graphic art
for the BBC computer

turtle graphics and art

boris allan



Graphic Art for the BBC Computer

First published 1983 by:

Sunshine Books (an imprint of Scot Press Ltd.)
12-13 Little Newport Street,

London WC2R 3LD

Copyright (c) Boris Allan

ISBN 0 946408 08 4

All rights reserved. No part of this publication may be reproduced, stt
in a retrieval system, or transmitted in any form or by any mei
electronic, mechanical, photocopying, recording and/or otherwise, witt
the prior written permission of the Publishers.

Cover design by Graphic Design Ltd.
lllustration by Stuart Hughes.
Typeset and printed in England by Commercial Colour Press, London

DIGITALLY REMASTERED ON ACORN RISC OS COMPUTERS
NOVEMBER 2011

2



To Ruth, Mark, and Maggie

In the dime stores and bus stations. . .



Graphic Art for the BBC Computer



CONTENTS

Artist’'s Tools

1 Turtle Graphics

2 Turtle Geometry

3 Turtle Graphics I

4 Driving Graphics

5 Drawing Charts and Graphs

6 Turtle Graphics I

7 Generative Graphics

Page

19

39

53

67

79

93

109



Graphic Art for the BBC Computer



Contents in detail

INTRODUCTION

Artist’s Tools

Functions, local and global parameters, procedures with mul
parameters. The resolution of text and characters in varying modes; |
and graphics resolution; text and graphics windows; the use of *
screen’ graphics; the first use of VDU commands; setting the gray
origin.

CHAPTER 1
Turtle Graphics 1

The drawing of a shape with normal BASIC commands, and probl
therewith; the idea of an intrinsic geometry, dependent upon the int
structure of a shape; turtle geometry as an intrinsic geometry. The
turtle commands MOVE and TURN; Version 1.1 of my Turtle Grapt
routines.

CHAPTER 2

Turtle Geometry

Angles and ratios of sides are the key intrinsic aspects of geometry
trigonometrical ratios, sine, cosine and tangent; measuring angle
degrees and radians. How the turtle graphics routines use trigonome
ratios. Drawing regular polygons; an examination of different plott
styles.

CHAPTER 3
Turtle Graphics |l

Modes 1 and 5, the four colour modes; the design of the colours to be
by multi-coloured turtle graphics. Implementing multi-coloured turtl



Graphic Art for the BBC Computer
example effects, and the game NORT.

CHAPTER 4

Driving Graphics

The VDU command, and what it is; the reasoning behind ASCII co
control codes on computers. Routines to assist in the design of st

saving the character routines as ASCII files; saving and loading 1
designed shapes

CHAPTER 5
Drawing Charts and Graphs

The normal distribution, the Central Limit Theorem; a simulation
random sampling; the drawing of histograms and frequency polyc
using graphics windows; the effects of sample size, and numbe
categories.

CHAPTER 6
Turtle Graphics 1l

The square as a special rectangle; modifying turtle graphics to ¢
simple sketching of designs; a rectangle is a stretched square, a
ellipse is a stretched circle.

CHAPTER 7

Generative Graphics

Programming style, creative programming does not follow rules; idea
extensions to the work in this book; suggested reading; Cities in Flight



INTRODUCTION
Artist’s Tools

The science of painting begins with the
point, then comes the fine, the plane
comes third, and the fourth the body in
its vesture of planes. This is as far as
the representation of objects goes.

Leonardo da VinciTrattato delta
pittura

This is a book about the BBC computer, and how to use graphics whi
that machine.

This is not a book about graphics, which then uses the BBC com,
merely as an example of how graphics can be implemented. What
then, that makes the BBC computer so different when we come to di
the artistic uses of graphics? Not only is it the way in which its grap
are implemented; but also, more importantly, it is the way in which
programming language (BBC BASIC) differs from all other versions
BASIC on other microcomputers.

The single most important feature of BBC BASIC, and the fea
which has to influence any implementation of any graphics system, i
ability to use procedures and functions with multiple parameters.
ability produces a highly effective, yet very compact system of great pt
and flexibility.

In this chapter, therefore, | will first discuss just why BASIC on 1
BBC computer is so different, then why and how this affects the wa
which we produce a graphics system.

Functions

Suppose we wish to calculate the square root of the number 3, and we
to store the value of the square root in a variable called SQUARER(
We can enter a fine in a program such as

1000 SQUAREROOT = SQR(3)

and the value of the square root is then stored in the desired variable.
If we wished to find the square roots of all the values from 1 to 10
would use a loop from 1 to 10 and have a line

1000 PRINT SQR(l)

where | was the loop counter (ie FOR | =1 TO 10). At each time the :
function was encountered, the variable | would be replaced by the »



Graphic Art for the BBC Computer

stored there, and the square root calculated. The value stored in |\
not be affected. In jargon, | was called by value and not by name.
variable is called by name then it is possible to alter the value stored ¢
name: to call by value means that the function only knows about the
stored, and not the name.

The function SQR has only one parameter (ie there can only be
input value), so suppose that we need to define a function which will
the square root of the product of two values. To work out the square r¢
2 multiplied by 3 we can simply enter

1000 PRINT SQR(2*3)

But suppose that we wanted to appear rather more sophisticated (r
say only appear). We define a function of our own to produce the sc
root of the product — the function we call FNsqr(X,Y).

Function FNsqr has two parameters (X and Y) but, before we dis
the status of the symbols X and Y, the function definition:

1000 DEF FNsgr (X,Y)
1010 X = X*Y

1020 = SQR(X)

1030 REM end of FNsqr

in which we see that (1000) the function is defined as having

parameters, X and Y. In fine 1010 the two values are multiplied toge
and the result stored in the variable the function calls X (this variable
no relationship to any other X outside the function definition). In fine 1
there is an assignment statement (ie there is an =) with no variable

left of the assignment: the system assumes, therefore, that the assic
is to the function.

If the function is then used for the variables | and J by

100 PRINT FNsqr(1,J), 1, J

then (when this line is activated) the value stored at | is substituted int
temporary variable X in the function definition, and the value at J is st
at Y. The variables X and Y take values, and have an existence, wh
"local" to that function. The values printed out for | (in particular) and J
not affected by the action of the function (ie | does not become equal
J).

If lines in the function definition are altered, eg:

1010 Z = X*Y
1020 = SQR(2)

to then have a line
100 Z=0: PRINT FNsqr(l,J), Z

shows that the value Z is modified in the function. The value stored ai
10



INTRODUCTION Atrtist's Tools

modified because it is not one of the parameters, and has not been d
as being local to the function: the scope of operation of Z is glc
compared with the function. Finally add one line,

1005 LOCAL zZ

and then activate line 100. In this case the global value of Z is unaltert
the Z in the function definition has been explicitly defined as being loci
that function.

Procedures

A key difference between functions and procedures is that a funi
always produces a value (or, "delivers a result"). In many BASICs anc
key difference is that functions take parameters.

A few BASICs now allow multiple parameters for functions (and sc
even allow function definitions to extend over more than one staten
but the use of parameters in routines is rare. On mainframes
minicomputers (eg Hewlett-Packard) there are various very sophistic
BASIC systems, but BBC BASIC stands out from most ot
microcomputer BASICs in terms of its sophistication.

Nearly all of the comments we would wish to make about param
for procedures have been already made about functions, but
distinctions between the various types of variable in procedures ar
more important than they are for functions. After all, functions do not 1
to be used as much as procedures, functions deliver a result, wt
procedures do something.

In BBC BASIC (and from now on this will be shortened to BB) t
command to plot at a certain point is

PLOT 69, X, Y

where the coordinates are X and Y (see page 320 of the User Guit
alternatively (UG page 386)

VDU 25, 69, X;Y;

VDU driver commands will be discussed in later chapters. To defir
procedure which will plot a diagonal fine from coordinates s,s to
without using parameters is obviously possible, but to use param
makes it so much simpler. Watch:

1000 DEF PROCdiag(s,f,inc)
1010 LOCAL i

1020 FOR i=s TO f STEP inc
1030 PLOT 69, i, i

1040 NEXT i

11



Graphic Art for the BBC Computer
1050 ENDPROC : REM diag

and to draw an instant diagonal line from 0,0 to 1000,1000 we ente
immediate mode, so no fine numbers)

PROCdiag (0, 1000, 10)

where the points are plotted in gaps of 10 units.

PROCdiag has three parameters s, f, and inc, the scope of wh
merely that of the procedure; there is another variable i (used as the
counter) whose scope is also defined as being local to the procedur
there are no global variables. If there is a variable i in the main progra
s, f, or inc) the values of these variables are unaffected — the proc
does not even recognise their existence.

If there were variables s and f in the main program (with the col
interpretation), it might be possible to define a different procedure, w
did more than just draw a diagonal line of blobs. It might make the fi
of the fine (f) the start of a new line (s):

1000 DEF PROCnewdiag(inc)
1010 LOCAL i

1020 FORi=s TOf

1030 PLOT 69, i, i

1040 NEXT i

1050 s =f

1060 ENDPROC : REM newdiag

For this procedure both s and f are global to the procedure: they have
so, because we need to modify their values. With PROCdiag we are a
use variables with names other than s or f in the main program. As lo
the names are in the correct position in the list of parameters, the
does not matter.

Recursion

Sometimes (not very often) when writing a program, or a routine, t
may be a case where what you want to do is fairly simple, but to acl
the result by normal methods seems to be overly tedious in terms ¢
mental commitment necessary to solve the problem (a classic exam
the Kasner snowflake, discussed in the next chapter).

It is not that the solution is impossible to find by normal methods,
just that the solution is difficult to code simply. One way sometimes
to solve such problems is called ‘recursion’; and, though there is a
mystique surrounding the term, it is very simple to use recursion — thi
remarkably wasteful.

Examine this function and routine:

1000 DEF FNwalk = RND(55) - 28
2000 DEF PROCrndwalk(x, y ,2)

12



INTRODUCTION Atrtist's Tools

2010 x =x + FNwalk : y =y + FNwalk
2020 PLOT z,x,y : PROCrndwalk(x,y,z)
2030 ENDPROC : REM rndwalk

where the function is without parameters because it does not depenc
any input value to produce its result.

The procedure has three parameters: two (x and y) are co-ordii
and the third sets the style of plotting (U G page 319). The it
coordinate values are modified by FNwalk up to a limit of plus or mi
27 units (independently); the new coordinates are then used to plot tc
coordinates (with the style of plotting set by z); and then the new ve
are used as parameters for yet another call to the same procedt
PROCrnd walk)

The call to PROCrndwalk within PROCrndwalk is what is terme
recursive call. If you use PROCrndwalk in immediate mode, eg

MODE 4 : PROCrndwalk (500,500,5)

the screen will show randomly drawn lines, usually called a ‘random w
(similar to Brownian motion). After a short while the plotting will stc
with an error message at line 1000: by repeatedly calling itself (anc
BASIC system having to remember where it has been) the program
out of room.

Repeating the above fine (still in Mode 4) for different values of z (eg !
21, 22, 69, 70, 85, or 86) is a very good way of investigating the effec
the flexible plotting command. My favourite is 86, plot triangles in -
logical inverse colour. Mode 5 is also worth trying at this stage, pos:
using GCOL to change the graphics colour (UG pages 163, 262).

Using Modes 0,1, and 2, produces a surprise: the plotting is over 1
more quickly than for Modes 4 and 5. A glance at the memory map
page 500) shows that, as the graphics memory increases, so the m
available for BB is less. As the memory map shows, the BASIC s
reaches from the graphics memory boundary (ie HIMEM) until it reac
the BB program. When it reaches the program, we find there is no roc
fine 1000.

Recursion can be fun, but — unless you are very careful —
program will crash, particularly with a large program in higher resolu
modes. However, as | noted above, PROCrndwalk is a useful we
investigating plotting styles. Another useful exercise is to w
PROCrndwalk ‘iteratively’ , ie by use of a FOR. . .NEXT loop (or possi
a REPEAT . . . UNTIL loop). Also worth trying is to write the (iterativ
PROCdiag in a recursive manner.

It is interesting to note that in the definition of PROC (UG page 3
there is an example of recursion — without any explanation — sao
designers of BB must have thought that recursion was important.

13



Graphic Art for the BBC Computer
definition of recursion is, of course,
RECURSION : See Recursion

Screen resolution

To draw pictures on the screen we need to know something abot
screen. Start by trying out this procedure

1000 DEF PROC_ORIGIN TO_(X,Y)
1010 MOVE 0,0 : DRAW X, Y
1020 ENDPROC : REM ORIGIN_TO_

and then use the procedure by entering (in direct mode, ie without
numbers)

PROC_ORIGIN_ TO_(800,800)

which will draw a fine from the bottom left corner of the screen
somewhere towards the top right corner. Holding the RETURN key d
succeeds in moving the fine up the screen: there is no distinction bel
the drawing of lines on the screen, and the entering in of the characte
repeat the call of the procedure is to draw a second fine, parallel t
first.

If nothing has happened, you are probably in mode 3, 6, or 7, no
which allow high resolution graphics: in fact, if in mode 7, the sp
symbol ‘_’ will appear as a hyphen ‘-’. At this point it is worth turning
UG page 59, which gives the number of characters per line, and nur
of lines, for the various modes. Keeping note of the numbers there: F
0.1 Character Resolution

Figure 0.1 Character Resolution

MODE  CHARACTERS  LINES TOTAL CHARS
0 0 to 79 (80) 0t031(32) =2560

1 0 to 39 (40) 0t031(32) =1280

2 0 to 19 (20) 0t031(32) =640

3* 0 to 79 (80) 01024 (25) =2000

4 0 to 39 (40) 0t031(32) =1280

5 0 to 19 (20) 0t031(32) =640

6* 0 to 39 (40) 01024 (25) =1000

7* 0 to 39 (40) 01024 (25) =1000

Note: The * indicates that this is not a graphics mode.

Figure 0.2 Graphics Resolution

14



INTRODUCTION Atrtist's Tools

MODE RESOLUTION COLOURS

0 640 x 256 2 = 20K
1 320 x 256 4 = 20K
2 160 x 256 16 = 20K
4 320 x 256 2 = 10K
5 160 x 256 4 = 10K

The total characters column shows that in mode O there can be
characters on the screen at one time. As each character (U G page 1°
elements wide by 8 elements high, then an 80 by 32 characters mode
same as 640 by 256 elements.

If you now refer to the top of page 161 in the UG, you find that in
graphics modes the screen is divided up into imaginary rectangles: mc
we are told, has 640 x 256 squares. The number of squares corresp
what | termed elements, or what in other places are called ‘pixels’.
‘higher’ the resolution of the graphics (or the greater the numbe
characters on the screen) the larger the memory needed. Different t
also have different numbers of colours: the greater the number of cc
which can be used on the screen at the same time, the greater the me

The memory requirements are those given at the bottom of page 1
the UG, and it is worth noting how the calculation is made. Each grot
8 pixel/elements occupies one byte (one memory location); each bit w
the byte can be set or not (two colours); if another byte is associatec
that byte, there are now two bits per pixel (four colours); and to hav
colours requires 4 bits per pixel. Therefore, to calculate the requireme
mode 2:

(160/8) x 256 x 4 20480 or 20K ( = 20480/1024)

which — if not immediately obvious — should be studied carefully.

The theoretical dimensions of the plotting screen are (in the same
as we gave the characters and fines) 0 to 1279 across and O to
upwards (or downwards). For each mode, therefore, there is a mini
resolution: for mode 5 (with 160 pixels across) each pixel is 1280
units wide, and thus the maximum discrimination in the X direction |
units. The maximum discrimination in the Y direction is thus 1024/256
units: each pixel is of size 8 x 4. There are 32 fines of text, so eact
will be 1024/32 = 32 units wide.

Figure 0.3 Pixel Resolution

15



Graphic Art for the BBC Computer

MODE PIXEL SIZE LINE WIDTH
0 2x4 32
1 4 x4 32
2 8x4 32
4 4x4 32
5 8 x4 32

Splitting the screen

As there are two ways in which the screen may be used, there ar
pointers to where we are using the screen. There is a text cursor, '
points to where the next character is to be placed (usually flashing)
there is a graphics cursor which gives the start of the next graphics plc
Normally the two cursors are distinct, but it is possible to use a comr
which allows text to be entered at the position of the graphics cursor
VDU command

VDU 5

will mean that only one cursor is active (ie the graphics cursor), and
can be entered at any part of the screen — without the screen scrollin
line when on the bottom line.

As the normal discrimination for text in mode 5 is 1280/20= 64 u
wide, characters can only be placed in increments of 64 units, wh
characters can be placed in increments of 8 units (see Figure 0.3) by
the graphics cursor. On page 173 of the UG, an example is given
rocket rising more smoothly, due to the increased discrimination obte
by using the graphics cursor. To separate the cursors we use VDU 4.

Though the association of text with the graphics cursor is us
sometimes it is even more useful to make sure that text and graphics
occupy the same place on the screen. What is frequently needed is
space’ and a distinct ‘graphics space’. Many computers (eg the App
provide this distinction automatically. We need to use text windows
graphics windows (see pages 56-61, and 385-388 of the UG).

The question is: where should the two spaces be situated? Follc
the example of the Apple, and other computers, | propose that the
place is with the text at the bottom of the screen (often four fines of t
and graphics to fill the rest of the screen. The reason | like
arrangement is that this allows the user to enter, interactively, dra
commands and it allows the user to study the command (it does
disappear) if something goes wrong — as it often does.

The origin for text is at the top left hand corner and (using mode
an example) extends to 39 across (x axis) and 31 down (y axis). To p
window in the bottom four fines, we need to occupy lines 28, 29, 30,

16



INTRODUCTION Atrtist's Tools

31; and to use the full width we need to occupy character positions 0 t
Note that for all modes which use graphics (Figure 0.1) there ar
fines, so that the only difference for other modes to mode 4 is in
numbers of characters across the screen.
To set the text window we use a VDU command

VDU 28, leftchar, bottomline, rightchar, topline

where the labels are as they say. To set a text window in the mann
have discussed, we enter

VDU 28, 0, 31, 39, 28

to give a window which extends from character 0 to 39, and fine 28 tc
One ofthe following VDU commands is for mode 5, and one is for mod
work out which is which -

VDU 28, 0, 31, 79, 28
VDU 28, 0, 31, 19, 28

No answers supplied.

To set up the graphics window is similar, but different. The comm
is
VDU 24, leftcoord; bottomcoord; rightcoord; topcoord,;

and, whereas in the text command we differentiated between fines
characters, we only have coordinates in the graphics command.

The most important distinction is that between the use of the comn
in the VDU 28 command, and the use of the semi-colon ‘;’ in the VDU
command. The dimensions of the text window (in any direction) are n
greater than 255 (check Figure 0.1 if you are not sure); wherea:
dimensions of the coordinates often extend beyond 255. BB, there
makes a distinction between numbers of 255 or less (which can be ti
as one byte — 8 bits), and numbers which might be up to 65535 (two
of 16 bits). The difference is explained on page 386 of the UG,
reference to the command

VDU 24, 150; 300; 100; 700;
and then
VDU 25, 4, 100; 500;

which is actually equivalent to the command PLOT 4, 100, 500. The \
25 command given is (the UG claims) the same as

VDU 25, 4, 100, 0, 244, 1

because 100 =100 x 1 + 0 x 255 and 500 = 244 x 1 + 1 x 255. The c«
sends the preceding number to the system as if it were one byte (and
number is greater than 255 it sends the value MOD 256). A semi-c
informs the system that the preceding number has to be sent as two

17



Graphic Art for the BBC Computer

— there is no need for the last comma, but BB always has to have th
semicolon.
The above VDU 25 could be written more explicitly as

VDU 25, 4, X MOD 256, X DIV 256, Y MOD 256, Y DIV 256

and, later — Chapter 4 — | will analyse the use of VDU command
detail; for now, however, all we really need is the important differe
"twixt comma and semi-colon.

Each fine of characters corresponds to 32 units in graphics, s
graphics screen (if it is not to overlap with the text screen) will hawv
start up 4 x 32 units (ie 128) and then extend from side to side and 1
top

VDU 24, 0; 128; 1279; 1023,

will do very nicely. To play with graphics constructively, therefore,
need to start with the two screens and then clear them both:

VDU 28, 0, 31, 39, 28 : CLS
VDU 24, 0; 128; 1279; 1023; : CLG

We are away, apart from one little extra chore.

If we now use PROC_ORIG IN_TO we would find that part of the |
was missing: the origin is outside the graphics window . We change
graphics origin to a new point by use of VDU 29 (U G page 388). Tc
the origin to 640,566 (ie the middle of the graphics window) we

VDU 29, 640; 566;
and now we really are away.

18



CHAPTER 1
Turtle Graphics

There is
one art,

no more,
no less:
to do

all things

with art-

less ness

Piet Hein Ars brevis

In Mindstorms Seymour Papert (1980 : 219) gives a short BASIC prog
to draw a house. Converted to BB, this little program is

1000 MOVE 0,0
1010 DRAW 100,0
1020 DRAW 75,150
1030 DRAW 0,100
1040 DRAW 0,0
1050 END

and Papert notes that this is not suitable as a general method for dra
house, for it also requires quite a good deal of work to prepare. "
demand would be less serious if the program, once written, could becc
powerful tool for other projects . . . the BASIC program allows ¢
particular house to be drawn in one position. In order to make a B/
program that will draw houses in many positions, it is necessary tc
algebraic variables. . ."

Papert proves his own point (perhaps deliberately) by giving a rot
for drawing a lopsided house — try the program to see.

How is the house constructed? Essentially the house is a squa
rectangle) with a triangle on top: forget about inessential aspects su
doors and windows for the moment. To draw a house, therefore, we d
square, and place the triangle on top. Start with the square. Let our ¢
be of side SIDE, and let it be drawn from any arbitrary coordinate >
make it into a procedure.

1000 DEF PROCL-SQUARE(X,Y, SIDE)

1010 PLOT 0,X,Y : REM MOVE TO X, Y

1020 PLOT 1,SIDE,0 : REM A RELATIVE PLOT
1030 PLOT 1,0,SIDE

1040 PLOT 1,-SIDE,0

1050 PLOT 1,0,-SIDE : REM BACK TO BASE



Graphic Art for the BBC Computer
1060 ENDPROC : REM SQUARE COORD VERSION 1

As you will note, | have used ‘relative’ plots in constructing the rout
(UG page 319), partly because it means that we only refer to X and
one point. Suppose that the graphics cursor was already at the point
We can ignore line 1010, and treat X and Y as global to the proce
(really we never have to refer to X or Y):

1000 DEF PROC_SQUARE(SIDE)

1010 PLOT I,SIDE,0 : PLOT 1,0,SIDE

1020 PLOT 1,-SIDE,0 : PLOT 1,0,-SIDE

1030 ENDPROC : REM SQUARE COORD VERSION 2

lines 1010 then become similar. PROC_SQUARE can be prettified

1000 DEF PROC_SQUARE (SIDE)

1010 PROC LSHAPE (SIDE) : PROC_LSHAPE(-SIDE)
1020 ENDPROC : REM SQUARE COORD VERSION 3
1025

1030 DEF PROC_LSHAPE (LIMB)

1040 PLOT 1,LIMB,0 : PLOT 1,0,L1MB

1050 ENDPROC : REM LSHAPE (by Lynne Reid Banks?)

and we now have two routines where once there was one. The s
routine (ie PROC_LSHAPE) could be used for other shapes, other the
square: PROC_LSHAPE could become part of a library of ‘us
routines’ but really there is little point to the exercise. PROC_LSHAP
not exactly memorable: can you remember which way it bends, and «
you remember it in aeons to come, together with many other little got
of program?

How are we to tilt the house? How are we even to tilt the LSHAPE"

Intrinsic geometry

To draw a square we go forward a fixed distance and turn left (or fi
through 90 degrees. This we do four times: why not draw a square i
way? There seems to be an internal logic to a square, which doe
depend upon sides being horizontal and vertical.

A geometrical figure, such as a square, has a certain ‘intrir
property, which depends only upon that type of figure: that a square
four equal angles, and four equal sides, is independent of positior
orientation. To say that the sides of a square must be parallel to the
(as in the above routines) is an ‘extrinsic’ property: an external fram
reference is needed to decide which direction is horizontal.

Rather than concentrating on external properties, which is what on
to do if one concentrates on coordinates and transformation:
coordinates, the routines herein concentrate upon the intrinsic propert
shapes. As Piet Hein implies, simplicity is the way to true art (‘Ars bre
20



CHAPTER 1 Turtle Graphics

means ‘Art in short’).
A procedure:

1000 DEF PROCL-SQUARE (SIDE)

1010 LOCAL | : FOR I=1 TO 4

1020 PROC_MOVE(SIDE,|) : PROC_TURN(90)

1030 NEXT |

1040 ENDPROC : REM SQUARE INTRINSIC VERSION

which uses two other procedures PROC_MOVE and PROC_TURNM
which more later. To draw a square of side 100, instantly we have to e

PROC_SQUARE(100)

where the square is drawn at the current cursor position. Highly con
shapes can be produced by use of a very few essential procedures.
a procedure to draw an equilateral triangle:

1100 DEF PROC_TRIANGLE(SIDE)

1110 LOCAL | : FOR I =1TO 3

1120 PROC_MOVE(S1DE,1) : PROC_TURN(I20)

1130 NEXT |

1140 ENDPROC : REM TRIANGLE INTRINSIC VERSION

and it is simplicity itself. We can draw a triangle in exactly the same
as we drew the square, entering

PROC_TRIANGLE(SIDE)
then to tilt the square through 25 degrees counter clockwise
PROC_TURN(25) : PROC_SQUARE(I00)

in instant mode. To move to coordinates 20,250 (without plotting) and
draw a square turned through 43 degrees counter clockwise

PROC_MOVETO(20,250,0): PROC_TURN(43):
PROC_SQUARE(100)

- no calculation whatever, purely a concentration on the intrinsic natu
the problem. Note that in PROC_MOVE and PROC_MOVETO the fi
parameter is 1 for plot; and O for do not plot, just move.

One last example:

1200 DEF PROC_QUIZ(SIDE)

1210 LOCAL | : FORI=1TO 6

1220 PROC_MOVE(SIDE) : PROC_TURN(60)
1230 NEXT |

1340 ENDPROC : REM QUIZ - GUESS WHAT

to whet your analytical appetite.

21



Graphic Art for the BBC Computer

Turtle geometry

The above form of analysis, which concentrates on intrinsic propertie
geometrical figures, is commonly called Turtle geometry. Papert’'s boo
which | earlier referred, is the classic text for explaining the reasons be
turtle geometry. The subtitle to Papert’s book is ‘Children, computers,
powerful ideas’ and this has led some to believe that turtle geomet
‘kid’s stuff’, to be ignored, or left to little children.

This is not only wrong, but very short sighted: Turtle Geome
(Abelson and diSessa, 1980) is far beyond a child’s picture book. Like
powerful methodology (or powerful computer language) the scope is
from the very simple (but never trivial) triangle to, eg, Lorel
transformations in relativistic mechanics. Turtle geometry is a powe
and accessible means of producing computer graphics which is not
creative but also of great utility.

Though using turtle graphics is a powerful tool, turtle graphics is
part of a philosophy and style of using computers. Two fundamental i
which underlie much of the work in this book are:

It is possible to design procedures which make the communication
computers a more natural process than is possible with more tradii
methods of programming graphics;

Learning to use graphics in this manner can assist in the learnit
general thinking about program design — by considering the intri
nature of the problem and not its merely extrinsic aspects.

Experience is an important element in learning how to perform
task, and the computer can assist tremendously in producing many
forms of experience. Many of the procedures (eg PROC_INSPIR,
produce results which surprise myself, so expect to be surprised.

The approach through turtle graphics, and similar styles of applica
are not the old ‘discovery methods’ they used to practise at school.
discovery methods the teacher or author of the book is supposed to
what is to be discovered — often the results of turtle routines are ne'
me as well.

In turtle graphics the user has control of a little (hypothetical) cres
called a turtle, and the turtle fives on the surface of the visual display
or VDU). The turtle responds to a few very simple commands MC
forward, and TURN through and angle (in the LOGO and SMALLTAI
languages the commands are the same but differently named, see |
1980, and Smalltalk-80 by Goldberg and Robson, 1983). The intri
routines PROC_SQUARE, PROC_TRIANGLE, and PROC_QUIZ co
all be followed by a little turtle on the screen. Turtle geometry
constructing shapes by use of turtle(s)) is a useful alternative to traditic
methods of ‘doing graphics’ — this will become clearer as we progres:

At more advanced levels, in the geometry of curved surfaces
differential geometry), the turtle always faces and turns in the tan
plane of the point on the surface at which the turtle is located. As

22



CHAPTER 1 Turtle Graphics

geometry of space in Einstein’s theory of relativity is a differen
geometry, the turtle can explore Einstein’s universe — but we will not
more details see Abelson and diSessa, 1980).

Turtle commands

The basic turtle commands are very few, a move command, and ¢
command: theoretically these are all that are needed (a moveto corr
is not really necessary). The turtle commands | have implemente:
Version 1.1are — apart from housekeeping commands — the followin

PROC_TURN (A) Turn through A degrees
PROC_TURNTO(A) Turn to angle A degrees
PROC_MOVE(D,S) Move forward D units, S=1 to plot,
S=0 to just move.
PROC_MOVETO(X,Y,S) Move to coords X,Y, S=1 to plot,

S=0 to move
plus a command
PROC_LOC What are the coords, and what is tr
present angle?
However, to use these commands the screen needs to be organ
such a manner that text and graphics can be separated.

The screen housekeeping commands are:

PROC_START Clear the screen and set up separa
text and graphics screens, centre
cursor

PROC_RESTART Clear only the graphics screen and
set the cursor to the centre

PROC_CENTRE Centre the cursor

PROC_INVERT Change the drawing colour from

black to white or vica versa
But a program is worth a thousand words — so enter in routines T
Graphics Version 1.1 | will then discuss the routines in the order
which they appear in the listing.

1000 REM----mmmmmm e
1010

1020

10380 REM G RAPHIC ART
1040

1050 REM (c) Boris Allen, 1983
1060

1070

1080 REM---mmmmmmm e
1090

1100 REM Turtle Graphics : 1.1

23



Graphic Art for the BBC Computer

1110

1120 REM---mmmmmm e
1130

1140 DEF PROC_CLRSCR

1150 PROC_CLS : PROC_CLG

1160 ENDPROC : REM CLRSCR

1170

1180 DEF PROC_CLG

1190 GCOL 0,PEN : GCOL 0,129-PEN
1200 VDU 24,0;128;1279;1023; : CLG
1210 REM Clears an upper graphics windo
w

1220 VDU 29,640;566;

1230 REM Sets the origin to centre of g
raphics window

1240 ENDPROC : REM CLG

1250

1260 DEF PROC_CLS

1270 COLOUR 1-PEN : COLOUR 128+PEN
1280 vDU 28,0,31,39,28 : CLS

1290 REM Clears lower text window
1300 ENDPROC : REM CLS

1310

1320 DEF PROC_COL(PE)

1330 PEN=PE

1340 ENDPROC : REM COL

1350

1360 DEF PROC_CENTRE

1370 MOVE 0,0 : ANGLE=0: X=0:Y=0
1380 ENDPROC : REM CENTRE

1390

1400 DEF PROC_RESTART

1410 PROC_CLG : PROC_CENTRE
1420 ENDPROC : REM RESTART

1430

1440 DEF PROC_START

1450 PROC_COL(0) : PROC_CLRSCR : PROC_C
ENTRE

1460 ENDPROC : REM START

1470

1480 DEF PROC_INVERT

1490 PEN=1-PEN : GCOL 0,PEN

1500 ENDPROC : REM INVERT

1510

1520 DEF PROC_TURNTO(A)

1530 ANGLE=FN_ANGLE(A)

1540 ENDPROC : REM TURNTO

1550

1560 DEF PROC_TURN(A)

24



CHAPTER 1 Turtle Graphics

1570 ANGLE = FN_ANGLE(ANGLE+A)

1580 ENDPROC : REM TURN

1590

1600 DEF PROC_LOC

1610 PRINT "COORDINATES ARE ";X,Y'"ANGL
E IS "ANGLE

1620 ENDPROC : REM LOC

1630

1640 DEF PROC_MOVE(DISTANCE,STYLE)
1650 X=X - DISTANCE*SIN(RAD(ANGLE))

1660 Y=Y + DISTANCE*COS(RAD(ANGLE))
1670 IF STYLE=1 THEN DRAW X,Y ELSE MOVE
X,Y

1680 ENDPROC : REM MOVE

1690

1700 DEF PROC_MOVETO(XN,YN,STYLE)
1710 LOCAL XDIF,YDIF : XDIF=XN-X : YDIF
=Y-YN

1720 IF YDIF<>0 THEN PROC_TURNTO(DEG(AT
N(XDIF/YDIF))+180*(YN<Y)) ELSE PROC_TURN
TO(SGN(-XDIF)*90)

1730 X=XN : Y=YN

1740 IF STYLE=1 THEN DRAW X,Y ELSE MOVE
X,Y

1750 ENDPROC : REM MOVETO

1760

1770 DEF FN_ANGLE(A)

1780 IF A MOD 360 <0 THEN =A MOD 360 +
360 ELSE =A MOD 360

1790 REM ANGLE

1800

1810 DEF PROC_NEW

1820 VDU 26 : CLS

1830 ENDPROC : REM NEW

1840

PROC_CLRSCR consists of two routines PROC_CLS
PROC_CLG, defined later.

PROC_CLG sets the graphics foreground and background colou
use of GCOL (UG page 262) and a global variable PEN. Usually
foreground is black and the background white. Line 1210 sets a gra
window (see above) and clears the graphics window; line 1220 set
origin to the centre of the window.

PROC_CLS sets the text foreground and background colours (UG
222) to the reverse of those normally set by PROC_CLG. A text winc
for the lower four lines, is established and the text window is cleared.

25



Graphic Art for the BBC Computer

PROC_COL is the first routine with a parameter, and is merely a
of altering the value stored in the global variable PEN. PEN normally
the value 0, but this allows that value to be changed procedurally (an
way — less consistent — is PEN = PE).

PROC_CENTRE moves the cursor to the centre, and sets the ¢
variables X,Y, and ANGLE all to zero.

PROC_RESTART clears the graphics window (PROC_CLG) and-
centres the cursor (PROC_CENTRE) — the text is unaffected. The g
variable PEN is not affected.

PROC_START sets the PEN to zero, clears both scre
(PROC_CLRSCR) and centres the cursor (PROC_CENTRE). This ro
has to be activated before any of the others, otherwise some of the
variables might be uninitialized.

PROC_INVERT changes the foreground colour in graphics, witt
altering the background colour (black to white and vice versa). To alte
value from O to 1 (or vice versa) the value is subtracted from I. Anc
way of changing the value might be PROC_COL(1-PEN). This routin
used for erasing existing lines.

PROC_TURNTO sets the value stored in the global variable ANC
to the value supplied. To make sure that values do not go outside the
0 to 359, the value is normalized by FN_ANGLE. Not a true tu
command because it refers to an absolute (rather than relative) ang
name of this command derives from UCSD Pascal (Bowles, 1977), ¢
most of the routine names herein.

PROC_TURN takes the value of the parameter, and adds it ont
global variable ANGLE, where counting of angles is in a counterclock\
direction and uses FN_ANGLE.

PROC_LOC is simply an environmental enquiry ‘What is my locati
and in which direction am | facing?’ . In my turtle graphics procedures
cannot see the turtle, and so this is to help when lost.

PROC_MOVE has two parameters: the first (DISTANCE) gives
distance to be moved, and the second (STYLE) indicates whether th
to be a plot or a move (many versions of turtle graphics have PENUF
PENDOWN commands). The calculations in fines 1650 and 1660 nee
detain us.

PROC_MOVETO is not a true turtle command, because it is absi
not relative taken from UCSD Pascal. The first two parameters are
coordinates, and the final parameter is the plotting style (comparak
PROC_MOVE). Do not bother about the calculations needed, exce
notice that the IF in line 1720 is to trap a possible division by zero.

PROC_NEW returns both graphics and text windows to their
26



CHAPTER 1 Turtle Graphics
screen values, and both cursors are horned (see UG page 387).

FN_ANGLE constrains the angle between 0 and 359, and
conditional (in line 1780) is to account for negative as well as pos
angles — all negative angles become positive.

A square dance

As | have already noted, the only really essential commands
PROC_MOVE(DISTANCE,STYLE) and PROC_TURN(A): though tt
routines | shall discuss in the rest of this chapter make use of mal
BB'’s facilities, they use only the basic two turtle commands. The rout
are designed to operate in mode 4, though they will run under mode 0
The routines are fisted as Turtle Routines 1.1, and the first to be exar
will be that to draw a square. To draw a square we first draw the side
square (ie PROC_SIDESQ), which — as we have seen — is move fol
a distance and then turn through 90 degrees. The distance move fc
corresponds to the parameter SIDE, and is the length of the side ¢
square.

2000 REM-=-mmmmmmm oo
2010

2020

2080 REM G RAPHIC ART
2040

2050 REM (c) Boris Allen, 1983
2060

2070

2080 REM-=---mmmmmmee e
2090

2100 REM Turtle Routines : 1.1
2110

2120 REM-=mmmmmmmmm oo
2130

2140 DEF PROC_SIDESQ(SIDE)
2150 PROC_MOVE(SIDE,1) : PROC_TURN(90)
2160 ENDPROC : REM SIDESQ
2170

2180 DEF PROC_SQUARE(SIDE)
2190 LOCAL | : FOR I=1TO 4

2200 PROC_SIDESQ(SIDE) : NEXT I
2210 ENDPROC : REM SQUARE
2220

2230 DEF PROC_SQTURN

2240 LOCAL I,A%$ : FOR I=1 TO 600
2250 PROC_MOVE(I,0) : PROC_SQUARE(I)

27



Graphic Art for the BBC Computer

2260 PROC_TURN(30) :A$=INKEY$(0)

2270 IF A$="F" THEN ENDPROC ELSE NEXT |
2280 ENDPROC : REM SQTURN

2290

2300 DEF PROC_INSPIRALR(SIDE,ANG,INC)
2310 PROC_MOVE(SIDE,1) : PROC_TURN(ANG)
2320 PROC_INSPIRALR(SIDE,ANG+INC,INC)
2330 ENDPROC : REM INSPIRALR

2340

2350 DEF PROC_INSPIRALI(SIDE,ANG,INC)
2360 REPEAT

2370 PROC_MOVE(SIDE,1) : PROC_TURN(ANG)
2380 ANG = ANG + INC : A$ = INKEY$(0)
2390 UNTIL A$="F"

2400 ENDPROC : REM INSPIRALI

2410

2420 DEF PROC_CIRCLE

2430 LOCAL | : FOR |1 =1 TO 360

2440 PROC_MOVE(1,1) : PROC_TURN(1)
2450 ENDPROC : REM CIRCLE

2460

2470 DEF PROC_PERIFIXED(PERIM,SIDES)
2480 LOCAL ANG,I

2490 ANG = 360/SIDES

2500 FOR I=1 TO SIDES

2510 PROC_MOVE(PERIM/SIDES,1) : PROC_TU
RN(ANG)

2520 NEXT |

2530 ENDPROC : REM PERIFIXED

2540

2550 DEF PROC_POLYGONS

2560 LOCAL |

2570 FOR | = 6 TO 36 STEP 6 : PROC_PERI

FIXED(1080,1)

2580
XT |

2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690

PROC_CENTRE : PROC_TURN(I*10) : NE
ENDPROC : REM POLYGONS

DEF PROC_SNOWFLAKE(ODER,INC)
PROC_DECISION(ODER,60,INC)
PROC_DECISION(ODER,120,INC)
PROC_DECISION(ODER,120,INC)
ENDPROC : REM SNOWFLAKE

DEF PROC_DECISION(ODER,ANG,INC)
PROC_TURN(ANG)
IF ODER>0 THEN PROC_POINT(ODER-1,1

NC) ELSE PROC_MOVE(INC,1)

2700
28

ENDPROC : REM DECISION



CHAPTER 1 Turtle Graphics

2710

2720 DEF PROC_POINT(O,1)

2730 PROC_DECISION(O,0,1)

2740 PROC_DECISION(O,-60,1)

2750 PROC_DECISION(0,120,1)

2760 PROC_DECISION(O,-60,1)

2770 ENDPROC : REM POINT

2780

2790 DEF PROC_OUTSPIRAL(A,INC)
2800 LOCAL 1,A$

2810 PROC_CENTRE : REPEAT

2820 PROC_TURN(A) : PROC_MOVE(Il,1) : |
=1+ INC

2830 A$=INKEY$(100) : UNTIL A$="F"
2840 ENDPROC : REM OUTSPIRAL

To draw a square we have to draw four sides, which is just \
PROC_SQUARE does. The loop counter (I) is declared as being loc
the procedure, as it is only operative within that procedure. Another wi
writing the procedure would be on the one fine, say. Now to
PROC_SQUARE.

First, we clear the decks for action by setting up the special text
graphics screens, and, second, we draw the square (of side 200):

PROC_START : PROC_SQUARE (200)

We enter this interactively, and see a square (almost) instantly ar
To draw a bigger square, tilted through 50 degrees, keeping the first s
on screen:

PROC_TURN(50) : PROC_SQUARE(300)
a tilted square appears. Try
PROC_TURN(-100) : PROC_SQUARE(300)

and a similar larger square will appear — tilted in the opposite direc
(50 - 100 = -50). Now clear the graphics, keep the text, and move
square away from the centre:

PROC_RESTART : PROC_MOVE(I00,0)
PROC_SQUARE(200)

and it is worth entering the two lines separately.

The latter two lines will: (a) clear the graphics screen; (b) move
units in a upwards direction — without plotting; and (e) draw a squar
side 200 units at that point. Note the different effect.

PROC_RESTART : PROC_TURN(160) : PROC_MOVE(200,0)
PROC_SQUARE(200)

29



Graphic Art for the BBC Computer
produces (a tilted square, bottom leftish). Finally, try

PROC_RESTART : PROC_MOVETO(200,-300,0)
PROC_SQUARE(200)

to see how it is possible to use non-basic turtle commands. Try to le
squares dance by using PROC_SQTURN.

In this routine | and A$ are local to the procedure: | is used as a
counter, and A$ is used as a means to produce early termination (the
is pressed). For up to 600 times the cursor (or turtle) moves forwe
distance | (without drawing), draws a square of side I, and then the
turns through 30 degrees. The keyboard is checked by INKEY$(0) to ¢
a key is pressed (saved in A$); if the key was an F, then ENDPROC
the loop counter is incremented.

The routine is activated by

PROC_RESTART : PROC_SQTURN

and it runs remarkably quickly. If you want to slow it down, put a paus
the INKEY$, eg INKEY$(20), but this does not slow down the drawing
the squares — it just increases the time between squares (see UG pa
for INKEY$). This is a tediously predictable routine — it is the same e\
time. The predictability is shown lson 1.1

Note that Figures are not computer output, they may be diagrams or-

which are there to assist in the understanding of the text. An Ilcon — w

is ‘an image, picture, or representation’ according to the dictionary — i

exact copy of a display on the screen, it is a screen dump onto a printe
Need a rest? Take Five.

An unsquare dance

| walk forward a certain, fixed, distance and turn through a cert
changing, angle: what happens?
Solution: see PROC_INSPIRALI.

A$ is local again, tedious but safe, and the routine repeats until 1
key is pressed. The distance is kept constant (ie SIDE), but the
(ANG) is incremented (by INC) at each pass through the indefinite loo
REPEAT. . .UNTIL. . .). This routine produces a vast array
unpredictable results, which, once known, are completely predictable.
named PROC_ANSPIRALI because it is an INward SPIRAL, co
Iteratively. Iteration means, as explained in the previous chapter, the
control of the procedure is by a loop mechanism — in this case REPE
{UNTIL.

30



CHAPTER 1 Turtle Graphics

A

An outward SPIRAL is shown by PROC_OUTSPIRAL, in which t
angle remains constant and the distance increases, and is what we nc
mean by a spiralcons 1.2and1.3 show two examples of outward spira
for varying values of the fixed angle.

31



Graphic Art for the BBC Computer

An outward spiral — as the name spiral suggests — keeps on spir
outwards, but an inward spiral does nothing as common as that. Icor
to 1.7, are examples of four highly different shapes. Try to watch \
happens as the plotting unfolds: if it helps to slow down the proc
change the value of the parameter in the INKEY$.

ICOH_ 1.4

Za,\8,11

32



CHAPTER 1 Turtle Graphics

ICOH_1.6

188,15, 88

33



Graphic Art for the BBC Computer

The path begins by spiralling inwards, that is, turning in on itself. A
a varying number of turns (depending upon INC) the angle becc
greater than 180 degrees, and so the path appears now to unwind. All
PROC_INSPIRALI to carry on until completion always results in a clo
figure, ie the path ends up where it started, and it retraces the original
Using PROC_INSPIRALI is a beneficial exercise for the imagination.

As a further way of producing the same (well, almost) effect, exar
PROC_INSPIRALR. The final R is for Recursive, and this is a |
efficient method for producing the same effect as the iterative version.
routine is recursive because in its own body it calls itself
PROC_INSPIRALR(SIDE,ANG + INC,INC)). That it is less efficient ci
be seen when some of the effects are duplicated — we are forever r.
out of room before it has ended. It's a Raggy Waltz.

Both sides now

Between the inward and the outward spirals there is the limbo spiri
you are not in or out you must be in limbo). The limbo spiral has a re
more familiar designation as the circle. To draw a circle you can ust
formula X2 + YA2 = R"2, or use the two equations X = R*C(
(ANGLE) and Y = R*COS(ANGLE). The best way to draw a circle is
move forward a fixed distance, turn through a fixed angle, and carr
until you are back where you started. Try the Circle Game,
PROC_CIRCLE.

It is a circle it is true, but remember that the resolution on the scre
not perfect: perhaps it is possible to get away with less w

34



CHAPTER 1 Turtle Graphics

PROC_PERIFIXED takes as a parameter the perimeter of the shap
wish to draw, and as the second parameter the number of sides
shape.

To draw a regular (ie equilateral) triangle of side 400, therefore,
enter.

PROC_RESTART : PROC_PERIFIXED(400,3)

and a triangle is drawn. To draw a succession of shapes, all with the
perimeter being the parameter. It can be seen that the shape
approaches that of a circle, given the imperfections of the sc
resolution. A circle is a shape of constant curvature — a limbo spiral.

By examination of the result of PROC_POLYGONS, | think tha
polygon of 30 sides is more than adequate (even for large perimeters
24 sides is a good approximation ($een 1.8). We will develop the circle
motif further, next chapter: note that to draw a circle of 30 sides !
PROC_PERIFIXED (not an optimal method of drawing a circle) ta
about two seconds, depending on size.

The snowflake curve

In Mathematics and the Imaginatigfasner and Newman, 1940), there
a chapter on "Change and changeability", and what we have
discussing is all about change and changeability

There is an appendix to their chapter, on Pathological Curves, ". .
of whom has an individual history resembling no other”, and Kasner
Newman start by discussing a normal and healthy set of curves
polygons which approach closer and closer to circles, as we found

35



Graphic Art for the BBC Computer

PROC_POLYGONS.

The first pathological curve they discuss is the Snowflake curve, w
starts out life as an equilateral triangdleof 1.9). Each side of the triangle
is trisected (cut into three equal parts), and on each middle thin
equilateral triangle is drawn (a first order snowflakegn 1.10. The
trisection process is repeated again on each side, to produce a secon
snowflake [con 1.11). The process then continues as long as desired.

ICOH 1.9

This curve is called ‘pathological’ because — as you can see —
perimeter of the snowflake increases with each trisection (it is an 1
third larger), however, — as is also clear to see — the area enclosed
snowflake is not infinite, it approaches a limit (as do the polygo
Ultimately, we have a curve of an "infinite" perimeter enclosing a fit
area: this is why the snowflake is pathological.

The snowflakes are very pleasing and satisfying to draw: this is w
draw them. As you may be able to appreciate from my description
snowflaking process is "Take one snowflake, and then modify it". Th
an example of recursion: which is another reason why | chose this su
To clarify what happens | have split the drawing of the snowflakes
three routines.

Just consider what happens along any side. One goes forward a tt
the distance, and turns through 60 degrees; one moves forward the
distance, and turns through — 120 degrees; the same distance aga
turn through 60 degrees; and then that distance again. If the final ste
the snowflaking has been reached, a straight line (without bump
drawn.

36



CHAPTER 1 Turtle Graphics

ICOH_1.18

37



Graphic Art for the BBC Computer

There are three procedures: (a) to set the basic shape of the equi
triangle (PROC_SNOWFLAKE); (b) to decide upon whether a stra
line or bump is to be drawn (PROC_DECISION); and (c) to draw a bt
with possibly smaller bumps on the bump (PROC_POINT which me
four calls to PROC_DECISION).

These procedures are recursive in a slightly different manner
procedure refers immediately to itself. What happens is
PROC DECISION refers to PROC _POINT which refers
PROC_DECISION (and so it continues, until ODER is zero —
ORDER because OR is a BB keyword).

There are now three ways we can draw an equilateral triangle: wt
use a purpose built routine, we can use PROC_PERIFIXED with
number of sides being three, or we can use PROC_SNOWFLAKE witl
order equal to zero. The latter:

PROC_START : PROC_SNOWFLAKE(450,0)
and to draw snowflake of order 1 on top of the triangle
PROC_SNOWFLAKE(150,1)

The rest is up to you. Try to move the snowflake to other positions, ¢
sizes, and with different orientations.

As a last task, design routines to draw the Anti-snowflake Ct
(Kasner and Newman, 1940 : page 299, and alsolamy 1.12. The
triangles are drawn inward, towards the centre, rather than outward.
the only routine which needs altering is PROC_POINT. No answe
supplied.

ICOH_1.12

38



CHAPTER 2
Turtle Geometry

Don't talk to me about mathematics —
I've come to the conclusion that I've
learnt to live without it.

Prince Philip, The Duke of Edinburgh
There is no ‘royal road’ to geometry.
Euclid

The turtle procedures are simple to use because they accentua
intrinsic properties of shapes.

When we study the intrinsic properties of shapes, we look at the a
(which never vary, though the size be doubled), and at the ratios of th
of one side compared to another. To talk of angles and ratios of sides
talk of trigonometry.

Triangulation

Enter the following procedure, which is not well-written TG becaus
uses too many moveto and turnto commands:

4000 DEF PROC_TRI(SIDE)

4010 PROC_MOVETO(200,-200,0) : PROC_TURNTO(30)
4020 PROC_MOVE(SIDE, 1) : PROC_TURN(-120)

4030 PROC_MOVE(SIDE/2,1) : PROC_TURN(-90)

4040 PROC_MOVETO(200,-200,1)

4050 ENDPROC : REM TRI

(it is assumed that the basic TG procedures are already there).
following instant one-line program is entered, eg

FOR1=1TO 7 : PROC_TRI(100*l) : NEXT I

then there are seven superimposed triangles drawn, each getting
enclosing the smaller triangles. The angles in the triangle are (bottor
degrees, (top right) 90 degrees, and (top left) 60 degrees; these ang
the same for each triangle — deen 2.1, which shows a similar type o
triangle.



Graphic Art for the BBC Computer

Opposite

Hypotenuse Adjacent

The longest of the lines (ie the first to be drawn) is always twict
long as the shortest line (second to be drawn) — how long (relativel
the other fine? Hint: use PROC_LOC to work out the coordinates, afte
second fine is drawn (ie after fine 4030). What happens if we try to

PRINT SIN(RAD(30)); COS(RAD(60))

should not be very surprising, but has to be explained.

Both SIN(RAD(30)) and COS(RAD(60)) are equal to 0.8660254
and if the value of sine 30 degrees is found from a book of tables,
0.8660 (as is the value of cosine 60 degrees). Check that the value ¢
60 degrees (and of cosine 30 degrees) is 0.5. The question now is to
this to the triangle.

Enter

PROC_RESTART : PROC_TRI(500)

where the coordinates of the lower apex of the triangle are (as one \
expect from the content of the routine) 200, — 200 (X axis, Y axis).
dextrous use of PROC_LOC (twice) it can be found that the uppet
apex is at -50,233.012702 with the upper right apex at 200,233.01270

We know from the routine that the long side of the triangle is 500.
is called the hypotenuse of the right angled triangle (the right angle is
of 90 degrees at the top fight apex). The hypotenuse is always oppos
right angle. The vertical side (ie the medium sized side) is 233.0127(
200 — 433.012702, and the small side is 250 (both from the coordir
and from the routine, ie 500/2).

40



CHAPTER 2 Turtle Geometry

If we concentrate on the angle at the lower apex, an angle c
degrees, then we can give names to the sides of the right angled tri
The side opposite the angle (in this case the shortest side) is calle
opposite; the side next to the angle, which is not the hypotenuse, is 1
the adjacenti¢on 2. 1). The sine and cosine of an angle are defined by

sine = opposite/hypotenuse
cosine = adjacent/hypotenuse

so that

sine(30) 250/500 = 0.5
cosine(30) = 433.012702 = 0.866025404

which checks. Check that it checks.

Degrees of radians

We have been working in degrees, and this is the means by which m
us find it easiest to conceptualise angles. In mathematics (and con
arithmetic) it is easier to work in terms of radians rather than degrees
example (and do not lose any sleep over it), if X is given in radians

sine(x) = x - x*3/3! + x"5/5 - x 7[7' + . . .
cosine(x) 1- x"2/2! + x"4/4! - x"6/6! + . . .

which is very nice and simple (x*3 — for example — is x*x*x and 3! is
2*3). So that we can still work in degrees, even though the calculation
simpler for the machine in radians, BB (UG page 331) has a RAD funt
to change an angle measured in degrees to its equivalent in radians.

To turn completely round is to go through 360 degrees, or to
through 2*PI radians (Pl is a BB constant equal to 3. 14159265, set
page 318). A radian is also called a circular measure. One radian
angle at the centre produced by an arc on the circumference of a «
where the length of the arc is the same as the radius — a form of cii
equilateral triangle.

You would expect that, as the circumference is curved, the other
sides would be slightly closer together than for a normal equilas
triangle. They are. The angle is about 57 degrees for the arc, as agai
degrees for the equilateral triangle (compare UG page 331). If you F
that the length of the circumference is 2*PI*RADIUS, you might like
work out why the radian is equal to 180/PI degrees.

Note that in the TO routines we always use degrees, and the conw
into radians is done within the routines. This is how it should be, thc
radians have a certain mathematical felicity degrees have an overwhe
familiarity.

41



Graphic Art for the BBC Computer

Further functions

The classic three functions of trigonometry are the sine, cosine, an
tangent, with the definition of the tangent being

tangent = opposite/adjacent
which, for our example triangle, produces

tangent(30)F 250/433.012702
=0.577350269

in agreement with
PRINT TAN(RAD(30))

the way we refer to the tangent in BB (UG page 362). We use all
functions in the TO routines, and, interestingly, in the notes of Kasnel
Newman'’s discussion of ‘Change and Changeability’ (used last che
when examining pathological curves) they give a good brief explanatic
what they term trigonometrical ‘ratios’ (ie functions).

Actually we do not use the tangent in the routines, rather we us:
‘arctangent’. The arctangent (written as ATN in BB — see UG page :
gives the angle corresponding to a tangent value. T AN(RAD(30)) is €
to 0.577350269, and so ATN(0.577350269) is 30 degrees, but expres
radians: DEG(ATN( .577350269)) converts the result so that it is give
degrees — DEC is the reverse of RAD. ACS (arccosine) and
(arcsine) are also available in BB (U G pages 201, 209). Another nan
the arctangent is the ‘inverse’ tangent, and similar for the others.

At this point it is worth examining PROC_MOVE an
PROC_MOVETO.

Moving commands

If we return to the triangle example, it can be seen that if we start €
lower apex (call it XI, YI), then the coordinates of the upper left a
(X2,Y2) are related to the distance between the two apexes (DIST) by

X2 = X1 - DIST*SIN(RAD(30))
Y2 = Y1 + DIST*COS(RAD(30))

If there is no need to remember where are X1 and Y1 then there is nc

to distinguish between, say, XI and X2 in the equations; and if inste:
30 degrees we insert any angle, then we arrive at

X = X - DIST ANCE*SIN(RAD(ANGLE))
Y =Y + DIST ANCE*COS(RAD(ANGLE))
(see PROC_MOVE).

42



CHAPTER 2 Turtle Geometry

Though this is, at least on the face of it, perfectly acceptable, we d
know that it will work for angles outside the range of 0 degrees tc
degrees. To prove that it works, we need to find the sign of
trigonometrical ratios for various angles: try it for yourself, and prove
yourself that the equations always work. If the equations do not wort
me know.

To move to a certain position at first appears to be a simple exel
merely a use of the commands DRAW or MOVE from BB. This is tr
but we need to know at what angle the turtle is pointing after the move
need to know the angle — this is the key. We know the coordinates
distances, we do not know the angle.

If we know the sides of a triangle, and we want to know angles, we
the inverse trigonometrical functions: in this case we know the opp:
and the adjacent sides, so we use the arctangent. In PROC_MOVET
local variables XDIF and YDIF correspond to distances along the side
right angled triangle, in the X and Y directions respectively. The angl¢
radians) corresponding to these distances is the arctangent of (®
YDIF), with certain adjustments.

The first adjustment is to try to account for angles outside the ran
degrees to 90 degrees. If

PRINT DEG(ATN(1)); DEG(ATN(-1))

is tried, the results are 45 and -45 (ie degrees). Relating this to the va
the ratio (XDIF /YDIF) indicates that, when the angle is 45 degrees,
XDIF (equivalent to X2 - XI) and YDIF (ie Yl - Y2) are negative, so tf
the ratio is positive. This is correct so far. When both XDIF and YDIF
positive (bottom left corner) the angle is 225 degrees.

For -45 degrees, XDIF is positive and YDIF is negative, so the rat
negative: again correct. When XDIF is negative and YDIF is positive,
ratio is also negative, but the angle corresponds to 135 degrees.

If YDIF is negative, the angle lies between -90 (270) degrees an
degrees (ie is upwards) — the range of values given by ATN. When \
is positive (ie Y1 is greater than Y2) then 180 degrees has to be adc
the angle between -90 degrees and 90 degrees — the adjustment
accomplished by +180*(YN<y) in PROC_MOVE. (On the use of logi
comparisons see UG pages 99 to 101, and 369).

The second adjustment is of a different nature: it stops the com
having to divide by zero. In the division XDIF/YDIF, if YDIF is zero |
horizontal fine) then the result is indeterminate, and the computer proc
an error. The check in the IF statement is to stop such an error, anc
the ELSE the turn is either 90 degrees (if XDIF is negative) or -90 de¢
(if XDIF is positive), that is, SGN(-XDIF)*90. FN_ANGLE turns th
negative values into the correct positive angle.

43



Graphic Art for the BBC Computer

Circular motion

A knowledge of trigonometry is not necessary to use TG commands, |
advance in graphics a knowledge of trigonometry is valuable if not to
necessary . In this section we will investigate the drawing of a circle,
an adjustable centre and variable radius.

Start simple. What is a circle? A circle is no more than a polygon
30 sides — at least the way we will draw it. 30 sides is too many to e
examine: why not start with a square (a polygon of four sides)? Two
to PROC_PERIFIXED :

PROC_PERIFIXED(1600,4) : PROC_PERIFIXED(-1600,4)

to produce the arrangementlobn 2.2 If instead of four sides we reque
30 sides, then we also get two slightly skewed circles (only the skew
of the squares amplified).

ICOH_2.2

To draw circles, we need to ‘de-skew’ them, only we do not de-s
the 30 sided polygons at first: we start simple, and de-skew the squar:
de-skew the squares all we need to do is tilt the squares throuc
degrees:

PROC_TURN(45) : PROC_PERIFIXED(1600,4) :
PROC_PERIFIXED(-1600,4)

This arrangement is shown loon 2.3 with the addition of a few extre
fines and labels. The dotted line from a to d (ie ad), is at an inclination
degrees; the line ab is at 270 degrees; the fine be is at 45 degrees;
line anis at 315 degrees.

44



CHAPTER 2 Turtle Geometry

These angles are only true for a square, but certain intrinsic prop:
are true for all polygons:

ac = ab*sine(abc)
angle(cad) = angle(abc)

so that if ab is the radius, then the distance through which the turtle n
at each side is twice the length of ac. The distance is thus 2*ac = 2*ra
sine(abc) — the angle a be for a 30-sided polygon is 360/30*2 = 6 de
(why?). The distance moved along each side is thus 2*radius*sine(6)
also have to start by turning through six degrees.

It makes sense to work through the preceding argument, if it is no
clear, because this is the justification of PROC_C30 (showhuitie
Routines 1.2. The routine is called C30 as it draws a circle by actu
drawing a 30-sided polygon.

The local variable J refers to the size of each side of the poly
where R is the radius, and the local variable | is a loop counter. The rc
assumes that the turtle is at the centre of the circle to be drawn, but tr
angle at which the turtle is facing is unknown. The turtle moves forwa
distance R without drawing, and is turned through 96 degrees (ie to th
90 degrees and down six degrees from this).

The circle is drawn in a conventional manner as a 30-sided poly
where the move is J forward and the turn is through 12 degrees. Final
turtle turns to point back, returns to the centre of the circle, and is the
pointing in the original directlon.

45



Graphic Art for the BBC Computer
Changing plotting styles

| suggested that when investigating the random walk that different vi
of the PLOT parameter be tried, to see their differing effects. The M(
and MOVETO routines in Version 1.1 only offer two styles — draw a li
or do not draw a fine — so why not expand the scope to use more ¢
BB plotting variants?

In Turtle Graphics Version 1.2 most of the routines are the same, t
only differences come in the two moving commands. If the UG (page
9, 320) is consulted, it can be seen that plotting commands come in g
of eight: within each group of eight we want the sixth command — wi
always draws a fine absolute in the current graphics foreground coloul

Wanting to keep the commands MOVE and MOVETO compati
with those of Version I. |, | decided that O should remain as move, dc
draw, and kept | as draw a fine. In terms of the plotting commands,
MOVE corresponds to 0 in PLOT, and | in MOVE corresponds to ¢
PLOT. This explains how the plotting mode is calculated in the 1|
moving commands — the style parameter of the moving commands
their action, are shown in Figure 2. I.

Figure 2.1 Drawing Styles
MOVE PLOT ACTION

0 0 Just move
1 5 Draw line
2 13 Draw line without last point
3 21 Dotted fine
4 29 Dotted fine without last point
9 69 Plot point

11 85 Fill triangle

It is also possible to use the PLOT parameters directly as a parame
MOVE and MOVETO, but using my method is fairly simple, a
comprehensive: if you want to do more, then do so.

These different styles are illustrated lmons 2.4to 2.8. All these
examples are obtained by use of the same routine PROC_SINFN,
different parameters. PROC_SINFN is an example of the use of T
provide ‘polar’ plots: a polar coordinate of a point is the distance of
point from the origin, together with the angle at which the point i<
relation to the origin (sounds very TG?).

PROC_SINFN relates the angle of inclination to the distance a
from the origin by some function of the sine of the angle, with the fa
being variable. The first examplécdn 2.4 shows a ‘cardoid’, with a
factor of 1/2 and a plotting style of 11 (ie PLOT with 85, filling
triangles, effectively filling the shapdion 2.5also fills triangles, and the
factor is 8.

46



CHAPTER 2 Turtle Geometry

Icon 2.6 uses a style of 9 (ie PLOT with 69), that is, plot a point:
factor is less than 1/2, | will let you discover which value it is. A dot
line (style 3, PLOT with 21) is shown foon 2.7, the factor is greater thal
[, but work it out (note the differences between even and odd fai
greater than 1). The use of the dotted fine produces some intere
interference patterns.

Last of all, we have another circle teon 2.8 In this case the style is
(PLOT with 5) — draw a fine. It reinforces the relationship betwe
trigonometrical ratios, and shapes in general. The interference patter
again quite intriguing, and also known as Moire Effects.

47



Graphic Art for the BBC Computer

m—_—————

!

I

[

h

“\

\h‘_ /
e -
ICOH 2.7

-ullll"' ra——— ;T ||||||||||||

.,..l. '|"——" b Y

'l'II'I:."_'...T R TR THE

48



CHAPTER 2 Turtle Geometry

The time has now come to move up a gear, to a mode of many coli

1000REM---mmmmmmmm e
1010

1020

1030REM G RAPHIC ART

1040

1050REM (c) Boris Allen, 1983

1060

1070

1080REM---mmmmmmmm e
1090

1100REM Turtle Graphics : 1.2
1110

1120REM--mmmmmmmm e
1130

1140 DEF PROC_CLRSCR

1150 PROC_CLS : PROC_CLG

1160 ENDPROC : REM CLRSCR

1170

1180 DEF PROC_CLG

1190 GCOL 0,PEN : GCOL 0,129-PEN
1200 VDU 24,0;128;1279;1023; : CLG
1210 REM Clears an upper graphics windo
w

1220 VDU 29,640;566;

1230 REM Sets the origin to centre of g
raphics window

49



Graphic Art for the BBC Computer

1240 ENDPROC : REM CLG

1250

1260 DEF PROC_CLS

1270 COLOUR 1-PEN : COLOUR 128+PEN
1280 vDU 28,0,31,39,28 : CLS

1290 REM Clears lower text window

1300 ENDPROC : REM CLS

1310

1320 DEF PROC_COL(PE)

1330 PEN=PE

1340 ENDPROC : REM COL

1350

1360 DEF PROC_CENTRE

1370 MOVE 0,0 : ANGLE=0: X=0:Y=0
1380 ENDPROC : REM CENTRE

1390

1400 DEF PROC_RESTART

1410 PROC_CLG : PROC_CENTRE

1420 ENDPROC : REM RESTART

1430

1440 DEF PROC_START

1450 PROC_COL(0) : PROC_CLRSCR : PROC_C
ENTRE

1460 ENDPROC : REM START

1470

1480 DEF PROC_INVERT

1490 PEN=1-PEN : GCOL 0,PEN

1500 ENDPROC : REM INVERT

1510

1520 DEF PROC_TURNTO(A)

1530 ANGLE=FN_ANGLE(A)

1540 ENDPROC : REM TURNTO

1550

1560 DEF PROC_TURN(A)

1570 ANGLE = FN_ANGLE(ANGLE+A)
1580 ENDPROC : REM TURN

1590

1600 DEF PROC_LOC

1610 PRINT "COORDINATES ARE ";X,Y'""ANGL
E IS "ANGLE

1620 ENDPROC : REM LOC

1630

1640 DEF PROC_MOVE(DISTANCE,STYLE)
1650 X=X - DISTANCE*SIN(RAD(ANGLE))
1660 Y=Y + DISTANCE*COS(RAD(ANGLE))
1670 IF STYLE<>0 THEN PLOT (STYLE-1)*8+
5X,Y ELSE MOVE X,Y

1680 ENDPROC : REM MOVE

1690

50



CHAPTER 2 Turtle Geometry

1700 DEF PROC_MOVETO(XN,YN,STYLE)

1710 LOCAL XDIF,YDIF : XDIF=XN-X : YDIF

=Y-YN

1720 IF YDIF<>0 THEN PROC_TURNTO(DEG(AT

N(XDIF/YDIF))+180*(YN<Y)) ELSE PROC_TURN

TO(SGN(-XDIF)*90)

1730 X=XN : Y=YN

1740 IF STYLE<>0 THEN PLOT (STYLE-1)*8+

5,X,Y ELSE MOVE X,Y

1750 ENDPROC : REM MOVETO

1760

1770 DEF FN_ANGLE(A)

1780 IF A MOD 360 <0 THEN =A MOD 360 +

360 ELSE =A MOD 360

1790 REM ANGLE

1800

1810 DEF PROC_NEW

1820 VDU 26 : CLS

1830 ENDPROC : REM NEW

3000REM-=----mmmmm e

3010

3020

3030REM G RAPHIC ART

3040

3050REM (c) Boris Allen, 1983

3060

3070

3080REM----mmmmm e

3090

3100REM Turtle Routines : 1.2

3110

3120REM-=----mmmimm e

3130

3140 DEF PROC_C30(R)

3150 LOCAL 1,J

3160 J = 2*R*SIN(RAD(6)) : PROC_TURNTO(

0) : PROC_MOVE(R,0) : PROC_TURN(90+86)

3170 FOR I =1 TO 30 : PROC_MOVE(J,1) :

PROC_TURN(12) : NEXT I

3180 PROC_TURN(90-6) : PROC_MOVE(R,0) :

PROC_TURN(180)

3190 ENDPROC : REM C30

3200

3210 DEF PROC_SINFN(SIZE,FACTOR,STYLE)

3220 LOCAL I,MAX

3230 IF FACTOR <=1 THEN MAX=180/FACTOR

ELSE MAX=180-(INT(FACTOR/2)*2=FACTOR)*1

80

3240 FOR I=1 TO MAX : PROC_CENTRE : PRO
51



Graphic Art for the BBC Computer

C_TURNTO(I) : PROC_MOVE(SIZE*SIN(RAD(I*F
ACTOR)),STYLE) : NEXT |
3250 ENDPROC : REM SINFN

52



CHAPTER 3
Turtle Graphics Il

Whatever colors you have in your mind
I'll show them to you and you'll see them
shine

Bob Dylan, "Lay, Lady, Lay"

The next obvious extension to TG is to have more than one turtle,
each turtle drawing lines of a specific colour — a colour which might
different from the other turtles. We need a four colour mode: one cc
for the background, and three colours for the turtles.

Mode 1 takes up more memory, though with an increase in resolt
so we will normally use mode 5 to allow more space for comg
applications. The question is then which four colours? (and then ha
control three different turtles at once). The choice of colours, and the
turtles, incorporates the distinction between ‘actual’ and ‘logical’ coloul

Choosing colours

There are four colours available in modes 1 or 5 at any one time. The:
the four ‘logical’ colours labelled 0, 1, 2, and 3: normally these colours
black, red, yellow, and white. Black has an ‘actual’ colour number 0, re
1, yellow is 3 and white is 7 (see UG pages 162-168, 222-224, and 26

It is possible, therefore, to change the logical colour 0 from bl
(actual colour 0) to flashing cyan-red (actual colour 14), by assigning
logical colour to a new actual colour number. The logical number is
the address of a house, which never varies, but whose occupant (the
colour) may vary, without the house number altering.

The logical numbers 0 to 3 are ‘foreground’ colours, they define
colours of the text, or fines in graphics: corresponding to log
foreground colour 0 is background colour 128, and for 3 there is 131. |
printed in logical 2 on a logical 130, we would not be able to see wha
been printed (text and background would be the same actual colour).

The normal association of logical and actual colours for mode &
well as mode 1) is shown in Figure 3.1.

Figure 3.1 Colours in Modes 1 and 5



Graphic Art for the BBC Computer

LOGICAL ACTUAL COLOUR
NUMBER NUMBER

0 128 0 Black

1 129 1 Red

2 130 3 Yellow

3 131 7 White

To change the association we use another VDU command (UG page:
382)

VDU 19, logicalnumber, actualnumber, 0, 0, 0
that is:
VDU 19, logicalnumber, actualnumber; 0;

where the second sends two bytes at a time by use of ";". To understa
example might help — Mode 5

1000 COLOUR 131 : CLS : REM SET THE BACKGROUND TO
WHITE (LOGICAL 3)

1010 REPEAT COLOUR 0 ; PRINT "tk
REM PRINT IN FIRST LOGICAL COLOUR

1020 COLOUR | ; PRINT "kktikrssrrssirrrs - REM AND
SECOND

1030 COLOUR 2 :PRINT "ssrrsirrrsiners - REM AND
THIRD

1040 INPUT LGICAL, ACTUAL : REM COLOUR NUMBERS
1050 VDU 19,LGICAL,ACTUAL;0; : REM WATCH THE
OUTPUT CHANGE COLOUR

1060 UNTIL FALSE : REM AND AGAIN

This little program helps you to investigate the effects of various ac
colours, in differing combinations. An important consideration with col
graphics is how well the different colours can be distinguished c
monochrome television. (My colour TV is used for watching TV, mos
the time).

By dint of much playing around with the above program, | came to
conclusion that | would use the following logical and actual associatior

VDU 19, 0, 7; 0;
VDU 19,

VDU 19,
VDU 19,

that is:

1,1;0;
2,6;0;
3,3;0;

Figure 3.2 New colour associations
54



CHAPTER 3 Turtle Graphics IlI

LOGICAL ACTUAL COLOUR
NUMBERS NUMBER

0 128 7 White

1 129 1 Red

2 130 6 Cyan

3 131 3 Yellow

| propose to use 131 for the graphics background (ie yellow), and £2
the text background (ie red); 0, 1, and 3, for graphics foreground (the
turtles), and 0 (ie white) for the text. The means to change t
assignments are provided — for graphics — within the program.

The three turtles

Within the programs for the first version of turtle graphics, there were
global variables: X, Y, ANGLE and PEN. Though some of the ot
routines have to be slightly altered to cope with mode 5 rather than mi
(eg PROC_CLS) not much else needs great alteration — as long a
remembered which turtle is which.

The way | propose to code the routines is to have only one s
routines, without any extra parameters for whichever turtle is to be
The reason | intend to implement the graphics in this way is univers:
all I want to say is PROC_CIRCLE(SIZE) for the routine to work w
whichever turtle is being used at that time.

To have routines such as PROC_CIRCLE(SIZE, T_NUMBER) me
the whole programming process far more tedious than needs be. Thel
be special procedures to define the turtle to be used; and once so dt
the definition will stay until another turtle is defined. We will, howev
within the basic TG routines have to keep track of where each turt
located, and in which direction it faces.

We need at least one extra global variable: TURTLE, which holds
number of the turtle being used at that time (0, I, or 2). Instead of PEI
need three PENSs, one for each turtle, just as we need three Xs, thr
and three ANGLEs. This all sounds like the place to use arrays, anc
for X, Y , and ANGLE — but not for PEN. The difference comes from
fact that PEN is a small integer less than 255 (it can fit in a byte), wh¢
X, Y , and ANGLE can be fractional numbers.

We need to have three examples of each of the above, where PE
set of three small integers, and the others are sets of three frac
numbers. We set aside space for these sets of three by a BB stateme
as

1000 DIM PEN 2, X(2), Y(2), ANGLE(2)
and we refer to each element in this manner:
Figure 3.3 TURTLE global variables

55



Graphic Art for the BBC Computer

TURTLE PEN X Y ANGLE
0 PEN?0 X(0) Y(0) ANGLE(0)
1 PEN?1 X(1) Y(1) ANGLE(1)
2 PEN?0 X(2) Y(2) ANGLE(2)

Note that PEN, which was ‘dimensioned’ differently to the others, an
different to the others in the way in which elements are named. The
element of PEN is shown by PEN? |, whereas the I'th element of AN(
is shown by ANGLE(]). PEN is a ‘byte vector’ (see UG pages 237, ¢
413), whereas ANGLE is an ‘array’ (see UG pages 120— 125, 236):
is effectively a succession of bytes, and ANGLE is a succession of
numbers.

If we are using a turtle called TURTLE, (where TURTLE is the logi
number) then to use the correct actual colour for that wee beastie w
PEN?TURTLE; the turtle is at coordinates X(TURTLE), Y (TURTLI
facing in a direction ANGLECTURTLE). TURTLE always denotes t
logical colour number, which is why 3 and 131 refer to the backgrc
logical colour (TURTLE lies between 0 and 2).

The new routines

The routines in Version 2.1 are similar but different. For a start, as a
and vectors have to be dimensioned, we start (using PROC_STAR’
running the short program part. We could have started Versions 1.
1.2 in this manner, but with arrays and vectors this is the cleanest
Here goes.

1000REM----mmmmmm e
1010

1020

1030REM G RAPHIC ART
1040

1050REM (c) Boris Allen, 1983
1060

1070

1080REM----mmmmmmrme e
1090

1100REM Turtle Graphics : 2.1
1110

1120REM----mmmmmmm e
1130

1140 REM MAIN PROGRAM

1150 DIM PEN 2, CLR 2, X(2), Y(2), ANGL

E(2)
1160 PEN?0 =7 : PEN?1 =1 : PEN?2 =6
: BACK =3

56



CHAPTER 3 Turtle Graphics IlI

1170 FOR 1 =0TO 2

1180 vDU 19, I, PEN?I; 0; : CLR?I = PEN
21

1190 X(1) = 0 : Y(1) = 0 : ANGLE(l)
1200 NEXT |

1210 vDU 19, 3, BACK; 0;
1220 PROC_TURTLE(0) : PROC_CLRSCR
1230 END : REM OF MAIN PROGRAM
1240

1250 DEF PROC_CLRSCR

1260 PROC_CLS : PROC_CLG

1270 ENDPROC : REM CLRSCR

1280

1290 DEF PROC_CLG

1300 GCOL 0, TURTLE : GCOL 0, 128+BACK
1310 VDU 24, 0; 128; 1279; 1023;

1320 VDU 29, 640; 566; : CLG

1330 MOVE 0,0

1340 ENDPROC : REM PROC_CLG

1350

1360 DEF PROC_CLS

1370 COLOUR 0 : COLOUR 129

1380 vDU 28, 0, 31, 19, 28 : CLS

1390 REM It is VDU 28, 0, 31, 39, 28 :
CLS for mode 1

1400 ENDPROC : REM PROC_CLS

1410

1420 DEF PROC_TURTLE(LGCL)

1430 TURTLE = (LGCL MOD 3 + 3) MOD 3 :
GCOL 0, TURTLE

1440 MOVE X(TURTLE),Y(TURTLE)

1450 ENDPROC : REM TURTLE

1460

1470 DEF PROC_START

1480 RUN

1490 ENDPROC : REM START

1500

1510 DEF PROC_COL(ACT)

1520 vDU 19, TURTLE, ACT; O;

1530 ENDPROC : REM COL

1540

1550 DEF PROC_CENTRE

1560 MOVE 0,0 : ANGLE(TURTLE) =0
1570 X(TURTLE) = 0 : Y(TURTLE) = 0
1580 ENDPROC : REM CENTRE

1590

1600 DEF PROC_RESTART

1610 LOCAL |

1620 FOR I=2 TO 0 STEP -1

0

57



Graphic Art for the BBC Computer

1630 PROC_TURTLE(l) : PROC_CENTRE
1640 NEXT | : PROC_CLG

1650 ENDPROC : REM RESTART

1660

1670 DEF PROC_INVERT

1680 IF PEN?TURTLE = CLR?TURTLE THEN PE
N?TURTLE=BACK ELSE PEN?TURTLE=CLR?TURTLE
1690 PROC_COL(PEN?TURTLE)

1700 ENDPROC : REM INVERT

1710

1720 DEF PROC_TURNTO(A)

1730 ANGLE(TURTLE) = FN_ANGLE(A)

1740 ENDPROC : REM TURNTO

1750

1760 DEF PROC_LOC

1770 PRINT "TURTLE "TURTLE

1780 PRINT "COORDS ";INT(X(TURTLE)+.5);

" " INT(Y(TURTLE)+.5)

1790 PRINT "ANGLE "INT(ANGLE(TURTLE)+.5
)

1800 ENDPROC : REM LOC

1810

1820 DEF PROC_TURN(A)

1830 ANGLE(TURTLE) = FN_ANGLE(ANGLE(TUR
TLE)+A)

1840 ENDPROC : REM TURN

1850

1860 DEF PROC_MOVE(DISTANCE,STYLE)
1870 X(TURTLE) = X(TURTLE) - DISTANCE*S
IN(RAD(ANGLE(TURTLE)))

1880 Y(TURTLE) = Y(TURTLE) - DISTANCE*C
OS(RAD(ANGLE(TURTLE)))

1890 IF STYLE=0 THEN MOVE (X(TURTLE),Y(
TURTLE) ELSE PLOT (STYLE-1)+5, X(TURTLE)
,Y(TURTLE)

1900 ENDPROC : REM MOVE

1910

1920 DEF PROC_MOVETO(XN,YN,STYLE)
1930 LOCAL XDIF,YDIF : XDIF = XN-X(TURT
LE) : YDIF = Y(TURTLE)-YN

1940 IF YDIF<O THEN PROC_TURNTO(DEG(ATN
(XDIF/YDIF))+180*(YN<Y(TURTLE))) ELSE PR
OC_TURNTO(SGN(-XDIF)*90)

1950 X(TURTLE) = XN : Y(TURTLE) = YN

1960 IF STYLE=0 THEN MOVE X(TURTLE),Y(T
URTLE) ELSE PLOT (STYLE-1)+5, X(TURTLE),
Y(TURTLE)

1970 ENDPROC : REM MOVETO

1980

58



CHAPTER 3 Turtle Graphics IlI

1990 DEF FN_ANGLE(A)
2000 IF A MOD 360 <0 THEN =A MOD 360 +
360 ELSE = A MOD 360 : REM ANGLE

PROC_START (ie main program) dimensions two vectors (ie PEN
CLR), and three arrays (ie X, Y, and ANGLE): all have three element
0, 1, and 2). PEN?() (corresponds to first turtle) is set to actual ct
number 7 (white); the second turtle is set to colour | (red), and the
turtle is set to colour 6 (cyan); and the BACKground colour is set !
(yellow).

The actual colours are assigned to the logical numbers by use ¢
VDU 19 command; the original CoLouR is remembered (used
PROC_INVERT); and the coordinates and angle are initialised to zer
all turtles. The background colour is set by the VDU 19, 3, BACK;
command; the initial turtle is set (by PROC_TURTLE) to be turtle 0,
the screen is set up by PROC_CLRSCR

PROC_CLRSCR merely calls the two routines PROC_CLS
PROC_CLG.

PROC_CLG first sets the current logical colour to the operative tt
number, and sets the background to the operative background nt
(altering the value of BACK can produce some interesting effects).
rest of the routine matches that of the monochrome version.

PROC_CLS sets colours for text and background (white on red)
sets up a text window for mode 5 : if the VDU 28 command is kept
same as that in the first version, it is possible to use mode 1.

Next in the (boring?) list is PROC—TURTLE, which takes
parameter the new LoGiCaL number for the graphics, and makes thi
new TURTLE number. The equation with MOD is to account for nega
values — FN_ANGLE uses a different method — in case by chance ¢
bounds numbers are given. This routine is the one used to change fro
turtle to another, and so the graphics cursor is moved to the
coordinates for that turtle (ie X(TURTLE), Y(TURTLE).

B3000REM=-mmmmm e
3010

3020

3030REM G RAPHIC ART
3040

3050REM (c) Boris Allen, 1983
3060

3070

3080REM-=-mmmmm e
3090

3100REM Turtle Routines : 2.1
3110

3120REM-mmmmm e oo
3130

59



Graphic Art for the BBC Computer

3140 DEF PROC_SQTURN(F)

3150 LOCAL I,A$

3160 FOR 1=0TO2 : PROC_TURTLE(l): PROC_
TURNTO(120*1):NEXT |

3170 REPEAT : PROC_TURTLE(I MOD 3)
3180 PROC_TURN(90) : PROC_MOVE(F*I,0)
3190 PROC_SQUARE(F*I) : | = [+1 : UNTIL
INKEY(-68)

3200 *FX15,0

3210 ENDPROC : REM SQTURN

3220

3230 DEF PROC_SQUARE(SIDE)

3240 LOCAL | : FOR1=1TO 4

3250 PROC_MOVE(SIDE,1) : PROC_TURN(90)
3260 NEXT |

3270 ENDPROC : REM SQUARE

3280

3290 DEF PROC_MOIRE

3300 LOCAL |

3310 FOR 1=0 TO 1079 : PROC_TURTLE(RND(
3)-1) : PROC_CENTRE : PROC_TURNTO(1/3)
3320 PROC_MOVE(400,1) : NEXT |

3330 ENDPROC : REM MOIRE

3340

3350 DEF PROC_INITIALIZE

3360 REMDIM D(2)

3370 PROC_TURTLE(0): PROC_MOVETO(-32,-3
68,0) : PROC_TURNTO(0)

3380 PROC_TURTLE(1): PROC_MOVETO(32,-36
8,0) : PROC_TURNTO(0)

3390 D(0) = 10 : D(1) = 10 : VDU 7

3400 ENDPROC : REM INITIALIZE

3410

3420 DEF PROC_DEVIATION

3430 PROC_TURTLE(1): PROC_TURN(90*INKEY
(-89)-(INKEY(-88)))

3440 PROC_TURTLE(0) : PROC_TURN(90*INKE
Y(-51)-(INKEY(-66)))

3450 ENDPROC : REM DEVIATION

3460

3470 DEF PROC_ACCELN

3480 D(0) = D(0) - 18*INKEY(-82) : D(1)

= D(1) - 18*INKEY(-73)

3490 ENDPROC : REM ACCELN

3500

3510 DEF PROC_TRAVEL

3520 LOCAL 1%

3530 PROC_DEVIATION : PROC_ACCELN
3540 1% = RND(1) +.5

60



CHAPTER 3 Turtle Graphics IlI

3550 PROC_GO(1%) : PROC_GO(1-1%)
3560 ENDPROC : REM TRAVEL

3570

3580 DEF PROC_GO(I)

3590 LOCALJ:FORJ=1T0 8

3600 PROC_DEVIATION

3610 PROC_TURTLE(I)

3620 PROC_MOVE(D(I),1)

3630 PROC_MOVE(4,0):IF POINT(X(TURTLE),
Y(TURTLE))<>3 THEN PROC_END

3640 PROC_MOVE(-4,0) : REM Note that it
is -4 for mode 1, -8 for mode 5

3650 PROC_TURTLE(1-1)

3660 PROC_MOVE(D(1-1),1)

3670 PROC_MOVE(4,0):IF POINT(X(TURTLE),
Y(TURTLE))<>3 THEN PROC_END

3680 PROC_MOVE(-4,0) : NEXT J : REM See
remark above

3690 ENDPROC : REM GO

3700

3710 DEF PROC_END

3720 VDU 7 : VDU 7

3730 PRINT "TURTLE ";TURTLE;" LOSES ":
VDU 7

3740 FOR 1 =1 TO 500 : NEXT I : *FX15,

0

3750 END

3760

3770 DEF PROC_NORT

3780 LOCAL A$ : A$ = GETS$

3790 PROC_INITIALIZE

3800 REPEAT PROC_TRAVEL

3810 UNTIL FALSE

3820 ENDPROC : REM NORT

Some highly interesting results can be achieved by changing the ¢
colours of the turtles, and PROC_COL is the means by which the char
made — see Figure 3.4 — on this, more later.

PROC_CENTRE centres the current turtle (it does not affect the «
two turtles).

PROC_RESTART centres all turtles and clears graphics
PROC_CLG: a routine without PROC_CLG would centre all tur
without affecting the display.

The operation of PROC_INVERT is rather different from the routine
the same name in the monochrome version. Whereas the monocl
version changes the plotting mode from foreground to background ct
(or vice versa), this routine either hides all the plotting of the turtle —-

61



Graphic Art for the BBC Computer

far — or makes it all reappear again.

If the present actual colour of the PEN is the same as the ori
colour (CLR?TURTLE) then the new actual colour becomes that of
background, or else the colour of the PEN becomes the same ¢
original colour. This is a rather useful way of hiding a piece of plotting,
the plotting to suddenly appear, as if by magic.

PROC_TURNTO is the first of the TG routines proper (the rest be
housekeeping, more or less). All it does is make the present angle fi
present turtle equal to the parameter of the procedure (within O to
PROC_TURN is as simple in operation.

PROC_LOC has had to be modified to fit on the lesser space of 1
5: the use of INT is also to reduce space. Note the addition of
information which tells which is the operative turtle.

The main difference in PROC_MOVE (apart from distinguishi
between turtles), is to do with the STYLE of plotting. If the style is O tl
a move does not plot; if 1 then plot in the normal turtle colour; and if
style is 3 then plot in the background colour (ie erase, or the old versi
PROC_INVERT). The different use of STYLE is again the only r
change to PROC_MOVETO. FN_ANGLE is unchanged.

Finally here is the list of actual colour numbers, and the colours t
with the number.

Figure 3.4 Actual Colours and Numbers

ACTUAL NUMBER COLOUR

0 Black

1 Red

2 Green

3 Yellow

4 Blue

5 Magenta

6 Cyan

7 White

8 Flashing Black/White

9 Flashing Red/Cyan
10 Flashing Green/Magenta
11 Flashing Yellow/Blue
12 Flashing Blue/Yellow
13 Flashing Magenta/Green
14 Flashing Cyan/Red
15 Flashing White/Black

62



CHAPTER 3 Turtle Graphics IlI

Example pictures

Before the game is designed, here are two different examples of col
TG.

Though the name is the same as a Version | routine, PROC_SQT
is different. For a start PROC_SQTURN in the coloured version h;
parameter (F), but first examine the routine. Each turtle is turned
different angle, turtleO to 0 degrees, 1 to 120 degrees, and 2 to 240 d
(the first loop).

For a large number of times (1800) a turtle is chosen (the loop il
MOD 3), this turtle is turned through 90 degrees from where it '
previously, it is moved through a distance F*I (without plotting), and t
a square of side F*l is drawn — by use of PROC_SQUAI
PROC_SQUARE is a simple routine to draw a square. An examp
shown inlcon 3.1, but it does not do justice to the multi-coloured effects

63



Graphic Art for the BBC Computer

This routine produced multi-coloured effects, of a varying nati
depending upon the value of F . Further effects can be investigate
using the combination

PROC_TURTLE(A_VALUE) :
PROC_COL(ANOTHER_VALUE)

The various values of ANOTHER_VALUE can be chosen with
assistance dfigure 3.4.

The other example is a circular Moire demonstration: PROC_MOI
In the loop (which is activated 3*360 times), a TURTLE is choser
random; the turtle is centred; it turns to 1/3 degrees (I is the loop coul
and the turtle moves 400 units forward. A multi-coloured circle is dra
Modifying the PROC-JFURTLE parameter, eg

PROC_TURTLE((I DIV 3) MOD 3)

(though the MOD 3 is not necessary), produces various intriguing eff
As with the PROC_SQTURN, using PROC_COL can produce star
effects. The effects, as shownlaon 3.2, are far better in colour than ii
monochrome — my screen dump routine only works in black and whit

Both routines show how easy it is to program with three coloured turtle

64



CHAPTER 3 Turtle Graphics IlI
The game

One of the less important reasons for producing multi-coloured graphi
the design of video games — the most important reason is the pure d
of experimenting with artistic effects. So here is a game.

The game is called NORT, and involves only two of the three turtle
is a turtle race, but remember these turtles are cybernetic beasties i
can move pretty speedily. The trail that each turtle leaves is noxious
so to travel over your own or your opponent’s trail is calamitous. You li

The two turtles start out side by side, at the same speed: the left tu
controlled by the ‘A’ , ‘'S’ , ‘D’ ,keys; and the right turtle is controlled t
the 7', ', 7", keys. In each case the left key turns the turtle through
degrees to the left, the fight key turns the turtle through 90 degrees 1
fight, and the middle key speeds up the turtle. Once a turtle has speec
then it stays at that speed (it does not slow down), though it is ah
possible to increase the speed further.

The faster the turtle goes, the easier it is to cut across the other -
but the easier it is to get out of control. As you will realise, this gam
extremely simple to implement using coloured TG.

| do not claim that this is a definitive game, and it can stand i
improvement, but it indicates what can be done. An improved methc
reading the keyboard, and controlling the turtle racers would greatly |
To the routines.

The first routine, in order, is PROC_INITIALIZE: the distances t
turtles have to move are stored in the array D which has two elenr
D(0) and D(1). The first turtle (ie 0) is moved to its starting point at -
368, and turned to face upwards. The second turtle (ie 1) is moved to
368, facing upwards, and the initial speeds are set at 12 (ie D(0) and |
There is a starting beep (VDU 7).

PROC_DEVIATION senses the keyboard for both turtles, and tt
accordingly (uses PROC_TURN and INKEY()).

Another short routine is PROC_ACCELN, which modifies the t
speeds (only upwards) by sensing the keyboard via INKEY().

PROC_TRAVEL has a local variable 1%, and establishes the devit
and speed before setting 1% randomly to 0 or 1. The routine PROC _(
called with 1% as parameter, and this establishes the order in which th
turtles are moved.

The turtles move in eight segments — so sometimes it is possit
‘jump’ over a trail. These eightjumps are produced by the loopJ=1T
and at each jump the keyboard is sensed, and then the turtles jum,
order — given by the parameter to the routine. After each jump, there
move forward of four units (without plotting), and that location is chec
to see if the colour there is not logical 3 (the background). If that sque
the wrong colour, then the game ends. If the colour is that of
background, then there is a move (back) of -4 units.

PROC_END double beeps (VDU 7), tells you who has lost, waits
then flushes the buffers (*FX15,0).

65



Graphic Art for the BBC Computer

To start the game you have to enter RUN and then PROC_NORT
game commences with the press of a key (GET$), when
PROC_INITIALIZE and then REPEAT PROC_TRAVEL forever — or
least until we hit PROC_END.

The two trails shown idcon 3.3 give some idea of the courses of
typical game. The game is more effective in colour than in black
white, though quite possible to follow because of the colours chosen.

66



CHAPTER 4
Driving Graphics

Nil posse creari de nilo
[Nothing can be created from nothing]

Lucrecius Be rerun Natura

We have already encountered the control of graphics by use of '
commands (the VDU ‘drivers’) — it is impossible to ignore them. Wha
the function of a VDU command? Hold down the CTRL key and press
G key: you beep. Enter

PRINT CHR$(7);
and you beep, appearing on the next line. When you enter
PRINT CHR$(7)

(ie without the semicolon) you beep and appear on the next line but
To enter

VDU 7

again produces a beep, this time you are on the next fine. Entering
VDU 7:vDU 7

produces two beeps, as does
VDU 7,7

This simple example shows that the VDU command is a special kir
PRINT command — it is a PRINT CHR$ command, where the commr
is terminated by a semicolon.

Asking about ASCII

The inquiring mind might then ask: ‘Why is the PRINT CHF
combination worth all this trouble?’. As you ask, it's ASCII, the Americ
Standard Code for Information Interchange. Go into any mode other
7, turn to the UG page 490, and then

VDU 66,111,114,105,115
to which the response is, how | love it,
Boris
and to reajly get it correct
vDU 66,1 11,1 14,105,105,1 15,32,65,108,108,97,110



Graphic Art for the BBC Computer

- try it out to see what is produced, gorgeous really.

The numbers which follow a VDU command are the numbers wl
correspond to the characters in the ASCII. The command to produce
could be written

VDU 66 : VDU 111 : VDU 114 : VDU 105 : VDU 115

that is, as a series of commands — each with one number following -
it is simpler to run the numbers together if at all possible. If you look a
codes on page 490 of the UG, you will see that from ASCII 0 to ASCI
there are no characters. These are the control characters, which inclu
beep at 7 (the diagram says "beep").

Now turn to page 378 of the UG, where there is a summary of
meaning of the VDU codes from 0 to 31, plus code 127, There is an .
correspondence between the two summaries (ie the VDU on page 37
the ASCII on page 490).

The original ASCII codes only extended from 0 to 127, as there \
only seven holes on paper tapes plus one hole as a ‘parity’ check (ie
up the holes and punch an extra hole depending on whether the rest
odd or even). This is why the meaning of codes 128 to 255 is "unders
initially" as the UG says. Codes 0 to 31 were given names, and sugge
for standard meanings, but these codes were ‘control’ codes and
depended on the system.

If you refer to the VDU code summary on page 378 of the U G,
will see a third column which is labelled CTRL: the keys in this columr
when pressed at the same time as the CTRL — produce the ASCII ci
code given as the ASCII abbreviation (column four). The ASCII coc
(for example) is abbreviated to NUL, and means ‘null’ do nothi
according to the last column of the figure on page 490, for the [
computer it means ‘does nothing’.

Looking at the ASCII abbreviations can explain some strange pairi
To disable the VDU is code 21 (CTRL U) which is abbreviated to N
(Negative Acknowledge); whereas to activate the VDU one uses cc
(CTRL F), or ACK (Acknowledge). Each computer has its o
conventions for some codes but usually code 13 (&0D) is return and
10 (&0A) is line feed, and so on. Otherwise the computer would
trouble talking to devices in languages they could understand.

Character generation

We have been talking about characters, and the characters from 128
are undefined in the figure on page 491 of the UG. However, unle
special operating system (OS) command is given — of which more
— only characters with codes 224 and 255 can be redesigned. To
each user-designed shape takes up 8 bytes, and so to store 128 shag
128 bytes or 1K — to redesign the 32 shapes from 224 to 255 takes
256 bytes.

68



CHAPTER 4 Driving Graphics

Memory is again a problem.

The first thing we now have to find out is how to define a charac
and details are given in the UG on pages 170-171, 384-385, and 38¢
VDU command to design a character is 23 (&17), which is CTRL W (E
— End transmission block). On page 378 of the UG we discover that,
the system has been alerted by VDU 23, it expects 9 bytes to follow
first byte gives the number of the character to be redesigned;
tht$remaining 8 bytes described what is the shape of the new characte

The work comes in working out the description of the shape
Lucrecius said ‘Yer can't get owt from nowt. The routines | he
developed are designed to make the design the important element, w
description of the design being made as simple as possible. These ¢
Character Routines 1.

First: how to design a character. Figure 4.1, | show the ubiquitous
man from the UG (page 170)

Figure 4.1 The Little Man

THE SHAPE THE BINARY THE DECIMAL
SO 00011100 28
SR 00011100 28
T 00001000 8
R 01111111 127
R 00001000 8
S ELEL 00010100 20
LR 00100010 34
oo * 01000001 65

The numbers in the decimal column are the equivalents of
corresponding binary numbers, with the binary numbers being ex
related to the filled and empty squares in the character design.

The character number 224 is designed to be a ‘man’ shaped b
VDU command

VDU 23,240,28,28,8,127 ,8,20,34,65
which can be re-written in a more transparent form as

VDU 23 : REM Prepare to send a character definition
VDU 240 : REM and the character number is ASCII 240
VDU 28 : REM This is the top line defined

VDU 28,8,127 ,8,20,34 : REM the middle six

VDU 65 : REM and the last line

If you think back to the discussion of screen resolution, the 8*8 chari

69



Graphic Art for the BBC Computer

frame is no newcomemMote as long as the VDU numbers are in t
correct order, then the bytes can be split over more than one '
statement. The most tedious part (and least artistic) is the conversion
binary numbers to decimal equivalents.

Character designer

The first of the Character Routines is PROC.—INB YTES, and this rot
allows the user speedy and easy input of binary numbers to be con
into decimal equivalents. These converted numbers are then
available for other routines, to be assigned to character numbers, anc
manipulated.

The PROC_INBYTES routine uses two highly useful BB faciliti
(both related): byte vectors, and string indirection (UG pages 409-:
The local variable BYTES is set equal to &DO0O0 (the start of a patc
memory available for user supplied resident routines, UG page 501)
the local variable STORE is set equal to 8 more than BYTES. BYTES
be used to hold the values of 8 bytes, and STORE will be used to st
characters which will be then converted into byte values.

There are two loops: one — with index | — corresponds to the fine
the character design; and the other — with index J — builds up
BYTES value for line I. Consider (Figure 4.2) what happens for line
once we have input the binary number 00001000 into the string $ST
which starts eight bytes on from the start of BYTES.

We now have to relate this arrangement to the routine PRC
INBYTES. When the user types in 00001000, after the request LINE
the eight characters are stored in the string starting at &0DO08 (i
$STORE). $STORE is not the same as STORES.

STORE$ is a string variable, and $STORE points to a se¢
oflocations starting at STORE, where the locations are filled with
ASCIl codes of the characters. We know where $STORE ends be!
that location contains 13 (&0D). The ASCII code for O is 48, and
ASCII code for 1 is 49 (see page 490 of the UG), and so if the valu
the locations from &0OD08 to &ODOF are examine
(48,48,48,48,49,48,48,48) then the correspondence with the input
00001000 is clear to see. Note that location &0D10 contains 13, to ind
the end of the string.

Thus far we will presume that the correct values have been input t
first four locations of BYTES, and now the next problem is to input
correct value into the fifth location (BYTES?4). BYTES?I is first set
zero (note that | = 4), and in the J loop the value of BYTES?I is doul
As the loop counter J is increased from 0 to 7 a check is made to see
element of STORE (ie STOREAJ) is equal to the ASCII value of |
STORE?J = 49). If there is a | in the input number at this place in
order, 1 is added to BYTES?I.

70



CHAPTER 4 Driving Graphics
Figure 4.2 Indirection Example

LOCATION NAME VALUE
&0DO00 3584 BYTES?0 28

&0D01 3585 BYTES?1 28

&0D02 3586 BYTES?2 8

&0D03 3587 BYTES?3 127

&0D04 3588 BYTES?4 UNDEFINED
&0D05 3589 BYTES?5 UNDEFINED
&0D06 3590 BYTES?6 UNDEFINED
&0DO07 3591 BYTES?7 UNDEFINED
&0D08 3592 STORE?0 48

&0D09 3593 STORE?1 48

&0DOA 3594 STORE?2 48

&0D0B 3595 STORE?3 48

&0DO0C 3596 STORE?4 49

&0D0OD 3597 STORE?5 48

&0DOE 3598 STORE?6 48

&O0DOF 3599 STORE?7 48

&0D10 3600 STORE?8 13 (String end)

A binary number is formed in BYTES? |, and at the end of the rou
the numbers needed to send the shape to a character code are in tr
bytes from &0DO0O0.

Numbers to characters

To set up a byte vector of eight elements all that is needed is a
DIM VWV 7

statement in direct/immediate mode. This declaration will remain oper:
until the computer resets the BASIC variables (eg some errors, or a8
fine is entered into a program).

If we want to assign the character definition stored away at &0L
then PROC_CHRASN is used. The parameters of the routine are
character number (I) and an eight element byte vector (NEWB) —
byte vector is used as a temporary storage medium for the design nu
(used in some later routines.) All the routine does is simply send
numbers stored from &0DO0O0 to the character I, by

VDU 23,1
and then eight
VDU BYTES?I
statements (storing in NEWB?I at the same time).
71



Graphic Art for the BBC Computer

So we design the shape, and then input the binary numbers (by t
PROC_INBYTES): next we decide where to send the design, ie to w
character, by use of PROC_CHRASN. Suppose we turn the design
down, making line O into line 7? (but still keeping the left column on
left). We use PROC_CHREV.

PROC_REV is essentially PROC_ASN, but backwards. It starts
BYTES?7 and goes to BYTES?0, instead of vice versa. The new rev
design is stored in the byte vector NEWB.

Next there is a routine to flip from left to right (and right to lef
PROC_CHRFLIP. This routine follows the standard pattern, but s
points are of special interest. J and L% are loop counters, J for the line
L% for the column within the line (and bit within the binary number). L
is an integer variable because FL% then gives an exact result. The
number for the line is compiled in K, in the same manner as the nu
was compiled from STORE in PROC_INBYTES. The IF statemen
replaced by a logical assignment in PROC_CHRFLIP.

The logical assignment

K =K - (2"L% AND BYTES?J) = 2"L%)

works to see if there is a | in the binary number BYTES? J in L'
position from the right, taking into account the binary number 2”L% !
have a 1 in the L%th bit from the right.

If the number in BYTES?J has a 1 in L%th position, then (2"F
AND BYTES?J) — the logical AND, UG pages 205-206 — will be
binary number with a bit equal to 1 in L%th position (with zel
elsewhere). A number with a 1 in L%th position and zeros elsewhe
equal to 2"L%. jfhe numerical value which results when the log
comparisons are TRUE is -1, and it is 0 when FALSE (UG 257-258, :
So the value is subtracted to make -1 into +1.

Two examples using the number 28 (ie BYTES?J) and the positi
and 3 (ie L%=0 and L%=3). First example: L% = 0 so that 2"L% is 1
00000001 in binary), BYTES?J = 28 (ie 00011100 in binary); 2"L% A
BYTES?J is 00000000, which does not equal 2"L%. Second exar
when L% = 3 then 2"% = 8 which is 00001000 in binary; 2"L% Al
BYTES%} is 00001000 which is equal to 2*L%.

PROC_CHROT takes it all that bit further, it turns upside down
flips, that is, it rotates. The routine is like PROC_CHREV w
PROC_CHRFLIP inside.

We have with all these routines the spare byte vector (usually ¢
parameter NEWB). PROC_CHRSEND sends the content of a byte v
to the eight locations from &0DO00. This allows more than one design t
examined and manipulated at any one time. The bytes from &0DO(
almost the equivalent of the accumulator in a microprocessor.
accumulator is where most of the actual computations are performe
especially with the BBC computer’'s 6502 microprocessor.

The routine PROC_CHRINV inverts the design, ie all zeros bec
ones while all ones become zeros. If the result of the inversion is ther

72



CHAPTER 4 Driving Graphics

back to &0D00, all the manipulation of the design is then available for
inverse design. Finally, PROC—INDEC is just like PROC_INBYTE
only you can enter decimal numbers.

Saving the routines

These routines are quite useful, and so it is sensible to try to incorp
them in any program which uses user-designed shapes. You may
noticed that the line numbers for the routines are very high, higher
any program will ever need: this is so that they can be loaded quite ¢
with any normal program.

If, however, the routines are saved as a BB program, then to load
by, say,

LOAD "SHAPES"

will erase the program already in the memory. We need to load
program fines in some different way. As we could enter the lines by ty
them in, why do we not get the computer to type them in?

Type NEW and then enter the routines, checking to see they wol
and how do you check to see they work? You use a VDU commant
see if the design for character 224 is what you want, you enter

VDU 224

which prints out the character corresponding to the ASCII value 224. |
to check that all is well.

The next stage is to send the contents of the program to a file: bt
as a program file. When we type in at the keyboard we enter a charac
a time, or do we? We actually send a value when the key is depresse
value is then interpreted to appear as a character on the scret
elsewhere. The value sent by the key depression is an ASCII value
read in ASCII values, therefore, does not clear out the BASIC prog
We seem to require a file which has the program stored as ASCII valu
sometimes called an ASCII file.

To send the program to an ASCII file we use *SPOOL (U G page -
403). To save the ASCII version of the routines we enter

*SPOOL "SHAPES"

and switch on the tape recorder to record, though with disks we dc
have to bother.

LIST

which lists out the program, and sends it in ASCIlI form to the
SHAPES. To terminate we enter

*SPOOL

73



Graphic Art for the BBC Computer

and the file closes.
To load the routines on top of a program we use

*EXEC "SHAPES"

and the *EXEC command acts as if the information coming from the
(in ASCII form) were being typed in at the keyboard. This means that
possible to use these routines in any program. It would be even sit
still to have one or more sets of designed characters which one coulc
and choose, depending on the program.

Saving the designs

The user designed shapes are located between &0D00 and &()DFF 1
the characters are ‘exploded’, (U G page 427). Exploding means that
than the 32 characters (ASCIl codes 224 to 255) are available t
redesigned: the ASCII codes from 32 to 255 (ie &20 to &FF) can
redesigned. The exploding of the memory allocation uses the commi
FX 20,1, but the allocation of memory over-runs the beginning of BA
(usually at &0EQO, ie PAGE — UG page 414).

The sequence to explode the memory for a full set of user desi
characters is (all in immediate mode)

PRINT PAGE : PAGE = PAGE + &600 : *FX 20,1

This explosion must occur before the BASIC program is entered.
designs occupy memory from locations &()C00 to &CFF, and &()EO(
&0AO0O if all characters are to be redesigned. The gap at &0D00 to &0
(which | used for temporary storage) is left for user-defined routines
UG page 501 — though this conflicts with page 502). Personally | tl
that 32 characters are sufficient for most purposes, so | will only con:
the default ‘imploded’ 32 characters.
To save the user-designed characters, therefore, enter

*SAVE "CHARS" 0C00 OCFF

and then to load these new designs into any program all that is nee
Chapter 4 Driving Graphics *LOAD "CHARS" The extension to explos
is simple enough, That the characters occupy fixed positions also n
that the first location of any character is at (CHRLOCN - 224)*8 + &0C
The character routines can easily be modified to take this arrangem:
characters and locations into account.

Text in graphics

All Icons in this book are printer dumps taken directly from the scre
including the Icon label and any other labels (eg Hypotenuse). The |

74



CHAPTER 4 Driving Graphics

were printed and positioned by a routine called PROC_PRINT, w
comes in two versions. The first version

1000 DEF PROC_PRINT(AS$,X,Y,CLR)

1010 VDU 5 : REM Write text at graphics cursor
1020 GCOL 0,CLR : REM Set text colour

1030 MOVE X,Y : REM Move to X,Y without plotting
1040 PRINT A$ : REM Write the text

1050 VDU 4 : REM Set text back to text cursor
1060 ENDPROC : REM PRINT Version 1

uses only two VDU commands. However, GCOL and MOVE can
expressed as VDU commands (refer to page 378 of the UG). The si
version uses many more VDU commands, to the same effect.

1000 DEF PROC_PRINT(A$,X,Y,CLR)
1010 vDU 5,18,0,CLR, 25,0,X;Y;

1020 PRINT A$ : VDU4

1030 ENDPROC : REM PRINT Version 2

| am ambivalent about the second routine. The first routine is ¢
explicit and well documented. The second routine is only clear to tl
who wish to find out, but it has a coherence — due to the use of the '
commands as a long fine. The second routine is, | suspect, rather
computationally efficient.

Corresponding to GCOL there is VDU 18 (U Gpage 381-382) with
same parameters (ie 0 and CLR), both of which are of one byte
comma ","). Move X,Y is the same as PLOT 4,X,Y and (page 386) th
the same as VDU 25 with the equivalent parameters. The first parame
one byte (","), and the other two parameters are two bytes (";").

On balance, | prefer the second version.

30000REM------mmmmmm e
30010
30020
30030REM G RAPHIC ART
30040
30050REM (c) Boris Allen, 1983
30060
30070
30080REM-------mmmmimei e
30090
30100REM Character Routines 1
30110
30120REM-----mmmmmmm e
30130
30140 DEF PROC_INBYTES

75



Graphic Art for the BBC Computer

30150 LOCAL 1,J,STORE,BYTES
30160 BYTES = D00 : STORE = BYTES + 8
30170 FOR 1 =0 TO 7

30180 PRINT "LINE ";I;

30190 INPUT $STORE

30200 BYTES?I =0: FORJ=0TO 7

30210 BYTES?I = BYTES?I*2 : IF STORE?J=4
9 THEN BYTES?I = BYTES?I + 1

30220 NEXT J : NEXT |

30230 ENDPROC : REM INBYTES

30240

30250 DEF PROC_CHRASN(I,NEWB)

30260 LOCAL J,BYTES : BYTES = D00
30270 VDU 23,1 : FORJ=0TO 7

30280 NEWB?J = BYTES?J : VDU BYTES?J : N
EXT J

30290 ENDPROC : CHRASN

30300

30310 DEF PROC_CHREV(I,NEWB)

30320 LOCAL J,BYTES : BYTES = D00
30330 VDU 23,1 : FOR J =7 TO 0 STEP -1
30340 NEWB?(7-J) = BYTES?J : VDU BYTES?J
- NEXT J

30350 ENDPROC : REM CHREV

30360

30370 DEF PROC_CHRFLIP(I,NEWB)

30380 LOCAL J,K,L%,BYTES : BYTES = D00
30390 VDU 23, : FORJ=0TO 7

30400 K=0:FORL% =0TO 7

30410 K= K*2 : K = K - ((2°L% AND BYTES?
J) = 27L%) : NEXT L%

30420 NEWB?J = K : VDU K : NEXT J

30430 ENDPROC : REM CHRFLIP

30440

30450 DEF PROC_CHRROT(I,NEWB)

30460 LOCAL J,K,L%,BYTES : BYTES = D00
30470 VDU 23,1 : FOR J =7 TO 0 STEP -1
30480 K=0:FORL% =0TO 7

30490 K = K*2 : K = K - ((2"L% AND BYTES
2J) = 2°L%) : NEXT L%

30500 NEWB?J = K : VDU K : NEXT J

30510 ENDPROC : REM CHROT

30520

30530 DEF PROC_CHRSEND(NEWB)

30540 LOCAL I,BYTES : BYES = D00

30550 FOR I=T0 O 7

30560 BYTES?I = NEWB?I : NEXT |

30570 ENDPROC : REM CHRSEND

30580

76



CHAPTER 4 Driving Graphics

30590 DEF PROC_CHRINV(I,NEWB)

30600 LOCAL J, BYTES : BYTES = D00
30610 VDU 23,1 : FORJ=0TO 7

30620 NEWB?J = 255 - BYTES?J : VDU NEWB?
J: NEXT J

30630 ENDPROC : REM CHRINV

30640

30650 DEF PROC_INDEC

30660 LOCAL I, NUM,BYTES : BYTES = D00
30670 FOR I =0TO 7

30680 PRINT "LINE ";I;

30690 INPUT NUM : BYTES?I = NUM

30700 NEXT |

30710 ENDPROC : REM INDEC

77



Graphic Art for the BBC Computer

78



CHAPTER 5
Drawing Charts and Graphs

In our view the increasing availability
of micro-computers and the visual
display which they provide should also
offer opportunities to illustrate
statistical ideas and techniques;

Mathematics countgCockCroft
Report, HMSO 1982)

Turtle graphics provide a flexible means to draw many shapes. Somel
however, there are easier ways to draw charts and graphs, and this \
illustrated first by an example taken from elementary statistical theory.

The idea is this: when the heights of a large number of people
measured, and the heights divided into categories, the numbers i
categories approximate to what is known as the ‘normal’ distributiol
bell-shaped distribution).

Morris Kline writes (in Mathematics in Western Culture):

What is especially significant about the distribution of heights as

well as of many other characteristics . . . is that the curve

approximates an ideal distribution known to mathematicians as

the normal frequency curve. In fact, the larger the group whose
heights are included the closer the curve comes to having the ideal
shape, just as regular polygons with more and more sides
approach the shape of a circle (page 391).

that is, a three sided-regular polygon (a triangle) does not look very r
like a circle, but a thirty-sided regular polygon looks very like a circle.
distribution of heights for small numbers of people will not look very |
a normal distribution, but the greater the number of people the close
distribution tends to a normal distribution.

Random additions

On average, the components of a person’s height are made up at r:
(eg parents, nutrition, illnesses). In theoretical statistics there is a 1
(the Central Limit Theorem), which says that the sum of random nunr
is normally distributed — if enough random numbers are summed.
The greater the number of sums we examine, the closer, again, v



Graphic Art for the BBC Computer

to a normal distribution (the equivalent of the circle). These ideas
applied in the Standard Normal Curve program, written for mode I, so
examine the routine FN_NORMAL.

FN_NORMAL is a function which sums together random numk
from O to 1 (ie RND(1)), taking twelve of the random numbers at a ti
The random numbers are summed in pairs, one being added t
accumulating total (V), and one being subtracted. There are two rei
for this adding and subtracting.

First, the mean (ie average) of the different sums will be zero in
long run and the standard deviation (ie how much the values vary) w
unity. Second, if there are any consistent biases in the random numbe
| am not aware of any), this procedure helps to reduce biases.

FN_NORMAL produces what is known as a ‘standard normal devii
and is used in the routine PROC_SAMPLE (note that FN_NORMAL h
dummy parameter, totally unnecessary, but possibly of later use
variants of the function). PROC_SAMPLE is just that: it is a procedur
imitate the taking of a sample of values, the values it terms 1.

The parameter NUM gives the number of values in the sample, an
other parameter (CAT) gives the number of categories into which
values are to be grouped. The maximum of the values will be 6, an
minimum -6 (work that out), and so, if there are CAT categories, each
be 12/CAT units wide (call it WIDTH for the moment). To decide whict
the category into which the value is put, the value (ie J) is divided by
WIDTH, | is added, and the result is integerised — ie INT(J*CAT/I2+1)

If the array in which the numbers of values are stored is V , ther
increment the appropriate value by | (ie V (J) =V (J) + I). At the end of
routine the largest number in any element of the array is stored in \
and the final calculations of mean and standard deviation are made.
we leave this routine there are numbers stored in the array V (witt
largest number stored in V(0)), and values for the mean and stai
deviation.

These two routines copy (or simulate) the sampling of NUM val
from a population of values, whose overall mean is zero, and w
standard deviation is unity.

Drawing the graph

There are two key routines for drawing: PROC_HISTOGRAM draw
histogram (it could be used for a bar chart); and PROC_FREQ dra
frequency polygon (the line joining the mid-points of the tops of the b
both are called in PROC_HIST. The full gory details behind histogr.
and frequency polygons appear in most elementary statistics books.

PROC_HIST has four parameters: LOWER gives the vert
coordinate of the bottom of the graphs; UPPER gives the upper limit t
histogram; NUMBER gives the number of categories into which the va
were placed; and SWITCH indicates whether the histogram ar
80



CHAPTER 5 Drawing Charts and Graph

frequency polygon are to be printed (1 and 3 for histogram, 2 and :
frequency polygon).

The local variable ST is the horizontal coordinate at which the gr:
start (39 for this example); WI gives the width (in coordinate units) of €
bar, if the total width of the graphs is 1200; and HI is the height of
graphs from base to top. H SWITCH is 1 or 3 then a histogram is draw
PROC—HISTOGRAM, and if SWITCH is 2 or 3 then a frequen
polygon is drawn. This brings PROC_HIST to an end.

PROC_HISTOGRAM takes as parameters the left start, the widt
the categories, the base and height of the graph, and the numt
categories. For each category (ie | = 1 TO NUMBER) there is a ca
PROC_BAR — then the routine ends with the graphics window b
reset to the whole screen.

PROC BAR draws bars for charts and graphs, and the paramete
(in order): left coordinate, width, bottom coordinate, and height of bar.
parameters are modified to produce the correct parameters for VDU !
set up a graphics window. The window is cleared with logical colot
(background 131), and a bar appears. This is the quickest way to
rectangles for charts and similar designs.

PROC_FREQ had also been called by PROC_HIST. This rot
calculates the midpoints of the bar tops, and joins them by a fine (
from the first PLOT). The routine does not use relative plots, but re
absolute plots to preserve accuracy. One of the first actions of the rc
is the resetting of the graphics window to the whole screen.

Initialization

To use all these routines we need to know how many are to be ‘sam
how many categories there are, and what graphs are wanted. We h
know SIZE, CATS, and SWITCH, as they are called in PROC_INIT.

PROC_INIT sets the text colour to logical 2 (which for modes | an
is yellow), and the background to logical | (or 129) which is red.
PROC_HISTOGRAM the histogram is in white, and the frequel
polygon is drawn in black). When the screen is cleared we have ye
writing on a red background.

At the top of the screen we have heading output, and then the u
asked for the sample size, followed by the number of categories, anc
the value of the switch. The text screen is then set to the lower lines.

In the main program, after PROC_HIST, there is an *FX15,0 call
flush buffers. | have found that, with programs which take some tim
produce a result, there is a tendency to idly tap the keyboard — *FX
removes idle taps.

The last line of the main program (before END) sets the formatter
page 70, 325-327) @% to &01020307, ie

81



Graphic Art for the BBC Computer

01 Strings formatted

02 Fixed format — fixed number of decimal places
03 Number of digits after decimal point

07 Field width for number

and then after the printing it is reset to &10 — the default. The mean
standard deviation are printed towards the bottom of the screen.

Icon 5.1is an example of a very large sample (10000) and it is pos:
to see that for the simulation shown the result was a close approximat
a normal curve.

Experiment with the effects of different size samples, and diffe
numbers of categories.

SAMPLE DISTRIBUTIOHS
SAMPLE 18888
ES E 38

ICOH 5.1

The real thing

The normal distribution has an exact mathematical form, the ‘height’ o
82



CHAPTER 5 Drawing Charts and Graph

bar depending upon how far away from the mean is the bar (compat
the standard deviation).

As the standard deviation for the curve we are examining is unity
the mean is zero, the formula is very simple, and given as

1370 DEF FN_NORMAL(X) = EXP(-(X"2)/2)/SQR(2*PI)

which explains why | had the dummy parameter X — | find that it
slightly tidier. The function now does not give the value sampled, but
probability (the height of the bar) that a value X will occur in a nort
distribution.

The two routines PROC_HISTOGRAM and PROC_FREQ are hig
general: PROC_HISTOGRAM can be used for bar charts other
histograms, for example; and PROC_FREQ can be used for the plotti
ordinary graphs. We will now see what this implies. PROC_SAMPLE
to be altered to

1420 DEF PROC_SAMPLE(NUM,CAT)

1430 LOCAL ILJ,LK: MEAN=0:SD=0:NUM=0

1440 FOR | = -6 TO 6 STEP 12/CAT : J = FN—NORMAL(]) :
MEAN = MEAN + .1*1

1450 SD = SD + J*I*I: NUM= NUM + J :K = INT((1+6)*CAT
112+1)

1455V (K) = J : NEXT |

1460 FOR J =1 TO CAT : V(J) = V(J)/NUM : IF V(0)< V (J)
THEN V(0) =V (J)

1470 NEXT J

1480 MEAN = MEAN/NUM : SD = SD/NUM - MEAN*
MEAN

1490 ENDPROC : REM SAMPLE Version 2

and in this case the heights of the bars (ie J) are stored directly in the
(ie V(K)). The calculation of the mean and standard deviation has al:
be modified (we have to cumulate the total of all the heights in NU
Apart from that there is little real change.

Icon 5.1 (that for a sample of 10000) is fairly close to a ‘prop
normal distribution: how close is the ‘proper’ versido@n 5.2 shows the
result of the proper version for the same number of categories as
used inlcon 5.1 (ie 30 categories). Remembering that the scale goes -
-6 to +6, this means that each category is 12/30, or .4 units ‘wide’ , b
the values rarely go beyond -3 to + 3, only about 15 categories are
used.

83



Graphic Art for the BBC Computer

w
=
=]
-~
=
=
==
=
=5
=
m
=
=
Ll
-
L
E
=
[r)

84



CHAPTER 5 Drawing Charts and Graph

w
=
=
=
=
=
==
=
=
=
[F]
~
=
b
-
=8
=
=~
[7F]

85



Graphic Art for the BBC Computer

m
=
=)
=
=
=
@
[
=
=
e
=
=
L
-
B
=
==
[r)

ICOH 5.4

86



CHAPTER 5 Drawing Charts and Graph

w
=
=
=
=
=
==
=
=
=
[F]
~
=
b
-
=8
=
=~
[7F]

87



Graphic Art for the BBC Computer

If we want to achieve a higher resolution for the graph (ie thinner k
we can increase the number of categories. For mode 1, however, (al
Introduction) the maximum discrimination on the screen is four grapt
units: this means that for a total width of 1200, we can have a maxil
resolution of 1200/4 = 300con 5.3 shows the effects of the maximui
resolution.

The chart inlcon 5.3 differs from the two preceding icons because
this case | asked for the histogram (ie switch 1). If you compare5.2,
in particular, tolcon 5.1, the differences are minor — though evean
5.2 s slightly pointed itself, compared toon 5.3 (that of the maximum
resolution). Comparindgcons 5.4and5.5 to Icons 5.1and5.2 shows the
effects of smaller samples.

With a sample of 10000 the result is close to the theoretical shape
with either of the two different samples of 200 the matching is poans
5.4 and5.5 display a histogram and a frequency polygon (in that orde!
show the ease of interpretation by the two methods. Remember
PROC_FREQ could just as easily be set up to plot a sine curve.

Oblique rectangles

To draw bars by use of the VDU 24 command is fine, and the best
when the bars (or rectangles) are aligned along the horizontal and ve
axes. There is often a need to draw rectangles (filled in with colou
angles to the axes. To draw these rectangles all we need are the
Routines Version 1.2. Here is how to draw a rectangle

2000 DEF PROC_RECT ANGLE(BASE,HEIGHT)
2010 PROC_TURN(-90) : PROC_MOVE(BASE/2,0)
2020 PROC_TURN(I80) : PROC_MOVE(BASE, 1)
2030 PROC_TURN(-90) : PROC_MOVE(HEIGHT,11) :
PROC_TURN(-90) : PROC_MOVE(BASE,11)

2040 PROC_TURN(-90) : PROC_MOVE(HEIGHT,11) :
PROC_TURN(-90) : PROC_MOVE(BASE/2,11)

2050 PROC_TURN(-90)

2060 ENDPROC : REM RECTANGLE

where the drawing starts at the middle of one of the bases. The tul
turned through -90 degrees (ie directly right), and moves forwards thr
a distance equal to half the base (without plotting). The turtle is then tu
directly totally around (ie 180 degrees) and then the rectangle is d
(using the fill triangles style, 11). The final turn through -90 is to poin
the original direction. To show how this routine can be used to pro:
effects, try

3000 DEF PROC_SHOWERS(LGTH)
3010 LOCAL BREADTHJ : BREADTH = LGTH/10

88



CHAPTER 5 Drawing Charts and Graph

3020 PROC_TURN(90) : FOR | =0 TO 12
3030 PROC_RECT ANGLE(BREADTH,LGTH) :
PROC_TURN(-15)

3040 NEXT |

3050 ENDPROC : REM SHOWERS

to be activated by
PROC START : PROC_SHOWERS(400)

which produces the effect éfon 5.6, Remember that these routines &
designed for mode 4, and so colours are not possible. Work out wh
routine is called PROC_£HOWERS (or what a shower).

A further modification might be

4000 DEF PROC_DOWNPOUR

4010 LOCAL I,J

4020 FOR | = -400 TO 400 STEP 400

4030 FOR J = -400 TO 200 STEP 200

4040 PROC_MOVETO(I1,J,0) : PROC_TURNTO(0)
4050 PROC_SHOWERS(150)

4060 NEXT J : NEXT |

4070 ENDPROC : REM DOWNPOUR

and the effects of the downpour are showiton 5.7. The result incon
5.8 is slightly different from that obtained from the above routine
decided to make the shower slightly drunken, and so used P
TURNTO(6*1/400 + 6*(100 + 5)/300. All that this shows is how easy il
to modify turtle routines, to produce a drunken shower.

With the correct approach, graphs and charts present no difficul
the programmer — the difficult aspect is the understanding of the pro
in the first case. Remember, it was Disraeli who first said ‘There are
damned lies, and statistics’.

89



EEERRELL
XA AAA
EEEEREELN




CHAPTER 5 Drawing Charts and Graph

1010

1020

1030REM G RAPHIC ART

1040

1050REM (c) Boris Allen, 1983

1060

1070

1080REM----------mimmmmmiiie e

1090

1100REM Standard Normal Curve

1110

1120REM----mmmmmmm e

1130

1140 MODE 1

1150 PROC_INIT

1160 PROC_SAMPLE(SIZE,CATS)

1170 PROC_HIST(300,700,CATS,SWITCH)
1180 *FX15,0

1190 @% = &01020307 : PRINT'""MEAN IS ";
MEAN" SD IS ";SQR(SD)' : @%=10

1200 END

1210

1220 DEF PROC_BAR(A,B,C,D)

1230 LOCAL a,b,c,d

1240 a=A:b=C:c=A+B:d=C+D
1250 VDU 24,a;b;c;d;

1260 GCOL 0,131

1270 CLG

1280 ENDPROC : REM BAR

1290

1300 DEF PROC_FREQ(X,INC,NUM,BASE,ROOF)
1310 LOCAL I,H : H = ROOF-BASE

1320 VDU 24,0;0;1279;1023; : PLOT4,X,(B
ASE+H*(V(1)/V(0)))

1330 GCOL 0,0

1340 FOR 1=2 TO NUM : PLOT5,X+INC*(I-1)
JH*V(1)/V(0)+BASE : NEXT |

1350 ENDPROC : REM FREQ

1360

1370 DEF FN_NORMAL(X)

1380 LOCAL V,l : V=6

1390 FORI1=1TO 6:V =V +RND(1)-RN

D(1) : NEXT I
1400 = V : REM NORMAL
1410

1420 DEF PROC_SAMPLE(NUM,CAT)
1430 LOCAL 1,J : MEAN =0:SD =0
1440 FOR I =1 TO NUM : J = FN_NORMAL(l
) : MEAN = MEAN + J
91



Graphic Art for the BBC Computer

1450 SD = SD + J*J : J = INT(J*CAT/12+1

) V@A) = V(@) + 1: NEXT I

1460 FOR J = 1 TO CAT : V(J) = V(J)/NUM

: IF V(0)<V(J) THEN V(0) = V(J)

1470 NEXT J

1480 MEAN = MEAN/NUM : SD = SD/NUM - ME
AN*MEAN : MEAN = MEAN - 6

1490 ENDPROC : REM SAMPLE

1500

1510 DEF PROC_INIT

1520 COLOUR 2 : COLOUR 129 : CLS

1530 PRINT """SAMPLE DISTRIBUTIONS "
1540 INPUT ""SIZE OF SAMPLE "SIZE

1550 INPUT "CATEGORIES ARE "CATS : DIMV
(CATS)

1560 INPUT "SWITCH "SWITCH

1570 VDU 28,0,31,39,26

1580 ENDPROC : REM INIT

1590

1600 DEF PROC_HIST(LOWER,UPPER,NUMBER,S
WITCH)

1610 LOCALST,WI,HI:ST=39:WI=1200/NUMBER
‘HI=UPPER-LOWER

1620 IF SWITCH MOD 2 = 1 THEN PROC_HIS
TOGRAM(ST,WI,LOWER,HI,NUMBER)

1630 IF SWITCH DIV 2 = 1 THEN PROC_FRE
Q(ST+WI/2,WI, NUMBER, LOWER, UPPER)
1640 ENDPROC : REM HIST

1650

1660 DEF PROC_HISTOGRAM(ST,WI,LOWER,HI,
NUMBER)

1670 LOCAL | : FOR | = 1 TO NUMBER

1680 PROC_BAR(ST+(I-1)*WI,WI,LOWER,HI*(
V(1)/Vv(0)))

1690 NEXT | : VDU 24,0;0;1279;1023;

1700 ENDPROC : REM HISTOGRAM

1710

92



CHAPTER 6
Turtle Graphics Il

Treat nature in terms of the cylinder,
the sphere, the cone, all in perspective.

Paul Cézanne

You will have noticed that my icons are not exactly a true representatis
the pictures you see on the screenicbm 5.6 the rays should describe a
exact semicircle, but my version is slightly squashed.

The simplest, and most logical, way of transforming shapes is ther
to change the axes, and their relative scaling. In the drawing of a rect
(as in the last chapter), to draw a rectangle by PROC_RECTAN!
(SIDE,RATIO*SIDE) is to produce a square if RATIO is unity.

Rectilinear coordinates

If our axes are at right angles, and the distance between P and P + |
a\ways the same as the distance between Q and Q + INC (for any val
P an& Q), then the axes axes called rectilinear.

This does not mean that the scale of the axes tor both horizonts
vertical is the same, just that for each axis the scale is regular — recti
coordinates are the ones we use when we start coordinate geometry
axes are very simple to implement, as long as we concentrate o
intrinsic, and do not get carried away with extrinsic considerations.

Normally, to implement even simple transformations (when
transformation is simply a stretch for the moment) requires the us
transformation matrices — far too tedious, unartistic, almost arthi
ExamineTurtle Graphics 3.1.

1000 REM---mmmmmmm e
1010

1020

1030 REM G RAPHIC ART
1040

1050 REM (c) Boris Allen, 1983
1060

1070

1080 REM---mmmmmmmmm e
1090

1100 REM Turtle Graphics : 3.1
1110



Graphic Art for the BBC Computer

1120 REM------mmm e
1130

1140 DEF PROC_CLRSCR

1150 PROC_CLS : PROC_CLG

1160 ENDPROC : REM CLRSCR

1170

1180 DEF PROC_CLG

1190 GCOL 0,PEN : GCOL 0,129-PEN
1200 VDU 24,0;128;1279;1023; : CLG
1210 REM Clears an upper graphics windo
w

1220 VDU 29,640;566;

1230 REM Sets the origin to centre of g
raphics window

1240 ENDPROC : REM CLG

1250

1260 DEF PROC_CLS

1270 COLOUR 1-PEN : COLOUR 128+PEN
1280 vDU 28,0,31,39,28 : CLS

1290 REM Clears lower text window
1300 ENDPROC : REM CLS

1310

1320 DEF PROC_COL(PE)

1330 PEN=PE

1340 ENDPROC : REM COL

1350

1360 DEF PROC_CENTRE

1370 MOVE 0,0 : ANGLE=0: X=0:Y=0
1380 ENDPROC : REM CENTRE

1390

1400 DEF PROC_RESTART

1410 PROC_CLG : PROC_CENTRE
1420 ENDPROC : REM RESTART

1430

1440 DEF PROC_START

1450 PROC_COL(0) : PROC_CLRSCR : PROC_C
ENTRE

1460 PROC_TRANSFORMATION(1)
1470 ENDPROC : REM START

1480

1490 DEF PROC_INVERT

1500 PEN=1-PEN : GCOL 0,PEN

1510 ENDPROC : REM INVERT

1520

1530 DEF PROC_TURNTO(A)

1540 ANGLE=FN_ANGLE(A)

1550 ENDPROC : REM TURNTO

1560

1570 DEF PROC_TURN(A)

94



CHAPTER 6 Turtle Graphics IlI

1580 ANGLE = FN_ANGLE(ANGLE+A)

1590 ENDPROC : REM TURN

1600

1610 DEF PROC_LOC

1620 PRINT "COORDINATES ARE ";X,Y'"ANGL

E IS "ANGLE

1630 ENDPROC : REM LOC

1640

1650 DEF PROC_MOVE(DISTANCE,STYLE)

1660 X=X - DISTANCE*SIN(RAD(ANGLE))

1670 Y=Y + DISTANCE*COS(RAD(ANGLE))

1680 IF STYLE=1 THEN DRAW STRETCH*X,Y E

LSE MOVE STRETCH*X,Y

1690 ENDPROC : REM MOVE

1700

1710 DEF PROC_MOVETO(XN,YN,STYLE)

1720 LOCAL XDIF,YDIF : XDIF=XN-X : YDIF

=Y-YN

1730 IF YDIF<>0 THEN PROC_TURNTO(DEG(AT

N(XDIF/YDIF))+180*(YN<Y)) ELSE PROC_TURN

TO(SGN(-XDIF)*90)

1740 X=XN : Y=YN

1750 IF STYLE=1 THEN DRAW STRETCH*X,Y E

LSE MOVE STRETCH*X,Y

1760 ENDPROC : REM MOVETO

1770

1780 DEF FN_ANGLE(A)

1790 IF A MOD 360 <0 THEN =A MOD 360 +

360 ELSE =A MOD 360

1800 REM ANGLE

1810

1820 DEF PROC_NEW

1830 VDU 26 : CLS

1840 ENDPROC : REM NEW

1850

1860 DEF PROC_TRANSFORMATION(RATIO)

1870 STRETCH = RATIO

1880 ENDPROC : REM TRANSFORMATION

1890

1900 DEF PROC_SQUARE(SIDE)

1910 LOCAL | : FOR 1 =1TO 4

1920 PROC_MOVE(SIDE,1) : PROC_TURN(90)

1930 NEXT |

1940 ENDPROC : REM SQUARE

1950

1960 DEF PROC_SQUAREROT(SIDE,INC)

1970 LOCAL | : FOR |1 = 0 TO 360 STEP IN

C

1980 PROC_SQUARE(SIDE) : PROC_TURN(INC)
95



Graphic Art for the BBC Computer

1990 NEXT |

2000 ENDPROC : REM SQUAREROT

2010

2020 DEF PROC_CIRCLE(INC)

2030 LOCAL I : FOR I =1TO 30

2040 PROC_MOVE(INC,1) : PROC_TURN(12)
2050 NEXT |

2060 ENDPROC : REM CIRCLE

2070

EssentiallyVersion 3.1is a simple modification ofersion 1.1 (though it
is possible to modifyersion 1.2— try it). The principal differences ar
to the PROC MOVE and PROC_MOVETO routines, with the addition
new routine PROC_TRANSFO RMATION. These routines include ¢
three example routines; PROC_SQUARE, PROC_SQUAREROT,
PROC_CIRCLE.

First, the totally new routine PROC_TRANSFO RMATION. Th
routine has a parameter RATIO, the value of which is assigned tc
global variable STRETCH. As it is not possible to use a variable un
has been initialised to some value, PROC_START has to be modifit
include the call PROC TRANSFORMATION(O).

The purpose of STRETCH becomes clearer if PROC MOVE is stuc
The values of X and Y are calculated as normal, but the plotting |
values which are functions of X and Y. In the case of Y, the functio
merely Y, but for X the function is STRETCH*X. The angle is not alter
because X and Y are not altered. This is a ‘linear’ transformation beca
straight line in the old coordinate system is changed to a straight line i
new system.

The changes to PROC_MOVETO mirror the changes to PF
MOVE.

Slipping and sliding

Icon 6.1 shows the operation of PROC_SQUAREROT(200,60), thal
squares of side 200 each turning through 60 degrees from the pre
square. A simple enough effect.

If a call is made to PROC_TRANSFORMATION(2), and the sque
routine is repeated with the same parameters, then we find the res
shown inlcon 6.2 There are two distinct rectangles (wherécion 6.1the
squares were parallel to the axes), and several parallelograms.

96



CHAPTER 6 Turtle Graphics IlI

97



Graphic Art for the BBC Computer

In linear transformation, squares become parallelograms because s
fines are still straight lines.

To study a slightly different effect, before PROC_SQUAREROT
called we PROC_TURN(-45) to produteon 6.3 When transformed a:
before, the result is as Inon 6.4 The two squares which ioon 6.3 are
symmetrical about the Y axis are (iton 6.4 rhombuses (ie equilatere
parallelograms.

98



CHAPTER 6 Turtle Graphics IlI

When a circle is drawn by PROC_CIRCLE, a circle is drawn when
transformation is 1 (imcon 6.5 the circle is a little squashed). As soon
the transformation is 2, the result is thatawn 6.6 An ellipse is no more
than a stretched (or squashed) circle.

Icon 6.7 shows another transformed circle, when the transformatic
not linear.

Complex transformations

The ‘circle’ in Icon 6.7 was drawn using th&urtle Graphics 3.2
routines. These routines are again modificationgeision 1.1, but with a
great number of changes.

99



Graphic Art for the BBC Computer

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
w
1220
1230

2

REM GRAPHIC ART

REM (c) Boris Allen, 1983

REM Turtle Graphics : 3.2

DEF PROC_CLRSCR
PROC_CLS : PROC_CLG
ENDPROC : REM CLRSCR

DEF PROC_CLG

GCOL 0,PEN : GCOL 0,129-PEN
VDU 24,0;128;1279;1023; : CLG
REM Clears an upper graphics windo

VDU 29,640;566;
REM Sets the origin to centre of g

raphics window

1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370

ENDPROC : REM CLG

DEF PROC_CLS

COLOUR 1-PEN : COLOUR 128+PEN
vDU 28,0,31,39,28 : CLS

REM Clears lower text window
ENDPROC : REM CLS

DEF PROC_COL(PE)
PEN=PE
ENDPROC : REM COL

DEF PROC_CENTRE
X=0:Y=0 : MOVE FN_XAXIS(0),FN_YA

X1S(0) : ANGLE=0

1380
1390
1400
1410
1420
1430

100

ENDPROC : REM CENTRE

DEF PROC_RESTART
PROC_CLG : PROC_CENTRE
ENDPROC : REM RESTART



CHAPTER 6 Turtle Graphics IlI

1440 DEF PROC_START
1450 PROC_COL(0) : PROC_CLRSCR : PROC_C
ENTRE
1460 ENDPROC : REM START
1470
1480 DEF PROC_INVERT
1490 PEN=1-PEN : GCOL 0,PEN
1500 ENDPROC : REM INVERT
1510
1520 DEF PROC_TURNTO(A)
1530 ANGLE=FN_ANGLE(A)
1540 ENDPROC : REM TURNTO
1550
1560 DEF PROC_TURN(A)
1570 ANGLE = FN_ANGLE(ANGLE+A)
1580 ENDPROC : REM TURN
1590
1600 DEF PROC_LOC
1610 PRINT "COORDINATES ARE ";X,Y'""ANGL
E IS "ANGLE
1620 ENDPROC : REM LOC
1630
1640 DEF PROC_MOVE(DISTANCE,STYLE)
1650 LOCAL I,IX,lY,SX,SY : SX = X : SY
=Y
1660 SX=X - DISTANCE*SIN(RAD(ANGLE))
1670 SY=Y + DISTANCE*COS(RAD(ANGLE))
1680 IF ABS(X-SX)>ABS(Y-SY) THEN D = IN
T(ABS(X-SX)/12)+1 ELSE D = INT(ABS(Y-SY)
/12)+1
1690 IX = (SX-X)/D : 1Y = (SY-Y)/D
1700 FOR I =1 TO D
1710 X = X+IX : Y =Y + 1Y
1720 IF STYLE=1 THEN DRAW FN_XAXIS(X),F
N_YAXIS(Y) ELSE MOVE FN_XAXIS(X),FN_YAXI
S(Y)
1730 NEXT |
1740 X = SX :Y = 8SY
1750 ENDPROC : REM MOVE
1760
1770 DEF PROC_MOVETO(XN,YN,STYLE)
1780 LOCAL XDIF,YDIF,D,I : XDIF=XN-X :
YDIF=Y-YN
1790 IF YDIF<>0 THEN PROC_TURNTO(DEG(AT
N(XDIF/YDIF))+180*(YN<Y)) ELSE PROC_TURN
TO(SGN(-XDIF)*90)
1800 IF ABS(XDIF)>ABS(YDIF) THEN D = IN
T(ABS(XDIF)/12)+1 ELSE D = INT(ABS(YDIF)
/112)+1

101



Graphic Art for the BBC Computer

1810 XDIF = (XN-X)/D : YDIF = (YN-Y)/D

1820 FOR I =1TO D

1830 X = X + XDIF : Y =Y + YDIF

1840 IF STYLE=1 THEN DRAW FN_XAXIS(X),F
N_YAXIS(Y) ELSE MOVE FN_XAXIS(X),FN_YAXI
S(Y)

1850 NEXT |

1860 X=XN : Y=YN

1870 ENDPROC : REM MOVETO

1880

1890 DEF FN_ANGLE(A)

1900 IF A MOD 360 <0 THEN =A MOD 360 +
360 ELSE =A MOD 360

1910 REM ANGLE

1920

1930 DEF PROC_NEW

1940 VDU 26 : CLS

1950 ENDPROC : REM NEW

1960

1970 DEF FN_XAXIS(COORD)

1980 =COORD

1990 REM XAXIS - modify preceding line

2000

2010 DEF FN_YAXIS(COORD)

2020 =COORD

2030 REM YAXIS - modify preceding line

2040

2050 DEF PROC_SQUARE(SIDE)

2060 LOCAL I : FOR1=1TO 4

2070 PROC_MOVE(SIDE,1) : PROC_TURN(90)
2080 NEXT |

2090 ENDPROC : REM SQUARE

2100

2110 DEF PROC_TRIANGLE(SIDE)

2120 LOCAL I : FOR1=1TO 3

2130 PROC_MOVE(SIDE,1) : PROC_TURN(120)
2140 NEXT |

2150 ENDPROC : REM TRIANGLE

2160

2170 DEF PROC_CIRCLE(INC)

2180 LOCAL I : FOR 1 =1TO 30

2190 PROC_MOVE(INC,1) : PROC_TURN(12)
2200 NEXT |

2210 ENDPROC : REM CIRCLE

2220

2230 DEF PROC_LINES

2240 LOCAL |

2250 FOR 1 =0 TO 90 STEP 2

2260 PROC_MOVETO(-450,-300,0) : PROC_TU
102



CHAPTER 6 Turtle Graphics IlI

RNTO(-1) : PROC_MOVE(1500,1)
2270 NEXT |
2280 ENDPROC : REM LINES

What has to be performed is actually rather mundane. All the
needed is to set up two functions (one for the X axis and one for tl
axis) which convert the actual values of X and Y to screen coordin
The change from the actual value of X to the screen value of STRETC
is a simple example.

Start at the beginning. Going through the routines, the first to be ali
is PROC_CENTRE and it is altered in two ways. The initialisations c
and Y are placed at the beginning of the routine (rather than at the
because sometimes the function routines use X and Y explicitly.
function routines FN_XAXIS and FN_YAXIS initialise the cursor to t
centre of the transformed screen.

The real complexities arise in the coding of PROC_MOVE
complexities which ease the way for the user. We need many more
variables, because of the storage of many more interim values.
variables SX and SY are calculated to be the endpoints of the line
drawn, by the same method as before.

To draw a fine between two points in a rectilinear coordinate geon
is to draw a straight fine (a pretentious way of saying that in ordi
geometry the shortest distance between two points is a straight fine
draw a line between two points on the surface of the Earth is to dr
curve — though at each point you may think that you are followin

103



Graphic Art for the BBC Computer

straight line. (See for example, Klein’s (1953) chapter on ‘N
Geometries, New Worlds’.)

To draw the shortest fine between two points is to follow a ‘geode
and the path depends on the geometry. In ordinary geometry the pal
straight fine, in some of the other geometries we will investigate,
anything but straight. The way we draw a line is a portion at a time, at
time producing a straight fine. As we found with a circle in ordin
geometry, a series of straight fines can produce a curve.

We have to decide on how many little straight fines we need to d
We decide this by noting that if we move (slowly!) at about three pixe
a time, the fine is an almost perfect curve. if the difference in th
direction is greater than the difference in the Y direction, then th
difference is divided by 12 units to produce the number of steps (D)
the difference is used).

When D has been calculated, D is used to work out the incremer
the X and Y directions (ie IX and 1Y). These increments are then use
plot D straight fines, where the plotting is
FN_XAXIS(X),FN_YAXIS(Y). The end values (SX and SY) are the
assigned to X and Y, to prevent the overaccumulation of rounding errc

PROC_MOVETO in this version is far simpler to understand tl
PROC_MOVE, particularly when PROC_MOVE has been studied.

The transformations appear at FN_XAXIS and FN_YAXIS, and
default they do nothing other than return the value of X and Y.

A new geometry
Icon 6.7was drawn with a strange geometry:

DEF FN_XAXIS(COORD) = SGN(COORD)*COOREY2/500
DEF FN_YAXIS(COORD) = SGN(COORD)*SQR(ABS(COOR
D)) *20

which stretches the scale more at larger values of X, and squashes th
more at larger values of Y. These two coordinate transformations g
very non-rectilinear geometry.

Icon 6.8 shows two squares. One appears as a rectangle, and th
square parallel to the axes. The other is a square which is symme
around the X axis. The routine to draw the square is PROCL-SQUARE

104



CHAPTER 6 Turtle Graphics IlI

ICOH &.8

If PROC_LINES is activated when the coordinates are rectilineal
both functions = COORD) then we have a series of straight lines radi

105



Graphic Art for the BBC Computer

from the point -400,-300 in the upper right quadrant. It is a trifle like
showers example, and has similarities to the Moire example Metision
2.1 graphics.

Icon 6.9has no resemblance to anything, so it would appear. Eack
radiating from the point -400,-300 is a geodesic — the shortest disi
between two points in the geometry defined above. What happens w
line is drawn?

At each stage of the curve there is a short straight line which follov
the direction given by the geometry at that point. As with the circ
geometry (straight line, turn, straight line, turn) a curve then appeai
with the straight portions carefully hidden by our eyes. Of coursi
straight fine is only a special form of curve.

With this pair of axis transformations we have effectively define
‘force field’, and our turtle follows the fines of force between points. |
the axes correctly defined, and we might have an Einsteinian force
(Remember Abelson and diSessa?) Let us examine this force field.

The lines radiate from the bottom left corner, starting straight upw
and moving clockwise. Until the fines reach the Y axis they I
reasonably uncurved. They look mainly straight until the line crosse:
axis (note that crossing the X axis does not seem to be at all traumati
the Y axis something strange happens.

As the fines become closer to the Y axis, so they become more
and seem almost determined not to cross the axis. The fines come
close together, and once past the axis they change direction, and
more at fight angles to the axis. The effect is strange to watch.

Once over the other side, there seems to be abnormal behaviour
the region of the X axis (though is any behaviour normal?). To go thr
the X axis on the left side of the Y axis does not produce any kinks i
fines. For some fines, a kink appears on the positive side. Settin
starting point to other coordinates will produce different effects.

All this reveals the truth of Kasner and Newman'’s quote (1949 f
163) ‘. . . — our intuitive notions about space almost invariably leac
astray’. Funnily, they were talking of geodesics, but they were interest
spiders not turtles.

Parametric functions

Icon 6.10is merely a sine curve. The interesting thing about that
curve is the way in which it was drawn.
The functions were defined by

DEF FN_XAXIS(COORD) = COORD
DEF FN_YAXIS(COORD) = 200*SIN(RAD(X))

or, perhaps more illuminatingly,

106



CHAPTER 6 Turtle Graphics IlI

JCOH &.18

DEF FN_XAXIS(COORD) = X
DEF FN_YAXIS(COORD) = 200*SIN(RAD(X))

and to draw that line | entered
PROC_MOVETO(-600,0,0) : PROC_MOVETO(600,0,1)

which moved the turtle/cursor to X equal to -600, Y equal to 2
SIN(RAD(X)), and not Y = 0. The value in the second parametel
PROC_MOVETO is a dummy, that is, it is not used as such, it has
by-passed by the function definition.
A line was then drawn to X = 600, a geodesic in the sine geometry.
We now have a way to draw graphs of functions, but very easily
draw a parabola (ie X = k*Y”2) we use the definitions

DEF FN_XAXIS(COORD) = Y
DEF FN_YAXIS(COORD) = Y/2/400

and producelcon 6.11 This is an extremely flexible way of drawin
graphs. To produce the parabola | entered

PROC_MOVETO0(0,400,1)
and half of the parabola (the upper half) is drawn. When | then enterec
PROC_MOVETO(0,-400,1)

the upper is retraced and the lower half drawn in. This way of analy
functions is clearly of great assistance, and fits well with turtle grapt
especially Version 3.2. We use the fact that the graph of a functic
geodesic, the fine between two points, as given by the geometry (i
axes).

The technique we are now using is called the ‘parametric form
displaying graphs. This technique, which in many ways is simpler
other forms, is not taught at lower levels in schools — being some
more ‘difficult’ or ‘esoteric’. The parametric form is used quite extensiv
in ‘advanced’ graphics, it is one way of simplifying, or, as we would ¢
accentuating the intrinsic and minimising the effects of the extrinsic.

107



Graphic Art for the BBC Computer

ICOH 6.11

108



CHAPTER 7
Generative Graphics

. .. the coming of semi-intelligent
machines into business and technology
had created a second Industrial

Revolution, in which only the most
highly creative human beings, and those

most gifted at administration, found
themselves with any skills to sell which
were worth the world’'s money to buy.

James Blish, A Life for the Stars

Computers allow us to be creative — Seymour Papert calls then
proteus of machines, that is, machines which are more flexible and
adaptable than any others have been, or could be.

| have tried to show how the BBC computer can be used in a hi
creative manner. The creativity comes from the individual, and the we
enhance one’s own creativeness. is to try to be creative. Creativity dot
come from following rules, it comes from trying to extend and improve
| hope you improve upon my efforts.

The saintly books which try to teach good programming practice by
application of rules of (say) structured programming often annoy
Books which are forever denigrating the use of GOTO are more conct
with academic ideals than actual practice. Sometimes the contol
needed to get round the use of a GOTO have to be read to be believe

A careful examination of my routines will not reveal a GOTO, th
was no need for a GOTO and — in creative programming on the |
computer — there never need be. | do not use GOTO because in co
systems such asurtle Graphics 3.2 a GOTO would probably creat
more havoc than it saved. Note, however, that in PROC_NOKR
effectively had a jump out of a routine to END — rules are there tc
broken.

My advice, for what it is worth, is to steer clear of rules, try to ge
feel for the topic, try to understand what are really the essential eler
— accentuate the intrinsic, eliminate the extrinsic (if at all possible).
key to successful thought, never mind programming, is to divine
essence of the problem. Aristotle said that (sort of).

End of sermon.

Further work

Obvious extensions are the multi-coloured graphics to sixteen colours



Graphic Art for the BBC Computer

will produce fun and games when you try). To extend to the six
colours of mode 2 means that space will become at a premium, s
economy of the turtle graphics/intrinsic approach will become even r
valuable.

PROC_NORT (I nearly called it PROC_FFORT) can easily
improved, in particular the keyboard sensing - eg using *FX11 and *F
commands. You might wish to change the angle turned from 90 degi
that, at least, is easily done.

You will have most fun with the routines MG 3.2 Why not
implement a game in a new geometry, instead of boring Euclic
geometry (ie with rectilinear coordinates?). PROC_NORT in a mi
coloured strange geometry would be a game and a half. It would alsc
worthwhile programming exercise.

My next BBC graphics book will move on to three (and m
dimensions) for even more flamboyant games effects, and it will an:
animation in far greater detail: what is to stop you getting there first?

What to read

| have referred to several books within the body of this book, and |
them here - in sufficient detail that you may if you wish order them fro
library, or possibly buy. | have not yet found a reasonable book
mathematics applicable to computers, and so — until | write it — do
best you can. The Kasner and Newman is an old book, but it has a
offer.

As | am not too good on the alphabet (though | know it goes f
ASCII 65 to ASCII 90, in capitals) the list is given in almost an ordel
reading: | assume you have the User Guide.

Seymour PAPERTMindstorms The Harvester Press, 1980.

Edward KASNER and James NEWMANMathematics and the
Imagination Penguin Books, 1968 (originally published in 1940).

Morris KLINE, Mathematics in Western Cultyr®enguin Books, 197
(originally published in 1953).

Harold ABELSON and Andrea diSESSAurtle Geometry MIT Press,
1980.

The last is last because it is very expensive, and more difficu
follow in later chapters.

My final recommendation is the Cities in Flight quartet by James E
(see the above quotation). Reading it might explain the cities in fligh
my covers (Collected edition, Arrow, 1981).

10 R EM*******************************

110



CHAPTER 7 Generative Graphic:
kkkkkhkkkkkkhkhkkkx

20REMBORIS'S PARTING
GIFT

30 REM*******************************

kkhkkkkkkkkkhkkkx

40

50
31000 DEF PROC_SCANDUMP(XL%,YL%,XU%,YU%)
31010 LOCAL X%,Y%,1%,J%,B%
31020 XL% = 32*(XL% DIV 32 -1) : YL% =
4*(YL% DIV 4 - 1)
31030 XU% = 32*(XU% DIV 32 + 1) : YU% =
4*(YU% DIV 4 + 1)
31040 J% = (YU% - YL%) DIV 4 : DIM N J%
31050 REM Bit images for a vertical line
will be stored in N
31060 VDU 2, 1,12, 1,27, 1,51, 1,23
31070 REM Printer on, linefeed, and 23/2
16 inches per line
31080 FOR X% = XL% TO XU% STEP 32
31090 FOR Y% = YL% TO YU% STEP 4
31100 B% =0 : FOR 1% =0 TO 31 STEP 4
31110 REM Store the bit image of 8 horiz
ontal pixels
31120 B% = B%*2 : IF POINT(X%+1%,Y%) >0
THEN B% = B% + 1
31130 NEXT 1% : N%?((Y%-YL%) DIV 4) = B%
31140 REM The bit image is stored in suc
cessive elements of N
31150 NEXT Y% : VDU 1,27, 1,75, 1,(J%+1)
MOD 256, 1, (J%+1) DIV 256
31160 REM Prepare printer for J%+1 bit i
mages from N
31170 FOR 1% =0 TO J% : VDU 1,N?1% : NE
XT 1%
31180 VDU 1,13 : NEXT X%
31190 REM End the line with a return
31200 VDU 1,27, 1,50, 3 : REM Switch off
printer
31210 ENDPROC : REM SCANDUMP
>

111



Other titles from Sunshine

THE WORKING SPECTRUM
David Lawrence
0946408 00 9

THE WORKING DRAGON 32
David Lawrence
0946408 01 7

THE WORKING
COMMODORE 64

Keith Brain/Steven Brain
0946408 02 5
0946408 04 1

DRAGON 32 GAMES MASTER
Keith Brain/Steven Brain
0946408 03 03

FUNCTIONAL FORTH
for the BBC Computer
Boris Allan

COMMODORE 64
MACHINE CODE MASTER

David Lawrence and Mark England

For further informaton contact:
Sunshine

12-13 Little Newport Street
London WC2R 3LD

01-734 3454

ADVANCED SOUND
AND GRAPHICS

for the Dragon computer
Keith and Steven Brain
0946408 06 8

SPECTRUM ADVENTURES
Tony Bridge and Roy Carnell
0946408 07 6

THE DRAGON TRAINER
a handbook for beginners
Brian Lloyd

0946408 09 2

COMMODORE 64 ADVENTURES

Mike Grace
0946408 11 4

MASTER YOUR ZX
MICRODRIVE

Programs, machine code and
networking

Andrew Pennell
0946408 19 X

Printed in England by Commercial Colour Press, London E7.



