
CHAPTER SIX

THE KEYBOARD

At first sight there is not a lot that can be said about
the keyboard except that it is the most important
means of input the computer has.

The first thing that must be said is that programs
of a ‘professional’ standard must be fool-proof.
Probably the most common problem with commer-
cial software is that particular keys on the keyboard
have not been disabled properly. As a general rule,
at any point in a program ALL keys except the ones
that can be used legally should be disabled. This
applies in BASIC and in machine code.

With this in mind, we should take a look at all the
keys and the methods of disabling them.

When you need to input data from the keyboard
in a program you should check to ensure that it is
made up of legal key presses. In BASIC the easiest
way to do this is to compare each character of the
string with a string containing all the legal charac-
ters. This can be done with the command INSTR.

For example, suppose you want the user to input
his first name. You want letters, upper or lower case,
and nothing else.

The BASIC to check for this would be:

 1000 CLS

 1010 INPUT"Your first name";A$

 1020 E%=0

 1030 FORA%=1TOLENA$

 1040 IFINSTR("ABCDEFGHIJKLMNOPQRSTUVWXYZabcde

 fghijklmnopqrstuvwxyz",MID$(A$,A%,1))=0

 THENE%=1

 1050 NEXT

 1060 IFE%=1THEN1000

 1070 PRINTA$

113

A BASIC input routine This method of solving the problem still allows the
user to type the wrong letters in the first place and a
name of up to 250 characters, which would be a
little silly! Better to write an input function which
uses the GET command and checks each character
as it is typed. If a character (such as a %, say) is
illegally typed it ignores it and waits for another key
to be pressed. Also, a maximum number of charac-
ters can be imposed. If this is done it is a good idea
to set out a row of full stops, over which the user
types, to show him how much he is allowed to type.

 10 CLS:VDU23;1,0;0;0;0;

 20 PRINT"Your first name?":A$=FNinput

 (20,"ABCDEFGHIJKLMNOPQRSTUVWXYZabc

 defghijklmnopqrstuvwxyz")

 30 PRINTA$

 40 END

 1000 DEFFNinput(N%,I$):LOCALA$,G$

 1010 PRINTSTRING$(N%,".");STRING$(N%,CHR$8);

 1020 A$="":VDU23,1,1;0;0;0;

 1030 G$=GET$:IFG$=CHR$13VDU13,10,23,1,0;0;0;0;

 :=A$

 1040 IFG$<>CHR$127THEN1070

 1050 IFLENA$=0VDU7:GOTO1030

 1060 VDU8,46,8:A$=LEFT$(A$,LENA$-1):GOTO1030

 1070 IFINSTR(I$,G$)=0VDU7:GOTO1030

 1080 IFLENA$=N%THENVDU7:GOTO1030

 1090 A$=A$+G$:PRINTG$;:GOTO1030

Note also that this program only turns the cursor on
(line 1020) when an input is expected. This is good
practice as it helps to give the user a clue as to
when he is expected to type something.

A machine code input routine
A like method can be used from machine code. Here
we need a place to put the string. As BASIC is not
being used we can use the space taken up by the
BASIC string input buffer (appropriately enough).

114

This is the whole of page seven of the memory.
Let’s specify that the routine is entered with the
maximum length of the string in X. We also need a
string containing all the legal characters. This we
can place at the end of the machine code program
with the EQUS command. We can then say that the
routine must be entered with the length of the
string minus one in Y. This way we can allow
different amounts of this string to be legal by chang-
ing Y. For instance, if you wanted to use the routine
twice − the first time allowing the letters A to Z and
the second time allowing only the letters A to F −
then you could set out the legal string as
‘ABCDEFGHIJKLMNOPQRSTUVWXYZ’. The first
time you called the routine, Y would be 25 to allow
all the string to be legal, the second time, Y would
be 5 so as to only allow the first six letters of the
string to be legal.

The routine will exit with the string stored from
&700 onwards, and followed by a carriage return.
Thus the example would be:

 10 PROCass

 20 CLS:VDU23,1,0;0;0;0;

 30 PRINT"Your first name?"

 40 X%=20:Y%=51:CALLinput

 50 PRINT$&700:END

Now we must write the routine.

The first job is to store the contents of the X register
at &70 and the Y register at &72 temporarily.

 1000 DEFPROCass

 1010 DIMmc%250

 1020 FORpass%=0TO2STEP2

 1030 P%=mc%

 1040 [OPTpass%

 1050 .input STY &72

 1060 STX &70

The next job is to print the row of dots over which
the user will type. The number is already conveni-
ently in the X register for us.

115

 1070 .loop1 LDA #48

 1080 JSR &FFE3

 1090 DEX

 1100 BNE loop1

Next we have to move back the same number of
spaces to allow the user to start typing over the top
of the dots. This time the X register will have to be
reloaded from &70.

 1110 LDX &70

 1120 .loop2 LDA #8

 1130 JSR &FFE3

 1140 DEX

 1150 BNE loop2

While we are at it we need a variable to count how
many characters the user has typed in. This we can
store in &71; it will initially be zero. As we have just
finished a loop in X, the X register will contain zero,
so we can store this at &71.

Then we must turn on the cursor with
VDU23,1,1;0;0;0;

 1160 STX &71

 1170 LDA #23

 1180 JSR &FFE3

 1190 LDA #1

 1200 JSR &FFE3

 1210 JSR &FFE3

 1220 LDX #7

 1230 .loop3 LDA #0

 1240 JSR &FFE3

 1250 DEX

 1260 BNE loop3

Now we are ready to get a key from the keyboard
using OSRDCH. If this routine exits with the carry
flag set then the ESCAPE key has been pressed and
we need to acknowledge this and exit the routine
with a null string stored at &700.

As we do this we will need to put a carriage

116

return at the end of the string and turn the cursor
off. This part of the program we can use as an exit
once we have obtained a valid string, so we must
give it the label EXIT.

 1270 .key JSR &FFE0

 1280 BCC noerror

 1290 LDA #&7E

 1300 JSR &FFF4

 1310 LDA #0

 1320 STA &71

 1330 .exit LDX &71

 1340 LDA #13

 1350 STA &700,X

 1360 LDA #13

 1370 JSR &FFE3

 1380 LDA #23

 1390 JSR &FFE3

 1400 LDA #1

 1410 JSR &FFE3

 1420 LDX #8

 1430 .loop4 LDA #0

 1440 JSR &FFE3

 1450 DEX

 1460 BNE loop4

 1470 RTS

Next we must check to see if the key pressed is the
RETURN key. If so, then we can branch to EXIT.

 1480 .noerror CMP #13

 1490 BEQ exit

Next we check for DELETE. If this has been pressed
then we check whether there is any string to be
deleted. If &71 is zero then there is no string so we
output a ‘ beep’ before jumping back to KEY.

 1500 CMP #127

 1510 BNE notdel

 1520 LDA &71

 1530 BNE del

 1540 .error LDA #7

 1550 JSR &FFE3

117

 1560 JMP key

If there is something to delete then we need to go
back a space, print a dot and back-space again to
leave the cursor over the dot. We also need to
decrement the length of the string stored at & 71.

 1570 .del LDA #8

 1580 JSR &FFE3

 1590 LDA #48

 1600 JSR &FFE3

 1610 LDA #8

 1620 JSR &FFE3

 1630 DEC &71

 1640 JMP key

If DELETE is not pressed then we need to check for
a legal key. The string of legal characters starts at
LEGSTR and the length of this string minus one is
stored at &72. We need to compare all the charac-
ters in this string with the accumulator. We can do
this with a loop in X, carefully preserving A through-
out the loop. If the contents of the accumulator
match with one character of the string then the key
is legal; otherwise, if we get to the end of the string
without finding a match then we must cause a
‘beep’ and go back for another key.

 1650 .notdel LDX &72

 1660 .loop5 CMP legstr,X

 1670 BEQ legal

 1680 DEX

 1690 BPL loop5

 1700 JMP error

If the key is legal then we must check that there is
still a space left to place this key. If the length of the
string has already reached the maximum allowed
length then we must branch to ERROR. If not then
we can store the character at the relevant place in
page 7, increment the length of the string, print the
character on the screen and go back for the next
key.

118

 1710 .legal LDX &71

 1720 CPX &70

 1730 BEQ error

 1740 STA &700,X

 1750 INC &71

 1760 JSR &FFE3

 1770 JMP key

 1780 .legstr EQUS "ABCDEFGHIJKLMNOPQRS

 TUVWXYZabcdefghijkl

 mnopqrstuvwxyz"

 1790]:NEXT

 1800 ENDPROC

We have now dealt with all the standard ASCII keys.
The next thing to look at is the cursor keys. If a GET,
INPUT, or INKEY (with a positive parameter) com-
mand is used during a program then the cursor keys
become enabled. Pressing them will cause the copy
cursor to move around the screen. This also leaves a
block cursor on the screen. In most cases this is not
desirable. There is any easy way to overcome this
problem but not many people seem to even realise
that there is a problem. For example, many games
leave the cursor keys enabled − pressing them
during the game will eave ‘ flying blobs’ on the
screen.

The way around the problem is to set the cursor
keys to generate ASCII codes with the command
*FX4,1. This way they can be used as ordinary keys.
This command also causes the COPY keys to gener-
ate an ASCII code.

The next keys we need to look at are the SHIFT
LOCK and CAPS LOCK keys. These keys cannot be
disabled easily but the state of the keyboard (and
the LEDs) can be changed from the software. This is
done using a *FX202 call. This command needs one
number after it. If bit 4 of this number is zero then
the CAPS LOCK is engaged. If bit 5 is zero then the
SHIFT LOCK is engaged. If bit 7 is set then the shift
key’s action is reversed.

For example, if *FX202,160 were used this would
set the keyboard so that it would normally produce
capitals and numbers, etcetera, but with the shift
key pressed it would produce lower case and the

119

exclamation mark, and so on.
This command also changes the state of the

keyboard LEDs. An example of where it could be
used is in a word processor to turn the CAPS LOCK
and SHIFT LOCK off at the beginning of the
program.

The next key we must look at is the ESCAPE key.
In machine code this key has little effect until
OSRDCH is called. In this case the escape condition
must be acknowledged using OSBYTE &7E call. If
this is done then the ESCAPE key is effectively
disabled. However, if a more complete form of
disablement is needed, say for a BASIC program,
then *FX229,1 should be used. This simply causes
the ESCAPE key to generate ASCII code 27.
Another useful trick is that any key on the keyboard
can be made the ESCAPE key. This is done by
using the command *FX220 followed by the ASCII
code for the key. For instance, if you wanted <CTRL
@> to be the ESCAPE key then you would use the
command *FX220,0.

One final method is to use *FX200. This has two
functions. If bit 0 of the byte following it is 1 then
ESCAPE completely disabled (it won’t even gener-
ate an ASCII code) and if bit 1 is set then the entire
contents of the memory will be cleared the next
time the BREAK key is pressed! Even <CTRL
BREAK> cannot get around this command. This is
very useful for protecting programs as it means that
once a program has been run it is impossible to get
out of it again without losing the program (see
chapter 5).

The BREAK key The break key is probably the most difficult key to
disable. In fact, it is impossible to disable it.
However, it can be intercepted. Many programs
define the BREAK key like a soft key to produce a
string that runs the program. This means that if you
accidentally press BREAK in the middle of typing in
a letter on your word processor, you won’t lose your
text. However, this doesn’t solve the problem of
<CTRL-BREAK>. It would be nice if we could stop
the computer every time the BREAK key is pressed
and check whether a <CTRL-BREAK> has occurred.

120

If so, we could then convince the computer that it is
imagining things and that the BREAK was really a
normal one! Well, here’s how to do it.
When a BREAK occurs, the operating system looks
at location &287. If &287 contains zero then it
carries on as usual, and, if the machine has just
been turned on then it must be a zero! However, if
this byte contains a machine code JUMP instruction
(&4C) instead, then it will jump to the address
pointed to by the contents of location &288 and
&289. In fact, it does this twice after a BREAK
occurs. The first time the carry flag is clear, and this
occurs before the message ‘BBC Computer’
appears; the second time is after this message
appears but this time with the carry flag set.
Locations &287 to &289 can be set using *FX247 to
*FX249.

Those of you with fevered imaginations will
already have seen some of the possibil i ties this
opens up. For example, it is possible to change the
‘BBC Computer’ message, which is normally
printed, to something completely different. For
those of you who like the idea, here is the program:

 10 FORA%=0TO3STEP3

 20 P%=&900

 30 [OPTA%

 40.break BCC exit

 50 LDX #0

 60.loop LDA string,X

 70 JSR &FFE3

 80 INX

 90 CPX #24

 100 BNE loop

 110.exit RTS

 120.string EQUS CHR$12+"Beware of the

 hacker!"+CHR$13+CHR$13

 130]:NEXT

 140 *FX247,76

 150 *FX248,0

 160 *FX249,9

Notice that this is put in the cassette output buffer
(&900). This is totally safe for disc users but cassette

121

users will find that, if they save a program, the next
time they press BREAK the computer will crash.

However, the object of all this was to disable <CTRL BREAK>. When a break
occurs one of the first things the computer does is
to check whether it is a soft reset, a hard reset or a
power-on reset. When it has done this it sets up a
variable at &28D. This has the value zero for a soft
reset, one for a power-on reset and two for a hard
reset. By changing the contents of &28D to zero in
our break intercept routine we will fool the compu-
ter into believing that a soft reset has occurred.
Unfortunately, before we get to do this the computer
has already reset the clock and cleared the function
keys. However, if we set &28D to zero in the FIRST
intercept we can redefine the break key to do
whatever we want in the second intercept. Here is
an example program:

 10 FORA%=0TO3STEP3

 20 P%=&900

 30 [OPTA%

 40.break BCS second

 50 LDA #0

 60 STA &28D

 70 RTS

 80.second LDX #string MOD256

 90 LDY #string DIV256

 100 JSR &FFF7

 110 RTS

 120.string EQUS"*KEY10OLD|MRUN|M"+CHR$13

 130]:NEXT

 140 *FX247,76

 150 *FX248,0

 160 *FX249,9

This clears &28D during the first intercept and uses
OSCLI to perform a *KEY10 command during the
second intercept.

Once this is run neither BREAK nor <CTRL
BREAK> can stop the computer from ‘olding’ and
running the current program!

122

