

making music
on the BBC computer

a musician's guide to programming

ian waugh

First published 1983 by:
Sunshine Books (an imprint of Scot Press Ltd.)
12-13 Little Newport Street,
London WC2R 3LD

Copyright (c) Ian Waugh

ISBN 0 946408 26 2

All rights reserved. No part of this publication may be reproduced, stored
in a retrieval system, or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording and/or otherwise, without
the prior written permission of the Publishers.

Cover design by Graphic Design Ltd.
Illustration by Stuart Hughes.
Typeset and printed in England by Commercial Colour Press, London E7.

DIGITALLY REMASTERED ON RISC OS COMPUTERS,
DECEMBER 2011.

CONTENTS

Page

Introduction ix

1 What is Sound? 1

2 What is Music? 13

3 The BBC Micro and Sound and Music 27

4 The SOUND Command 39

5 The ENVELOPE Command 49

6 Musical Miscellanea 75

7 Zaps and Zings and Other Things 101

8 Playing the BBC Micro 121

9 Making Micro Music 133

10 Computer Compositions 157

11 More Programs that Compose 177

12 Harmony and Transposition 203

13 The All-singing, All-dancing BBC Micro 227

Appendix 1: The Hardware and the Software239

Appendix 2: Entering, Protecting and
Working with the Programs

241

Contents in detail

CHAPTER 1
What is Sound?
The nature of sound — looking at sound waves — Sine Wave Plotter —
the sound of the BBC micro — pitch: high and low notes — volume —
duration: the length of a note — motility: speed and accuracy — Motility
Tester — timbre: the quality of sound.

CHAPTER 2
What is Music?
The language of music — the pitch of a note — scales — minor scales —
enharmonics — accidentals — the length of a note — beats in the bar —
triplets, ties, slurs and staccato — harmony and chords — Chord Sound
Demonstration.

CHAPTER 3
The BBC Micro and Sound and Music
Pitch — fitting the notes to the music — volume and duration —
improving the sound output — adding an external speaker — another
solution — further improvements and considerations — talking music —
the numbers method — the other methods — Note to Number Conversion
— the lowest A#.

CHAPTER 4
The SOUND Command
Channel and its extensions — Hold — Hold Parameter Demonstration —
synchronization — Flush — Channel Flushing Demonstration —
amplitude — pitch — duration — out of range values.

CHAPTER 5
The ENVELOPE Command
The complete ENVELOPE command — ADSR: the amplitude envelope
— the attack phase — the decay phase — the sustain phase — the release
phase — the complete ADSR envelope: putting them all together —
ADSR and the ENVELOPE command — ADSR Graph Generator —
Function Key SetUp for ADSR Graph Generator — the volume range:
hardware and software differences — a detailed look at the amplitude
commands — the pitch envelope — PI and PN: the pitch change and the

number of steps — the Pitch Graph Generator — apparent peculiarities of
the pitch envelope — experimenting with the programs — instrument
characteristics — producing other waveforms.

CHAPTER 6
Musical Miscellanea
Vibrato and tremolo: pitch and amplitude modulation — creating vibrato
with the pitch envelope Envelope Comparisons — producing tremolo
effects — Tremolo Demonstration — trills: a special kind of vibrato —
Military Music Introduction — echo and reverberation — commercial
echo units — producing echoes on the BBC micro — Echo Production —
Echo Using a Procedure — Pseudo Echoes Using Single Envelopes —
using the pitch envelope to play tunes — chorus, phasing, flanging and
other spatial effects — Chorus Effects — beat frequencies: the weaving in
and out — French Accordion Music — the ring modulator: producing bells
and other ringing noises — the frequencies produced by the sound chip —
the out of tune chip — bells and the BBC micro — Bells and Chimes.

CHAPTER 7
Zaps and Zings and Other Things
White noise — simple sound effects — Examples of Channel 0 —Machine
Gun — Ricochet — Cymbal — Creature — Mad Factory —Space Ship —
exploring the sound channel — Sound Effects Generator — using channel
0 to produce otherwise unobtainable low notes — use of the lower octave
— Rhythm Unit — the CAPS LOCK and SHIFT LOCK fights and the
ADVAL function — using sound effects in utility programs — Sea, Surf
& Seagulls.

CHAPTER 8
Playing the BBC Micro
Using the BBC micro as a musical keyboard — monophonic and
polyphonic instruments — the BBC micro as a Monophonic Keyboard —
Keyboagd Display — alternative methods of note production — 3—Note
Polyphonic Keyboard — Bass Sequencer with Duophonic Keyboard —
altering the bass riff — developing the sequencer.

CHAPTER 9
Making Micro Music
Playing two— or three—part tunes — selecting the notes and octave range
— 1 Channel Version of Mozart's Rondo Alla Turca — the tracking
method — the negative ADVAL method — 3 Channel Rondo Alla Turca
— debugging the data — *SPOOL Routine — more tunes to play: Dance

Contents in detail

of the Sugar—plum Fairy: Liberty Bell.

CHAPTER 10
Computer Compositions
The human compositional process: algorithms and heuristics — aspects of
a composition — Computer Composition Based on Rules — Computer
Compositions with Fixed Rhythm Pattern — Computer Compositions
Based Upon Note Analysis — total tune analysis.

CHAPTER 11
More Programs that Compose
The harmonic structure of popular songs — producing acceptable results
— random harmonic compositions — instant Mozart — Computer
Composition in 3—Part Harmony — calculating the duration values —
Computer Composition Based on Chord Sequences — adding rhythmic
variations — applying further control to random note selections —
improving the melody — bass notes — designing and developing
programs — the Amazing One Line Wonder Composer — Sing-a-long-a-
matic.

CHAPTER 12
Harmony and Transposition
Harmonising a tune — a melody with chord symbols: what to put in —
working from a piano copy: what to leave out — adding harmony to a
melody fine — Pseudo Harmony Additions — DATA Statements for
Liberty Bell — transposition — why transpose? — the computer as a
transposition aid — Transposition program — accidentals — transposing
chords.

CHAPTER 13
The All-singing, All-dancing BBC Micro
Background music from BASIC — cartoons — sound and animation
synchronization — Animated Synchronized Dancer — Hercules — further
experiments in animation — computer art — tomorrow's BBC micro.

To my Mother and Father

. . . with love and gratitude for their care, encouragement and
understanding not only during the production of this book but throughout
my entire life.

Introduction

This book is for everyone with a BBC micro. Whatever your reasons for
buying a computer, your decision to purchase a BBC micro has been
rewarded with a very versatile and powerful machine. If all its features
were investigated thoroughly, the resulting books would occupy several
shelves. This book is about one of its most exciting features - the sound
generator.

The inclusion of a sound generating chip in personal computers is a
fairly recent development and it is no doubt responsible, along with
advanced graphics capabilities, for the growing interest in computers.

Over 75 per cent of all information we receive from the outside world
comes through our sense of sight, so it is hardly surprising that computer
graphics tend to dominate computer advertisements. But what is a missile
exploding without a bang, and what is a flight simulator or powerboat race
without the whine of the engines? Music and sound have a greater effect
upon us than you may realise. The next time you're watching a horror
movie or car chase on TV, turn the sound off for a moment and you will
see how much the music and effects contribute to the excitement. It is a
case of the sum of the parts being greater than the whole and the addition
of sound to any computer program, even a utility program, can more than
double its enjoyment and effectiveness.

As well as sound effects, the BBC micro can be programmed to
produce music. This opens up a totally new area for exploration, an area
without precedence in the world of personal computing. Armed with the
ability to produce ordered sequences of notes, we have a complete music
system which can not only play tunes in three-part harmony, but which is
imbibed with the speed and decision-making attributes of a computer.

The Operating System
As the BBC micro underwent development, various additions and
modifications were made to the Operating System, which resulted in the
issue of at least three separate OS chips. The first was called OS 0.1: it
contained an infamous number of bugs and was way below specification.
Subsequent issues cured the bugs and included many 'enhancements' and

new functions which made the BBC micro even more powerful. The main
problem with OS 0.1 was the notorious 'cassette bug' which sometimes
refused to save the first block of a program. This and other bugs relating to
plotting routines and data handling with PUT and GET have been fixed.

Enhancements include the use of the function keys with the SHIFT key
and CTRL key to produce teletext effect codes in mode 7. These allow
colour codes and graphics characters to be printed directly on to the screen.
Additions have been made to the PLOT command to include fill routines
and there are a host of new *FX commands and OSBYTE calls which give
direct access to the Operating System through BASIC commands. Some of
these are fisted on page 418 of the User Guide, but many more are
undocumented and are only coming to light through exploration.

The new Operating Systems should have been upward compatible but,
for a variety of reasons, some programs which worked on OS 0.1 will not
work on OS 1.2. Any programs using the new features of OS 1 .2 will not,
of course, work on OS 0.1. If you do not have OS 1.2, it is really
worthwhile having it fitted because, soon, most new software will not run
on the old system as programmers will use more of the new commands.

The programs in this book were written with OS 1.2, although they
may run on earlier versions. To check what version is in your machine
type:

*FX0

This will print the OS number. If you need a new Operating System,
contact your dealer.

About this book
The aim of this book is to act as a springboard for further experiments and
programs which I hope you will write and develop. The accent is on sound
and music and how you can get the best from the powerful sound
generating system incorporated in the BBC micro.

The programs are written in a fairly structured manner and are
documented so that you can understand the workings behind them.
Generally, they will not have many frills, which should minimise the time
required to enter them and should help to cut down on mistakes. The
overall appearance of a program is as important as the performance, and
suggestions regarding the finishing touches are made where relevant.
These can be added later to suit your own taste and style. Suggestions for
further experiments, alterations and developments are also made, usually in

Introduction

such cases where a subject has too many aspects and is too complex to
tackle completely - without writing another book.

This book was written to be read from Chapter 1 onwards, but you can
dip into it at whichever chapter takes your fancy. For those who decide to
read it so, I make no apologies for the odd repetition of information and the
constant referral to other chapters. Those well versed in music and
computing will forgive me; those who are not so accomplished will, I
hope, thank me.

Whether you are looking for a new laser sound for your latest arcade
game, whether you want to write a new tune for your musical doorbell,
whether you want to use the computer to help you learn about music,
whether you want to add something to the business utility program you've
written or whether you simply want to see what you can do with the
SOUND and ENVELOPE commands, I hope this book contains something
for you and that it will encourage you to carry on experimenting from
where I leave off.

Before you begin, perhaps I can refer you to the appendices which
contain hints and tips about entering and merging programs and other
information you may find of interest. Please read them before entering
programs.

Programs tape
Some of you might be unwilling to enter some of the longer programs in
this book, because of the time this will take. For anyone who does find this
a problem, a tape of these programs is available from me, Ian Waugh, do
Sunshine Books, 12-13 Little Newport Street, London WC2R 3LD, for
£5.95, including p&p. Available for readers in the UK only.

Thanks and acknowledgments
I would like to thank John Paisley for his help in measuring and listing the
output frequencies of the sound chip and Leslie Thwaites for checking my
early programs.

Thanks too, to David Lawrence for his encouragement and to Jenny
Ireland for her international persistence.

Warning: When entering programs from this book, please be careful that
you key them in correctly. Copy from a computer printer can be rather
faded - commas, in particular, may look like full stops at first glance.

CHAPTER 1
What is Sound?

This chapter looks at sound from the computer's point of view. In order to
assess the sound commands on some computers, it is necessary to POKE
numeric values into various registers. This is clearly a very user-unfriendly
way of creating sounds and music and, thanks to the ingenious
programming of the BBC micro's OS, we have a much easier and more
versatile method of controlling the sound output - through the BASIC
SOUND and ENVELOPE commands.

Even a few casual experiments with these commands will reveal how
complex and difficult they can sometimes be to control. The User Guide,
excellent though it is, devotes only a total of 20 pages to the sound
facilities: more information is required to get the best from the system. The
problem here is exactly the same as the one we faced when we started to
learn BASIC. The computer has a set way of operating and, in order to
control it, we must give it instructions in its own terms. This means we
need to know something about the properties of sound and how to convert
this information into a program the computer can understand.

The nature of sound
Sound is sometimes difficult to understand because we are dealing with
something we cannot see. A sound is produced when an object is struck or
rubbed or, in scientific terms, otherwise excited. This causes the object to
vibrate which in turn causes the air to vibrate. These vibrations are sensed
by the ear and we perceive them as sound.

Sound does not only travel through air, it travels through gases, liquids
and solids. You can see sound waves passing .through water by tapping the
side of a rain barrel. However, in a vacuum, such as on the moon or in
space, there is nothing for sound vibrations to travel through and such
environments are totally silent. When you next watch a space movie and
see a spaceship - or planet - blow up with an ear-shattering explosion, you
know that the vibrations produced by such an explosion would have
nothing to travel through and the spectacle would, in reality, be

1

Making Music on the BBC Computer

accompanied by silence. Don't let this deter you from including suitable
sound effects in your games. Films are made for entertainment.

Musical instruments which produce sound by being struck include the
drums, piano, gong and xylophone. Stringed instruments such as the violin
produce sound by being rubbed with a bow. Brass instruments such as the
trumpet and trombone are played by blowing and vibrating the lips: this
excites the air inside the instrument, which vibrates at a pitch proportional
to the length of the brass tubing. The flute is played by blowing across the
mouthpiece to excite the air column inside it. The same principle is at work
when you blow across the mouth of a bottle. Instruments such as the oboe,
clarinet and saxophone contain a reed which vibrates in response to
vibrations from the lips. Clearly, unless we hook up the computer to some
outboard equipment, we cannot create sound in this way.

Looking at sound waves
Sound vibrations travel in a series of waves and different sounds produce
different waveforms. If we play a sound through a microphone and feed it
into an oscilloscope, we can see what its waveform looks like.

A sine wave is a pure tone which is usually only produced by a tuning
fork or by electronic means. It is possible to produce many sounds by
combining sine waves in the fight proportions: this process is known as
additive synthesis, because waves are added together, and it is used in
some commercial synthesisers. Because of the large number of sine waves
you often need to add, it is a costly and time-consuming process.

The following program will plot sine waves according to the amplitude
(loudness) and frequency (pitch) you input. It demonstrates how frequency
and amplitude affect the waveform.

 10 REM PROGRAM 1.1
 20 REM S ine Wave P lo t te r
 30
 40 MODE 4
 50 REM Def ine Windows
 60 VDU28,0 ,4 ,39 ,0
 70 VDU24,0 ,0 ;1279;850;
 80
 90 REPEAT
 100 INPUT"Frequency (1 -10) " ,F req
 110 INPUT"Ampl i tu te (50-400) " ,Amp
 120 PROCSine

2

CHAPTER 1 What is Sound?

 130 PRINT"Press SPACE to en te r ano ther
 wave" ' " 'C ' to c lear sc reen, 'F ' to f in i
sh"
 140 REPEAT
 150 Key=GET
 160 UNTIL Key=32 OR Key=67 OR Key=70
 170 IF Key=67 THEN CLG
 180 UNTIL Key=70
 190 MODE7
 200 END
 210
 220 DEF PROCSine
 230 VDU29,0 ;450 ;
 240 MOVE0,0
 250 FOR T ime=0 TO 1279 STEP 10
 260 DRAWTime,Amp*SIN(RAD(Freq*T ime))
 270 NEXT T ime
 280 ENDPROC

Program notes
The program houses a simple graph-plotting procedure between lines 250
and 270. Line 260, which we will extend later, performs the calculations.
All the VDU calls are very well explained in the User Guide.

At line 150, GET returns the ASCII value of the input character (see
the User Guide page 263).

Try inputting 1 for frequency and 50 for amplitude to begin with. If
you increase the frequency you will see how it bunches the waves closer
together. Frequency is normally measured in 'cycles per second' and the
higher the frequency, the more cycles occur every second. Our frequency
figures are scaled down for the program and you can assume an input of 1
represents a frequency of around 100 cycles per second. An increase in
amplitude will make the wave taller without affecting the frequency: in
other words, the volume will increase but the pitch will remain the same.

If you replace line 260 with:

260 DRAWTime,Amp *SIN(RAD(Freq*Time))+Amp*SIN
(RAD(Freq *2*Time))

you are adding two sine waves together, and can see the effects of additive
synthesis. Notice how the waveform changes. You can add more sine
waves in line 260 by modifying the variable Freq in the expression:

3

Making Music on the BBC Computer

Amp*SIN(RAD(Freq*Time))

and tagging it on to the line with a + as in the above example. If you
modify the value of Amp such as

Amp*.5*SIN(RAD(Freq*Time))

you are reducing the amplitude, so its effect on the final wave will be
reduced. These additions are known as harmonics and they are what makes
each sound distinctive. Most sounds we hear in everyday fife have quite
complex waveforms and are made up from many sine waves of varying
frequencies and amplitudes. More examples are given in the section about
timbre.

The sound of the BBC micro
Another form of synthesis, known as subtractive synthesis, takes a
waveform and filters out certain harmonics. A tone control is a simple
filter and blocks out the higher frequencies as you increase its effect. This
method is more common than additive synthesis and is in general use in
most synthesiser systems.

Before you start filtering, you need something to filter. A sine wave,
consisting of only one frequency, would be of little use. The best
waveforms are those which contain a lot of harmonics, which give you
plenty of body to chip away from: most synthesisers offer triangular,
square and sawtooth waveforms. The triangular wave is very like a sine
wave but contains a few harmonics, the square wave sounds a little like a
clarinet and the sawtooth wave produces a sound with reed-like qualities.
Type and run this program:

10 FOR Pitch=1 TO 253 STEP 4
20 SOUND1,-15,Pitch,10
30 NEXT Pitch

This will play 64 notes, each a semitone apart: it covers the five octave
range of the sound chip. Can you tell which type of waveform the sound
chip is using to make the sounds? As you listen, you will notice that the
lower notes sound quite rich and full but, as the notes rise, they seem more
percussive and lose their warmth. The lower notes almost have a clarinet-
like quality about them and you would be right in thinking that the sound
chip produces a square wave. In reality, it is a distorted square wave and its
waveform alters as the pitch alters. This is why you hear a change in tonal
quality as the notes get higher.

Just as sound is caused by vibrations in the air, so the sound chip
generates its sounds with electrical vibrations. Basically, it sets up a series

4

CHAPTER 1 What is Sound?

of oscillations: the higher the pitch, the faster the oscillations. These
oscillations are sent to the loudspeaker, which vibrates at the same
frequency and produces a sound: it is not necessary to know exactly how it
does this, but the result is, perhaps obviously , an electronic sound. What
restrictions this places on our programming, we will see during the course
of this book.

In order for a sound to exist at all, it must have four parameters:

1) pitch
2) volume
3) duration
4) timbre

The sounds produced by acoustic instruments are actually very complex
and change throughout their duration. We will look at these four aspects of
sound and see how they relate to musical instruments.

Pitch: high and low notes
The pitch of a note means how high or low it is on the musical scale and
the word frequency is often used synonymously with it. (Frequency is
more properly an attribute of the waveform, in terms of how many times it
vibrates or oscillates per second. The human ear can sense sounds with a
frequency of from 20 to 20,000 cycles per second (scientifically referred to
as hertz and abbreviated to Hz.). The upper frequency limit will drop as a
person gets older but no one should have any trouble hearing the range of
the BBC sound chip.)

A tune consists of a series of pitches which have a definite relation to
each other. In western music, this is based on the scale we get from a
piano, where each note is a semitone away from its neighbours: the
previous program demonstrated this. The notes are grouped into sections,
which we will look at later, to form scales such as C major, B minor, etc.

On a piano, the pitch of the notes is fixed. You can't, unless the piano is
out of tune, play in the cracks. Even if you are tone deaf, as long as you hit
the right keys you will produce pleasant music. Other instruments, such as
those of the string and brass family, require more control over pitch and
notes can be 'slurred' from one to the other. If this takes place over several
notes it is known as a portamento and sounds like this:

10 FOR Pitch=53 TO 149
20 SOUND1,-15,Pitch,1
30 NEXT Pitch

This is a favourite sound easily created on most synthesisers. The same
thing on a piano, harp xylophone would sound something like this:

5

Making Music on the BBC Computer

10 FOR Pitch=53 TO 149 STEP 4
20 SOUND1,-15,Pitch,1
30 NEXT Pitch

Here, we are playing in semitones and you can hear the discrete pitches:
this is known as a glissando. Both effects are much used by jazz musicians
and can add a human touch to synthesised music.

The BBC micro divides each semitone into four and, when we get
down to this minute level of note division, the notes tend to blur into one
another as this shows:

10 FOR Pitch=101 TO 149
20 SOUND1, -15,Pitch,10
30 NEXT Pitch

You can probably still hear the separate pitches, but they are generally too
close together for normal western ears to appreciate musically. If you
replace line 10 by:

10 FOR Pitch=1 TO 255

you will hear that the scale is uneven in parts, indicating that the pitches
produced by the sound chip are not equally spaced. Oriental music uses
pitches which are less than a semitone apart, which is why it often seems
out of tune to westerners.

Volume
This is how loud or quiet a sound is and, at first, loudness as a quality of
sound may seem rather simple and not as important as the others. It is not
quite as straightforward as that

Many factors affect the perceived volume of a sound. Reverberation,
echo, vibrato and duration all tend to increase volume, as does the addition
of harmonics. For example, a sound lasting 1/100th or even 1/10th of a
second will not seem as loud as a sound lasting one second. For most
purposes this will make little difference to our experiments and we can
simply set volume levels as we require them but, as you will have heard
from some of the previous program examples, the volume tends to alter
with pitch. If you are writing a tune in two or three parts and set all the
parts at the same volume level, you may find that, at certain points in the
tune, some lines get lost behind others. This is a result both of the
properties of sound and of the sound chip, and can only be overcome by
altering the volume of individual lines and notes where required. You will
find that generally it is not a serious problem.

The loudness of a sound will vary during its production. For example, a

6

CHAPTER 1 What is Sound?

piano, xylophone or any other percussive instrument produces a note
which sounds immediately upon playing and then dies away. A violin
takes just a fraction of a second before its note reaches full volume. Brass
instruments sound with a sharp attack, even when played quietly, as an
initial gust of breath is required to start the air in the tube vibrating. This
variation in volume is called the 'loudness contour', or envelope of a sound,
and plays an important part in determining instrument characteristics. Try
this:

40 FOR Volume=-l5 TO -1
50 SOUND1,Vo1ume,53,1
60 NEXT Volume

It sounds like a percussive instrument being tapped smartly. Now try this:

10 FOR Volume=l TO -15 STEP -1
20 SOUND1,Volume,53,1
30 NEXT Volume

This sounds like a recording of an instrument being played backwards. It
sounds unnatural, and it is, because most sounds don't happen that way:
they don't work up to a crescendo and then stop. If you run both programs
together, you will see how the sound has become more natural.

The ability to produce backward sounds is useful in synthesis and we
can make use of it on the BBC micro to create lots of interesting effects.

Rather than control the SOUND command with a FOR. . . NEXT loop,
we can use the ENVELOPE command to create a predetermined set of
volume characteristics like this:

10 ENVELOPE1,1,0,0,0,0,0,0,127,-1,-1,-1,126,1
20 FOR Pitch=53 TO 101
30 SOUND1,1,Pitch,10
40 NEXT Pitch

This creates a percussive envelope and produces a piano-like sound. Alter
line 20 to:

20 FOR Pitch=149 TO 245 STEP 5

and notice how, because of the change in pitch, it sounds more like a
xylophone. Change line 120 back, and alter line 10 to:

10 ENVELOPEl,1,0,0,0,0,0,0,3,-100,0,0,126,0

This gives us our backward sound and, if it did not cut off so sharply, it
could form the start of a violin-type envelope. If you alter the Pitch values,

7

Making Music on the BBC Computer

notice how it loses its violin-like quality.
All these effects use the same sound generator and demonstrate how

the ear can be deceived by clever control of envelope parameters. We will
look at this more closely later on.

Duration: the length of a note
Again, the complexity of a note's duration can be deceptive: in order for a
sound to exist at all, it needs some duration. As far as the BBC micro is
concerned, this will not normally be below 1/20th of a second. This is the
minimum time you are able to allot a note in the SOUND command,
although the step intervals in the ENVELOPE command increase in
multiples of 1/100ths of a second.

From a psychological point of view, it is interesting to note the
difference in time perception between individuals. Time seems to pass
more quickly or slowly according to the events surrounding the individual.
A boring after-dinner speaker may think that he has had the floor for
fifteen minutes when he has been talking for half an hour: his listeners may
think that three quarters of an hour have passed. There seems to be little
evidence to show that a good musical appreciation of pitch, volume and
timbre will endow a person with a good sense of time, as timing sense is
not normally dependent upon the ear.

Having a sense of timing plays a great part in the creative production of
music. Consider, the only attributes of music a piano player has control
over are volume and time. The timbre and pitch are determined by the
instrument and composer. A performance is judged, however
subconsciously, upon accent, rhythm and phrasing - and of such things are
great musicians made.

Motility: speed and accuracy
Coordination is often regarded as being of prime importance to a musician.
The ability to perform accurately and at speed is at the root of a competent
musical performance. A person may be quick and accurate, quick and
inaccurate, slow and accurate or slow and inaccurate, all in varying
degress. There is a natural limit to the speed at which a musician can play,
but this does not determine how good a musician is. Rather, the way a
musician makes fine alterations in the timing of a piece will affect the
performance.

Such movements and timings can be measured, but are well beyond the
scope of this book. However, we can arrange a simple motility test which
will be of use not only to musicians but to anyone wanting to develop
quick reactions. Motility is a measurement of speed and accuracy in
movement and can be measured by tapping a key or a pencil and recording

8

CHAPTER 1 What is Sound?

the average number of taps made each second.
The following program does this and records the number of taps made

in a five-second period.

 10 REM PROGRAM 1.2
 20 REM Mot i l i t y Tes te r
 30
 40 ON ERROR GOTO 290
 50
 60 ENVELOPE1,11 ,16 ,4 ,8 ,2 ,1 ,1 ,100 ,0 ,0 ,
-100 ,100,100
 70 REM Turn o f f Au to Repeat
 80 *FX11,0
 90
 100 REPEAT
 110 Score=0
 120 CLS
 130 PRINTTAB(4 ,6) "Tap the RETURN key r
epeated ly " ' " as qu ick ly as poss ib le an
d w i th " ' " the min imum o f movement . "
 140 Beg in=GET
 150 T IME=0
 160
 170 REPEAT
 180 Tap=INKEY(0) : IF Tap=13 Score=Score
+1
 190 UNTIL T IME>=500
 200
 210 PRINTTAB(16,10) "STOP"
 220 SOUND1,1 ,100 ,20
 230 PRINTTAB(6 ,12) "Your MOTIL ITY ra t in
g i s " 'Score /5 ; " taps per second"
 240 PRINTTAB(8 ,15) "Another t ry (Y /N)?"
 250 REPEAT:Key=GET AND &DF:UNTIL Key=8
9 OR Key=78
 260 UNTIL Key=78
 270
 280 REM Turn On Auto Repeat
 290 *FX12,0
 300 END

9

Making Music on the BBC Computer

Program notes
The important part of the program lies between lines 170 and 190 which
increment the variable, Score, when the user presses RETURN. The rest of
the program is well REMed. For the curious and the impatient, the
envelope at line 60 is examined in detail in Chapter 6.

Practice will generally increase your motility rating only slightly. An
average for normal adults will be around 8.5 taps per second, rising to 9.3
after two or three weeks practice. Men tend to average one half tap per
second faster than women.

For such an exercise to be valid as a test of musical ability, the test
should be made on a movement similar to the one used during
performance. A pianist, therefore, should be tested on a piano key and a
violinist on a violin string. On simple tapping tests such as the one
provided by the program, the highest speed recorded is about 12 taps per
second, although rates as high as 15 have been reported.

Timbre: the quality of sound
Timbre (pronounced 'tarn-burr') or tone colour is that quality of a sound
which enables us to distinguish between two sound sources producing
sounds at the same pitch. It is usually very much affected by pitch and the
sound envelope; for example we know that the low notes of a clarinet have
a sound quality different to that of the high notes. This is evident in the
BBC micro's sound generator, too, as we have already heard.

Tone colour is a result of the combination of harmonics in a sound. We
saw the effects of adding sine waves in the Sine Wave Plotter program.
Load the program again and alter line 260 to:

260 DRAWTime,Amp*SIN(RAD(Freq*Time))+Amp*1/2*SIN
(RAD(Freq*2*Time))+Amp*1/3*SIN(RAD(Freq*3*Time))+
Amp*1/4*SIN(RAD(Freq*4*Time))+Amp*1/5*SIN
(RAD(Freq*5*Time))

This adds the second, third, fourth and fifth harmonics to the fundamental,
or main, tone, which is why it's so long. The fundamental is usually the
strongest, that is loudest, frequency and gives the note its pitch. If you run
the program, you will see that it produces a waveform like a sawtooth,
from which it gets its name. If you add more harmonics in the same
proportion, you will iron out the bumps and produce a better-looking
sawtooth.

Alter line 960 again.

10

CHAPTER 1 What is Sound?

260 DRAWTime,Amp*SIN(RAD(Freq*Time))+Amp*1/3*SIN
(RAD(Freq*3*Time))+Amp*1/5*SIN(RAD(Freq*5*Time))+
Amp*1/7*SIN(RAD(Freq*7*Time))

This draws a square waveform, similar to the one produced by the BBC
micro's sound chip. This time we are adding the odd harmonics and if you
add more you will get a squarer wave.

You can experiment by adding various other harmonics, even by
altering the SIN function to COS, and you will produce some quite
complex waveforms. If you get a more detailed book about sound
synthesis and find harmonic analyses of instrument waveforms, you will
be able to work out which sine waves are required to produce the sound.

As far as the BBC micro is concerned, we have no control over the
waveform but, by clever use of the SOUND and ENVELOPE commands,
we can trick the ear into thinking that what it hears is something other than
a dressed-up distorted square wave. This is because the ear tends to take
more notice of the envelope of a sound than the actual timbre. There are
limits, however: we will be testing and exploring these throughout the
book.

11

Making Music on the BBC Computer

12

CHAPTER 2
What is Music?

Music has been called a compromise between chaos and monotony and we
can easily find examples; of both.

Many musicians are experimenting with computers, not necessarily
computers with sound chips, and many computer enthusiasts are exploring
the sound capabilities of their micros. Unfortunately, not all computer
users are musicians and some may feel that the benefits of studying music
do not outweigh the effort required in learning it. If their aim is simply to
get more from their micro, they may have a point, although music brings
its own pleasure and rewards.

As this is a book about music not written solely for the experienced
musician, it would be incomplete without some attempt at explaining the
rudiments of music. Complete books have been written on the subject and
it would be foolish to try to duplicate their contents in a few pages.
However, the desirability of having a reference section built in to the book,
and the necessity to lay down at least a few rules to aid those with little
prior musical knowledge, prompted this section.

As you are reading this book, you probably have some interest in
music. This chapter aims to provide sufficient information for you to take a
piece of music and program it into the computer - and to know what you're
doing and why you're doing it.

The language of music
Learning music is like learning another language, only easier. If you want
to be a concert pianist and can't yet read music you have probably left it
too late, but it is never too late to learn music for its own sake - it will
bring many hours of pleasure and enjoyment.

One of the problems facing the newcomer to music is the sight of
masses of black dots on a page full of lines. They all look the same. If your
aim is to take a sheet of music, sit down and play it then you need to study.
But, for the purposes of this book, you only need to read about the ideas
and principles behind the dots and lines and refer back to this chapter when
necessary: it is intended to be a potted reference section rather than an
intensive teaching course. If you want to go further and study music, there
are dozens of good books available. As with most things, you will find that

13

Making Music on the BBC Computer

repeated study leads to a natural memorisation.
We all know what music looks like, even if we can't read it, and you

may think that there must be an easier way to represent the ideas behind
the notes. In our programs we will not always be referring to conventional
music notation but it helps to know what it is and what it represents. You
will find musical ideas much easier to follow and it will increase your
appreciation of all kinds of musical events. You will also be able to
convert written music to program form.

Music is written the way it is because of convention. It is simply the
way it developed over the years and the advantage of the system, some say
the only advantage, is that it is recognised world-wide. If you have no
intention at all of communicating your ideas to others through anything
other than a finished performance, there is nothing to prevent you
developing your own musical system. There are, in fact, several alternative
systems of music notation in use, all supposedly easier to learn: these have
not yet achieved widespread use and are therefore limited in their range of
effective communication, which is what music is all about.

The two most important items of information we get from a piece of
music are the pitch of the note and how long it lasts. We will look at how
pitch is represented first.

The pitch of a note
In conventional notation, notes are arranged on a set of five fines called a
staff or stave. Pitch is indicated by placing notes on the lines or in the
spaces. The higher the note placement, the higher the pitch. The notes are
given letter names, A through to G. When you reach G you start again with
A, as shown in Figure 2.1.

Figure 2.1

!G
D
2

E
2

F
2

G

2
A

2
B

2
C

2
D

2
E

2
F

2
G

2"
F
2

G
2

A
2

B

2
C

2
D

2
E

2
F

2
G

2
A

2
B

2

Notes can be placed above and below the fines to extend the range.
These notes are written on and between short fines called leger lines which
are really just an extension of the stave, as shown in Figure 2.2. The stave
could consist of a set of ten or more fines but that would be very confusing
and difficult to read. The number of leger fines can be extended as far as
you wish but, again, too many make the music difficult to read.

To increase the range of notes still further and maintain readability,
from the other, each is given a clef sign which shows the position of the
notes in relation to the stave. The two most common clefs, and the only
ones we will concern ourselves with here, are the treble or G clef and the
bass or F clef, as shown in Figures 2.1 and 2.2. The treble clef loops about

14

CHAPTER 2 What is Music?

the fine which represents G, and the bass clef has two dots which sit either
side of the F line.

Figure 2.2

!G

"
E

=2
D

=2
C

=w=2
B

=w=2
A

=w=w=2
=x=x=2 =x=x=2 =x=2 =x=2 =2 =2 2 2 2 2

A=2 B=2 C=x=2 D=x=2 E=x=x=2
A

2
G
2

F
2

E
2

D
2

C
=2

B
=2

A

=w=2
G

=w=2
F

=w=w=2

You will see that, as notes on leger fines in the treble clef move down, they
correspond to notes on the stave in the bass clef and vice versa. Piano
music is normally written on both treble and bass clefs but you will
sometimes see two treble clefs, one above the other, or two bass clefs in a
similar manner.

If these two clefs are still not enough, you can add a small 8va with a
dotted line above notes to be played an octave higher and below notes to
be played an octave lower, as shown in Figure 2.3. This should cover all
contingencies.

Figure 2.3

!G

"
8va

=w=2
 - - ¡=w=2 =w=w=w=w=2

=w=w=w=w=w=2

8va=x=2 - - �=x=x=2 =x=x=x=x=x
=2

=x=x=x=x=x
=2

The interval in pitch between two similar letters is known as an octave and
represents a doubling in pitch or frequency. The interval between a note on
a line and a note in a space is either a tone or a semitone. The first program
example in Chapter 1 played a series of semitones. Even if you can't yet
read music you could probably tell that this was not a 'proper' scale. The
following program will play the scale of C starting on middle C.

10 FOR Scale=1 TO 8
20 READ Pitch
30 SOUND1 ,-15,Pitch,10

15

Making Music on the BBC Computer

40 NEXT Scale
50 END
60 DATA 53,61,69,73,81,89,97 ,101

It sounds complete and is more musically satisfying than a sequence of
semitones. The notes are read from a DATA statement and you will notice
the progression of the intervals: tone, tone, semitone, tone, tone, tone,
semitone. This is the sequence of intervals that all major scales follow and
is what you would get if you started on middle C on a piano and moved
upwards playing the white notes. There are scales other than major scales
which we will look at later.

If all this is new to you, don't try too hard to take it all in at once. Just
read through the chapter and refer back whenever you wish. Figure 2.4
should help. It displays all this information in relation to a piano keyboard.
The note names are shown along with the notes as they would appear on
the stave. Also shown are the numbers required by the SOUND command
to play a particular pitch. The numbers used by the BBC micro are
completely arbitrary and bear no relation to the actual frequency of the
notes.

You will see that the notes on the stave have been transposed an
octave, so that middle C on the keyboard appears an octave lower than
middle C on the stave. The pitches still maintain their relation to each other
and we will discuss why we have done this in the next chapter. We will use
the octave numbers in Figure 2.4 in our musical notation when entering
tunes and they will be of help in transposing music up or down an octave.

Scales
Most musicians can remember practising scales when they began to learn
their instrument - most good musicians still practise - but the study of
scales seems to carry with it a sense of boredom. Fortunately, we do not
have to practise five finger exercises all day, and we really do not need to
wade through mounds of musical theory in order to understand scales.

An important property of music, not always obvious at first sight, is the
fact that there are really only 12 separate notes in the whole musical
spectrum. When you reach the 13th note, the sequence is simply repeated
and the notes will sound an octave higher. This shows what octaves sound
like and plays the six C notes available from the sound chip:

16

CHAPTER 2 What is Music?

Figure 2.4

!G"
A AA=w= JJL =w= JJL =5 =5 5 5 5 5 5 5 6 6 6 6 6 =2 5 5 5 5 5 5 6 6 6 6 6 =6= 6=x =K KL=x =K KL=x =x =K KL=x =x =K KL=x =x =x =Kx x ~ K L=x =x =x =Kx x ~ K KL=x =x =x =x =Kx x ~ K KL=x =x =x =x =Kx x ~ K KL=x =x =x =x =x =Kx x ~ K KL

C
D

E
F

G
A

B

C#
D#

F#
G

#
A

#
Db

Eb
G

bA
b

Bb

C
D

E
F

G
A

B

C#
D#

F#
G

#
A

#
Db

Eb
G

bA
b

Bb

C
D

E
F

G
A

B

C#
D#

F#
G

#
A

#
Db

Eb
G

bA
b

Bb

C
D

E
F

G
A

B

C#
D#

F#
G

#
A

#
Db

Eb
G

bA
b

Bb

C
D

E
F

G
A

B

C#
D#

F#
G

#
A

#
Db

Eb
G

bA
b

Bb

C
D C# Db

B

1
5

13
21

25
33
41

49
53
61

69
73
81

89
97
101

109
117
121

129
137
145
149
157
165
169
177
185
193
197

205
213
217

225
233
241

245
253

9
17

29
37
45

57
65

77
85
93

105
113

125
133

141

153
161

173
181
189

201
209

221
229
237

249

0
1

2
3

4
5

6

MIDDLE C

MIDDLE C

NOTE NAMES

OCTA
VE

NUM
BER

PITCH NUMBERS FOR
SOUND COMMAND

17

Making Music on the BBC Computer

10 FOR Pitch=5 TO 245 STEP 48
20 SOUND1,-15,Pitch,10
30 NEXT Pitch

From the User Guide, page 180, we can see that the intervals in a scale,
moving upwards, have the relation: tone, tone, semitone, tone, tone, tone,
semitone. This means that we can play any scale at all by selecting a start
note and adding those intervals to it. The next program allows you to do
exactly that by altering the variable, Note, in line 10. A jump of a semitone
is represented on the BBC micro by an increase of four in the pitch
parameter of the SOUND statement and an increase in eight gives a jump
of a tone.

10 Note=53
20 FOR Pitch=1 TO 8
30 READ Interval
40 Note=Note+Interval
50 SOUND1,- 15,Note,10
60 NEXT Pitch
70 END
80 DATA 0,8,8,4,8,8,8,4

If you alter the variable, Note, to any value other than 53 (C), and calculate
the notes resulting from the addition of the intervals, you will realise that
every other scale contains at least one black piano key. If you study the
piano keyboard, you will realise that this is a consequence of its
construction. This means that we need a method of telling the player that
the music is not based on the scale of C but on some other scale.

This is done by including a number of sharps (#) or flats (b) at the
beginning of the music to form a key signature. They are arranged on the
stave in a certain order as shown in Figure 2.5. They tell the musician that
each note with the same name as the one upon whose line or space the
sharp or flat rests is to be played either a semitone higher (sharp) or a
semitone lower (flat) throughout the piece. No sharps or flats indicates that
the piece is in the key of C.

For example, if we look at the key of D (with two sharps) we can see
that it tells us to play every F and every C a semitone up. By referring to
Figure 2.4 we can see that this produces F# and C#. If we play a scale
starting on D using these two notes we will move through the intervals
required to produce a major scale. In a similar way, the key of F indicates
that the B note is to be flattened before playing and this produces a scale of
F.

18

CHAPTER 2 What is Music?

!G

"

@@@@
C

A

RELATIVE
MINOR KEY

MAJOR

KEY
A

AAA♯
G

A

♯ E

AAA♯♯
D

A

♯♯
B

AAA♯♯♯
A

A

♯♯♯
F#

AAA♯♯♯♯
E

A

♯♯♯♯
C#

AAA♯♯♯♯♯
B

A

♯♯♯♯♯
G#(Ab)

AAA♯♯♯♯♯♯
F#

A

♯♯♯♯♯♯ AAA

!G

"

@@@@
C

A

RELATIVE
MINOR KEY

MAJOR

KEY

AAA♭
F

A

♭
D

AAA♭♭
Bb

A

♭♭
G

AAA♭♭♭
Eb

A

♭♭♭
C

AAA♭♭♭♭
Ab

A

♭♭♭♭
F

AAA♭♭♭♭♭
Db

A

♭♭♭♭♭
Bb

AAA♭♭♭♭♭♭
Gb

A

♭♭♭♭♭♭
Eb

AAA

Minor scales
The notes on the keyboard can be arranged into scales other than major
scales. Scales provide the basic building blocks from which a tune is
constructed and give the music a sense of tonality, or affinity with a certain
group of pitches. If we play only on the black notes of a piano, we are
using five notes which form a pentatonic (meaning 'five') scale. It sounds
very oriental - or what westerners consider to be oriental.

In more common use is the minor scale. Just to complicate matters,
there are technically two forms of minor scale - the melodic and the
harmonic. Both forms have the same key signature, shown in Figure 2.5,
but vary in the way that the actual scales are played.

An upward harmonic scale moves through the following intervals:
tone, semitone, tone, tone, semitone, three semitones, semitone. When
playing the scale downwards, the same notes are used, as you might
expect.

The melodic minor scale is different. When moving upwards the
sequence is this: tone, semitone, tone, tone, tone, tone, semitone. When
moving downwards the sequence is: tone, tone, semitone, tone, tone,
semitone, tone. You really need not be too concerned with this if you are
just learning music. You only need to know that it exists and to know that
the notes used in a composition can include any combination of any of the
above scales.

We will stop before we get too enmeshed in the subject. Other books
will supply more detailed explanations; my purpose here is only to make
you aware of some of the basics.

When a major and minor key share the same key signature, they are
known as relative keys, eg A minor is the relative minor of C major and F
minor is the relative minor of A major. In Chapter 12, Program 12.3 prints
key signatures along with their relative major and minor kevs.

19

Making Music on the BBC Computer

The scales of C major and C minor are illustrated later in this chapter in
Figure 2.11, so you can compare the notes in the scales with the notes -
used to construct various chords.

Other scales exist. These contain various numbers of notes and various
intervals, but most of them are written using the standard notation we are
discussing and will probably only come to fight, if at all, during an
academic discussion of musical theory.

Enharmonics
For the sake of completeness, it is necessary to add that the same note can
have two names, eg Ab is the same note as G# because a flattened A
produces the same pitch as a sharpened G. Likewise, Eb is the same note
as D#. These notes are known as enharmonics. This simply means that
they sound the same. Musically, if you are playing in a key with flats in the
key signature, you will normally refer to and write notes as flats.
Conversely for sharps.

Accidentals
It may have occurred to you that while playing in one key you may want to
play a note which is not a part of that key. This is done by placing a sharp
or flat sign immediately before the note to be altered. The change in pitch
refers only to that particular note, not notes an octave up or down, and the
change lasts only for the remainder of the bar. If a note has been sharpened
or flattened by the key signature, or by a sharp or flat as just described, and
you want to naturalise it, you use a natural sign () which, again, applies
only to that note and for the duration of that bar. Used in this way, these
signs are known as accidentals.

The length of a note
This section is concerned with the timing of music. There are two aspects
involved which should not be confused: the first is the duration of
individual notes and the second is the tempo or speed of a piece of music.

The duration of an individual note is relative only to the other notes in
a piece and in no way does it determine the speed or tempo of the music.
The duration of notes in standard musical notation is shown in Figure 2.6
along with their British and American names. The American names are
easier to understand immediately and seem to be attracting numerous
converts from the British system.

20

CHAPTER 2 What is Music?

Figure 2.6

NOTATON ENGLISH NAME AMERICAN NAME DURATION VALUE2 SEMIBREVE WHOLE NOTE 32

3? DOTTED MINIM DOTTED HALF NOTE 24

3 MINIM HALF NOTE 16

5? DOTTED CROTCHET DOTTED QUARTER NOTE 12

5 CROTCHET QUARTER NOTE 8

7? DOTTED QUAVER DOTTED EIGHTH NOTE 6

7 QUAVER EIGHTH NOTE 4

9 SEMIQUAVER SIXTEENTH NOTE 2

9; DEMI-SEMIQUAVER THIRTYSECOND NOTE 1

The duration value shows how long each note sounds in relation to any
other. If a note has a dot placed after it, this lengthens its duration by one
half. The tempo of a piece is determined by an instruction given at the
beginning of the music and, although fast pieces will often contain
semiquavers and demi-semiquavers, you cannot absolutely determine the
speed of a piece by just looking at the notation.

Rests play an important part in music too, and rest values are shown in
Figure 2.7. They go by the same name as their note equivalent with 'rest'
tagged on the end, eg quaver rest. These can be increased in length by one
half by the addition of a dot but it is more usual to see a rest of the
equivalent half value placed after the other.

Figure 2.7

NOTATION DURATION VALUE

=+ 32=, 16

- 8

. 4

.. 2

... 1

21

Making Music on the BBC Computer

Beats in the bar
The time signature of a piece of music is indicated at the beginning of the
stave by two numbers, one over the other. The upper figure denotes the
number of 'beats in a bar' and the lower figure denotes the length of each
beat. For example, a time signature of 2/4 tells us that there are two beats
to the bar, each made up of a quarter note or crotchet. 3/4 is three beats to
the bar, each a crotchet, and is the time signature in which most waltzes are
written. 4/4 is sometimes written just as a large C and referred to as
Common Time, and is by far the most common time signature of all
encompassing quicksteps, foxtrots, rock 'n' roll, ballads and most classical
music. The upper figure indicates the pulse or rhythm which runs through
the music.

Figure 2.8

!G3
4 3? @3 5 @5 5 77 A68 7775? @5 75 7 @

!G2
4 3 @5 5 @7777A44 Cor 5 5 5 5 @3 7777@

Time signatures can be altered at any point in the music and, indeed, can
consist of any combination of notes the composer wishes to use. A
selection of time signatures is shown in Figure 2.8 along with various note
values which could be used to fill a bar. In practice, you will rarely come.:
across anything more exotic except perhaps in jazz or avant-garde music.

Triplets, ties, slurs and staccato
These are aspects of music you may well see and they are worth
explaining.

A triplet is a grouping of three notes as shown in Figure 2.9 and they
are played in the same time as two notes of the same value. If you want to
try playing the rhythm, tap two with your left hand and six with your right.
That's easy. Now try tapping four with your left hand and six with your
fight. Not so easy. Triplets are not so straightforward to play on the
computer either, but at least it's a question of programming, not
coordination.

Figure 2.9

!G
þ ÿ5 55

3 PLAYED IN
SAME TIME AS 77A5 5 5

3 PLAYED IN
SAME TIME AS 5 5 A

The tie is a curved line which 'ties' two notes together as shown in Figure

22

CHAPTER 2 What is Music?

2.10. It means that the time value of the second note, and any further tied
notes, is added to the first, and all of them are played as one long note.
This is most often used when a composer wants a note to sound for more
than one bar, but it can be found within a bar to join notes of odd time
values.

Note that the tie can only join notes of the same pitch. If you see
similar looking fines which seem to join notes of different pitches, these
are slurs and are used to indicated that the two notes should be played as
smoothly as possible.

The opposite of slur is staccato. This is a dot placed above a note, and
indicates that it is to be played in a quick, sharp manner and does not have
to sound for its full written duration value.

75? 5 þ ÿ
JJL 5 A!G4

4
4 6 5 @5 5 4 A6 ü ý6 6 6? 8 A

Harmony and chords
Harmony refers to tones sounding simultaneously (as opposed to tones
sounding consecutively, which would be called a melody).

Even if we restrict ourselves to a single octave, we have 13 notes which
can be combined in various ways to create thousands of harmonies, most
of which would be quite unmusical. Restricting ourselves to sounding only
three or four notes at once still produces a lot of combinations. Over the
years, certain combinations of intervals have proven useful in composition
and for providing a background to a melody. These combinations are
known as chords and provide a fairly easy way of adding harmony to a
melody. A chord is generally accepted to be a combination of three or
more notes which means that we will not be able to produce very
complicated harmonies on the BBC micro.

A chord is built up by a sequence of intervals, much like a scale, except
that the notes in a chord can be played together without sounding too
unmusical. The most common chord is the major chord, which is built up
from a root note from which the chord takes its name.

To construct a C major chord, we add an interval of a third and an
interval of a fifth to the C note. These intervals are reckoned in note
names, counted from the root note and in the key of the root note. To arrive
at an interval of a third in the key of C, begin on C, count that as one and
move up the scale until you reach three. This is E. The interval of a fifth is
found in the same way, again counting from the root note. This will bring
you to G. Work this out on the keyboard in Figure 2.4.

To produce a minor chord, the third interval is flattened, ie taken down
a semitone. This produces a 'sad' sound as opposed to the quite bright
effect of a major chord.

Many chords are named according to their construction and names are

23

Making Music on the BBC Computer

given in terms of flattened, augmented (sharpened) and added intervals.
That .is exactly how they are constructed, eg. by flattening the fifth or by
adding a ninth. Some examples are given in Figure 2.11.

Figure 2.11

!G
C MAJOR

=22222222222222=2A

!G♭♭♭ C MINOR (HARMONIC)

=222222♮22♮222222=2A♭
♭♭ C MINOR (MELODIC)

=22222♮2♮22♭2♭22222=2A

!G
C

22=2
Cm

2♭2=2
C+
Caug

♯22=2
C°
Cdim

}2♭2♭ 2=2
C7♭222=2

Cmaj7222=2
C6}222=2

Cmin6}22♭2=2
Cm7♭22♭2=2

C92♭222=2
Cmin92♭22♭2=2

C1122♭222=2

Chords are useful for all manner of musical things and we will be
experimenting with them later in the book. Meanwhile, if you want to hear
what different chords sound like, try the following program:

 10 REM PROGRAM 2.1
 20 REM Chord Sound Demonst ra t ion
 30
 40 CLS
 50 PRINT ' ' '
 60
 70 FOR Chord=1 TO 4
 80 READ Chord$,Notes$,P i tch1 ,P i tch2
 90 PRINT"C " ;Chord$; "=C + "Notes$ '
 100 SOUND&201, -12 ,53 ,60
 110 SOUND&202, -12 ,P i tch1 ,60
 120 SOUND&203, -12 ,P i tch2 ,60
 130 PROCDelay(300)
 140 NEXT Chord
 150
 160 REM Chords w i th 4 Notes
 170 FOR Arp=1 TO 5
 180 READ Chord$,Notes$
 190 PRINT"C " ;Chord$; " (Arpegg io)=C +
"Notes$ '

24

CHAPTER 2 What is Music?

 200 FOR Note=1 TO 17
 210 READ P i tch
 220 SOUND1, -15 ,P i tch ,3
 230 NEXT Note
 240 PROCDelay(200)
 250 NEXT Arp
 260 END
 270
 280 DEF PROCDelay(T ime)
 290 T IME=0:REPEAT UNTIL T IME>Time
 300 ENDPROC
 310
 320 DATA Major ,E + G,69 ,81
 330 DATA Minor ,Eb + G,65 ,81
 340 DATA Augmented ,E + G#,69 ,85
 350 DATA Suspended 4 th ,F + G,73 ,81
 360 DATA D imin ished,Eb + Gb + A ,53 ,65 ,
77 ,89 ,101,113,125,137,149,137,125,113,10
1,89 ,77 ,65 ,53
 370 DATA 7 th ,E + G + Bb,53 ,69 ,81 ,93 ,10
1,117,129,141,149,141,129,117,101,93 ,81 ,
69 ,53
 380 DATA Major 7 th ,E + G + B ,53 ,69 ,81 ,
97 ,101,117,129,145,149,145,129,117,101,9
7 ,81 ,69 ,53
 390 DATA Major S ix th ,E + G + A ,53 ,69 ,8
1 ,89 ,101,117,129,137,149,137,129,117,101
,89 ,81 ,69 ,53
 400 DATA Minor S ix th ,Eb + G + A ,53 ,65 ,
81 ,89 ,101,113,129,137,149,137,129,113,10
1,89 ,81 ,65 ,53
As we cannot sound more than three channels together (not including the
noise channel), chords containing more than three notes are played as
arpeggios and carry with them an implied harmony. An arpeggio is when
the notes of a chord are played in rapid succession as opposed to all at
once.

There are many types of chords but the basic construction principles
remain the same.

Now, armed with the knowledge of these last two chapters, we will see
how it relates to the BBC micro.

25

Making Music on the BBC Computer

26

CHAPTER 3
The BBC Micro and Sound and Music

As we have seen, the nature of sound is quite an intricate and complex
thing. Synthesisers do exist which can recreate and duplicate instrumental
and natural sounds perfectly, but these cost several thousands of pounds.
All of them, as you would expect, are computer based, but produce their
sounds in a slightly different way to the BBC sound chip. Nevertheless, the
BBC micro offers exceptional control over its sound system and we shall
see in this chapter just exactly what can be done with it.

The waveform and timbre of the sound generator's output is fixed and
set: there is nothing we can do to alter it under normal conditions. We can,
however, alter the other three attributes of sound, namely pitch, volume
and duration, and it is by controlling these parameters that we create our
effects.

Pitch
The range of the sound generator extends over five octaves as we saw in
the last chapter. We can not merely program the normal notes of the
western scale but we can, should we feel inclined, experiment with quarter
tone scales and other tonal systems.

The western scale divides the octave into 12 equal pitches which we
call semitones. Experiments have been carried out on other octave
divisions and music has been written for scales consisting of 13, 14, 15, l6
parts, etc. Such tunings, which divide an octave into other than 12 parts,
are known as 'microtonal'. If handled correctly, they can produce
fascinating results and provide a relatively undeveloped area of musical
research for the experimenter.

Such tunings need even greater control over the sound source than we
have with the BBC micro, but you can experiment with 16 and 24 part
tunings and even devise your own scales. I'll leave these ideas with the
more capable adventurers.

The subdivision of a semitone into four enables us to program
portamento effects as we have already seen. This is not possible on all
micros. It also allows us to 'bend' notes in a way similar to a guitar player,
as this program demonstrates.

27

Making Music on the BBC Computer

10 REM Hawaiian Guitar
20 ENVELOPE1,132,0,0,0,0,0,0,126,-10,0,-4,126,100
30 ENVELOPE2,132,-8,0,1,1,0,8,126,-10,0,-4,126,100
40 FOR Note=1 TO 8
50 READ Env,Pitch,Dur
60 SOUND 1,Env,Pitch,Dur
70 NEXT Note
80 END
90 DATA1,53 ,5,1,41,10,1,53,10,2,73,15
100 DATA1,41,5,1,33,10, 1,53,10,2,69,20

The principle involved is simply one of switching envelopes: when you
consider that you can create 16 separate envelopes, you begin to see the
versatility of this idea. If your imagination really runs riot you can create
even more by redefining envelopes while a program is running. For most
purposes, 16 envelopes will probably be sufficient.

In previous chapters we have mentioned envelopes only in relation to
volume and loudness contours but, as you can see and hear from the
program, the ENVELOPE command can also alter the pitch of a note. This
principle will be familiar to most synthesiser owners and players, who are
used to controlling pitch and timbre with the envelope generator. The
ENVELOPE command performs similar functions but it doesn't operate in
quite the same way.

Fitting the notes to the music
The lowest note produced by the sound generator is the B 13 semitones
below middle C. The highest note is the D just over four octaves above
middle C. This arrangement is a little one-sided, catering more for the
piccolo player than the tuba player, and, in any event, most music tends to
be written around the centre of the musical spectrum. A lot of music has a
wide range, some even more than the five octaves the sound chip can
produce, and a lot will have a good balance of high and low notes. Before
programming such tunes, they will have to be arranged or transposed.

You will find the arrangement in Figure 2.4 more convenient when
tackling such programs, as it provides an instant transposition which tends
towards the range of notes you are most likely to find. If a piece of music
contains notes outside this range, or which are predominantly high or low,
it is an easy matter to transpose the notes another octave. For this purpose,
if you wish, you may photocopy the diagram. If you cut between the
keyboard and the stave, you can position the keyboard, which_ covers the
range of the sound chip, beneath the stave in such a Chapter 3 The BBC
Micro and Sound and Music chip you want to use. It is always a good idea
to check the range of notes in the music before commencing programming.

There is, however, an easier and more convenient way. If a tune is

28

CHAPTER 3 The BBC Micro and Sound and Music

entered exactly in accord with Figure 2.4 and you want to play it an octave
lower, you can deduct 48 from each pitch value, either during calculation
of the pitch or when the pitch is sent to the SOUND command. Most of the
programs in this book use a variable called Key, which can be set at the
start of the program to make such alterations.

This is such an easy and simple way around the problem it is almost
like cheating, but the facility is there for us to use, and use it we should.

Volume and duration
For the purpose of programming, these can be considered together. This is
the real domain of the ENVELOPE command and, for synthesiser users,
the ENVELOPE control of the ADSR functions should be easy to grasp.

ADSR stands for Attack, Decay, Sustain and Release and refers to the
change in volume of a note during its production. The ADSR section of the
ENVELOPE command is very comprehensive and allows us to imitate the
volume characteristics of many musical instruments.

The ENVELOPE command is at the heart of most of the effects we
create on the BBC micro and deserves a section to itself. In Chapter 5, we
will investigate the natural envelopes produced by various instruments and
look at ways of making easy the creation of the envelope parameters. We
will also look at ways of relating the numbers to the sounds and effects
they produce.

Improving the sound output
Early models of the BBC micro emit a continuous buzz from the speaker
which changes pitch as a program is being executed. Acorn have said that
this is due to the sound being generated in a digital fashion, but it seems
more likely that it is caused by interference reaching the audio circuits.
Whatever the reason, it can be annoying.

Acorn recommend a modification which involves connecting a }OK
resistor between pin 8 on IC20 and ground, which is a small hole just
below pin 8. IC20 can be found on the main board near the front of the
computer underneath the keyboard. Figure 3.1 illustrates the modification.

This should only be attempted by someone competent in electronics,
and it will probably be taken as invalidating your guarantee. Your dealer
will be able to fit it for you, probably without invalidating your guarantee,
at suitable cost.

An alternative solution is to wire the resistor between pins 15 and 16 an
the 1 MHz expansion bus The easiest way to do this is to solder it to a
socket and fit the socket to the plug under the computer. This will not
invalidate your guarantee. You need an IDC (Insulation Displacement
Connector) Speedblock type, female header socket 2*17 pin.

29

Making Music on the BBC Computer

The modification is not a 100 per cent cure, but it is certainly worth
performing.

Figure 3.1

10kΩ

IC
20

through hole, solder
on other side

Adding an external speaker
Although the two-inch speaker produces a better sound than that of most
micros, it can seem quiet at times and, because it is a small speaker, some
of the range and depth of the sound quality will be lost.

As a first step, there is a small preset volume control close to the
loudspeaker connector under the keyboard and this can often be turned up
a little. This will help in situations where it is not possible to connect
another speaker but, in order to appreciate the full range of sounds
available from the BBC micro, we really do need to feed the output to a
larger speaker.

The audio amplifier in the BBC micro is an LM386 and it is quite
capable of putting out half a watt through an 8-ohm speaker. The following
modification, again, will probably be taken as invalidating your guarantee
and should be carried out with care. The procedure is a very simple and
straightforward one, but should not be attempted by anyone who cannot
handle a soldering iron.

The simplest method is to disconnect the wires running to the internal
speaker and connect them to an external speaker. If we are going to delve
inside the machine, it makes more sense to adapt the system so that we can
select either the internal or the external speaker. We can do this by using a
socket which disconnects the internal speaker when a plug is inserted (and

30

CHAPTER 3 The BBC Micro and Sound and Music

connects it when no plug is inserted). This socket can be mounted in the
back of the computer where the reset button used to be. The reset function
was replaced by the BREAK key but on early models the hole will still be
there. Newer models have no reset hole: you can either use the econet
opening or else put a hole in the case or rear panel at another point. Some
owners have mounted the socket hole in the case at another point. Some
owners have mounted the socket on the side of the case beside the speaker.
Wherever you mount the plug, take special care or get a qualified engineer
to do the job.

The speaker is connected to the main board with two wires which run
into plug PL15. You need to remove the case and the keyboard PCB to get
to it; the plug can be removed, the adaptions made and the plug then
refitted. The connections required are shown in Figure 3.2. The wires will
normally be red and black and, if the external output seems rather quiet,
reverse the leads.

Figure 3.2

PL15

internal
speaker

external
speaker

phone jack socket

This is certainly a modification worth doing. The increase in volume and
quality will more than repay the small effort required to perform it.

Another solution
There is yet another alternative, which consists of routing the sound
through the UHF modulator into your television set. Unless you are an
accomplished electronics constructor, it will be simpler and safer to buy a
ready-made unit from a manufacturer. They cost in the region of £10 and
some can be fitted without soldering. The sound is undoubtedly an
improvement, but is subject to the constraints of the modulator and TV set.

If you have a monitor, or use a TV set which has been adapted for RGE
input, then this will not work. Many monitors and adapted TVs are fitted
with a separate audio input and, if you are considering the purchase of such
a unit, it may be a good idea to check its sound potential. It is, after all, a
major part of your computer.

31

Making Music on the BBC Computer

Further improvements and considerations
Hopefully, the newer models of the BBC micro will no longer have the
speaker buzz, although it is unlikely that they will include an extension
speaker socket.

Dirty mains and mains fluctuations are problems which can affect the
whole computer. A severe glitch in the mains power supply can cause the
computer to crash completely. The severity of such fluctuations varies with
location and time of use, etc. The BBC micro is very tolerant of such
things and it is extremely unlikely to succumb and crash completely but
fluctuations can produce a hiss from the speaker. If this worries you
enough you can consider the purchase of a filter plug which 'cleans up the
mains'. These retail at around £15.

The command:

*FX210,1

will turn off the sound generator output and:

*FX210,0

will turn it on again. Unfortunately, this does not turn off the buzz.

Talking music
Standard music notation allows us to communicate our musical ideas to
anyone who speaks the same language. As this is known and accepted
world-wide, we rarely have any problems apart from matters of artistic
interpretation. The micro has not yet been schooled in music which leaves
us to devise our own methods of communication. This can be quite an
exciting and challenging task but, as there are no industry standards, our
methods are only likely to be of use to ourselves. Such considerations need
not worry us unduly so we will consider some ways of talking music to the
BBC micro.

An interesting place to start is to see how other micro manufacturers
have approached the problem. Some require figures to be POKEd into
certain memory locations. Others use ideas similar to those used in the
BBC micro with variations of the SOUND command and some even allow
the user to specify a particular note by name and octave number. Not all
can synchronize four channels of sound; some of those which can, require
the use of machine code.

The lesson to be learned here is that no personal micro manufacturer
has yet devised a good BASIC music programming language. BASIC is

32

CHAPTER 3 The BBC Micro and Sound and Music

just not a very suitable language for the programming of music. The more
expensive, dedicated music micro manufacturers tend to develop their own
MCL (Music Composition Language).

So where does that leave us? Really, we're free to design a system to
suit our own ideas, unhampered by precedence. Needs may vary and we
can design different systems to suit different applications. Throughout the
book, though, we will normally assume that we want to enter notes from
conventional notation and play them through the computer. There are
several methods of turning the notes into numbers.

The numbers method
This is the method used by the SOUND command: it is simply a list of
numbers which correspond to a particular pitch, eg 53=middle C. This is
fine, but if you want to enter a lot of notes it is easy to lose your place; and
if you subsequently want to edit the tune, you have few clues as to what
sound a particular sequence of numbers makes. Computers like numbers,
but most humans prefer something a little less abstract.

It is worth bearing in mind that, if you only require a fanfare or other
short tune, this is the method to choose. A few dozen notes will not usually
cause severe problems in entering or editing and this is the method used in
the previous examples in this book.

The other methods
These are all variations on a theme. The idea is that we input notes in a
form we find easy to understand and let the computer convert them to
numbers it can understand. The variations lie in the ways in which we
initially code the notes. Preference will vary from person to person.

There already exist several forms of notation for specifying notes
without using a stave. Most consist of the note name followed by a number
to represent the octave such as C1, B5, F#3, etc. Other systems employ a
set of apostrophe marks (') to indicate the octave such as C', A'', D#''', etc
or D'''#, G''#. Some systems place the lines horizontally, directly over the
note, some use roman numerals to indicate the octave and some count in
semitones so that C4 would be followed by C#5, D6, D#7, etc.

I think the easiest to understand, to enter and to edit, and which
produces the least number of mistakes en route, is the octave number
version. You may disagree, so feel free to adapt the system to your own
needs. Although the principle behind the octave number systems are the
same, they may vary according to which octave the numbers represent.

On page 181 of the User Guide is an octave number system which puts
middle C, pitch value 53, in octave 3. The only note in octave 1 is B - not
counting the A# for reasons we shall discuss later - which seems like a

33

Making Music on the BBC Computer

waste of an octave. Other numbering systems count middle C as C4 and
work up and down from there, some use a superscript and subscript system
which designates middle C simply as C, the octaves above C as C1, C2, etc
and the octaves below as C1, C2 etc. The system described below can be
adapted to any other notation system you feel more comfortable with.

Figure 3.3

OCTAVE NUMBER
0 1 2 3 4 5 6

C 5 53 101 149 197 245
C# 9 57 105 153 201 249
D 13 61 109 157 205 253
D# 17 65 113 161 209
E 21 69 117 165 213
F 25 73 121 169 217
F# 29 77 125 173 221
G 33 81 129 177 225
G# 37 85 133 181 229
A 41 89 137 185 233
A# 45 93 141 189 237
B 1 49 97 145 193 241

Note to Number Conversion Program
This is based upon the notation illustrated in Figure 3.3 and Figure 2.4.
Octave 1 begins with the lowest available C which has a pitch value of 5. It
is usually musically convenient to begin an octave with a C. The lower
tones of the sound chip are richer than the upper ones and are generally
more pleasing: I tend to find myself working more with these lower tones,
especially for 'orchestral' pieces. Using the method described above in
relation to Figure 2.4 you can, of course, use any range you wish.

 10 REM PROGRAM 3.1
 20 REM Bas ic Program to Conver t
 30 REM Note Names & Octave Numbers
 40 REM In to P ITCH va lues
 50
 60 PROCSetup
 70 FOR Count=1 TO 16
 80 PROCChooseNote
 90 PROCPlayNote
 100 NEXT Count

34

CHAPTER 3 The BBC Micro and Sound and Music

 110 END
 120
 130 DEF PROCSetup
 140 Sca le$=" C C# D D# E F F# G
G# A A# B"
 150
 160 REM Key Sets Va lue fo r T ranspos ing
 170 REM Key=1 Wi l l P lay as You Wou ld
 180 REM Expec t . Key=5 Wi l l P lay
 190 REM 1 Semi tone Up. Key=9 w i l l
 200 REM P lay 1 Tone Up e tc .
 210
 220 Key=1
 230
 240 DIM NotesToChooseFrom$(15)
 250 FOR S%=1 TO 15
 260 READ Note$
 270 NotesToChooseFrom$(S%)=Note$
 280 NEXT S%
 290 ENDPROC
 300
 310 DATAG1,A0,B0,C2,D2,E2,F#2,G2,A2,B2
,C3,D3,E3,F#3,G3
 320
 330 DEF PROCChooseNote
 340 Note=RND(15)
 350 Note$=NotesToChooseFrom$(Note)
 360 ENDPROC
 370
 380 DEF PROCPlayNote
 390 PROCAna lyseNote
 400 PROCCalcu la teP i tch
 410 PRINT Note$,P i tch ,Octave
 420 SOUND1, -15 ,P i tch ,5 :SOUND1,0 ,0 ,0
 430 ENDPROC
 440
 450 DEF PROCAna lyseNote
 460 IF LEN(Note$)<2 OR LEN(Note$)>3 TH
EN PRINT"ERROR IN DATA " ;Note$:STOP
 470 IF LEN(Note$)=2 THEN NoteName$=LEF
T$(Note$,1) ELSE NoteName$=LEFT$(Note$,2

35

Making Music on the BBC Computer

)
 480 Pos i t ion InSca le= INSTR(Sca le$,NoteN
ame$) /3
 490 Octave=VAL(RIGHT$(Note$,1))
 500 ENDPROC
 510
 520 DEF PROCCalcu la teP i tch
 530 P i tch=Key+Pos i t ion InSca le*4+(Octav
e-1) *48
 540 IF P i tch<0 OR P i tch>255 THEN PRINT
"ERROR IN DATA " ;Note$:STOP
 550 ENDPROC

Program notes
As a demonstration, the program plays a series of 16 notes chosen at
random from the 15 notes in the DATA statement at line 310. The notes
are allocated to the array, NotesToChooseFrom$.

Line 140 sets up Scale$ which contains the notes of the scale. The
spaces are important. It is worth pointing out that the black notes are all
written in sharps. It is generally not a problem for us to enter notes in this
way, although if the music contains flats you will have to do a mental
conversion to sharps. Figure 2.4 will help. Also, the keyboard has a ready-
made sharp sign (#) the use of which avoids any possible confusion
between the flat sign and the letter b. The program can be adapted to cater
for the input of both sharps and flats if this suits you better.

The use of the variable, Key, at fine 220 is optional but makes any
transposition easy. As mentioned earlier, setting Key to -47 (ie 1-48) will
play the tune an octave lower.

The note name is analysed at fine 450. As each note will be either two
or three letters long, fine 460 checks for errors in the DATA.

Line 470 separates the note name from the octave number and 480
determines its position in the scale. The higher its position, the higher the
pitch.

Line 490 determines the octave and converts it into a numeral, and 530
calculates the pitch.

Line 540 is there in case something has gone wrong.
The task of calculating the pitch has been divided into two procedures,

PROCAnalyseNote and PROCCalculatePitch. These could be combined
into one procedure or turned into a function so that FNPitch(Note$) would
return the pitch value to be used in place of the pitch variable in line 420.
This will be the optimum solution in many cases but, by splitting it, it
allows us to calculate note names and octaves separately. We may want to
do this if the computer is following a set of rules, for example during

36

CHAPTER 3 The BBC Micro and Sound and Music

composition.
The second SOUND command in line 420 produces a silence of one

two-hundredths of a second which is used to separate the notes. This is
produced by a duration value of 0 and is useful for separating notes in
simple arrangements.

The octave numbering system is one lower than that in the User Guide.
It seems to make more sense to call the lowest octave, and one Chapter 3
The BBC Micro and Sound and Music writing Cl, D1, etc to C0, D0 and it
still allows a pitch value of 1 which is B0. This means we need to deduct 1
from the octave number to produce the correct pitch, which we do in line
530. As the computer is doing the calculating work, once we have the
conversion program all we have to do is enter the DATA.

There is an error in the DATA statement in line 310 which shows how
one of the error routines operates. The DATA also illustrates how the
system caters for B0.

We will use this method of note conversion, and variations on it,
throughout the book.

The lowest A#
The User Guide states that a pitch value of 0 produces an A note. This is
not true as this program shows.

10 FOR Pitch=13 TO 1 STEP -4
20 SOUND1,-15,Pitch,8
30 NEXT Pitch
40 SOUND,-15,0,8

You will hear that the difference between pitch values I and 0 is not as
great as that between pitch values separated by a factor of four. It produces
the same interval as that between any two adjacent pitch values, ie a
quarter of a semitone, which is what you would expect.

From the above, it would therefore appear more sensible to use a pitch
value of 0 as the lowest note. This would also be more in keeping with the
true pitches produced by the sound chip: Chapter 6 gives a detailed listing
of its actual output frequencies. As the official pitch values and note names
are fairly well known, it would probably only serve to confuse if we were
to start using other pitch names and values. In practice this will make little
difference and enough information is given throughout the book for you to
make any adjustments necessary for your own purposes.

37

Making Music on the BBC Computer

38

CHAPTER 4
The SOUND Command

It is when BASIC comes across a SOUND command that information is
sent to the sound chip. The ENVELOPE command merely alters the
volume and pitch characteristics of the note the SOUND command has
been programmed to produce. In its simplest form, it must be followed by
four parameters:

SOUND C,A,P ,D

These stand for the following and take the indicated values:

Channel: 0 to 3
Amplitude: normally - 15 to 0 but also 1 to 16 when used with

ENVELOPE
Pitch: 0 to 255
Duration: 0 to 255

Channel and its extensions
The sound chip contains four sound channels numbered 0 to 3 and this
parameter selects which channel is to be used to produce the sound.
Channel 0 is the noise channel and channels 1, 2 and 3 produce the square
wave tones described previously. As channel 0 produces a noise as
opposed to a tone, the pitch parameters have a different effect, which we
will look at later. All four channels can be programmed to sound together
to produce quite sophisticated harmonies and effects.

This first sound parameter, the channel number, can be extended to
four figures like this:

SOUND &HSFC, A, P, D

The ampersand (&) means the following numbers are hexadecimal digits
(see page 71 of the User Guide) but, as the values used in the SOUND
command are all in the range 0 to 3, we do not need to perform any
decimal to hex conversions and can forget about it for practical purposes.
We must not forget, however, to include the ampersand whenever we use
more than one figure in the first SOUND parameter; otherwise the figure

39

Making Music on the BBC Computer

as a whole will be taken as a decimal number and will not produce the
effect we want. The additional parameters and their ranges are as follows:

Hold: 0 or 1
Synchronization: 0 to 3
Flush: 0 or 1
Channel: 0 to 3

When we use the shortened form of the SOUND command as in:

SOUND 1,-15,53,20

the channel is specified - in this case I - and the other parameters default to
0. So, if we do not want to use them, we can ignore them.

Hold
Hold (or Continuation) is described in the User Guide on pages 187, 350
and 352. This is probably the least understood of the SOUND parameters -
which isn't surprising because it is described inaccurately on pages 187 and
350 and all descriptions tell you what can be done with the command, not
what the command actually does.

If H is 0, the default value, the SOUND command operates as normal.
If H is set to 1, the amplitude and pitch parameters in the SOUND
command are ignored, but the duration is obeyed. Normally this would just
create a silence or a rest but, if this command follows a note on the same
channel which is under envelope control, then the previous note may be
extended. To understand this further we need to be aware of the ADSR
functions of the ENVELOPE command.

If the amplitude A in a SOUND command is set to a value between 1
and 16, the volume of the sound is controlled by the envelope with that
particular number. Without an envelope, each SOUND command will last
for the duration set by its D parameter - no longer, no shorter. Once an
envelope is used, D determines the value of the attack, decay and sustain
periods only. If no other commands follow on the sarrye channel, it will be
allowed to continue into the release phase of the envelope instead of
terminating. Normally the next note in the sound queue will occur as soon
as the SOUND command has completed its allotted duration and the
release phase will not occur. The ENVELOPE command is described in
detail in the next chapter.

A SOUND command with H set to 1 produces a 'dummy' note, as it is
called in the User Guide, for the duration of the D parameter. This will
allow the previous note to continue for this extra time and, if the previous

40

CHAPTER 4 The SOUND Command

note goes into a release phase, it will not be automatically terminated.
Setting H to I does not automatically allow the release phase to complete
but simply allows it to continue. If there is nothing left in the release phase,
there will be nothing to sound and there will be silence for the duration of
the D parameter. Conversely, if the additional time given by the D value of
the dummy note is too short, the release phase will not reach its end.

In effect, setting H to 1 in a SOUND statement creates a time gap equal
to the D parameter through which a previous note on that channel can play
- assuming that there is something there to play.

Misunderstandings may have arisen because the User Guide states,
incorrectly, on page 187 that the amplitude, pitch and duration are ignored,
leading one to believe that this command calculates the release time on the
previous note and allows it to play out. The description on page 350 is
ambiguous and other writers have followed the wrong description.

In practice, this command is not often used. Its main function is to
allow the release section of a sound to occur as the User Guide says. When
you are experimenting with the ENVELOPE command and the parameters
which alter the pitch values, you will find a lot of good noises, sounds and
effects occur during the release part of the ADSR phase. If you want the
release phases to occur in a series of notes, the easiest way to do this is
with the Hold option. This short program illustrates its effect:

 10 REM PROGRAM 4.1
 20 REM HOLD PARAMETER DEMONSTRATION
 30
 40 ENVELOPE1,4 ,0 ,0 ,0 ,0 ,0 ,0 ,126 , -1 ,0 , -
1 ,126 ,60
 50 T IME=0
 60
 70 SOUND1,1 ,53 ,40
 80 PROCTime
 90 SOUND1,1 ,69 ,20
 100 PROCTime
 110 END
 120
 130 DEF PROCTime
 140 REPEAT
 150 IF T IME/100=INT(TIME/100) PRINT T I
ME/100
 160 UNTIL T IME>800
 170 STOP
 180 ENDPROC

41

Making Music on the BBC Computer

Program notes
Trying to time SOUND commands is difficult, because the commands are
stored in a queue and a BASIC program simply moves through them -
unless the buffer is full, in which case the BASIC program is held up.
PROCTime begins after the commands have been issued and prints to the
screen approximately every second.

When you run the program you will notice that the sound produced by
line 70 lasts four seconds. Its D value is 40 which means that the attack,
decay and sustain phases last two seconds, the other two seconds being the
release phase. If you remove line 80 you will see that the new note
produced by fine 90 occurs after two seconds, indicating that the release
phase of the first note was cut short by the appearance of another note in
the sound queue.

Enter another line 80 as follows:

80 SOUND&1001,0,0,40

The first note will now last for four seconds - its own two-second duration
plus the extra two seconds afforded it by the dummy note in line 80. If you
increase the duration parameter in line 80, you will hear the first note
complete its release phase and then there will be silence, while the dummy
note runs its time, before the note on line 90 sounds.

Synchronization
This allows two or more notes to sound at exactly the same time. If S is 0,
the default value, notes are queued as usual and notes on each channel
sound as soon as they reach the front of their respective queues. If S is 1, 2
or 3, then the note does not sound until there is a corresponding note or
notes with the same S value on another channel or channels. If S is set to I
the computer waits for one more note. If S equals 2 it waits for two more
notes and if S equals 3 it waits for notes on all four channels.

The use of this command is quite well documented in the User Guide
but it is not always so obvious how to use it. As a means of sounding notes
at the same instant, it does not seem to be so different from the usual
queuing method. Is this:

10 SOUND1,-15,73,30
20 SOUND2,-15,89,30
30 SOUND3,-15,101,30

so different from this:

10 SOUND&201,-15,73,30

42

CHAPTER 4 The SOUND Command

20 SOUND&202,-15,89,30
30 SOUND&203,-15,101,30

The value of this command, however, lies in the fact that it allows us to
execute other statements between sounds without throwing our sound out
of synchronization, or 'sync' as it is often referred to. Insert this line in the
two previous examples and observe the result:

15 FOR Delay=1 TO 400:NEXT Delay

This feature of the SOUND command can be used to ensure that
programmed tunes play in sync and also to prevent individual channels
wandering off due to the relative slowness of BASIC. Short sequences of
notes may not need this to ensure synchronization. The whole topic is
covered more fully in Chapter 9.

Flush
This, too, is well documented in the User Guide. When F is set to I and the
SOUND statement in which it occurs is executed, it flushes the sound
channel of any notes waiting in the sound queue and stops execution of
whatever note may be sounding at that time. The sound channel with F set
to 1 then executes its note. This can be thought of as jumping the queue
and has several useful applications.

In a game which plays a background tune or which creates sound
effects as objects move, at any point in the program the music can be
interrupted and a different tune played. It does not have to wait until its
present meanderings are completed. By using the F parameter, it flushes
the relevant sound channels and plays something new. Explosions occur in
the same way, exactly at the time an object is hit.

In a musical context, by issuing a command with F set to 1 we can stop
notes sounding on a particular channel. The next program demonstrates the
flushing facility.

 10 REM PROGRAM 4.2
 20 REM CHANNEL FLUSHING DEMONSTRATION
 30 SOUND3, -10 ,5 ,245
 40 SOUND1, -15 ,53 ,60 :SOUND2, -12 ,5 ,60
 50 SOUND1, -15 ,81 ,60 :SOUND2, -12 ,53 ,60
 60 SOUND1, -15 ,101,60 :SOUND2, -12 ,53 ,60
 70 SOUND1, -15 ,117,5 :SOUND2, -12 ,69 ,5
 80 SOUND1, -15 ,113,60 :SOUND2, -12 ,65 ,60
 90 PRINT"PRESS ANY KEY TO STOP"
 100 IF INKEY(400)<>-1 THEN SOUND&11,0 ,

43

Making Music on the BBC Computer

0,0 :SOUND&12,0 ,0 ,0 :SOUND&13,0 ,0 ,0 ELSE P
RINT"TOO LATE"
 110 SOUND1, -15 ,149,2 :SOUND1, -15 ,137,2
 120 SOUND1, -15 ,129,2 :SOUND1, -15 ,137,2
 130 SOUND1, -15 ,145,2 :SOUND1, -15 ,137,2
 140 SOUND1, -15 ,145,2 :SOUND1, -15 ,149,4

Program notes
The INKEY delay in fine 100 gives you four seconds to hit the key. If you
do so, it will flush all channels and proceed with the routine beginning at
fine 110. If you do not press a key within the time limit, the first tune plays
out and the second routine is queued in the normal way and will be heard
after the first tune.

In practice, this program would be better written using DATA
statements and the commands could even be synchronized, but the purpose
is to illustrate the flushing procedure. You can experiment by flushing
individual channels and listening to the effect.

Amplitude
This is well documented and generally well understood. Normal values
vary from - 15 which is very loud (comparatively speaking) to 0 which is
off. (-1 is quite quiet.)

If a positive value in the range 1 to 4 is substituted, this puts the
SOUND command under envelope control, which permits far more
sophisticated variations over volume. If you do not use the RS423 and
cassette output buffers, ie the BPUT# command, then up to 16 envelopes
can be used and A can take a value up to 16.

The volume of a sound is affected by many factors, as we saw in
Chapter 1. If the amplitude of a waveform is doubled the sound does not
appear to be twice as loud. This is because we perceive sound in a
logarithmic fashion. If vibrato or tremolo is applied to a note it will seem
louder, and volume varies with pitch, too, so that low notes need more
power to sound as loud as higher notes.

The study of loudness and volume is a science in itself. For our
purposes we only need remember that, because of the vagaries of the sound
chip, the loudspeaker (whichever one we are using) and its enclosure, and
the properties of sound itself, some notes may overpower others.

44

CHAPTER 4 The SOUND Command

Pitch
This can take values from 0 to 255 and selects tones in quarter of a
semitone intervals. If we want to use the conventional western scale of
music, we must work in increments of four. Figures 2.4 and 3.3 show how
the values of P correspond to printed notes and the keyboard.

Channel 0, the noise channel, operates in a different way and the P
parameter produces the following effects:

0 High frequency periodic noise.
1 Medium frequency periodic noise.
2 Low frequency periodic noise.
3 Periodic noise of a frequency determined by the pitch of channel 1.
4 High frequency white noise.
5 Medium frequency white noise.
6 Low frequency white noise.
7 White noise of a frequency determined by the pitch of channel 1.

Try the sounds to hear what they are like. The following demonstrates the
effects of setting P to 3:

10 SOUNDO,-15,3,200
20 FOR Pitch=0 TO 200
30 SOUND1,0,Pitch,1
40 NEXT Pitch

Alter the P parameter in line 10 to 7. Experiment by putting channel 1
under envelope control.

The noise channel deserves a section to itself and is discussed in detail
in Chapter 7.

Duration
This sets the length of time the note is to sound in twentieths of a second.
If D is set to 255, the sound will continue indefinitely until stopped by
pressing ESCAPE or by flushing the channel. With D set to 0, the note is
given a duration of one two-hundredth of a second. This is very useful for
separating notes of the same pitch. For example:

10 SOUND1,-15,53,20
20 SOUND1,-15,54,20

will sound as one note with a total duration of two seconds. If you insert:

15 SOUND1,0,0,0

45

Making Music on the BBC Computer

this will cause a slight separation between the notes.
We can time the length of this duration by the following:

10 TIME=0
20 FOR X%=0 TO 500
30 NEXT
40 PRINT TIME/100

Run it a few tunes to get an average time for the completion of the loop.
Insert line 25:

25 SOUNDl,0,0,0

This will hold up the loop for the length of the duration. If you subtract the
first time from the second time and divide by 500, you will get a figure just
over one two-hundredth of a second. The extra time is accounted for by the
time, it takes the OS to sort out its instructions, and it is not very long.

If a tune is programmed in more than one part and this technique is
used a lot, the tune may eventually run out of sync. There are other ways of
separating notes and maintaining synchronization. One answer is to use
envelope control.

Referring to Figure 2.6, if you assign the duration values there to the
actual D parameter, you have a workable set of note durations which will
be about right for tunes of moderate tempo. As tempos can vary widely
you may find you have to increase or decrease these values but the
relationship between note durations must be maintained. If you reduce the
values to their lowest common denominator, you can add a 'tempo' variable
for easy adjustment of the speed of the piece.

If an envelope has been selected, D determines the total of the attack,
decay and sustain periods but not the release phase. This was mentioned in
relation to the Hold parameter and is discussed more fully in the next
chapter.

Out of range values
The User Guide gives the range of duration values as being between 0 and
255. On page 348 it says that setting D to -1 will make the note last
indefinitely, and a duration of between 0 and 254 will give a note a
duration of that number of twentieths of a second. The statement about 0 is
not true as we have seen and, in fact, -1 has the same effect as 255. This is
because the values are brought within the range the sound chip expects. If
you try to go off the top of the range the values wrap around and you find
yourself coming up from the bottom - and vice versa.

46

CHAPTER 4 The SOUND Command

The reasons for this are a little technical and it is not necessary to know
why this happens, but the curious may gain further insight from
examination of the MOD and DIV commands in the User Guide.

All the SOUND command parameters are treated in a similar way and
reasons need not concern us-so long as we keep our values within their
allotted range. There is nothing to be gained by going outside the range, as
the computer will simply reduce them to an acceptable value. Such
instructions will not generate an error and the only time, apart from
incorrect input of data, when we need to be aware of the limitations is if
we are creating values through calculation. For example, trying to play a
scale with pitches going beyond 255 will bring the pitch back down to 0 to
start again from there.

All SOUND commands are expected in integers. If they are not given,
the non-integer part is ignored, eg:

SOUND 1,-15,53,20

produces the same note as:

SOUND1,- 15,53.99999 ,20

This can be useful if we are calculating values.
Versatile though the SOUND command is on its own, the range of

sounds it can produce can be expanded enormously by the use of the
ENVELOPE command - which is what we look at in the next chapter.

47

Making Music on the BBC Computer

48

CHAPTER 5
The ENVELOPE Command

The ENVELOPE command is arguably one of the most difficult
commands to master in BBC BASIC. Part of the problem lies in the fact
that it must be followed by 14 parameters and used in conjunction with the
SOUND command. This alone gives us a myriad of possibilities to choose
from and the chances of getting things wrong are considerable.

The advantages of knowing what to do when searching for an effect, as
opposed to resorting to a trial and effort method, cannot be
overemphasised - unless you have a lot of time on your hands; and when
does time pass more quickly than when you're programming your
computer?

Chapter 7 explores the trial and effort method and how to get the most
out of it - with the minimum of effort. This chapter explores the systematic
method, one you will find infinitely rewarding once you are able to think
of a sound and know immediately how to produce it.

The ENVELOPE command has two separate functions. The first is to
control the amplitude of the sound and the second is to modulate the pitch.
When a SOUND command is controlled by an envelope, amplitude control
is automatically passed to the envelope. In order to produce a sound, the
envelope must be configured to do so. Control over pitch is optional and
can safely be ignored when experimenting with the amplitude parameters.
The Hawaiian Guitar program in Chapter 3 demonstrates pitch control.

The complete ENVELOPE command
Using the notation on page 245 of the User Guide, the ENVELOPE
command is followed by 14 parameters and described as follows:

ENVELOPE N,T,PI1,PI2, PI3,PN1,PN2,PN3,AA,AD,AS,
AR,ALA,ALD

The parameter names could have been slightly better chosen but, as these
are in common use and many people will be used to thinking in these
terms, there is little point in adding further complexities to the situation by
introducing new ones. I think of the parameters in these terms:

49

Making Music on the BBC Computer

Number of envelope
Time of each step

PItch 1
PItch 2
PItch 3

Pitch Number of steps 1
Pitch Number of steps 2
Pitch Number of steps 3

Amplitude change during Attack
Amplitude change during Decay
Amplitude change during Sustain
Amplitude change during Release

Amplitude Level for Attack phase
Amplitude Level for Decay phase

They may help, or you may have your own mnemonics. The parameters,
their ranges and functions are fisted in Figure 5.1 for easy reference.

Exploration of the two aspects of envelope control will be much easier
if they are considered separately and, if the six pitch parameters are set to
0, we can observe the effects of altering the amplitude section.

First, we will see how the loudness contour of a sound can be broken
down into sections.

ADSR: the amplitude envelope
ADSR or Attack, Decay, Sustain and Release, has been mentioned in
previous chapters in relation to the way in which the volume of a note
varies during production. Although the ADSR principle is most commonly
used to describe instrument characteristics, the favourite example used to
explain it is that of a car approaching us along a straight road. We hear it
very quietly at first and it gradually becomes louder until it draws level
with us at which point it is as loud as it is going to get. The volume then
immediately begins to decrease. If it stops a little further on for the driver
to ask directions, the engine volume will remain constant. When it drives
off again the volume will gradually fade to nothing. If we plot the volume
against time, the resulting graph might well look like Figure 5.2.

This example is obviously very coarse and long (in terms of time), but
the principle behind the volume variations involved are exactly the same as
those which occur when an instrument produces a note. The note envelope,
however, will usually be over in one or two seconds, often less.

50

CHAPTER 5 The ENVELOPE Command

Figure 5.1

PARA-
METER

RANGE FUNCTION

N 1 to 16 Envelope Number

T Length of each step in
hundredths of a second.

1 to 127 Pitch envelope auto repeats.

129 to 255 Pitch envelope does not repeat.
T assumes a value mod 128.

PI1 -128 to 127 Change of pitch per step in first
section.

PI2 -128 to 127 Change of pitch per step in
second section.

PI3 -128 to 127 Change of pitch per step in
third section.

PN1 0 to 255 Number of steps in first section.

PN2 0 to 255 Number of steps in second
section.

PN3 0 to 255 Number of steps in third
section.

AA -127 to 127 Change in amplitude per step
during attack phase (heading
towards ALA).

AD -127 to 127 Change in amplitude per step
during decay phase (heading
towards ALD).

AS -127 to 0 Change in amplitude per step
during sustain phase (heading
towards 0).

AR -127 to 0 Change in amplitude per step
during release phase (heading
towards 0).

ALA 0 to 126 Target amplitude level AA is
aiming for.

ALD 0 to 126 Target amplitude level AD is
aiming for.

A
M

P
LI

T
U

D
E

 E
N

V
E

LO
P

E
 P

A
R

A
M

E
T

E
R

S

P
IT

C
H

 E
N

V
E

LO
P

E
 P

A
R

A
M

E
T

E
R

S

51

Making Music on the BBC Computer

Figure 5.2

0 10 20 30 40 50 60

LOUDNESS car passes us

car stops here

TIME IN
SECONDS

ATTACK DECAY SUSTAIN RELEASE

For convenience, the loudness contour is divided into phases called attack,
decay, sustain and release. In practice, some sounds have more phases but
details of this nature will be of more interest to synthesists and are
generally beyond the scope of the BBC micro - although such effects can
be obtained by using two envelopes in succession.

The attack phase
This is when the sound first begins. It refers to the length of time required
for the sound to reach a particular, usually maximum, volume. In the case
of the car, the attack phase is long and builds up slowly. Most string
instruments have a slow attack phase which might be around a quarter of a
second. In contrast percussion instruments, such as the piano and drums,
and plucked string instruments, like the guitar, have a fast attack phase and
their sound reaches maximum volume immediately upon playing. Their
attack phase might be as short as one hundredth of a second. Brass and
woodwind have an attack rate somewhere in between.

If you have ever played a synthesiser, this is the sound you hear when
you first hit a key.

The decay phase
This is what happens immediately after the attack phase and is the length
of time taken for the volume to reach a second, usually lower, specific
level. As its name implies, the sound usually decays or drops in volume
52

CHAPTER 5 The ENVELOPE Command

during this phase, but it can remain the same or even increase. Notes from
musical instruments tend to reduce in volume although some will stay the
same.

The decay phase is often longer than the attack phase because whatever
is producing the sound, be it a trumpet or a tin can, will be resonating or
oscillating and the vibrations can't usually be stopped dead. A useful
analogy, again, is the car which cannot pull to a halt without first slowing
down - unless it hits a brick wall which takes us into another area of sound
effects altogether. Instrumental sounds generally need at least a hundredth
of a second or so to dampen down. This helps to explain why a backwards
recording of ar} instrument sounds so strange - it dies away too rapidly. In
fact, it doesn't die away, it's cut off. This is easily duplicated by electronic
means and the ENVELOPE command makes it easy to produce on the
BBC micro.

We have now touched upon the final stage of a sound - the release
phase - and you will often find that the decay phase slides into the release
phase. There is a difference, though, which will soon become apparent.

The sustain phase
After the decay phase, the sound enters the sustain phase. As its name
implies, the volume is sustained at a constant level and, because the sustain
phase is not a measurement of time and the attack and decay phases are, it
sometimes causes confusion. It may help to think of it as the volume level
the sound is at after the decay phase and it could more accurately be
termed a 'volume level'.

The BBC micro adds a further complication by allowing the volume to
reduce during this phase. This is not in keeping with the technical
definition of sustain phase and a reduction in volume is not always
possible even on synthesisers.

On the BBC micro, the sustain parameter is 0 or a negative number.
The length of the phase is determined by the duration parameter, D, of the
SOUND command and the note will continue for that length of time unless
the sustain parameter is a negative number and the volume reaches 0
before the duration time is up. When given a negative number, the sustain
phase behaves like a second decay phase with a target level of 0.

For synthesiser players, the sustain phase is the volume at which the
note continues to sound until you take your finger off the key.

If these descriptions seem to be getting a little involved and
complicated, it is because of the flexibility of the amplitude envelope. The
next program and accompanying explanations allow you to see and hear
what we are talking about, so don't give up.

53

Making Music on the BBC Computer

The release phase
When the sound has gone through all the above phases, it reaches the stage
where it will either continue forever or terminate. If it terminates, it can die
away slowly or it can be cut off suddenly. This is the release phase.

The vibraphone and many percussion instruments have long release
times and fade away slowly. String instruments don't take quite so long but
you can still hear the note hanging there a little before it dies completely.
This phase is a measurement of time, like the attack and decay phases, and
determines how quickly the sound finally fades away.

The previous remarks describing why decay times are usually longer
than attack times apply here, too. The release phase, in fact, is what many
people would refer to as the decay of a note. ADSR is just a convenient
way of subdividing the amplitude envelope into manageable sections and it
is unlikely that confusion will arise over terminology as the meaning will
usually be clear from the context.

On a synthesiser, the release phase begins when you remove your
finger from the key. If you immediately hit another key, the release will
not sound and the attack phase of the next note will occur. Like a
synthesiser, the ENVELOPE command on the BBC micro allows the note
to continue indefinitely or to fade at a predetermined rate. If another note is
waiting in the sound queue, the release phase will not occur and the new
note will sound immediately after the sustain phase.

The complete ADSR envelope: putting them all together
The loudness contour of most instruments and many other sounds can be
duplicated quite accurately by controlling the ADSR phases of the
envelope.

You will probably have realised that not all sounds require all four
phases. An electric organ for example has an attack, sustain and release
phase but no decay. A wood block has an attack and a quick release and a
plucked string on a guitar or banjo has an attack and a somewhat slower
release. Some sample envelopes are shown in Figure 5.3.

You may have realised, or at least you will when you run the next
program, that it is not always possible to determine where one phase ends
and another begins. Sometimes the decay phase will lead straight into the
release phase and the resulting sound will be just one long decay - or
release. For a single note, the difference is not important but, if a note is
followed by another one and its decay effect is produced by the release
section of the envelope, it will be cut short.

You can program sounds without a decay phase or a sustain phase if
you wish. Some synthesisers have a simplified envelope generator known
as an AR generator which only allows the creation of an attack and a
release phase.

54

CHAPTER 5 The ENVELOPE Command

Figure 5.3

P
ia

no
E

le
ct

ric
 o

rg
an

P
ip

e
or

ga
n

T
ub

a,
 tr

om
bo

ne
P

lu
ck

ed
 s

tr
in

g
W

oo
d

bl
oc

k

G
on

g
V

io
lin

, c
el

lo
C

la
rin

et
, f

lu
te

, o
bo

e

We will now see how the ENVELOPE command tackles the problem
of creating an ADSR envelope.

55

Making Music on the BBC Computer

ADSR and the ENVELOPE command
The best way to explore the ENVELOPE command is to be able to hear
and see what is happening as you read about it. The following program
allows you to alter the ADSR parameters and see and hear the resulting
envelope. The program fines increment by 10. Even if you do not enter all
the REM statements, put the fine numbers in so that you can easily add the
Pitch Graph Generator described later in the chapter. To create a blank
fine, enter the fine number, hit the space bar and RETURN.

 10 REM PROGRAM 5.1
 20 REM ADSR Graph Genera to r
 30
 40 *TV255,1
 50 MODE1
 60 PROCSetUp
 70 PROCAxis
 80 Inpu t$=" " :PROCReset :PROCPr in tEnv
 90
 100 REPEAT
 110 *FX15,1
 120 Inpu t$=GET$
 130 IF Inpu t$=" " PROCSound
 140 IF Inpu t$>="1" AND Inpu t$<="8" PRO
CEnv
 150 IF Inpu t$="C" PROCAxis
 160 UNTIL Inpu t$="Q"
 170 END
 180
 190 DEF PROCSetUp
 200 REM Set Tex t Window
 210 VDU28,0 ,4 ,39 ,0
 220 REM Set Graph ics Window
 230 VDU24,0 ;0 ;1279;860;
 240 REM Background=Ye l low
 250 GCOL0,130:CLG
 260 REM Foreground=Black
 270 GCOL0,0
 280 REM Set COLOUR 1 to F lash ing
 290 VDU19,1 ,9 ,0 ,0 ,0
 300
 310 REM Set In i t ia l Parameters

56

CHAPTER 5 The ENVELOPE Command

 320 P I1=0:PI2=0:PI3=0
 330 PN1=0:PN2=0:PN3=0
 340 T=20:T1=T:P i tch=10:P i t1=P i tch
 350 AA=126:AD=-4 :AS=-1 :AR=-6
 360 ALA=126:ALD=80:Dura t ion=80
 370 REM Marker fo r X Ax is
 380 VDU23,224,128,128,128,128,128,128,
128,128
 390 ENDPROC
 400
 410 DEF PROCAxis
 420 YSca le=6
 430 CLG
 440 VDU29,0 ;0 ;
 450 MOVE50,0 :DRAW50,860
 460 MOVE0,50 :DRAW1279,50
 470 VDU5
 480 FOR Mark%=0 TO 780 STEP YSca le*10
 490 MOVE20,Mark%+YSca le*10 :PRINT" - "
 500 NEXT Mark%
 510 FOR Mark%=50 TO 1250 STEP 100
 520 MOVEMark%,50:PRINTCHR$224
 530 NEXT Mark%
 540 VDU 4
 550 REM Set Graph ics Or ig in
 560 VDU29,50 ;50 ;
 570 ENDPROC
 580
 590 DEF PROCEnv
 600 PROCReset
 610 IF Inpu t$="1" t=1
 620 IF Inpu t$="2" aa=1
 630 IF Inpu t$="3" ad=1
 640 IF Inpu t$="4" as=1
 650 IF Inpu t$="5" a r=1
 660 IF Inpu t$="6" a la=1
 670 IF Inpu t$="7" a ld=1
 680 IF Inpu t$="8" dur=1
 690 PROCPr in tEnv
 700 PROCAl te r
 710 PROCPr in tEnv

57

Making Music on the BBC Computer

 720 ENDPROC
 730
 740 DEF PROCReset
 750 b=3: t=3 :aa=3:ad=3:as=3:ar=3
 760 a la=3:a ld=3:dur=3
 770 ENDPROC
 780
 790 DEF PROCPr in tEnv
 800 COLOURb:PRINTTAB(0 ,0) "ENV1, " ; :COLO
URt :PRINT;T ;
 810 COLOURb:PRINT; " , " ;P I1 ; " , " ;P I2 ; " , " ;
P I3 ; " , " ;PN1; " , " ;PN2; " , " ;PN3; " , " ;
 820 COLOURaa:PRINT;AA; :COLOURb:PRINT; "
, " ; :COLOURad:PRINT;AD; :COLOURb:PRINT; " , "
;
 830 COLOURas:PRINT;AS; :COLOURb:PRINT; "
, " ; :COLOURar :PRINT;AR; :COLOURb:PRINT" , " ;
 840 COLOURala :PRINT;ALA; :COLOURb:PRINT
; " , " ; :COLOURald :PRINT;ALD:COLOURb
 850 COLOURdur :PRINTTAB(14,1)SPC(4)TAB(
10,1) "Dur=" ;Dura t ion :COLOURb
 860 ENDPROC
 870
 880 DEF PROCAl te r
 890 INPUT NewVal$:PRINTTAB(0 ,2)SPC(6)
 900 IF NewVal$=" " PROCReset :PROCPr in tE
nv :ENDPROC
 910 NewVal=EVAL(NewVal$)
 920 PRINTTAB(30,0)SPC(20)
 930 ON EVAL(Inpu t$) GOTO940,950,960,97
0,980,990,1000,1010
 940 T=NewVal :T1=T:ENDPROC
 950 AA=NewVal :ENDPROC
 960 AD=NewVal :ENDPROC
 970 AS=NewVal :ENDPROC
 980 AR=NewVal :ENDPROC
 990 ALA=NewVal :ENDPROC
 1000 ALD=NewVal :ENDPROC
 1010 Dura t ion=NewVal :ENDPROC
 1020
 1030 DEF PROCSound
58

CHAPTER 5 The ENVELOPE Command

 1040 ENVELOPE1,T ,P I1 ,P I2 ,P I3 ,PN1,PN2,PN
3,AA,AD,AS,AR,ALA,ALD
 1050 SOUND1,1 ,P i t1 ,Dura t ion
 1060 REM Clear Las t T im ing Resu l ts
 1070 PRINTTAB(0 ,4)SPC(39) ; :PRINTTAB(0 ,4
) ;
 1080 IF T=0 T1=1
 1090 IF T=128MT1=129
 1100 T ime=0:Amp=0
 1110 MOVE0,0
 1120 YSca le=6
 1130 PROCAt tack
 1140 PROCPr in t ("A" ,8 ,32)
 1150 IF OverT ime GOTO 1210
 1160 PROCDecay
 1170 PROCPr in t ("D" ,8 ,32)
 1180 IF OverT ime GOTO 1210
 1190 PROCSusta in
 1200 PROCPr in t ("S" ,8 ,32)
 1210 PROCPr in t (" r " ,40 ,16)
 1220 PROCRelease
 1230 PROCPr in t ("R" ,0 ,0)
 1240 PRINT; "Secs" ;
 1250 ENDPROC
 1260
 1270 DEF PROCAt tack
 1280 REPEAT
 1290 Amp=Amp+AA
 1300 IF Amp>ALA Amp=ALA
 1310 DRAW T ime,Amp*YSca le
 1320 T ime=Time+T1 MOD128
 1330 PROCTimeCheck : IF OverT ime GOTO1350
 1340 DRAW T ime,Amp*YSca le
 1350 UNTIL OverT ime OR Amp=ALA
 1360 ENDPROC
 1370
 1380 DEF PROCDecay
 1390 REPEAT
 1400 Amp=Amp+AD
 1410 IF ALD<ALA: IF Amp<ALD Amp=ALD
 1420 IF ALD>ALA: IF Amp>ALD Amp=ALD

59

Making Music on the BBC Computer

 1430 IF ALD=ALA Amp=ALD
 1440 DRAW T ime,Amp*YSca le
 1450 T ime=Time+T1 MOD128
 1460 PROCTimeCheck : IF OverT ime GOTO1480
 1470 DRAW T ime,Amp*YSca le
 1480 UNTIL OverT ime OR Amp=ALD
 1490 ENDPROC
 1500
 1510 DEF PROCSusta in
 1520 REPEAT
 1530 Amp=Amp+AS
 1540 IF Amp<0 Amp=0
 1550 DRAW T ime,Amp*YSca le
 1560 T ime=Time+T1 MOD128
 1570 PROCTimeCheck : IF OverT ime GOTO1590
 1580 DRAW T ime,Amp*YSca le
 1590 UNTIL OverT ime OR Amp=0
 1600 ENDPROC
 1610
 1620 DEF PROCRelease
 1630 REPEAT
 1640 Amp=Amp+AR
 1650 IF Amp<0 Amp=0
 1660 DRAW T ime,Amp*YSca le
 1670 IF Amp=0 GOTO1700
 1680 T ime=Time+T1 MOD128
 1690 DRAW T ime,Amp*YSca le
 1700 UNTIL Amp=0
 1710 ENDPROC
 1720
 1730 DEF PROCTimeCheck
 1740 OverT ime=FALSE
 1750 IF T ime>Dura t ion*5 T ime=Dura t ion*5
:OverT ime=TRUE
 1760 ENDPROC
 1770
 1780 DEF PROCPr in t (Phase$,Oset1 ,Oset2)
 1790 IF Phase$="R" GOTO1860
 1800 VDU5
 1810 MOVE T ime+Oset1 ,Amp*YSca le+Oset2
 1820 PRINTPhase$
60

CHAPTER 5 The ENVELOPE Command

 1830 MOVE T ime,Amp*YSca le
 1840 VDU4
 1850 IF Phase$=" r " ENDPROC
 1860 PRINTPhase$; "=" ;T ime/100; " " ;
 1870 ENDPROC
When run, the program will print envelope parameters along the top of the
screen and a duration value just below. The pitch values have been set to 0
but can be altered in PROCSetUp. They can't be altered during the course
of the program and will not effect the graph which shows only the ADSR
envelope.

How to use the program
If you press the space bar, the current envelope will sound and its ADSR
graph will be displayed on the screen. The Y (vertical) axis is scaled in
amplitude units of 10. The X (horizontal) axis is in seconds. The keys 1 to
8 allow you to alter the amplitude and duration parameters. 1 will alter T, 2
will alter AA, 3 will alter AD, etc. 8 alters the duration. Selection of one of
these will cause the present value to flash on and off in red and cyan and a
'?' prompt will appear under the envelope. Input the new value and press
RETURN and the new envelope will be displayed. If you press RETURN
without entering a figure the option will be cancelled and the envelope will
remain the same.

You can alter parameters and draw one envelope over another. Pressing
'C' will clear the screen for a new graph. Press 'Q' to quit the program.

If you wish, you can define the function keys to produce the required
input and label them accordingly. This will be useful particularly if you
add the Pitch Graph Generator program later in the chapter.

 10 REM PROGRAM 5.1A
 20 REM Func t ion Key SetUp fo r
 30 REM ADSR Graph Genera to r
 40
 50 REM CLEAR
 60 *KEY0 C
 70 REM T
 80 *KEY1 1
 90 REM AA
 100 *KEY2 2
 110 REM AD
 120 *KEY3 3
 130 REM AS
 140 *KEY4 4
 150 REM AR

61

Making Music on the BBC Computer

 160 *KEY5 5
 170 REM ALA
 180 *KEY6 6
 190 REM ALD
 200 *KEY7 7
 210 REM Dura t ion
 220 *KEY8 8
 230 REM SOUND
 240 *KEY9 " "

Run this before loading the ADSR Graph Program, or renumber and
add it to the end of the main program as a separate procedure. When the
graph is displayed, the letters A, D and S will appear on the screen at a
point immediately following completion of that part of the envelope phase.
The letter r will appear when the release phase begins. A release phase will
always end at 0 (except when it is infinite) unless it is prematurely
terminated by another SOUND command or unless the channel is flushed.
This will not happen in this program as we are dealing with only one note
at a time.

A running total of the time taken so far, in seconds, is printed after each
phase along the bottom of the text screen, the time after R is the total time
taken for the execution of the envelope. This includes the release phase.
Very fast attack times will be printed in exponent format (see the User
Guide pages 225 and 236 for details of print formats).

Program notes
PROCSetUp and PROCAxis are self-explanatory. The main program
works through the REPEAT loop in lines 100 to 160.

PROCSound produces the sound you have set up in the envelope and
then initiates the graph-drawing procedures.

The Pitch and T variables are given assistants in Pitl and Tl. This is so
that we can modify these parameters to make allowances for the way these
values work in the ENVELOPE command, as in lines 1080 and 1090,
without disturbing the original values.

YScale increases the Y values of the graph so it fills the screen. The X
axis represents seconds and one X displacement represents one hundredth
of a second.

PROCAttack, PROCDecay, PROCSustain and PROCRelease are
similar and a description of PROCAttack will cover the principles
involved. The amplitude is first incremented by AA, checked to see it is
not greater than the ALA level and then drawn. Time is incremented by Tl
- MOD 128 so that it stays within amplitude boundaries - and checked to
see if it is greater than the D parameter. If not, it is drawn along the 3£
axis. These two DRAW commands produce the stepped effect which you
will hear with anything but the smallest values of T.
62

CHAPTER 5 The ENVELOPE Command

If the input is a number it calls PROCEnv which controls the text
display and the alteration of parameters. The parameters flash because they
are given their own colour value which is used with the COLOUR
command just before printing in PROCPrintEnv. PROCReset sets all
colours to white and PROCEnv sets the selected parameter's colour to
flash. PROCAlter accepts a new input and allocates it to the selected
parameter. PROCPrintEnv prints the new envelope and returns to the main
loop.

PROCPrint prints A, D, S and r at the appropriate time and place upon
completion of the appropriate phases.

In order to keep the program to a reasonable length there is no scaling,
so sounds which last more than 12 seconds will run off the graph, and there
is no error-checking. You can input almost any value and get some sort of
sound from the program but, unless the values follow the parameter ranges
set out in Figure 5.1, the graph will not always follow the sound accurately

The volume range: hardware and software differences
It is as well to point out now that the volume level can only vary through
16 states which range from - 15 (maximum volume) to 0 (off). The
parameters we feed into the ENVELOPE command would have us believe
otherwise but you can hear the 16 discrete intervals quite easily with large
values of T. Rather than try to show volume variations in terms of these 16
steps, the program produces steps according to the ENVELOPE
parameters.

The important areas of the graph are the start and end points of the
various phases. The steps will indicate the amount of software movement
produced by the envelope, not by the sound chip.

Now, having mentioned it, it will probably be better to ignore it. You
will find it easier to construct envelopes as if the volume varied through
the whole envelope range and, in practice, you will find that the difference
will have little effect upon your envelopes. This information will be of use
if you want to write direct to the sound chip (apart from which it explains
why you can only hear l6 pitch variations)

A detailed look at the amplitude commands
If you follow the parameter ranges listed in Figure 5.1, you will not go out
of bounds but there are other things you need to be aware of:

1) The T parameter determines the length of each step in hundredths of a
second. This affects both the amplitude and the pitch envelopes and is
critical to both. It determines how often the sound is updated by the OS.
With T set to 1, the sound is checked and updated every hundredth of a
second. If T is 5, it is only updated every twentieth of a second. The update
is in the form of a new pitch or volume command. This supersedes the old
value and, when T is greater than I, you can hear the new value taking over
from the old one. This results in the stepped effect which we have

63

Making Music on the BBC Computer

discussed.
When T equals 0 it produces the same effect as when it is set to 1 and

the resulting sounds will be the same.
Values of T over 127 determine whether or not the pitch envelope

repeats. A value of 129 produces the same amplitude envelope as a value
of 1. A value of 128 is the same as a value of 0 (which is the same as a
value of 1). Large values of T will run off the screen.

2) AA can have a positive or a negative value. A negative value is only of
use if it can decrement a positive value. IF a sound follows a sound with a
positive amplitude (eg a one whose volume has not yet fallen to zero) then
AA can be negative but ALA must be set below the existing amplitude
level. This can't be clearly shown in this program as it only deals with one
SOUND and ENVELOPE command at a time and all new sounds begin
with an amplitude of 0. If, however, you attempt to reach a positive ALA
level with a negative AA value, the amplitude level will simply jump to the
ALA value. The program, of course, will try to draw it - unsuccessfully.

3) Likewise, AD can take a positive or negative value. Usually it is
negative but, if ALA is below the 126 maximum, it can have a positive
value and the amplitude will continue to increase. If AD is set to 0 the
sound will continue at the ALA level until the sustain phase is reached,
regardless of the ALD value.

It is worth noting that, to move from an ALA of 126 to an ALD of, say,
100, setting AD to - 126 will get you there no quicker than setting it to -26
as it only needs to be reduced by 26 to reach the ALE) and it will only take
one T step to do so.

4) AS must be 0 or negative. This controls how quickly the sound decays
over the remainder of the duration period. The target amplitude for the
sustain and release phases is always 0.

5) AR must also be 0 or negative. If it is 0 and the amplitude has not
reached 0, the sound will continue indefinitely and the graph will try to
draw it. AR comes into play as soon as the duration period has expired and
you will notice that, if any phase fails to complete before the duration has
expired, the sound immediately passes to the release phase.

6) A duration of 255 will also make the sound last indefinitely.

Using the program and further suggestions
The best way to discover how the ADSR envelope works is to experiment
with the program. You can add extra error-checking routines if you wish.
This will be easy if they simply restrict inputs to the ranges in Figure 5.1,

64

CHAPTER 5 The ENVELOPE Command

but, for complete error-checking, this is not enough. It would be necessary
to ensure, for example, that a positive AD value leads to an ALD value
higher than ALA. You could also add a scaling feature so that envelopes
over 12 seconds would fit the screen. It is possible to produce envelopes
lasting several minutes although they may be monotonous to listen to. The
program will draw most envelopes.

The program is also useful for calculating the exact time taken by
particular phases of the envelope and it is interesting to alter just one
parameter and compare the resulting effects. Synthesists may find it easier
to relate to a specific attack time rather than an attack increment. The times
taken by the attack and decay phases are not explicitly stated in the
ENVELOPE command. Both phases end when the amplitude has reached
its preset value or when the duration has expired. Apart from using the
program, the attack time can be calculated by the following, assuming the
duration is long enough to allow it to complete:

Attack Time=ALA/AA*T

To calculate the decay time we need to take into account the amplitude at
the start of the decay phase:

Decay Time=ABS(ALA-ALD)/ABS(AD)*T

The ABS function (see User Guide page 200) ensures all values are
positive.

I haven't included any sample envelope parameters - discovering your
own is far better and far more interesting - but the instrument
characteristics table near the end of this chapter may give you some ideas
to experiment with.

The pitch envelope
You may be relieved to know that this is slightly easier to understand than
the amplitude envelope. This is the part of the envelope which allows us to
create many weird and wonderful effects as well as more subtle musical
sounds.

As the amplitude envelope varies the volume of the note over a period
of time, so the pitch envelope varies the pitch of the note. The initial
frequency on which the pitch envelope works is determined by the value of
P in the SOUND statement.

PI and PN: the pitch change and the number of steps
The six pitch parameters are paired up, PI1 with PN1, etc, and each set of
two acts in the same way PI determines the change of pitch per step much
as AA and AD, etc determine the change of amplitude per step. The PN

65

Making Music on the BBC Computer

parameter determines the number of steps in its corresponding PI section
and has no direct amplitude envelope equivalent. If it did, it would be
calculated from the formulae given above, but omitting T from the
calculation.

The change of pitch referred to by PI is in quarter of a semitone
increments, the same as the SOUND statement, so a value of 4 will
produce a pitch change of a semitone.

Figure 5.4 shows how a single PI/PN pair might affect the pitch.
Figure 5.5 illustrates two complete pitch envelopes. Note that the value of
T does not affect the actual pitch changes, only the speed with which they
alter and whether or not the envelope repeats. Large values of T will make
the individual changes more obvious.

Figure 5.4

PI
PN

STARTING
PITCH

PITCH

STEPS

= 2
= 4

Figure 5.5a

STARTING

PITCH

STEPS1 CYCLE

+

–

PI1
PI2
PI3
PN1
PN2
PN3

=
=
=
=
=
=

4
–8
2
1
1
1

Figure 5.5b

66

CHAPTER 5 The ENVELOPE Command

STARTING

PITCH

STEPS1 CYCLE

+

–

PI1
PI2
PI3
PN1
PN2
PN3

=
=
=
=
=
=

4
–1
–3
2
4
1

When you write your own programs, be careful not to include PI as a
variable or it will be taken as the constant PI with a value of 3.14159265.
The use of PH and PI2, etc is quite acceptable.

The Pitch Graph Generator program
After running the previous program, you will now want to see what the
pitch envelope looks like. The following additions can be made to the last
program and will allow you to alter the pitch and pitch envelope
parameters in a similar way to the ADSR parameters in the last program.
Seven fines need to be added to the body of the program, two need to be
altered and the rest is added to the end.

When entering line 810, enter PRINT in its abbreviated form (ie P.)
otherwise it will not fit into one line. (See the User Guide page 484.)

 9 REM PROGRAM 5.2 (Combined)
 10 REM PROGRAM 5.1
 19 REM ADSR & PITCH Graph Genera to r
 20 REM ADSR Graph Genera to r
 24 REM Added L ine Numbers a re no t
 25 REM Mul t ip les o f 10 and are+
 26 REM 75,145,762,764,855,1242,1244
 27 REM P lus 2000 to 2670
 29 REM A l te red L ines=150,810
 35
 75 PROCAxis2
 145 IF Inpu t$>=" ! " AND Inpu t$<=" ' " Inp
u t=ASC(Inpu t$) :PROCPi tEnv
 762 p i1=3:p i2=3:p i3=3
 764 pn1=3:pn2=3:pn3=3:p=3

67

Making Music on the BBC Computer

 810 COLOURb:PRINT; " , " ; :COLOURpi1 :PRINT
;PI1 ; :COLOURb:PRINT; " , " ; :COLOURpi2 :PRINT
;PI2 ; :COLOURb:PRINT; " , " ; :COLOURpi3 :PRINT
;PI3 ; :COLOURb:PRINT; " , " ; :COLOURpn1:PRINT
;PN1; :COLOURb:PRINT; " , " ; :COLOURpn2:PRINT
;PN2; :COLOURb:PRINT; " , " ; :COLOURpn3:PRINT
;PN3; :COLOURb:PRINT; " , " ;
 855 COLOURp:PRINTTAB(23,1)SPC(6)TAB(18
,1) "P i tch=" ;P i t1 :COLOURb
 1242 F ina lT ime=Time
 1244 PROCPi tchEnv
 2000 DEF PROCAxis2
 2010 YSca le=3
 2020 VDU29,0 ;0 ;
 2030 VDU5
 2040 FOR Mark%=60 TO 780 STEP YSca le*10
 2050 MOVE40,Mark%+YSca le*10 :PRINT" - "
 2060 NEXT Mark%
 2070 VDU4
 2080 VDU29,50 ;50 ;
 2090 ENDPROC
 2100
 2110 DEF PROCP(p i ,pn)
 2120 FOR P%=1 TO pn
 2130 P i tch=Pi tch+p i
 2140 IF P i tch>255 P i tch=Pi tch MOD256
 2150 IF P i tch<0 P i tch=Pi tch+256
 2160 DRAW T ime,P i tch*YSca le
 2170 T ime=Time+T1 MOD128
 2180 PROCFina lT imeCheck : IF FT ime P%=pn
 2190 DRAW T ime,P i tch*YSca le
 2200 NEXT P%
 2210 ENDPROC
 2220
 2230 DEF PROCPi tEnv
 2240 PROCReset
 2250 IF Inpu t=33 p i1=1
 2260 IF Inpu t=34 p i2=1
 2270 IF Inpu t=35 p i3=1
 2280 IF Inpu t=36 pn1=1
 2290 IF Inpu t=37 pn2=1
68

CHAPTER 5 The ENVELOPE Command

 2300 IF Inpu t=38 pn3=1
 2310 IF Inpu t=39 pn3=1
 2320 PROCPr in tEnv
 2330 PROCAl te rP i t
 2340 PROCPr in tEnv
 2350 ENDPROC

The combined programs are quite long and disk users may get a No Room
error when running, especially if the function key program has been added.
The extra memory required is not a lot and the problem is most quickly
solved by lowering PAGE before loading and running. Enter:

PAGE=&1100

before loading. The program will sit in memory quite easily; it is only
when MODE 1 is selected that it discovers it has not enough room. Do not
press BREAK otherwise PAGE will be reset and you will probably lose
the program.

The removal of REM statements is another alternative but beware of
coming back to the program a few weeks later and wondering what the
various sections do. Cassette users will have no memory problems.

Using the program
You now have control over pitch and the six pitch envelope parameters.
These are accessed by pressing SHIFT and the keys 1 to 7, ie the
characters !, ", #, $, %, & and '. You may find it more convenient to use the
function keys to control the ADSR parameters, set SHIFT LOCK and use
the number keys for the pitch parameters. In practice, once you are familiar
with the ADSR envelope, you will probably leave it set (alter the initial
parameters in lines 340 to 360) and concentrate on the pitch envelope

A second set of points along the Y axis indicates the pitch values and is
scaled in units of 10. The X axis is still the same and is in seconds. The
ADSR graph is drawn first, followed by the pitch graph. Some envelopes
can take quite a while to draw and when superimposing one graph on
another it is not always possible to tell when a graph is finished. So, when
complete, a double '??' prompt indicates that the program is ready for
further instructions.

Program notes
The main additions are PROCAxis2 to draw the second Y axis and the

69

Making Music on the BBC Computer

inclusion of p, pi and pn colour values in PROCReset in fines 762 and 764.
Line 810 puts them into PROCPrintEnv. Note the change of YScale in line
2010 and 2520 during the drawing of the pitch graph.

The input at line 145 allows us to input a string containing the double
quotes character (") but this is changed to an ASCII value to allow easy
handling of the input.

PROCPitEnv serves the same purpose as PROCEnv, and
PROCAlterPit is similar to PROCAlter.

Like T, Pitch has an assistant in Pit1, so whatever value the pitch
actually reaches during the envelope execution, the program knows the
original pitch value. See lines 2490, 2530, 2580 and the original 340.

The drawing is done by PROCP which is the same for all three PI/PN
pairs and is called with the three sets of parameters by PROCPitchEnv. In
line 2590, if T is greater than 127, ie the envelope is set not to repeat, the
pitch envelope is only drawn once.

The total duration of the sound after the ADSR graph has been drawn is
put into FinalTime as the pitch envelope will continue until the release
phase completes. PROCFinalTimeCheck performs a similar function to
PROCOverTime.

There is still no error-checking and out of range parameters will
produce incorrect graphs, but we do not have to worry about whether or
not we are moving up or down to ALA or ALD levels.

Apparent peculiarities of the pitch envelope
It is worth demonstrating that, although the three PI and PN parameters
perform the same functions, they do not always behave as you might
expect - and hope. For example try this:

10 ENVELOPE1,20,4,0 ,0,1,0,0,126,-1,0,-6,126,80
20 SOUND1,1,101,80

It is the same as this:

10 ENVELOPE1,20,4,0,0,1,0,1,126,-1,0,-6,126,80
20 SOUND1,1,101,80

The value of PI1, 4, takes the pitch up a semitone and it stays there. One
might expect the same result to follow from this:

10 ENVELOPE1,20,0,0,4,0,0,1,126,- 1,0,-6,126,80
20 SOUND1,l,101,80

All we've done is to transfer the working parameters to another of the three
PI/PN sets. Even more peculiar is this:

70

CHAPTER 5 The ENVELOPE Command

10 ENVELOPE1,20 ,0,0,4,1,0,1,126,- 1,0, -6,126,80
20 SOUNDl.1.10l.80

This envelope produces an oscillating effect while the second example
doesn't because the T parameter is set to auto repeat and, when the pitch
phase completes, the pitch is set back to its original value before beginning
again. In the second example, PI1 acts immediately upon the pitch to raise
it a semitone. This is one factor which can cause a few problems when
trying to work out a precise pitch effect and on such occasions it is always
worth trying out the envelope with no repeat.

You may wonder why you would want to set a PN parameter if its
corresponding PI value is 0. Even with a PI value of 0 the PN parameter
creates a gap or time span with no new pitch change. This can be used to
create a delay before a pitch modulation.

Notice also that, if a pitch envelope tries to take the pitch over 255 or
under 0, it will add or subtract 256 to bring it within range. This can
produce some fascinating effects which can be seen on the graph.

The value of T and bit 7
The User Guide tells us that if bit 7 of T is set to 0 the pitch envelope will
auto repeat, and if it is set to 1 it will only sound once. This was mentioned
in the ADSR section but now we will examine it more closely.

To understand what a bit is, it is necessary to know a little about the
binary system. A complete discussion is beyond the scope of this book but
the following explanation may help a little.

Bit stands for BInary digiT, which is the term given to the individual
digits which go to make up a binary number. For a variety of reasons it is
convenient to work with binary numbers containing eight digits.
Computers count, more often than not, beginning at 0, unlike humans who
tend to start counting at 1. These eight digits or bits are numbered 0 to 7
from right to left. Bit 7, therefore, is the leftmost digit which will have a
value of 128 (2^7) in the binary system. If this bit is set to 1, ie 1*2^7, then
the value will be increased by 128.

On page 245 the User Guide gives the range of T as being from 0 to
127, and on page 182 from 1 to 127. If T equals 0, the envelope operates as
though T equals 1 and I suggest 1 to 127 as the correct range. If you add
128 to the value of T you are setting the seventh bit to 1. As far as the
ADSR envelope is concerned, it reduces any value over 128 by the MOD
command (see User Guide paige 299) so 128 MOD 128=0 or, as I would
have it, the upper range should run from 129 so we would say 129 MOD
128=1. By this reckoning, 130 has the same effect as 2, 131 as 3, etc. If
you put larger values in, they are still reduced so, for example, 12345
MOD 128=57.

The pitch envelope does the same thing only it takes note of whether or

71

Making Music on the BBC Computer

not the seventh bit has been set. If it has not, it repeats its envelope.

Experimenting with the programs
Apart from idiosyncracies you may come across in the SOUND and
ENVELOPE commands, you will find that being able to relate the
numbers to a visual representation of the sound is a great help in mastering
the commands. If you are searching for a specific effect and can see a
visual result of your efforts, you will find it easier to make adjustments and
find out why a sound may not be behaving as you expect.

Further experiments can be done by including the noise channel and
controlling its frequency from channel I by setting the P parameter to 3 or
7 as follows:

1045 SOUND 0,-15,3,254

If you set the ADSR parameters to 0 you will hear the results of the pitch
envelope on channel 1 working through channel 0. The noise channel is
examined more thoroughly in Chapter 7.

Instrument characteristics
To aid further experiments, Figure 5.6 describes the characteristics of some
common instruments which you may like to convert into envelope
parameters.

Bearing in mind the limitations of the sound chip, you are unlikely to
produce exact imitations; but remember that one man's clarinet is another
man's oboe so do program sounds which you like. With the addition of a
few frills, courtesy of the pitch envelope, you can create a most acceptable
micro orchestra. The next chapter looks at how to create and use such
frills, which we refer to as musical ornaments.

The octave range in Figure 5.6 refers to the notes on the staves in figure
2.4. For example, the octave range 2 to 4 extends from pitch number 53 to
193. As we have offset the keyboard in Figure 2.4 to compensate for the
predominantly high notes of the sound chip, remember that the actual
instruments are pitched an octave lower.

The envelope shapes are described in terms of attack and decay. In this
context, the decay refers to the release phase. Our ADSR decay phase will
run along similar lines to the sample instrument envelopes in Figure 5.3.
The sustain phase will vary. An organ note can have an infinite sustain, a
guitar string has none and a trumpet can last as long as the player can keep
blowing.

Figure 5.6

72

C
H

A
P

T
E

R
 5 T

he E
N

V
E

L
O

P
E

 C
om

m
and

INSTRUMENT OCTAVE RANGE
(See Figure 3.3)

ATTACK DECAY APPLICATIONS AND SPECIAL
EFFECTS

Violin 3 to 5 slow medium/slow portamento, vibrato, scales
Viola 2 to 4 slow medium/slow
Cello 1 to 3 slow medium/slow
Bass guitar 1 to 3 fast slow rhythmic figures

Trumpet 3 to 5 fast medium/fast vibrato

Trombone 1 to 3 medium/fast medium/fast portamento

Tuba 1 to 3 slow medium/fast use for staccato bass fine

Alto saxophone 2 to 4 medium fast medium/fast slides up to note
Tenor saxophone 1 to 3 medium/fast medium/fast bends the note

Flute 3 to 5 medium/fast medium/fast trills,arpeggios

Clarinet 2 to 4 medium/fast medium/fast slow vibrato
Oboe 3 to 5 medium/slow medium/fast

Bassoon 1 to 3 fast medium fast slow mournful

Guitar 2 to 4 fast slow bend the note

Accordion 1 to 6 medium/slow medium/fast slightly out of tune

Harp 1 to 6 fast slow arpeggios glissando

Xylophone 3 to 6 fast medium/fast glissando

Snare drum medium fast medium drum rolls

Bass drum slow fast medium short beats

Organ 1 to 5 fast fast vibrtao, full chords

Y
ou do not have to try to faithfully im

itate an instrum
ent - create your

73

Making Music on the BBC Computer

own. The characteristics are there for information only, feel free to use
them or ignore them completely, according to your musical tastee 5.6

Producing other waveforms
If you want to take your interest in music and the BBC micro even further,
there are ways to produce waveforms other than the square wave of the
sound chip. These involve connecting a digital to analogue converter to
your system, and setting up the computer to produce cycles of a particular
wave in a similar way to the Sine Wave Plotter program in the first
chapter. The cycles are generated by rapidly altering the contents of a
series of memory locations and you need to program in assembly language
to produce the cycles fast enough to be of use.

The information required to implement such a process would fill
several more chapters, if not a book, and is mentioned here only to
illustrate the possibilities open to the experimenter.

The addition of a proper musical keyboard and separate synthesiser
voice modules is another possibility but we'll leave all that to the more
experienced and adventurous explorer.

74

CHAPTER 6
Musical Miscellanea

A synthesiser has many modules or sections which allow the synthesist to
enhance and embellish the basic sounds he or she creates. Some of the
resulting effects are quite intricate; many are subtle, some are not. The
musician can buy a mountain of effects pedals and boxes to produce
sustain, echo, reverberation, chorusing, phasing, flanging The list goes
on. In this chapter we will see what effects we can produce on the BBC
micro.

Vibrato and tremolo: pitch and amplitude modulation
These are usually the first effects a synthesist learns to incorporate into his
or her synthesiser patches. They are so much a part of natural sounds and
music that they really do add an extra dimension to the relatively lifeless
sine or square wave. There exists a certain amount of confusion over these
two terms, even among musicians, so if any exists we'll clear it up now.

Vibrato is a frequency modulation, tremolo is an amplitude modulation.
The modulation is usually regular and consists of an increase and decrease
in pitch or volume above and below the note's pitch or volume level. A
graph of this variation would be similar to the sine waves we saw in
Chapter 1.

Not many instruments produce tremolo. Electronic organs produce it
mechanically and electronically and singers often use vibrato or tremolo to
enhance their tone. Vibrato is far more common and is often used by
strings, woodwind and many brass instrumentalists.

The tremolo arm on a guitar, popular in the 1960s, actually produces
vibrato. By stretching and relaxing the strings, the pitch rises and falls. If
the arm is worked rapidly, it produces a regular vibrato; if it is used slowly
it stretches the note, producing a portamento.

The most pleasant rate of modulation in both vibrato and tremolo is
around seven cycles per second and the amount of modulation can vary
from the subtle to the ridiculous. You have probably discovered examples
of both in arcade-type games and you may have invented a few yourself
with the program in the last chapter. Vibrato is probably the easier of the
two to duplicate so we will look at that first.

75

Making Music on the BBC Computer

The pitch variation in vibrato is not usually as great as a semitone and
the quarter semitone increments of the sound chip are very useful in
duplicating this effect. In a musical vibrato, the pitch varies regularly,
rising and falling in a sine wave pattern moving above and below the pitch
of the note. Extreme examples, where the pitch varies more rapidly and
over larger intervals, are still technically vibrato but are really only
produced by electronic means for special effects such as this:

10 ENVELOPE1,1,0,3,-3,0,20,20,63,-1,0, -4,126,100
20 SOUND1,1,101,l60

Alteration of the speed and degree of pitch variation will drastically alter
the sound and, although we can create innumerable vibrato effects, only a
few will be of any use in a strictly musical context.

Comparing envelopes
Because of the rather subtle nature of vibrato, it is not always easy to tell
the difference between one degree of vibrato and another unless they are
considerably pronounced. The nature of the sound will change, too, as the
note changes from one octave to another. What we need is a program
which allows us to compare one envelope with another, alter a parameter
here and there, and test out the new sound. The following program was
designed as such a utility. It has been kept purposely short and is easily
modified and adapted to cater for different requirements. Some suggestions
for modifications are made after the listing.

 10 REM PROGRAM 6.1
 20 REM Enve lope Compar isons
 30
 40 VDU15
 50 ON ERROR GOTO 230
 60 REM Reset De lay on Keys
 70 *FX12,0
 80 *KEY0 RUN|M
 90 *KEY10 OLD|MLIST|M
 100 PROCEnve lope
 110
 120 REPEAT
 130 PRINT"Which Enve lope?" ;
 140 REPEAT
 150 Env=GET-48
 160 UNTIL Env>-1 AND Env<10
 170 PRINT;TAB(16)Env
 180 IF Env=0 SOUND1, -12 ,P i tch ,40 ELSE
76

CHAPTER 6 Musical Miscellanea

SOUND1,Env ,P i tch ,40
 190 UNTIL FALSE
 200
 210 REM Escape Rout ine
 220 REM Speed Up Key Repeat
 230 *FX12,6
 240 *FX11,20
 250 ON ERROR WHEN 280,
 260 ERROR
 270
 280 DEF PROCEnve lope
 290 P i tch=149
 300 ENVELOPE1,4 ,0 ,0 ,1 ,1 ,0 ,1 ,4 , -1 ,0 , -3 ,
126 ,80
 310 ENVELOPE2,2 ,0 ,0 ,1 ,2 ,0 ,2 ,4 , -1 ,0 , -3 ,
126 ,80
 320 ENVELOPE3,3 ,0 ,0 ,1 ,2 ,0 ,2 ,4 , -1 ,0 , -3 ,
126 ,80
 330 ENVELOPE4,4 , -2 ,1 ,1 ,1 ,1 ,1 ,4 , -1 ,0 , -3
,126 ,80
 340 ENVELOPE5,6 ,1 , -2 ,1 ,1 ,1 ,1 ,4 , -1 ,0 , -3
,126 ,80
 350 ENVELOPE6,4 ,1 ,1 ,1 ,1 ,1 ,1 ,4 , -1 ,0 , -3 ,
126 ,80
 360 ENVELOPE7,4 ,0 ,8 , -8 ,0 ,1 ,1 ,16 , -1 ,0 , -
3 ,126 ,80
 370 ENVELOPE8,4 ,0 ,28 , -28 ,0 ,1 ,1 ,16 , -1 ,0
, -3 ,126 ,80
 380 ENVELOPE9,8 ,0 ,8 , -12 ,1 ,1 ,1 ,16 , -1 ,0 ,
-3 ,126 ,80
 390 ENDPROC

Upon running, you will be asked to input an envelope number. This
envelope will be used to produce a sound. If you input 0, an unmodified
note will be heard.

To alter an envelope, press ESCAPE and PROCEnvelope will list to
the screen. The key repeat period will be speeded up, too. I prefer these
faster keys for editing but you can remove fines 70, 230 and 240 if you
wish, or alter the repeat period to suit. The necessary envelopes can be
edited and the program run again by pressing £0. In this way you will be
able to compare two or more envelopes. If one immediately follows

77

Making Music on the BBC Computer

another, the release phase will not occur, which is how most sounds are
heard in music.

Program notes
When typing in the program, preface fines 50, 250 and 260 with REMs in
case you enter some of the lines incorrectly. Otherwise, the program's error
routines will take over and you will find debugging difficult.

Line 40 ensures that the screen is not in page mode. *KEYI0, the
BREAK key, is programmed to LIST and pressing BREAK will, of course,
set the key repeat periods to their default values. We do not want fast keys
when we are entering envelope numbers, so they are set to default in line
70. When ESCAPE is pressed, control passes to fine 230 which speeds up
the keys. The ON ERROR command at line 250 is immediately followed
by an error in line 260. The word ERROR cannot stand alone and creates a
syntax error which causes the program to list. You could just as easily
substitute any other letters the computer does not recognise.

After altering the envelopes and pressing £0 to run, you will still be
able to see the envelope parameters before they scroll off the screen.

As it stands, you can program up to nine envelopes. If this is not
enough, you can expand the input parameters in lines 150 and 160 to take
up to 16 envelopes.

By putting the envelope parameters into DATA statements, you could
cause the envelopes to be printed to the screen as they sound. Also, by
incorporating RESTORE xxx in the escape routine following line 210,
where xxx is the line number containing the envelope parameters, you
could cause only the last envelope called to be listed. That may seem to be
taking a utility program just a step too far but you may find it helpful and it
would be an interesting exercise.

Function keys 1 to 6 can be programmed to alter Pitch to produce a
note from each octave. The fact that the sound does vary so much
throughout the sound chip's range can be used to advantage both in music
and sound effects.

Using the program
You will soon find that there are few vibrato effects suitable for use in a
purely musical context as extremes are simply not musical. However, the
program will be useful for comparing some of the other musical ornaments
detailed in this chapter. You may also want to use the program to compare
more severe forms of vibrato which add so much to game programs. Alter
the Pitch parameter, too, during your editing as this makes a tremendous
difference to the note.

Only ENVELOPEs 1 to 6 produce a vibrato effect and you can see by
comparing I and 2 that an alteration of the T parameter needs to be
compensated for in the FN parameter. You will also notice that

78

CHAPTER 6 Musical Miscellanea

ENVELOPE 4 sounds lower than the pitch of the note. This is because P11
immediately sets the pitch down two steps for reasons that were discussed
in the last chapter. The input 0 option lets you compare the actual pitch
with the pitch after modification. This will tell you that ENVELOPE 4 is
not quite right.

ENVELOPEs 7, 8 and 9 and their effects will be discussed under trills
and echoes.

Producing tremolo effects
The ENVELOPE command provides a repeat option on the pitch envelope
but not the amplitude envelope. To produce' tremolo, we ideally need the
latter. In its absence we must use a loop. This in itself causes
complications, especially if we want to use tremolo during the production
of a tune. The next program demonstrates two tremolo production
techniques.

 10 REM PROGRAM 6.2
 20 REM Tremolo Demonst ra t ion
 30
 40 PROCTremolo(&1,1 , -1)
 50 PROCTremolo(&1,1 , - .25)
 60 END
 70
 80 DEF PROCTremolo(Chan,Dur ,S tep)
 90 PRINT"Chan=" ;Chan; " Dur=" ;Dur ; " S t
ep=" ;S tep
 100 REPEAT
 110 FOR Amp=-2 TO -15 STEP Step
 120 SOUND Chan,Amp,53 ,Dur
 130 NEXT Amp
 140 FOR Amp=-14 TO -3 STEP ABS(Step)
 150 SOUND Chan,Amp,53 ,Dur
 160 NEXT Amp
 170 UNTIL INKEY$(2)=" "
 180 ENDPROC
 190
 200 REM Tremolo Us ing Env Cont ro l
 210
 220 ENVELOPE1,5 ,0 ,0 ,0 ,0 ,0 ,0 ,8 , -8 ,0 , -8 ,
120 ,16
 230 FOR Trem=1 TO 8
 240 SOUND1,1 ,53 ,28

79

Making Music on the BBC Computer

 250 NEXT Trem
 260 END
 270
 280 REM Fas te r T remolo
 290
 300 ENVELOPE1,2 ,0 ,0 ,0 ,0 ,0 ,0 ,8 , -8 ,0 , -8 ,
120 ,104
 310 FOR Trem=1 TO 30
 320 SOUND1,1 ,53 ,2
 330 NEXT Trem

PROCTremolo does it the hard way and alters the amplitude of the
SOUND commands one at a time. Pressing the space bar will call the next
tremolo effect - only two have been included.

The timing of the loop is actually controlled by the Dur parameter
which, in the program, has been set to 1, its smallest value. This might
seem to indicate that we can't get a faster tremolo; but if we flush the
sound channel we can, and we are then only limited by the speed of the
BASIC loop.

Alter line 40 to include a flush command:

40 PROCTremolo(&11,1,-1)

and notice the effect. It's not very musical because the tremolo takes the
note through its complete amplitude range. The Step parameter in line 50
can be used to slow down the BASIC loop. The SOUND command will
take no notice of non-integer values and making the loop step through
more values than the SOUND command recognises is a good way to waste
time.

To produce something more musical reduce the Amp range in fines 110
and 140.

The two short routines tacked on to the end of the program at fines 220
and 300 demonstrate how to produce tremolo with envelope control. The
first example produces the same effect as fine 40.

To produce an even tremolo, it is necessary to calculate the attack and
decay times and use that as the duration parameter in the SOUND
command. If it is too short the sound will cut off during the decay phase
and another attack phase will begin. If it is too long there will be a delay
before the next cycle.

The tremolo at fine 300 is perhaps more useful and you should now be
able to produce a more subtle example. If you do, you will probably notice
how similar it is to vibrato. Try the last two examples again but include a
vibrato in- the pitch envelope such as:

80

CHAPTER 6 Musical Miscellanea

220 ENVELOPE1,5,1,-2,1 ,1,1,1,8,-8,0,-8,120,16

Experiments will produce many interesting sounds, with pitch figures
produced by the pitch envelope fading in and out with the tremolo effect.

You can see the problem with loops - they take control away from the
SOUND command and hold up the BASIC program. In order to put a
constant tremolo into a piece of music, the controlling loop has to last for
the length of each individual note. In this way, we are constantly
interfering with the timing of the tune and we may find it necessary to
make synchronization adjustments. This is dealt with in Chapter 9.

In practice, you are unlikely to want tremolo - or vibrato - all the way
through a piece; as with all embellishments, too much ;and it ceases to be
pleasant.

While vibrato is more musically useful and easier to apply, the full
potential of tremolo has not been realised and its use as a source of sound
effects can lead to something just that little bit different.

Trills: a special kind of vibrato
To produce vibrato on an instrument you need control over the pitches in
between individual notes. You can't produce vibrato on a piano, for
example, as the notes are fixed. The best you can do is to alternate rapidly
between two adjacent notes and this is called a trill. ENVELOPE 7 in
Program 6.1 produces a trill and you can hear the pitch vary between C
(Pitch = 149) and D (Pitch = 157). The pitch does not follow a sine wave
pattern as with vibrato and tremolo but, rather, a square wave pattern as it
jumps up and down between notes.

You may have realised that the vibratos produced in Program 6.1 jump
up and down in a similar way except they jump one pitch interval at a time,
ie quarter of a semitone. If T is set fairly low, we can't hear the individual
pitches and the ear assumes the pitch is varying in a smooth and
continuous manner.

A trill is an oscillation between discrete notes and as such can be
played by most instruments. If we want to include a trill in a piece of
music, we can instruct the computer to play the two notes just as we would
instruct it to play any others. With a duration value of I it will sound about
fight, but it is often more convenient to switch control to an envelope
which would then take the place of, perhaps, up to 16 pitch commands.

A trill can be played over any interval and ENVELOPE 8 in Program
6.1 plays a trill over an interval of a fifth (see Chapter 2 for further
information about intervals).

A flute with the occasional trill sounds very effective, especially in
military or brass band music, and a trill on a sustained note above a
melody line is quite common.

81

Making Music on the BBC Computer

 10 REM PROGRAM 6.3
 20 REM "Mi l i ta ry Mus ic " In t roduc t ion
 30
 40 ENVELOPE1,4 ,0 ,8 , -8 ,0 ,1 ,1 ,63 ,0 ,0 , -1
2 ,126 ,126
 50 ENVELOPE2,3 ,0 ,0 ,1 ,2 ,0 ,2 ,126 , -8 ,0 , -
8 ,126 ,30
 55 ENVELOPE3,4 ,0 ,0 ,1 ,1 ,0 ,1 ,32 , -1 ,0 , -8
,96 ,60
 60 SOUND1,1 ,149 ,54
 70 FOR Note=1 TO 9
 80 READ P i tch ,Dur
 90 SOUND2,3 ,P i tch ,Dur
 100 SOUND3,2 ,P i tch+48,Dur
 110 NEXT Note
 120 END
 130 DATA 53 ,12 ,49 ,4 ,45 ,12 ,41 ,4 ,33 ,4 ,25
,4 ,21 ,4 ,13 ,4 ,5 ,6

ECHO ECHo ECho Echo echo and reverberationnnn
These are probably two of the most overused effects in the synthesist's
armoury. They are great fun to play with, which is why they are overused,
but in the right hands they are also capable of creative and beautiful
effects.

Echoes are produced when sound waves are reflected from a smooth
hard surface such as a cliff. If you stand before a cliff and shout, the sound
waves produced by your voice will hit the cliff and bounce back. The time
lag will depend upon your distance from the cliff\ In order to hear the
reflected waves as a separate echo they must be separated from the original
sound by at least one tenth of a second, which means that you must stand
at least 54 feet away from the cliff. If you are closer than this, the echo will
not seem distinct but will seem to be a continuation of your original shout.

A sound emitted in a room will bounce around the wall, floor and
ceiling. As the reflections bounce back and forth, the result is a most
complex series of multiple reflections. The net result is a reinforcement of
the sound and it will seem to continue after the original sound source stops.
This is a form of echo called reverberation, where the individual echoes are
not discernible.

Reverberation or reverb time is the length of time required for the
sound reflections in a room to fall to a certain level. Rooms with reflective
surfaces have longer reverb times than rooms with insulated walls, which
is why more people prefer to sing in the bathroom than in a padded cell.

82

CHAPTER 6 Musical Miscellanea

Most commercial reverb units produce their effects by means of a
spring or metal plate. Because of the enormous number of vibrations
involved, reverb is not possible on the BBC micro (although you can feed
the output to a reverb unit) but we can imitate an echo.

Commercial echo units
An echo is a single repeat of a note. Echo units are capable of producing
from one to, say, five or six echoes. Many can produce even more and
some are capable of an infinite number. A quality of natural echo, which
you will be aware of, is that each echo is quieter than the preceding one. If
an echo is repeated many times, there is a limit to how low the volume can
go without becoming inaudible altogether and most units ,allow you to
control the repeat volume so that the echoes fade quickly or slowly.

One type of unit popular with singers consists of a series of tape
recorder heads. The first one records the sound and the following ones play
it back.

Solid state echo units are available which use either analogue or digital
techniques. The analogue units contain circuits which hold the signal for a
short while to cause a delay before passing it to other circuits which do
likewise. This form of echo production is known as a bucket brigade
method for obvious reasons. As the signal passes from one circuit to
another, the quality soon deteriorates and there are severe limits on how
many times an echo produced in this way can repeat.

Digital units work on a similar principle, but as they pass around a
series of numbers which do not deteriorate they can produce echoes which
go on for ever.

Producing echoes on the BBC micro
There are several methods we can use to produce echo, depending upon the
particular echo effect we require.

As a starting point, assume we want to repeat a single note. Ideally, we
should be able to create this with a single ENVELOPE command - but we
can't. To produce an echo, there must be a discernible gap between notes
which means the volume has to drop to zero and rise again. We cannot do
this with one envelope unless we play it twice, and that alone would not
produce a drop in volume.

One method is to use a series of envelopes and play the sound using
each in turn like this:

 10 REM PROGRAM 6.4
 20 REM Echo Produc t ion
 30 REM Us ing Mu l t ip le Enve lopes
 40
 50 Dur=3
 60 ENVELOPE1,1 ,0 ,0 ,0 ,0 ,0 ,0 ,126 , -4 , -4 ,

83

Making Music on the BBC Computer

-6 ,126 ,102
 70 ENVELOPE2,1 ,0 ,0 ,0 ,0 ,0 ,0 ,102 , -4 , -4 ,
-6 ,102 ,78
 80 ENVELOPE3,1 ,0 ,0 ,0 ,0 ,0 ,0 ,78 , -4 , -4 , -
6 ,78 ,54
 90 ENVELOPE4,1 ,0 ,0 ,0 ,0 ,0 ,0 ,54 , -4 , -4 , -
6 ,54 ,30
 100 ENVELOPE5,1 ,0 ,0 ,0 ,0 ,0 ,0 ,30 , -4 , -4 , -
6 ,30 ,6
 110 SOUND1,1 ,101 ,Dur
 120 SOUND1,2 ,101 ,Dur
 130 SOUND1,3 ,101 ,Dur
 140 SOUND1,4 ,101 ,Dur
 150 SOUND1,5 ,101 ,Dur

This produces a rather good echo but is wasteful of envelopes. Lines
110 to 150 could be replaced with a FOR . . . NEXT loop for neatness. Try
doubling the SOUND commands like this:

110 SOUND1,1,101 ,Dur:SOUND1,1,101,Dur

The duration of the note determines the echo repeat time and long notes
will not produce a very good effect.

The next program tries to reduce the envelope waste by using only one
and repeatedly redefining it within a procedure. In doing this, we must be
careful not to redefine an envelope before it's ready to be used. Try the
program.

 10 REM PROGRAM 6.5
 20 REM Echo Us ing a Procedure
 30
 40 EchoSpeed=10
 50 RateOfDecay=3
 60
 70 FOR Note=1 TO 5
 80 READ Chan,P i tch ,Dur
 90 PROCEcho
 100 NEXT
 110 END
 120
 130 DATA 1 ,5 ,16 ,2 ,33 ,16 ,3 ,53 ,28 ,1 ,69 ,2
,2 ,65 ,32

84

CHAPTER 6 Musical Miscellanea

 140
 150 DEF PROCEcho
 160 AA=126
 170 FOR Count=1 TO Dur
 180 ALD=AA-RateOfDecay
 190 ENVELOPE1,1 ,0 ,0 ,0 ,0 ,0 ,0 ,AA, -4 , -4 , -
1 ,AA,ALD
 200 SOUNDChan,1 ,P i tch ,1
 210 T IME=0:REPEAT UNTIL T IME>EchoSpeed
 220 AA=ALD
 230 NEXT Count
 240 ENDPROC
Line 210 holds up the whole program while the echo runs its course. If we
try to build the delay into the SOUND command by, increasing the
duration, it does not work. This is because the sound chip stores the
commands and, while it is waiting to execute them, the rest of the program
has already redefined the envelope the required number of times and we
get no echo at all. Remove fine 210 and see what happens.

Note also that the durations given to the SOUND command from the
DATA statement at fine 130 no longer determine the length of the note.
This is determined by the variable, EchoSpeed. The duration values still
maintain the note-length relationship between notes. Alter Echospeed and
RateOfDecay and listen to the effect. It may be necessary to alter AD, AS
and AR values in the envelope if your values become extreme.

The above examples assume that you want a drop in volume with the
repeat. If we do away with the amplitude reduction it detracts from the
echo effect which results in only a sequence of notes.

Pseudo echo
You can see that the implementation of a single note echo is not
particularly easy, although the results can be very good and well worth the
effort. Another alternative is to create a pseudo echo using the pitch
envelope. This is often the easiest way and can lead to many unexpected
results. The following fines contain sample envelopes for inclusion in the
Envelope Comparison program:

 10 REM PROGRAM 6.6
 20 REM Pseudo Echoes Us ing
 30 REM S ing le Enve lopes
 40 REM Inser t in PROGRAM 6.1
 50
 60 ENVELOPE1,20 ,12 , -12 ,0 ,1 ,1 ,0 ,126 , -6
, -6 , -6 ,126 ,0

85

Making Music on the BBC Computer

 70
 80 ENVELOPE2,4 ,4 ,0 ,32 ,4 ,1 ,0 ,126 , -1 , -1
, -1 ,126 ,0
 90
 100 ENVELOPE3,4 ,4 ,16 ,12 ,1 ,1 ,1 ,126 , -1 , -
1 , -1 ,126 ,0
 110
 120 ENVELOPE4,6 ,8 , -16 ,8 ,8 ,4 ,2 ,126 , -1 , -
1 , -1 ,126 ,0
 130 ENVELOPE5,4 ,32 , -64 ,4 ,1 ,1 ,16 ,126, -1
, -1 , -1 ,126 ,0
ENVELOPE 9 in Program 6.1 also contains a pseudo echo.

If you want an echo of two or more notes this is the way to do it. Even
if you don't, you can often get away with using two notes where you really
only wanted one. In a particularly complicated program, this method will
save you a lot of time and effort.

Program 6.6 contains a few ideas to start you off. The temptation is to
forget your original purpose and design some complicated envelopes -
which is not necessarily a bad thing provided you have the time.

Using the pitch envelope to play tunes
Only one step away from the echo examples, we can devise envelopes that
will play a tuneful sequence of notes. The little fanfare in the Motility
Tester program in Chapter I could easily have been the result of a sequence
of notes read in from a DATA statement. Instead, it was produced by one
envelope which is repeated here for analysis:

10 ENVELOPE1,11,16,4,8,2,1,1 ,100,0,0,-100,100
20 SOUND1,1,101,20

The pitch changes in an envelope can be described as three variations, each
variation being a number of rises or falls in pitch, each rise or fall being
over the same interval.

There are five main points to consider when inventing envelope tunes
and these are:

1) To stay within the western scale, all PI intervals should be in steps of
multiples of four.

2) Remember that PI1 affects the pitch immediately so, in the example
above, the starting note is E, not C as you might expect.

3) Consider the length of the sequence carefully. If AR is altered from -100
to -1, the release phase will occur and it will sound like another echo

86

CHAPTER 6 Musical Miscellanea

envelope and lose its impact. As it is, the envelope will last as long as the
SOUND% duration parameter.

You can calculate the time, in hundredths of a second, of a single pitch
envelope as follows:

Time = (PN1+PN2+PN3)*T

If you want to terminate the sound in the middle of a pitch envelope, as
above, you can calculate the amount of time required and apply it to the
SOUND command by dividing by five. In this case the envelope repeats
once and has an extra note on the end. This is a total of 9 xT which is 99.
Dividing by five gives us our duration of 19 or 20.

4) T controls the speed of the notes. It is sometimes easier io work with a
large value to T so that you can hear what's happening, and then reduce it
to the required level when your sequence is correct.

5) If the pitch in the SOUN.D statement is too high or too low, the
envelope might take the pitch to the other end of its range. This can be
used purposely to produce some good effects.

Correct planning, as they say in textbooks about structured programming,
is very important. I will just repeat that, if you are looking for a specific
effect, it helps to know first if it's possible and, if it is, how to set about
producing it. If you know how the SOUND and ENVELOPE commands
work you will not waste your time trying to produce something they can't
do.

As a basis for further experiments, here are a few envelopes which play a
musical sequence of notes. The first plays an arpeggio of a C diminished
chord (see Chapter 2 for further information about chords) up four octaves,
comes down in semitones to an octave lower than the start note and rises in
semitones until it reaches C. The envelope does not repeat.

10 ENVELOPE1,136,12,-4,4,17,60,12,100,0,0,-100,100,100
20 SOUND1,1,41,144

Arpeggios of diminished and augmented chords are easy to program
because they increase the start note by 3 and 4 semitones respectively.

Playing a scale other than in semitones is difficult because the western
scale is composed of:

tone + tone + semitone + tone + tone + tone + semitone

which will not fit into the pitch envelope. We can fiddle our way around
87

Making Music on the BBC Computer

this by simply playing a scale in tones, known appropriately enough as a
'whole tone scale', but this may not harmonise exactly if it is used with
other notes. See if you can tell the difference, though:

10 ENVELOPEl,10,8,-8,0,18,18,6,100,0,0,-100,100,100
20 SOUND1,1,45,84

Notice the use of a value in the PN3 parameter without a corresponding
PI3 value to sustain the last note.

There are only two whole tone scales, one contains C and the other one
doesn't! The other one contains C#. Check this out on the diagram in
Figure 2.4. The whole tone scale is used in the introduction to Stevie
Wonder's song, 'You Are the Sunshine of My Life'.

If the tune or effect is to stand alone, you need not restrict yourself to
the western scale or pitch intervals. Try PI values in increments of 2, 3, 5
or 6, etc. I leave it to you to experiment further on these lines.

As an example of a sequence going off the top of the scale and coming
up from the bottom, try this:

10 ENVELOPE1,9,20,20,0,10,10,5 ,100,0,0,-100,100,100
20 SOUND1,1,149,135

Finally, you can use two or more envelopes one after the other to produce
even more complicated tunes. Having worked through this chapter, you
should not find that too difficult.

Chorus, phasing, flanging and other spatial effects
These have been grouped under one heading because, although they each
have their own character, their effects are produced by delaying a sound
and/or varying its pitch or frequency. They are called spatial effects
because they alter our perception of the environment which we think
produced the sound - just as reverberation can make us think a sound
originated in a big theatre.

When a group of musicians play in unison, they each play a slightly
different pitch. This difference is very small but it tells the ear that there is
more than one instrument. This is known as a chorus effect and is
responsible for the beautiful sound of a string orchestra. Chorus units
produce their effect by slightly altering the pitch and recombining it with
the original sound.

Phasing, flanging and audio delay are very difficult to describe in
words. They all produce a sort of whooshing sound and such effects can be
heard on many electronic music albums. (The sound of a jet plane taking
off creates a phasing effect.)

There is more than one story floating around the music world of how

88

CHAPTER 6 Musical Miscellanea

Hanging was invented. One version recalls how flanging was first
produced by applying slight pressure to the flange of a spool of tape as it
was playing, to cause a small delay. If you can imagine two such tapes
being played in this manner and drifting in and out of sync with each other
you will have a good idea what flanging sounds like - and an excellent
imagination.

All these effects are produced by various forms of delay. These delays
are reckoned in thousandths and hundredths of a second. When a sound is
delayed and mixed back with the original sound, certain frequencies are
cancelled. If the delay is varied, the range of cancelled frequencies will
vary and produce a shifting effect.

We'll leave the description there because there is not a log we can do to
recreate these effects exactly and you need to hear the' sounds to appreciate
them. Perhaps your local music shop will demonstrate their range of
effects pedals.

Delay effects on the BBC micro
Because of the way the BBC micro's sound chip works, if we produce the
same pitch on two or more different channels, the pitches will not be
exactly the same. This is a chorus effect. The pitch difference is not as
great as a pitch interval and, if we add 1 to one of the pitch values, the
effect will be more pronounced and less subtle. We can really go to town
and use three channels with a pitch difference of 1 between each. You may
wish to set the volume of the main pitch SOUND command slightly higher
than the others. This short program runs through some of the possibilities:

 10 REM PROGRAM 6.7
 20 REM Chorus E f fec ts
 30
 40 REM A l te r P i tch
 50 REM To Other Va lues
 60 P i tch=227
 70
 80 REM 2 Channe ls
 90 SOUND1, -12 ,P i tch ,120
 100 SOUND2, -12 ,P i tch ,120
 110 Nex t=GET
 120
 130 REM 3 Channe ls
 140 SOUND1, -12 ,P i tch ,120
 150 SOUND2, -12 ,P i tch ,120
 160 SOUND3, -12 ,P i tch ,120
 170 Nex t=GET
 180

89

Making Music on the BBC Computer

 190 REM 2 Channe ls w i th Inc reased
 200 REM P i tch Va lue
 210 SOUND1, -12 ,P i tch ,120
 220 SOUND2, -12 ,P i tch+1,120
 230 Nex t=GET
 240
 250 REM 3 Channe ls w i th Inc reased
 260 REM P i tch Va lue
 270 SOUND1, -12 ,P i tch ,120
 280 SOUND2, -12 ,P i tch+1,120
 290 SOUND3, -12 ,P i tch-1 ,120
 300 Nex t=GET
 310
 320 REM Pseudo Chorus
 330 REM Us ing Fas t V ib ra to
 340 ENVELOPE1,1 ,0 ,0 ,1 ,1 ,0 ,1 ,100 ,0 ,0 , -1
00 ,100,100
 350 SOUND1,1 ,P i tch ,120
With Pitch set to 227, the first two effects are probably as near as you'll get
to a scream - shorten the duration before use! More pleasing and musical
effects occur in the lower octaves.

This example tries to produce its effect with the pitch envelope. How
well it succeeds I leave to you to judge. At best, it's only half the effect
because we only hear one pitch at a time and chorus relies on the
interaction between two or more frequencies. You may find it useful,
however, when you only have one spare channel.

The other spatial effects are really beyond the capability of the BBC
micro's sound chip but we can content ourselves with the thought (even if
it's not strictly true) that they just sound like a more sophisticated chorus
effect.

Beat frequencies: the weaving in and out
Especially with lower notes, you will hear the frequencies weaving in and
out and, at times, the note or notes almost cease. This pulse is called a beat
and is produced whenever two notes sound at not quite the same
frequency. The beat frequency is the difference between the two pitches. If
we listen to this:

10 SOUND1,-12,52,120
20 SOUND2,-12,53,120

we should hear a beat frequency of 3 to 4Hz (cycles per second). A pitch
value of 52 has a frequency of about 263.1 and 53 has a frequency of about

90

CHAPTER 6 Musical Miscellanea

266.3. Beat frequencies can be heard when playing intervals, too, if the
interval is not in tune.

The beat frequencies you will hear, as you run the above program and
alter the pitch, will vary and you may find some pitches which produce no
beats at all, indicating that they are exactly in tune.

As an example of how you can use this effect, the following program
imitates an accordion.

 10 REM PROGRAM 6.8
 20 REM French Accord ion Mus ic
 30 REM Us ing Chorus E f fec t
 40
 50 ENVELOPE1,3 ,0 ,0 ,0 ,0 ,0 ,0 ,8 , -1 ,0 , -6 ,
124 ,60
 60
 70 FOR Tune=1 TO 16
 80 READ Note ,Dur
 90 IF Note=0 Amp=0 ELSE Amp=1
 100 SOUND1,Amp,Note ,Dur
 110 SOUND2,Amp,Note ,Dur
 120 NEXT Tune
 130 END
 140
 150 DATA 61 ,8 ,77 ,8 ,113 ,8 ,109 ,72
 160 DATA 61 ,8 ,81 ,8 ,113 ,8 ,109 ,32
 170 DATA 0 ,8 ,93 ,8 ,101 ,8 ,0 ,4 ,65 ,4 ,61 ,4 ,
53 ,4 ,61 ,4
This uses the natural beat frequencies of the sound chip. You can increase
the effect by adding a whole pitch and, less subtle though it may be, I like
this better:

110 SOUND2,Amp,Pitch+1,Dur

Notice also the way we create a gap in the music - switching from
envelope control to a SOUND command with an amplitude of 0.

The ring modulator: producing bells and other ringing
noises
The last synthesiser module we will examine and try to duplicate is the
ring modulator. This is responsible for producing bell-like and metallic
sounds and works in a way unlike any of the modules or effects we have

91

Making Music on the BBC Computer

covered so far.
A standard ring modulator requires an input of two frequencies: it

produces an output which is a compound of the sum of these two
frequencies and the difference between them. To take an example, if the
modulator was fed with a frequency of 440Hz and 1220 Hz, the output
would be a compound of 1660Hz (the sum: 440 + 1220) and 760Hz (the
difference: 1200-440).

That's fairly straightforward, but the BBC micro is not calibrated to
work in hertz and so our choice of frequencies is limited. Also, we do not
know what frequency is produced by each pitch command. The only way
to discover this is to measure it. Figure 6.1 displays a table of the
frequencies in hertz produced by the range of P values. The measurements
were taken from a single BBC micro and it is quite likely that
measurements taken from other machines will show slightly different
figures, but for our purposes these will be accurate enough.

Before we see how to produce bell-like sounds, let us have a closer
look at the results shown in Figure 6.1.

The frequencies produced by the sound chip
If you look at the table, you will notice that the sound chip is not terribly
accurate and that some adjacent values of P produce very similar
frequencies. Unless you want to compose music in quarter of a semitone
intervals, this should make no difference. Although the ear is capable of
distinguishing between differences in pitch of as little as 10 Hz, musically,
it makes many allowances for such discrepancies. Only if you have perfect
pitch (also called absolute pitch - the ability to identify the correct pitch of
a note) or the tuning is out by about half a semitone will your ear be
offended. Notice, in fact, how pleasing the difference of 1 in the P
parameter can be, as illustrated by the last program.

Through our experiments with scales you will have realised that, when
the range is stepped through in semitone intervals, the sound is quite
acceptable. Only when you reach the very upper range of the sound chip
may you find tuning problems.

The out of tune chip
Even if you are not a musician in the strictest sense of the word, you may
have heard of the international tuning standard which stipulates a value of
440 Hz for A above middle C. A glance at our table reveals that this would
be more accurately produced by a P value of 88, not 89. In fact, the whole
of the scale seems to be one pitch value out Unless the sound chips vary
throughout production (which they do not appear to do), it would appear
we could get a more accurate musical tuning if we gave the lowest B a
value of 0 and worked upwards from there in steps of 4. It would tend to
make more sense, too, instead of starting with 1. In the fight of this, it is a
bit of a mystery why the User Guide stipulates the scale as it does.

92

CHAPTER 6 Musical Miscellanea

This whole topic, however, I leave to the purists. You can adjust the
values if you wish but there is little to be gained. I have used the values
given in the User Guide to avoid confusion and only the most sensitive
ears are likely to know the difference. If you want to use your computer to
play along with other instruments you may have to make adjustments to
the basic pitch values.

Figure 6.1

P Param Freq Hz Note
0 124.0
1 125.7 B
2 127.5
3 129.4
4 131.4
5 133.3 C
6 135.8
7 136.9
8 139.2
9 141.8 C#

10 143.8
11 144.9
12 147.5
13 149.7 D
14 151.8
15 154.8
16 156.2
17 158.4 D#
18 160.6
19 162.9
20 165.5
21 167.7 E
22 178.8
23 172.3
24 175.5
25 178.8 F
26 188.5
27 183.2
28 185.9
29 188.4 F#
30 191.8
31 193.7
32 196.8
33 199.6 G

93

Making Music on the BBC Computer

34 202.5
35 205.5
36 208.5
37 211.4 G#
38 214.4
39 217.3
40 221.1
41 224.3 A
42 227.5
43 230.9
44 234.8
45 237.1 A#
46 240.3
47 234.6
48 247.9
49 251.3 B
50 255.8
51 258.7
52 263.1
53 266.3 C
54 278.4
55 274.8
56 278.4
57 282.2 C#
58 285.9
59 0.0
60 295.3
61 299.9 D
62 303.9
63 308.4
64 312.3
65 317.2 D#
66 321.3
67 326.3
68 331.8
69 335.8 E
70 348.4
71 345.1
72 358.9
73 355.9 F
74 361.1
75 366.3
76 371.8
77 377.6 F#

94

CHAPTER 6 Musical Miscellanea

78 382.8
79 388.8
80 394.2
81 399.8 G
82 485.8
83 411.1
84 418.3
85 423.7 G#
86 429.4
87 435.4
88 443.1
89 449.3 A
90 456.8
91 462.7
92 467.9
93 475.8 A#
94 488.4
95 488.8
96 495.8
97 583.7 B
98 589.9
99 518.5

100 524.0
101 533.9 C
102 548.8
103 547.9
104 557.8
105 566.8 C#
106 573.1
107 581.1
108 592.3
109 600.9 D
110 609.6
111 618.5
112 625.3
113 634.3 D#
114 644.4
115 654.4
116 664.5
117 671.7 E
118 682.6
119 690.2
120 781.9
121 714.1 F

95

Making Music on the BBC Computer

122 722.1
123 734.8
124 743.6
125 757.1 F#
126 766.4
127 776.0
128 790.8
129 800.8 G
130 811.1
131 821.9
132 838.4
133 849.8 G#
134 861.5
135 873.5
136 886.8
137 898.7 A
138 911.8
139 925.4
140 939.3
141 953.7 A#
142 961.1
143 976.1
144 991.4
145 1007.9 B
146 1023.8
147 1040.9
148 1058.5
149 1068.3 C
150 1087.0
151 1095.8
152 1115.3
153 1135.9 C#
154 1146.3
155 1167.4
156 1198.3
157 1281.7 D
158 1224.8
159 1236.9
160 1249.9
161 1274.6 D#
162 1288.1
163 1315.2
164 1329.7
165 1343.7 E

96

CHAPTER 6 Musical Miscellanea

166 1372.8
167 1388.3
168 1484.1
169 1436.8 F
170 1452.6
171 1469.6
172 1487.0
173 1523.4 F#
174 1542.1
175 1561.5
176 1581.3
177 1601.5 G
178 1622.3
179 1643.8
180 1688.3
181 1711.2 G#
182 1735.0
183 1759.7
184 1784.5
185 1818.5 A
186 1837.3
187 1864.4
188 1892.8
189 1921.8 A#
190 1921.7
191 1951.8
192 1982.7
193 2814.9 B
194 2847.8
195 2681.8
196 2117.3
197 2153.8 C
198 2191.6
199 2192.1
200 2238.5
201 2271.4 C#
202 2313.1
203 2357.8
204 2482.1
205 2428.1 D
206 2451.5
207 2588.5
208 2581.3
209 2549.2 D#

97

Making Music on the BBC Computer

210 2686.3
211 2661.3
212 2663.8
213 2715.6 E
214 2776.2
215 2775.8
216 2839.8
217 2912.8 F
218 2914.6
219 2979.8
220 2980.9
221 3851.8 F#
222 3123.8
223 3123.2
224 3211.1
225 3213.3 G
226 3298.7
227 3298.9
228 3377.6
229 3470.7 G#
230 3470.4
231 3569.7
232 3578.4
233 3678.2 A
234 3681.4
235 3785.6
236 3786.0
237 3983.6 A#
238 3984.8
239 3983.9
240 4029.4
241 4038.8 B
242 4164.8
243 4164.5
244 4389.1
245 4310.3 C
246 4482.9
247 4484.9
248 4489.1
249 4638.3 C#
250 4636.2
251 4811.5
252 4811.6
253 4808.5 D

98

CHAPTER 6 Musical Miscellanea

254 4996.5
255 4996.4

Bells and the BBC micro
A ring modulator works best with sine waves and produces a fairly
accurate output according to the formula we set out above. As the BBC
micro does not produce sine waves and, more importantly, as we cannot
specify pitch values in hertz, our results will be less than perfect. But, we
can still experiment and produce some convincing sounds.

The way to calculate the output frequencies is as follows:

1) Decide upon the input frequencies, say C3 and F3.
2) Look up their respective frequencies in Figure 6.1. In this case they

would be 533.9 (P = 101) and 714.1 (P = 121). 3)
3) Find the sum and the difference:

714.1 + 533.9 = 1248
714.1 - 533.9 = 180.2

4) Find the nearest P value to these two frequencies. The nearest to
1248 is 160 and the nearest to 180.2 is 26.

5) Try them:

10 SOUND1,-15,160,60
20 SOUND2,- 15,26,60

It sounds quite good on my micro.

Of course, it is quite time-consuming to go through this process whenever
you want a chime; especially if you're writing a piece of music for tubular
bells. Sometimes your calculations will produce frequencies which are
higher or lower than those available from the sound chip, in which case
you will have to try other input values.

The lower frequency will give you the pitch of the note and the upper
one will seem like a strong harmonic. You may like to try reducing the
volume of the harmonic. You can also try adding one of the original
pitches, in this case C3 or E3. Normally, the original frequencies do not
appear at the output of the modulator.

You can base your calculations on any two frequencies at all. Intervals
over a minor third tend to give the best results. The obvious thing to do is
to write a program which allows you to input two pitches and which would
output the two nearest P parameters. The programming would be simple
but quite long as you would need to include all 256 frequencies. Bell
effects are not used very often on the BBC micro, so perhaps you will find
the exercise worthwhile.

99

Making Music on the BBC Computer

Fortunately for the more eager among us, an unscientific but workable
shortcut is possible. This consists of adding a fixed pitch difference to the
melody notes. This will usually produce good results but be careful if the
tune spreads over a large range. The next program illustrates this principle.

 10 REM PROGRAM 6.9
 20 REM Be l l s and Ch imes
 30
 40 ENVELOPE1,4 ,0 ,0 ,0 ,0 ,0 ,0 ,126 , -1 , -1 ,
-1 ,126 ,0
 50
 60 FOR P i tch=1 TO 8
 70 READ Note ,Dur
 80 SOUND1,1 ,Note ,Dur
 90 SOUND2,1 ,Note+120,Dur
 100 NEXT P i tch
 110
 120 SOUND1,1 ,117 ,64
 130 SOUND2,1 ,6 ,64
 140 SOUND1,1 ,129 ,16
 150 SOUND2,1 ,53 ,16
 160 END
 170
 180 DATA 117,16 ,101,16 ,109,16 ,81 ,32
 190 DATA 81 ,16 ,109,16 ,117,16 ,101,64

Try substituting different values for the pitch difference in line 90, and add
a pitch difference to other tunes to hear them played by bells or chimes.

Finally, for pure cacophony, experiment along these lines:

10 FOR Bell=1 TO 20
20 SOUND1,-15,RND(101),1030 SOUND2,-15,RND(153)+102,10
40 NEXT Bell

100

CHAPTER 7
Zaps and Zings and Other Things

The fourth sound channel, channel 0, which we have barely mentioned so
far, is the noise channel. It is responsible for the unpitched sounds which
emanate from the computer. Without it, games would have no bangs or
crashes; and it has far more subtle uses in either types of program as we
shall see.

It is also capable of producing pitched sounds lower than the pitch of
the lowest B (P=1) but we will begin by looking at the parameters and
values relevant to channel 0.

The parameters for channel 0 are the same as for the other channels,
but the P or pitch parameter has a range of only 0 to 7 and produces a
different effect. This was described in Chapter 4, and is repeated in Figure
7.1 for easy reference.

Figure 7 .1

P
PARAMETER EFFECT

0 High frequency periodic noise.

1 Medium frequency periodic noise.

2 Low frequency periodic noise.

3 Periodic noise. Frequency is determined by the P
parameter on channel 1.

4 High frequency white noise.

5 Medium frequency white noise.

6 Low frequency white noise.

7 White noise. Frequency is determined by the P
parameter on channel 1

101

Making Music on the BBC Computer

The periodic noise is a sort of rasping and the white noise produces a
hissing sound. The periodic noise does not sound too dissimilar to that of
an ordinary tone but the white noise is clearly not at all musical. Both have
their uses in music and in sound effects.

White noise
All electronic circuits generate a certain amount of noise and this is
generally undesirable. In synthesis this can be used in numerous ways; as a
source of unpitched sounds or as an unpitched part of a pitched sound.

White noise is a combination of equal amounts of audio frequencies in
the same way that white fight is a combination of all colours. If we move
up the scale, say one octave from middle C (P=53) to the C above (P=
101), the actual frequency of the note doubles. The frequency doubles
every octave we go up, so there are more frequencies (not counting
fractions) in the higher octaves than in the lower ones. White noise,
therefore, tends to contain a lot of high frequencies which are responsible
for its characteristic hissing sound.

There are other forms of noise. The second most common form is
known as pink noise which contains equal amounts of frequencies from all
octaves and is similar to white noise with some of the higher frequencies
filtered out. This is useful for producing surf and sea sounds. You can
make 'red' noise by filtering out even more high frequencies and various
other shades by filtering out a bit here and there but we'fl leave that to the
synthesists.

There are three ways channel 0 can be used:

1) By itself, with P equal to 0, 1, 2, 4, 5 or 6, which produces a fixed-
pitch sound. These can be played one after the other to produce
rhythmic effects.

2) With P set to 3 or 7 and in conjunction with channel 1. In these
cases, the pitch is dependent upon the P parameter of channel 1. It
is varied during the production of a sound, the pitch of channel 0
will vary too.

3) As 1) and 2), but in conjunction with some other sound.

Simple sound effects
Program 7.1 contains six examples of sound effects. You can type in the
whole program at once or one section at a time. In some cases,
PROCDeIay is a part of the program, in others it is used to separate two
effects.

 10 REM PROGRAM 7.1
 20 REM Examples o f Channe l 0
 30 REM Sound Ef fec ts
 40

102

CHAPTER 7 Zaps and Zings and Other Things

 50 REM Mach ine Gun
 60 FOR Burs t=1 TO 3
 70 FOR Bu l le t=1 TO 12
 80 SOUND0, -15 ,5 ,1
 90 SOUND0, -15 ,6 ,1
 100 NEXT Bu l le t
 110 PROCDelay(100)
 120 NEXT Burs t
 130 PROCDelay(100)
 140
 150 REM Ricochet
 160 ENVELOPE1,132,28 , -1 ,0 ,1 ,28 ,0 ,126 , -
8 , -3 , -6 ,126 ,80
 170 ENVELOPE2,6 ,0 ,0 ,0 ,0 ,0 ,0 ,126 , -8 , -3 ,
-6 ,126 ,80
 180 FOR Shot=1 TO 3
 190 SOUND2,1 ,149 ,20
 200 SOUND0,2 ,6 ,20
 210 NEXT Shot
 220 PROCDelay(400)
 230
 240 REM Cymba l o r Anv i l
 250 ENVELOPE1,3 ,0 ,0 ,0 ,0 ,0 ,0 ,126 , -4 , -2 ,
-4 ,126 ,100
 260 ENVELOPE2,3 ,0 ,0 ,0 ,0 ,0 ,0 ,80 , -2 , -2 , -
2 ,80 ,40
 270 FOR Clang=1 TO 8
 280 SOUND&101,1 ,197 ,1
 290 SOUND&100,2 ,4 ,4
 300 PROCDelay(100)
 310 NEXT C lang
 320 PROCDelay(200)
 330
 340 REM Crea ture
 350 ENVELOPE1,4 ,0 ,0 ,0 ,0 ,0 ,0 ,32 , -1 ,0 , -4
,126 ,0
 360 SOUND1,0 ,220 ,0
 370 FOR Step=1 TO 8
 380 FOR Sp lodge=5 TO 7
 390 SOUND0,1 ,Sp lodge,Sp lodge-3
 400 NEXT Sp lodge

103

Making Music on the BBC Computer

 410 PROCDelay(200)
 420 NEXT Step
 430
 440 REM Mad Fac to ry
 450 SOUND1,0 ,100 ,0
 460 FOR Work=1 TO 16
 470 FOR No ise=1 TO 7
 480 SOUND0, -12 ,No ise ,2
 490 NEXT No ise
 500 NEXT Work
 510 PROCDelay(200)
 520
 530 REM Space Sh ip Tak ing Of f
 540 ENVELOPE1,40 ,0 ,0 ,0 ,0 ,0 ,0 ,126 ,0 ,0 , -
2 ,126 ,126
 550 SOUND0, -15 ,7 ,150
 560 FOR Eng ines=180 TO 255 STEP.5
 570 SOUND1,0 ,Eng ines ,1
 580 NEXT Eng ines
 590 SOUND0,1 ,7 ,100
 600 END
 610
 620 DEF PROCDelay(T ime)
 630 T IME=0:REPEAT UNTIL T IME>Time
 640 ENDPROC

The Machine Gun
The Machine Gun just alternates between two pitches of white noise. This
principle can be used to produce a number of effects. Alter lines 80 and 90
to produce the sound of a helicopter's blade:

80 SOUND0,-15,4,1
90 SOUND0,-15,5,2

Add this line:

95 SOUND0,-15,6,1

to produce a car that doesn't want to start. Increase the D parameter in line
95 to make it even more reluctant.

The Ricochet
The Ricochet is produced by combining white noise from channel 0 with a

104

CHAPTER 7 Zaps and Zings and Other Things

sound from another channel undergoing a pitch drop produced by a pitch
envelope.

Two envelopes are required for this effect, as we cannot use channel 0
with the pitch drop envelope for the following reason. If you run channel 0
from an envelope containing pitch variations, you can probably guess what
happens - the pitch changes run through channel 0 as they would through
any other channel, and the output changes in accordance with Figure 7.1.
This can be used as yet another source of effects although it is not so easy
to use methodically, .especially if channel I is undergoing pitch variations
too.

Returning to the Ricochet, two envelopes are also needed to ensure that
the volume levels of the respective sounds are correct.

The sound produced by channel 2 alone might be acceptable as a
passing seagull.

The Cymbal or Anvil
This is similar to the Ricochet in that it combines white noise with a pitch.
The two have been synchronized to ensure a clean percussive start,
although in this context the difference would be minute. Again, two
envelopes are used, this time purely to control relative volumes.

Synthesisers usually produce a cymbal sound with a little chuff of
white noise, sometimes with a ping added as we have done here. The result
is usually a very electronic-sounding cymbal. If you reduce the duration of
the effect, you will get metallic-like clicks.

The Creature
This is an attempt to produce an organic sound, ie one emanating from a
living creature. It is intended to portray a creature with rasping breath
walking through wet mud. Obviously, you need some imagination to
accept all that but you may find it a useful start for further experiments.
Try a backwards envelope to produce a sharp intake of breath and a
variation on the Ricochet to produce a wheeze to follow.

The Mad Factory
This was inspired by comedy scenes from old films in which all
mechanical devices bang, clang or hiss - often used for a car as it falls to
pieces.

The idea is very simple. The loop calls each of the P parameters in turn.
Note that channel 1 has been set in line 360 to fix the pitch when P is 3 and
7.

As mentioned earlier, you could replace the loop with a single
envelope; I leave it to you to work out the details. Also, alter the pitch of
channel 1 and see how it affects the program as a whole.

Sounds are not generally thought of as humorous. Perhaps you can
develop this into something more.

105

Making Music on the BBC Computer

Space Ship Taking Off
This illustrates an extreme example of the pitch on channel 1 controlling
the pitch on channel 0. The STEP value in line 560 makes the build-up last
longer and the, possibly excessive, release stretches the final sound out to
around half a minute. This could easily be increased . . .

Exploring the sound channel
As some of the best effects from channel 0 are produced in association
with other channels, and with channel 1 in particular, it is not easy to plan
a methodical search to discover all its possibilities. Once you know what
each P parameter does, however, it will be easier to imagine them in
different contexts. You may find the Envelope Comparison program in
Chapter 6 useful. If you add an extra line:

185 SOUND0,-15,3,40

you can put channel 0 under envelope control. If you do not want to hear
channel 1, you must make sure the volume sections of the envelopes are
silent.

Sound Effects Generator program
Although the accent of this book is on understanding the principles
involved in creating sounds, many of the effects produced with the pitch
envelope and channel 0 (not necessarily together) are difficult to predict. If
we go one step further, we can give the computer the task of creating new
effects: the results will then be totally unpredictable.

The Sound Effects Generator program produces random sets of
envelopes while still giving you control over various aspects of the sound.

 10 REM PROGRAM 7.2
 20 REM Sound Ef fec ts Genera to r
 30
 40 *TV255,1
 50 MODE7
 60
 70 PROCSetUp
 80 PROCOpt ions
 90
 100 REPEAT
 110 PROCInput
 120 REM Cursor Of f
 130 VDU23;11 ,0 ;0 ;0 ;0
 140 PROCAct ion
 150 PROCPr in tEnv
106

CHAPTER 7 Zaps and Zings and Other Things

 160 PROCOpt ions
 170 REM Cursor On
 180 VDU23;11 ,255;0 ;0 ;0
 190 UNTIL Inpu t$="Q"
 200 END
 210
 220 DEF PROCSetUp
 230 SN$="Both "
 240 Rep$="On "
 250 P=3
 260 P i tch=101
 270 Inp$="EPRSNTAQ"
 280 PROCSetSN
 290 ENDPROC
 300
 310 DEF PROCSetSN
 320 SAA=126:SAD=-1 :SAS=0:SAR=-4
 330 SALA=126:SALD=80
 340 NAA=126:NAD=-1 :NAS=0:NAR=-4
 350 NALA=126:NALD=80
 360 ENDPROC
 370
 380 DEF PROCOpt ions
 390
 400 FOR T i t le=0 TO 1
 410 PRINTTAB(6 ,T i t le)CHR$134;CHR$141"S
OUND EFFECTS GENERATOR"
 420 NEXT T i t le
 430
 440 PRINTTAB(12,3)CHR$133"O P T I O N
S"
 450 PRINTTAB(0 ,5)CHR$129"E"CHR$130"nve
lope"
 460 PRINTTAB(0 ,6)CHR$129"P"CHR$130" lay
"
 470 PRINTTAB(0 ,7)CHR$129"R"CHR$130"epe
at P i tch Enve lope"TAB(25)CHR$131;Rep$
 480 PRINTTAB(0 ,8)CHR$129"S"CHR$130"oun
d or No ise"TAB(25)CHR$131;SN$
 490 PRINTTAB(0 ,9)CHR$129"N"CHR$130"o is
e Parameter "TAB(25)CHR$131; "P = " ;P

107

Making Music on the BBC Computer

 500 PRINTTAB(0 ,10)CHR$129"T"CHR$130"Pa
rameter - A l te r "
 510 PRINTTAB(0 ,11)CHR$129"A"CHR$130" l t
e r P i tch"TAB(25)CHR$131;P i tch
 520 PRINTTAB(0 ,12)CHR$129"Q"CHR$130"u i
t "
 530 ENDPROC
 540
 550 DEF PROCInput
 560 PRINTTAB(26,13)CHR$131"?? " ;
 570 REPEAT
 580 Inpu t$=GET$
 590 Ac t ion=INSTR(Inp$, Inpu t$)
 600 UNTIL Ac t ion>0
 610 PRINTInput$
 620 ENDPROC
 630
 640 DEF PROCAct ion
 650 ON Ac t ion GOTO 660,670,680,690,700
,710,720,730
 660 PROCEnve lope :ENDPROC
 670 PROCPlay :ENDPROC
 680 PROCRepeat :ENDPROC
 690 PROCSoundNoise :ENDPROC
 700 PROCNoiseParam:ENDPROC
 710 PROCTParam:ENDPROC
 720 PROCAl te rP i tch :ENDPROC
 730 ENDPROC
 740
 750 DEF PROCEnve lope
 760 T1=RND(20) :T=T1
 770 P I1=-129+RND(256)
 780 P I2=-129+RND(256)
 790 P I3=-129+RND(256)
 800 PN1=RND(256) -1
 810 PN2=RND(256) -1
 820 PN3=RND(256) -1
 830 PROCPlay
 840 ENDPROC
 850
 860 DEF PROCPlay
108

CHAPTER 7 Zaps and Zings and Other Things

 870 ENVELOPE1,T ,P I1 ,P I2 ,P I3 ,PN1,PN2,PN
3,SAA,SAD,SAS,SAR,SALA,SALD
 880 ENVELOPE2,T ,0 ,0 ,0 ,0 ,0 ,0 ,NAA,NAD,NA
S,NAR,NALA,NALD
 890 SOUND&11,1 ,P i tch ,254
 900 SOUND&10,2 ,P ,254
 910 ENDPROC
 920
 930 DEF PROCRepeat
 940 IF Rep$="Of f " Rep$="On " :T=T1:ENDP
ROC
 950 IF Rep$="On " Rep$="Of f " :T=T1+128
 960 ENDPROC
 970
 980 DEF PROCSoundNoise
 990 PROCSetSN
 1000 IF SN$="Sound" SN$="No ise" :SAA=-12
6:SAD=0:SAS=0:SAR=-126:SALA=0:SALD=0:END
PROC
 1010 IF SN$="No ise" SN$="Both " :ENDPROC
 1020 IF SN$="Both " SN$="Sound" :NAA=-12
6:NAD=0:NAS=0:NAR=-126:NALA=0:NALD=0
 1030 ENDPROC
 1040
 1050 DEF PROCNoiseParam
 1060 IF P=3 P=7 ELSE IF P=7 P=3
 1070 ENDPROC
 1080
 1090 DEF PROCTParam
 1100 PRINTTAB(2 ,10)CHR$133; "Enter T Va l
ue 1 - 127"
 1110 REPEAT
 1120 PRINTTAB(24,10)CHR$133;CHR$136;
 1130 INPUT T1
 1140 PRINTTAB(26,10)SPC(8)
 1150 UNTIL T1>0 AND T1<128
 1160 IF Rep$="On " :T=T1 ELSE T=T1+128
 1170 ENDPROC
 1180
 1190 DEF PROCAl te rP i tch
 1200 PRINTTAB(2 ,11)CHR$133; " En te r P i t

109

Making Music on the BBC Computer

ch 0 - 255 "
 1210 REPEAT
 1220 PRINTTAB(24,11)CHR$133;CHR$136;
 1230 INPUT P i tch
 1240 PRINTTAB(26,11)SPC8
 1250 UNTIL P i tch>-1 AND P i tch<256
 1260 ENDPROC
 1270
 1280 DEF PROCPr in tEnv
 1290 PRINTTAB(0 ,15)CHR$134"Channe l 1 "
 1300 PRINTTAB(0 ,17)SPC(17)
 1310 PRINTTAB(0 ,16) "ENVLOPE1, " ;T1 ; " , " ;P
I1 ; " , " ;P I2 ; " , " ;P I3 ; " , " ;PN1; " , " ;PN2; " , " ;P
N3; " , " ;SAA; " , " ;SAD;" , " ;SAS; " , " ;SAR;" , " ;S
ALA; " , " ;SALD
 1320 PRINTTAB(0 ,19)CHR$134"Channe l 0 "
 1330 PRINTTAB(0 ,21)SPC(17)
 1340 PRINTTAB(0 ,20) "ENVELOPE2, " ;T ; " ,0 ,0
,0 ,0 ,0 ,0 , " ;NAA; " , " ;NAD;" , " ;NAS; " , " ;NAR;"
, " ;NALA; " , " ;NALD
 1350 ENDPROC

How to use the program
When run, the first thing to do is press 'E'. This generates an envelope
which will be printed on the screen and sounded at the same time. Every
time you press 'E' a new envelope will be generated and the old one will be
lost.

'P' enables you to play or repeat the current envelope.
'R' switches the repeat on the pitch envelope on and off.
'S' switches between hearing sound only, noise only or both.
'N' lets you switch the P parameter in the noise channel from 3

(periodic noise) to 7 (white noise).
'T' lets you alter the T parameter, You will be asked for a figure

between 1 and 127. Enter the figure and press RETURN. The 'R' option
will take care of whether or not the envelope repeats.

'A' lets you alter the pitch. It works in a similar way to the T parameter,
only over a 0 to 255 range.

'Q' quits the program.

Program notes
The procedures and variable names should help you understand the
program. Imp$ at line 270 contains the only valid letters accepted by

110

CHAPTER 7 Zaps and Zings and Other Things

PROCInput. These are tested for at line 590.
PROCsetSN sets the initial amplitude levels for the sound and noise

channels. This is called each time a change is made in the Sound/Noise.
Both output and the relevant variables are altered in the procedure at fine
990.

PROCEnvelope sets up a random envelope every time it is called. You
will notice that T is restricted to a maximum value of 20, but you can alter
that if you wish. You will probably find that even values over 10 produce
envelopes which are too slow. T1 is used for the initial value of the T
parameter and T is finally set according to whether the envelope is to
repeat or not.

PROCPlay forms the envelopes. The pitch parameters in the noise
envelope are set to 0. If you alter them, alter PROCPrintEny, too. The
sounds are programmed with the flush command so that you can play the
sound at any time without waiting for the previous sound to terminate .

PROCTParam and PROCAlterPitch are similar and self-explanatory.
PROCPrintEnv does just that. If you alter or add anything, be sure to see
that this prints the correct envelope.

Suggestions and modifications
You may find it useful to restrict the PI and FN parameters. If you want to
produce tuneful sequences you can arrange for the steps to be in multiples
of four like this:

PI = StartPitch + RND(64)*4

You could also arrange to set the PI values in a certain pattern such as up/
down/up.

Taking it a step further, you may want to alter individual PI or FN
parameters while the program is running, in a similar way to the ADSR
and Pitch Graph program. That, however, is putting the task back in your
hands, not the computer's, but please do so if you wish. You could also add
a procedure to adjust the relative volumes of the two channels.

Instead of having to write down the envelopes, you could arrange for
the program to save the current envelope parameters in an array. A
separate recall procedure could transfer the parameters of a previously
saved envelope back to the current working envelope. In this way you
could save more than l6 envelopes. Personally, I find it just as easy to jot
them down.

Sometimes you will get a sound you like but which is not quite what
you're after. You could include a less severe procedure to alter the current
envelope only slightly, say by four points per parameter. Of course, you're
just as likely to move away from what ou want as towards it, but at least
it's not likely to be something completely different.

111

Making Music on the BBC Computer

Using channel 0 to produce otherwise unobtainable low
notes
During your experiments, you will have noticed that the periodic noise on
channel 0 sounds very like a tone from one of the other channels. If the P
parameter is set to 3, we can alter the pitch of the noise by controlling the
pitch of channel 1 like this:

10 FOR Pitch=200 TO 1 STEP-4
20 SOUND1 ,0,Pitch,10
30 SOUND0,- 15,3,10
40 NEXT Pitch

That should sound like a reasonable semitone scale but research indicates
that the tie-in between the pitch on channel 0 and the pitch on channel 1
may not be as accurate as we would like. Figure 7 .2 indicates the pitch
values of channel 1 which are necessary to produce the indicated pitch
values on channel 0. These carry on downwards from the octaves fisted in
Figure 3.3.

Figure 7.2

C C# D D# E F F# G G# A A# B

0 144 148 152 156 160 164 168 172 176 180 183 188
-1 96 100 104 108 112 116 120 124 128 132 136 140

The relationship between these two pitch values on your computer may
not be the same but should only deviate by one figure. The only anomaly
in the table appears to be the A#1 but check this on your own computer.
You can do an ear test by playing the relative pitch along with the same
note an octave higher on channel 2. The notes produced by channel 0 may
not be exact octaves of those of the other channels but they will be near
enough to be of use in a composition.

You will realise that when the pitch drops' to octave -1, it starts to
sound more like a buzz although it is arguably useful right down to octave
C-1.

Use of the lower octave
All music is written in a specific pitch and key and this method allows us
to use one or two octaves of sound not normally available. Many tunes
were written in and sound better in the lower octaves and these lower notes
can be especially useful if the music range exceeds the five octave range of
the sound chip. The only loss is any possible use of channel 0 as a rhythm
accompaniment which brings us to that very topic.

112

CHAPTER 7 Zaps and Zings and Other Things

Designing a rhythm unit
After experimenting with the sounds of various guns and vehicles it is not
difficult to produce a rhythm unit. The main problem, and the one
requiring the most individual attention, lies in producing acceptable drum
sounds. The best drum noises seem to come from channel 0 with P set to 4,
5 or 6 - the white noise settings - but do try other settings and use it in
conjunction with channel 1 as described above.

You will find that duration of the sound plays a very important part in
determining the drum characteristics and, if you use more than one
envelope, you can vary the sound and produce quite a reasonable rhythm
unit.

The next program is one way of approaching the design of a rhythm
generating program. Be wary of renumbering the program because the
variable, Rhythm, holds the starting line of the DATA statements
containing the rhythms.

 10 REM PROGRAM 7.3
 20 REM Rhythm Un i t
 30
 40 *TV255,1
 50 MODE7
 70 PROCSetUp
 80 PROCTi t lePage
 90 PROCPlay
 100 END
 110
 120 DEF PROCSetUp
 130 Tempo=2
 140 Rhy thm=360
 150 ENVELOPE1,1 ,0 ,0 ,0 ,0 ,0 ,0 ,126 , -3 , -3 ,
-6 ,126 ,100
 160 ENVELOPE2,1 ,0 ,0 ,0 ,0 ,0 ,0 ,32 , -4 , -4 , -
8 ,110 ,60
 170
 180 DEF PROCTi t lePage
 190 FOR T i t le=1 TO 2
 200 PRINTTAB(6 ,T i t le)CHR$141;CHR$134"R
 H Y T H M U N I T"
 210 NEXT T i t le
 220 PRINTTAB(1 ,4)CHR$129; "1" ;CHR$130; "
Bossa Nova"
 230 PRINTTAB(1 ,5)CHR$129; "2" ;CHR$130; "

113

Making Music on the BBC Computer

Rock"
 240 PRINTTAB(1 ,6)CHR$129; "3" ;CHR$130; "
12 /8 Rock"
 250 PRINTTAB(1 ,7)CHR$129; "4" ;CHR$130; "
Swing"
 260 PRINTTAB(1 ,8)CHR$129; "5" ;CHR$130; "
Wal tz "
 270 PRINTTAB(1 ,9)CHR$129; "Q" ;CHR$130; "
Qu i t "
 280 ENDPROC
 290
 300 DEF PROCPlay
 310 REPEAT
 320 *FX15,1
 330 IF INKEY(-49) Rhy thm=450
 340 IF INKEY(-50) Rhy thm=480
 350 IF INKEY(-18) Rhy thm=520
 360 IF INKEY(-19) Rhy thm=550
 370 IF INKEY(-20) Rhy thm=580
 380 READ Env ,P i t ,Dur
 390 SOUND0,Env ,P i t ,Dur*Tempo
 400 IF Env=0 RESTORE Rhythm
 410 UNTIL INKEY(-17)
 420 ENDPROC
 430
 440 REM Bossa Nova
 450 DATA 1 ,4 ,2 ,2 ,5 ,2 ,2 ,5 ,2 ,1 ,4 ,2 ,2 ,5 ,2
,2 ,5 ,2 ,1 ,4 ,2 ,2 ,5 ,2 ,0 ,0 ,0
 460
 470 REM Rock
 480 DATA 1 ,5 ,2 ,2 ,5 ,2 ,1 ,4 ,2 ,1 ,4 ,1 ,1 ,5 ,2
,2 ,5 ,2 ,2 ,5 ,1 ,1 ,4 ,1 ,2 ,4 ,1 ,2 ,4 ,2
 490 DATA 1 ,5 ,2 ,2 ,5 ,2 ,1 ,4 ,2 ,1 ,4 ,1 ,1 ,5 ,2
,2 ,5 ,2 ,2 ,5 ,1 ,1 ,4 ,1 ,2 ,5 ,1 ,1 ,6 ,1 ,1 ,6 ,1 ,0 ,0
,0
 500
 510 REM 12/8 Rock
 520 DATA 1 ,5 ,2 ,2 ,4 ,1 ,2 ,4 ,1 ,2 ,4 ,2 ,1 ,4 ,2
,2 ,4 ,2 ,2 ,4 ,2 ,1 ,5 ,2 ,2 ,4 ,1 ,2 ,4 ,1 ,2 ,4 ,2 ,1 ,4
,2 ,2 ,4 ,2 ,1 ,6 ,2 ,0 ,0 ,0
 530
114

CHAPTER 7 Zaps and Zings and Other Things

 540 REM Swing
 550 DATA 1 ,5 ,4 ,2 ,4 ,3 ,2 ,4 ,1 ,1 ,5 ,4 ,2 ,4 ,3
,2 ,4 ,1 ,1 ,5 ,4 ,2 ,4 ,3 ,2 ,4 ,1 ,1 ,6 ,2 ,2 ,4 ,2 ,2 ,4
,1 ,2 ,4 ,1 ,2 ,4 ,2 ,0 ,0 ,0
 560
 570 REM Wal tz
 580 DATA 1 ,5 ,4 ,2 ,4 ,4 ,2 ,4 ,4 ,1 ,6 ,4 ,2 ,4 ,4
,2 ,4 ,4 ,1 ,5 ,4 ,2 ,4 ,4 ,2 ,4 ,4 ,1 ,6 ,4 ,2 ,4 ,2 ,2 ,4
,2 ,2 ,5 ,2 ,1 ,5 ,2 ,0 ,0 ,0

When run, the program will play a Bossa Nova: pressing the indicated keys
will alter the rhythm.

Program notes
The program should be self-explanatory. As we are only using one
channel, the rhythms are produced by alternating between various shades
of white noise. Lines 380 to 400 do this by reading information from the
DATA statements.

The envelopes in PROCSetUp play a large part in determining the
drum sound. Only two have been used but you can add more to produce
different instruments. For example, a very short duration will sound like a
wood block and a medium-pitched noise with just a little decay will sound
like a hand clap. You may wish to bring another channel in, toq.
Experiment with the original envelopes to see if you can improve on the
sound. The effect will be very different if played through an external
speaker.

The rhythms only play one or two bars before repeating. You can add
more variations by adding to the data and, of course, create more rhythms.
Alter the tempo in line 130, too.

The INKEY function with a negative number in brackets reads a
particular key on the keyboard (see the User Guide page 275) to see if it is
being pressed. From this, the program sets the next RESTORE operation to
the required line.

The CAPS LOCK and SHIFT LOCK lights and the
ADVAL function
You will notice, if you have a 1.0 or later operating system, that the CAPS
LOCK and SHIFT LOCK lights go on when the program is running. These
light whenever the buffers fill up and indicate that the program is being
held up waiting for the sound queue to clear. In this program, it does not
really matter but if we wanted to do something else, such as play along
with the rhythm, we may have a problem or two. One way around it is to
replace lines 380, 390 and 400 by this single line:

115

Making Music on the BBC Computer

380 IF ADVAL(-5)>0 READ Env,Pit,Dur:
SOUND0,ENV,Pit,Dur*Tempo:IF Env=0 RESTORE Rhythm

This ADVAL function with a negative parameter in brackets returns the
number of free spaces in the channel 0 buffer. If there is a free space, it
reads the next data item and processes the next sound command. ADVAL
is explained on page 202 of the User Guide and we will look at it in more
detail in Chapters 8 and 9.

You will notice that the lights no longer stay on because the program
does not come to a halt at line 390 when the buffer is full. Instead, it
continually cycles through the REPEAT loop. This means we could put
other commands here, such as information for more sounds, without
disturbing the rhythm - provided the new information does not hold up the
program either.

Using sound effects in utility programs
While the zap of a laser blast might be considered disturbing in a utility
program, sound effects can be used to enhance such programs, making
them more interesting to work with and generally assisting the user.

Many people, myself included, do not like being beeped at by a
computer when we make a wrong input. The most common sound on the
BBC micro used for such a purpose can be made by holding down the
CTRL key and pressing 'G'. It can be written into a program simply as:

VDU 7

which has the same effect.
The presentation of a program, its ease of operation and its error-

trapping techniques all determine how user-friendly it is. Detailed
discussions on this topic, however interesting, are beyond the scope of this
book but we can look at one or two ways of improving a program through
the use of sound.

If using a program is a matter of hitting a certain number of keys, eg
selecting items from a menu, you could incorporate a procedure to make a
small sound whenever an item is correctly selected. Something like this:

1000 DEF PROCSound
1010 SOUNDO,-12,4,2
1020 ENDPROC

This tends to give the keys a chunky feel; something a bit more solid than
the tap or rattle of the keyboard. The user also knows that he or she has hit
a correct key and can expect some action from it.

In place of the beep, you could use a different sound to indicate an

116

CHAPTER 7 Zaps and Zings and Other Things

incorrect selection - may I suggest something a little more quiet and less
presumptuous.

Mistakes are generally made because the user does not understand the
instructions and nothing is more frustrating than to press a key you think is
right and receive only *a beep in response. Action should be directed to
another part of the program to give the required information or back to the
instruction sheet.

If the inputs are restricted and the program is correctly error-trapped (as
it should be) and will not respond to an invalid input there may not be a
need for any sound at all on an incorrect key press. This is the opposite of
the normal method of operation - silence on a correct entry - and preferable
in many instances.

If a program steps through a number of sections which cumulate in a
result, eg a character generating program, you could incorporate a small
fanfare, such as in the Motility Tester program in Chapter 1, to indicate
that a section of the program has been completed and the user is about to
move on to the next step. Such fanfares can be constructed from pitch
envelopes.

The above suggestions can make utility programs more interesting to
work with, as long as they work towards the aim of the program and are
not there simply for decoration.

In such programs, it is always advisable to give the user the option of
switching the sound off so that they do not have to listen to your creations,
however marvellous they may be, if they do not want to.

Soundscapes: a total sound effects program
With such a versatile computer and sound chip, there are lots of sound
effect collages you could build up: trains, ships, cars, a factory, the
countryside, a laboratory, the jungle, etc. The most interesting are ones
which will not repeat for a long time or which do not repeat exactly. The
next program uses some of the ideas discussed in this chapter to form a sea
soundscape.

 10 REM PROGRAM 7.4
 20 REM Sea, Sur f & Seagu l l s
 30
 40 ENVELOPE1,130,28 , -1 ,0 ,1 ,28 ,0 ,63 , -8
, -4 , -6 ,126 ,80
 50 ENVELOPE2,2 ,0 ,0 ,0 ,0 ,0 ,0 ,63 , -1 ,0 , -4
,126 ,116
 60 Foghorn=0
 70
 80 REPEAT

117

Making Music on the BBC Computer

 90 Foghorn=Foghorn+1
 100 P i tch=RND(64)+190
 110 IF ADVAL(-6)>0 SOUND1,0 ,P i tch ,0
 120
 130 Pu lse=RND(20)+15
 140 Lu l l1=RND(10)+25
 150 Lu l l2=RND(10)+25
 160 F low=RND(6)+8
 170 Ebb1=RND(2)+3
 180 Force=RND(26)+100
 190
 200 Wave=RND(3)+3
 210 Ebb2=RND(5)^3+129
 220
 230 REM Enve lope fo r Waves
 240 ENVELOPE3,Pu lse ,0 ,1 ,0 ,Lu l l1 ,1 ,Lu l l
2 ,F low, -Ebb1, -1 , -1 ,Force ,90
 250
 260 IF ADVAL(-5)>3 SOUND0,3 ,Wave,Ebb2:
SOUND&1000,0 ,0 ,Ebb2
 270
 280 REM Seagu l l
 290 IF ADVAL(-7)>0 : IF RND(80)=1 SOUND2
,1 ,RND(76)+101,20
 300
 310 REM Foghorn
 320 IF ADVAL(-8)>0 : IF Foghorn>140 SOUN
D&113,2 ,0 ,80 :SOUND&112,2 ,0 ,80 : IF Foghorn
>140 Foghorn=0
 330 UNTIL FALSE

As it stands, you just run the program, sit back and listen.

Program notes
The variables in lines 130 to 180 repeatedly redefine ENVELOPE 3 in fine
240.

Wave in line 200 selects white noise with a P value of from 4 to 6. The
PI2 parameter of the envelope increases the pitch parameter on channel 0

118

CHAPTER 7 Zaps and Zings and Other Things

by one, so a complete wave will use two white noise types. These will be 4
and 5, 5 and 6, 6 and 7. As 7 is based on the pitch of channel 1 this is
selected randomly in fine 100. Ebb2 determines how quickly one wave
will finish and another begin. Notice the use of a dummy parameter in the
second sound command in line 260 which lets the release phase occur and
the wave ebb.

The Foghorn variable is increased automatically so the foghorn sounds
regularly. Inclusion of the flush parameter will cut off a seagull in mid-
call.

The seagull is produced by a variation on our Ricochet envelope in
Program 7.1.

The use of ADVAL functions ensure that the program never sticks and,
by using similar methods, you can add even more to it. If you add:

315 PRINT Foghorn

you will see that the program is not held up by sound queues. If you then
remove the ADVAL statement in line 260:

260 SOUND0,3,Wave,Ebb2:SOUND&1000,0,0,Ebb2

you will see how the program grinds to a halt.

Further experiments in soundscapes
Although we do not have the facilities of a full-blown synthesiser, we can
still produce background effects which can be played throughout a
program. An extension to a soundscape could be a graphics design
program controlled, possibly, by the random values produced by the
soundscape. See what you can do.

119

Making Music on the BBC Computer

120

CHAPTER 8
Playing the BBC Micro

The introduction of sound chips into personal computers brought about the
birth of a totally new musical instrument - the computer itself. How easy
and effective it is to play depends both upon the hardware and the software
used to drive it. The BBC micro excels in both departments and we can use
it to perform some quite complex musical feats.

Using the BBC micro as a musical keyboard

Most musical instruments are designed to be ergonomically easy to play -
within the confines of the shape required by the instrument to produce
whatever sound it is supposed to produce. A piano-type keyboard is
probably one of the best examples, although designs exist for other
keyboards which are intended to be easier to play.

Computers, unless they are specifically designed to operate as a
musical instrument, are not normally supplied with a musical keyboard and
if we want to play the computer we must make do with what we have, ie
the QWERTY typewriter keyboard.

Depending upon your musical upbringing, you may find this easy or
difficult to adapt to. The QWERTY keys are not laid out like a piano
keyboard and are not labelled to correspond to musical notes. It may well
be that here the non-musician has a distinct advantage over the keyboard
player.

If you can play a piano keyboard your playing will tend to be partly
automatic and, after a little practice, your fingers know how to move in
order to play a certain sequence of notes. Much the same applies to the
typist who is used to the QWERTY keyboard but in this case the fingers
are responding to different patterns, ie word patterns, not musical ones.

Musicians and non-musicians alike will find that a little practice greatly
improves their skill in using the QWERTY keyboard as a musical
instrument but it will still be difficult to play anything of any technical
difficulty. We can, however, still have a lot of fun using the computer in
this way.

121

Making Music on the BBC Computer

Monophonic and polyphonic instruments
A monophonic instrument is one which can only play one note at a time.
Most instruments fall into this category, eg flute, trumpet, violin: although
it is technically possible to play more than one note on some of them, they
are generally classed as monophonic.

A polyphonic instrument is one which can sound many notes at once
(and, usually, all of them should this be required) such as the piano, organ,
harp, etc.

You will often see synthesisers described as monophonic or
polyphonic. Sometimes the polyphonic category is qualified by a number
such as 6-note or 8-note polyphonic. Some monophonic synthesisers have
a duophonic mode which means they can sound two notes at once. With
the ever-decreasing cost of electronics and silicon chips, the trend is
towards producing instruments with ever-greater polyphonic capabilities.

The BBC as a monophonic keyboard
There is more than one way of writing a program which allows us to play
music from the keyboard. The next program illustrates just one way in
which it can be approached: it turns the computer into a monophonic
keyboard.

 10 REM PROGRAM 8.1
 20 REM Monophon ic Keyboard
 30 REM From G (P i tch=33)
 40 REM To E (P i tch=117)
 50
 60 ON ERROR GOTO150
 70
 80 Keyboard$="Q2W3ER5T6YU8I9O0P^[_ "
 90 *FX11,1
 100 REPEAT
 110 Key$=INKEY$(0)
 120 P i tch=29+4* INSTR(Keyboard$,Key$)
 130 IF Key$<>"" : IF P i tch>29 SOUND&11, -
15 ,P i tch ,2
 140 UNTIL FALSE
 150 *FX12,0
The program is so simple it could probably be condensed into a couple of
fines. Keyboard$ contains the keys we use and each key from left to right
increases the pitch by a semitone. If you refer to Figure 2.4 they
correspond to the notes from G (P=33) to E (P=117).

122

CHAPTER 8 Playing the BBC Micro

Program notes
Input is detected by INKEY$ and checked with the INSTR function to see
if it corresponds to a key in Keyboard$. The basis for pitch calculation is
29 and the pitch is increased in multiples of four, according to the position
of the pressed key in Keyboard$ as determined by the INSTR function.
This is done in line 120. If no key is pressed the INSTR function returns a
value of 0, and if Pitch is no more than 29 the sound will not occur.

The SOUND command contains a flush instruction so each new note
sounds immediately upon being received. *FX11,1 removes the auto delay.

The program continually cycles through the REPEAT loop and sends a
continuous series of instructions to the SOUND command. The duration
value of 2 is necessary to prolong the note for the length of time the
BASIC program takes to work through the loop. Reduce it to 1 and hear
what happens�.

If you try to use envelope control, you will find that the cycling will
sometimes cause the note to continually repeat. A case in point would be
this envelope:

ENVELOPE1,1 ,0,0,0 ,0,0,0,126,-4,0,-4,126,80

You may find the idea useful for mandolin or banjo effects.

Keyboard display program
When playing a strange instrument it is often helpful to have a diagram of
the keyboard with the relevant buttons or keys marked on. The next
program draws such a display in mode 7 graphics and can be appended to
any of these programs to provide a visual display and aid as you play the
keyboard. You may also find it helpful to stick small pieces of paper over
the keys you don't play to make the QWERTY layout look a little more
like a piano keyboard.

 1000 REM PROGRAM 8.2
 1010 REM Keyboard D isp lay
 1020
 1030 DEF PROCKeyBoard
 1040 CLS
 1050 FOR T i t le=1 TO 2
 1060 PRINTTAB(9 ,1+T i t le)CHR$141;CHR$132
; "K E Y B O A R D"
 1070 NEXT T i t le
 1080
 1090 PRINT ' ' " f1 f2 f3 f4 "

123

Making Music on the BBC Computer

 1100 PRINT"ENV1 ENV2 ENV3 ENV4"
 1110 PRINT ' ' " 2 3 5 6 8 9
0 ^ | "
 1120
 1130 K$=CHR$156+CHR$151+CHR$157
 1140 J$=CHR$148+CHR$181+" "
 1150
 1160 FOR Key=1 TO 4
 1170 PRINTCHR$151;CHR$255;
 1180 PRINTK$;K$;J$;K$;K$;J$;
 1190 PRINTK$;K$;K$;J$;K$;K$;CHR$156
 1200 NEXT Key
 1210
 1220 FOR Key=1 TO 5
 1230 PRINTCHR$151;CHR$157;CHR$148;
 1240 PRINTSTRING$(12,CHR$181+" "+" ")
 1250 NEXT Key
 1260
 1270 PRINT" Q W E R T Y U I O
P @ [_ "
 1280 ENDPROC

The procedure assumes the computer is in mode 7 - do not change mode
inside the procedure. Insert a line containing:

PROCKeyBoard

near the beginning of the program. See Appendix 2 and the User Guide
page 402 for tips on merging programs.

The display is made up from teletext characters and is relatively
straightforward although it may not be easy at first to see what the various
strings produce. See Chapter 28, page 150, of the User Guide for more
information on the use of teletext graphics.

Lines 1090 and 1100 are there for the benefit of the next program.

Alternative methods of note production
If we want to use envelope control or if we want to play more than one
note at once, we need to employ a slightly more sophisticated method of
key detection. One such method involves the use of the negative INKEY
function which we used in Program 7 .3, the Rhythm Unit Program.The
advantage of the negative INKEY function is that it only tests for one

124

CHAPTER 8 Playing the BBC Micro

particular key and any number can be used together so we can test for three
simultaneous key depressions. (See page 273 of the User Guide for further
information.)

The next program allows us to play up to three notes at once to produce
chords (see Chapter 2).

 10 REM PROGRAM 8.3
 20 REM 3-Note Po lyphon ic
 30 REM Keyboard (Q - _)
 40 REM From G (P i tch=81)
 50 REM To E (P i tch=165)
 60
 70 DIM KBoard%(26)
 80 DIM KF lag%(26)
 90 DIM CH%(3)
 100
 110 FOR Channe l=1 TO 3
 120 CH%(Channe l)=0
 130 NEXT Channe l
 140
 150 FOR Keys=1 TO 26
 160 READ Data
 170 KBoard%(Keys)=Data
 180 KF lag%(Keys)=-1
 190 NEXT Keys
 200
 210 DATA 17 ,50 ,34 ,18 ,35 ,52 ,20 ,36 ,53
 220 DATA 69 ,54 ,22 ,38 ,39 ,55 ,40 ,56 ,72
 230 DATA 25 ,57 ,121,41 ,114,115,116,21
 240
 250 REM f1=ENVELOPE1: f2=ENVELOPE2
 260 REM f3=ENVELOPE3: f4=ENVELOPE4
 270
 280 ENVELOPE1,1 ,0 ,0 ,0 ,0 ,0 ,0 ,126 , -4 , -4 ,
-4 ,126 ,100
 290 ENVELOPE2,129,12 ,0 , -4 ,1 ,0 ,3 ,126 , -1
,0 , -4 ,126 ,100
 300 ENVELOPE3,1 ,0 ,1 , -1 ,0 ,1 ,1 ,126 , -1 ,0 ,
-4 ,126 ,100
 310 ENVELOPE4,8 ,0 ,0 ,0 ,0 ,0 ,0 ,63 ,10 ,0 , -6
3 ,63 ,126

125

Making Music on the BBC Computer

 320
 330 P i tch%=77
 340 E%=2
 350
 360 KPressed%=0
 370 REPEAT
 380 FOR N%=1 TO 26
 390 IF INKEY(- (KBoard%(N%)))=KFlag%(N%
) PROCP
 400 NEXT N%
 410 UNTIL FALSE
 420 END
 430
 440 DEF PROCP
 450 IF N%>22 PROCE:ENDPROC
 460 IF KPressed%=3 AND KFlag%(N%) ENDP
ROC
 470 Chan%=0
 480 IF KF lag%(N%) REPEAT Chan%=Chan%+1
:UNTIL CH%(Chan%)=0:CH%(Chan%)=N%:SOUND&
10+Chan%,E%,P i tch%+N%*4,255:KPressed%=KP
ressed%+1
 490 IF NOT KF lag%(N%) REPEAT Chan%=Cha
n%+1:UNTIL CH%(Chan%)=N%:CH%(Chan%)=0:SO
UND&1010+Chan%,0 ,0 ,0 :KPressed%=KPressed%
-1
 500 KF lag%(N%)=NOT KF lag%(N%)
 510 ENDPROC
 520
 530 DEF PROCE
 540 E%=N%-22
 550 ENDPROC

The keys used are the same as in the monophonic program and pressing
function keys f1 to f4 will put the keyboard under control of that envelope
number. Program 8.2 produces a suitable display to go with this program.

Program notes
There is more than one way in which this program could have been
written. One way, the brute force method, would be to include 26 fines
such as:

126

CHAPTER 8 Playing the BBC Micro

390 IF KeysPressed>3 ENDPROC ELSE IF INKEY (-17)
Note=33:PROCSound:KeysPressed:KeysPressed+1

At least such a method would be quite easy to understand. A more
sophisticated method is also doubtless possible but at the expense of
comprehension. This program tries to tread a middle path. Once you
understand the principles involved you can experiment and write your own
- as simple or as sophisticated as you wish. To minimise the time taken by
the program to interpret the BASIC code, integer variables and short
variable names have been used.

The way the program works is described first, followed by individual
sections and aspects which may need clarification.

We have substituted the 26 possible lines mentioned above by an array,
KBoard%, which contains the negative INKEY values of the keys we want
the program to respond to. A second array, KFlag%, keeps track of
whether a key is currently pressed or not. The array, CH%,, keeps track of
which channel is being used to produce which note. Pitch% sets the basic
root pitch and E% is the envelope number.

The REPEAT loop between lines 370 and 410 cycles through the 26
negative INKEY values in the KBoard% array. The KFlag% array checks
to see if there has been any change in keys pressed since the last loop and
if there has the program is diverted to PROCP.

N% refers to how far up the scale we are. If N% equals 23, 24, 25 or
26, one of the function keys is being pressed and the program is diverted to
PROCE which simply sets E% to a new envelope number. If N% is less
than 23 it means a note is required.

As we can't sound more than three notes at once, the program checks,
in line 460, to see how many keys are currently pressed. If there are
already three keys down and another key has been pressed, control is
immediately passed back to the REPEAT loop. (See the User Guide pages
89 and 100 for more information about the use of TRUE and FALSE.)

If control gets to fine 480, there is an empty channel and a key has been
pressed telling the program to make a sound. Chan% is incremented by 1
until it finds an empty channel. This is given the value of N%o which tells
the program which key enabled that particular channel and it plays a sound
at the required pitch. KPressed%, is also incremented to keep track of how
many keys are down. Lastly, the KFlag% variable is changed in line 500.
If KFlag%(N%) was TRUE, ie pressed down, it is set to FALSE. The next
time the loop looks at this value of N% in line 390 it will be looking to see
if the key has been lifted.

If a key has been lifted, control passes to line 490 instead of 480.
Chan'% is incremented until the program finds which channel was
responsible for the sound produced by the key which has just been lifted.
When the channel has been found, it is flushed. Notice the use of the
dummy note parameter to allow the release phase to occur.

KPressed% is decremented to show that a sound channel has been
freed. KFlag%(N%) is changed again by line 500 to TRUE.

127

Making Music on the BBC Computer

How the program works and making modifications
The use of KFlag% ensures that a channel is not given a sound request
until the key responsible for the present sound on that channel is lifted.
This prevents a stream of continuous information going to the sound
channels as in the monophonic program, and it permits envelope controL.

The sound command in line 480 which produces the sound has been
given an infinite duration. If the AS phase of the envelope is 0, the note
will continue until you take your finger off the key. The channel will then
be flushed the next time around the loop by line 490.

You will notice that we have not needed to use an ADVAL function to
check if the sound channels are full because, if a channel is being used, the
program does not allow any further commands to get through.

The use of Kpressed% in line 460 to terminate the procedure if too
many keys are down can be altered. As it is, if three keys are down and
you press another, control just passes back to the REPEAT loop. Some
synthesisers have a high, a low or a last note priority which means that the
three highest, lowest or the three last notes take precedence over any
others. You can achieve this by altering the '3 keys down' criteria in this
fine and you will probably also have to alter the channel allocation,
according to your aims.

If you want to try some dazzling fingerwork, you may find the response
a little slow; and you may notice a very small time lag between the notes
of a chord if you press three keys exactly together. You will see that the
program does not attempt to synchronize any notes. This is a result of the
program design and the fact that each note has to run through a lot of
BASIC programming before it is heard. This tiny delay is not likely to be a
problem but you can cut the response time by compressing the coding,
using multi-statement fines and single letter integer variables.

As a modification, if you wanted to synchronize the notes, instead of
calling PROCP with every note pressed you could call a PROCGetNotes to
count the keys pressed and work out the pitch values. At the end of the
FOR . . . NEXT loop you could call a PROCPlay which would carry out
the information gathered by PROCGetNotes and synchronize the notes if
necessary. The same effect could probably be put into PROCP as it stands
with a little clever coding.

You can add more commands via the negative INKEY function. These
can be used to increase the range of the keyboard and to access more
envelopes. Detection of, say, the SHIFT key could increase the pitch by an
octave. Include the relevant key numbers (User Guide page 275) in the
DATA statements following line 230. The arrays, initiating loops and the
repeating FOR . . . NEXT loop will need to be altered, too.

128

CHAPTER 8 Playing the BBC Micro

Further additions to the musical keyboard: a bass
sequencer
A sequencer is a device which can be programmed with a set of notes and
used to control a synthesiser module to produce a repeating riff or
sequence of notes. Sequencers vary in their sophistication - some can only
store a dozen notes, others can store several thousand.

As most synthesisers control pitch by voltage (the higher the voltage
the higher the pitch) sequencers actually store a list of voltages. These can
be used to control any voltage controllable part of the synthesiser. Most
synthesiser modules are designed to be governed by voltages and are called
such things as VCO (Voltage Controlled Oscillator), VCA (Voltage
Controlled Amplifier) and VCF (Voltage Controlled Filter).

Every time we use a DATA statement to read in a string of notes we
are, in effect, using a sequencer.

We can add a Bass Sequencer to the last program, which will play a riff
and allow us to improvise over the top of it. This is common in electronic
music and the use of sequencers has been popularised by such musicians as
Tangerine Dream, Kraftwerk and Jean-Michel Jarre. The next listing
shows the additions and alterations necessary to Program 8.3.

 10 REM PROGRAM 8.4
 20 REM Bass Sequencer w i th
 30 REM Duophon ic Keyboard
 40 REM A l te r 460 : Add 345, 375 &
 50 REM 560 p lus in PROGRAM 8.3
 60
 345 Env%=1
 375 PROCBass
 560 DEF PROCBass
 570 IF ADVAL(-8)<1 ENDPROC
 580 READ P%,D%: IF P%=-1 RESTORE 620:RE
AD P%,D%
 590 SOUND3,Env%,P%,D%
 600 ENDPROC
 610
 620 DATA 33 ,4 ,33 ,4 ,45 ,4 ,53 ,4 , -1 , -1

Program notes
Env% at line 345 selects the envelope the sequencer will use. PROCBass
is inserted in the REPEAT loop of the main program. As one channel is
taken up with the sequence, we can only use two channels now, so fine 460
is altered to take care of that.

129

Making Music on the BBC Computer

The sequencer uses ADVAL(-8) to keep it supplied with notes and to
ensure that the program does not grind to a halt. It also allows us to
interrupt the main loop with calls to different envelopes and instructions to
channels 1 and 2 without disturbing the sequence.

Altering the bass riff
The bass riff in the program is very simple but it can be extended to any
length by adding more data. If you alter the pitch data, P%, to intervals
instead of notes and add a BassPitch% variable such as:

346 BassPitch%=33
590 SOUND3,Env%,BassPitch%+P%,D%
620 DATA 0,4,0,4,12,4,20,4,-1,-1

you can alter the pitch of the sequence by changing BassPitch% during the
program. Remember to alter all the loop lengths to accommodate the extra
keys.

Due to the queuing of the commands on channel 3, the stored notes at
the old Basspitch% will play before changing. To overcome this you could
reduce the number of queued notes by raising the number of free spaces in
the buffer as detected by the ADVAL statement at line 570, only changing
to the new BassPitch%, when the data is RESTOREd.

You could program the sequencer to play the complete bass fine of a
tune and play along with it and you could also add some rhythm to the
sequencer like this:

565 IF ADVAL(5)>0 SOUND0,Env%,4,2

If the bass sequence is now louder than the keyboard, give the drums a
separate, quieter envelope

It should not be too difficult to combine this program with the Rhythm
Unit program in Chapter 7 and to incorporate also the envelopes and
effects illustrated in the last two or three chapters. Here are some more
bass lines to try:

REM Key G Minor
620 DATA 33,4,81,4,49,4,53,4,57,4,61,4,13,4,61,4,-1,1

REM Key G Minor
620 DATA 33,4,45,4,65,4,61,4,-1,-1

REM Key G Major
620 DATA 33,8,49 ,2,61,2,81,4,73,4,61,4,73,4,89,4,-1,-1

130

CHAPTER 8 Playing the BBC Micro

REM Key A Minor/G Major
620 DATA 41,4,49 ,4,53,4,33,4,49,4,61,4,-1,-1

REM Key C Minorish!: Set Env%=4 or Similar
620 DATA 5,16,17,16,13,16,9,16,-1,-1

Developing the sequencer
Apart from adding more envelopes, rhythms, sequences and effects, you
might like to put a memory capability into the program so that it
remembers what you have played and plays it back. This could be very
useful. If you are improvising and play a good sequence of notes it is not
always easy to remember later which notes you played.

To accomplish this, it would be necessary to include an incrementing
variable in the program and to record the variable's value whenever a key
is pressed or released. The notes would be stored in an array, the variable
providing the subscript.

Taking the program even further, if you added editing facilities,
allowed envelope changes during playback and had facilities for altering
pitch and tempo you would be on the way to a miniature recording
console. It is certainly a worthwhile exercise.

If you want to control and alter music to such a fine degree, the
difficulty in playing the QWERTY keyboard does not make your job easy.
Perhaps a better and more suitable solution is to preprogram the entire
piece and let the computer manage the difficult passages. This is what we
look at in the next chapter.

131

Making Music on the BBC Computer

132

CHAPTER 9
Making Micro Music

After experimenting with the programs in Chapter 8, you will probably
have come to the conclusion that the QWERTY keyboard is not the easiest
musical instrument to play. If you have tried to play a three-part or even a
two-part tune with any degree of accuracy, you will be aware of the
restrictions the keyboard places upon us. It's fine for improvising and
playing along with a rhythm or bass pattern, but playing true multi-part
tunes is extremely difficult.

We can overcome these problems by providing the computer with all
necessary information regarding pitch, envelopes, durations, etc, and
letting it get on with the hard work of putting them together. It can play
sequences and harmonies we would never be able to imagine and it will
play them right every time.

The simplest and most obvious method is to read the information into
the program through DATA statements: this method is used in most of the
programs in this book. For short musical examples this is fine, but it soon
becomes quite complicated when you have more than 20 or 30 items of
data. This is where Program 3.1 can help by converting note names and
octave numbers into pitch values. This permits us to enter data in a way
more comprehensible to us and it makes subsequent editing considerably
easier. If you include error routines it will also report instances of incorrect
data.

Another problem arises if we want more than one channel to sound at
once, namely that of synchronization. If we just want to play a single
melody line there are no problems. This short program will do exactly that:

10 FOR Note=1 TO NumberOfNotes
20 READ Env,Pitch,Dur
30 SOUND1,Env,Pitch,Dur
40 NEXT Note
50 DATA E1,P1,D2,E2,P2,D2,E3,P3 etc

If we want to play more than one channel at a time we need to use a
slightly different method. We mentioned this in earlier chapters and now
we will examine it in detail.

133

Making Music on the BBC Computer

Playing two- or three-part tunes
Because of the sound queues used by the BBC micro, the sound channels
seem to race ahead of the rest of the program. We found this in Program
6.5 where we had to hold up the program with a TIME loop before
redefining the envelope.

The optional synchronization parameter of the SOUND command can
be used to delay a sound channel until another channel appears with the
same synchronization value. However, the organisation of information to
each channel must be carefully controlled if the program is not to seize up.

Problems arise when two or three voices are to be played together and
each voice contains notes of different durations. If we try to read data for
two channels from one DATA statement, each time the data is read it must
supply information for both channels. This means we would have to
organise the data so that the two sets of notes end up with the same number
of data items. This is a time-consuming and inconvenient process. With
three-part tunes the problem is even worse as one channel will probably
only be playing one note to the others' four or more.

The most obvious answer is to fill arrays, one for each channel, with
the relevant data, and only read from a particular array either when a note
is required or when the sound channel is capable of taking it without
holding up the program.

Figure 9.1

ü ý

!G2
4

"2
4

@@@@ @

@@@B@xI - A

BBB
@@@
xI
þ ÿþ ÿ5 JJL♯JJL JJLAAAü ý6 =KKL=x=KKL =KKL=x=KKL =KKL=x=KKL

@

BAR 18 . ü ýü ýKKL KKL6 KKL@@@ü ý6 =KKL=x=KKL =KKL=x=KKL =KKL=x=KKL
@

BAR 28 . ü ýü ýKKL KKL♯6 KKL@@@

!G

"

@@@@ ü ý6 =KKL=x=KKL 6 =KKL=x=KKL @

ü ýü ý
BAR 3=KKL =KKL♯6 =KKL ü ýü ý=KKL =KKL♯6 =KKL@@@ü ý6 =KKL=x=KKL =KKL=x=KKL =KKL=x=KKL

@

BAR 4=x=KKL ü ý=6 =x=KKL @@@
ü ý6 KKL=x=KKL KKL=x=KKL KKL=x=KKL @

þ ÿBAR 5

JJL=JJL ü ý=KKL =KKL 6 =KKL @@@
ü ý6 KKL=x=KKL KKL=x=KKL KKL=x=KKL @

þ ÿBAR 6

JJL=JJL ü ý=KKL =KKL 6 =KKL @@@

!G

"

@@@@ KKL Kxx~KKL=x
=Kxx~KKL 6 Kxx~KKL @

þ ÿ BAR 7

JJL=JJLü ý=KKL =KKL 6♯KKL @@@6 B@xIB@

BAR 8

6 BBB
@@@
xIBBB
@@@-()

-() .() .()

.() .() .() .() .()

.() -()
THE RESTS IN BRACKETS
ARE IMPLIED AND REFER
TO CHANNEL 3

CHANNEL 1 CHANNEL 3

CHANNEL 2

134

CHAPTER 9 Making Micro Music

As an example, Figure 9.1 shows the first eight bars of Mozart's Rondo
Alla Turca. You can see that, by the time we reach the end of bar 3, 24
notes will have passed through channel 1 and only eight through channel 3.
If these were queued together, the program would be held up waiting for
the notes on channel 3 to execute. We can solve this in two ways:

(1) By keeping track of the relative durations of each channel and releasing
data accordingly.

Or

(2) By only releasing data when the channels can take it at a time
determined by the negative ADVAL function.

Before beginning our experiments, let us see how we can best organise the
data.

Selecting the notes and octave range
The programs presented here read note information from DATA
statements. This gives us immediate visual and physical access to the
information which is saved along with the program.

When programming a musical score, the first thing we must look at is
the range of notes it uses. This example ranges from B an octave below
middle C to C two octaves above middle C. This is fortunate in that we can
use the correct notes and octaves produced by the sound chip and
illustrated on the keyboard in Figure 2.4. It does mean that we need to
transpose or mentally shift the keyboard up an octave to make middle C
correspond to the middle C on the stave. This is not as complicated as it
might seem. If you enter the notes as names and octave numbers, read
down from the stave to the note name and octave number and, if you want
it lower, subtract 1 from the octave number.

An alternative, as we mentioned in Chapter 3, is to enter the notes
exactly as they read, eg middle C as 101, and use the variable, Key, to take
the piece down an octave. Using this method, of course, you can play the
tune in any key at all. I decided on the first method.

The second eight bars of Rondo Alla Turca (not illustrated) uses A an
octave below middle C. In this case you would use the keyboard and
octave numbers exactly as set out in Figure 2.4, an octave higher than
written.

Another solution is to 'cheat' by substituting a note within your range
for the A. If only one or two notes are outside the range this will usually
produce acceptable results and I prefer to do this rather than take the whole
tune up an octave. Musically (and, perhaps, sardonically) this is known as
doing an arrangement.

I have stated before my preference for the lower octaves. I tend to
program as low as possible. These notes are richer and more full than the

135

Making Music on the BBC Computer

high ones, but use whichever range suits you and the music best. Not all
pieces will benefit by being so low.

I normally arrange the channels as follows:

Channel 1: Melody line.
Channel 2: Bass line.
Channel 3: Anything in between, often reinforcing the bass/

accompaniment

The melody and bass fines are the most important and set the character of
the piece. I use channel 3 to fill in the harmony where required, and it can
switch from bass to melody as necessary. If the piece has a prominent bass
fine, I may sometimes program that first into channel 1.

The next program uses only one channel to play a melody. You may
prefer not to type it in and use the listing only as a reference as we will be
moving on to a more sophisticated program. However, as we will be using
the data and PROCAnalyseNote in the other program, if you type it in, it
will not be wasted.

This raises another point worthy of consideration, which is - the
programs need only be as complicated and sophisticated as you require. If
you only want a monophonic tune, this program will do fine.

 10 REM PROGRAM 9.1
 20 REM 1 Channe l Vers ion o f Mozar t ' s
 30 REM Rondo A l la Turca
 40
 50 Sca le$=" C C# D D# E F F# G
G# A A# B"
 60 Key=1
 70
 80 ENVELOPE1,1 ,0 ,0 ,0 ,0 ,0 ,0 ,126 , -2 ,0 , -
10 ,126 ,100
 90 Cur ren tEnv=1
 100
 110 FOR N=1 TO 46
 120 READ Note$,Dur
 130 PROCPlayNote
 140 NEXT N
 150
 160 END
 170
 180 DATA B2,2 ,A2,2 ,G#2,2 ,A2,2
 190 DATA C3,4 ,R,4 ,D3,2 ,C3,2 ,B2,2 ,C3,2
 200 DATA E3,4 ,R,4 ,F3 ,2 ,E3,2 ,D#3,2 ,E3,2
136

CHAPTER 9 Making Micro Music

 210 DATA B3,2 ,A3,2 ,G#3,2 ,A3,2 ,B3,2 ,A3,
2 ,G#3,2 ,A3,2
 220 DATA C4,8 ,A3,4 ,C4,2 ,B3,1 ,A3,1
 230 DATA B3,4 ,A3,4 ,G3,4 ,A3,2 ,G3,1 ,A3,1
 240 DATA B3,4 ,A3,4 ,G3,4 ,A3,2 ,G3,1 ,A3,1
 250 DATA B3,4 ,A3,4 ,G3,4 ,F#3,4
 260 DATA E3,8
 270
 280 DEF PROCPlayNote
 290 PROCAna lyseNote
 300 PRINT Note$,P i tch ,Octave
 310 SOUND1,Env ,P i tch ,Dur
 320 ENDPROC
 330
 340 DEF PROCAna lyseNote
 350 IF Note$="R" Env=0:ENDPROC ELSE En
v=Cur ren tEnv
 360 IF LEN(Note$)<2 OR LEN(Note$)>3 TH
EN PRINT"ERROR IN DATA " ;Note$:PRINT"Not
e Number " ;N :STOP
 370 IF LEN(Note$)=2 THEN NoteName$=LEF
T$(Note$,1) ELSE NoteName$=LEFT$(Note$,2
)
 380 Octave=VAL(RIGHT$(Note$,1))
 390 P i tch=Key+INSTR(Sca le$,NoteName$) /
3*4+(Octave-1) *48
 400 IF P i tch<0 OR P i tch>255 THEN PRINT
"ERROR IN PITCH DATA " ;Note$; " P i tch = "
;P i tch :PRINT"Note Number " ;N :STOP
 410 ENDPROC

Program notes
This is very similar to Program 3.1. PROCCa1culatePitch has been
incorporated into PROCAnalyseNote and the tune is under envelope
control. Line 350 sets the volume to 0 if a rest is required. Extra
information has been included in lines 360 and 400 to print the note
number in case of an error. The data has been organised into a bar per fine
to aid editing and debugging.

The main points of the program were discussed in Chapter 3 and, from
here, we will move straight on to a three channel version and discuss some

137

Making Music on the BBC Computer

options open to us.

The tracking method
This entails keeping track of the elapsed durations of the three channels.
When a SOUND command is executed the duration value is added to its
'track'. The program is arranged to execute the SOUND commands as
follows :

1) If all three channels show the same amount of elapsed duration
then sync them.

2) If two channels are behind the other with the same elapsed duration
then sync them.

3) If neither 1 nor 2 above apply, send a command to the channel
which is lagging behind the most.

4) Repeat the above until the tune is finished.

You may like to work out a program which follows the above guidelines.
In operation, you will find that the buffers are usually full and
consequently the program will be unable to do anything other than play the
tune. Why should that matter? Well, if that's all you want to do, fine, but
the BBC micro is capable of (apparently) doing more than one thing at a
time. If the programming is not too long or complex it is no hardship to
program for that possibility. By using, once more, the negative ADVAL
function we can do just that.

The negative ADVAL method
ADVAL with a negative argument is described quite clearly in the User
Guide on page 203. If we fill two or three arrays with the required notes
and use ADVAL to send SOUND commands only when a channel has
space to take them, this will be enough to synchronize the music.

To control every aspect of a note we need to specify not only its pitch
and duration but also which envelope it is to use and whether or not the
sound channel is given a flush, synchronization or hold command. It takes
no computer to calculate that each note would require four items of data.
This in itself presents no problem providing you do not object to entering
it.

The next program gives control over the four elements of each note. In
practice, it is possible to devise some time-saving procedures, which I have
done in certain cases - and you will find that you rarely have to enter four
data items for each note.

 10 REM PROGRAM 9.2
 20 REM 3 Channe l Vers ion o f Mozar t ' s
 30 REM Rondo A l la Turca
 40 REM Us ing a S ing le Ar ray fo r
 50 REM Each Channe l
 60
138

CHAPTER 9 Making Micro Music

 70 REM C1=Number o f Notes fo r
 80 REM Channe l 1 e tc
 90 C1=46:C2=30:C3=29
 100
 110 REM 1s t Subscr ip t Refers to :
 120 REM 1 - Channe l Number /A t t r ibu tes
 130 REM 2 - Enve lope Number
 140 REM 3 - P i tch Va lue
 150 REM 4 - Dura t ion
 160
 170 DIM Chan1(4 ,C1)
 180 DIM Chan2(4 ,C2)
 190 DIM Chan3(4 ,C3)
 200
 210 Sca le$=" C C# D D# E F F# G
G# A A# B"
 220 Key=1
 230 Tempo=1
 240
 250 ENVELOPE1,1 ,0 ,0 ,0 ,0 ,0 ,0 ,126 , -2 ,0 , -
5 ,126 ,100
 260 ENVELOPE2,4 ,0 ,0 ,1 ,1 ,0 ,1 ,63 , -1 ,0 , -1
0 ,126 ,100
 270 ENVELOPE3,1 ,0 ,0 ,0 ,0 ,0 ,0 ,126 , -4 , -1 ,
-4 ,126 ,100
 280
 290 REM Channe l 1
 300 FOR N=1 TO C1
 310 PROCChan
 320 Chan1(1 ,N)=Chan
 330 IF Note$="R" Env=0 ELSE IF N=5 OR
N=11 OR N=25 OR N=30 OR N=36 OR N=42 Env
=2 ELSE Env=1
 340 Chan1(2 ,N)=Env
 350 PROCAna lyseNote
 360 Chan1(3 ,N)=P i tch
 370 Chan1(4 ,N)=Dura t ion
 380 NEXT N
 390 PRINT"Channe l 1 Comple te"
 400
 410 REM Channe l 2

139

Making Music on the BBC Computer

 420 FOR N=1 TO C2
 430 PROCChan
 440 Chan2(1 ,N)=Chan
 450 IF Note$="R" Env=0 ELSE Env=3
 460 Chan2(2 ,N)=Env
 470 PROCAna lyseNote
 480 Chan2(3 ,N)=P i tch
 490 Chan2(4 ,N)=Dura t ion
 500 NEXT N
 510 PRINT"Channe l 2 Comple te"
 520
 530 REM Channe l 3
 540 FOR N=1 TO C3
 550 PROCChan
 560 Chan3(1 ,N)=Chan
 570 IF Note$="R" Env=0 ELSE Env=1
 580 Chan3(2 ,N)=Env
 590 PROCAna lyseNote
 600 Chan3(3 ,N)=P i tch
 610 Chan3(4 ,N)=Dura t ion
 620 NEXT N
 630 PRINT"Channe l 3 Comple te"
 640
 650 Ch1=0:Ch2=0:Ch3=0
 660
 670 REPEAT
 680 IF ADVAL(-6)>0 AND Ch1<C1 Ch1=Ch1+
1:SOUNDChan1(1 ,Ch1)+1 ,Chan1(2 ,Ch1) ,Chan1
(3 ,Ch1) ,Chan1(4 ,Ch1)*Tempo
 690 IF ADVAL(-7)>0 AND Ch2<C2 Ch2=Ch2+
1:SOUNDChan2(1 ,Ch2)+2 ,Chan2(2 ,Ch2) ,Chan2
(3 ,Ch2) ,Chan2(4 ,Ch2)*Tempo
 700 IF ADVAL(-8)>0 AND Ch3<C3 Ch3=Ch3+
1:SOUNDChan3(1 ,Ch3)+3 ,Chan3(2 ,Ch3) ,Chan3
(3 ,Ch3) ,Chan3(4 ,Ch3)*Tempo
 710 UNTIL Ch1=C1 AND Ch2=C2 AND Ch3=C3
 720
 730 END
 740
 750 DEF PROCChan
 760 READ Note$: IF LEFT$(Note$,1)="&" C
140

CHAPTER 9 Making Micro Music

han=EVAL(Note$) :READ Note$,Dura t ion ELSE
 Chan=0:READ Dura t ion
 770 ENDPROC
 780
 790 DEF PROCAna lyseNote
 800 IF Note$="R" P i tch=255:ENDPROC
 810 IF LEN(Note$)<2 OR LEN(Note$)>3 TH
EN PRINT"ERROR IN DATA " ;Note$:PRINT"Not
e Number " ;N :STOP
 820 IF LEN(Note$)=2 THEN NoteName$=LEF
T$(Note$,1) ELSE NoteName$=LEFT$(Note$,2
)
 830 Octave=VAL(RIGHT$(Note$,1))
 840 P i tch=Key+INSTR(Sca le$,NoteName$) /
3*4+(Octave-1) *48
 850 IF P i tch<0 OR P i tch>255 THEN PRINT
"ERROR IN PITCH DATA " ;Note$; " P i tch = "
;P i tch :PRINT"Note Number " ;N :STOP
 860 ENDPROC
 870
 880 REM Channe l 1
 890 DATA &200,B2,2 ,A2,2 ,G#2,2 ,A2,2
 900 DATA &200,C3,4 ,R,4 ,D3,2 ,C3,2 ,B2,2 ,
C3,2
 910 DATA &200,E3,4 ,R,4 ,F3 ,2 ,E3,2 ,D#3,2
,E3,2
 920 DATA &200,B3,2 ,A3,2 ,G#3,2 ,A3,2 ,B3,
2 ,A3,2 ,G#3,2 ,A3,2
 930 DATA &200,C4,8 ,A3,4 ,C4,2 ,G3,1 ,A3,1
 940 DATA &200,B3,4 ,A3,4 ,G3,4 ,A3,2 ,G3,1
,A3,1
 950 DATA &200,B3,4 ,A3,4 ,G3,4 ,A3,2 ,G3,1
,A3,1
 960 DATA &200,B3,4 ,A3,4 ,G3,4 ,F#3,4
 970 DATA &200,E3,8
 980
 990 REM Channe l 2
 1000 DATA &200,R,8
 1010 DATA &200,A1,4 ,C2,4 ,C2,4 ,C2,4
 1020 DATA &200,A1,4 ,C2,4 ,C2,4 ,C2,4
 1030 DATA &200,A1,4 ,C2,4 ,C2,4 ,C2,4

141

Making Music on the BBC Computer

 1040 DATA &200,A1,4 ,C2,4 ,C2,4 ,C2,4
 1050 DATA &200,E1,4 ,B1,4 ,B1,4 ,B1,4
 1060 DATA &200,E1,4 ,B1,4 ,B1,4 ,B1,4
 1070 DATA &200,E1,4 ,B1,4 ,B1,4 ,B1,4
 1080 DATA &200,E1,8
 1090
 1100 REM Channe l 3
 1110 DATA &200,R,8
 1120 DATA &200,R,4 ,E2,4 ,E2,4 ,E2,4
 1130 DATA &200,R,4 ,E2,4 ,E2,4 ,E2,4
 1140 DATA &200,R,4 ,E2,4 ,R,4 ,E2,4
 1150 DATA &200,R,4 ,E2,4 ,E2,4 ,E2,4
 1160 DATA &200,R,4 ,E2,4 ,E2,4 ,E2,4
 1170 DATA &200,R,4 ,E2,4 ,E2,4 ,E2,4
 1180 DATA &200,R,4 ,E2,4 ,R,8
 1190 DATA &200,R,8
Like Program 9.1, the data is arranged in lines of one bar: you can use the
data from Program 9.1 and add the extra data items to it.
PROCAnalyseNote has one change in it at line 800 as you will see.

Program notes
The numbers of notes for each part are assigned to variables, C1, C2, and
C3 in fine 90. These numbers need to be accessed several times during the
program so that, if you want or need to alter data, you only need change
these values once. They refer to the number of notes allocated to each
channel, not to the number of data items.

Three arrays are dimensioned at lines 170 and 190 to hold information
about each note. The first subscript refers to the following aspects of the
note:

Subscript-l: Channel attributes, ie sync, flush, etc.
Subscript=2: Envelope number.
Subscript=3: Pitch value.
Subscript=4: Duration value.

The next section sets the data into its relevant arrays and the process is
repeated once for each channel. I have kept it this way to aid
understanding, although you might like to substitute a single procedure to
avoid the repetition. As the process is exactly the same for each channel
we will only look at channel 1 in detail.

A FOR . . . NEXT loop runs through the data, once for each note. The
first step is a call to PROCChan at line 750. This 'cautiously' examines the
first item of data. If the data begins with an ampersand (&) it knows it is a

142

CHAPTER 9 Making Micro Music

channel instruction, and evaluates the string with EV AL to produce the
channel attribute, Chan. It then proceeds to read Note$ and Duration. I
have used hexadecimal notation to represent the sound channel parameters
because it is easy to use and the ampersand tells us at a glance that this
data item is a special channel command. (See Chapter 4 for further details.)

If the string does not begin with an ampersand it is taken to be a note
and a second item of data, Duration, is read. As the procedure has no
specific channel information, Chan is set to 0. This method of assigning
the channel attributes saves us having to enter a channel parameter for
every note. We only enter a parameter if we require a sync, flush or hold.
The channel attribute is assigned to Chan1(1,N) in line 320.

Next, Note$ is examined to see if it is an 'R', which I have used to
represent a rest. If it is an 'R', Env is set to 0 to produce a sound at zero
volume: otherwise, it is set to the required envelope number. You can see
this more clearly in lines 450 and 570, where only one other envelope is
used.

Line 330 is arranged to give certain notes different envelopes. This
saves us including a whole set of new data for the envelope number, which
can be time-consuming if the envelope only changes once or twice
throughout the piece. Env is assigned to Chan1(2,N) in line 340.

The program then calls PROCAnalyseNote. Unlike Program 9.1, which
sent each note through PROCAnalyseNote before playing it, this program
sends it through to calculate the correct pitch value of the note, and to
check for any incorrect data entries. The first thing it does is check if
Note$ equals 'R', ie a rest. If it does, Pitch is given an arbitrary value of
255 and the procedure ends. This is the only way this procedure differs
from that in Program 9.1. Having turned the note name into a pitch value,
assuming no errors, Chan(3,N) is set equal to Pitch at line 360.

Line 370 copies Duration directly into Chan1(4,N).
At the end of these three sections, the arrays are filled with figures

which the SOUND command can work on directly; although they can be
modified if required as we shall see.

Line 650 sets three variables, Chl, Ch2 and Ch3, to 0 and these are used
to check the number of data items sent to each channel.

The REPEAT loop at lines 670 and 710 does all the work. The
principle is the same for each sound channel, so only channel 1 at fine 680
will be described.

The sound buffer is checked for free spaces and the checker variable.
Ch1, is compared with C1 to see if channel 1 has had all its notes. If there
is free space in the buffer and there are more notes to come, Ch1 is
incremented and used to provide information for the sound channel from
the Chan1 array. It is at this point that the channel number is assigned, and
this; is added to the channel attribute derived from PROCChan. The
duration is adjusted according to the variable, Tempo.

Line 710 ensures that the loop repeats enough times to play all the
notes, and then terminates it.

143

Making Music on the BBC Computer

Modifications, alterations and suggestions
Once you have this program, you will be able to play any three-part tune
by inserting new data and altering the variables C1, C2 and C3 in line 90.

If you arrange the data in fines of one bar it will aid editing and
debugging.

You will notice that the channel attributes are arranged to synchronize
at the beginning of each bar. This may not always be possible, especially if
the music is heavily syncopated (where notes are tied or held over from
one bar to the next) but you should be able to fit some sync commands in
somewhere.

Earlier I said that simply using ADVAL statements would provide
synchronization. Basically it will, but we must be aware of one or two
points. If none of the notes are synchronized, the channels will not be
exactly in sync because of the time taken by BASIC to move from the first
sound command to the second, etc, especially if it has to look up values in
arrays and do some calculating as in this program. If you synchronize even
only the first notes, the program should keep good time provided that it is
not interrupted. This can be done by altering the READ command to read
only Note$ and Duration and by inserting a line such as:

635 Chan1(1,1)=&200:Chan2(1,1)=&200:Chan 3(1,1)=&200

The other elements in this array will be set to 0 upon dimensioning.
If you were to go to the trouble of removing the sync commands, you

would find that the program stayed in time reasonably well, although it
might drift if programmed with a longer piece. Another reason for
synchronizing the channels is to allow the computer to perform other
functions as the music is playing. We will cover this later in the book, but
for the time being assume that we want a print-out of the notes as the
music is playing. We could insert a line similar to fine 300 in Program 9 .1
such as:

685 PRINT;Chan1(1,Ch1)+1TAB(4)Chan1(2,Ch1)TAB(9)Chan1
(3,Ch1)TAB(14)Chan1(4,Ch1)*Tempo

If the channels are not synchronized, the delay between channel 1 and
channel 2 (caused by BASIC taking time out to process the command) will
throw the program out of sync.

If you feel that you do not require four parameters per note, it is easy to
alter the arrays.

The envelope changes are often tedious {a enter. If your program
requires a lot of envelopes you could arrange a separate routine to set the
envelope numbers such as:

100 FOR E=1 TO 100
1010 IF E>0 Chan1(2,E)=1

144

CHAPTER 9 Making Micro Music

1020 IF E>12 Chan1(2,E)=2
1030 IF E>28 Chan1(2,E)=3
1040 IF E>40 Chan1(2,E)=1
. . . .
. . . .
1100 NEXT E

You may find this more convenient than entering 100 or more separate
figures. Assuming you do want 100 or so envelopes, you could enter them
in a separate DATA statement.
The method of allocating envelopes in Program 9.2 by a series of IF . . .
THEN . . . ELSE statements (the THEN commands are implied) will prove
satisfactory for all but the most demanding of programs,
When programming other tunes, if all channels {lo not start together, ie if
each does not sound a note at the start of the piece, be sure to include rests
in the channels which are not used to keep them in sync. This was
necessary in Program 9.2.

When calculating the duration of each note, I base the values on those
in the chart in Figure 2.6. The important thing is to get the relationship
between the notes correct. Adjustments can be made with the variable
Tempo in fine 230. This is most effective when given integer values. Insert
values less than 1 and observe the results.

Debugging the data
It will be a rare occurrence if you enter a set of data statements for a tune
and get no errors. PROCAnalyseNote will detect errors in pitch data entry
and tell you which data item it does not understand and which note number
this is associated with. You will know which channel the item belongs to
because a message is printed when a channel has been successfully filled
with data.

An easy mistake to make is to insert wrong C1, C2 or C3 values,
causing a channel to be filled with another channel's notes. You could
provide further checks by inserting a termination character on the end of
each channel's data: so, for example, if Note$ read a 'F and N did not equal
C1 you would know that you had set C1 to the wrong value. You could use
this principle to read through the data before assigning any information and
use the value to dimension the arrays. You could also incorporate checks
on the other data.

Once the data is correct, you could remove the error routines.

Saving the tune
If you want to play the music in a separate program, for example as

145

Making Music on the BBC Computer

background to a graphics display, you can use the program to check out the
data values and then *SPOOL the figures for the sound commands to tape
or disk. The next program shows the additions necessary to do this.

 1 REM PROGRAM 9.3
 2 REM *SPOOL Rout ine To Put Sound
 3 REM Data Onto TAPE or DISC
 4 REM Inc lude These L ines In
 5 REM PROGRAM 9.2
 6 REM Tempo=2 For DISC, 5 For TAPE
 7
 230 Tempo=2
 664 L ine=5000
 665 PRINT" INSERT DISC OR TAPE then RET
URN"
 666 REPEAT:A=GET:UNTIL A=13
 667 *SPOOL"TUNE"
 680 IF ADVAL(-6)>0 AND Ch1<C1 Ch1=Ch1+
1:SOUNDChan1(1 ,Ch1)+1 ,Chan1(2 ,Ch1) ,Chan1
(3 ,Ch1) ,Chan1(4 ,Ch1)*Tempo:PROCSpoo l1
 690 IF ADVAL(-7)>0 AND Ch2<C2 Ch2=Ch2+
1:SOUNDChan2(1 ,Ch2)+2 ,Chan2(2 ,Ch2) ,Chan2
(3 ,Ch2) ,Chan2(4 ,Ch2)*Tempo:PROCSpoo l2
 700 IF ADVAL(-8)>0 AND Ch3<C3 Ch3=Ch3+
1:SOUNDChan3(1 ,Ch3)+3 ,Chan3(2 ,Ch3) ,Chan3
(3 ,Ch3) ,Chan3(4 ,Ch3)*Tempo:PROCSpoo l3
 715 *SPOOL
 861
 862 DEF PROCSpoo l1
 863 PRINT;L ine ; " DATA " ;Chan1(1 ,Ch1)+1
; " , " ;Chan1(2 ,Ch1) ; " , " ;Chan1(3 ,Ch1) ; " , " ;C
han1(4 ,Ch1)*Tempo
 864 L ine=L ine+10
 865 ENDPROC
 866
 867 DEF PROCSpoo l2
 868 PRINT;L ine ; " DATA " ;Chan2(1 ,Ch2)+1
; " , " ;Chan2(2 ,Ch2) ; " , " ;Chan2(3 ,Ch2) ; " , " ;C
han2(4 ,Ch2)*Tempo
 869 L ine=L ine+10
 870 ENDPROC

146

CHAPTER 9 Making Micro Music

 871
 872 DEF PROCSpoo l3
 873 PRINT;L ine ; " DATA " ;Chan3(1 ,Ch3)+1
; " , " ;Chan3(2 ,Ch3) ; " , " ;Chan3(3 ,Ch3) ; " , " ;C
han3(4 ,Ch3)*Tempo
 874 L ine=L ine+10
 875 ENDPROC
 876
10000 DATA -1 , -1 , -1 , -1
10010
10020 REM These L ines P lay the DATA
10030 RESTORE5000
10040 REPEAT
10050 READ Chan,Env ,P i tch ,Dur
10060 REM Set D iv isor Equa l to Tempo
10070 SOUNDChan,Env ,P i tch ,Dur /2
10080 UNTIL Chan=-1

Program notes
The three Spool procedures are identical for each channel and the data
items are printed one note per line. You may like to modify the program to
print more data per line and reduce the Spool procedures into one. Be sure
to REM out these lines or insert a GOTO to jump over them until your data
has been checked and verified.

The data is retrieved by executing:

*EXEC"TUNE"

See page 402 of the User Guide for more information about *SPOOL and
*EXEC.

As they stand, these procedures may require some modification. The
principle is to let the ADVAL function calculate the correct spacing of the
data items. However, because the filing systems themselves require
attention from the operating system, the ADVAL function may sometimes
be waiting for notes when the operating system is not ready to give them.
This will happen if a channel is supplied with a lot of short notes.

One way around this is to increase the variable Tempo in line 230, so
that the sound channels do not empty while waiting for the filing system to
finish with the OS. Tape will require longer values than disk, but
experiments have shown that setting Tempo to 5 for Tape and to 2 for disk
will work for Rondo Alla Turca. On playback, divide the duration by the
increase in tempo value or, in the PROCSpool procedures, divide Tempo
by whatever you needed to multiply it by in line 230. Other tunes may
require different values.

147

Making Music on the BBC Computer

The routine beginning at line 10000 will play the data. If you substitute
'SOUND' for the string 'DATA' in the procedures at fines 863, 868 and
873, the *SPOOLed program will play the tune when run.

The program depends so much upon the buffers not emptying before
another SOUND command comes along, that the whole program may be
better served by a routine which produces SOUND commands according
to the tracking method described earlier. This would remove it from the
mercy of the *SPOOLing filing system: although if you are using disks
this will not be a serious problem.

Experimenting with the program
Program 9.2 is only the beginning. You could add an extra array and
include channel 0 for drum effects. You could also use channel 0 instead of
channel 1 to produce the lower notes we mentioned in Chapter 7.

If 16 envelopes are not enough, you can redefine envelopes in mid-
program. You can do this by calling a procedure from a fine which is
inserted in a similar way to the PRINT statement in fine 685 described
earlier.

If you include the variable Key inside the REPEAT loop instead of in
PROCAna1yseNote, you can produce a key change by altering the value of
Key as explained in Chapter 3.

A separate array can be used to trigger calls to any number of
procedures, to create any of the effects we've covered in the previous
chapters; you can produce your own arrangements of your favourite tunes
as well as programming your own compositions - which leads us straight
into the next chapter. But first . . .

More tunes to play
These three programs include the data and information required to play
other tunes. If the programs are entered as written and saved as files, using
*SPOOL, you can load Program 9.2 and *EXEC these programs into the
computer: they will be ready to run. See Appendix 2 and the User Guide
page 402 for futher information.

Program 9.4 plays the next 16 bars of Ronda Aha Turca and includes a
repeat of the first eight.

 1 REM PROGRAM 9.4
 2 REM Anothr 24 bars o f Mozar t ' s
 3 REM Rondo A l la Turca
 4 REM Inser t These L ines in to
 5 REM PROGRAM 9.2
 6
 90 C1=168:C2=114:C3=114
 275 ENVELOPE4,4 ,0 ,8 , -8 ,0 ,1 ,1 ,126 , -1 ,0 ,
-2 ,126 ,100

148

CHAPTER 9 Making Micro Music

 305 IF N=47 OR N=129 RESTORE 890
 306 IF N=153 RESTORE 979
 330 IF Note$="R" Env=0 ELSE IF N=52 OR
 N=58 OR N=72 OR N=77 OR N=83 OR N=89 En
v=2 ELSE Env=1
 335 IF N=153 OR N=165 Env=4
 345 IF N=153 OR N=165 Env=4
 425 IF N=31 OR N=85 RESTORE 1000
 426 IF N=98 RESTORE 1089
 545 IF N=30 OR N=85 RESTORE 1110
 546 IF N=98 RESTORE 1199
 880 REM Channe l 1
 970 DATA &200,E3,8 ,E3,4 ,F3 ,4
 971 DATA &200,G3,4 ,G3,4 ,A3,2 ,G3,2 ,F3 ,2
,E3,2
 972 DATA &200,D3,8 ,E3,4 ,F3 ,4
 973 DATA &200,G3,4 ,G3,4 ,A3,2 ,G3,2 ,F3 ,2
,E3,2
 974 DATA &200,D3,8 ,C3,4 ,D3,4
 975 DATA &200,E3,4 ,E3,4 ,F3 ,2 ,E3,2 ,D3,2
,C3,2
 976 DATA &200,B2,8 ,C3,4 ,D3,4
 977 DATA &200,E3,4 ,E3,4 ,F3 ,2 ,E3,2 ,D3,2
,C3,2
 978 DATA &200,B2,8
 979 DATA &200,C4,8 ,A3,4 ,B3,4
 980 DATA &200,C4,4 ,B3,4 ,A3,4 ,G#3,4
 981 DATA &200,A3,4 ,E3,4 ,F3 ,4 ,D3,4
 982 DATA &200,C3,8 ,B2,6 ,A2,1 ,B2,1
 983 DATA &200,A2,8
 990 REM Channe l 2
 1080 DATA &200,E1,8 ,R,8
 1081 DATA &200,C1,4 ,C2,4 ,E1,4 ,E2,4
 1082 DATA &200,G1,8 ,R,8
 1083 DATA &200,C1,4 ,C2,4 ,E1,4 ,E2,4
 1084 DATA &200,G1,8 ,R,8
 1085 DATA &200,C1,4 ,A1,4 ,C1,4 ,C2,4
 1086 DATA &200,E1,8 ,R,8
 1087 DATA &200,C1,4 ,A1,4 ,C1,4 ,C2,4
 1088 DATA &200,E1,8 ,R,8
 1089 DATA &200,F1 ,4 ,A1,4 ,A1,4 ,A1,4

149

Making Music on the BBC Computer

 1090 DATA &200,E1,4 ,A1,4 ,D1,4 ,F1 ,4
 1091 DATA &200,C1,4 ,E1,4 ,D1,4 ,F1 ,4
 1092 DATA &200,E1,4 ,E1,4 ,E1,4 ,E1,4
 1093 DATA &200,A1,8
 1100 REM Channe l 3
 1190 DATA &200,R,8 ,C3,4 ,D3,4
 1191 DATA &200,E3,4 ,E3,4 ,R,8
 1192 DATA &200,B2,4 ,G2,4 ,C3,4 ,D3,4
 1193 DATA &200,E3,4 ,E3,4 ,R,8
 1194 DATA &200,B2,8 ,A2,4 ,B2,4
 1195 DATA &200,C3,4 ,C3,4 ,R,8
 1196 DATA &200,G#2,4 ,E2,4 ,A2,4 ,B2,4
 1197 DATA &200,C3,4 ,C3,4 ,R,8
 1198 DATA &200,R,8
 1199 DATA &200,R,4 ,D#2,4 ,D#2,4 ,D#2,4
 1200 DATA &200,R,4 ,E2,4 ,R,4 ,B1,4
 1201 DATA &200,R,4 ,A1,4 ,R,4 ,B1,4
 1202 DATA &200,A1,4 ,A1,4 ,G#1,4 ,G#1,4
 1203 DATA &200,A1,8
Notice how repeats have easily been programmed by the RESTORE
function at lines 305, 306, 425, 426, 545 and 546. The only other
programming has been an additional envelope.

 10 REM PROGRAM 9.5
 20 REM Tscha ikowsky 's
 30 REM Dance o f the Sugar -p lum Fa i ry
 40 REM Inser t These L ines In to
 50 REM PROGRAM 9.2
 60
 90 C1=104:C2=95:C3=86
 230 Tempo=2
 250 ENVELOPE1,6 ,0 ,0 ,0 ,0 ,0 ,0 ,126 , -8 ,0 , -
8 ,126 ,94
 260 ENVELOPE2,4 ,0 ,0 ,1 ,1 ,0 ,1 ,100 , -10 , -1
0 , -10 ,100 ,70
 270 ENVELOPE3,3 ,0 ,0 ,0 ,0 ,0 ,0 ,116 , -8 ,0 , -
8 ,116 ,84
 275 ENVELOPE4,6 ,0 ,0 ,1 ,1 ,0 ,1 ,100 , -5 , -5 ,
-5 ,100 ,80
 276 ENVELOPE5,1 ,0 ,0 ,1 ,1 ,0 ,1 ,100 , -5 , -1 ,
-10 ,100 ,50
 330 IF Note$="R" Env=0 ELSE IF N=C1 En

150

CHAPTER 9 Making Micro Music

v=5 ELSE IF N<17 Env=2 ELSE Env=1
 450 IFNote$="R" Env=0 ELSE IF N=C2 Env
=5 ELSE IF N>73 Env=4 ELSE Env=2
 570 IF Note$="R" Env=0 ELSE IF N=C3 En
v=5 ELSE IF N<68 Env=2 ELSE Env=3
 870
 880 REM Channe l 1
 890 DATA &200,R,4 ,E3,4 ,R,4 ,F#3,4
 900 DATA &200,R,4 ,G3,4 ,R,4 ,D#3,4
 910 DATA &200,R,4 ,E3,4 ,R,4 ,F#3,4
 920 DATA &200,R,4 ,G5,2 ,E5,2 ,G5,4 ,F#5,4
 930 DATA &200,D#5,4 ,E5,4 ,D5,2 ,D5,2 ,D5,
4
 940 DATA &200,B4,2 ,E5,2 ,C5,2 ,E5,2 ,B4,4
,R,4
 950 DATA &200,R,4 ,G4,2 ,E4,2 ,G4,4 ,F#4,4
 960 DATA &200,B4,2 ,E5,2 ,C5,2 ,E5,2 ,B4,4
,R,4
 970 DATA &200,R,4 ,G4,2 ,E4,2 ,G4,4 ,F#4,4
 980 DATA &200,C5,4 ,B4,4 ,G5,2 ,G5,2 ,G5,4
 990 DATA &200,F#5,2 ,F#5,2 ,F#5,4 ,E5,2 ,E
5,2 ,E5,4
 1000 DATA &200,D#5,2 ,F#5,2 ,E5,2 ,F#5,2 ,D
#5,4 ,R,4
 1010 DATA &200,R,4 ,G5,2 ,E5,2 ,G5,4 ,F#5,4
 1020 DATA &200,D#5,4 ,E5,4 ,D5,2 ,D5,2 ,D5,
4
 1030 DATA &200,C#5,2 ,C#5,2 ,C#5,4 ,C5,2 ,C
5,2 ,C5,4
 1040 DATA &200,B4,2 ,E5,2 ,C5,2 ,E5,2 ,B4,4
,R,4
 1050 DATA &200,R,4 ,E4,2 ,C#4,2 ,E4,4 ,D#4,
4
 1060 DATA &200,R,4 ,D4,2 ,B3,2 ,D4,4 ,C#4,4
 1070 DATA &200,R,4 ,C4,2 ,A3,2 ,C4,4 ,B3,4
 1080 DATA &200,R,4 ,B3,1 ,D#4,1 ,F#4,1 ,B4,
1 ,E4,4 ,B2,4
 1090
 1100 REM Channe l 2
 1110 DATA &200,E2,4 ,G2,4 ,E2,4 ,A2,4
 1120 DATA &200,E2,4 ,A#2,4 ,E2,4 ,A2,4
 1130 DATA &200,E2,4 ,G2,4 ,E2,4 ,A2,4
 1140 DATA &200,E2,4 ,A#2,4 ,E2,4 ,A2,4
 1150 DATA &200,E2,4 ,B2,4 ,E2,4 ,C3,4

151

Making Music on the BBC Computer

 1160 DATA &200,E2,4 ,C#3,4 ,E2,4 ,D3,4
 1170 DATA &200,E2,4 ,E3,4 ,E2,4 ,F#3,4
 1180 DATA &200,E3,4 ,E3,4 ,E3,4 ,E2,1 ,D2,1
,C2,1 ,B1,1
 1190 DATA &200,A#1,4 ,C3,4 ,A1,4 ,C3,4
 1200 DATA &200,G1,4 ,B2,4 ,F#1,4 ,A#2,4
 1210 DATA &200,F#2,4 ,B2,4 ,F#2,4 ,C#3,4
 1220 DATA &200,B1,4 ,C2,4 ,B1,4 ,B1,1 ,A1,1
,G1,1 ,F#1,1
 1230 DATA &200,E1,4 ,B2,4 ,E2,4 ,C3,4
 1240 DATA &200,E2,4 ,C#3,4 ,E2,4 ,D3,4
 1250 DATA &200,E2,4 ,E3,4 ,E2,4 ,F#3,4
 1260 DATA &200,E3,4 ,E3,4 ,E3,4 ,G3,1 ,F#3,
1 ,E3,1 ,D3,1
 1270 DATA &200,C#3,4 ,F#2,8 ,F#3,1 ,E3,1 ,D
#3,1 ,C#3,1
 1280 DATA &200,B2,4 ,E2,8 ,E3,1 ,D3,1 ,C#3,
1 ,B2,1
 1290 DATA &200,A2,4 ,D2,8 ,D3,1 ,C3,1 ,B2,1
,A2,1
 1300 DATA &200,G2,4 ,F#2,4 ,E2,4 ,B0,4
 1310
 1320 REM Channe l 3
 1330 DATA &200,R,4 ,B2,4 ,R,4 ,C3,4
 1340 DATA &200,R,4 ,C#4,4 ,R,4 ,C4,4
 1350 DATA &200,R,4 ,B2,4 ,R,4 ,C3,4
 1360 DATA &200,R,4 ,C#4,4 ,R,4 ,C4,4
 1370 DATA &200,R,4 ,G2,4 ,R,4 ,A2,4
 1380 DATA &200,R,4 ,C#4,4 ,R,4 ,C4,4
 1390 DATA &200,R,4 ,G2,4 ,R,4 ,A2,4
 1400 DATA &200,G3,4 ,A3,4 ,G3,4 ,R,4
 1410 DATA &200,R,4 ,E2,4 ,R,4 ,D#2,4
 1420 DATA &200,F#4,4 ,E4,4 ,A#4,2 ,A#4,2 ,A
#4,2
 1430 DATA &200,G#4,2 ,G#4,2 ,G#4,4 ,F#4,2 ,
F#4,2 ,F#4,4
 1440 DATA &200,B2,4 ,A#2,4 ,F#2,4 ,R,4
 1450 DATA &200,R,4 ,G2,4 ,R,4 ,A2,4
 1460 DATA &200,R,4 ,A#2,4 ,R,4 ,B2,4
 1470 DATA &200,R,4 ,C#3,4 ,R,4 ,D#4,4
 1480 DATA &200,G3,4 ,A3,4 ,G3,4 ,R,4
 1490 DATA &200,R,4 ,A#3,2 ,F#3,2 ,A#3,4 ,A3
,4
 1500 DATA &200,R,4 ,G#3,2 ,E3,2 ,G#3,4 ,G3,

152

CHAPTER 9 Making Micro Music

4
 1510 DATA &200,R,4 ,F#3,2 ,D3,2 ,F#3,4 ,G3,
4
 1520 DATA &200,R,4 ,A2,4 ,E2,4 ,B1,4
The envelopes have been redefined and re-allocated, but otherwise this just
supplies new data to Program 9.2

 10 REM PROGRAM 9.6
 20 REM John Ph i l ip Sousa 's
 30 REM The L iber ty Be l l March
 40 REM Inser t These L ines In to
 50 REM PROGRAM 9.2
 90 C1=174:C2=207:C3=173
 250 ENVELOPE1,1 ,0 ,0 ,0 ,0 ,0 ,0 ,50 ,50 , -2 , -
2 ,50 ,126
 260 ENVELOPE2,1 ,0 ,0 ,0 ,0 ,0 ,0 ,32 , -8 , -2 , -
4 ,126 ,90
 270 ENVELOPE3,1 ,0 ,0 ,0 ,0 ,0 ,0 ,16 , -8 , -2 , -
4 ,126 ,90
 275 ENVELOPE4,4 ,0 ,8 , -8 ,0 ,1 ,1 ,110 ,0 ,0 , -
10 ,110 ,110
 276 ENVELOPE5,2 ,1 ,0 ,1 ,0 ,1 ,1 ,16 , -8 , -2 , -
4 ,126 ,90
 277 ENVELOPE6,1 ,1 ,0 ,1 ,0 ,1 ,1 ,32 , -8 , -2 , -
4 ,126 ,90
 305 IF N=65 RESTORE 930
 330 IF Note$="R" Env=0 ELSE IF (N=1 OR
 N=78 OR N=93 OR N=108 OR N=162) Env=4 E
LSE Env=1
 425 IF N=79 RESTORE 2560
 450 IF Note$="R" Env=0 ELSE IF N=C2-1
Env=1 ELSE IF N>78 Env=5 ELSE Env=3
 545 IF N=71 RESTORE 3050
 570 IF Note$="R" Env=0 ELSE IF N=130 E
nv=4 ELSE IF N=C3-1 Env=1 ELSE Env=2
 880 REM Channe l 1
 890 DATA &200,F4 ,60 ,&1000,R,9
 900
 910
 920 DATA C3,3
 930 DATA &200,A2,6 ,A2,3 ,A2,3 ,G#2,3 ,A2,
3
 940 DATA &200,F3 ,6 ,C3,3 ,C3,6 ,A2,3
 950 DATA &200,A#2,6 ,A#2,3 ,A#2,6 ,C3,3

153

Making Music on the BBC Computer

 960 DATA &200,D3,15 ,A#2,3
 970 DATA &200,G2,6 ,G2,3 ,G2,3 ,F#2,3 ,G2,
3
 980 DATA &200,E3,6 ,D3,3 ,D3,6 ,A#2,3
 990 DATA &200,A2,6 ,A2,3 ,A2,6 ,A#2,3
 1000 DATA &200,C3,15 ,C3,3
 1010 DATA &200,A2,6 ,A2,3 ,A2,3 ,G#2,3 ,A2,
3
 1020 DATA &200,A3,6 ,F3 ,3 ,F3 ,6 ,C3,3
 1030 DATA &200,B2,6 ,G3,3 ,G3,6 ,G3,3
 1040 DATA &200,G3,15 ,F3 ,3
 1050 DATA &200,E3,6 ,G3,3 ,G3,3 ,F#3,3 ,G3,
3
 1060 DATA &200,D3,6 ,G3,3 ,G3,3 ,F#3,3 ,G3,
3
 1070 DATA &200,C3,6 ,B2,3 ,C3,6 ,B2,3
 1080 DATA &200,C3,9 ,C3,9
 1090 REM 2nd Par t
 1100 DATA &200,A2,3 ,G#2,3 ,A2,3 ,D3,6 ,C3,
3
 1110 DATA &200,A2,9 ,F2 ,9
 1120 DATA &100,D2,9 ,G2,9
 1130 DATA &100,F2 ,15 ,F2 ,3
 1140 DATA &200,G2,3 ,A2,3 ,A#2,3 ,E3,6 ,D3,
3
 1150 DATA &200,C3,9 ,F3 ,9
 1160 DATA &200,E3,9 ,D3,9
 1170 DATA &200,C3,15 ,C3,3
 1180 DATA &200,D3,6 ,D3,2 ,E3,1 ,D3,3 ,C#2,
3 ,D3,3
 1190 DATA &200,E3,9 ,E3,9
 1200 DATA &200,F3 ,6 ,F3 ,2 ,A3,1 ,G3,3 ,F3 ,3
,G3,3
 1210 DATA &200,A3,15 ,A3,2 ,A3,1
 1220 DATA &200,G3,6 ,F3 ,3 ,D3,6 ,A#2,3
 1230 DATA &200,A2,9 ,F2 ,9
 1240 DATA &200,G2,9 ,E2,9
 1250 DATA &200,F2 ,12 ,R,6
 2500
 2510 REM Channe l 2
 2520 DATA &200,F2 ,6 ,E2,3 ,D#2,6 ,D2,3
 2530 DATA &100,C2,6 ,B1,3 ,A#1,6 ,A1,3
 2540 DATA &100,G1,3 ,A1,3 ,A#1,3 ,A1,6 ,G1,
3

154

CHAPTER 9 Making Micro Music

 2550 DATA &100,C1,6 ,R,12
 2560 DATA &200,F1 ,6 ,F2 ,3 ,F2 ,6 ,F2 ,3
 2570 DATA &200,F1 ,6 ,F2 ,3 ,F2 ,6 ,F2 ,3
 2580 DATA &200,E1,6 ,F1 ,3 ,G1,6 ,F1 ,3
 2590 DATA &200,E1,6 ,D1,3 ,C1,6
 2600 DATA &200,C1,6 ,A#1,3 ,A#1,6 ,A#1,3
 2610 DATA &200,C1,6 ,A#1,3 ,A#1,6 ,A#1,3
 2620 DATA &200,F1 ,6 ,G1,3 ,A1,6 ,G1,3
 2630 DATA &200,F1 ,6 ,E1,3 ,D1,6 ,C1,3
 2640 DATA &200,F1 ,6 ,F2 ,3 ,F2 ,6 ,F2 ,3
 2650 DATA &200,F1 ,6 ,F2 ,3 ,F2 ,6 ,F2 ,3
 2660 DATA &200,D1,6 ,E1,3 ,F1 ,6 ,E1,3
 2670 DATA &200,D1,6 ,C1,3 ,B0,6 ,A1,3
 2680 DATA &200,G1,6 ,E2,3 ,E2,6 ,E2,3
 2690 DATA &200,G1,6 ,F2 ,3 ,F2 ,6 ,F2 ,3
 2700 DATA &200,C2,6 ,T1 ,3 ,C2,6 ,G1,3
 2710 DATA &200,C1,6 ,R,3 ,C2,6 ,R,3
 2720 REM 2nd Par t
 2730 DATA &200,F1 ,6 ,A1,3 ,C1,6 ,A1,3
 2740 DATA &200,F1 ,6 ,A1,3 ,C1,6 ,A1,3
 2750 DATA &100,A#1,6 ,F1 ,3 ,C1,6 ,E1,3
 2760 DATA &100,F1 ,6 ,A1,3 ,A1,6 ,A1,3
 2770 DATA &200,E1,6 ,A#1,3 ,C1,6 ,A#1,3
 2780 DATA &200,F1 ,6 ,A1,3 ,D1,6 ,G#1,3
 2790 DATA &200,C1,4 ,F1 ,2 ,G1,3 ,D1,4 ,F1 ,2
,G1,3
 2800 DATA &200,C1,6 ,G1,3 ,G1,6 ,81 ,3
 2810 DATA &200,B0,6 ,B1,3 ,B1,6 ,B1,3
 2820 DATA &200,C#1,6 ,A1,3 ,A1,6 ,A1,3
 2830 DATA &200,D1,6 ,A1,3 ,D1,6 ,A#1,3
 2840 DATA &200,C1,6 ,A1,3 ,A1,6 ,A1,3
 2850 DATA &200,G1,6 ,A#1,3 ,A#1,6 ,A#1,3
 2860 DATA &200,C1,6 ,A1,3 ,A1,6 ,A1,3
 2870 DATA &200,E1,6 ,A#1,3 ,C1,6 ,A#1,3
 2880 DATA &200,F1 ,6 ,R,3 ,F1 ,6 ,R,3
 2890
 3000 REM Channe l 3
 3010 DATA &200,F3 ,6 ,E3,3 ,D#3,6 ,D3,3
 3020 DATA &100,C3,6 ,B2,3 ,A#2,6 ,A2,3
 3030 DATA &100,G2,3 ,A2,3 ,A#2,3 ,A2,6 ,G2,
3
 3040 DATA &100,C2,6 ,R,12
 3050 DATA &200,F2 ,6 ,C2,3 ,C2,6 ,C2,3
 3060 DATA &200,F2 ,6 ,C2,3 ,C2,6 ,C2,3

155

Making Music on the BBC Computer

 3070 DATA &200,G2,6 ,G2,3 ,G2,6 ,G2,3
 3080 DATA &200,G2,15 ,R,3
 3090 DATA &200,G1,6 ,C2,3 ,C2,6 ,C2,3
 3100 DATA &200,G1,6 ,C2,3 ,C2,6 ,C2,3
 3110 DATA &200,F2 ,6 ,F2 ,3 ,F2 ,6 ,G2,3
 3120 DATA &200,A2,15 ,A2,3
 3130 DATA &200,F2 ,6 ,C2,3 ,C2,6 ,C2,3
 3140 DATA &200,F2 ,6 ,C2,3 ,C2,6 ,C2,3
 3150 DATA &200,D2,9 ,B1,9
 3160 DATA &200,B1,6 ,C2,3 ,D2,6 ,R,3
 3170 DATA &200,G2,6 ,C2,3 ,C2,6 ,C2,3
 3180 DATA &200,G2,6 ,B1,3 ,B1,6 ,B1,3
 3190 DATA &200,E2,6 ,R,3 ,G1,6 ,R,3
 3200 DATA &200,E2,6 ,R,3 ,E2,6 ,R,3
 3210 REM 2nd Par t
 3220 DATA &200,R,18
 3230 DATA &200,F4 ,54
 3240
 3250
 3260 DATA &200,R,6 ,C2,3 ,R,6 ,C2,3
 3270 DATA &200,R,6 ,A1,3 ,R,6 ,G#1,3
 3280 DATA &200,G2,9 ,F2 ,9
 3290 DATA &200,R,6 ,C2,3 ,C2,6 ,C2,3
 3300 DATA &200,F2 ,6 ,D2,3 ,D2,6 ,D2,3
 3310 DATA &200,R,6 ,C#2,3 ,C#2,6 ,C#2,3
 3320 DATA &200,R,6 ,D2,3 ,R,6 ,D2,3
 3330 DATA &200,R,6 ,E2,3 ,E2,6 ,E2,3
 3340 DATA &200,R,6 ,G2,3 ,G2,6 ,G2,3
 3350 DATA &200,R,6 ,C2,3 ,C2,6 ,C2,3
 3360 DATA &200,R,6 ,C2,3 ,C2,6 ,C2,3
 3370 DATA &200,F2 ,6 ,R,3 ,F2 ,6 ,R,3

This makes uses of the RESTORE function for repeats and several
envelopes for tone variation. The trill envelope is also used to good effect.

Notice the empty data lines, where a note lasts for more than one bar,
and the necessary change in sync parameters in the other channels. The
empty fines are there purely to aid readability.

Notice also the use of the dummy hold parameter to allow the initial
trill to fade rather than cease abruptly.

156

CHAPTER 10
Computer Compositions

Musical compositions produce the chaos and monotony we referred to in
Chapter 2. Composing is very much an art, although there are several
methods and ideas around which we produce compositions through
scientific and mathematical means. This is one area which is relatively
unexplored and there is great scope for us to discover new ideas - and
compositions - with our BBC micro.

Even art must follow certain rules unless it is to be totally anarchistic.
Music is no exception. Anarchy is easily expressed by this short program.

10 REPEAT
20 SOUND RND(3),RND(15)-16,RND(255),RND(10)
30 UNTIL FALSE

Interesting is perhaps the most apt description, and you can build upon this
idea to produce even more interesting compositions.

Of course, this is not what we normally mean when we talk about
composing music. Our main objection is likely to be that it is a completely
random series of notes with no relation to each other at all. To this chaos
we must bring some order: order is easily demonstrated by playing the
same note over and over again, or by playing scales, up and down.

The point of all this is to show the two extremes, chaos v. monotony,
and to illustrate the necessity of a compromise between the two.

The computer is unable to exercise any artistic judgement over the
notes it produces and we must tell it, by careful programming, what will
and what will not produce acceptable music. The more rules we lay down,
the nearer we will get to a particular style and the more rigid will be the
composition. Inspiration is provided by the RND function - and clever
programming.

The human compositional process: algorithms and
heuristics
In computing, algorithms are frequently used to solve problems. An
algorithm is simply a method of solving a problem - providing a solution
exists. If there is no solution, the algorithm should determine this. If it does

157

Making Music on the BBC Computer

not either solve the problem or determine that no solution exists, it is not
an algorithm. For example, mathematical addition and subtraction can be
solved by algorithms because we know and can describe exactly how to
get to the solution.

A heuristic is frequently described as a rule of thumb. It is used in
instances where there is no readily available algorithm or where such an
algorithm would take too long to solve the problem. It involves a
commonsense approach to point the way to, hopefully, the correct answer
or best solution. Unlike an algorithm, a heuristic is not guaranteed to
produce the best solution. It's not even guaranteed to produce any solution,
but if it does it can often find it quicker than an algorithm.

Heuristic procedures are used to determine computer strategy in games
such as draughts and chess. An algorithm for these games would involve
working out every possible move and deducing the best play from the
results. This is theoretically possible because the number of moves is not
infinite but it is large enough to render such an algorithmic approach
impossible.

A heuristic approach might work on the principle of controlling the
centre of the board. This is likely to produce a good game but is not
guaranteed to win. Algorithms and heuristics are often combined to
produce doubly effective results.

The human compositional process is a mixture of algorithm and
heuristic (and inspiration, but whether or not this would be classed as a
part of the heuristic operation is debatable).

There are certain chord sequences and series of notes which a
composer knows sound good. A common chord sequence such as A minor,
G major, F major, E major creates a harmonic framework which has been
used as the basis for many hit tunes. The composer knows this but still
needs to apply rules of thumb to create a melody over the top of the
sequence. These rules are the result of experience and inspiration - and this
is where we resort to the RND function and to devising some heuristics
and rules for the computer.

Aspects of a composition
There are three aspects of composition of direct relevance to us:

1) Melody
2) Rhythm
3) Harmony.

The first two are very closely related and the third, harmony, is complex
enough to have had many volumes written about it. In this chapter, we wm
examine melody anti Its associated rhythm and delve into harmony in
Chapter 11.

158

CHAPTER 10 Computer Compositions

The first steps in computer compositions, once we've got past the
totally random note stage, usually involve trying to create a pleasing
melody or sequence of notes. We can devise a set of rules to do this,
making them as simple or as complex as we like. This in itself is not so
difficult, but the notes in a melody also form a rhythmic pattern, so we
must take note lengths into consideration, too. This is certainly the more
difficult task as note pitch and note length are generally so tightly
interwoven that one can often determine the other - from an artistic
viewpoint.

We will begin our experiments with the next program. It is an
expanded version of Program 3.1, which played a series of completely
unrelated notes. This program uses a set of rules to guide it towards a more
musically meaningful output. If we restrict ourselves to the key of C, the
rules which we set ourselves might look like this:

1) The first note must be a member of a C major chord, ie C, E or G.
2) The interval between any two consecutive notes must not be more

than four notes.
3) A B note must lead directly to the C above it.
4) The last bar must end on a C and the note must last for the length

of the bar.

These simple rules will give us better results than Program 3.1, as you will
hear.

 10 REM PROGRAM 10.1
 20 REM Computer Compos i t ion
 30 REM Based on Ru les
 40
 50 PROCSetup
 60
 70 NoOfBars=4
 80 Count=0
 90
 100 FOR B=1 TO NoOfBars
 110 PRINT"Compos ing Bar " ;B
 120 PROCBar
 130 NEXT B
 140
 150 PROCPlay
 160
 170 PRINT"Press SPACE For Another Tune
"
 180 PRINT"Press " "R" " For A Rep lay"

159

Making Music on the BBC Computer

 190
 200 REPEAT
 210 *FX15,1
 220 Key$=GET$
 230 UNTIL (Key$=" " OR Key$="R")
 240 IF Key$="R" GOTO 150 ELSE GOTO 80
 250
 260 END
 270
 280 DEF PROCSetup
 290 Sca le$=" C C# D D# E F F# G
G# A A# B"
 300
 310 ENVELOPE1,4 ,0 ,1 ,0 ,1 ,1 ,0 ,126 , -8 ,0 , -
8 ,126 ,80
 320 Key=1
 330 Tempo=2
 340
 350 DIM Tune(2 ,129) , Tune$(129)
 360
 370 DIM NotesToChooseFrom$(15)
 380 FOR S%=1 TO 15
 390 READ Note$
 400 NotesToChooseFrom$(S%)=Note$
 410 NEXT S%
 420 ENDPROC
 430
 440 DATAG1,A1,B1,C2,D2,E2,F2 ,G2,A2,B2,
C3,D3,E3,F3 ,G3
 450
 460 DEF PROCChooseNote
 470 Note=RND(15)
 480 Note$=NotesToChooseFrom$(Note)
 490 ENDPROC
 500
 510 DEF PROCPlay
 520 FOR P=1 TO Count
 530 PRINTTune$(P) ,Tune(2 ,P)*Tempo
 540 SOUND1,1 ,Tune(1 ,P) ,Tune(2 ,P)*Tempo
 550 NEXT P
 560 ENDPROC
160

CHAPTER 10 Computer Compositions

 570
 580 DEF PROCAna lyseNote
 590 IF LEN(Note$)<2 OR LEN(Note$)>3 TH
EN PRINT"ERROR IN DATA " ;Note$:STOP
 600 IF LEN(Note$)=2 THEN NoteName$=LEF
T$(Note$,1) ELSE NoteName$=LEFT$(Note$,2
)
 610 Pos i t ion InSca le= INSTR(Sca le$,NoteN
ame$) /3
 620 Octave=VAL(RIGHT$(Note$,1))
 630 ENDPROC
 640
 650 DEF PROCCalcu la teP i tch
 660 P i tch=Key+Pos i t ion InSca le*4+(Octav
e-1) *48
 670 IF P i tch<0 OR P i tch>255 THEN PRINT
"ERROR IN PITCH DATA " ;Note$; " P i tch = "
;P i tch :STOP
 680 ENDPROC
 690
 700 DEF PROCBar
 710 Dura t ionSoFar=0
 720 REPEAT
 730 Count=Count+1
 740 REPEAT
 750 PROCChooseNote
 760 PROCAna lyseNote
 770 PROCRules
 780 UNTIL NoteOK
 790 Las tNote=Note
 800 PROCCalcu la teP i tch
 810 Tune(1 ,Count)=P i tch :Tune$(Count)=N
ote$
 820 PROCDur
 830 Tune(2 ,Count)=Dur
 840 Dura t ionSoFar=Dura t ionSoFar+Dur
 850 UNTIL Dura t ionSoFar=16
 860 ENDPROC
 870
 880 DEF PROCDur
 890 REPEAT

161

Making Music on the BBC Computer

 900 Dur=2^RND(2)
 910
 920 REM Set Las t Note To Semibreve
 930 IF B=NoOfBars Dur=16
 940
 950 UNTIL Dura t ionSoFar+Dur<=16
 960 ENDPROC
 970
 980 DEF PROCRules
 990 NoteOK=FALSE
 1000
 1010 REM Set F i rs t Note
 1020 IF Count=1 AND NOT(NoteName$="C" O
R NoteName$="G" OR NoteName$="E") ENDPRO
C
 1030
 1040 REM Make a "B" Move up to a "C"
 1050 IF Count>1 AND LEFT$(Tune$(Count -1
) ,1)="B" Note=Las tNote+1:Note$=NotesToCh
ooseFrom$(Note) :PROCAna lyseNote
 1060
 1070 REM Rest r i c t Jumps To 4 Notes
 1080 IF Count>1 : IF ABS(Las tNote-Note)>4
 ENDPROC
 1090
 1100 REM Set Las t Bar
 1110 IF B=NoOfBars AND NoteName$<>"C" E
NDPROC
 1120
 1130 NoteOK=TRUE
 1140 ENDPROC

Program notes
At line 350 the array Tune stores the pitch and duration values of the notes
and Tune$ stores the note name and octave number. As you experiment
with the program and add more rules, you will find it helpful sometimes to
refer to the name of a note and sometimes to its pitch value or position in
NotesToChooseFrom$.

NotesToChooseFrom$ stores the available notes. This has been altered
slightly from Program 3.1 to base our experiments in the key of C.

In order to create some sort of order, the program composes in bars: the
number of bars is determined by line 70. If you alter this to more than eight

162

CHAPTER 10 Computer Compositions

bars, you may have to redimension the Tune and Tune$ arrays.
After the bars have been composed, PROCPlay at line 510 plays them

and prints out the notes. Lines 170 to 240 give you the opportunity to hear
the tune again or to compose another one.

PROCAnalyseNote and PROCCa1cuIatePitch remain the same and
have been kept separate so that you can refer to one aspect of the note
without referring to the other. It also enables you to force a note into either
of the procedures, as may be necessary, for example, in rule 3 above.

DurationSoFar in PROCBar keeps track of the cumulative length of the
notes in each bar so that each bar contains the equivalent of 16 quavers.
The program therefore produces music in 4/4 time.

The loop at line 720 repeats and calls PROCRules until NoteOK is
TRUE, which means it's passed the rules. The pitch is then calculated and,
along with the note name, assigned to the relevant array.

PROCDur gives the note a duration of 2 or 4 and ensures that the last
note has a value of 16. This is assigned in line 830.

The outside loop in lines 720 to 850 repeat until the bar is full, when
DurationSoFar is equal to 16.

PROCRules assumes that the note is not going to be OK in line 990
and it must run the gauntlet of the rules until it comes out OK at line 1130.

The first rule checks that the first note is C, E or G.
The second rule creates a C to follow a B. This principle could be used

to ensure a particular note was always followed by another certain note but
be careful how you arrange the note data. Note and LastNote refer to the
position of the note in the data stream. If you want each G to move to an A,
adding 1 to G3 (Note= 15) would take it off the scale.

The next rule checks the steps between the last note and this one, and
rejects the new note if the distance between is too far.

Finally, the last rule ensures a C fills the last bar.

Experimenting with the program
Although this is a great improvement on Program 3.1, it's probably fair to
say that it produces music only a programmer could love. We still need
more melodic rules and the phrasing produced by PROCDur needs more
attention. You can easily add and adapt the melodic rules described above.
Here are some further suggestions:

1) Not more than five notes rising or descending without
complementary movement.

2) A rising B moves to a C, a descending B moves to an A.
3) A rising E moves to an F.
4) A B will not move to an F or vice versa. (This is quite a harsh

interval unless harmonically controlled.)
5) Permit the inclusion of accidentals, possibly only F# and/or A#.

Further rules would be needed to cope with these.

Music consists of a series of phrases, much like phrases in English
163

Making Music on the BBC Computer

grammar, which make sense but which are not complete. PROCDur makes
no attempt to regulate the rhythmic content.

The phrasing can be controlled by passing the durations through a set
of rules in a similar way to the melody notes. Such rules could include:

1) If quavers occur, there must be at least two of them consecutively.
2) A bar cannot start with a set of three quavers.
3) Give the duration values of bar 1 to bar 2, bar 3 to bar 4, etc. Or bar

1 to bar 3 and bar 2 to bar 4.

Alter the RND parameter in fine 900 to produce other note durations.
Another alternative is to use a preset series of durations. This is the

easiest option but, of course, results in a repetitive rhythm pattern. It can be
helpful if you wish to concentrate on the melodic aspect and it is probably
an improvement on the random method.

 1 REM PROGRAM 10.2
 2 REM Computer Compos i t ions w i th
 3 REM F ixed Rhy thm Pat te rn
 4 REM Inser t in PROGRAM 10.1
 85 RESTORE 920
 890 READ Dur
 900 ENDPROC
 910
 920 DATA 2 ,2 ,2 ,2 ,4 ,4
 930 DATA 2 ,2 ,4 ,8
 940 DATA 2 ,2 ,4 ,2 ,2 ,4
 950 DATA 4 ,4 ,8
 960
 970
 980 DEF PROCRules
 990 NoteOK=FALSE
 1110 IF Count=19 AND NoteName$<>"C" END

Program notes
The value that Count is checked against in line 1110 refers to the number
of notes in the DATA statements.

You can add variation by allowing the option of switching between sets
of preset durations. This will give you the best of both worlds.

As you add more rules, you affect the style of the composition and if
you add enough you will create a style unique to yourself (and the
computer). There are other ways of programming style into a composition
program and we will look at one such method next.

164

CHAPTER 10 Computer Compositions

Note analysis in composition
If we analyse a musical composition note by note and construct a table of
how often each note occurs, we will have a 'first order' note analysis of that
tune. If we then arrange a program to play the notes according to the
frequency of their appearance in the table, we will have a composition
which tends towards the style of the music we analysed.

This idea is not new and experiments along these lines were carried out
over 20 years ago on Stephen Foster compositions. (He wrote such songs
as 'Camptown Races', 'Oh Susannah' and 'Old Folks at Home' J)

The success of such experiments depends upon the composition(s)
under analysis. If the notes of the scale appear in roughly equal
proportions, the result is not going to sound unlike random music. In fact,
using only first order note analysis, the result will tend to sound a little like
random notes anyway. There is a need, too, to take into account the note
durations and perform a similar analysis upon them.

We can increase the accuracy of our analysis by recording how often
any note follows every other one. This is known as second order analysis
and we can take it even further and do a third and fourth order analysis.
This produces considerably better results but, as we perform higher and
higher order analysis on the music, we end up with a composition which
sounds increasingly more like the original.

The next program performs a first, second and third order analysis
upon a tune entered in DATA statements. It will then compose a tune
based upon one of these levels of analysis: the level can be changed as the
tune is playing.

 10 REM PROGRAM 10.3
 20 REM Computer Compos i t ions
 30 REM Based Upon Note Ana lys is
 40
 50 MODE 7
 60 REM Page Mode Of f
 70 VDU15
 80 ENVELOPE1,4 ,0 ,1 ,0 ,1 ,1 ,0 ,126 , -8 ,0 , -
8 ,120 ,90
 90
 100 DIM Tune$(238) ,Dur%(238) ,F1%(36)
 110 Key%=37
 120 Sca le$=" A1 A#1B1 C1 C#1D1 D#1E1
F1 F#1G1 G#1A2 A#2B2 C2 C#2D2 D#2E2 F2 F
#2G2 G#2A3 A#3B3 C3 D#3D3 D#3E3 F3 F#3G3
 G#3"
 130

165

Making Music on the BBC Computer

 140 PROCGetTune
 150 PROCNewSca le
 160 PROCAna lyseTune
 170 PROCCalcPercen tages
 180 PROCPr in t
 190
 200 INPUT"Enter 'LAST BUT ONE' and 'LA
ST NOTE' i n te rms o f no te number in N
ew Sca le" ,Penu l t%,Las tNote%
 210 PRINT ' "Press 'S ' to STOP" ' "En ter s
earch depth (1 /2 /3) - Th is may bea l te red
 as the p rogram is runn ing?" :P lay%=GET
 220
 230 D%=0
 240 REPEAT
 250 PROCGetNote
 260 PROCPlay
 270 PL%=INKEY(0) : IF PL%>48 AND PL%<52
THEN P lay%=PL%
 280 UNTIL PL%=83
 290
 300 END
 310
 320 DEFPROCGetTune
 330 PRINT"Read ing in Tune For Ana lys is
" '
 340 REM RESTORE To Requ i red Tune
 350 RESTORE 1810
 360
 370 Count%=0
 380 REPEAT
 390 Count%=Count%+1
 400 READ Note$,Dur : IF Note$="X" GOTO 4
30
 410 Tune$(Count%)=Note$
 420 Dur%(Count%)=Dur
 430 UNTIL Note$="X"
 440
 450 TuneLength%=Count%
 460 ENDPROC
 470
166

CHAPTER 10 Computer Compositions

 480 DEFPROCNewSca le
 490 PRINT"Ca lcu la t ing New Sca le" '
 500
 510 FOR Note%=1 TO TuneLength%
 520 Pos%=INSTR(Sca le$,Tune$(Note%)) /3
 530 F1%(Pos%)=F1%(Pos%)+1
 540 NEXT Note%
 550
 560 Sca le2$=" "
 570
 580 FOR Note%=1 TO 36
 590 IF F1%(Note%)>0 THEN Sca le2$=Sca le
2$+MID$(Sca le$,Note%*3,3)
 600 NEXT Note%
 610
 620 PRINT"New Sca le = " ;Sca le2$ '
 630 Sca leLength%=(LEN(Sca le2$) -2) /3
 640 PRINT"Sca le leng th = " ;Sca leLength
%'
 650
 660 DIM F2%(Sca leLength%,Sca leLength%)
,F3%(Sca leLength%,Sca leLength%,Sca leLeng
th%)
 670
 680 REM Reset F1% Ar ray
 690 FOR C%=1 TO 36
 700 F1%(C%)=0
 710 NEXT C%
 720 ENDPROC
 730
 740 DEFPROCAna lyseTune
 750 PRINT"Ana lys ing Tune. . . " '
 760 FOR Note%=1 TO TuneLength%
 770 Pos1%=INSTR(Sca le2$,Tune$(Note%)) /
3
 780 F1%(Pos1%)=F1%(Pos1%)+1
 790 IF Note%>TuneLength%-1 THEN GOTO 8
20
 800 Pos2%=INSTR(Sca le2$,Tune$(Note%+1)
) /3
 810 F2%(Pos1%,Pos2%)=F2%(Pos1%,Pos2%)+

167

Making Music on the BBC Computer

1
 820 IF Note%>TuneLength%-2 THEN GOTO 8
50
 830 Pos3%=INSTR(Sca le2$,Tune$(Note%+2)
) /3
 840 F3%(Pos1%,Pos2%,Pos3%)=F3%(Pos1%,P
os2%,Pos3%)+1
 850 NEXT Note%
 860 ENDPROC
 870
 880 DEFPROCCalcPercen tages
 890
 900 PRINT"Ca lcu la t ing F i rs t Order Freq
uency . . . "
 910 Sum1%=0
 920 FOR n1%=1 TO Sca leLength%
 930 Sum1%=Sum1%+F1%(n1%)
 940 NEXT n1%
 950 FOR n1%=1 TO Sca leLength%
 960 F1%(n1%)=F1%(n1%)*100/Sum1%
 970 NEXT n1%
 980
 990 PRINT"Ca lcu la t ing Second Order Fre
quency . . . "
 1000 FOR n1%=1 TO Sca leLength%
 1010 Sum2%=0
 1020 FOR n2%=1 TO Sca leLength%
 1030 Sum2%=Sum2%+F2%(n1%,n2%)
 1040 NEXT n2%
 1050 IF Sum2%>0 THEN FOR n2=1 TO Sca leL
ength%:F2%(n1%,n2)=F2%(n1%,n2)*100/Sum2%
:NEXT n2
 1060 NEXT n1%
 1070
 1080 PRINT"Ca lcu la t ing Th i rd Order Freq
uency . . . "
 1090 FOR n1%=1 TO Sca leLength%
 1100 FOR n2%=1 TO Sca leLength%
 1110 Sum3%=0
 1120 FOR n3%=1 TO Sca leLength%
 1130 Sum3%=Sum3%+F3%(n1%,n2%,n3%)
168

CHAPTER 10 Computer Compositions

 1140 NEXT n3%
 1150 IF Sum3%>0 THEN FOR n3=1 TO Sca leL
ength%:F3%(n1%,n2%,n3)=F3%(n1%,n2%,n3)*1
00/Sum3%:NEXT n3
 1160 NEXT n2%
 1170 NEXT n1%
 1180 ENDPROC
 1190
 1200 DEF PROCPr in t
 1210 PRINT ' "Do You Want a Pr in tou t (Y /N
)?"
 1220 Ans$=GET$: IF Ans$="N" THEN PRINT:E
NDPROC ELSE IF Ans$<>"Y" THEN 1220
 1230
 1240 FOR n1%=1 TO Sca leLength%
 1250 IF F1%(n1%)>0 THEN PRINTMID$(Sca le
2$,n1%*3,2) ; " . . . " ;F1%(n1%)
 1260 NEXT n1%
 1270
 1280 FOR n1%=1 TO Sca leLength%
 1290 FOR n2%=1 TO Sca leLength%
 1300 IF F2%(n1%,n2%)>0 THEN PRINTMID$(S
ca le2$,n1%*3,2) ; " - " ;MID$(Sca le2$,n2%*3,2
) ; " . . . " ;F2%(n1%,n2%)
 1310 NEXT n2%
 1320 NEXT n1%
 1330
 1340 FOR n1%=1 TO Sca leLength%
 1350 FOR n2%=1 TO Sca leLength%
 1360 FOR n3%=1 TO Sca leLength%
 1370 IF F3%(n1%,n2%,n3%)>0 THEN PRINTMI
D$(Sca le2$,n1%*3,2) ; " - " ;MID$(Sca le2$,n2%
*3,2) ; " - " ;MID$(Sca le2$,n3%*3,2) ; " . . . " ;F3
%(n1%,n2%,n3%)
 1380 NEXT n3%
 1390 NEXT n2%
 1400 NEXT n1%
 1410 PRINT
 1420
 1430 ENDPROC
 1440

169

Making Music on the BBC Computer

 1450 DEFPROCGetNote
 1460 D ice%=RND(100)
 1470 Note%=0:Sum%=0
 1480
 1490 REPEAT
 1500 Note%=Note%+1
 1510
 1520 REM In Case a Note Has Never
 1530 REM Fo l lowed a Par t i cu la r
 1540 REM Sequence o f Notes
 1550 IF Note%>Sca leLength% THEN Note%=R
ND(Sca leLength%) :Sum%=Dice%
 1560
 1570 REM Th i rd Order
 1580 IF P lay%=51 THEN Sum%=Sum%+F3%(Pen
u l t%,Las tNote%,Note%)
 1590
 1600 REM Second Order
 1610 IF P lay%=50 THEN Sum%=Sum%+F2%(Las
tNote%,Note%)
 1620
 1630 REM F i rs t Order
 1640 IF P lay%=49 THEN Sum%=Sum%+F1%(Not
e%)
 1650 UNTIL Sum%>=Dice%
 1660
 1670 Note$=MID$(Sca le2$,Note%*3,3)
 1680 Penu l t%=Las tNote%:Las tNote%=Note%
 1690 PRINTNote$;TAB(12) "Depth = " ;CHR$P
lay%
 1700 ENDPROC
 1710
 1720 DEFPROCPlay
 1730 Pos i t ion%=(INSTR(Sca le$,Note$)) /3
 1740 Note%=Key%+(Pos i t ion%*4)
 1750 SOUND1,1 ,Note%,Dur%(D%)
 1760 D%=D%+1
 1770 IF D%>TuneLength% D%=0
 1780 ENDPROC
 1790
 1800 REM Ode To Joy - Beethoven
170

CHAPTER 10 Computer Compositions

 1810 DATA E2,8 ,E2,8 ,F2 ,8 ,G2,8 ,G2,8 ,F2 ,8
,E2,8 ,D2,8 ,C2,8 ,C2,8 ,D2,8 ,E2,8 ,E2,12
 1820 DATA D2,4 ,D2,16 ,E2,8 ,E2,8 ,F2 ,8 ,G2,
8 ,G2,8 ,F2 ,8 ,E2,8 ,D2,8 ,C2,8 ,C2,8 ,D2,8
 1830 DATA E2,8 ,D2,12 ,C2,4 ,C2,16 ,D2,8 ,D2
,8 ,E2,8 ,C2,8 ,D2,8 ,E2,4 ,F2 ,4 ,E2,8 ,C2,8
 1840 DATA D2,8 ,E2,4 ,F2 ,4 ,E2,8 ,D2,8 ,C2,8
,D2,8 ,G1,16 ,E2,8 ,E2,8 ,F2 ,8 ,G2,8 ,G2,8
 1850 DATA F2,8 ,E2,8 ,D2,8 ,C2,8 ,C2,8 ,D2,8
,E2,8 ,D2,12 ,C2,4 ,C2,8 ,X ,0
 1860
 1870 REM Jesu , Joy - Bach
 1880 DATA G1,6 ,A2,6 ,B2,6 ,D2,6 ,C2,6 ,C2,6
,E2,6 ,D2,6 ,D2,6 ,G2,6 ,F#2,6 ,G2,6 ,D2,6
 1890 DATA B2,6 ,G1,6 ,A2,6 ,B2,6 ,C2,6 ,D2,6
,E2,6 ,D2,6 ,C2,6 ,B2,6 ,A2,6 ,B2,G1,6
 1900 DATA F#1,6 ,G1,6 ,A2,6 ,D1,6 ,F#1,6 ,A2
,6 ,C2,6 ,B2,6 ,A2,6 ,B2,6 ,G1,6 ,A2,6 ,B2,6
 1910 DATA D2,6 ,C2,6 ,C2,6 ,E2,6 ,D2,6 ,D2,6
,82 ,6 ,F#2,6 ,G2,6 ,D2,6 ,B2,6 ,G1,6 ,A2,6
 1920 DATA B2,6 ,E1,6 ,D2,6 ,C2,6 ,B2,6 ,A2,6
,G1,6 ,D1,6 ,G1,6 ,F#1,6 ,G1,18 ,X ,0
 1930
 1940 REM I r i sh J ig
 1950 DATA D2,3 ,B2,3 ,G1,3 ,G1,3 ,D1,3 ,G1,3
,G1,3 ,B2,3 ,G1,3 ,B2,3 ,D2,3 ,C2,3 ,B2,3
 1960 DATA C2,3 ,A2,3 ,A2,3 ,E1,3 ,A2,3 ,A2,3
,C2,3 ,A2,3 ,C2,3 ,E2,3 ,D2,3 ,C2,3 ,B2,3
 1970 DATA G1,3 ,G1,3 ,D1,3 ,G1,3 ,G1,3 ,B2,3
,G1,3 ,B2,3 ,D2,3 ,C2,3 ,B1,3 ,C2,3 ,B1,3
 1980 DATA C2,3 ,A2,3 ,D2,3 ,C2,3 ,B2,3 ,G1,3
,D2,3 ,G2,3 ,B3,3 ,A3,3 ,G2,3 ,F#2,3 ,D2,3
 1990 DATA F#2,3 ,F#2,3 ,D2,3 ,F#2,3 ,F#2,3 ,
D2,3 ,F#2,3 ,A3,3 ,G2,3 ,F#2,3 ,E2,3 ,G2,3
 2000 DATA G2,3 ,D2,3 ,G2,3 ,G2,3 ,C2,3 ,G2,3
,G2,3 ,B2,3 ,G2,3 ,G2,3 ,C2,3 ,B2,3 ,C2,3
 2010 DATA A2,3 ,D2,3 ,C2,3 ,B2,3 ,G1,3 ,G1,3
,G1,6 ,X ,0
The program prompts you for input where required and will merrily
trundle out a continuous composition.

171

Making Music on the BBC Computer

Program notes
Note analysis is the type of operation ideally suited to a computer. First
and second order analyses do not take very long and consume little
memory, but when we move up to third order analysis we need to keep
track of a fist of three consecutive elements. If we work with arrays this
could mean, working with a three-octave range, dimensioning an array
such as:

DIM F3%(36,36,36)

or larger, which uses up more memory than we can afford. One solution is
to use byte arrays, as described in the User Guide page 237, along with
indirection operators, as described in Chapter 39, which will save some
memory.

With the aim of maintaining readability, I have developed another
method which can still be used with byte arrays. It consists of calculating a
new scale based upon the notes used in the tune and dimensioning the
arrays often; we see how large they need to be, ie calculate their minimum
size.

The range of available notes is put into Scale$ in line 120. If you enter
other tunes, check that they do not contain notes outside this range or else
alter Scale$ to suit.

Tune$ is dimensioned to hold the notes and Dur95 is dimensioned to
hold the durations. F1% and, later, F2% and E3% hold the first, second
and third order sequences.

PROCGetTune at line 320 reads in the tune from DATA statements. If
you have more than one tune in the program, set RESTORE to point to the
required line. Tunetength% is set to the number of notes read.

PROCNewScale at line 480 runs through the notes of the tune,
comparing them with the ones in Scale$, and forms a new scale, Scale2$,
consisting of the notes used in the tune. A new scale will typically contain
about 12 notes which shows how much memory we are saving. The arrays
for storing the second and third order sequences are then dimensioned in
fine 660. The F1% array is cleared for further use.

PROCAnalyseTune at line 740 runs through the tune note by note and
counts the number of times each sequence of notes occurs. The results are
stored in the arrays F1%, F2% and F3%. F1% just counts the notes, F2%
counts each sequence of two notes and F3% counts each sequence of three
notes. The F1% array is used for a different purpose here, after being used
to count the notes in PROCNewScale.

PROCCalcPercentges at line 880 calculates each order analysis one at a
time. First, the number of times each sequence occurs in the tune, now
resident in the F1%, F2% and F3'% arrays after PROCAnalyseTune, are
added to find how many there are in total. The loop runs through them
again and assigns new values to the arrays on a percentage basis. This is
most easily seen in the first example between lines 910 and 970. The

172

CHAPTER 10 Computer Compositions

second and third order sequences use a series of nested loops to check
every combination, but a percentage is only calculated if there is
something there to calculate as in lines 1050 and 1150. This method reuses
all the arrays, saving memory.

As we are using integer variables and arrays, you may wonder at the
values which are going into the arrays to represent the percentages. Clearly
such fines as 960 will not always produce an integer. The result is a set of
figures which are not always 100% accurate. The integer variables and
arrays reduce any figure to the next lowest integer. The overall inaccuracy
will be very small and the sums of the contents of the arrays may not
always add up to 100. This has a negligible effect on the composition and
results in a faster program and a saving in memory.

You can alter these lines to produce true percentages or correctly
rounded integers if you so wish. In the following formula:

B=INT (A 10^D)+0.5)/10^D

B will have the value of A to D decimal places.
You can use the same principle to calculate higher order analysis. The

results should be very interesting but you will see how close we are to the
original tune even with third order analysis.

PROCPrint at line 1200 is similar to PROCCalcPercentges except that
it prints out the first, second and third order sequences along with their
occurrence expressed as a percentage. If you see three notes followed by
the figure 100, you know that, after the first two notes, the third note
always occurs. If the figure was only 50, it would indicate that the third
note occurs after the other two 50% of the time. The following figures will
show how the remaining 50% is split up.

Before it can start composing, the program needs two seed notes on
which to base its first calculation. These are asked for by line 200, and line
210 asks if you want a first, second or third order composition.

PROCGetNote at line 1450 decides which note should be played
according to their percentage chance of occurrence. Dice% represents a
random percentage. Sum% is incremented in line 1580, 1610 or 1640,
depending upon the depth of analysis required.

This procedure may require further explanation. Note%, LastNote%and
Penult% have values which are used to access a certain note or sequence of
notes in the arrays F1%, F2% and F3%. These arrays contain percentages
ranging from 0 to 100, which represent the frequency occurrence of the
notes represented by Note%, LastNote% and Penult%. As an example,
assume that the F2?£ array held the following:

F2%4LastNote%,1) = 20
F2%(LastNote%,2) = 50
F2%(LastNote%,3) = 10
F2%(LastNote%,4) = 8

173

Making Music on the BBC Computer

F2%(LastNote%,5 = 12

The only figure we are concerned with is Note% which is increased by one
each time round the loop. Also each time round, Sum% has added to it the
figure (percentage) held in the array.

If Dice% equals 72 the procedure would work as follows: Sum%
begins with a value of 0 and Note% with a value of 1. We add
F2%(LastNote%,Note%) to Sum%. If it equals or is more than Dice'%, we
leave the loop. In this case, with Note% equal to 1, it will equal 20, which
is not enough so Note% is incremented by one and we try again. This time,
50 is added to Sum'%, which is still not enough so we repeat the process
until Note% equals 3 which will give Sum% a value of 80, greater than
Dice%, and so the loop is exited.

Note$ is calculated from the value of Note%. Penult% and LastNote%
are adjusted, the note name is printed and we move to PROCPlay.

PROCPlay at line 1720 works out the correct pitch in a similar manner
to PROCAnalyseNote and PROCCalculatePitch in Program 10.1. You can
include these procedures as data checks if you wish; none has been
included in this program, although the conversion principles are the same.

D% in line 230 is used to keep track of the duration values held in
Dur% array: once the program runs through the values it is set to 0 at line
1770 and starts again.

Experimenting with the program
The tunes supplied in the DATA statements were selected because the
durations of each note are roughly equal. This makes it easier for us to tell
how close the compositions are to the original.

The duration values are used to play back the compositions with
exactly the same note lengths. This does not encourage originality, but as
the durations are stored in a separate array it would be easy to program
your own note lengths into the compositions. You could also run the
durations through a routine similar to the one used on the melody notes.
Combining the two should prove interesting.

The data included only analyses one tune and the result is, predictably,
a variation on the tune. If you use several tunes by the same composer, you
should get a composition in that composer's style but a new tune.

You could also try several rock 'n' roll tunes. These use the same basic
chords and harmonic structure but have different melodies.

The program will produce the most interesting results when used in this
way. When you are entering large amounts of data you will realise how
important it is to save memory. If the tunes and data are very long you may
have to increase the size of the arrays at fine 100.

As you already have the data for some tunes from Chapter 9, Rondo
Alla Turca, etc, you could extract the data, remove the ampersand
commands, renumber them, save as an ASCII file by *SPOOL and then *
EXEC them into the program for analysis. You may have to alter Scale$ in

174

CHAPTER 10 Computer Compositions

some cases.

A total tune analysis program
From the principles we have discussed and demonstrated so far, it is
possible to envisage a program which would analyse every part of a tune.

There are at least two ways to approach this. One has been suggested
and involves running the durations through the same sort of procedures as
the melody notes. This would result in a rhythm pattern based on the tune's
rhythm pattern but not related to the melody notes.

A second method would be to analyse the notes and their respective
durations togeth&, so that C1 with a duration of 2 would be treated as one
case and C1 with a duration of 4 would be treated as another, etc. You can
see how this would consume memory very quickly ag it is quite possible
that each note may have four or more different durations in a piece. This,
however, would fie the melody and rhythm together in a much more
realistic way.

Taking the idea a step further, we could also include an analysis of the
harmony indicated by the chord structure. Most modern songs change
chords perhaps every bar or every four bars and this could easily be
analysed.

If you decided to analyse rock 'n' roll tunes there would be no need to
analyse the chords as all songs (for pedants - most of them) use the same
pattern. In the key of C the bars would contain the following chords:

C/C/C/C/F/F/C/C/G/F/C/C

This is the famous 12 Bar Blues, known in the music business simply as a
12 bar. All the chords are major chords although they are often played as
sevenths (ie dominant seventh - C7 is formed from the notes C, E, G and
A# and many of the melody notes will play around the seventh (ie in the
case of C7, A#. If another chorus is to be played, the last bar of C is often
replaced with a bar of G (or G7).

In an ideal program, while we are analysing the notes and their durations, I
suppose that we could also see what chord was playing underneath and
analyse these three combinations as one item. That would be very
interesting indeed, not terribly difficult to program but a little greedy of
memory. I leave it to the virtuoso.

175

Making Music on the BBC Computer

176

CHAPTER 11
More Programs that Compose

In the last chapter, we investigated some of the difficulties we need to
overcome when writing programs to produce a melody. The programs
produce melodies of various qualities but there is one thing they all lack -
harmony.

Harmony is produced when more than one note sounds at the same
time and it is easily achieved. To produce a harmony pleasing to our ears,
however, is another matter altogether.

A harmonic framework or background to a piece of music can be
provided by strumming a guitar or playing chords on a piano or organ.
(See Chapter 2: Program 2.1 gives an aural indication of the harmonies
produced by various chords.) Given a chord progression, any number of
melody lines can be produced to fit over the top. Conversely, given a set of
melody notes, any number of backing chords can be used to harmonise it.
Just to illustrate the possible variety, each melody note could be given a
different chord or a single note could be given two or more chords. The
chords could change every bar, twice per bar or once every eight bars.
Some of these combinations will sound distinctly unpleasant and others
will be boring. The point is, anything goes, as long as it pleases someone,
even if it's only the composer. Most music, however, follows a more
agreeable (some might say predictable) harmonic structure.

The harmonic structure of popular songs
Most popular tunes rely heavily upon their chord progressions for their
appeal, and some musicians can take any melody line and work out a
chordal accompaniment for it. It may not be the same as the original, but it
will be close enough for most people to recognise the tune. It is unlikely
that two musicians will harmonise a tune in exactly the same way and no
way different to that determined by the composer would be regarded as
more right or wrong.

The type of chord used to harmonise a tune is indicative of the level of
harmonic appreciation we, the public, have reached. The wandering

177

Making Music on the BBC Computer

minstrel of a few hundred years ago would use a far less complicated set of
chord progressions because that would be the level of harmonic
appreciation (or tolerance) the public had reached at the time. We are now
musically more tolerant, and more complicated and dissonant harmonies
are finding increasing acceptance. (When two or more tones are played
together and produce a sound unpleasant to the ear, it is said to be
dissonant. If the sound is pleasing it is said to be consonant. Dissonant
harmonies generally refer to sounds such as those produced by playing two
notes only a semitone apart.)

Jazz musicians specialise in taking a melody and/or a chord
progression and improvising or spontaneously inventing new melodies or
harmonies for that piece. Often, these will deliberately be obscure and
quite removed from the original tune which is why many people find it
difficult to listen to and understand jazz.

Classical music had its own harmonic and compositional rules (most of
the great musicians broke them) and you can hear how we have
progressed, harmonically, if you listen to a piece of music by Purcell or
Arne (who wrote 'Rule Britannia'.)

Within any particular genre of music, our ears expect to hear a certain
type of chord sequence (or harmonic structure) and a melody ordered in a
certain way. A program to produce a pop tune, for example, would
necessarily be quite complex and intricate. It is perhaps slightly easier to
produce music in a classical style which may be, apparently, less
harmonically (and structurally) demanding.

Producing acceptable results
In the field of computer compositions we can safely assume that anything
which sounds vaguely pleasant and does not make the listener squirm in
his seat is a success. The programs in this chapter go a little further, I hope,
and produce compositions in up to three voices which will be musically
acceptable to all but the most critical pedant.

Judging by the problems we needed to overcome to generate even a
single series of notes, you might imagine that the production of a two- or
three-voiced composition would be two or three times as difficult. If we
were to try to implement some standard, academic rules of harmony, that
would indeed be the case. If we were to attempt the composition of a
classical three-part canon, it would be even more difficult although the
rules could be found and formulated much more rigidly.

Our first aim will be to produce a series of two or three notes sounding
together which are not dissonant and which form, in total, a reasonably
pleasant harmonic (and melodic) progression.

Random harmonic compositions
After all this talk about compositions and rules, it is still difficult (if not
impossible) to explain exactly what makes a piece of music good or bad,
pleasant or unpleasant. It combines both order and disorder in various

178

CHAPTER 11 More Programs that Compose

proportions. Any compositional program needs a random element,
otherwise it would simply be playing pre-programmed music which would
not be at all original. Our problem is to find a way of controlling the
amount of randomness applied to the choice of notes.

The quickest, easiest and most effective way is to use the random
function to select a note or series of notes which you know will harmonise
with each other. This, obviously, will produce very good results but not
very original compositions.

Instant Mozart
Mozart is reputed to have devised a compositional system based upon
throwing a dice (I refuse to use the word die). His method could easily be
converted to a computer program and would produce spectacular results,
but the catch is, you need to do a certain amount of composing yourself.

The dice were used to select one of a number of bars of music which
had previously been composed. For example, to compose a tune eight bars
long, a table would be drawn up of eight columns and six rows, each
containing a bar of music. The first throw of the dice would select a bar
from column 1, the second throw from column 2, etc, until you had eight
bars.

The initial problem is in composing 48 bars of music in such a way that
any bar from column 2 can follow any bar from column 1, etc. No problem
for Mozart but perhaps a little more daunting for us not-so-great
composers. If you do attempt it, and it may not be as difficult as it sounds,
the results would certainly be very good. In this case though, you are doing
all the composing, not the computer.

You can apply other rules and modifications to a compositional
program so that, for example, it periodically inserts a previously-written
series of notes into its otherwise random output but, again, you are usually
the one composing the most interesting parts.

When we turn the compositional process over to the computer we need
a way to control the amount of randomness it uses to make its selection of
notes without imposing our own compositions upon it.

A three-part computer composition
As the computer does not know which combination of notes produces
good results, our first step is to specify a list of permissible notes for it to
choose from. Playing notes from this selection at random will still produce
an unordered sequence of notes which could jump from one extreme of the
range to the other. We need a way of softening the random factor.

Such an algorithm was devised some years ago by Richard Voss of
IBM. For our purposes, we can liken the procedure to rolling a set of five

179

Making Music on the BBC Computer

four-sided dice. We add the numbers shown to get our random number. If
we always roll the five dice we will still have a series of totally random
numbers, but if we usually roll one or two dice and only sometimes three,
four or five we will get a series of numbers which vary from each other
only slightly but which are still capable of producing a large change. This
idea is implemented in Program 11.1.

 10 REM PROGRAM 11.1
 20 REM Computer Compos i t ion
 30 REM In 3 -Par t Harmony
 40
 50 MODE7
 60
 70 FOR X%=0 TO 1 :PRINTTAB(0 ,X%)CHR$14
1;CHR$133;TAB(6) "3 -PART HARMONY COMPOSIT
ION" :NEXT X%
 80 PRINTTAB(0 ,2)CHR$131; "Channe l 1 " ;T
AB(13) ; "Channe l 2 " ;TAB(26) ; "Channe l 3 "
 90
 100 FOR Co l=3 TO 24
 110 PRINTTAB(0 ,Co l) ;CHR$(129+Col MOD 6
) ;
 120 NEXT Co l
 130
 140 REM Set tex t Window
 150 VDU28,1 ,24 ,39 ,4
 160
 170 DIM D ice%(4) ,Key$(15)
 180 Key=1
 190 Tempo%=1
 200 Sca le$=" C C# D D# E F F# G
G# A A# B"
 210
 220 REM Ch inese St icks
 230 ENVELOPE1,1 ,0 ,0 ,0 ,0 ,0 ,0 ,126 , -10 , -5
, -2 ,126 ,100
 240
 250 REM S low At tack
 260 ENVELOPE2,1 ,0 ,0 ,0 ,0 ,0 ,0 ,10 , -1 ,0 , -1
,126 ,100
 270

180

CHAPTER 11 More Programs that Compose

 280 REM V ib ra to
 290 ENVELOPE3,4 ,0 ,1 ,0 ,2 ,1 ,0 ,126 , -10 , -4
, -4 ,126 ,100
 300 Env1=3:Env2=3:Env3=3
 310
 320 PROCSetSca le
 330 PROCDura t ion
 340
 350 REPEAT
 360 IF ADVAL(-6)>0 PROCPlay1
 370 IF ADVAL(-7)>0 PROCPlay2
 380 IF ADVAL(-8)>0 PROCPlay3
 390 UNTIL FALSE
 400 END
 410
 420 DEF PROCSetSca le
 430
 440 REM RESTORE To Requ i red Sca le
 450 RESTORE 530
 460
 470 FOR I%=0 TO 15
 480 READ Key$(I%)
 490 NEXT I%
 500 ENDPROC
 510
 520 REM Hornp ipe
 530 DATA C2,E2,G2,C3,E3,G3,C4,G3,A3,F3
,D3,A2,F2 ,D2,F2 ,A2
 540
 550 REM Ch inese
 560 DATA F#2,G#2,A#2,C#2,D#2,F#3,G#3,A
#3,C#3,D#3,F#2,G#2,A#2,C#2,D#2,F#2
 570
 580 REM Minor Key
 590 DATA A#3,D3,G2,C2,D#2,G2,C3,G#3,G3
,C4,D#3,G#3,C4,D3,D#3,G#3
 600
 610 REM Mins t re l
 620 DATA B2,G2,D3,G2,A3,E3,C4,A2,C3,A2
,E3,C3,G3,D3,G3,B2
 630

181

Making Music on the BBC Computer

 640 REM Mins t re l 2
 650 DATA F3,A3,G3,C2,E3,G2,C2,G2,E2,C3
,A2,G3,C3,A#2,G2,F2
 660
 670 DEF PROCDura t ion
 680
 690 REM GOTO Requ i red Dura t ions
 700 REM See Tex t For Exp lana t ion
 710 GOTO 770
 720
 730 REM Fas t (Ch inese)
 740 X1=3:Y1=0:Dot ted1=1:X2=1:Y2=2:Dot t
ed2=9:X3=1:Y3=1:Dot ted3=9:GOTO 820
 750
 760 REM Mad Hornp ipe
 770 X1=1:Y1=1:Dot ted1=9:X2=1:Y2=1:Dot t
ed2=9:X3=1:Y3=1:Dot ted3=9:GOTO 820
 780
 790 REM Mins t re l
 800 X1=1:Y1=3:Dot ted1=1:X2=2:Y2=3:Dot t
ed2=1:X3=1:Y3=5:Dot ted3=1:GOTO 820
 810
 820 ENDPROC
 830
 840 DEF PROCPlay1
 850 PROCRol lD ice
 860 PROCGetNote
 870 D=1: IF RND(16)<Dot ted1 THEN D=1.5
 880 IF X1=1 THEN Dur%=2^Y1*D
 890 IF X1>1 THEN Dur%=2^(RND(X1)+Y1)*D
 900 SOUND1,Env1,P i tch%,Dur%*Tempo%
 910 PROCPr in t (3)
 920 ENDPROC
 930
 940 DEF PROCPlay2
 950 PROCRol lD ice
 960 PROCGetNote
 970 D=1: IF RND(16)<Dot ted2 THEN D=1.5
 980 IF X2=1 THEN Dur%=2^Y1*D
 990 IF X2>1 THEN Dur%=2^(RND(X1)+Y1)*D
 1000 SOUND2,Env2,P i tch%,Dur%*Tempo%
182

CHAPTER 11 More Programs that Compose

 1010 PROCPr in t (15)
 1020 ENDPROC
 1030
 1040 DEF PROCPlay3
 1050 PROCRol lD ice
 1060 PROCGetNote
 1070 D=1: IF RND(16)<Dot ted3 THEN D=1.5
 1080 IF X3=1 THEN Dur%=2^Y3*D
 1090 IF X3>1 THEN Dur%=2^(RND(X3)+Y3)*D
 1100 SOUND3,Env3,P i tch%-48,Dur%*Tempo%
 1110 PROCPr in t (28)
 1120 ENDPROC
 1130
 1140 DEF PROCRol lD ice
 1150 Chance%=RND(100)
 1160
 1170 REM Th is Se ts the Random Fac to r
 1180 IF Chance%<84 Ro l l=1 ELSE IF Chanc
e%<88 Ro l l=2 ELSE IF Chance%<92 Ro l l=3 E
LSE IF Chance%<96 ROLL=4 ELSE Ro l l=5
 1190
 1200 IF Ro l l=1 D ice%(0)=RND(4) -1 ELSE P
ROCRol l
 1210 PROCAddRol ls
 1220 ENDPROC
 1230
 1240 DEF PROCRol l
 1250 FOR I%=0 TO Ro l l -1
 1260 D ice%(I%)=RND(4) -1
 1270 NEXT I%
 1280 ENDPROC
 1290
 1300 DEF PROCAddRol ls
 1310 Note%=0
 1320 FOR I%=0 TO 4
 1330 Note%=Note%+Dice%(I%)
 1340 NEXT I%
 1350 ENDPROC
 1360
 1370 DEF PROCPr in t (Tab)
 1380 PRINTTAB(Tab)Key$(Note%) ; " - " ;Dur%*

183

Making Music on the BBC Computer

Tempo%;
 1390 ENDPROC
 1400
 1410 DEF PROCGetNote
 1420 IF LEN(Key$(Note%))=2 THEN NoteNam
e$=LEFT$(Key$(Note%) ,1) ELSE NoteName$=L
EFT$(Key$(Note%) ,2)
 1430 Octave%=VAL(RIGHT$(Key$(Note%) ,1))
 1440 Pos i t ion InSca le%=(INSTR(Sca le$,Not
eName$)) /3
 1450 P i tch%=Key+Pos i t ion InSca le%*4+(Oct
ave%-1)*48
 1460 IF P i tch%<0 OR P i tch%>255 PRINT"ER
ROR IN PITCH DATA " ;Key$(Note%) ; " P i tch
= " ;P i tch%:STOP
 1470 ENDPROC
When run, the program will compose music according to the various
parameters set within it. These can all be altered and are explained below.

Program notes
The program up to line 150 sets a screen display which gives us something
to look at while the computer is churning out its composition.

The array, Dice%, gives us five dice (0 to 4) to roll and Key$ stores 16
(0 to 15) notes. PROCSetScale initiates this and line 450 is used to set the
data pointer to the scale of our choice. The notes fisted in lines 530 to 650
are sample scales for you to experiment with. You can alter these and add
your own. The names are just for identification as the final output relies
not only upon the scale but also upon the note durations and envelope
parameters.

Line 300 allocates envelopes to each channel. Again, you can add to
and alter each channel's envelopes as you wish.

Calculating the duration values
PROCDuration calls the procedure at fine 670 to determine the permitted
set of duration values. Each channel has three duration parameters which
are used to determine the range of duration values. As the operation of
each channel's duration values is the same, we will only look at those of
channel 1.

The permissible durations of a note are determined by the values of X1
and Y1. Cross-index them inFigure 11.1 to see some of the possible
values and ranges which can occur. The actual durations which do occur

184

CHAPTER 11 More Programs that Compose

are produced in the PROCPlay procedures. The other parameter, Dottedl,
sets the probability that a note will be dotted, ie have its duration increased
by half. If we look at lines 870 to 890 in PROCPlay1, we can examine a
specific instance.

2222

;v|;v|;xvxvJJL 97 975 9753

9

7

5

3

75 753 7532

53 532 53222

32 3222 3 2222222

222 2 22
2222

2 22

X VALUES

Y
VALUES

0

1

2

3

4

5

1 2 3 4

The probability that a note will be dotted is related to a random value
between 1 and 16 generated in line 870. This seems to tie in well with
music whose note values tend to be in multiples of 2, 4, 8 and 16 (like the
binary system) but you can alter it to run on a straight percentage basis if
you wish. If Dotted1 is greater than or equal to the random value, the next
note will be dotted. If Dotted1 is set to 1 the notes will never be dotted, and
if it is set to 16 they will always be dotted.

Lines 880 or 890 calculate the actual duration value depending upon
the Xl and Y1 parameters. Refer to Figure 11.1 and try some examples and
you will see how it works.

185

Making Music on the BBC Computer

The REPEAT loop between lines 350 and 390 repeats the composition.
The principle behind each channel's operation is the same. If there is room
in the buffer, a new note is called through the PROCPlay procedures. As
they are identical, we will only examine PROCPlay1.

The first thing it does is to call PROCRollDice at line 1140. This works
on a percentage basis. You can alter line 1180 to determine how many
'dice' we roll and how often. The dice are assumed to be numbered 0 to 3,
which will give us a value of from 0 to 15 to relate to the notes in Key$.
Line 1200 will either roll one dice or call PROCRoll if more than one
needs to be rolled. The dice are numbered 0 to 4.

PROCRoll at line 1240 runs through the required number of dice and
allocates new random numbers to them in the range 0 to 3

PROCAddRolls at line 1300 runs through the Dice% array, adds up the
total of the 'faces' and assigns it to the variable, Note'%. We are now back
at line 850. The next fine calls PROCGetNote (at line 1410) with which
you should now be familiar. Key$ is used to select our note.

PROCPrint at line 1370 prints out the note under the relevant channel
heading and the process repeats.

Note line 1100 which plays channel 3 notes an octave lower than
normal. This acts as a sort of bass which provides a tonal (providing the
scale allows for a feeling of tonality) and rhythmic foundation.

Experimenting with the program
All the variable parameters and DATA statements can be altered and
adjusted to produce an almost infinite range of sounds. Much of it will be
music but with extreme settings, especially of the duration parameters, the
results will be disjointed.

If you enter:

1155 Chance%=80

and then:

1155 Chance%=100

you will be able to hear and observe the results of rolling only one dice and
then of rolling all five. You can add values in between, to simulate rolling
any specific number. If you temporarily blank out PROCPrint, eg by
adding:

1375 ENDPROC

and add:

1345 PRINT Note%

186

CHAPTER 11 More Programs that Compose

you will see the range of totals produced by PROCAddRolls.
The note selections from line 530 onwards are important, too. The

notes should be chosen so that they don't create a severe dissonance when
sounded together. In general, a cluster of semitones will not produce
musical results, but even notes a tone apart (and the odd semitone) will
blend when played together, if the duration values are not too long.

The duration values themselves need a lot of consideration. Mixing an
extreme selection will produce music which has no rhythmic base and this
can be very firing for western ears. A regular four-in-a-bar bass line, such
as that provided by channel 3, can be used to provide the listener with
some sort of rhythmic foundation, even though the other channels may be
going their own way.

ENVELOPE 1, the scale data at line 560 and the duration. parameters
at line 740 will produce quite a hypnotic composition with a very eastern
flavour.

You can try extending the scale range and altering the severity of the
random selection. You could give each channel its own PROCRollDice for
finer tuning of the melodic output.

Using chords as a compositional base
Although the variety of compositions produced by Program 11.1 is quite
large, the computer is restricted to a choice of only 16 notes (although you
can increase this). This is not such a disadvantage, as many tunes have
been written containing far fewer notes, but it does tend to root the
compositions in a particular key. Sometimes, depending upon the notes,
the key may seem to shift and then revert back•, but if we include
unrelated accidentals in the scale we may hear too many dissonant
sequences. Try it and see.

One way to broaden the output is to relate the choice of notes to
particular chords and their relative constituent notes. Program 11.2 does
this, and allows you to program the computer with any chord sequence and
any chord type that you wish.

 10 REM PROGRAM 11.2
 20 REM Computer Compos i t ion
 30 REM Based on Chord Sequences
 40
 50 MODE7
 60
 70 Sca le$=" C C# D D# E F F# G
G# A A# B"
 80 ChordRange$=" M 7 9 m in mi
n6min7min9maj6maj7aug d im"
 90
 100 DIM NotesToChooseFrom$(11 ,6)

187

Making Music on the BBC Computer

 110
 120 REM RESTORE To Requ ied Data
 130 RESTORE 220
 140 READ NoOfChords%
 150
 160 DIM Melody$(NoOfChords%)
 170
 180 FOR Tune=1 TO NoOfChords%
 190 READ Melody$(Tune)
 200 NEXT Tune
 210
 220 DATA 12
 230 DATA C7,C7,C7,C7,F7,F7 ,C7,C7,G7,F7
,C7,G7
 240
 250 DATA 12
 260 DATA C7,C9,C7,C9,F7,F9 ,C7,C9,G9,F9
,C9,G7
 270
 280 DATA 32
 290 DATA Cmin ,Cmin ,G7,G7,G7,G7,Cmin
 300 DATA Cmin ,Cmin ,Cmin ,G7,G7,G7,G7
 310 DATA Cmin ,Cmin ,Fmin ,Fmin ,Cmin ,Cmin
 320 DATA G7,G7,Cmin ,Cmin ,Fmin ,Fmin
 330 DATA Cmin ,Cmin ,G7,G7,Cmin ,Cmin
 340
 350 DATA 16
 360 DATA Amin7 ,D7,Gmaj6 ,Emin6 ,Gmin9 ,C7
 370 DATA Fmaj7 ,Dmin6 ,Fmin7 ,G#min6
 380 DATA Gmaj6 ,D#M,Cmin6 ,D7,Bmin ,E7
 390
 400 RESTORE 1470
 410 FOR N=1 TO 11
 420 FOR C=1 TO 6
 430 READ NotesToChooseFrom$(N,C)
 440 NEXT C
 450 NEXT N
 460
 470 ENVELOPE1,4 ,0 ,1 ,0 ,1 ,1 ,0 ,32 , -2 ,0 , -4
,126 ,100
 480 ENVELOPE2,1 ,0 ,0 ,0 ,0 ,0 ,0 ,126 , -4 , -1 ,
188

CHAPTER 11 More Programs that Compose

-4 ,126 ,100
 490 ENVELOPE3,4 ,0 ,0 ,0 ,0 ,0 ,0 ,106 , -1 ,0 , -
1 ,106 ,80
 500 Env1%=2:Env2%=2:Env3%=3
 510
 520 PRINT ' '
 530 PRINT"P lease Enter Number o f Beats
 in Bar "
 540 INPUT NoOfBeats%
 550 PRINT"P lease Enter Tempo (2 o r g re
a te r) "
 560 INPUT Tempo1%
 570 Tempo%=Tempo1%
 580
 590 PRINT"Do You Want Rhy thm Var ia t ion
 (Y /N) "
 600 INPUT Sync$
 610 IF Sync$="Y" OR Sync$="y" Sync=TRU
E ELSE Sync=FALSE
 620
 630 Comp=0
 640 REPEAT
 650
 660 Comp=Comp+1
 670 Co l=128+(Comp MOD7)
 680 PRINTTAB(2 ,10)CHR$Col ;CHR$141; "Com
pos ing Opus 1 Var ia t ion " ;Comp
 690 PRINTTAB(2 ,11)CHR$Col ;CHR$141; "Com
pos ing Opus 1 Var ia t ion " ;Comp
 700
 710 FOR T%=1 TO NoOfChords%
 720 SyncPo in t=RND(4)
 730 FOR Beat%=1 TO NoOfBeats%*2
 740
 750 IF Sync PROCSync
 760 PROCPlay
 770
 780 NEXT Beat%
 790 NEXT T%
 800 UNTIL FALSE
 810

189

Making Music on the BBC Computer

 820 END
 830
 840 DEF PROCPlay
 850
 860 PROCAna lyseChord
 870 PROCGetNote(Note1$)
 880 PROCPlayChord(&101,Env1%)
 890 PROCGetNote(Note2$)
 900 PROCPlayChord(&102,Env2%)
 910 PROCBass(Key%+4)
 920
 930 ENDPROC
 940
 950 DEF PROCAna lyseChord
 960 Chord$=Melody$(T%)
 970 IF MID$(Chord$,2 ,1)="#" Key$=LEFT$
(Chord$,2) :ChordType$=MID$(Chord$,3) ELS
E Key$=LEFT$(Chord$,1) :ChordType$=MID$(C
hord$,2)
 980 Key%=1+((INSTR(Sca le$,Key$)) /3 -1) *
4
 990 ChordNumber%=(INSTR(ChordRange$,Ch
ordType$)) /4
 1000
 1010 Cho ice1%=RND(6)
 1020 REPEAT
 1030 Cho ice2%=RND(6)
 1040 UNTIL Cho ice2%<>Cho ice1%
 1050
 1060 Note1$=NotesToChooseFrom$(ChordNum
ber%,Cho ice1%)
 1070 Note2$=NotesToChooseFrom$(ChordNum
ber%,Cho ice2%)
 1080 ENDPROC
 1090
 1100 DEF PROCGetNote(Note$)
 1110 IF LEN(Note$)=2 THEN NoteName$=LEF
T$(Note$,1) ELSE NoteName$=LEFT$(Note$,2
)
 1120 Octave%=VAL(RIGHT$(Note$,1))
 1130 Pos i t ion InSca le%=(INSTR(Sca le$,Not
190

CHAPTER 11 More Programs that Compose

eName$)) /3
 1140 P i tch%=Key%+Pos i t ion InSca le%*4+(Oc
tave%-1)*48
 1150 IF P i tch%<0 OR P i tch%>255 PRINT"ER
ROR IN PITCH DATA " ;Note$; " P i tch = " ;P i
tch%:STOP
 1160 ENDPROC
 1170
 1180 DEF PROCPlayChord(Chan%,Env%)
 1190 SOUNDChan%,Env%,P i tch%,Tempo%
 1200 ENDPROC
 1210
 1220 DEF PROCBass(P i t%)
 1230 IF ADVAL(-8)>0 SOUND3,Env3%,P i t%,T
empo%
 1240 ENDPROC
 1250
 1260 DEF PROCSync
 1270 REM GOTO Requ i red Syncopat ion
 1280 ON SyncPo in t GOTO 1300,1370,1400,1
310
 1290
 1300 IF Beat%=1 Tempo%=Tempo1%*1.5 ELSE
 IF Beat%=2 Tempo%=Tempo1%*.5 ELSE Tempo
%=Tempo1%
 1310 ENDPROC
 1320
 1330 REM Out Of Sync
 1340 IF Beat%=1 Tempo%=Tempo1%*2 ELSE I
F Beat%=2 Beat%=3 ELSE Tempo%=Tempo1%
 1350 ENDPROC
 1360
 1370 IF Beat%=NoOfBeats% OR Beat%=NoOfB
eats%+1 Tempo%=Tempo1%*.5 ELSE IF Beat%=
1 Tempo%=Tempo1%*2 ELSE Tempo%=Tempo1%
 1380 ENDPROC
 1390
 1400 IF Beat%=NoOfBeats% OR Beat%=NoOfB
eats%+1 OR Beat%=NoOfBeats%+2 OR Beat%=N
oOfBeats%+3 Tempo%=Tempo1%*.5 :PROCPlay
 1410 ENDPROC

191

Making Music on the BBC Computer

 1420
 1430 IF Beat% MOD 2=1 Tempo%=Tempo1%*.7
5 ELSE IF Beat% MOD 2=0 Tempo%=Tempo1%*.
25
 1440 ENDPROC
 1450
 1460 REM Major
 1470 DATA G1,C2,E2,G2,C3,E3
 1480
 1490 REM Seventh
 1500 DATA A#1,C2,E2,G2,A#2,C3
 1510
 1520 REM Major N in th
 1530 DATA D2,E2,G2,A#2,C3,D3
 1540
 1550 REM Minor
 1560 DATA G1,C2,D#2,G2,C3,D#3
 1570
 1580 REM Minor 6 th
 1590 DATA A1,C2,D#2,G2,A2,C3
 1600
 1610 REM Minor 7 th
 1620 DATA A#1,C2,D#2,G2,A#2,C3
 1630
 1640 REM Minor N in th
 1650 DATA D2,D#2,G2,A#2,C3,D3
 1660
 1670 REM Major 6 th
 1680 DATA A1,C2,E2,G2,A2,C3
 1690
 1700 REM Major 7 th
 1710 DATA B1,C2,E2,G2,B2,C3
 1720
 1730 REM Augmented
 1740 DATA G#1,C2,E2,G#2,C3,E3
 1750
 1760 REM Dimin ished
 1770 DATA D#2,F#2,A2,C3,D#3,F#3

The program will prompt for the number of beats in a bar, tempo, and

192

CHAPTER 11 More Programs that Compose

whether or not you want rhythmic variations. The compositions are based
on a chord sequence resident in the DATA statements and the rhythm
variations can be altered and ztdjusted within the program.

Program notes
ChordRange$ at line 80 holds the available chords in much the same way
that Scale$ holds the available notes. The program is supplied with details
of the following chords:

M = Major
7 = seventh (dominant seventh)
9 = Major Ninth
min = Minor
min6 = Minor Sixth
min7 = Minor Seventh
min9 = Minor Ninth
maj6 = Major Sixth
maj7 = Major Seventh
aug = Augmented
dim = Diminished

The chord information is listed in DATA statements from line 1470 and
relates to C chords. This information is adjusted for chords of other keys as
we shall see. (See Chapter 2: Figure 2.11 illustrates some of the more
common chords.)

The chord information is a list of notes which are included in the chord:
it does not show how to construct a chord. The number has been arbitrarily
restricted to six notes around octave 2 in Figure 2.4.

I have arranged the notes used to emphasise the dominant feature of the
chord. For example, the pertinent feature of a minor ninth chord is the
ninth and the notes in line 1650 have two ninths (D in this case for the key
of C). The more complex a chord, the more notes of the scale it uses. The
notes of the chords are read into the NotesToChooseFrom$ array in fines
400 to 450.

The melody is derived from the chord sequence held in DATA
statements beginning at line 220. The first figure is the number of chords
which is read into the variable, NoOfChords%, at line 140. The remainder
of the data are chords which are read into Melody$ at line 190.

The NoOfBeats%, asked for at line 540 represents the number of beats
per bar. This is doubled in line 730 to produce a composition based around
eighth notes or quavers. For example, an entry of four will produce bars
containing eight quavers.

The tempo is input at line 560. The rhythmic variations are produced
by altering this input value, so it is also stored in a second variable,
Tempo%.

Lines 670 to 690 produce a small screen display.

193

Making Music on the BBC Computer

The REPEAT loop running from 640 to 800 controls the tune
production. A tune will play through each chord in Melody$ once: this is
controlled by line 710. Each chord lasts for the length of a bar. A bar
consists of quavers equal to the number of beats in the bar (as assigned to
the NoOfBeats% variable) multiplied by two.

If rhythmic variations have been selected, line 750 calls PROCSync
(Sync for syncopation). Line 720 randomly selects one of four variations
for one bar - unless it is selected again.

PROCPlay plays a single chord (comprised of three notes) of the tune
and is called by fine 760. It has quite a lot of work to do, and tempo values
of less than two will try to get hold of notes quicker than the BASIC
program can supply them, causing uneven and hesitant results.

The first procedure called by PROCPlay is PROCAnalyseChord at line
950 which performs a similar analysis upon the chord to the one performed
by our PROCAnalyseNote procedures on notes. The first thing it does is to
look at the first two or three letters to find the key. The other letters are
taken as the chord type. The key is calculated in the usual way at line 980,
and line 990 gives us a chord number which simply shows how far along
ChordRange$ it is. We then pick two different notes from the chord in
fines 1010 to 1070 and end the procedure.

PROCGetNote at line 1100 is like the others in the book but it is called
twice, once for each of the two notes we picked from the chord.

PROCPIayChord at line 1180 is called twice, too, and synchronizes the
two notes so that they sound together.

The final act of PROCPlay is to call PROCBass at line 1220, which
just sustains the root note of the chord, eg a C chord will produce a C bass
note and a G# chord a G# bass note.

The last procedure is PROCSync at line 1260, which is only called if
rhythmic variations have been asked for. If they have, this is called before
every note to determine the duration - Tempo% as it is termed in this
program. The variation in rhythm is produced by altering the value of
Tempo%. according to the Beat% variable. Five examples are included and
line 1280, along with line 720, selects the particular syncopation or
variation for that bar.

Experimenting with the program
There are two main ways you can alter the output other than varying the
tempo and beats per bar values input. The first is through the selection of
chords used in the tune which determines the overall harmonic progression
of the piece and the second involves the complexity of the rhythmic
variations you introduce.

The data in lines 230 and 260 will play a 12 bar blues: the second set of
data includes some ninth chords which produce a more jazzy feel. The data
at fine 290 produces a chord sequence similar to that found on many
electronic music albums and you may prefer the output here without any
rhythm variations. The last set of data at line 360 is very jazzy and bluesy

194

CHAPTER 11 More Programs that Compose

and works best with a slowish tempo and with variations. The use of minor
ninth, minor sixth and major seventh chords produces some good jazz-
style harmonies.

As the output is determined by the chords you put into the DATA
statements, you have complete control over the chord progressions and you
can experiment with whatever sequence of chords you wish. You can
extend the range of chords by including new chord data at the end of the
program. Insert the chord name in ChordRange$ at line 80 and increase the
NotesToChooseFrom$ array at line 100 and the N variable at line 410 to
suit. Be careful just exactly where in ChordRange$ you put the new chord
name, eg if min6 came before min the program would return an incorrect
chord number for min at fine 990 as it would find the min in min6 before
arriving at the min we want.

For convenience, a major chord is represented by M. In standard
notation a major chord, such as C or G#, will usually stand by itself. In our
notation these would be CM and G#M. Giving every chord a symbol in
this way simplifies PROCAnalyseChord.

For more variation, increase the number of notes allocated to each
chord. This can simply be used to increase the range so that notes occur
over, say, two octaves. More notes will also allow you to use more
complex chords containing more than six notes. You can try substituting a
complete scale for each chord. For example, CM would consist of a normal
C scale. C7 would consist of an F major scale as it contains one flat, which
is the key of F. Cmin would contain the notes of the D# (E flat) major
scale. (Minor scales have been discussed in Chapter 2: you can mix
harmonic and melodic scales as you wish.)

As the program picks notes from the chord at random, using complete
scales may produce dissonant results. The principle of picking notes from
the relevant scale used by the chords is another basis for tune production
and we will look at some suggestions as to how this might be
accomplished later in this chapter.

A value of four beats in the bar will produce music in 4/4 time and each
chord will last for one bar. With a value of two, it will seem as if each
chord lasts for half a bar, and so on. Actually, all we are doing is reducing
the number of quavers in a bar, but by careful selection of this value and
the chord data we can arrange an apparent change of chord at any point in
the bar. You could arrange the envelopes so that the first beat of the bar
sounds louder than the others.

Adding rhythmic variations
The addition of rhythmic variations is a major part of the program and
helps abolish the monotony of a sequence of quavers. The method used can
be adapted to produce many varied rhythmic effects.

The variations are produced by PROCSync (assuming they are

195

Making Music on the BBC Computer

requested) and a look at the first example, at line 1300, will show how they
work.

According to certain criteria which you set up - in this case the note
number contained in Beat% - the duratlon of a note given by Tempo% is
altered. Unless you want the bar to run out of sync, you must ensure that
any extra time you give to one note is taken away from another. The
example at line 1340 demonstrates what can happen when you don't. It still
produces a good variation and keeps the listener on his toes because it is
not obvious where the beat has gone. Too many out-of-sync rhythms may
be too disorderly but one or two certainly add interest to a piece and are
very effective.

If you look at the other examples in PROCSync, you will see how they
work. The principle is easily adapted to produce almost any rhythm
configuration you require. One aspect of the changes to be wary of is the
eventual value of Tempo%. It will not hold a non-integer value. For
example, the variation at fine 1430 will work with a Tempo1% value of
four or eight but will otherwise produce strange results.

Instead of altering Tempo%, the variations could be stored in D AT A
statements or in arrays. The above method, however, will adapt to
whatever NoOfBeats% happens to be, although you could take this into
account in any other system.

By setting more than one possible variation, which we have done, and
by altering the sync pointer in line 720 and sync indicator in line 1280 the
program will produce quite a varied output.

Further extensions and modifications
As you will have realised, the program produces a duophonic melody with
a third note in the bass. The bass was introduced to reinforce the tonality of
the chord, to provide a foundation for the tune and to add a little depth.

The two melody notes always have the same duration and could be
altered so although they picked notes from the same chord, they would
have independent durations. This would create a more truly polyphonic
effect. The bass could also be given its own duration values and made to
play, say, the root and fifth intervals of the chord. This would maintain the
chord's tonality while providing yet more variation and interest.

To top it all, you could add channel 0 as a drum track.
As I mentioned earlier, there is another way of choosing notes from a

scale relevant to a particular chord. In fact, there are probably many other
ways to produce computerised music and several more chapters, if not
books, could be written on the subject. However, so that computer
composition does not dominate this book, and as we already have several
programs to experiment with, I shall only discuss the principles of this
method and leave you to work out the details. The programming should be
only a little more complicated than the programs already listed.

196

CHAPTER 11 More Programs that Compose

Applying further control to random note selections
This chapter and Chapter 10 have both been looking at ways of

controlling the random element in computer compositions. There must be a
random element, otherwise there would be no original music, but we must
be able to control it and shape it in order to produce the results we want.

If you put complete scales into the DATA statements of Program 11.2,
you will see that the results are quite different to those produced when we
limited the choice to six notes (which would probably only contain three or
four different notes). This is because the program is choosing the notes
with equal probability. If you include eight notes in a scale, each note has a
one-in-eight chance of being selected. This has two effects which detract
from the melodic and harmonic effect.

First of all, the notes chosen are too random within any given harmonic
framework, eg in most man-made compositions the melody over a Cmin
chord will probably contain more C, G and D# notes than any others. (This
is not always true but it is a fair assumption and it makes a good starting
point.) In the program, all notes would be selected indiscriminately. Our
first step, therefore, would be to arrange a probability table which gave
more weight to notes which were in the chord or which were more likely to
be heard with that chord.

Initially, for simplicity, we could ignore all accidentals. A probability
table for the chord of Cmin might then look like this:

C2 20%
D2 5%
D#2 15%
F2 10%
G2 15%
G#2 10%
A#2 5%
C3 20%

The figures are based on rule of thumb and could be extended to cover at
least one more octave. You could also include a B natural. Implementation
of this set of rules will show a marked improvement in the melodic output
but, if the choice of notes ranges over more than an octave, the melody will
have a tendency to skip large intervals between notes, which is not
common in normal composition. We can overcome this by applying
another set of probability restrictions.

Improving the melody
If you examine almost any piece of music, you will see that the melody

197

Making Music on the BBC Computer

line moves up and down the scale, usually a note or two at a time, and very
seldom does it jump more than an interval of a fifth. (This is, again, a
generalisation but applies to most classical music, a lot of jazz and many
popular and standard songs.) Our program can jump the full range of
available notes and will often cover intervals much larger than a fifth. This
is the second way in which its melody production is not quite satisfactory.
To this we can apply a set of probabilities in a similar way to the
probabilities we gave to the notes of the scale.

The most common interval jump is a scale step followed by two scale
steps and three scale steps. If we measure melodic movement in scale steps
we will avoid accidentals. A probability table for melodic intervals might
then look like this:

+1 30%
-1 30%
+2 15%
-2 15%
+3 5%
-3 5%

Again, these figures should be used only as a starting point, and altered as
results demand.

When these two sets of rules are combined, you should see a
tremendous improvement in the melodic output.

So far, we have not mentioned note durations. This is probably one of
the most difficult areas of computer composition to program successfully.
In such a program as that described, the best results will probably come
from a pre-programmed set of note durations or simply a string of quavers.
This will probably produce a Bach-like piece.

The output from a program like this would obviously be much
improved if it played all three channels. As the two melody channels will
be pursuing their own parts and as each output will be independent of the
others (apart from their reliance on the common chord) you may well find
that notes which may have tended to clash before seem to pass over one
another as, for example, one channel plays a downward melody while the
other pursues an upward path.

You can try restricting the secondary channel to playing the actual
notes of the chord, to add support to the harmonic base.

Bass notes
The bass notes can be controlled in two ways. First, their durations can be
fixed to play four in a bar, ie four crotchets (or three in a bar if the piece
was in 3/4 time, etc) and, secondly, you can restrict their choice of note. As
the purpose of a bass line is to support a harmonic framework, if it is

198

CHAPTER 11 More Programs that Compose

restricted to the root, fifth and possibly the third, the harmony will be
reinforced. But by all means experiment.

Designing and developing programs
Within the framework of rules set out above, you have scope to apply your
own ideas. One thing to be aware of is not to ask the computer to get a note
through the stepping procedure that it has been forbidden to get through
the scale table. For example, if it was currently playing a 62 and it was
ordered to move down a step, it may generate a percentage on the scale
table which said that F2 is out of bounds. The overall note selection must
take both these procedures into consideration. One way to do this would be
to present the computer only with valid candidate notes to chose from.

Like most computer programs and ideas, these compositional programs
can be added to and developed. Here are some more ideas for further
investigation. They are mentioned briefly simply as food for thought and
as suggestions for further experiments. Detailed instructions and listings
could quite easily consume the remaining pages of this book.

It would be interesting and useful to allow the operator or programmer
to alter various parameters as the program is running. This could be
accomplished by input from the keyboard or you could employ a more
subjective form of control by allowing various parameters to be controlled
by a joystick. This has fantastic possibilities as it would allow anyone to
affect the way the music was being composed.

The User Guide provides details about joysticks and how to read values
into the computer from them. The parameters you could control are key,
tempo, rhythm variations and even the chords used. I shall describe one
possible method of altering the chords.

There is a cycle of chord progressions known as the Circle of Fifths
which is illustrated inFigure 11.2. Seventh chords, eg C7, have a tendency
to want to move to the chord a fifth down the scale. So a C7 will want to
move to an F, an E7 will want to move to an A# (Bb) the seventh of which
will want to move to a D# (Eb), etc. The movement sounds satisfying, final
and complete and so we say that a C7 chord resolves to F.

199

Making Music on the BBC Computer

C
F

Bb

Eb

Ab

Db
Gb

Cb

E

A

D
A#

D#

G#

C#
F#

B

G

If you do not have access to a musical instrument to prove this, you should
easily be able to program your BBC micro to play through the cycle to
confirm this harmonic behaviour. The Circle of Fifths is very useful in
composition and shows how chord progressions tend to move.

If movement of the joystick accessed the chords in a similar order to
the circle (ie moving it right would move through C, F, A#, etc and if the
joystick position was not exact, the change of key would not sound out of
place as might be the case if the chords were arranged in chromatic
(semitone) order. The purpose of joystick control is not necessarily to
specify the exact chord, but rather to suggest a harmonic progression.

Once you (or rather, the computer) start to produce results you like,
you may want to save them. All the programs fisted so far, apart from
Program 10.1, are designed to play a continuous composition which is
composed instantly, as the program runs. You could add a facility which
would permit the computer to play a bar or a phrase (say four bars), then
stop and ask if you wanted to save it. In this way you could build up a
catalogue of the best of the BBC. Individual bars or phrases could be
played again in any order you specify. The tune parameters would initially
be stored in an array and later saved to tape or disk. (See the User Guide
for details of file handling.)

The Amazing One Line Wonder Composer program
The Note Analysis program in Chapter 10 produced an output which
varied according to the note frequency of an existing tune. We can use

200

CHAPTER 11 More Programs that Compose

existing tunes as an information base to produce a different output. One
such method is to perform a mathematical operation upon the pitches
representing the notes.

Notes and scales have a decidedly mathematical relationship with one
another, and the computer provides an excellent means of rearranging
notes according to mathematical rules. You can apply all sorts of
mathematical functions to a set of notes to produce a wide range of results,
but for simplicity only one example will be given here. This is the One
Line Wonder, and reverses the pitch of the notes so that high notes will be
played low and low notes will be played high. While it would be difficult
to call the music produced by this example original (although what else
can we call it?), the results are interesting and quite humorous. Other
mathematical permutations will produce quite different results.

As we already have complete programs to play Mozart's Rondo, the
Liberty Bell and the Dance of the Sugar-plum Fairy (from Chapter 9), we
will try out our method on these. The first step is to find the highest and
lowest notes in a piece and then find a central note around which these
revolve. For example, if the highest and lowest notes were C4 and G#2,
they would revolve around E3 which is half-way between the two. If you
do not want to check through the music or DATA statements of a
particular piece, you can find the highest and lowest notes by adding the
following (to programs based on Program 9.2):

1 HiP=0:LoP=255
851 IF Pitch>HiP HiP=Pitch
852 IF Pitch<LoP LoP=Pitch

When the program has worked through the data, get the computer to print
HiP and LoP in command mode and look up the notes in Figure 2.4.

The central point does not have to be exact and you can offset it a little
but, especially in multi-part tunes, you will probably find that an exact
central pitch will play in tune better than offset values. Here is the fine to
insert in Rondo:

855 Pitch=77+77-Pitch

F#2 with a pitch value of 77 has been taken as the pivot point. Try also 73
and 81.

For the Dance of the Sugar-plum Fairy insert:

855 Pitch=117+117-Pitch

and this for the Liberty Bell:

855 Pitch=85+85-Pitch

201

Making Music on the BBC Computer

Again, try plus and minus four on the central values.

The duration values are the same, which is what makes the tunes half-
recognisable, but you could apply a similar function to the duration values
just to confuse your listeners.

The above example is very simple. Try modifying the notes with SIN
and COS functions or an algebraic expression. You could also reverse the
sequence of notes so that the tune plays backwards, or alter the Pitch
values so that the music plays in steps of two (quarter tone intervals)
instead of steps of four (semitone intervals). This should produce music
with an eastern flavour.

In the music business, if a singer has a hit song, the writer is often
asked to produce a follow-up. This will sometimes be a re-hash of the
original song, using basically the same chord progressions and melodic
movements although it is unlikely that the writers ever use a computer. No
doubt you can think of lots of hits and follow-up singles which were very
similar.

Sing-a-long-a-matic
As speech ROMs and voice production systems increase in variety and
versatility, the day may not be too far off when such voices can be
programmed with a pitch to enable production of a singing voice. If we
could link a music composition program to a poetry generation program
we would have the latest in singer-songwriters.

Even if this technology is not available for the BBC micro - yet - we
can still link a music program to a poetry generation program. At its
simplest we could count the syllables in the verse and compose music with
the same number of notes. Anyone lucky enough to have a speech system
could let the computer talk the words over a musical background in the
style of Leonard Cohen.

These suggestions are just the beginning. Computer compositions are
one area in which relatively few experiments have been done. There is
plenty of scope for new ideas.

202

CHAPTER 12
Harmony and Transposition

The text books describe harmony as any combination of notes sounded
simultaneously. For our purposes we will assume that this combination
should produce agreeable sounds - it doesn't always!

The classical approach to and study of harmony is quite complex and
beyond our scope. One of its main topics is counterpoint, which is when
two or more melodic lines are played simultaneously. The canon or round
is a form of counterpoint. An example is the song 'London's Burning', in
which a number of voices sing exactly the same melody at staggered
intervals throughout the piece.

Other examples of counterpoint include the invention and the fugue
which were popular in classical music. J. S. Bach produced many brilliant
examples of each. His most famous is probably his Toccata and Fugue in
D minor, normally played on the organ and popularised, if that's the word,
in horror films such as 'Phantom of the Opera'.

Although such studies are perhaps more relevant to modern day
classical musicians and composers than to song writers and groups, many
good arrangers and musicians have the ability to create interesting music
with more than one melody fine. Many electronic music albums display
such writing and it can also be found on some rock and progressive music
albums.

The jazz musician turns harmonies and melodies upside down and the
study of jazz harmony is a separate subject altogether.

Our main concern, at least in the initial stages of our musical
experiments, is likely to be trying to decide what chord will fit a particular
melody line and, having found the chord, how its harmony can best be
brought out.

Harmonising a tune
When we put a tune into our computer, we are likely to be faced with one
of two situations. We may have a melody line and a list of chord symbols
or we may have a full-blooded piano or organ score with lots of notes and

203

Making Music on the BBC Computer

secondary melody lines running through the piece. Each presents its own
problems when we try to convert it for the computer.

With the first we wonder what to put in and with the second we wonder
what to leave out. The best advice anyone can give is to do what sounds
best; but of course we need a starting point

A melody with chord symbols: what to put in
As we have mentioned in other chapters, it is often a good idea to have a
bass line running through the piece. This not only provides a good
harmonic foundation but, as the notes are low, it gives the piece a sense of
fullness.

As we are working with chords it is easy to use the notes of the chord
in the bass. The root note is the note which gives the chord its name. This
will quite definitely establish the key of the chord. For variation we can
alternate the root with the fifth which should preferably be lower than the
root but this is not essential. If the chord sequence; was C, Amin, Fmaj6,
G? and the music was in 4/4 time and we wanted two bass notes in each
bar they might look like this:

(C2 G1) (A1 El) (F1 C1) (Gl D1)

We can go on to add the third and, from there, we could add 'passing notes'
which smooth out the bass line by avoiding large interval jumps. This can
result in a walking bass often found in swing music such as that played in
slow foxtrot or quickstep tempo.

This example is based on the above chord sequence and has four bass
notes in each bar:

(C2 Gl C2 B1) (A1 E1 A1 Gl) (F1 D1 E1 Fl) (G1 G1 A1 B1)

The bass does not have to include every note in the chord and you don 't
need to have a bass note on every beat. If the distance between one note
and another is small, the bass itself forms a sort of melody line. Movement
from one note to an adjacent note is known as stepwise movement and can
generally be recommended. In this chord sequence: F, A, Dmin, C, F, this
sort of movement would sound effective:

C1 C#1 D1 E1 F

Rather than construct a bass line as a separate entity, we can use the two
other channels to provide an accompaniment to the melody. This was the
basic premise behind the musical arrangements in the programs in Chapter
9. If you look again at Figure 9.1, you will see how channel 3 and channel
2 combine to produce the accompaniment.

204

CHAPTER 12 Harmony and Transposition

Channel 2 actually has two roles. In bar 1 for example, first it plays a
bass note then it joins channel 3 to play a chord. The overall
accompaniment is rhythmic and is typical of a piano arrangement. There is
no attempt to produce a separate bass line or a secondary melody line.

The Dance of the Sugar-plum Fairy follows a similar pattern. Only at
the end does the upper melody hold on to a note while a lower line plays a
downward run. Note the introduction which uses all three channels before
the first one leaves to play the melody.

The Liberty Bell arrangement is also similar, but you can hear lower
notes moving in upward and downward patterns to complement the main
melody. This is simple counterpoint although it does not run right through
the piece and you can hear how it adds another level of interest to the
music.

Assuming you have decided upon a melody and basslaccompaniment
line you still have another channel to arrange. If you can double up with
the bass channel, as channel 2 does in Rondo, you effectively gain an extra
voice. Bearing in mind the beneficial effects of stepwise movement you
can proceed to fill in the gaps between melody and bass.

It is not easy to give hard and fast rules about allocation of the in
between notes. Generally, any note of the chord will suffice and, with only
three voices, it is usually better not to duplicate the melody or bass note
unless it is as part of a rhythm accompaniment. If you are torn between one
note and another in a chord, see if the previous note can move to this note
by stepwise movement. Other than that, try out the alternatives and let your
ears be the judges.

Working from a piano copy: what to leave out
It is sometimes more of a problem trying to decide what to leave out of an
arrangement than it is to think of notes to put in. Many piano and organ
arrangements have lots of stepwise movement in them, usually a good bass
line and often a counter melody in places.

Again, we need a channel for the melody line. Allocation of notes to
the other channels will depend upon the type of accompaniment required.
If you can see two clear melody fines running through the piece, as would
be evident in a fugue, etc, then obviously use these, and add the third
channel either as a bass or in places between the melodies to reinforce the
harmony. Which to choose should be apparent from the arrangement.

Pruning decisions must be made when a melody is supported by one or
two other notes and when an accompaniment consists of a cluster of notes.
In the former case, the best advice is usually to forget any supportive
melody notes, concentrate on the melody itself and use the spare channel
for the accompaniment.

A handful of notes m rue accompaniment section may not always have
the root note of the chord in the bass. Simply using the lowest note

205

Making Music on the BBC Computer

illustrated is not always enough. If the lowest notes form a stepwise
progression, however, you can usually use them and let the third voice play
the chord root.

If the chord is not named on the music and there are so many notes
involved that the actual chord is difficult to work out, as a guide try
placing the third voice closer to the accompaniment than to the melody.
Otherwise, if you can work out what the basic chord is, you can discover
which notes are part of the chord and will support the harmony, which
notes are passing notes and which notes may be contributing to a little
counterpoint or secondary melody line.

With only three channels it is not always possible to produce
complicated harmonies and, if in doubt, the best idea is to stick to a
melody line with chord notes in the bass and the third channel. You can
alter them afterwards if they need adjusting. Your ears are your best guide
but, initially, if you follow these general guidelines you will produce
reasonable results.

Adding harmony to a melody line
You can see from the above that harmonising a tune requires a little
thought. It would be nice if we could enter a melody line and let the
computer work out a harmonic accompaniment for us. There are keyboards
on the market which do just that. If you play a single note melody line, the
keyboard will add another line to harmonise with it. The harmonic
additions are controlled by a chip, of course, a computer dedicated to just
that task.

The next program is presented tongue-in-cheek and adds a pseudo-
harmony to a melody line.

 1 REM PROGRAM 12.1
 2 REM Pseudo Harmony Add i t ions
 3 REM Inser t In PROGRAM 9.1
 4
 300 PRINT Note$;TAB(6) ;P i tch ;
 310 SOUND1,Env ,P i tch ,Dur
 311 PROCHarmon ise
 315 SOUND2,Env ,P i tch-P,Dur
 316 PRINTTAB(12) ;P i tch-P
 420
 430 DEF PROCHarmon ise
 440 HarmPoin t=RND(12)
 450 ON HarmPoin t GOTO 460,470,470,470,
470,480,480,480,490,490,500,510

206

CHAPTER 12 Harmony and Transposition

 460 P=8:ENDPROC
 470 P=12:ENDPROC
 480 P=20:ENDPROC
 490 P=28:ENDPROC
 500 P=32:ENDPROC
 510 P=48:ENDPROC

This adds a second 'melody' line to the single-channel version of Mozart's
Rondo Alla Turca. You can see why I have called it pseudo-harmony by
looking at PROCHarmonise at line 430. All it does is to add one of six
different intervals to the melody fine. The result is, predictably, erratic.

We can reduce the random effect by restricting the intervals to, for
example, thirds and fifths: we can take the randomness away altogether by
playing a single interval, such as a third, throughout. We can do this by
setting P equal to 12. The result sounds quite good but, as it lacks
variation, it can soon become boring. Also, as the thirds are calculated on a
semitone basis and not a scale basis, the result is a little mechanical and, at
times, sounds out of key. For example, to add a third to the note E3 in this
musical extract we should add C3. The program would add C#3.

The concept of a program which will harmonise any given melody line
is intriguing, and although Program 12.1 harmonises on a purely random
basis we can add rules to it as we did to Program 10.1. Harmonising a
melody can be a creative act or it can be a mechanical process which gives
us licence to produce something in between.

The construction of such a program would necessarily require a little
knowledge of chords and harmony. So, rather than trying to delve too
deeply into what is, perhaps, one of the most complex aspects of music, I
will leave a few suggestions with which the more ambitious and musically
knowledgeable programmer can experiment.

The addition of rules can be simplified in a number of ways.
Restricting the melody to the key of C seems a reasonable first step and
giving the computer a set of chords to work with could be the second. A
list of chords might include C, C7, Dmin, Emin, F, Fmaj7, G, G7, and
Amin. This could be expanded to include other chords slightly further
harmonically removed from the key of C.

Rules could include using stepwise movement, either to move directly
from one chord to another or as a bridge to span the notes in two different
chords.

The Circle of Fifths could be used whenever possible, but further rules
would have to govern movement around the Circle to avoid straying too
far from the home key and to ensure that we ended up there at the end of
the piece.

The application of some rules may require that the melody be scanned
more than once so that the computer can make initial observations about
the harmony of the piece before, for example, working out a stepwise fine.

207

Making Music on the BBC Computer

Commercial instruments do not have this opportunity.
We could even use Program 12.1 as a starting point and add a routine

to ensure that intervals were adjusted to fit the key of the piece or the scale
used by the chord in use at the time. This would produce far better results
than the mathematical intervals computed by the original program, as the
key of the piece would not be disturbed.

Finally, if you want another tune to perform harmony experiments
upon, the next program has extracted the DATA statements necessary to
play a single line version of The Liberty Bell. These are for insertion in
Program 12.1.

This will enable you to compare your program with the original one in
Program 9.6.

 1 REM PROGRAM 12.2
 2 REM DATA Sta tements For
 3 REM L iber ty Be l l
 4 REM For Use in PROGRAM 12.1
 5
 110 FOR N=1 TO 110
 180 DATA C3,3
 182 DATA A2,6 ,A2,3 ,A2,3 ,G#2,3 ,A2,3
 184 DATA F3,6 ,C3,3 ,C3,6 ,A2,3
 186 DATA A#2,6 ,A#2,3 ,A#2,6 ,C3,3
 188 DATA D3,15 ,A#2,3
 190 DATA G2,6 ,G2,3 ,G2,3 ,F#2,3 ,G2,3
 192 DATA E3,6 ,D3,3 ,D3,6 ,A#2,3
 194 DATA A2,6 ,A2,3 ,A2,6 ,A#2,3
 196 DATA C3,15 ,C3,3
 198 DATA A2,6 ,A2,3 ,A2,3 ,G#2,3 ,A2,3
 200 DATA A3,6 ,F3 ,3 ,F3 ,6 ,C3,3
 202 DATA B2,6 ,G3,3 ,G3,6 ,G3,3
 204 DATA G3,15 ,F3 ,3
 206 DATA E3,6 ,G3,3 ,G3,3 ,F#3,3 ,G3,3
 208 DATA D3,6 ,G3,3 ,G3,3 ,F#3,3 ,G3,3
 210 DATA C3,6 ,B2,3 ,C3,6 ,B2,3
 212 DATA C3,9 ,C3,9
 214 REM 2nd Par t
 216 DATA A2,3 ,G#2,3 ,A2,3 ,D3,6 ,C3,3
 218 DATA A2,9 ,F2 ,9
 220 DATA D2,9 ,G2,9
 222 DATA F2,15 ,F2 ,3
 224 DATA G2,3 ,A2,3 ,A#2,3 ,E3,6 ,D3,3

208

CHAPTER 12 Harmony and Transposition

 226 DATA C3,9 ,F3 ,9
 228 DATA E3,9 ,D3,9
 230 DATA C3,15 ,C3,3
 232 DATA D3,6 ,D3,2 ,E3,1 ,D3,3 ,C#3,3 ,D3,
3
 234 DATA E3,9 ,E3,9
 236 DATA F3,6 ,F3 ,2 ,A3,1 ,G3,3 ,F3 ,3 ,G3,3
 238 DATA A3,15 ,A3,2 ,A3,1
 240 DATA G3,6 ,F3 ,3 ,D3,6 ,A#2,3
 242 DATA A2,9 ,F2 ,9
 244 DATA G2,9 ,E2,9
 246 DATA F2,12
 248
 250
 260
 270

Transposition
Transposition is an everyday occurrence in the music world, but it o-ften
baffles new musicians. Like other musical disciplines, it requires a little
study and thought but do not be put off by some of the more detailed
discussions. Try the examples, run the program and refer back to the text
when necessary.

Transposition is when a note or tune is played higher or lower than it is
written. This normally results in a change of key, but if a tune is moved up
or down a complete octave, although the key stays the same, this is still a
transposition. You may have had to make such decisions in Chapter 9
when arranging tune data to play on the computer.

Referring to Figure 2.4, if the music shows a note written to correspond
to, say, C4 on the keyboard, you may decide that you want the tune to be
played lower. If you substitute C3 for the note, you are transposing it down
an octave.

Most transpositions do not occur simply over a straight octave, but tend
to move up or down within the octave. For example, playing E4 instead of
C4 would be an upward transposition of two tones and a transposition from
the key of C to the key of E. Although the two sets ofnotes maintain the
same relationship to each other, eg Twelfth Street Rag is still recognisable
as Twelfth Street Rag in whatever key it is played, the transposition is not
quite so straightforward an operation to perform: we must take into
account the difference in key signatures and any accidentals which occur.

Although the principle of transposition is easy to understand, the
physical transfer on paper of notes from one key to another can cause

209

Making Music on the BBC Computer

many problems for the less experienced musician. As you gain musical
experience and grow} better able to recognise the difference between
intervals - which are the same in whatever key you are playing - then
transposition will become more instinctive and less of a mathematical
chore.

Instant computer transposition
For convenience, we have included an instant transposer in most of our
programs, namely the variable Key. It was originally introduced in
Program 3.1. This can be increased or decreased to play the music in any
key of our choice; the only restriction is that, if we try to lower the key too
far, some of the pitch values produced may fall below 0. Note, this does
not affect the original data in the computer, only the way the sound chip
interprets it.

This demonstrates one of the many advantages of computers and digital
information handling. As information is stored as a series of numbers it is
easy to perform mathematical operations on the numbers to produce new
values. This principle has been used in programs throughout this book, not
least of all in the One Line Wonder Composer program of Chapter 11.

So, if the music is already in the computer, we can transpose it to any
key simply by altering one variable but if we need a physical copy of the
music there is little alternative other than to write it by hand. Even here,
though, the computer can help us. Before describing how, let us see why
music is transposed in the first place.

Why transpose?
Tunes are transposed for three reasons. First of all, although throughout
this book we have only used the treble and bass clefs, there are other clefs.
These are normally only found in orchestral scores, and most modem band
arrangements only use one other clef, the Alto or C clef. It looks a little
like the figure '3' preceded by a thick fine and a thin line. The middle of the
'3' falls on the centre line of the stave, which in this clef represents middle
C.

Alternative clefs are used for instruments whose ranges do not fit
comfortably into the treble and bass clefs. The alto clef is used primarily
for the viola. Unless you are involved with orchestral scores - or play the
viola - you are unlikely to meet those other clefs: but if you do, you'll
know what they are.

Many instruments are known as transposing instruments because they
sound in a different key to that in which the music is written. Examples are
the E flat Alto Saxophone, the B flat Tenor Saxophone, the B flat Clarinet
and the B flat Trumpet. These names tell us what key the instruments play

210

CHAPTER 12 Harmony and Transposition

in, but others such as the English horn, which sounds a fifth lower than the
written music, give us no clues,

This is sometimes a difficult idea to grasp but again, unless you are
involved with such instruments, you are unlikely to need to make use of
such information. For the sake of completeness, however, here are two
examples. Music for the E flat Alto Saxophone is written a. sixth higher
than it sounds on the piano keyboard so the key signature is written a sixth
higher than the concert key (ie the piano key) of the piece. Music in the
key of F would be written in the key of D for the saxophone and an F note
would be produced by writing a D note in this key. The B flat Trumpet is
scored a tone higher so, if the piece was in the key of C, the trumpet's part
would be written in the key of D.

These transpositions do not involve another clef. They are simply
written in a different key and, when the instruments play them, they sound
in the correct key- So, if you are writing a piece of music in a particular
key and wish to include a part for a transposing instrument you will have
to transpose its part to a different key.

These aspects of orchestral instruments are the first reason why music
is transposed. The second reason involves altering a piece of music to fit a
singer's vocal range. Quite often a piece of music in a certain key will be
perfect for one singer but too high or low for another. This depends upon
the vocal range of individual singers, which varies enormously from one to
another. Professional singers, therefore, often need the services of a
transposer who will write out a song accompaniment in the best key for
their voice.

Incidentally, some less musical singers have been known to claim that
they always sing in C or F or some other key. This, as I am sure you will
realise, is nonsense as the range of a song depends not only upon the key
but upon the highest and lowest notes of the melody.

The third reason for transposing a tune is simply because it sounds
good. An upward key change of a semitone in a song gives the tune a
special kind of lift and creates a musical excitement. Harmonically, a key
change is often preceded by moving from the root chord to that of an
augmented fifth and it sounds very effective. For example, to move from C
to C# you would play the chords C, G#7, C#, The progression certainly
gives the music a lift. The song 'Can't Smile Without You', popularised by
Barry Manilow, contains three key changes which definitely add to its
appeal.

Calculating a transposition
Transposition is a purely mechanical act. To transpose from one key to
another, simply count the difference in semitones and apply this offset to
the original notes. For example, to transpose from the key of A to the key
of F, count how many semitones from one note to the other - in this case

211

Making Music on the BBC Computer

four - and apply this offset to all other notes. In this way, D will become
A# (Bb) and F will become C#, etc. You can use Figure 2.4 to help work
this out.

Counting in semitones in this way automatically takes into account the
accidentals, but we must know whether the notes are sharp, flat or natural
before we begin. A C in the key of A is a C ,so we must make sure we
count from that note. The key signature tells us whether a note is sharp or
flat, but we must make the necessary adjustments ourselves for accidentals.

The computer as a transposition aid
Given that transposition may be desirable if not always necessary, how can
we use the computer to help us? First thoughts might lead us to believe
that, if we could feed in the original notes, the computer could be made to
print out the new notes. In practice, however, it would probably take longer
to enter the notes than it would to do the necessary calculations. Probably
more useful would be a note comparison table which fists the notes in the
old key against the notes in the new key.

Thirteen keys are fisted in Figure 2.5 (although F# and Gb are
enharmonics, they are written differently) which gives us 156 different
permutations. We can use our BBC micro to display the original key and
the new key along with the note positions and the note names, and use this
as a help sheet to aid conversion.

Line 70 contains an FX call to disable the ESCAPE key. Do not
remove the REM until your program is fully debugged.

 10 REM PROGRAM 12.3
 20 REM Transpos i t ion Program
 30
 40 ON ERROR GOTO 2270
 50
 60 *TV255,1
 70 REM Disab le ESCAPE key : *FX220,1
 80
 90 REM Swi tch on CAPS LOCK
 100 *FX202,32
 110
 120 PROCSetUp
 130
 140 End=FALSE
 150 MODE7
 160 PROCMenu
 170 IF End CLS:END

212

CHAPTER 12 Harmony and Transposition

 180
 190 MODE4
 200 PROCWindows
 210 PROCDisp laySca les
 220 GOTO150
 230 END
 240
 250 DEF PROCSetUp
 260 TCle f=844:LCle f=628
 270 TR$=CHR$130+"TRANSPOSITION PROGRAM
"
 280
 290 REM Treb le C le f Charac te rs
 300 VDU23,229,32 ,32 ,32 ,160,64 ,0 ,0 ,0
 310 VDU23,230,39 ,39 ,167,167,38 ,36 ,248,
240
 320 VDU23,231,228,230,102,51 ,24 ,12 ,7 ,3
 330 VDU23,232,160,32 ,32 ,32 ,120,164,38 ,
39
 340 VDU23,233,1 ,3 ,12 ,24 ,48 ,97 ,227,230
 350 VDU23,234,34 ,34 ,36 ,36 ,40 ,48 ,32 ,96
 360 VDU23,235,35 ,35 ,35 ,35 ,35 ,35 ,35 ,35
 370 VDU23,236,0 ,0 ,0 ,0 ,0 ,8 ,20 ,34
 380 TC$=CHR$9+CHR$236+CHR$8+CHR$10+CHR
$235+CHR$8+CHR$10+CHR$234+CHR$8+CHR$8+CH
R$10+CHR$233+CHR$232+CHR$8+CHR$8+CHR$10+
CHR$231+CHR$230+CHR$8+CHR$10+CHR$229
 390
 400 REM Bass C le f Charac te rs
 410 VDU23,237,31 ,127,192,128,128,184,1
20,56
 420 VDU23,238,128,192,224,115,51 ,48 ,48
,48
 430 VDU23,239,48 ,51 ,51 ,48 ,48 ,32 ,64 ,128
 440 VDU23,240,1 ,2 ,4 ,8 ,16 ,32 ,0 ,0
 450 BC$=CHR$237+CHR$238+CHR$8+CHR$10+C
HR$239+CHR$8+CHR$8+CHR$10+CHR$240
 460
 470 REM Semibr ieve
 480 VDU23,224,0 ,28 ,34 ,66 ,68 ,56 ,0 ,0
 490

213

Making Music on the BBC Computer

 500 REM Cro tche t
 510 VDU23,225,0 ,28 ,62 ,126,124,56 ,0 ,0
 520
 530 REM Natura l
 540 VDU23,226,64 ,76 ,84 ,100,76 ,84 ,100,4
 550
 560 REM F la t
 570 VDU23,227,64 ,64 ,92 ,102,70 ,76 ,120,0
 580 F$=CHR$227
 590
 600 REM Sharp
 610 VDU23,238,36 ,36 ,126,36 ,36 ,126,36 ,3
6
 620 S$="#" :REM S$=CHR$228
 630
 640 REM Of fse t fo r Lower Sca le Notes
 650 DIM Of fSe tAr ray(12 ,12)
 660 RESTORE 840
 670 FOR TSca le%=0 TO 12
 680 FOR LSca le%=0 TO 12
 690 READ Of fSetAr ray%(TSca le%,LSca le%)
 700 NEXT LSca le%
 710 NEXT TSca le%
 720
 730 DIM KeyAr ray$(12) ,MinKeyAr ray$(12)
 740 RESTORE 980
 750 FOR A=0 TO 12
 760 READ K$: IF A>7 K$=K$+CHR$227
 770 READ M$: IF A>10 M$=M$+CHR$227
 780 KeyAr ray$(A)=K$
 790 MinKeyAr ray$(A)=M$
 800 NEXT A
 810
 820 ENDPROC
 830
 840 DATA 0 ,3 , -1 ,2 , -2 ,1 , -3 , -3 ,1 , -2 ,2 , -1
,3
 850 DATA -3 ,0 ,3 , -1 ,2 , -2 ,1 ,1 , -2 ,2 , -1 ,3 ,
0
 860 DATA 1 , -3 ,0 ,3 , -1 ,2 , -2 , -2 ,2 , -1 ,3 ,0 ,
-3
214

CHAPTER 12 Harmony and Transposition

 870 DATA -2 ,1 , -3 ,0 ,3 , -1 ,2 ,2 , -1 ,3 ,0 , -3 ,
1
 880 DATA 2 , -2 ,1 , -3 ,0 ,3 , -1 , -1 ,3 ,0 , -3 ,1 ,
-2
 890 DATA -1 ,2 , -2 ,1 , -3 ,0 ,3 ,3 ,0 , -3 ,1 , -2 ,
2
 900 DATA 3 , -1 ,2 , -2 ,1 , -3 ,0 ,0 , -3 ,1 , -2 ,2 ,
-1
 910 DATA 3 , -1 ,2 , -2 ,1 , -3 ,0 ,0 , -3 ,1 , -2 ,2 ,
-1
 920 DATA -1 ,2 , -2 ,1 , -3 ,0 ,3 ,3 ,0 , -3 ,1 , -2 ,
2
 930 DATA 2 , -2 ,1 , -3 ,0 ,3 , -1 , -1 ,3 ,0 , -3 ,1 ,
-2
 940 DATA -2 ,1 , -3 ,0 ,3 , -1 ,2 ,2 , -1 ,3 ,0 , -3 ,
1
 950 DATA 1 , -3 ,0 ,3 , -1 ,2 , -2 , -2 ,2 , -1 ,3 ,0 ,
-3
 960 DATA -3 ,0 ,3 , -1 ,2 , -2 ,1 ,1 , -2 ,2 , -1 ,3 ,
0
 970
 980 DATA C,A,G,E,D,B,A,F# ,E,C#,B,G#,F#
,D#,F ,D,B,G,E,C,A,F ,D,B,G,E
 990
 1000 DEF PROCMenu:CLS:PROCdd(TR$,8 ,0)
 1010 PRINTTAB(3 ,3)CHR$131"Here a re your
 op t ions : "
 1020 PRINT 'CHR$129" 1 . . "CHR$130"Treb l
e C le f . " 'CHR$129" 2 . . "CHR$130"Bass C le
f . " 'CHR$129" 3 . . "CHR$130"End Program."
 1030 PRINT 'CHR$131" P lease en te r your
 cho ice ("CHR$129"1-3"CHR$131")?"CHR$129
;
 1040 PROCInput (48 ,52)
 1050 IF Key%=49 C l f%=1:NOSet=-36
 1060 IF Key%=50 C l f%=2:NOSet=-12
 1070 IF Key%=51 End=TRUE:ENDPROC
 1080
 1090 PROCGetSF("or ig ina l ") :OAc%=Key%-48
:Okey$=LEFT$(Ac$,1) : IF Okey$="F" OAc%=OA
c%+6

215

Making Music on the BBC Computer

 1100 PROCGetSF("new") :NAc%=Key%-48:Nkey
$=LEFT$(Ac$,1) : IF Nkey$="F" NAc%=NAc%+6
 1110
 1120 Of fSe t%=Of fSetAr ray%(OAc%,NAc%)*12
 1130
 1140 PRINT 'TAB(12)CHR$136CHR$131"THANK
YOU" :PROCD(200)
 1150 ENDPROC
 1160
 1170 REM Doub le He igh t Le t te rs
 1180 DEF PROCdd(P$,a%,b%) :FOR L%=0 TO 1
:PRINTTAB(a%,b%+L%)CHR$141;P$:NEXT:ENDPR
OC
 1190
 1200 DEF PROCInput (Min%,Max%) :REPEAT:Ke
y%=GET:UNTIL Key%>Min% AND Key%<Max%:PRI
NTCHR$Key%:ENDPROC
 1210
 1220 DEF PROCGetSF(Key$)
 1230 PRINT 'CHR$131" Has the "Key$" ke
y any sharps" 'CHR$131" o r f la ts ("CHR$
129"S, F o r N"CHR$131")?"CHR$129;
 1240 REPEAT:Ans=GET:UNTIL (Ans=83 OR An
s=70 OR Ans=78) :PRINTCHR$Ans: IF Ans=83 A
c$="Sharps" ELSE IF Ans=70 Ac$="F la ts " E
LSEAc$="N"
 1250 IF Ans=78 Key%=48:ENDPROC
 1260
 1270 PRINT 'CHR$131"How many " ;Ac$; " has
 i t? ("CHR$129"1-6"CHR$131")?"CHR$129; :P
OCInput (48 ,55)
 1280 ENDPROC
 1290
 1300 DEF PROCWindows
 1310 REM Set Graph ics Window
 1320 VDU24,0 ;256 ;1279;1023;
 1330
 1340 REM Background Ye l low
 1350 VDU19,129,131,0 ,0 ,0
 1360 GCOL0,129:CLG
 1370
216

CHAPTER 12 Harmony and Transposition

 1380 REM Foreground B lack
 1390 GCOL0,0
 1400
 1410 REM Set Tex t Window
 1420 VDU28,030,39 ,24
 1430 ENDPROC
 1440
 1450 DEF PROCDisp laySca les
 1460 PROCStave
 1470 H ino te%=904:Lonote%=712
 1480
 1490 Sca l=1
 1500 PROCSca le (H ino te%)
 1510 H ino te%=Hino te%-216-Of fSe t%:Lonote
%=Lonote%-216-Of fSe t%
 1520
 1530 Sca l=2 :NOSet=NOSet+48
 1540 PROCSca le (Lonote%-64)
 1550
 1560 *FX15,1
 1570 PRINT ' ' "Press " "RETURN"" to re tu rn
 to Menu. " ; :PROCInput (12 ,14)
 1580 ENDPROC
 1590
 1600 REM Draw Staves
 1610 DEF PROCStave
 1620 PROCS(TCle f) :PROCS(LCle f)
 1630 IF C l f%=1 PROCCle f (TC$,TCle f+62) :P
ROCCle f (TC$,LCle f+62) ELSE PROCCle f (BC$,
TCle f) :PROCCle f (BC$,LCle f)
 1640
 1650 PROCKeySig(Okey$,OAc%,TCle f+14)
 1660 PROCGetKey(OAc%,TCle f+160)
 1670 PROCKeySig(Nkey$,NAc%,LCle f+16)
 1680 PROCGetKey(NAc%,LCle f -256)
 1690
 1700 ENDPROC
 1710
 1720 REM Draw the L ines
 1730 REM Dis tance be tween a l ine and
 1740 REM space = 12

217

Making Music on the BBC Computer

 1750 DEF PROCS(L%) :FOR L ine%=L% TO L%-9
6 STEP-24:MOVE0,L ine%:DRAW1280,L ine%:NEX
T:ENDPROC
 1760
 1770 REM Pr in t C le f (s)
 1780 DEF PROCCle f (C$,Pos%) :VDU5:MOVE24,
Pos%:PRINTC$:VDU4:ENDPROC
 1790
 1800 DEF PROCD(De lay%) :DL=TIME:REPEATUN
TILTIME>DL+Delay%:ENDPROC
 1810
 1820 REM Pr in t Notes o f Sca le
 1830 DEF PROCSca le (Pos%)
 1840 X%=240
 1850 D i f%=48
 1860
 1870 FOR Y%=Lonote% TO Hino te% STEP12:X
%=X%+Di f%:PROCNote("S") :N%=((Y%+NOSet) /1
2)MOD7 +65:VDU5:MOVEX%,Pos%+32:PRINTCHR$
N%:VDU4:NEXT
 1880 ENDPROC
 1890
 1900 DEF PROCNote(n$) :VDU5
 1910 IF n$="S" n$=CHR$224
 1920 IF n$="C" n$=CHR$225
 1930 MOVEX%,Y%:PRINTn$
 1940
 1950 IF Y%>=TCle f+36 PROCLeg(TCle f+36,2
4)
 1960 IF Y%<=LCle f -108 PROCLeg(LCle f -108
, -24)
 1970 IF Sca l=1 : IF Y%<=TCle f -108 PROCLeg
(TCle f -108 , -24)
 1980 IF Sca l=2 : IF Y%>=LCle f -36 PROCLeg(
LCle f -36 ,24)
 1990
 2000 ENDPROC
 2010
 2020 DEF PROCLeg(H%,Step%) :FOR Le%=H% T
O Y% STEP Step%:MOVEX%,Le%-12:DRAWX%+28,
Le%-12:NEXT:ENDPROC
218

CHAPTER 12 Harmony and Transposition

 2030
 2040 DEF PROCKeySig(SF$,S ig%,Y%)
 2050 IF SF$="S" n$=S$:Y%=Y%-2:RESTORE 2
230 ELSE IF SF$="F" n$=F$:S ig%=Sig%-6 :Y%
=Y%-46:RESTORE 2240 ELSE ENDPROC
 2060
 2070 IF C l f%=2 Y%=Y%-24
 2080 X%=96
 2090 VDU5
 2100 FOR a%=1 TO S ig%
 2110 READ y%:MOVEX%,Y%+y%:PRINTn$
 2120 X%=X%+24
 2130 NEXT a%
 2140 VDU4
 2150 ENDPROC
 2160
 2170 DEF PROCGetKey(No,Pos)
 2180 Ma jKey$=KeyAr ray$(No)
 2190 MinKey$=MinKeyAr ray(No)+" Minor "
 2200 VDU5:MOVE32,Pos :PRINT"Key=" ;Ma jKey
$; " Re la t i ve Minor=" ;MinKey$:VDU4
 2210 ENDPROC
 2220
 2230 DATA 0 , -36 ,12 , -24 , -60 , -12
 2240 DATA 0 ,36 , -12 ,24 , -24 ,12
 2250
 2260 REM ERROR Rout ine
 2270 REPORT:PRINTERR;" a t l i ne " ;ERL

The program will ask if you want to use the treble or bass clef and then
will ask for information about the original and new keys. It will print two
staves, the clefs, the key signatures, the notes as they appear on the stave,
and the note names. The notes are offset so that you can read down from
the original key to find the note name and the position on the stave of the
note in the new key.

219

Making Music on the BBC Computer

From Program 12.3

Program notes
The program accepts single-key responses in upper case. Line 100 ensures
the CAPS LOCK is on.

PROCSetUp at line 250 sets the relative positions of the top clef and
the lower clef in line 270.

The next 350 lines create a set of user-definable characters for the clef
signs and the notes. Although the notes are printed as semibreves, fine 510
defines a crotchet should you wish to use it, and line 540 defines a natural
sign which you may find useful, although it is not used in the program.
Line 610 defines a sharp sign but 620 selects the hash (#) for use as a
sharp. Because of the small space between the two horizontal lines of the
sharp sign, you will find this gap almost filled when it sits on a line and the
hash seems to give better results even though it is heavier

OffsetArray% at line 650 holds the necessary information to offset the
notes of the new scale against the old ones. The offset values are read from
the DATA statements at line 840. The figures represent how many notes
up or down we need to move to get from the old key name to the new key
name. For example, cross-indexing D (two sharps) with F (one flat) will
result in +2, meaning that we must move up two notes from D. Try this on
Figure 2.4.

You will notice a pattern in the data which confirms some sort of
mathematical relationship between the keys, although it is not easy to see
exactly what the relationship is or to put it into a formula (there's a
challenge - but no prizes). Lines 850 to 900 are the same as 960 to 910
(reading backwards).

The array cross-indexes each possible key against every other. The 0

220

CHAPTER 12 Harmony and Transposition

subscripts represent no sharps or flats, ie the key of C. The subscripts l to 6
are the sharps and 7 to 12 are the flats.

The arrays, KeyArray$ and MinKey Array$, store the key names and
their relative minor keys respectively.

Line 160 takes us to PROCMenu at line 1000. This prints the
instructions then moves to PROCInput at line 1200. This runs through a
REPEAT loop until a key is pressed within the range set by the calling
parameters, in this case ASCII values greater than 48 and less than 52,
which are the keys I, 2 and 3. Once a valid input is received, Clf% is set to
indicate which clef is required, and NOSet is used to offset the notes
depending upon whether the required clef is treble or bass.

PROCGetSF is then called at line 1220 to find out if the keys have any
sharps or flats. It is called twice, once for the original key and once for the
new key. If you indicate that there are no sharps or flats by pressing 'N' the
procedure will exit at line 1250, otherwise Ac$ will have been filled with
'sharps' or 'flats' and will go on to ask how many there are.

Back at lines 1090 and 1100, OAc% and NAc% are set to register the
number of sharps or flats in the key and, if flats are involved, 6 is added.

This enables the correct offset to be found in OffsetArray% at line
1130. Remember, fiats are accessed in OffsetArray% with subscript values
of 7 to 12. The offset figure is multiplied by 12 so that it can be used
directly when printing the new scale. See the REMs at lines 1730 and
1740.

From there, it's back to line 190, mode 4 and PROCWindows at line
1300. This is self-explanatory and you can refer to the User Guide for
further information if necessary.

The last part of the main program is line 210 which calls
PROCDisplaySca1es at line 1450. Its first job is to call PROCStave at line
1610. This prints the staves, the clefs and the key signatures.

PROCS at line 1750 is called twice with the top and lower stave
positions which were allocated in line 260. This draws the five line staves.

PROCClef at fine 1780 draws the required clefs in their relevant
positions.

PROCKeySig at line 2040 is called by lines 1650 and 1670 to print the
key signatures. It uses information gained from Ac$ and passed to Okey$
and Nkey$ during PROCMenu to determine if the key contains sharps or
flats. If so, positional adjustments are made to Y%, the vertical axis, to
ensure that they are positioned correctly. The procedure is called with the
number of sharps or flats in OAc'% or NAc% and a loop with this value is
used to print the correct number. As sharps and flats are not placed on the
stave in the same positions, the necessary offsets are held in DATA
statements in lines 2230 and 2240 and RESTOREd according to the key
being printed.

As we have not yet told the computer what keys are involved, other
than by the number of sharps or flats in the key signature, this information
is obtained from PROCGetKey at line 2170, which prints it on the screen
beside the relevant scale.

221

Making Music on the BBC Computer

Having drawn the staves, it's back to PROCDisplayScales to draw the
notes. PROCSca1e does this at fine 1830. It is called with a value which
tells it where to print the note names. Hinote% and Lonote% are set at line
1470 and these values are used as top and bottom limits on the notes being
printed.

X% at line 1840 is the initial print position measured across the
horizontal axis and Dif% is the difference between the notes.

PROCNote at fine 1900 is called with an 'S' for semibreve or a 'C' for
crotchet, to determine which note to print. It is set to print semibreves but
you can alter it. Having printed the note, fines 1950 to 1980 check to see if
leger fines are required, and call PROCLeg at line 2020 if they are. There
are four areas where leger lines will occur: above the top stave, below the
top stave, above the lower stave and below the lower stave. Each is
checked individually. The variable, Seal, is set at lines 1490 and 1530 and
used in lines 1970 and 1980 to indicate if it is the top or lower scale being
drawn.

PROCLeg is called with a position across the horizontal axis and a step
value. This will be negative if the notes are below the stave. The lines are
drawn and control passes back to PROCNote and back to PROCScale - the
middle of fine 1870 to be exact - where N% is calculated.

N% is the ASCII code of the note name just printed and is calculated
from the note offset variable, NOSet, given in line 1050 or 1060, and Y%,
which is its vertical position on the stave.

Back to PROCDisplayScales and line 1510. Having printed the original
scale, Offset% is used to adjust the values of Hinote% and Lonote%.
NOSet is adjusted for the lower stave and the scale drawing procedure is
repeated.

Line 1560 flushes the buffer so we don't accidentally fly back to the
menu until we want to.

Using the program
The transpositions produced by the program are made in the direction
which involves the least movement, eg if you enter F (one flat) as the
original key and D (two sharps) as the new key the program will transpose
down a third not up a sixth. If you are transposing for a singer or taking a
song up a tone or semitone for a melodic keychange, this will be the most
useful arrangement.

If you want or need to transpose in the opposite direction to the
program, the variables held in OffSetArray% will have to be altered. This
is easily done by removing '*12' from the end of line 1120 and adding
another line:

1120 Offset%= OffSetArray%(OAc%,NAc%)
1125 OffSet%=(OffSet%-7*SGN(OffSet%))*12

222

CHAPTER 12 Harmony and Transposition

This reverses the effect of OffSet% so -3 becomes -4, -2 becomes +5, etc.
If you try this with a transposition which moves the scale too low, eg from
A to Bb, you will overwrite the note names on the screen and will have to
make adjustments to PROCNote to avoid it. This will only happen in
extreme cases.

Because the offset is calculated from key names (ie letters), keys with
the same letter in their name will not move, eg F and F# ,B and Bb, etc
Effectively, in such instances all we need do is to replace the key signature
(and alter accidentals) as the notes remain where they are on the stave. A
transposition from A to Bb, however, although a similar transposition (ie
up a semitone), will move because the note names do change.

If, for some reason, you wish to transpose between these non-moving
keys in the opposite direction, eg from F downwards to F# or B upwards to
Bb etc, you are really only moving the notes up or down an octave. This
can be done by setting Offset% to plus or minus 7. If you seriously require
such an exotic transposition, you are probably capable of doing it without
the aid of a computer but, in any case, I will leave you to add the necessary
modifications.

It would be easy to add another menu option to give you the choice of
transposing up or down.

Accidentals
If the original key has no accidentals, the program will indicate the new
notes exactly. Accidentals sometimes cause concern for the beginner. A set
of rules to cover every eventuality would serve only to confuse, but I will
see if I can pass on a hint or two to make it easier.

Normal sharps and flats are accounted for by the key signature, eg in
the key of A with three sharps, a C note would be written just as it would
in the key of C (or any other key): the fact that we play a C announced by
the sharp sign in the key signature.

Sometimes you may see a note which has been sharpened or flattened
by the key signature, with a sharp or flat in front of it for no apparent
reason. This is sometimes done if the previous bar altered the note, or if a
note of the same name but in a different octave in that bar has an accidental
before it. Theoretically, such a sharp or flat is not necessary because, from
our discussions in Chapter 2, we know that an accidental only applies to
the bar in which it occurs and to the note on the line or space on which it
occurs. Such sharps or flats are meant simply as reminders and are usually
(but not always) enclosed in brackets to show this.

The best advice anyone can give to a relative newcomer to
transposition is this - if in doubt, count as described earlier, using Figure
2.4 to pick out the notes.

Problems can arise because, if we sharpen or flatten some notes, we
may get results like E# or Fb. For example, in transposing from C to A a

223

Making Music on the BBC Computer

G# would appear as an E#. While not technically wrong, it would
generally be written as an F natural.

If the note in question was Ab (enharmonically equivalent to G#) it
would transpose as F# flat, which is a bit of a contradiction to say the least.
You may be able to work out, however, that if we flatten a sharpened note
it becomes a natural.

I find that the easiest way to approach accidentals is to see what the
accidental is doing to the note. We already know what sharps and flats do.
A natural will raise a note if the key contains flats or if the note has
previously been flattened, and lower it if the key contains sharps or the
note has previously been sharpened. Once we know if the accidental is
raising or lowering the note we can do the same thing to our new note. In
the last example we know the flat was lowering the note so lowering F $�
will result in F natural. Keep in mind the key signature and apply the
accidental operation to the true note rather than just the note name.

Like everything else, a little practice helps a lot.

Transposing chords
Chord names are easily converted because the chord type stays the same. If
you run the program and input the two keys all you need to do is check the
note names against each other. For example, in transposing from F# to Db,
an chord prefixed with a G# becomes an Eb, C# becomes an Ab, etc. In
these cases, you need to look at the key signature to see if the note referred
to is a sharp, a natural or a flat. Then look at the lower stave and check the
note against the key signature there.

As with accidentals, sometimes a little musical commonsense needs to
be applied but in the case of chords we can lay down some rules. You will
never see an E#, a B# , an F$ or an A$ chord. (A# is a legitimate note
name and we use A# purely for the convenience of the programs. Any
chord with this note as its root would be called Bb. You might see a Cb
chord, which is the same as a B chord, but this only usually occurs if the
key signature contains a lot of flats. Generally, if you have a choice
between two chord names, one a sharp and one a flat, use whichever
appears in the key signature.

The chord examples listed in Figure 2.11 are all in the key of C. If you
are not too familiar with chord construction, you can use the program to
help convert them to other keys.

Modifying the program
You may prefer to input the keys directly rather than as a number of sharps
or flats. The program was designed to require input of a minimum of
information. Reference to Figure 2.5 should clear up any confusion about

224

CHAPTER 12 Harmony and Transposition

key signatures.
Continually referring to the screen during a transposition can be a little

inconvenient and, until you gain some experience, you will find that you
have to check the display constantly. You may find it more useful to have a
hard copy of the display and, if you have a dot matrix printer, you could
add a screen dump routine.

You could add an option to change the display from treble to bass clef
and vice versa, without having to go back through the menu to repeat the
same input information.

If you are doing transpositions for a singer, it will do no harm to
remind them that musicians have to play the arrangements: avoid awkward
keys if possible. That means keys with a lot of sharps or flats.

As a general rule, most keyboard players prefer flats and most
guitarists prefer sharps - but that should not be your overriding concern.
Although good musicians should be able to play in any key, good
musicians may not always be available so it is often in the singer's best
interests to keep it simple.

225

Making Music on the BBC Computer

226

CHAPTER 13
The All-singing, All-dancing BBC
Micro

The ideas and programs presented in this book have been developed using
the BASIC language. Some musical applications are really only accessible
through machine code and many of the programs could be developed
beyond the bounds of BASIC by making use of the BBC micro's built-in
assembler. It is hoped that, whatever your present level of computing
ability, you will continue to experiment with the programs.

One such application which is best written in machine code is the
production of music as a continuous background to whatever else the
computer may be doing. The problem lies not in carrying out the normal
sound and envelope functions but in supplying the sound chip with new
note information. The system of interrupts described briefly in Appendix 1
will ensure that whatever information is stored in the sound queues will be
carried out. The relative slowness of BASIC, however, sometimes leaves
the sound generator waiting for a new note which causes a gap in the
music production. You will notice such hiccups if you try to play a piece
of music too fast, in some of the compositional programs for example. If
we work at the same level as the interrupts it is easier to maintain control
over information and pass on new note data.

Not to be outdone, however, we will see what we can do with BASIC.

Background music from BASIC
Background music is most evident in arcade-style games, which are
usually written in machine code. With BASIC we can still achieve a
certain degree of success in this area if we bear in mind two things which
will set the limits on our music and our BASIC program. The optimum
arrangement is for fairly long notes and fairly frequent access times
between SOUND command updates. The balance between these will
determine our success.

The overall limiting factor will depend upon the purpose of the BASIC
program. If it is in the nature of an arcade game then the time taken by
BASIC to update the SOUND command may slow down the game too

227

Making Music on the BBC Computer

much. In such cases, rather man pray something fast and furious you could
try interweaving notes on the channels by laying one sound over another to
create a texture as opposed to a tune.

If the program does not require constant use of all the computer's
facilities, the solution should be easier. You could program the computer
to play a tune while waiting for an input to a utility program, etc. In such a
case, the computer would have nothing else to do and you would not be
stealing time from another operation.

If you use the negative ADVAL method to feed SOUND commands
(which should at least ensure that your main program never grinds to a
halt) you must also ensure that the channels never run dry for lack of note
information: otherwise they may run out of time or out of sync. This may
not be so important if you use only one channel, and this would be easier
to control, too.

We have already used the principles just described, albeit in a very
small way, when we printed out the notes the computer was playing in the
programs in Chapters 10 and 11.

The ideas should be familiar to you now and, rather than illustrate the
principle with another similar program, we will take a look at a slightly
different aspect of the same thing involving sound and animation
synchronization.

Cartoons
Cartoons are the ultimate in sound and visual synchronization. Every
single action is accompanied by an over-exaggerated sound effect or
snippet of music.

Sophisticated computers are already being used in cartoon studios to
help draw the pictures. They are used to draw a sequence of character
movements, eg walking or running. An artist will draw the first and last
frames and the computer will fill in the others. This process is known as
'inbetweening' because it fills the gaps in between two pictures.

The calculation of the shape as one picture turns into the other is
ideally suited to a computer and such programs can be duplicated on the
BBC micro, although we will not be able to achieve the precision, speed or
quality of a dedicated computer. It is quite possible for a program to
illustrate a building crumbling to the ground or a man's outline dissolving
into a heap or to show a square turning into a triangle.

Fascinating though this subject is, we are now encroaching upon
computer graphics, which is not within our domain. We will still dabble a
little in their territory, however, as we explore the next topic.

Sound and animation synchronization
If we have an animated display of a man jumping around the screen on a
pogo stick it is quite easy to make the computer produce a 'boing'

228

CHAPTER 13 The All-singing, All-dancing BBC Micro

whenever the pogo stick hits the ground. In the same way, it is easy to
produce a bang when a gun is fired or a zap when a laser beam is fired. In
these cases, the sounds are being synchronized to the animation. There are
no problems because the animation is controlled from BASIC and does not
run ahead as a series of SOUND commands will do,

If we try the opposite approach and attempt to synchronize a display
(or anything else controlled directly from BASIC) with a series of SOUND
commands, say a piece of music, then the music will tend to run ahead of
the display. This is a result of the queues used by the sound generator.

However, operating solely from within BASIC, with a little care we
can still achieve a fair degree of sound and animation synchronization. The
principle behind this operation is to keep the sound queue as empty as
possible so that each new command will be executed as soon as it is sent.
In this way, as we send a SOUND command we can order a movement, so
keeping the two close together. There are a few potential problems we
need to be aware of which we will discuss later.

The following program illustrates how this can be done and is for
insertion into Program 9.5. The additional fines are not very long and
provide a good, if simple, demonstration of what is possible.

 1 REM PROGRAM 14.1
 2 REM An imated /Synchron ised Dancer
 3 REM Inser t in PROGRAM 9.5 /9 .2
 4
 195 MODE 5
 197 PROCFigures
 198 VDU23,1 ,0 ;0 ;0 ;0 ;
 634 x%=0:y%=10:m%=0:d%=0
 640
 650 Ch1=0:Ch2=0:Ch3=0
 680 IF ADVAL(-6)>14 AND Ch1<C1 Ch1=Ch1
+1:SOUNDChan1(1 ,Ch1)+1 ,Chan1(2 ,Ch1) ,Chan
1(3 ,Ch1) ,Chan1(4 ,Ch1)*Tempo: IF Ch1<82 OR
 Ch1>97 PROCCar toon
 690 IF ADVAL(-7)>14 AND Ch2<C2 Ch2=Ch2
+1:SOUNDChan2(1 ,Ch2)+2 ,Chan2(2 ,Ch2) ,Chan
2(3 ,Ch2) ,Chan2(4 ,Ch2)*Tempo: IF Ch2>69 AN
D Ch2<92 PROCCar toon
 725 VDU23,1 ,1 ,0 ;0 ;0 ;
 2000 DEF PROCFigures
 2010 VDU23,224,124,254,68 ,130,130,68 ,40
,100
 2020 VDU23,225,16 ,56 ,40 ,16 ,56 ,84 ,146,56

229

Making Music on the BBC Computer

 2030 VDU23,227,40 ,40 ,40 ,40 ,40 ,0 ,0 ,0
 2040 VDU23,228,146,16 ,56 ,124,254,40 ,40 ,
40
 2050 VDU23,229,0 ,16 ,56 ,40 ,16 ,56 ,84 ,146
 2060 M1$=" "+CHR$8+CHR$8+CHR$8+CHR$10
+" "+CHR$225+" "+CHR$8+CHR$8+CHR$8+CHR$1
0+" "+CHR$224+" "
 2070 M2$=" "+CHR$229+CHR$8+CHR$8+CHR$10
+" "+CHR$228+" "+CHR$8+CHR$8+CHR$8+CHR$1
0+" "+CHR$227+" "
 2080
 2090 COLOUR 2
 2100 ENDPROC
 2110
 2120
 2130 DEF PROCCar toon
 2140 m%=m% EOR 1
 2150 IF m%=1 PRINTTAB(x%,y%)M2$ ELSE PR
INTTAB(x%,y%)M1$
 2160 IF x%>17 d%=1
 2170 IF x%<2 d%=0
 2180 IF d%=0 x%=x%+1 ELSE x%=x%-1
 2190 ENDPROC

Program notes
It is important that the animation be performed as quickly as possible,
hence the use of short integer variables. In this short example, however,
they are not essential.

PROCFigures at line 2000 designs two sets of figures which are stored
in Ml$ and M2$. The putting together of figures containing more than one
user-definable character is covered in the User Guide, Chapter 29.

PROCCartoon at line 2130 moves the figures around. The variables,
x% and y%, are set at fine 634 and control the horizontal and vertical
positions of the figure. m% is used to switch from Ml$ to M2$ using the
EOR function at fine 2140. This has the same effect as writing:

IF m%=0 THEN m%=1 ELSE m%=0

EOR is one of a number of logical operators and is described in the User
Guide on page 250.

d% is used to determine if the figure is to move left or right across the

230

CHAPTER 13 The All-singing, All-dancing BBC Micro

screen and is set by the value of x%, in lines 2160 and 2170. Line 2180
adjusts the horizontal position.

PROCCartoon is called from fines 680 and 690. These are similar to
the original lines in Programs 9.5 and 9.2 but, instead of keeping the
queues full, new notes are only sent when required - as near as we can
gauge with BASIC. This done by checking the state of the buffers with the
negative ADVAL function. You will notice that, as we have not altered
fine 700, channel 3 will still be topped up whenever there is space in its
buffer, but the three remain in sync. In other pieces of music it may be
necessary to adjust the sync parameters or the conditional statements
which allow other notes to be sent.

Conditional statements have been added at the end of fines 680 and 690
which call PROCCartoon when a new note is sent to the SOUND
command. Chl and Ch2 are used to take control of the figure at different
points in the music.

The result is interesting, quite amusing and capable of much further
development. The next program goes a step further and produces a more
sophisticated presentation which is built around an animated character.

Hercules
The principles behind the following program are the same as those behind
the previous one. It uses the routines in Program 9.2 and is for insertion
into that program. It introduces another piece of music - Bizet's March of
the Toreadors - and a more complex set of animated characters.

 10 REM PROGRAM 14.2
 20 REM "Hercu les"
 30 REM Sound and An imat ion in Sync
 40 REM Inser t in PROGRAM 9.2
 50
 90 C1=53:C2=47:C3=35
 250 ENVELOPE1,1 ,0 ,0 ,0 ,0 ,0 ,0 ,126 , -4 , -1 ,
-6 ,126 ,100
 260 ENVELOPE2,2 ,0 ,0 ,1 ,4 ,0 ,1 ,126 , -3 ,0 , -
6 ,126 ,100
 270 ENVELOPE3,3 ,0 ,8 , -8 ,0 ,1 ,1 ,110 ,0 ,0 , -
10 ,110 ,110
 272 ENVELOPE4,4 ,0 ,0 ,1 ,1 ,0 ,1 ,126 , -8 , -8 ,
-16 ,126 ,100
 274 ENVELOPE5,3 ,0 ,0 ,1 ,1 ,0 ,1 ,63 , -8 , -8 , -
16 ,126 ,100
 276 ENVELOPE6,6 ,0 ,0 ,0 ,0 ,0 ,0 ,126 ,0 ,0 , -1

231

Making Music on the BBC Computer

,126 ,126
 278 ENVELOPE7,1 ,0 ,0 ,0 ,0 ,0 ,0 ,126 , -10 , -1
0 , -10 ,126 ,0
 330 IF Note$="R" Env=0 ELSE IF (N=35 O
R N=42) Env=3 ELSE IF N<19 Env=1 ELSE En
v=2
 450 IF Note$="R" Env=0 ELSE Env=4
 570 IF Note$="R" Env=0 ELSE Env=5
 651 PROCMan
 652 MODE 5
 653 VDU23,1 ,0 ;0 ;0 ;0 ;
 654 m%=0:x%=8:y%=12
 655 COLOUR1
 656 PRINT ' "Lad ies and Gent lemen"
 657 PRINTTAB(5) "Present ing"
 658 PRINT ' 'TAB(6) "HERCULES"
 659 SOUND0,6 ,4 ,40 :SOUND1,0 ,0 ,180
 660 SOUND&1000,0 ,0 ,80 :FOR S=1 TO 4 :SOU
ND0,7 ,4 ,4 :NEXT S
 661 COLOUR 2
 662
 670 REPEAT
 680 IF ADVAL(-6)>14 AND Ch1<C1 Ch1=Ch1
+1:PROCCar toon :SOUNDChan1(1 ,Ch1)+1 ,Chan1
(2 ,Ch1) ,Chan1(3 ,Ch1) ,Chan1(4 ,Ch1)*Tempo
 690 IF ADVAL(-7)>14 AND Ch2<C2 Ch2=Ch2
+1:SOUNDChan2(1 ,Ch2)+2 ,Chan2(2 ,Ch2) ,Chan
2(3 ,Ch2) ,Chan2(4 ,Ch2)*Tempo
 700 IF ADVAL(-8)>14 AND Ch3<C3 Ch3=Ch3
+1:SOUNDChan3(1 ,Ch3)+3 ,Chan3(2 ,Ch3) ,Chan
3(3 ,Ch3) ,Chan3(4 ,Ch3)*Tempo
 710 UNTIL Ch1=C1 AND Ch2=C2 AND Ch3=C3
 721 COLOUR1
 722 PRINTTAB(10,y%+5)"Thank You"
 723 PRINT 'TAB(6) " . . .S igned HERC"
 724 VDU23,1 ,1 ;0 ;0 ;0 ;
 725 SOUND0,6 ,4 ,40
 880 REM Channe l 1
 890 DATA &200,D3,8 ,E3,6 ,D3,2 ,B2,8 ,B2,8
 900 DATA &200,B2,6 ,A2,2 ,B2,6 ,C3,2 ,B2,1
6
232

CHAPTER 13 The All-singing, All-dancing BBC Micro

 910 DATA &200,C3,8 ,A2,6 ,D3,2 ,B2,16
 920 DATA &200,G2,8 ,E2,6 ,A2,2 ,D2,16
 930 DATA &200,A2,20 ,E3,4 ,D3,4 ,C3,4
 940 DATA &200,B2,4 ,A2,4 ,B2,4 ,C3,4 ,B2,1
6
 950 DATA &200,F#2,8 ,B2,8 ,B2,8 ,A#2,6 ,C#
3,2
 960 DATA &200,F#3,32
 970 DATA &200,R,4 ,E3,4 ,D#3,4 ,E3,4 ,A2,4
,B2,4 ,C3,8
 980 DATA &200,R,4 ,B2,4 ,G2,4 ,E3,4 ,D3,16
 990 DATA &200,R,4 ,G2,4 ,D2,4 ,C3,4 ,B2,8 ,
A2,8
 1000 DATA &200,G2,16 ,R,16
 1010 REM Channe l 2
 1020 DATA &200,G1,8 ,D1,8 ,G1,8 ,D1,8
 1030 DATA &200,G1,8 ,D1,8 ,G1,8 ,D1,8
 1040 DATA &200,A1,8 ,F#1,8 ,G1,8 ,F#1,8
 1050 DATA &200,E1,8 ,C#1,8 ,D1,8 ,F#1,8
 1060 DATA &200,A1,8 ,C2,8 ,A1,8 ,C2,8
 1070 DATA &200,G1,8 ,B1,8 ,E1,8 ,B1,8
 1080 DATA &200,F#1,8 ,B1,8 ,F#1,8 ,A#1,8
 1090 DATA &200,B1,8 ,F#1,8 ,D#1,8 ,B0,8
 1100 DATA &200,C1,8 ,A1,8 ,E1,8 ,A1,8
 1110 DATA &200,D1,8 ,G1,8 ,R,4 ,B1,4 ,G1,4 ,
E2,4
 1120 DATA &200,D2,8 ,R,16 ,F#1,8
 1130 DATA &200,G1,16 ,R,16
 1140 REM Channe l 3
 1150 DATA &200,B1,8 ,R,8 ,B1,8 ,R,8
 1160 DATA &200,B1,8 ,R,8 ,B1,8 ,R,8
 1170 DATA &200,R,32
 1180 DATA &200,R,32
 1190 DATA &200,R,8 ,E2,8 ,R,8 ,E2,8
 1200 DATA &200,R,8 ,E2,8 ,R,8 ,E2,8
 1210 DATA &200,D2,8 ,R,8 ,C#2,8 ,R,8
 1220 DATA &200,D#2,8 ,R,24
 1230 DATA &200,R,8 ,C2,8 ,R,8 ,C2,8
 1240 DATA &200,R,8 ,B1,8 ,R,16
 1250 DATA &200,R,24 ,D1,8
 1260 DATA &200,B1,16 ,R,16

233

Making Music on the BBC Computer

 1270
 1280 DEF PROCMan
 1290 VDU23,234,128,128,128,128,128,128,
128,255
 1300 VDU23,235,0 ,6 ,8 ,16 ,32 ,76 ,158,255
 1310 VDU23,236,24 ,60 ,90 ,255,90 ,36 ,24 ,25
5
 1320 VDU23,237,7 ,1 ,1 ,1 ,1 ,1 ,1 ,255
 1330 VDU23,238,0 ,96 ,16 ,8 ,4 ,50 ,121,255
 1340 VDU23,241,255,126,60 ,24 ,24 ,24 ,24 ,1
26
 1350 VDU23,242,24 ,24 ,24 ,24 ,24 ,24 ,24 ,126
 1360 VDU23,246,126,36 ,38 ,38 ,100,100,36 ,
231
 1370 VDU23,247,126,36 ,100,100,38 ,38 ,36 ,
231
 1380 Man1$=CHR$234+CHR$236+CHR$237+CHR$
8+CHR$8+CHR$10+CHR$241+CHR$8+CHR$10+CHR$
246
 1390 Man2$=CHR$234+CHR$236+CHR$238+CHR$
8+CHR$8+CHR$10+CHR$241+CHR$8+CHR$10+CHR$
247
 1400 Man3$=CHR$234+CHR$236+CHR$238+CHR$
8+CHR$8+CHR$10+CHR$242+CHR$8+CHR$10+CHR$
247
 1410 Man4$=CHR$234+CHR$236+CHR$237+CHR$
8+CHR$8+CHR$10+CHR$241+CHR$8+CHR$10+CHR$
247
 1420 Man5$=CHR$234+CHR$236+CHR$237+CHR$
8+CHR$8+CHR$10+CHR$242+CHR$8+CHR$10+CHR$
246
 1430 ENDPROC
 1440
 1450 DEF PROCCar toon
 1460 m%=m% EOR 1
 1470 PRINTTAB(x%,y%) ;
 1480 IF Ch1=1 PRINTMan4$:ENDPROC
 1490 IF Ch1=C1 Wai t= INKEY(60) :PRINTMan4
$:ENDPROC
 1500 IF Ch1<19 AND m%=0 PRINTMan1$:ENDP
ROC ELSE IF Ch1<19 AND m%=1 PRINTMan2$:E
234

CHAPTER 13 The All-singing, All-dancing BBC Micro

NDPROC
 1510 IF Ch1<35 AND m%=0 PRINTMan4$:ENDP
ROC ELSE IF Ch1<35 AND m%=1 PRINTMan5$:E
NDPROC
 1520 IF m%=0 PRINTMan1$ ELSE IF m%=1 PR
INTMan3$
 1530 ENDPROC

Program notes
The salient points of the program were covered during examination of
Programs 9.2 and 14.1, but we will have a closer look at some of its more
important routines.

PROCMan at line 1280 constructs nine user-definable characters which
are put together to form five different figures.

After the tune has been assembled into its arrays, fine 659 produces a
round of applause. The second statement on this line ties up channel 1 until
the applause is over to prevent the program running straight into the tune.
It is interesting to realise that as the applause is sounding, channels 2 and 3
will already be waiting for channel I to empty so they can all synchronize
and play.

The first statement in fine 660 incorporates a Hold parameter to let the
applause die away slowly. The following statements produce the sound of
the orchestra conductor rapping his baton on the podium four times.

The animation orders are taken only from' channel 1 and PROCCartoon
does all the calculations regarding which figure to print. We will look at it
in more detail.

PROCCartoon basically switches between two figures and the switches
are activated by line 1460 as they were in Program 14.1. The switching
occurs between three sets of two figures, and the remaining fines of the
procedure are used to determine which set of figures to use.

Line 1470 sets the print position for the figures. Lines 1480 and 1490
print a stationary figure at the very start and end of the program.

As the program moves through the procedure, line 1500 picks up the
first few bars and prints Man1$ and Man2$. When Ch1 reaches 19, line
1510 takes over and prints Man4$ and Man5$. When Ch1 reaches 35,
control passes through to line 1520 which prints Man1$ and Man3$.

And so, at line 1490, when Ch1 is equal to C1, the last figure is printed
and control reaches line 725 which ends the program with another
tumultuous round of applause.

Further experiments in animation
Although we must be careful not to over-extend the capacity of BASIC to
(apparently) control more than one sequence of events at a time, these
programs have by no means overtaxed its abilities. BBC BASIC is very

235

Making Music on the BBC Computer

fast and you could expand these ideas into more complex and complicated
graphic routines - bearing in mind the restrictions of the system.

It should be possible, for example, to print more than one Hercules on
the screen during PROCCartoon. Alternatively, you could design a larger
figure or a multi-coloured figure made up from different coloured user-
definable characters superimposed on each other. The latter is only
possible in a graphics mode and would require some modifications to the
printing procedure, but the overall effect would be suitably impressive.

Computer art
Other than direct animation, you could generate a pattern triggered at
suitable points by the music. This could include starbursts, radiating lines,
colour changes (use VDU 19), the printing of various geometrical shapes
or pre-defined characters. If a programmed piece of music was playing - as
opposed to a computer-generated piece - to avoid repetition the graphic
designs could be selected at random. If we were running a composition
program, the combination of computer music and computer-generated art
would prove a very interesting spectacle. To begin with, you could add a
screen display to many of the programs in this book.

Tomorrow's BBC micro
As you know, the BBC micro was designed to be capable of expansion.
Aiready the use of disk drives, plug-in EPROMs and the interface
capabilities of the user port and 1MHz bus give us a potentially very
powerful machine. When the Tube£ and second processor are in common
use, its power will increase enormously.

Not only from a computing but from a musical point of view,
technology can make so many more things possible. If manufacturers take
advantage of the BBC micro's expansion facilities, we can expect to see
plug-in piano type keyboards and add-on synthesizer voice modules.
Sound sampling devices will be able to listen to a sound and let the user
play it back at any pitch - a facility at present only available on
synthesisers costing several thousands of pounds.

The ever-increasing speed and versatility of the microcomputer will
secure it a place in all areas of music from sound generation and
production to recording and playback. Many recording studios already rely
upon computers and the trend is likely to continue. There is no reason why
one day a BBC micro should not be performing similar functions.

In this world of rapidly developing technology, after tomorrow - who
knows?

236

APPENDIX 1
The Hardware and the Software

The sound chip in the BBC micro is the Texas SN76489, which is similar
in specification and performance to those in many other micros. This might
lead one to expect similar abilities, but the BBC micro's sound system is
more powerful than other micros by virtue of the software it uses to drive
the chip.

The OS (Operating System) is a machine code program roughly 16K in
size which is resident in ROM inside the computer. Its overall purpose is to
aid the running of high level languages such as BASIC and to provide a
kind of buffer between the user and the rather unfriendly world of the CPU
(Central Processing Unit). It looks after a host of jobs and, among other
things, it provides software to handle the sound generator. It makes
extensive use of interrupts to improve the general performance of the
machine and also, of special interest to us, the sound chip.

Normally, a computer can only perform one action at a time. It could
not, for example, calculate 2+2 at the same time as it was calculating 3+3.
If these problems were programmed into a computer, the answers would
appear instantaneously, but the computer would have worked its way
through the program, one item of information at a time. So, theoretically, it
could not make an explosive sound at the same time as it showered pieces
of bomb around the screen. In practice, we know it can do exactly that and
the reason lies in the OS. By using interrupts and a system of queues, the
BBC micro can execute a sound command and apparently do something
else at the same time.

Interrupts
It is not necessary to know exactly what's happening to make use of the
system, but you may find the information useful at a later date during
development of one of your programs.

An interrupt is a means of switching the attention of the CPU from one
task to another and back again. For example, the pseudo-variable, TIME, is
updated every 1/100th of a second by an interrupt from the VIA (Versatile
Interface Adaptor). Whatever task the computer is about, it stops to
increment the value of TIME and then continues from where it left off.

237

Making Music on the BBC Computer

Pressing a key on the keyboard causes an interrupt to be sent to a
keyboard service routine in the OS. This happens even when a program is
running. The routine stores the ASCII value of the key in the keyboard
buffer and then goes back to whatever task was in hand before it was
interrupted.

Run the following and press some keys while it is running:

10 FOR X=1 TO 10000
20 NEXT X

When the delay loop has finished, you will see the characters you typed
appear on the screen. Now type and run this:

10 SOUND1,-15,53,254

If you press some keys while this is sounding, they will immediately
appear on the screen. This is because the sound chip is controlled by
interrupts. Whenever the computer meets a SOUND command an interrupt
directs the system to produce the required sound and immediately reverts
back to its previous task. In this case it had nothing to do other than revert
to command mode and you will notice the cursor prompt appear on the
screen as soon as you hit RETURN.

The sound chip itself has no means of controlling the duration of a note
and it will continue to sound until a software command turns it off. The
computer uses the timer interrupt to check on the duration of a note. If the
tone has sounded for its allotted span, it is switched off.

The ENVELOPE command relies on interrupts, too. The first
parameter in the ENVELOPE command, after the envelope number, is a
'step' value. The other parameters are described as a number of changes in
pitch or amplitude during each step. The step value is specified in
multiples of 1/100ths of a second, which ties in very nicely with the timer
interrupt. When the TIME variable is incremented, the computer checks to
see if any of the envelope parameters need adjusting: if they do, the sound
chip is updated with the new values.

Normally, we will not deal directly with the BBC micro's system of
interrupts - this is more the domain of the assembly language programmer
and needs to be handled with care - but the beauty of the BBC micro's
sound system is that we have access to all the necessary functions through
the BASIC language. In fact, all sounds and effects are created with only
two commands - SOUND and ENVELOPE.

238

APPENDIX 2
Entering, Protecting and Working
with the Programs

The most annoying thing that can happen to a programmer is to lose a
program he or she has spent hours typing in. This happens to every
programmer at least once in their life. It should happen only once, because
you vow never to let it happen again. It can happen for a variety of
reasons:

1) You simply switch off and forget to save the program.
2) You save the program, but only once and the copy won't load

again.
3) Someone, possibly yourself, trips over a wire and unplugs the

equipment.
4) You run a program before saving it and it crashes.

Most of these problems are easily avoided with a little thought. If we were
only as logical and methodical as the computer! If it hasn't happened to
you yet, let's hope it never does. The following suggestions may help:

1) See that all wires are safely out of the way and cannot be caught by
moving hands or feet.

2) Make it a rulealways to save a program twice before running it. If you
are fortunate enough to have a disk drive, this is no problem, but I know
how laborious this can be with a cassette recorder. 99 times out of 100 you
will probably have no problem - the BBC micro is quite tolerant of the
idiosyncrasies of most recorders - but the 100th time after you've had 99
successful saves could just be the time something goes wrong.

Using a cassette recorder
When using cassettes, I find that the best thing I can do to ensure trouble-
free loading and saving is to clean the recording and play-back heads
regularly. Cassettes, cheap ones especially, shed their coating on to the
heads, which impairs the signal and makes secure saving a problem.

239

Making Music on the BBC Computer

I would advise against using a cassette tape with built-in cleaner, as
these sweep the rubbish from the heads into themselves and sometimes
have a tendency to sweep it out again. Far better is a head cleaning fluid,
available from most chemists and hi-fi stores, which can be applied with
cotton buds.

Verify command
The BBC micro does not have a VERIFY command to allow you to check
that what you have on tape is the same as what you have in the computer.
The *CAT command is not quite the same and programs which have *
CATed have, sometimes, refused to load. A better method is to use the
following:

*LOAD "program"8000

where 'program' is the file name. With cassettes the name can be omitted
altogether.

This attempts to load the program into the ROM area (see the memory
map on page 500 of the User Guide) which, of course, it cannot do: it runs
through the normal loading procedures and will report any loading errors
more efficiently than the *CAT command. It will not interfere with the
program already in memory so, if any errors are reported, you can SAVE it
again. It does not check the program byte for byte with the program in
memory, but it is the closest to a VERIFY command we have, without
writing a special routine, and it is very reliable.

Entering programs
The programs have been fisted directly from the computer at a print width
of 40 characters per line - the number of characters per line on a mode 7
screen. This will help when checking your programs against the listings.

You will probably be aware of the programmable function keys,
described in the User Guide in Chapter 25. Here is a short program to
initialise the keys before starting work on a program. Some of the routines
are only applicable to cassettes, but most users who have worked up to
disk drives will have discovered their own favourites.

 10 REM PROGRAM X2.1
 20 REM Func t ion Key SetUp
 30
 40 *KEY0RUN|M
 50
 60 REM CAT
 70 *KEY1* . |M
 80
 90 *KEY2LOAD"" |M
240

APPENDIX 2 Entering, Protecting and Working with the Programs

 100
 110 *KEY3AUTO
 120
 130 REM MODE7, Pag ing Mode On, L is t
 140 *KEY4MO.7 |MV.14 |ML. |M
 150
 160 REM Page Mode Of f
 170 *KEY5V.5 |M
 180
 190 REM VERIFY
 200 *KEY6*LOAD""8000 |M
 210
 220 REM Pr in t Program Length
 230 *KEY7P.LOM.-PA. |M
 240
 250 REM Pr in t Remain ing Memory
 260 *KEY8DIM P%-1:P.H. -P%|M
 270
 280 REM OLD, Page Mode Of f , L is t
 290 *KEY9O. |MV.15 |ML. |M
 300
 310 FORX%=0TO10:PRINT"SOFT KEYS SET" :N
EXT
 320 END

A very useful facility available from OS 1.0 onwards is the ability to print
teletext characters directly on to the screen. For example, pressing SHIFT
and F4 simultaneously is the equivalent of PRINTing CHR$132 and
produces a blue alpha-numeric character. As well as saving memory, this
technique makes it harder to enter and edit menu and instruction pages, etc,
and is worth cultivating.

As these codes will not fist to a printer in the usual way, they have been
written out in full in the programs in this book. For further details see the
User Guide page 439. Incidentally, the OSBYTE call mentioned there is
incorrect. It should read A=&E2 (226).

I have tried to use meaningful variable names throughout the program
and have restricted my use of integer variables (see the User Guide page
65) simply to aid readability. Many programs could be shortened and
speeded up by using integer variables and shorter variable names
especially where the program performs calculations before sending data to
the SOUND command.

I have also refrained from using indirection operators (see the User

241

Making Music on the BBC Computer

Guide Chapter 39) for which I may be criticised. However, my aim was
always that the reader should understand how the programs work and
beginners may well be confused by such 'heavy' material. Those more
expert will, I hope, let loose all the tricks of the trade as they experiment
with the program.

Merging programs
Many programs fisted in this book use the same or similar routines and to
save time and effort some of the programs have been designed to be
inserted directly into other programs. These programs will not run by
themselves.

The original programs are all numbered in steps of 10 but, for obvious
reasons, this was not always possible with the other programs. Most of
these are fairly short and can be merged with the other programs using *
SPOOL and *EXEC as described in the User Guide on page 402. It is
essential that every single line be entered, including the blank ones which
are sometimes there to delete unwanted lines from the original program.

Alternatively, you could LOAD the main program and type in the new
fines, but be very careful of entry errors.

For disk users, I would recommend the first option but if cassette users
check the fine numbers carefully the second method may be quicker.

Re-setting the random number generator
When experimenting with some of the programs, you may want to repeat a
set of random numbers. This can be done by first setting the RND function
with a negative number in brackets such as:

X=RND (-2)

Details are included in the User Guide on pages 84 and 342.
This can be useful if you want to check a program's output.

242

Other titles from Sunshine

SPECTRUM BOOKS

ZX Spectrum Astronomy
Maurice Gavin
ISBN 0 946408 24 6 £6.95

Spectrum Adventures
A guide to playing and writing adventures
Tony Bridge & Roy Carnell
ISBN 0 946408 07 6 £5.95

Spectrum Machine Code Applications
David Laine
ISBN 0 946408 17 3 £6.95

The Working Spectrum
David Lawrence
ISBN 0 946408 00 9 £5.95

Master your ZX Microdrive
Andrew Pennell
ISBN 0 946408 19 X £6.95

COMMODORE 64 BOOKS

Mathematics for the Commodore 64
Czes Kosniowski
ISBN 0 946408 149 £5.95

Advanced Programming Techniques on the Commodore
64
David Lawrence
ISBN 0 946408 23 8 £5.95

Graphic Art for the Commodore 64
Boris Allan
ISBN 0 946408 15 7 £5.95

Commodore 64 Adventures
Mike Grace
ISBN 0 946408 11 4 £5.95

243

Making Music on the BBC Computer

Business Applications for the Commodore 64
James Hall
ISBN 0 946408 12 2 £5.95

The Working Commodore 64
David Lawrence
ISBN 0 946408 02 5 £5.95

Commodore 64 Machine Code Master
David Lawrence & Mark England
ISBN 0 946408 05 X £6.95

ELECTRON BOOKS

Graphic Art for the Electron
Boris Allan
ISBN 0 946408 20 3 £5.95

Programming for Education on the Electron Computer
John Scriven & Patrick Hall
ISBN 0 946408 21 1 £5.95

BBC COMPUTER BOOKS

Functional Forth for the BBC computer
Boris Allan
ISBN 0 946408 04 1 £5.95

Graphic Art for the BBC computer
Boris Allan
ISBN 0 946408 08 4 £5.95

DIY Robotics and Sensors for the BBC computer
John Billingsley
ISBN 0 946408 13 0 £6.95

Programming for Education on the BBC computer
John Scriven & Patrick Hall
ISBN 0 946408 10 6 £5.95

244

