which elements are named. The I'th
element of PEN is shown by PEN? I, whereas the I'th element of ANGLE
is shown by ANGLE(I). PEN is a ‘byte vector’ (see UG pages 237, 409-
413), whereas ANGLE is an ‘array’ (see UG pages 120— 125, 236): PEN
is effectively a succession of bytes, and ANGLE is a succession of real
numbers.

If we are using a turtle called TURTLE, (where TURTLE is the logical
number) then to use the correct actual colour for that wee beastie we say
PEN?TURTLE; the turtle is at coordinates X(TURTLE), Y (TURTLE)
facing in a direction ANGLECTURTLE). TURTLE always denotes the
logical colour number, which is why 3 and 131 refer to the background
logical colour (TURTLE lies between O and 2).

The new routines

The routines in Version 2.1 are similar but different. For a start, as arrays
and vectors have to be dimensioned, we start (using PROC_START) by
running the short program part. We could have started Versions 1.1 and
1.2 in this manner, but with arrays and vectors this is the cleanest way.
Here goes.

TSR] e o e oo o e o e

1816

R

1EEERERM GRAaPHIC AT

1845

1E858REM for Boriz Allen, 192

1Ee6

1875

L EVESEARE[¥] o e o e e s e st e e s s e e

MR

1igaREM Twtle Graphics @ 2.1

1iiE

T L R] e o e oo o o

1iz6

1148 REM FAIM PROGRAM

1156 DIF PEM 2, CLRE 2, #5020, YO2h, AkMeL
Eozs

1ied PEMTE = 7 ¢ PEM?L = 41 @ PEM?Z = &

BACH = 3

56

CHAPTER 3 Turtle Graphics 11l

1178 FOR I g TO 2
iigE WD 49, I, PEMPI: B: @ CLR?I = PEM

llE‘E =i 8 o YOIy = 8 ¢ pMeLECIY = &8

“DH 12, 3. BaCk: 9:
FROC_TURTLE(S: FROC_CLRESCR
EMDN ¢ REM OF MAIM FPROGRESM

DEF PROC_CLRSCE
FROC_CLS ¢ PROC_CLG
EMDFROC ¢ REM CLRESCRE

DEF PROC_CLG

GOOL 8, TURTLE @ GCOL 8, 428+BACK
WILD 24, 8 1285 12V9; lU._’-:i;
VO 29, sdE: Sesr @ CLG
FOVE 8.8

ERDFPROC ¢ REM PROC_CLG

DEF PROC_CLE
COLOUR & @« COLOUR 4129
VO 22, 8, 21, 19, 22 : COLs
FEM I+ iz WD 22, 8, 31, 39, 28
cLz +nr' mods L
1488 EMDPROC ¢ REM PROC_CLS
1418
1428 DEF PROC_TURTLECLGCOL
1428 TURTLE = CLGECL FHMOD 3=
GOl 8, TURTLE
1448 FMOVE SOTURTLE JMOTURTLE D
1458 EMDFROC @ REM TURTLE
14em
1478 DEF PROC_STERT
1428 RUM
1498 EMDPROC ¢ REM START
1588
1518 DEF PROC_COLCACT

AW 49, TURTLE, ACT: Bz
ERDFROC ¢« REM COL

o b R e g g

+ o= MOD o=

5 DEF PROC_CEMTRE

=B FOVE 8.8 @ AMGLECTURTLEY = 8
B HACTURTLEY = 8 ¢ YOTURTLEY = 8
EMDFROC ¢ REM CEMTRE

D0 DEF FPROC_RESTART
o LOCAL T
FOR I=2 TO 8 STER -1

57

Graphic Art for the BBC Computer

1328 PROC_TURTLECIY ¢ PROC_CEMTRE

iedl MEST T @ PROC_CLG

158 EMDPROC @ REM RESTART

losd

iev8 DEF PROC_INVERT

icg8 IF PEMTPTURTLE = CLEPTURTLE THEM PE
FPTURTLE=BRCH ELSE PEMPTURTLE=CLRETPTURTLE

198 PROC_COLCFENTTURTLES

17 EMDPROC @ REM IMVERT

ivis

1728 DEF PROC_TURMTOCA?

1738 AMGLECTURTLEY = FH_AMGLECA

1748 EMDPROC ¢ REM TURMTO

1758

i7ve8 DEF PROC_LOC

1778 PRIMT "TURTLE "TURTLE

1788 PRIMT "COORDES e IMTOSOTURTLE »+. 50
N IMTOYCTURTLE »+. 52

1798 PRIMT "ARNGLE "INT oAMGLECTURTLE »+.5

.15@@ EMDFROC ¢ REM LOC

DEF PROC_TURMOA?
FHGLECTURTLEY = FR_ANGLE CAMGLECTUR

igdE EMDPROC @ REM TURM
1258

b DEF PROC_MOVECDISTAMCE STYLES

1878 SOTURTLE! = SOTURTLED - DISTAMCE#®S
SORADCAMNGLECTURTLE 2 2 2

B YOTURTLEY = YOTURTLEY - DISTAMCE#®C
SCRADCAMGLECTURTLE Y 23

198 IF STYLE=D THEM FOVE CHOTURTLEX Y]
TURTLEY ELSE PLOT (STYLE-13+5, =OTURTLER
STUTURTLES

i9Es EMDPROC @ REM FOVE

izi8

1928 DEF PROC_MOVETOCOM, YH.STYLE

i9zE8 LOCAL SWDIF.YDIF @ BDIF = SiN-R0TURT
LEY « YDIF = YOTURTLE > -YM

izde IF YDIFCE THEM PROC_TURMTOCDEGCATH
CREDIFAYDIF D p+d88s OYMOY CTURTLE Y 20 ELSE FR
OC _TURMTOCSGEM O -SDIF D8

1958 HOTURTLEY = =M ¢ YOTURTLEX = WM
128 IF STYLE=D THEM FOVE HOTURTLEX YOT
URTLEY ELSE PLOT CSTYLE-13+5, HOTURTLE.
YOTURTLE

1978 EMDPROC @ REM FMOVETO

1288

58

CHAPTER 3 Turtle Graphics 11l
DEF FH_AMGLE A
A IF A POD 288 28 THEM =/ MOD 288 +
Zel ELSE = & MHOD FEM AMGLE

PROC_START (ie main program) dimensions two vectors (ie PEN and
CLR), and three arrays (ie X, Y, and ANGLE): all have three elements (ie
0, 1, and 2). PEN?() (corresponds to first turtle) is set to actual colour
number 7 (white); the second turtle is set to colour I (red), and the third
turtle is set to colour 6 (cyan); and the BACKground colour is set to 3
(yellow).

The actual colours are assigned to the logical numbers by use of the
VDU 19 command; the original CoLouR is remembered (used in
PROC_INVERT); and the coordinates and angle are initialised to zero for
all turtles. The background colour is set by the VDU 19, 3, BACK; 0;
command; the initial turtle is set (by PROC_TURTLE) to be turtle 0, and
the screen is set up by PROC_CLRSCR.

PROC_CLRSCR merely calls the two routines PROC_CLS and
PROC_CLG.

PROC_CLG first sets the current logical colour to the operative turtle
number, and sets the background to the operative background number
(altering the value of BACK can produce some interesting effects). The
rest of the routine matches that of the monochrome version.

PROC_CLS sets colours for text and background (white on red) and
sets up a text window for mode 5 : if the VDU 28 command is kept the
same as that in the first version, it is possible to use mode 1.

Next in the (boring?) list is PROC—TURTLE, which takes as
parameter the new LoGiCaL number for the graphics, and makes that the
new TURTLE number. The equation with MOD is to account for negative
values — FN_ANGLE uses a different method — in case by chance out of
bounds numbers are given. This routine is the one used to change from one
turtle to another, and so the graphics cursor is moved to the last
coordinates for that turtle (ie X(TURTLE), Y(TURTLE).

BHRIEIEIRE M = = =

59

Graphic Art for the BBC Computer

Zi4e DEF PROC_SOTURMOF

S8 LOCAL T.A¥

=8 FOR I=8TOZ @ PROC_TURTLECI»: PROC_
JRMTOCIZ28%] 2 e MEKT 1

A TE REFEAT @ PROC_TURTLECTD MO 23

A PROC_TURMOZE @ PROC_FOVECF®I 02

T

. = FROH
TMKEY ¢ -
SEEE #FH1S,H

18 EMDPROC : RFEM SOTURM

SOARECF#®#IY ¢ T = I+1 @ UMNTIL

A3 DEF PROC_SOUARECSIDE

A0 LOCAL I FOR I = 1 TO 4

S8 PROC_MOVECSIDE,. 1y ¢ PROC_TURMOSE
A MERT I

cE EMDFROC ¢ REM S0UARE

=6 DEF PROC_MOIRE
e LOCAL T
18 FOR I=8 TO 18779 @ PROC_TURTLECREMDC
1 ¢ PROC_CEMTRE @ PROC_TURMTOCISZ0
A PROC_FOVE 486,13 ¢« MESRT I
EMDFROC : EEM MOIRE

4
S8 DEF PROC_IMITIALIZE
B REMDIM Do
rE PROC_TURTLECB2 : PROC_FOVETOC-22, -
B o FROC_TURMTOOG
A PROC_TURTLECL s PROC_FOVETOORZ, -3
FROC_TURMTOE
S0 TEy = 48 ¢ Dddd = 48 ¢ WD T
A EMDOFROC ¢ REM IMNITIALIZE

HN]

DEF PROC_DEMWIATION
A FPROC_TURTLE L PROC_TURMOZE®IMNEEY

D=L IMREY -2

A8 PROC_TURTLEG?

=51y -0 IMEEY (-g5 s s

456 EMDOPROC ¢ RFEM DEVIATIOM

FROC_TURM 8% THEE

478 DEF PROC_ACCELN

400 Digy = Dogsy - 4 +IHPET'-:¢? s Dl
Dol — 18%IMMEYC-T30
490 EMOPROC ¢ REF ACCELM

B DEF PROC_TREAVEL

LOoCAL Ix

FROZ_DEVIATION @ PROC_ACCELM
Imd = REMDOLY +.5

o
o

CHAPTER 3 Turtle Graphics 11l

SO0 PROC_GOCIxD @ PROC_GOOL-T8
A ERDFPROC @ REM TRAVEL

DEF PROC_GOCT?

LOCAL 0 ¢« FOR J = 14 T4 2
5 FPROC_DENIATION

18 PROC_TURTLECL

FROC_FOVE DO 2 40
: A By IF POIMNTOSCTURTLE 2,
i t THEM PROC_EMD

SedE PROC_MOVE -4,8% ¢ BEM Mote that it
iz -4 For mods L, -8 For mods 5
: HOFPROC_TURTLECL-T:

A PROC_MFOVECDCL-T 1

FOD_FOWEC B IF POIMT SO TURTLE 2,
3 =3 THEM PROC_EMD
D PROC_FOVE -4, 82 ¢ MEST J @ EEM Se
-—ll: R LA

EMDFROC : REM GO

T‘

i

DEF PROC_EMD
YOU 7 o WOU T
PRIMT "TURTLE ";TURTLE;" LOSES ":

FOR I = 1 TO 3868 @ MERT I @ #FH15,
ErD

DEF PROC_MORT

LOCAL A% @ A% = GETH
FROZ_IMITIALIZE
FEFEAT PROC_TRAVEL
UMTIL FaLsE

EMDFROC ¢ REM MORET

Some highly interesting results can be achieved by changing the actual
colours of the turtles, and PROC_COL is the means by which the change is
made — see Figure 3.4 — on this, more later.

PROC_CENTRE centres the current turtle (it does not affect the other
two turtles).

PROC_RESTART centres all turtles and clears graphics by
PROC_CLG: a routine without PROC_CLG would centre all turtles
without affecting the display.

The operation of PROC_INVERT is rather different from the routine of
the same name in the monochrome version. Whereas the monochrome
version changes the plotting mode from foreground to background colour
(or vice versa), this routine either hides all the plotting of the turtle — thus

61

Graphic Art for the BBC Computer

far — or makes it all reappear again.

If the present actual colour of the PEN is the same as the original
colour (CLR?TURTLE) then the new actual colour becomes that of the
background, or else the colour of the PEN becomes the same as the
original colour. This is a rather useful way of hiding a piece of plotting, for
the plotting to suddenly appear, as if by magic.

PROC_TURNTO is the first of the TG routines proper (the rest being
housekeeping, more or less). All it does is make the present angle for the
present turtle equal to the parameter of the procedure (within O to 359).
PROC_TURN is as simple in operation.

PROC_LOC has had to be modified to fit on the lesser space of mode
5: the use of INT is also to reduce space. Note the addition of the
information which tells which is the operative turtle.

The main difference in PROC_MOVE (apart from distinguishing
between turtles), is to do with the STYLE of plotting. If the style is O then
a move does not plot; if 1 then plot in the normal turtle colour; and if the
style is 3 then plot in the background colour (ie erase, or the old version of
PROC_INVERT). The different use of STYLE is again the only real
change to PROC_MOVETO. FN_ANGLE is unchanged.

Finally here is the list of actual colour numbers, and the colours to go
with the number.

Figure 3.4 Actual Colours and Numbers

ACTUAL NUMBER COLOUR

0 Black

1 Red

2 Green

3 Yellow

4 Blue

5 Magenta

6 Cyan

7 White

8 Flashing Black/White

9 Flashing Red/Cyan
10 Flashing Green/Magenta
11 Flashing Yellow/B1lue
12 Flashing Blue/Yellow
13 Flashing Magenta/Green
14 Flashing Cyan/Red
15 Flashing White/Black

62

CHAPTER 3 Turtle Graphics 11l

Example pictures

Before the game is designed, here are two different examples of coloured
TG.

Though the name is the same as a Version I routine, PROC_SQTURN
is different. For a start PROC_SQTURN in the coloured version has a
parameter (F), but first examine the routine. Each turtle is turned to a
different angle, turtleO to O degrees, 1 to 120 degrees, and 2 to 240 degrees
(the first loop).

For a large number of times (1800) a turtle is chosen (the loop index
MOD 3), this turtle is turned through 90 degrees from where it was
previously, it is moved through a distance F*I (without plotting), and then
a square of side F*I is drawn — by use of PROC_SQUARE.
PROC_SQUARE is a simple routine to draw a square. An example is
shown in Icon 3.1, but it does not do justice to the multi-coloured effects.

63

Graphic Art for the BBC Computer

This routine produced multi-coloured effects, of a varying nature,
depending upon the value of F . Further effects can be investigated by
using the combination

PROC_TURTLE(A_VALUE) :
PROC_COL(ANOTHER_VALUE)

The various values of ANOTHER_VALUE can be chosen with the
assistance of Figure 3.4.

The other example is a circular Moire demonstration: PROC_MOIRE.
In the loop (which is activated 3*360 times), a TURTLE is chosen at
random; the turtle is centred; it turns to 1/3 degrees (I is the loop counter);
and the turtle moves 400 units forward. A multi-coloured circle is drawn.
Modifying the PROC-JFURTLE parameter, eg

PROC_TURTLE((I DIV 3) MOD 3)

(though the MOD 3 is not necessary), produces various intriguing effects.
As with the PROC_SQTURN, using PROC_COL can produce startling
effects. The effects, as shown in Icon 3.2, are far better in colour than in
monochrome — my screen dump routine only works in black and white.

Both routines show how easy it is to program with three coloured turtles.

64

CHAPTER 3 Turtle Graphics 11l
The game

One of the less important reasons for producing multi-coloured graphics is
the design of video games — the most important reason is the pure delight
of experimenting with artistic effects. So here is a game.

The game is called NORT, and involves only two of the three turtles. It
is a turtle race, but remember these turtles are cybernetic beasties and so
can move pretty speedily. The trail that each turtle leaves is noxious, and
so to travel over your own or your opponent’s trail is calamitous. You lose.

The two turtles start out side by side, at the same speed: the left turtle is
controlled by the ‘A’ , ‘S’ , ‘D’ ,keys; and the right turtle is controlled by
the ;°, ‘>, ‘7", keys. In each case the left key turns the turtle through 90
degrees to the left, the fight key turns the turtle through 90 degrees to the
fight, and the middle key speeds up the turtle. Once a turtle has speeded up
then it stays at that speed (it does not slow down), though it is always
possible to increase the speed further.

The faster the turtle goes, the easier it is to cut across the other turtle,
but the easier it is to get out of control. As you will realise, this game is
extremely simple to implement using coloured TG.

I do not claim that this is a definitive game, and it can stand much
improvement, but it indicates what can be done. An improved method of
reading the keyboard, and controlling the turtle racers would greatly help.
To the routines.

The first routine, in order, is PROC_INITIALIZE: the distances the
turtles have to move are stored in the array D which has two elements,
D(0) and D(1). The first turtle (ie 0) is moved to its starting point at -2, -
368, and turned to face upwards. The second turtle (ie 1) is moved to 32, -
368, facing upwards, and the initial speeds are set at 12 (ie D(0) and D(1)).
There is a starting beep (VDU 7).

PROC_DEVIATION senses the keyboard for both turtles, and turns
accordingly (uses PROC_TURN and INKEY()).

Another short routine is PROC_ACCELN, which modifies the two
speeds (only upwards) by sensing the keyboard via INKEY ().

PROC_TRAVEL has a local variable 1%, and establishes the deviation
and speed before setting 1% randomly to O or 1. The routine PROC_GO is
called with 1% as parameter, and this establishes the order in which the two
turtles are moved.

The turtles move in eight segments — so sometimes it is possible to
‘jump’ over a trail. These eightjumps are produced by the loop J =1 TO 8,
and at each jump the keyboard is sensed, and then the turtles jumped in
order — given by the parameter to the routine. After each jump, there is a
move forward of four units (without plotting), and that location is checked
to see if the colour there is not logical 3 (the background). If that square is
the wrong colour, then the game ends. If the colour is that of the
background, then there is a move (back) of -4 units.

PROC_END double beeps (VDU 7), tells you who has lost, waits and
then flushes the buffers (*FX15,0).

65

Graphic Art for the BBC Computer

To start the game you have to enter RUN and then PROC_NORT: the
game commences with the press of a key (GETS$), when we
PROC_INITIALIZE and then REPEAT PROC_TRAVEL forever — or at
least until we hit PROC_END.

The two trails shown in Icon 3.3 give some idea of the courses of a
typical game. The game is more effective in colour than in black and
white, though quite possible to follow because of the colours chosen.

66

CHAPTER 4
Driving Graphics

Nil posse creari de nilo
[Nothing can be created from nothing]

Lucrecius, Be rerun Natura

We have already encountered the control of graphics by use of VDU
commands (the VDU ‘drivers’) — it is impossible to ignore them. What is
the function of a VDU command? Hold down the CTRL key and press the
G key: you beep. Enter

PRINT CHRS$(7);
and you beep, appearing on the next line. When you enter
PRINT CHRS$(7)

(ie without the semicolon) you beep and appear on the next line but one.
To enter

VDU 7

again produces a beep, this time you are on the next fine. Entering
VDU 7:VDU 7

produces two beeps, as does
VDU 7,7

This simple example shows that the VDU command is a special kind of
PRINT command — it is a PRINT CHR$ command, where the command
is terminated by a semicolon.

Asking about ASCII

The inquiring mind might then ask: ‘Why is the PRINT CHRS$
combination worth all this trouble?’. As you ask, it's ASCII, the American
Standard Code for Information Interchange. Go into any mode other than
7, turn to the UG page 490, and then

VDU 66,111,114,105,115

to which the response is, how I love it,
Boris

and to reajly get it correct

VDU 66,1 11,1 14,105,105,1 15,32,65,108,108,97,110

Graphic Art for the BBC Computer

- try it out to see what is produced, gorgeous really.

The numbers which follow a VDU command are the numbers which
correspond to the characters in the ASCII. The command to produce Boris
could be written

VDU 66 : VDU 111 : VDU 114 : VDU 105 : VDU 115

that is, as a series of commands — each with one number following — but
it is simpler to run the numbers together if at all possible. If you look at the
codes on page 490 of the UG, you will see that from ASCII 0 to ASCII 31
there are no characters. These are the control characters, which include the
beep at 7 (the diagram says "beep").

Now turn to page 378 of the UG, where there is a summary of the
meaning of the VDU codes from O to 31, plus code 127, There is an exact
correspondence between the two summaries (ie the VDU on page 378, and
the ASCII on page 490).

The original ASCII codes only extended from O to 127, as there were
only seven holes on paper tapes plus one hole as a ‘parity’ check (ie count
up the holes and punch an extra hole depending on whether the result was
odd or even). This is why the meaning of codes 128 to 255 is "undersigned
initially" as the UG says. Codes 0 to 31 were given names, and suggestions
for standard meanings, but these codes were ‘control’ codes and partly
depended on the system.

If you refer to the VDU code summary on page 378 of the U G, you
will see a third column which is labelled CTRL: the keys in this column —
when pressed at the same time as the CTRL — produce the ASCII control
code given as the ASCII abbreviation (column four). The ASCII code 0
(for example) is abbreviated to NUL, and means ‘null’ do nothing;
according to the last column of the figure on page 490, for the BBC
computer it means ‘does nothing’.

Looking at the ASCII abbreviations can explain some strange pairings.
To disable the VDU is code 21 (CTRL U) which is abbreviated to NAK
(Negative Acknowledge); whereas to activate the VDU one uses code 6
(CTRL F), or ACK (Acknowledge). Each computer has its own
conventions for some codes but usually code 13 (&0D) is return and code
10 (&0A) is line feed, and so on. Otherwise the computer would have
trouble talking to devices in languages they could understand.

Character generation

We have been talking about characters, and the characters from 128 to 255
are undefined in the figure on page 491 of the UG. However, unless a
special operating system (OS) command is given — of which more later
— only characters with codes 224 and 255 can be redesigned. To store
each user-designed shape takes up 8 bytes, and so to store 128 shapes is 8*
128 bytes or 1K — to redesign the 32 shapes from 224 to 255 takes only
256 bytes.

68

CHAPTER 4 Driving Graphics

Memory is again a problem.

The first thing we now have to find out is how to define a character,
and details are given in the UG on pages 170-171, 384-385, and 389. The
VDU command to design a character is 23 (&17), which is CTRL W (ETB
— End transmission block). On page 378 of the UG we discover that, once
the system has been alerted by VDU 23, it expects 9 bytes to follow: the
first byte gives the number of the character to be redesigned; and
tht$remaining 8 bytes described what is the shape of the new character.

The work comes in working out the description of the shape, as
Lucrecius said ‘Yer can’t get owt from nowt’. The routines I have
developed are designed to make the design the important element, with the
description of the design being made as simple as possible. These are the
Character Routines 1.

First: how to design a character. In Figure 4.1, I show the ubiquitous
man from the UG (page 170)

Figure 4.1 The Little Man
THE SHAPE THE BINARY THE DECIMAL
LR 00011100 28
EEE 00011100 28
ce F 00001000 8
R 01111111 127
LE L 00001000 8
SRR 00010100 20
ELLUE 00100010 34
oo * 01000001 65

The numbers in the decimal column are the equivalents of the
corresponding binary numbers, with the binary numbers being exactly
related to the filled and empty squares in the character design.

The character number 224 is designed to be a ‘man’ shaped by the
VDU command

VDU 23,240,28,28,8,127 ,8,20,34,65
which can be re-written in a more transparent form as

VDU 23 : REM Prepare to send a character definition
VDU 240 : REM and the character number is ASCII 240
VDU 28 : REM This is the top line defined

VDU 28,8,127 ,8,20,34 : REM the middle six

VDU 65 : REM and the last line

If you think back to the discussion of screen resolution, the 8*8 character

69

Graphic Art for the BBC Computer

frame is no newcomer. Note: as long as the VDU numbers are in the
correct order, then the bytes can be split over more than one VDU
statement. The most tedious part (and least artistic) is the conversion from
binary numbers to decimal equivalents.

Character designer

The first of the Character Routines is PROC.—INB YTES, and this routine
allows the user speedy and easy input of binary numbers to be converted
into decimal equivalents. These converted numbers are then made
available for other routines, to be assigned to character numbers, and to be
manipulated.

The PROC_INBYTES routine uses two highly useful BB facilities
(both related): byte vectors, and string indirection (UG pages 409-413).
The local variable BYTES is set equal to &DO0O0 (the start of a patch of
memory available for user supplied resident routines, UG page 501), and
the local variable STORE is set equal to 8 more than BYTES. BYTES will
be used to hold the values of 8 bytes, and STORE will be used to store 8
characters which will be then converted into byte values.

There are two loops: one — with index I — corresponds to the fines in
the character design; and the other — with index J — builds up the
BYTES value for line I. Consider (Figure 4.2) what happens for line 5,
once we have input the binary number 00001000 into the string $STORE
which starts eight bytes on from the start of BYTES.

We now have to relate this arrangement to the routine PROC—
INBYTES. When the user types in 00001000, after the request LINE 47,
the eight characters are stored in the string starting at &0DO8 (ie by
$STORE). $STORE is not the same as STORES.

STORES$ is a string variable, and $STORE points to a series
oflocations starting at STORE, where the locations are filled with the
ASCII codes of the characters. We know where $STORE ends because
that location contains 13 (&0D). The ASCII code for O is 48, and the
ASCII code for 1 is 49 (see page 490 of the UG), and so if the values of
the locations from &O0D08 to &ODOF are examined
(48,48,48,48,49,48,48,48) then the correspondence with the input line
00001000 is clear to see. Note that location &0D10 contains 13, to indicate
the end of the string.

Thus far we will presume that the correct values have been input to the
first four locations of BYTES, and now the next problem is to input the
correct value into the fifth location (BYTES?4). BYTES?I is first set to
zero (note that I = 4), and in the J loop the value of BYTES?I is doubled.
As the loop counter J is increased from O to 7 a check is made to see if that
element of STORE (ie STOREAJ) is equal to the ASCII value of I (ie
STORE? = 49). If there is a I in the input number at this place in the
order, 1 is added to BYTES?I.

70

CHAPTER 4 Driving Graphics

Figure 4.2 Indirection Example

LOCATION NAME VALUE
&0D00 3584 BYTES?0 28

&0DO01 3585 BYTES?1 28

&0D02 3586 BYTES?2 8

&0D03 3587 BYTES?3 127

&0D04 3588 BYTES4 UNDEFINED
&0DO05 3589 BYTES?5 UNDEFINED
&0D06 3590 BYTES?6 UNDEFINED
&0D07 3591 BYTES?7 UNDEFINED
&0DO08 3592 STORE?0 48

&0D09 3593 STORE?1 48

&0D0OA 3594 STORE?2 48

&0D0B 3595 STORE?3 48

&0D0C 3596 STORE?4 49

&0DOD 3597 STORE?5 48

&0DOE 3598 STORE?6 48

&O0DOF 3599 STORE?7 48

&0D10 3600 STORE?8 13 (String end)

A binary number is formed in BYTES? I, and at the end of the routine
the numbers needed to send the shape to a character code are in the eight
bytes from &0DO00.

Numbers to characters
To set up a byte vector of eight elements all that is needed is a
DIM VV 7

statement in direct/immediate mode. This declaration will remain operative
until the computer resets the BASIC variables (eg some errors, or a new
fine is entered into a program).

If we want to assign the character definition stored away at &0DOQO,
then PROC_CHRASN is used. The parameters of the routine are the
character number (I) and an eight element byte vector (NEWB) — this
byte vector is used as a temporary storage medium for the design numbers
(used in some later routines.) All the routine does is simply send the
numbers stored from &0DO0O to the character I, by

VDU 231

and then eight

VDU BYTESI

statements (storing in NEWB?I at the same time).

71

Graphic Art for the BBC Computer

So we design the shape, and then input the binary numbers (by use of
PROC_INBYTES): next we decide where to send the design, ie to which
character, by use of PROC_CHRASN. Suppose we turn the design upside
down, making line O into line 7? (but still keeping the left column on the
left). We use PROC_CHREV.

PROC_REYV is essentially PROC_ASN, but backwards. It starts with
BYTES?7 and goes to BYTES?0, instead of vice versa. The new reversed
design is stored in the byte vector NEWB.

Next there is a routine to flip from left to right (and right to left):
PROC_CHRFLIP. This routine follows the standard pattern, but some
points are of special interest. J and L% are loop counters, J for the line, and
L% for the column within the line (and bit within the binary number). L%
is an integer variable because FL% then gives an exact result. The new
number for the line is compiled in K, in the same manner as the number
was compiled from STORE in PROC_INBYTES. The IF statement is
replaced by a logical assignment in PROC_CHRFLIP.

The logical assignment

K=K - ((2"L% AND BYTES?J) = 2/AL%)

works to see if there is a I in the binary number BYTES? J in L%th
position from the right, taking into account the binary number 2AL.% will
have a 1 in the L%th bit from the right.

If the number in BYTES?J has a 1 in L%th position, then (2"FL%
AND BYTES?J) — the logical AND, UG pages 205-206 — will be a
binary number with a bit equal to 1 in L%th position (with zeros
elsewhere). A number with a 1 in L%th position and zeros elsewhere is
equal to 2AL%. jthe numerical value which results when the logical
comparisons are TRUE is -1, and it is 0 when FALSE (UG 257-258, 369).
So the value is subtracted to make -1 into +1.

Two examples using the number 28 (ie BYTES?J) and the position 0
and 3 (ie L%=0 and L%=3). First example: L% = 0 so that 2"L% is 1 (or
00000001 in binary), BYTES?J = 28 (ie 00011100 in binary); 2AL% AND
BYTES?J is 00000000, which does not equal 2°L%. Second example:
when L% = 3 then 2% = 8 which is 00001000 in binary; 2AL% AND
BYTES%} is 00001000 which is equal to 2AL%.

PROC_CHROT takes it all that bit further, it turns upside down and
flips, that is, it rotates. The routine is like PROC_CHREV with
PROC_CHRFLIP inside.

We have with all these routines the spare byte vector (usually called
parameter NEWB). PROC_CHRSEND sends the content of a byte vector
to the eight locations from &0DO0O0. This allows more than one design to be
examined and manipulated at any one time. The bytes from &0DO00 are
almost the equivalent of the accumulator in a microprocessor. The
accumulator is where most of the actual computations are performed —
especially with the BBC computer’s 6502 microprocessor.

The routine PROC_CHRINYV inverts the design, ie all zeros become
ones while all ones become zeros. If the result of the inversion is then sent

72

CHAPTER 4 Driving Graphics

back to &0DO00, all the manipulation of the design is then available for the
inverse design. Finally, PROC—INDEC is just like PROC_INBYTES,
only you can enter decimal numbers.

Saving the routines

These routines are quite useful, and so it is sensible to try to incorporate
them in any program which uses user-designed shapes. You may have
noticed that the line numbers for the routines are very high, higher than
any program will ever need: this is so that they can be loaded quite safely
with any normal program.

If, however, the routines are saved as a BB program, then to load them
by, say,

LOAD "SHAPES"

will erase the program already in the memory. We need to load the
program fines in some different way. As we could enter the lines by typing
them in, why do we not get the computer to type them in?

Type NEW and then enter the routines, checking to see they work —
and how do you check to see they work? You use a VDU command. To
see if the design for character 224 is what you want, you enter

VDU 224

which prints out the character corresponding to the ASCII value 224. LIST
to check that all is well.

The next stage is to send the contents of the program to a file: but not
as a program file. When we type in at the keyboard we enter a character at
a time, or do we? We actually send a value when the key is depressed, that
value is then interpreted to appear as a character on the screen, or
elsewhere. The value sent by the key depression is an ASCII value — to
read in ASCII values, therefore, does not clear out the BASIC program.
We seem to require a file which has the program stored as ASCII values —
sometimes called an ASCII file.

To send the program to an ASCII file we use *SPOOL (U G page 402-
403). To save the ASCII version of the routines we enter

*SPOOL "SHAPES"

and switch on the tape recorder to record, though with disks we do not
have to bother.

LIST

which lists out the program, and sends it in ASCII form to the file
SHAPES. To terminate we enter

*SPOOL

73

Graphic Art for the BBC Computer

and the file closes.
To load the routines on top of a program we use

*EXEC "SHAPES"

and the *EXEC command acts as if the information coming from the file
(in ASCII form) were being typed in at the keyboard. This means that it is
possible to use these routines in any program. It would be even simpler
still to have one or more sets of designed characters which one could pick
and choose, depending on the program.

Saving the designs

The user designed shapes are located between &0DO00 and &()DFF unless
the characters are ‘exploded’, (U G page 427). Exploding means that more
than the 32 characters (ASCII codes 224 to 255) are available to be
redesigned: the ASCII codes from 32 to 255 (ie &20 to &FF) can be
redesigned. The exploding of the memory allocation uses the command *
FX 20,1, but the allocation of memory over-runs the beginning of BASIC
(usually at &0EQO, ie PAGE — UG page 414).

The sequence to explode the memory for a full set of user designed
characters is (all in immediate mode)

PRINT PAGE : PAGE = PAGE + &600 : *FX 20,1

This explosion must occur before the BASIC program is entered. The
designs occupy memory from locations &()C00 to &CFF, and &()E0O to
&0AOQQ if all characters are to be redesigned. The gap at &0D00 to &0DFF
(which I used for temporary storage) is left for user-defined routines (see
UG page 501 — though this conflicts with page 502). Personally I think
that 32 characters are sufficient for most purposes, so I will only consider
the default ‘imploded’ 32 characters.
To save the user-designed characters, therefore, enter

*SAVE "CHARS" 0C00 OCFF

and then to load these new designs into any program all that is needed is
Chapter 4 Driving Graphics *LOAD "CHARS" The extension to explosion
is simple enough, That the characters occupy fixed positions also means
that the first location of any character is at (CHRLOCN - 224)*8 + &0C00.
The character routines can easily be modified to take this arrangement of
characters and locations into account.

Text in graphics

All Icons in this book are printer dumps taken directly from the screen,
including the Icon label and any other labels (eg Hypotenuse). The labels

74

CHAPTER 4 Driving Graphics

were printed and positioned by a routine called PROC_PRINT, which
comes in two versions. The first version

1000 DEF PROC_PRINT(AS$,X,Y,CLR)

1010 VDU 5 : REM Write text at graphics cursor

1020 GCOL 0,CLR : REM Set text colour

1030 MOVE XY : REM Move to X,Y without plotting
1040 PRINT AS$: REM Write the text

1050 VDU 4 : REM Set text back to text cursor

1060 ENDPROC : REM PRINT Version 1

uses only two VDU commands. However, GCOL and MOVE can be
expressed as VDU commands (refer to page 378 of the UG). The second
version uses many more VDU commands, to the same effect.

1000 DEF PROC_PRINT(AS$,X,Y,CLR)
1010 VDU 5,18,0,CLR, 25,0,X;Y;

1020 PRINT AS$: VDU4

1030 ENDPROC : REM PRINT Version 2

I am ambivalent about the second routine. The first routine is clear,
explicit and well documented. The second routine is only clear to those
who wish to find out, but it has a coherence — due to the use of the VDU
commands as a long fine. The second routine is, I suspect, rather more
computationally efficient.

Corresponding to GCOL there is VDU 18 (U Gpage 381-382) with the
same parameters (ie 0 and CLR), both of which are of one byte (the
comma ","). Move X,Y is the same as PLOT 4,X,Y and (page 386) this is
the same as VDU 25 with the equivalent parameters. The first parameter is
one byte (","), and the other two parameters are two bytes (";").

k)

On balance, I prefer the second version.

S

H5

P EFRET Coy Boriz Allen, 19232

Character Fowbinss 1

75

Graphic Art for the BBC Computer

ZE1E8 LOCAL I, J.STORE.EBYTES

ZRiel BYTES = DBE @ STORE = BYTES + 2
3lvE FOR I =8 TO 7

dsn PRINT "LIME ":I:

1190 IMNFUT $5TORE

: oE BYTES?I g FOR I =8 T0 7
zZEzie BYTESTI BYTES?I#2 @ IF STORE?I=4
= THEM BYTESTI = BYTES?I + 1

: BOMEST I 2 MERT I

A EMDFREOC ¢ REM IMEYTEDS

DEF PROC_CHRESHC T HERE

LOCAL. J.EBYTES @ BYTES = DGB

YOl 23, I s FOR JT =88 TO T

BYTES?T @ VDU BYTES?T @ M

CHREAZM

i8 DEF PROC_CHREVCI (HERES

B LOCAL J.BYTES @ BYTES = DEG

: 2 ML 22,1 ¢« FOR I =7 T 8 ZTER -1
ZEz4E MERBP V-T2 = BYTES?T @ WD BYTEES?T
MEST T

S8 EMDFROC @ REM CHREW

DEF PROC_CHRFLIPCOI JHEKES

LOCAL J,R.Lx,BYTES @ BYTES = DDQ
WIOLE 23,1 0 FOR T B oTOV

o= B FOR L a7

1
-
5]

Co2tlx oAMD BYTES?

: = kK = VIR 2 MERT J

ZE4z0 EMDPROC ¢ REM CHREFLIP

ZEd4E

1450 DEF PROC_CHREROTCI MERES

el LOCAL J.RLLM . BYTES @ BYTES = DBG
347TE VI 22,1 ¢ FOR J = 7 T 8 STEF -1
140 K o= FOR Lx =8 TO T

ZE42E B o= R Fo= ko~ c02°ly AND BYTES
I o= 2L

ASEE MERB?TT = Ko VDU K 2 MERT J
1510 EMDPROC ¢ REM CHREOT

A5 20

1520 DEF PROC_CHRESEMDHMHERER S

140 LOCAL T.BYTES @ BYES = B8
558 FOR I= T O F

o BYTESTI = MERE?ID ¢ MERT I

FEEMDPROC ¢ REM CHRESEMD

CHAPTER 4 Driving Graphics

D590 DEF PROC_CHRIMYOI MERE?
5 LOCAL T, BYTES @0 BYTES = DEG
‘Z.I 2 FOR J =8 TO 7
= 255 - BYTES?T @ VDU MEWET

EMDOFPROC ¢ REM CHREIMY

DEF PROC_IMDEC

LoCAL T, MUMLEBYTES @ BYTES = DEQ
FOR I =8 TO 7

FRIMNT "LIME ":1:

IMPUT MU 2 BYTES?I = MHUM

MEST I

EMDFROC ¢ REM IMDEC

77

Graphic Art for the BBC Computer

78

CHAPTER 5
Drawing Charts and Graphs

In our view the increasing availability
of micro-computers and the visual
display which they provide should also
offer opportunities to illustrate
statistical ideas and techniques;

Mathematics counts, (CockCroft
Report, HMSO 1982)

Turtle graphics provide a flexible means to draw many shapes. Sometimes,
however, there are easier ways to draw charts and graphs, and this will be
illustrated first by an example taken from elementary statistical theory.

The idea is this: when the heights of a large number of people are
measured, and the heights divided into categories, the numbers in the
categories approximate to what is known as the ‘normal’ distribution (a
bell-shaped distribution).

Morris Kline writes (in Mathematics in Western Culture):

What is especially significant about the distribution of heights as
well as of many other characteristics . . . is that the curve
approximates an ideal distribution known to mathematicians as
the normal frequency curve. In fact, the larger the group whose
heights are included the closer the curve comes to having the ideal
shape, just as regular polygons with more and more sides
approach the shape of a circle (page 391).

that is, a three sided-regular polygon (a triangle) does not look very much
like a circle, but a thirty-sided regular polygon looks very like a circle. The
distribution of heights for small numbers of people will not look very like
a normal distribution, but the greater the number of people the closer the
distribution tends to a normal distribution.

Random additions

On average, the components of a person’s height are made up at random
(eg parents, nutrition, illnesses). In theoretical statistics there is a result
(the Central Limit Theorem), which says that the sum of random numbers
is normally distributed — if enough random numbers are summed.

The greater the number of sums we examine, the closer, again, we get

Graphic Art for the BBC Computer

to a normal distribution (the equivalent of the circle). These ideas are
applied in the Standard Normal Curve program, written for mode I, so first
examine the routine FN_NORMAL.

FN_NORMAL is a function which sums together random numbers
from O to 1 (ie RND(1)), taking twelve of the random numbers at a time.
The random numbers are summed in pairs, one being added to the
accumulating total (V), and one being subtracted. There are two reasons
for this adding and subtracting.

First, the mean (ie average) of the different sums will be zero in the
long run and the standard deviation (ie how much the values vary) will be
unity. Second, if there are any consistent biases in the random number (and
I am not aware of any), this procedure helps to reduce biases.

FN_NORMAL produces what is known as a ‘standard normal deviate’,
and is used in the routine PROC_SAMPLE (note that FN_NORMAL has a
dummy parameter, totally unnecessary, but possibly of later use for
variants of the function). PROC_SAMPLE is just that: it is a procedure to
imitate the taking of a sample of values, the values it terms 1.

The parameter NUM gives the number of values in the sample, and the
other parameter (CAT) gives the number of categories into which the
values are to be grouped. The maximum of the values will be 6, and the
minimum -6 (work that out), and so, if there are CAT categories, each will
be 12/CAT units wide (call it WIDTH for the moment). To decide which is
the category into which the value is put, the value (ie J) is divided by the
WIDTH, I is added, and the result is integerised — ie INT(J*CAT/12+1).

If the array in which the numbers of values are stored is V , then we
increment the appropriate value by I (ie V (J) =V (J) + I). At the end of the
routine the largest number in any element of the array is stored in V (0),
and the final calculations of mean and standard deviation are made. When
we leave this routine there are numbers stored in the array V (with the
largest number stored in V(0)), and values for the mean and standard
deviation.

These two routines copy (or simulate) the sampling of NUM values
from a population of values, whose overall mean is zero, and whose
standard deviation is unity.

Drawing the graph

There are two key routines for drawing: PROC_HISTOGRAM draws a
histogram (it could be used for a bar chart); and PROC_FREQ draws a
frequency polygon (the line joining the mid-points of the tops of the bars):
both are called in PROC_HIST. The full gory details behind histograms
and frequency polygons appear in most elementary statistics books.

PROC_HIST has four parameters: LOWER gives the vertical
coordinate of the bottom of the graphs; UPPER gives the upper limit to the
histogram; NUMBER gives the number of categories into which the values
were placed; and SWITCH indicates whether the histogram and/or
80

CHAPTER 5 Drawing Charts and Graphs

frequency polygon are to be printed (1 and 3 for histogram, 2 and 3 for
frequency polygon).

The local variable ST is the horizontal coordinate at which the graphs
start (39 for this example); WI gives the width (in coordinate units) of each
bar, if the total width of the graphs is 1200; and HI is the height of the
graphs from base to top. H SWITCH is 1 or 3 then a histogram is drawn by
PROC—HISTOGRAM, and if SWITCH is 2 or 3 then a frequency
polygon is drawn. This brings PROC_HIST to an end.

PROC_HISTOGRAM takes as parameters the left start, the width of
the categories, the base and height of the graph, and the number of
categories. For each category (ie I = 1 TO NUMBER) there is a call to
PROC_BAR — then the routine ends with the graphics window being
reset to the whole screen.

PROC BAR draws bars for charts and graphs, and the parameters are
(in order): left coordinate, width, bottom coordinate, and height of bar. The
parameters are modified to produce the correct parameters for VDU 24, ie
set up a graphics window. The window is cleared with logical colour 3
(background 131), and a bar appears. This is the quickest way to draw
rectangles for charts and similar designs.

PROC_FREQ had also been called by PROC_HIST. This routine
calculates the midpoints of the bar tops, and joins them by a fine (apart
from the first PLOT). The routine does not use relative plots, but rather
absolute plots to preserve accuracy. One of the first actions of the routine
is the resetting of the graphics window to the whole screen.

Initialization

To use all these routines we need to know how many are to be ‘sampled’,
how many categories there are, and what graphs are wanted. We have to
know SIZE, CATS, and SWITCH, as they are called in PROC_INIT.

PROC_INIT sets the text colour to logical 2 (which for modes I and 5
is yellow), and the background to logical I (or 129) which is red. (In
PROC_HISTOGRAM the histogram is in white, and the frequency
polygon is drawn in black). When the screen is cleared we have yellow
writing on a red background.

At the top of the screen we have heading output, and then the user is
asked for the sample size, followed by the number of categories, and then
the value of the switch. The text screen is then set to the lower lines.

In the main program, after PROC_HIST, there is an *FX15,0 call, to
flush buffers. I have found that, with programs which take some time to
produce a result, there is a tendency to idly tap the keyboard — *FX15,0
removes idle taps.

The last line of the main program (before END) sets the formatter (UG
page 70, 325-327) @% to &01020307, ie

81

Graphic Art for the BBC Computer

01 Strings formatted

02 Fixed format — fixed number of decimal places
03 Number of digits after decimal point

07 Field width for number

and then after the printing it is reset to &10 — the default. The mean and
standard deviation are printed towards the bottom of the screen.

Icon 5.1 is an example of a very large sample (10000) and it is possible
to see that for the simulation shown the result was a close approximation to
a normal curve.

Experiment with the effects of different size samples, and different
numbers of categories.

ICOH 5.1

The real thing

The normal distribution has an exact mathematical form, the ‘height’ of the
82

CHAPTER 5 Drawing Charts and Graphs

bar depending upon how far away from the mean is the bar (compared to
the standard deviation).

As the standard deviation for the curve we are examining is unity and
the mean is zero, the formula is very simple, and given as

1370 DEF FN_NORMAL(X) = EXP(-(X"2)/2)/SQR(2*PI)

which explains why I had the dummy parameter X — I find that it is
slightly tidier. The function now does not give the value sampled, but the
probability (the height of the bar) that a value X will occur in a normal
distribution.

The two routines PROC_HISTOGRAM and PROC_FREQ are highly
general: PROC_HISTOGRAM can be used for bar charts other than
histograms, for example; and PROC_FREQ can be used for the plotting of
ordinary graphs. We will now see what this implies. PROC_SAMPLE has
to be altered to

1420 DEF PROC_SAMPLE(NUM,CAT)

1430 LOCAL ILJLK: MEAN=0:SD=0:NUM=0

1440 FOR I =-6 TO 6 STEP 12/CAT : J = FN—NORMAL(]) :
MEAN = MEAN + .1*1

1450 SD = SD + J*I*I: NUM= NUM + J :K = INT((I+6)*CAT
/12+ 1)

1455V (K)=J : NEXT1I

1460 FORJ=1TO CAT : V(J)=VJ)/NUM : IF V(0)< V (J)
THEN V(0) =V (J)

1470 NEXT J

1480 MEAN = MEAN/NUM : SD = SD/NUM - MEAN#*
MEAN

1490 ENDPROC : REM SAMPLE Version 2

and in this case the heights of the bars (ie J) are stored directly in the array
(ie V(K)). The calculation of the mean and standard deviation has also to
be modified (we have to cumulate the total of all the heights in NUM).
Apart from that there is little real change.

Icon 5.1 (that for a sample of 10000) is fairly close to a ‘proper’
normal distribution: how close is the ‘proper’ version? Icon 5.2 shows the
result of the proper version for the same number of categories as those
used in Icon 5.1 (ie 30 categories). Remembering that the scale goes from
-6 to +6, this means that each category is 12/30, or .4 units ‘wide’ , but as
the values rarely go beyond -3 to + 3, only about 15 categories are really
used.

83

Graphic Art for the BBC Computer

L
=
=]
-~
=
=
=]
=
=
=
m
=
=
Ll
-
=8
=
-~
7]

84

CHAPTER 5 Drawing Charts and Graphs

m
-
=
=
=
=
=]
=
=
=
7]
~
=
bl
-
=8
=
==
L

85

Graphic Art for the BBC Computer

ICOH 5.4

tn
=
=)
=
=
=
=2
[
=
=
Ly
=
=1
L
-
Bl
=
==
1)

86

CHAPTER 5 Drawing Charts and Graphs

m
-
=
=
=
=
=]
=
=
=
7]
~
=
bl
-
=8
=
==
L

87

Graphic Art for the BBC Computer

If we want to achieve a higher resolution for the graph (ie thinner bars)
we can increase the number of categories. For mode 1, however, (and see
Introduction) the maximum discrimination on the screen is four graphical
units: this means that for a total width of 1200, we can have a maximum
resolution of 1200/4 = 300. Icon 5.3 shows the effects of the maximum
resolution.

The chart in Icon 5.3 differs from the two preceding icons because in
this case I asked for the histogram (ie switch 1). If you compare Icon 5.2,
in particular, to Icon 5.1, the differences are minor — though even Icon
5.2 is slightly pointed itself, compared to Icon 5.3 (that of the maximum
resolution). Comparing Icons 5.4 and 5.5 to Icons 5.1 and 5.2 shows the
effects of smaller samples.

With a sample of 10000 the result is close to the theoretical shape, but
with either of the two different samples of 200 the matching is poor. Icons
5.4 and 5.5 display a histogram and a frequency polygon (in that order) to
show the ease of interpretation by the two methods. Remember that
PROC_FREQ could just as easily be set up to plot a sine curve.

Oblique rectangles

To draw bars by use of the VDU 24 command is fine, and the best way,
when the bars (or rectangles) are aligned along the horizontal and vertical
axes. There is often a need to draw rectangles (filled in with colour) at
angles to the axes. To draw these rectangles all we need are the Turtle
Routines Version 1.2. Here is how to draw a rectangle

2000 DEF PROC_RECT ANGLE(BASE,HEIGHT)
2010 PROC_TURN(-90) : PROC_MOVE(BASE/2.0)
2020 PROC_TURN(180) : PROC_MOVE(BASE, 1)
2030 PROC_TURN(-90) : PROC_MOVE(HEIGHT, 11) :
PROC_TURN(-90) : PROC_MOVE(BASE,11)

2040 PROC_TURN(-90) : PROC_MOVE(HEIGHT,11) :
PROC_TURN(-90) : PROC_MOVE(BASE/2,11)

2050 PROC_TURN(-90)

2060 ENDPROC : REM RECTANGLE

where the drawing starts at the middle of one of the bases. The turtle is
turned through -90 degrees (ie directly right), and moves forwards through
a distance equal to half the base (without plotting). The turtle is then turned
directly totally around (ie 180 degrees) and then the rectangle is drawn
(using the fill triangles style, 11). The final turn through -90 is to point in
the original direction. To show how this routine can be used to produce
effects, try

3000 DEF PROC_SHOWERS(LGTH)
3010 LOCAL BREADTHJ : BREADTH = LGTH/10

88

CHAPTER 5 Drawing Charts and Graphs

3020 PROC_TURN(90) : FOR I =0 TO 12

3030 PROC_RECT ANGLE(BREADTH,LGTH) :
PROC_TURN(-15)

3040 NEXT I

3050 ENDPROC : REM SHOWERS

to be activated by
PROC START : PROC_SHOWERS(400)

which produces the effect of Icon 5.6. Remember that these routines are
designed for mode 4, and so colours are not possible. Work out why the
routine is called PROC_£HOWERS (or what a shower).

A further modification might be

4000 DEF PROC_DOWNPOUR

4010 LOCAL 1,J

4020 FOR I =-400 TO 400 STEP 400

4030 FOR J = -400 TO 200 STEP 200

4040 PROC_MOVETO(1,J,0) : PROC_TURNTO(0)
4050 PROC_SHOWERS(150)

4060 NEXT J : NEXT I

4070 ENDPROC : REM DOWNPOUR

and the effects of the downpour are shown in Icon 5.7. The result in Icon
5.8 is slightly different from that obtained from the above routine. I
decided to make the shower slightly drunken, and so used PROC
TURNTO(6*1/400 + 6*(100 + 5)/300. All that this shows is how easy it is
to modify turtle routines, to produce a drunken shower.

With the correct approach, graphs and charts present no difficulty to
the programmer — the difficult aspect is the understanding of the problem
in the first case. Remember, it was Disraeli who first said ‘There are lies,
damned lies, and statistics’.

89

EEERELLE
ELLIRELEED
RLLLELLLE

CHAPTER 5 Drawing Charts and Graphs
NRE N RS
]

i E1Fr.fEM ERAFPHILC FFT

1848
1E50REM Cor Boriz Allen, 19832
lHPH

llﬁGFEH Standzeod Mormel Curos

FODE 1

B FPROC_IMIT

B FPROC_SAMPLECSIZE CATE?

FROC_HIST (2808, VE0 , CATS SkITOH?
#FH1G, F1

@y = : PRINT' "MEAN 1S "
=0 I._ W ._I_.!E cED st oroEu=1E

o ERD

DEF PROC_BARCH, B, C. D

LOCAL s.lbeo.d

a = [3 b =03 0= A+E 0 od = 0D
VO 2diarbroadds

(I A e

CLG

ERDFROC » FEM BaR

DEF PROC_FREQCH, THC, MU, BRSE ROOF 3
LOCAL T.H ¢ H = ROOF-BRSE

1228 VDU 24,0:8:1272;:108232; @« PLOT4, X, (E
FSEAHE OO DA T8 30
1236 GO0l 8.8
iz48 FOR I—E TO MU 2 PLOTS S+ IMC®CI-10
SHEVCT D AME+EREE ¢ MNERT I

l-JU EMDFROC @ REM FRER

DEF FH_MHORMAL O3

LocAL W,1 : & = &
FOR I = 1 TO & & W = & +RMDCL3-RM

MEHT 1
8 = 4 1 REM MORMAL

DEF PROC_SAPMPLE CHUR, CAT 3

1+ LOCAL T.0 ¢ MEAM = 8 @ 5D = 8
144H FOR I = 1 TO MM = J = FH_MORMALCT
»or FEAM = MEARM + T

91

Graphic Art for the BBC Computer

1458 =D = D o+ J%T ¢ T = IMTOI#CATS12+1
Por WOy o= MOT) o+ 01 2 MEMT I
ide8 FOR J = 4 TO CAT ¢ WOTs =
: IF WOgadW o Ty THEM Wogh = WOTs
1478 MERT
1428 MEAM FEAMSHUR 2 5D = SDOMUM - BFE
AREREAM 2 PMEAM = FEAMN - &
1498 EMDPROC @ REM SAFPLE
1588
1518 DEF PROC_IMNIT
15328 COLoUR =2 o« COLOUR 129 @ CLES
1538 PRIMT ' USAMPLE DISTRIBUTIONS
1348 IMPUT 'USIZE OF SapPLE "SIZE
1558 IMPUT "CATEGORIES ARE "CATS @ DIFW
138 IMPUT "SRITCH "SHITCH
1578 WL 22,0,31,39.2:

1328 EMDPROC @ RER OIMIT

LT P

Vg ®

88 DEF PROC_HIST OLOWER, UFFERMUMEBER ., S
BITCH?
iedd LOCALST (WI HI i 5T=29 kWl =1206-MUMBER
tHI=UFFER-LOEER

iez28 IF SWITCH HMOD 2 = 4 THEM PROC_HIS
TOGRAMOST W LOEER HI MUFEBER

ie38 IF SWITCH DIV 2 = 1 THEM PROC_FRE
CHETHEI 2,6, MUFEBER, LOWER, UFFERX

lede EMDPROC @ REM HIST

158

locl DEF PROC_HISTOGRAMOST WILOEERHI .
FUFEBER
iev8 LOCAL T = FOR I = 1 TO MUMEER
iesh PROC_BARCSTHOI -1 086 W LOWER HI %<

S VDU 24,8;0; 12795 1823;
1788 EMOPROC @ REM HISTOGRAM
1716

92

CHAPTER 6
Turtle Graphics 111

Treat nature in terms of the cylinder,
the sphere, the cone, all in perspective.

Paul Cézanne

You will have noticed that my icons are not exactly a true representation of
the pictures you see on the screen. In Icon 5.6 the rays should describe an
exact semicircle, but my version is slightly squashed.

The simplest, and most logical, way of transforming shapes is therefore
to change the axes, and their relative scaling. In the drawing of a rectangle
(as in the last chapter), to draw a rectangle by PROC_RECTANGLE
(SIDE,RATIO*SIDE) is to produce a square if RATIO is unity.

Rectilinear coordinates

If our axes are at right angles, and the distance between P and P + INC is
a\ways the same as the distance between Q and Q + INC (for any values of
P an& Q), then the axes axes called rectilinear.

This does not mean that the scale of the axes tor both horizontal and
vertical is the same, just that for each axis the scale is regular — rectilinear
coordinates are the ones we use when we start coordinate geometry. Such
axes are very simple to implement, as long as we concentrate on the
intrinsic, and do not get carried away with extrinsic considerations.

Normally, to implement even simple transformations (when a
transformation is simply a stretch for the moment) requires the use of
transformation matrices — far too tedious, unartistic, almost arthritic.
Examine Turtle Graphics 3.1.

LEEE R = o o

1E18
@ REM G RAFPHIC ART

1@48

1858 REM (o) Boris Allen, 1993

1EE8

1E7E

R

Cn FEM Turtle Graphics ¢ 2.1

Graphic Art for the BBC Computer

LAZE FREIo]mm o o o oo o o o o e
1iz6
1148 DEF PROC_CLRESCRE
1158 PROC_CLE @ PROC_CLG
1ied EMDPROC @ REM CLRESCRE
1i7E
1is6 DEF PROC_CLG
1198 GCOL 8,PEM @ GOOL 8, 189-PEM
1zZ85 VI 24,0:128; 1279 15 : DG
1218 REM LlEﬂF: an wpEsr oraphics windo
L
1226 WO 29,6408 Baa
1228 REM Sets the orioin to cembrs of o
raphiics window
1248 ERMNDPROC @ REM CLG
1256
12l DEF PROC_CLES
1278 COLoUR 1- FEH : COLOUR 122+PEM
1286 VDU 28,08,31,.39,.28 @« OLS
1298 REM Ilear: Lo hest window
lIGD EMDFROC ¢ REM CLE

DO CRE S

: =1

1z48 EHDFFDE : REM COL

1256

izZe8 DEF PROC_CEMTREE

12378 MOVE 8.0 @ AMGLE=8 @ H=0 @ Y=
EMDFROC @ RBEM CEMTREE

XX
X3

14@@ DEF PROC_RESTART
1448 PROC_CLG @ PROC_CEMNTRE
1428 EMDPREOC @ BEM REESTART
14268
1448 DEF PROC_STERET
1458 PROC_COL 8 @ PROC_CLESCRE @ PROC_C

EMTRE
1458 PROC_TRAMSFORMST IOMOL
1478 EMDPREOC @ REM STaRET
1456
1498 DEF PROC_IMVERT
15688 PEM=1-FEM @ GOOL B,FEM
1518 EMDPREOC @ REM IMVERT
1528
1528 DEF PROC_TURMTOCAS
1548 AMGLE=FRH_AHGLE A
1558 EMDPREOC @ REM TURMTO
1 EEE
1578 DEF PROC_TURMOA?

94

CHAPTER 6 Turtle Graphics 111

1528 AMGLE = FroAMGlLE(AMGLE+RD
: EMDFROC ¢ REM TURM

1=
ledd DEF PROC_LOC

lezE PRIMT "COORDIMATES ARE "is.Y ' "AMMGL
TEMGELE

EMDFROC ¢ REM LOC

1646
1658 DEF PROC_MOVE (DISTAMCE,STYLE?
1666 H=i - DISTAMCE#SIMCRADCAMGLE))
FE Y=Y + DISTANCE#COS(RADCAMGLE)

5 IF STYLE=1 THEM DRAM STRETCH#H,Y E
SE MOWE STRETCH#®M,'Y

16596 EMDFROC @ REM MOVE

1 7EE

1718 DEF PROC_MOVETOCMM, Y, STYLE

17EE LOCAL WDIF,YDIF @ WDIF=HM-3 @ YDIF
= 'T' — le l- -l

17EE IF YDIF<>® THEM PROC_TURMTOCDES (AT
JCHDIF AYDIF 3 3+186% CYHOY 33 ELSE PROC_TURM
S~ HDIF 2 #9E)
MEMM 1 Y=Y

1758 IF STYLE=1 THEM DRAW STRETCH#M,Y E
LEE MOWE STRETCH#®M,Y

17EE EMDFROC @ REM MOVETO

17T

17EE DEF FH_AMGLECAD

1798 IF A MOD 368 <8 THEM =A MOD 368 +
6@ ELSE =A MOD 268

1

=EE

5 REM AMGLE

DEF PROC_MER
VO Ze o OLs

EMNDFROC ¢ REM MHEW

DEF PROC_TRAMSFORMATIOMNOREAT IO
STRETCH FATIO
ErDOFROC FEM TRAMNSFORMST TOM

DEF PROC_S0UARECSIDES

LOCAL T ¢« FOR I = 414 70 4
FROC_FMOVECSIDE 42 @ PROC_TURMOZE
5 MEST I

EMDPROC @ REM SOUARE

L e
G

ol

DEF PROC_SOUAREROT CSIDE . ITMC

L e el el el e e el

R Ry

TEOLOCAL T o2 FOR I = 8 TO 28 STER IN

b
]
]
X3}

FROC_SOUARRECSIDE? @ PROC_TURMCIMNC

95

Graphic Art for the BBC Computer

MEAT I
1 EMDFROC @ REM SGUAREROT

DEF PROC_CIRCLECIMCS

LOCAL T @ FOR I = 4 TO 28
FROC_FOVECIMT 12 ¢ FPROC_TURMO1Z:
MEST I

EMDFROC @ REEM CIRCLE

Essentially Version 3.1 is a simple modification of Version 1.1 (though it
is possible to modify Version 1.2 — try it). The principal differences are
to the PROC MOVE and PROC_MOVETO routines, with the addition of a
new routine PROC_TRANSFO RMATION. These routines include also
three example routines: PROC_SQUARE, PROC_SQUAREROT, and
PROC_CIRCLE.

First, the totally new routine PROC_TRANSFO RMATION. This
routine has a parameter RATIO, the value of which is assigned to the
global variable STRETCH. As it is not possible to use a variable until it
has been initialised to some value, PROC_START has to be modified to
include the call PROC TRANSFORMATION(O).

The purpose of STRETCH becomes clearer if PROC MOVE is studied.
The values of X and Y are calculated as normal, but the plotting is to
values which are functions of X and Y. In the case of Y, the function is
merely Y, but for X the function is STRETCH*X. The angle is not altered,
because X and Y are not altered. This is a ‘linear’ transformation because a
straight line in the old coordinate system is changed to a straight line in the
new system.

The changes to PROC_MOVETO mirror the changes to PROC
MOVE.

Slipping and sliding

Icon 6.1 shows the operation of PROC_SQUAREROT(200,60), that is,
squares of side 200 each turning through 60 degrees from the previous
square. A simple enough effect.

If a call is made to PROC_TRANSFORMATION(2), and the squares
routine is repeated with the same parameters, then we find the result as
shown in Icon 6.2. There are two distinct rectangles (where in Icon 6.1 the
squares were parallel to the axes), and several parallelograms.

96

CHAPTER 6 Turtle Graphics 111

97

Graphic Art for the BBC Computer

In linear transformation, squares become parallelograms because straight
fines are still straight lines.

To study a slightly different effect, before PROC_SQUAREROT is
called we PROC_TURN(-45) to produce Icon 6.3. When transformed as
before, the result is as in Icon 6.4. The two squares which in Icon 6.3 are
symmetrical about the Y axis are (in Icon 6.4) rhombuses (ie equilateral
parallelograms.

98

CHAPTER 6 Turtle Graphics 111

When a circle is drawn by PROC_CIRCLE, a circle is drawn when the
transformation is 1 (in Icon 6.5 the circle is a little squashed). As soon as
the transformation is 2, the result is that of Icon 6.6. An ellipse is no more
than a stretched (or squashed) circle.

Icon 6.7 shows another transformed circle, when the transformation is
not linear.

Complex transformations

The ‘circle’ in Icon 6.7 was drawn using the Turtle Graphics 3.2
routines. These routines are again modifications to Version 1.1, but with a
great number of changes.

99

Graphic Art for the BBC Computer

LEEE o o o

1818
1828
1828 REM
1E45
1858 REM
18
1878

(K]

FrPFPHIUC

+ Boriz Allen,

LEHEE R o

1898
iig88 REEM
1iig

Tii

rhle Graphics

LAPE REMr oo oo o

1iz8

1148 DEF PROC_

1158 PROC_CLS
1186 EMDPROC
1178

iiga DEF PROC_

1i98 GoOL 8,.F
1288 WO 24 ,.0:
1218 REM
]
i1z28 Wil
1238 -
raphiics uindau
1248 EMDPROC
1258
1288 DEF PROC_
1,_, = OCoLOUR L-
A OWTL 2ELE,

Cles

_43h

=90 FEM Clesa
1z88 EMDPROC
1318

: 3 FEM=FE
l 4” EHDFPROC
=SEE

=8 DEF PROC_

m=0

ITI -

EMHDFROC

1466 TEF FROC_

1418 PROC_CLG
1428 EMDPROC
1428

100

X

: bl ordioin

DEF PROC_

: ARGLE=

LRSI
FROC_CLG

REM CLREESCR

sl

Er
128

an

TN =

11279 lH
LS

LG

oy apb o

e R RTatey
to cerhbre

REM CLG

LS
F EH
1,39
l D
REM CLES

COLOUR 128+FPEM
e oL
Tt wincdow

=
COLCPES
FEM SOl

CEMTRE

5] FIOVE FH_=R- T

=
FEM CEMTRE

FESTART
FROC_CEMTRE
FEM RESTART

wincdo

o F

SFL

=

CHAPTER 6 Turtle Graphics 111

1448 DEF PROC_STRRET

1458 PROC_COLCEY @ PROC_CLRESCR @ PROC_C
EMTRE

148 EMDRFROC @ REEM START

1478

1428 DEF PROC_IMVERET

1498 PEM=1-FEM @ GCOL &8,.PEM

1588 EMDFROC @ REF IMVERT

1518

1528 DEF PROC_TURMTOCOR?

1528 AMGLE=FM_ArMGLE (R

1548 EMDPFROC @ REM TURMTO

1558

1528 DEF PROC_TURMOS?

1578 AMGLE = Fr_AMGLE cAMGELE+R D

1528 EMDRFROC @ REFR TURM

1598

le@ad DEF PROC_LOC

ledd PRIMT "COORDIMATES ARE "iH.Y ' "AMGL
E IS "AMGLE

lezad EMDRFROC 0 RER LOC

1P4H DEF FROC HH“E DISTAMCE, STYLE
1258 LOCAL T,.Ix.IY.SH,58Y @ Sx = 5 ¢

(33
-

L - DISTAMCES#SIMORADCAMNGLE Y
=Y + DISTAMNCERCOZ CRADCOAMNGELE Y 3
PeABTOY-SY Y THEM I o= IM
a1 ELSE I o= IMTORBSOY-SY2

& —Il. 3 Ie = i
17EE FHF I
1718 W = H4+ll 2 Y o= % + 1Y

Tiﬁ IF STYLE=41 THEM DRA FH_=fAs

-30/0 1 IV = (SY-¥I.D
1 TO D

M_YAmISoyYy ELSE MOVE Fr_s-mxls

1738 MEAT 1
1748 ¥ = S 1 ¥ = SY¥

1756 ENDFROC & REM MOVE

1768

1778 DEF PROC_MOVETOCHM, ¥M, STYLED

1788 LOCAL RDIF,YDIF,D,1 @ WOIF=HH-H
WDIF=Y-Y"H

1798 IF YDIF<»@ THEM PROC_TURMTO(DEGCAT
HOHDIFAYDIF D 3+ 188 (YHOY D) ELSE PROC_TURM

IF Y SABESCYDIFY THEM T = IM
241 ELSE D = IMTCRES(YDIF

101

Graphic Art for the BBC Computer

l e WDIF = GEM-FHCT 2 YODIF = OYM-YaoD
Fﬁﬁ I =4 TOD

A oW o= w4+ WDIF 2 ¥ o= Y o+ YIIF
S IF STYLE=1 THEM DREA ARnIE
AATDOY Y ELSE MOVE FH_=RHIS

B b b

o
e
-l:l

3
a1

1l
l_,‘l

1 m -

HEHM 1 =N
EMDPROC 3 REM MOVETO

XRRAN

=]

AR R

DEF Fr_AmMGLE (A2

IF /A MOD 2e6 <8 THEM =/ MOD 2o8 +
LESE =/ FOD 20

FEM AMNGLE

AR

R
o
i
!
X

,
L
RN

X2
ol

XX
X3

DEF FROC_MHEL
VIOLE Zeor COLE
EMDFROC ¢ BEEM MHEW

oy
XA

K
R

XX
X3

DEF FH_#sA-E TS D00RD
="0RD
FEM =AHIS - modify preceding lins

-
XX

=
;

5
=
=
=
=
=
=
=
=

i
X3

G L 00 =3 On g 0 P b
X}

.,.
X3
XN
X3

B DEF FRH_YARSISOCDoRD:
B =C00RT
FEM YAHIZS - modify preceding lins

DEF PROC_SOURRECSIDED

LOCAL T @ FOR I = 4 TO 4
FROC_FOVECSIDE 12 @ PROC_TURMOZE
MEST I

EMDFROC @ BEEM SOURRE

DEF PROC_TRIAMGLECSIDE?

LoCAL I« FOR I = 4 TO 2
FROZ_FOVECSIDE, 43 @ PROC_TURMO1ZE
MERT I

ERHDPROC @ REM TRIAMNGLE

DEF PROC_CIRCLECIMCS

LOCAL T @ FOR I = 4 TO 28
FROC_FOVECIMT 12 ¢ FPROC_TURMO1Z:
MEST I

EMDFROC @ REEM CIRCLE

DEF PROC_LIMES

LOCAl I

FOR I = 8 TO 28 STERP 2
FROD_MFOVETOO-450, -2008,8 ¢ PROC_TU

CHAPTER 6 Turtle Graphics 111
FHTOO-T3 ¢ PROC_FOVECLSEE, 13
5 MERT 1
EHDFROC ¢ REM LIMES

What has to be performed is actually rather mundane. All that is
needed is to set up two functions (one for the X axis and one for the Y
axis) which convert the actual values of X and Y to screen coordinates.
The change from the actual value of X to the screen value of STRETCH*X
is a simple example.

Start at the beginning. Going through the routines, the first to be altered
is PROC_CENTRE and it is altered in two ways. The initialisations of X
and Y are placed at the beginning of the routine (rather than at the end)
because sometimes the function routines use X and Y explicitly. The
function routines FN_XAXIS and FN_YAXIS initialise the cursor to the
centre of the transformed screen.

The real complexities arise in the coding of PROC_MOVE —
complexities which ease the way for the user. We need many more local
variables, because of the storage of many more interim values. The
variables SX and SY are calculated to be the endpoints of the line to be
drawn, by the same method as before.

To draw a fine between two points in a rectilinear coordinate geometry
is to draw a straight fine (a pretentious way of saying that in ordinary
geometry the shortest distance between two points is a straight fine). To
draw a line between two points on the surface of the Earth is to draw a
curve — though at each point you may think that you are following a

103

Graphic Art for the BBC Computer

straight line. (See for example, Klein’s (1953) chapter on ‘New
Geometries, New Worlds’.)

To draw the shortest fine between two points is to follow a ‘geodesic’,
and the path depends on the geometry. In ordinary geometry the path is a
straight fine, in some of the other geometries we will investigate, it is
anything but straight. The way we draw a line is a portion at a time, at each
time producing a straight fine. As we found with a circle in ordinary
geometry, a series of straight fines can produce a curve.

We have to decide on how many little straight fines we need to draw.
We decide this by noting that if we move (slowly!) at about three pixels at
a time, the fine is an almost perfect curve. if the difference in the X
direction is greater than the difference in the Y direction, then the X
difference is divided by 12 units to produce the number of steps (D) (else
the difference is used).

When D has been calculated, D is used to work out the increments in
the X and Y directions (ie IX and IY). These increments are then used to
plot D straight fines, where the plotting is to
FN_XAXIS(X),FN_YAXIS(Y). The end values (SX and SY) are then
assigned to X and Y, to prevent the overaccumulation of rounding errors.

PROC_MOVETO in this version is far simpler to understand than
PROC_MOVE, particularly when PROC_MOVE has been studied.

The transformations appear at FN_XAXIS and FN_YAXIS, and by
default they do nothing other than return the value of X and Y.

A new geometry
Icon 6.7 was drawn with a strange geometry:

DEF FN_XAXIS(COORD) = SGN(COORD)*COOREY2/500
DEF FN_YAXIS(COORD) = SGN(COORD)*SQR(ABS(COOR
D)) ¥20

which stretches the scale more at larger values of X, and squashes the scale
more at larger values of Y. These two coordinate transformations give a
very non-rectilinear geometry.

Icon 6.8 shows two squares. One appears as a rectangle, and this is a
square parallel to the axes. The other is a square which is symmetrical
around the X axis. The routine to draw the square is PROCL-SQUARE.

104

CHAPTER 6 Turtle Graphics 111

ICOH &.8

If PROC_LINES is activated when the coordinates are rectilinear (ie
both functions = COORD) then we have a series of straight lines radiating

105

Graphic Art for the BBC Computer

from the point -400,-300 in the upper right quadrant. It is a trifle like the
showers example, and has similarities to the Moire example in the Version
2.1 graphics.

Icon 6.9 has no resemblance to anything, so it would appear. Each fine
radiating from the point -400,-300 is a geodesic — the shortest distance
between two points in the geometry defined above. What happens when a
line is drawn?

At each stage of the curve there is a short straight line which follows in
the direction given by the geometry at that point. As with the circular
geometry (straight line, turn, straight line, turn) a curve then appears —
with the straight portions carefully hidden by our eyes. Of course, a
straight fine is only a special form of curve.

With this pair of axis transformations we have effectively defined a
‘force field’, and our turtle follows the fines of force between points. Get
the axes correctly defined, and we might have an Einsteinian force field.
(Remember Abelson and diSessa?) Let us examine this force field.

The lines radiate from the bottom left corner, starting straight upwards
and moving clockwise. Until the fines reach the Y axis they look
reasonably uncurved. They look mainly straight until the line crosses the
axis (note that crossing the X axis does not seem to be at all traumatic). At
the Y axis something strange happens.

As the fines become closer to the Y axis, so they become more bent
and seem almost determined not to cross the axis. The fines come very
close together, and once past the axis they change direction, and appear
more at fight angles to the axis. The effect is strange to watch.

Once over the other side, there seems to be abnormal behaviour about
the region of the X axis (though is any behaviour normal?). To go through
the X axis on the left side of the Y axis does not produce any kinks in the
fines. For some fines, a kink appears on the positive side. Setting the
starting point to other coordinates will produce different effects.

All this reveals the truth of Kasner and Newman’s quote (1949 page
163) ‘. . . — our intuitive notions about space almost invariably lead us
astray’. Funnily, they were talking of geodesics, but they were interested in
spiders not turtles.

Parametric functions

Icon 6.10 is merely a sine curve. The interesting thing about that sine
curve is the way in which it was drawn.
The functions were defined by

DEF FN_XAXIS(COORD) = COORD
DEF FN_YAXIS(COORD) = 200*SIN(RAD(X))

or, perhaps more illuminatingly,

106

CHAPTER 6 Turtle Graphics 111

JCOH &.18

DEF FN_XAXIS(COORD) = X
DEF FN_YAXIS(COORD) = 200*SIN(RAD(X))

and to draw that line I entered
PROC_MOVETO(-600,0,0) : PROC_MOVETO(600,0,1)

which moved the turtle/cursor to X equal to -600, Y equal to 200*
SIN(RAD(X)), and not Y = 0. The value in the second parameter of
PROC_MOVETO is a dummy, that is, it is not used as such, it has been
by-passed by the function definition.

A line was then drawn to X = 600, a geodesic in the sine geometry.

We now have a way to draw graphs of functions, but very easily. To
draw a parabola (ie X = k*Y”"2) we use the definitions

DEF FN_XAXIS(COORD) =Y
DEF FN_YAXIS(COORD) = YA2/400

and produce Icon 6.11. This is an extremely flexible way of drawing
graphs. To produce the parabola I entered

PROC_MOVETO0(0,400,1)
and half of the parabola (the upper half) is drawn. When I then entered
PROC_MOVETO(0,-400,1)

the upper is retraced and the lower half drawn in. This way of analysing
functions is clearly of great assistance, and fits well with turtle graphics,
especially Version 3.2. We use the fact that the graph of a function is
geodesic, the fine between two points, as given by the geometry (ie the
axes).

The technique we are now using is called the ‘parametric form’ of
displaying graphs. This technique, which in many ways is simpler than
other forms, is not taught at lower levels in schools — being somehow
more ‘difficult’ or ‘esoteric’. The parametric form is used quite extensively
in ‘advanced’ graphics, it is one way of simplifying, or, as we would say,
accentuating the intrinsic and minimising the effects of the extrinsic.

107

Graphic Art for the BBC Computer

ICOH 6.11

108

CHAPTER 7
Generative Graphics

... the coming of semi-intelligent
machines into business and technology
had created a second Industrial
Revolution, in which only the most
highly creative human beings, and those
most gifted at administration, found
themselves with any skills to sell which
were worth the world’s money to buy.

James Blish, A Life for the Stars

Computers allow us to be creative — Seymour Papert calls them the
proteus of machines, that is, machines which are more flexible and more
adaptable than any others have been, or could be.

I have tried to show how the BBC computer can be used in a highly
creative manner. The creativity comes from the individual, and the way to
enhance one’s own creativeness. is to try to be creative. Creativity does not
come from following rules, it comes from trying to extend and improve, as
I hope you improve upon my efforts.

The saintly books which try to teach good programming practice by the
application of rules of (say) structured programming often annoy me.
Books which are forever denigrating the use of GOTO are more concerned
with academic ideals than actual practice. Sometimes the contortions
needed to get round the use of a GOTO have to be read to be believed.

A careful examination of my routines will not reveal a GOTO, there
was no need for a GOTO and — in creative programming on the BBC
computer — there never need be. I do not use GOTO because in complex
systems such as Turtle Graphics 3.2 a GOTO would probably create
more havoc than it saved. Note, however, that in PROC_NORT I
effectively had a jump out of a routine to END — rules are there to be
broken.

My advice, for what it is worth, is to steer clear of rules, try to get a
feel for the topic, try to understand what are really the essential elements
— accentuate the intrinsic, eliminate the extrinsic (if at all possible). The
key to successful thought, never mind programming, is to divine the
essence of the problem. Aristotle said that (sort of).

End of sermon.

Further work

Obvious extensions are the multi-coloured graphics to sixteen colours (that

Graphic Art for the BBC Computer

will produce fun and games when you try). To extend to the sixteen
colours of mode 2 means that space will become at a premium, so the
economy of the turtle graphics/intrinsic approach will become even more
valuable.

PROC_NORT (I nearly called it PROC_FFORT) can easily be
improved, in particular the keyboard sensing - eg using *FX11 and *FX12
commands. You might wish to change the angle turned from 90 degrees -
that, at least, is easily done.

You will have most fun with the routines in TG 3.2. Why not
implement a game in a new geometry, instead of boring Euclidean
geometry (ie with rectilinear coordinates?). PROC_NORT in a multi-
coloured strange geometry would be a game and a half. It would also be a
worthwhile programming exercise.

My next BBC graphics book will move on to three (and more
dimensions) for even more flamboyant games effects, and it will analyse
animation in far greater detail: what is to stop you getting there first?

What to read

I have referred to several books within the body of this book, and I list
them here - in sufficient detail that you may if you wish order them from a
library, or possibly buy. I have not yet found a reasonable book on
mathematics applicable to computers, and so — until I write it — do the
best you can. The Kasner and Newman is an old book, but it has a lot to
offer.

As 1 am not too good on the alphabet (though I know it goes from
ASCII 65 to ASCII 90, in capitals) the list is given in almost an order of
reading: I assume you have the User Guide.

Seymour PAPERT, Mindstorms, The Harvester Press, 1980.

Edward KASNER and James NEWMAN, Mathematics and the
Imagination, Penguin Books, 1968 (originally published in 1940).

Morris KLINE, Mathematics in Western Culture, Penguin Books, 1972
(originally published in 1953).

Harold ABELSON and Andrea diSESSA, Turtle Geometry, MIT Press,
1980.

The last is last because it is very expensive, and more difficult to
follow in later chapters.

My final recommendation is the Cities in Flight quartet by James Blish
(see the above quotation). Reading it might explain the cities in flight on
my covers (Collected edition, Arrow, 1981).

110

CHAPTER 7 Generative Graphics

LR EEEEE L L
EBREMBORI S Y S FARRTIMIEG
I F T
DE REMEREr e ek e g
ek
S8
S

f - 4k o2 WM o=

S Lo Yl

+ DIV 4 4+ 42

= JE = oW - MLxx DIV 4 2 DIF MOJM
—lu-u FEM Bit imsoges Ffor s wertical lins
wWill be stored in M

ZlEsE WDl 2, 4,12, 1,27, 1.51, 1.23

21878 EEM Prirvier on,e limnefesd, and 23252
18 irnches per line

ZlEEE FOR = s TO Hibs =

ZiEsE FOR Y- Yl TO Y STEP 4
1488 By o= 8 @ FOR Ix = &8 TO 31 STER 4
Ziiie BEEM Store the it imaos of 8 horiz
orbal pissls

1128 B Bugz ¢ IF POIMTOHM+Ix, YHr =8
THEM B + 1

21438 MEST I g MET OO -y DIV 4 = B
21148 BEEM The bit imeoe iz stored it suc
rezzive elements of M

21458 HMESET ?F : WO L2V, 1,75, Lo dm+dl
FOD 256, 1, CJw+1ls DIV 255

Zllsd REM Frmra e privher For JR+l bit i
mameEs From M
21478 FOR Ik
AT I=

ZldsE WDl 1,43 5 MESET =M

Zii2g REM End the lime with 2 return
ZiEEE VOl 1,27, 1,58, 3 @ REM Switckh off
i Trher

Zizie EMDPROC @ REM SCAMDUMF

BOTO T s WO LLMPIN 2 ME

111

Other titles from Sunshine

THE WORKING SPECTRUM
David Lawrence
0946408 00 9

THE WORKING DRAGON 32
David Lawrence
0946408 01 7

THE WORKING
COMMODORE 64
Keith Brain/Steven Brain
0946408 02 5

0946408 04 1

DRAGON 32 GAMES MASTER
Keith Brain/Steven Brain
0946408 03 03

FUNCTIONAL FORTH
for the BBC Computer
Boris Allan

COMMODORE 64
MACHINE CODE MASTER
David Lawrence and Mark England

For further informaton contact:
Sunshine

12-13 Little Newport Street
London WC2R 3LD

01-734 3454

ADVANCED SOUND
AND GRAPHICS

for the Dragon computer
Keith and Steven Brain
0946408 06 8

SPECTRUM ADVENTURES
Tony Bridge and Roy Carnell
0946408 07 6

THE DRAGON TRAINER
a handbook for beginners
Brian Lloyd

0946408 09 2

COMMODORE 64 ADVENTURES
Mike Grace
0946408 11 4

MASTER YOUR ZX
MICRODRIVE

Programs, machine code and
networking

Andrew Pennell
0946408 19 X

Printed in England by Commercial Colour Press, London E7.

