
CHAPTER NINE

SCREEN DUMPS

Modern dot-matrix printers can produce high-
resolution graphics far in excess of the maximum
resolution of the BBC Micro. It would seem sensible
then to have a means of making a ‘ hard copy’ of the
entire contents of the screen. Such a copy of the
screen is called a SCREEN DUMP.
There are a number of screen dump programs
around for various printers; however, they all tend to
be slow. Many of them claim to be able to handle
dumps of any size and of any mode with one pro-
gram. This is fine, but to get a program to do this
means sacrif icing speed and performance. In this
chapter we are going to look at a few examples of
special ised screen dump programs. The advantage
is that the top speed of the printer can be used.
The programs in this chapter are designed to be
used with an Epson dot-matrix printer such as the
FX80 or RX80. The MX range of printers will not
handle the very-high-resolution dumps, but will
handle, with only very slight modifications, the first
few programs in this chapter. It should be possible
to adapt some of the programs to run on other
makes of printer. Before reading on, you might like
to read the relevant section of your printer manual.

A simple BASIC dump The first thing we should look at is a simple example
− a Mode 4 screen dump about 4.5in by 3.5in.

We can consider the printer head as a vertical
column of eight dots. The head is moved from left to
right across the paper to produce eight rows of dots
which make up a horizontal band. To print this band
of dots, we need to send a series of codes to the
printer to tell it what vertical spacing between each

180

band to use and how many dots make up a horizon-
tal row. Then we send one byte for each vertical
column of eight dots where each bit of that byte
represents a dot (bit 7 is at the top, bit 0 is at the
bottom). But this immediately presents us with a
problem as the Mode 4 screen is stored with each
byte representing a HORIZONTAL row of eight
pixels (one bit represents one pixel in Mode 4).

To solve this, let’ s consider how we would dump
one character (eight by eight pixels) to the printer.
Let’s assume that the character is placed at the top
left-hand corner of the screen. We can use a BASIC
program for this as it is only an experiment.

First we need to go into Mode 4 and turn off the
cursor. Next we need to print the character (say, an
A) at the top left-hand corner of the screen.

 10 MODE4
 20 VDU23,1,0;0;0;0;
 30 P."A"

Now we must set up the printer. The first thing is
that we don’ t want the printer to automatically print
a line feed after every carriage return. This is
because line-feed feeds the paper upwards by more
than eight dots and we want each band (eight dots
high) to butt up against the previous one. To do this
we use *FX6,10 to disable the printer line-feed. Note
that some printers are set up so that they automati-
cally print a line-feed whenever a carriage return is
sent. If your printer is set up to do this then the
setting must be altered. This is done on Epson
printers by changing the position of a small swi tch
inside the printer. The printer manual gives detai ls
on how to do this. If you don’ t do this then the
printer will split up your screen dumps into bands
with gaps between them.

We then need to turn the printer on with VDU2.
While we are doing this we can also tell the printer
to go into a graphics mode where dots are printed
horizontally 1/80 of an inch apart. As the dots are
automatically printer 1/72 of an inch apart vertically
in all graphics modes this will make our eight-by-
eight pixel character come out approximately

181

square. We also need to tell the printer that we are
going to send it eight bytes of graphics. The codes
to do this are 27,42,4,8,0. Here, the first three num-
bers put the printer into the desired graphics mode
and the last two are the number of bytes of graphics
that we are sending to it. Remember that it is up to
you to find out the correct control sequences for
your make, model and mark of printer. To resume:

 40 *FX6,10
 50 VDU2,1,27,1,42,1,4,1,8,1,0

Notice that we use VDU1,X so that the data doesn’t
appear on the screen. Now we are ready to dump
the character. Our letter A is stored on the screen as
eight horizontal bytes (stored in addresses &5800 to
&5807).

The pattern for A

Bit

&5807

&5800
&5801
&5802
&5803
&5804
&5805
&5806

0

••••••

1

•••••••

2

••
•

3

••
•

4

•••••••

5

••••••

67

To suit the printer, we need to code the A into eight
vertical bytes. To do this we must set up a bit mask
which, using AND, will first mask out everything
but bit 7, the leftmost bit, of each byte, then bit 6,
and so on until all eight columns have been printed.
We can store the current value of this mask in the
variable A% − the initial value must be 128 to mask
out everything but bit 7. We can use this mask on
each of the eight bytes of the character in turn, to
extract the leftmost bits, making these into a verti-
cal byte to send to the printer. Then we can set the
mask to 64 to extract the next column, and so on
unti l al l eight columns have been printed.

For each column we first set a variable, say B%,
to zero. We then check the relevant bit of &5800
using the mask. If it is set then we add 1 to B%. We
can then check the relevant bit of &5801, and so on.

182

We want the top bit of the column (from &5800) to
be stored in bit 7 or B%, and so on. If, before each
byte is checked with the mask, we shift B% left one
bit by multiplying it by two, and then we add 1 if
the bit is set, then, after all the eight bytes have
been checked the first bit we extracted (from
&5800) will be in bit 7; the next bit (from &5801) will
be in bit 6; and so on.

When we have done this to get the first column,
we send B% to the printer and divide A% by two to
move the mask right one pixel for the next column.
We go on doing this until A% has reached zero and
we have thus printed eight columns. Finally, we
must send a carriage return to the printer and turn
the printer off.

 45 P%=&5800
 60 A%=128
 70 B%=0
 80 FORY%=0TO7
 90 B%=B%*2
 100 IFP%?Y%ANDA%THENB%=B%+1
 110 NEXT
 120 VDU1,B%
 130 A%=A%/2
 140 IFA%>0THEN70
 150 VDU1,13,3

This will dump one character from the screen.
Notice that, because we have used a separate
variable to P% to store the address of the first byte of
the character (line 45), we can print any character
anywhere on the screen by simply changing P%. So,
to print a whole band (which corresponds to a line of
text on the screen) we need only alter the initial
setting of the printer to say that we are going to
send 40 characters of eight bytes each, or &140
bytes (line 50 below), add eight to P% after each
character has been sent, and repeat this 40 times.

 50 VDU2,1,27,1,42,1,4,1,&40,1,&1
 55 FORX%=1TO40
 143 P%=P%+8
 147 NEXT

183

To make a complete screen dump we now need to
feed the paper upwards by eight dots (each dot
takes up 1/72 of an inch vertically) to print the next
band. The Epson printers provide the command that
will feed the paper upwards by n/216 of an inch. We
want to feed by 8/72 so n has to be 24. Because of
the way the screen is laid out, P% already points to
the start of the next band when we get to line 150;
so, if P% is less than &8000 (the end of the screen),
then we can go back to line 50 and print the next
band down.

 150 VDU1,13,1,27,1,74,1,24
 160 IFP%<&8000THEN50
 170 VDU3

This program can then be added to an existing
program, or a screen can be *SAVEd on disc and
this routine can be used as a separate dump pro-
gram by *LOADing the screen at the beginning.

A machine code equivalent
The next thing we need to do is to convert this
BASIC into machine code. As in previous chapters,
the above program has been purposely written to
code into machine code easily.

The first thing we should do in the machine code
version is disable all interrupts. This will help to
speed up the program slightly. We can then disable
the line feeds.

10000 DEFPROCass
10010 DIMmc%150
10020 oswrch=&FFEE
10030 osbyte=&FFF4
10040 FORpass%=0TO2STEP2
10050 P%=mc%
10060 [OPTpass%
10070 .dump SEI
10080 LDA #6
10090 LDX #10
10100 LDY #0
10110 JSR osbyte

Before we carry on any further, we should notice

184

that almost every VDU command in the BASIC
program was in the form VDU1,X. To save space it
would be sensible to write a subroutine which
outputs first a 1 then the byte we want to send to
the printer.

20000 .out PHA
20010 LDA #1
20020 JSR oswrch
20030 PLA
20040 JMP oswrch

This routine should be entered with the byte to be
sent to the printer in the accumulator.

Going back to the main routine, we can set up
P% in &70 and &71 and turn on the printer.

10120 LDA #0
10130 STA &70
10140 LDA #&58
10150 STA &71
10160 LDA #2
10170 JSR oswrch

Now we must initialise the printer for each band.

10180 .band LDA #27
10190 JSR out
10200 LDA #42
10210 JSR out
10220 LDA #4
10230 JSR out
10240 LDA #&40
10250 JSR out
10260 LDA #&1
10270 JSR out

We can use the X register to count the 40 characters
that make up a horizontal band. We can use &72 to
store the bit mask, A%; &73 to store the byte sent to
the printer, B%; and the Y register for the loop, Y%.

10280 LDX #40
10290 .char LDA #128
10300 STA &72

185

10310 .column LDA #0
10320 STA &73
10330 LDY #0

Next we need to shift &73 (B%) left. Then we must
load a byte from the screen and mask it with &72. If
there is a pixel in this position then we must set bit
zero of &73. Then we can repeat the loop until Y is
eight.

10340 .pixel ASL &73
10350 LDA (&70),Y
10360 AND &72
10370 BEQ not
10380 LDA &73
10390 ORA #1
10400 STA &73
10410 .not INY
10420 CPY #8
10430 BNE pixel

We can then send the column of eight pixels stored
at &73 to the pointer.

10440 LDA &73
10450 JSR out

Next we must shift the mask right one bit and
repeat until we have dumped eight columns or a
complete text character.

10460 LSR &72
10470 BNE column

Now we must add eight to &70 and &71 for the next
character position and repeat back to the character
routine 40 times to print one complete band.

10480 LDA &70
10490 CLC
10500 ADC #8
10510 STA &70
10520 BCC skip
10530 INC &71
10540 .skip DEX

186

10550 BNE char

Lastly we need to feed the paper upwards and
repeat the band routine until the content of &71 is
&80 or bigger. Then we can turn the printer off,
enable interrupts and end the subroutine.

10560 LDA #13
10570 JSR out
10580 LDA #27
10590 JSR out
10600 LDA #74
10610 JSR out
10620 LDA #24
10630 JSR out
10640 LDA &71
10650 BPL band
10660 LDA #3
10670 JSR oswrch
10680 CLI
10690 RTS
10750]
10760 NEXT
10770 ENDPROC

And that’s it.

As an example, try adding the following lines at the
beginning of the assembly code:

 10 MODE4
 20 VDU23,1,0;0;0;0;29,640;512;
 30 PROCass
 40 S=1.1
 50 P%=4
 60 FORA=0TOPI*21STEPPI/20
 70 PLOTP%,636*SIN(A),508*COS(A*S)
 80 P%=5
 90 NEXT
 100 CALLdump
 110 END

Mode 4 is very similar to Mode 0. To convert this
program to run in Mode 0 only six lines need to be
changed.

187

 10 MODE 0
10140 LDA #&30
10220 LDA #1
10240 LDA #&80
10260 LDA #2
10280 LDX #80

Notice that the Epson does not provide a graphics
mode that has 160 pixels to the inch horizontally, so
we have to use the closest mode; this gives only 120
pixels to the inch. This has the effect of stretching
the screen dump slightly horizontally.

A colour-as-tone dump So far we have only looked at two-colour dumps.
What happens if we want to dump a 16-colour,
Mode 2 screen? Most people don’t own expensive
colour printers, so let’s find a way of representing
colours on a black-and-white printer. It is easiest to
do this with shades. Unfortunately, a dot-matrix
printer won’t automatically print greys for us. To get
the illusion of shades we need to print a pattern of
dots with more dots per square inch for the darker
colours than for the lighter ones. For dumping in
Mode 2 we will first ignore flashing colours and then
represent each pixel by an imaginary box contain-
ing 12 dots arranged as two rows (height) of six
columns (width). This arrangement is chosen
because the pixels in Mode 2 are not square but
rectangular − they are thin horizontal dashes rather
than dots − so the printer must represent each pixel
by a pattern of dots that is rectangular.

The pattern of dots for each colour (chosen to
look as close to a solid block of colour as possible) is
as follows:

This means that, as a Mode 2 screen is 160 pixels by
256 pixels, we will dump 960 (=6*160) by 512
(=2*256) dots on the printer.
Before we can do anything, we must know how a
Mode 2 screen is laid out in the memory. As Mode 2
is a 16-colour mode, the computer must use four
bits to store the colour of each pixel on the screen.
Thus it can store two pixels (2x4=8 bits) in one byte.
If there are 40960 (160x256) pixels on the screen,

188

this means that to store the complete screen we
need 20480 bytes or 20K.

The two pixels stored in each byte are always
adjacent to each other and appear in a horizontal
line on the screen. We would expect to find that the
first 80 consecutive bytes (=160 pixels) of the screen
memory make up the top row of pixels. However,
this unfortunately is not so. The screen memory is
organised in terms of character positions. One
character is made up of 64 (8x8) pixels. This means
that 32 bytes of screen memory are needed to make
up each character. Horizontally, these are split up
into four columns, each two pixels (or one byte)
wide. Each column is then made up vertically of
eight consecutive bytes.

The order of the
bytes that make
up one text
character.

8
9
10
11
12
13
14
15

16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31

0
1
2
3
4
5
6
7

The set of 32-byte characters is laid out, as would be
expected, in 32 rows of 20 characters. So, for our
purposes, we can look at the screen as divided into
32 rows. Each row is stored as 640 bytes and con-
sists of 80 columns, each column being eight bytes
tall. The first byte of the screen is stored at &3000
and the last at &7FFF. Of course, all this changes for
different modes.

189

Black

Blue

Red

Magenta

Green

Cyan

Yellow

White

'Colour dot patterns'

Mode 2 screen organisation

&3000
&3001
&3002

&3003
&3004
&3005
&3006
&3007

&3008
&3009

&300A
&300B
&300C
&300D
&300E
&300F

&3280
&3281
&3282

&3283
&3284
&3285
&3286
&3287

&3288
&3289
&328A

&328B
&328C
&328D
&328E
&328F

&3270
&3271
&3272

&3273
&3274
&3275
&3276
&3277

&3278
&3279
&327A

&327B
&327C
&327D
&327E
&327F

&34F0
&34F1
&34F2

&34F3
&34F4
&34F5
&34F6
&34F7

&34F8
&34F9
&34FA

&34FB
&34FC
&34FD
&34FE
&34FF

Finally, we must examine how the two Mode 2
pixels are stored in each screen memory byte.
Again, we would expect the most signif icant four
bits of the byte to hold the colour of the first pixel
and the least signif icant four bits to hold the colour
of the second pixel. Yet again, things are slightly
more complex! The four two-bit numbers which
represent the colours of the two pixels are
‘ interleaved’ − first a bit from pixel one (the left-
hand pixel) then a bit from pixel two (the right-hand
pixel) then a bit from pixel one again, and so on.

190

Mode 2 pixels: layout

LSBMSB 0 0 1 0 1 1 1 0

Right hand pixel (green)
0010

Left hand pixel (white)
0111

It is obvious from this diagram that ours is not an
easy task. Remember that we need to send graphics
to the printer in bands of eight vertical dots (corre-
sponding to the eight vertical dots on the printer
head). This means that we need to group four
screen pixels (each two dots high) above each other.
Let’s first of all assume that we have found the
colours of each of these pixels (ignoring the most
significant bit to exclude flashing colours) and we
have stored the four of them, from top to bottom, in
addresses &74 to &77. Now let’s try and write a
routine to dump these four pixels to the printer.

As often with machine code, the easiest way to
do this is with a look-up table. This will contain data
on the pattern of dots for each colour. However, we
need to think carefully about how to arrange this
information in a table. As the printer deals in verti-
cal columns, the sensible way to split up the 12 dots
per pixel is into six columns, devoting one byte of
table for each column. Although we are wasting
memory by only using two bits in each byte of the
table, it will speed up the program if we use one
byte of table for each column.

We now have to decide how to order these
columns. The obvious way is to store them as six
bytes for black followed by six bytes for red, etce-
tera. However, we must consider how we are going
to address this table. To print the four vertical pixels
we are going to send six bytes to the printer. The
first byte will be made up of the first columns of
each of the relevant colour patterns, the second byte
will be made up of the second column of patterns,
and so on. So, to send the first byte to the printer we
are going to need access to the eight bytes that

191

contain the first columns of each of the eight colour
patterns. Then for the second byte we will need the
eight bytes of the second columns and so on. Thus
it makes sense to store the eight bytes that contain
the first columns of each of the colour patterns,
grouped together in the table.

To make the program easier we can store the
data in groups according to the colours but just read
them into the table in our preferred order.

10000DEFPROCass
10010DIMmc%300,D%47
10020RESTORE20000
10030FORA%=0TO7
10040FORB%=0TO5
10050READD%?(A%+B%*8)
10060NEXT,

20000 DATA3,3,3,3,3,3:REM Black
20010 DATA3,2,1,3,1,2:REM Red
20020 DATA0,1,1,0,2,2:REM Green
20030 DATA0,0,1,0,0,0:REM Yellow
20040 DATA3,3,1,3,3,2:REM Blue
20050 DATA1,2,1,2,1,2:REM Magenta
20060 DATA0,1,0,0,2,0:REM Cyan
20070 DATA0,0,0,0,0,0:REM White

Now the routine to print four vertical pixels should
be relatively easy. First we are going to need, from
the previous program, the routine for sending a byte
to the printer.

10070 oswrch=&FFEE

14000 .out PHA
14010 LDA #1
14020 JSR oswrch
14030 PLA
14040 JMP oswrch

Now we can start. The first job is to set up the
address of the start of the table in &7A and &7B.
Then we can use post-indexed indirect addressing
to look up the bytes for the first column of each pixel
by setting the Y register to the colour number. Then

192

when we have sent this byte to the printer we can
add eight to the contents of &7A and &7B so that,
taken together, they point to the address of the
eight second-column bytes. We can use the X
register to count the number of the bytes we have
sent to the printer.

13000 .print LDA #D%MOD256
13010 STA &7A
13020 LDA #D%DIV256
13030 STA &7B
13040 LDX #6

Next we can set Y to the contents of &74 (the top
pixel colour) and load in the two bits for the top two
dots of the first column. These must eventually be
the most significant two bits of the byte so we must
shift them left. We shift left the bytes we are calcu-
lating, by two bits each time a pixel has been
calculated, and so save a lot of effort:

13050 .prloop LDY &74
13060 LDA (&7A),Y
13070 ASL A
13080 ASL A
13090 STA &79
13100 LDY &75
13110 LDA (&7A),Y
13120 ORA &79
13130 ASL A
13140 ASL A
13150 STA &79
13160 LDY &76
13170 LDA (&7A),Y
13180 ORA &79
13190 ASL A
13200 ASL A
13210 STA &79
13220 LDY &77
13230 LDA (&7A),Y
13240 ORA &79
13250 JSR out

We have now sent the first of our six bytes to the
printer and all that remains is to add eight to &7A

193

and &7B and go back for the next byte.

13260 LDA &74
13270 CLC
13280 ADC #8
13290 STA &7A
13300 BCC skip2
13310 INC &7B
13320 .skip2 DEX
13330 BNE prloop
13340 RTS

This is all very well, but we still need to find out the
four colours from the screen. We could use the
operating system command that is equivalent to the
BASIC function POINT, but this is slow and it is
faster to work it out ourselves.

Let’s now look at the main program and let’s
assume that we have already written a routine that
will dump a whole band of Mode 2 graphics, four
pixels high, given the address of the top left-hand
corner of the line on the screen stored in &70 and
&71.

Firstly, we need to disable interrupts and the
printer line-feed, and turn the printer on.

10080 FORpass%=0TO2STEP2
10090 P%=mc%
10100 [OPTpass%
10110 .dump SEI
10120 LDA #6
10130 LDX #10
10140 LDY #0
10150 JSR &FFF4
10160 LDA #2
10170 JSR oswrch

Next, we need to store the address of the top left-
hand corner of the screen in &70 and &71. Then to
print the top half of a text line we need only our
BAND routine.

10180 LDA #0
10190 STA &70
10200 LDA #&30

194

10210 STA &71
10220 .textlin JSR band

To print the bottom half we need to add four to the
start address and call LINE again.

10230 LDA &70
10240 CLC
10250 ADC #4
10260 STA &70
10270 BCC skip
10280 INC &71
10290 .skip JSR band

To move on to the next line we need to add &280 to
the address of the previous line, but we have
already added four so we only need add &27C. If the
answer is less than &8000 then we can go back and
dump the next text line. Otherwise we must turn off
the printer, re-enable the interrupts and end the
routine.

10300 LDA &70
10310 CLC
10320 ADC #&7C
10330 STA &70
10340 LDA &71
10350 ADC #2
10360 STA &71
10370 BPL textlin
10380 LDA #3
10390 JSR oswrch
10400 CLI
10410 RTS

Now all we have to do is make our assumptions
concrete and actually write BAND.

Firstly, we need to make a copy of &70 and &71
in &72 and &73. Then we need to initialise the
printer to accept a 960-column band of graphics.

11000 .band LDA &70
11010 STA &72
11020 LDA &71
11030 STA &73

195

11040 LDA #27
11050 JSR out
11060 LDA #42
11070 JSR out
11080 LDA #1
11090 JSR out
11100 LDA #&C0
11110 JSR out
11120 LDA #3
11130 JSR out

Now we need to count the 80 groups of pixels that
we must send to the printer (160 pixels per line and
two pixels per byte). As we need both the X and Y
registers we use location &79 to hold a count.

11140 LDA #80
11150 STA &78

Before we carry on, we need two routines that will
extract the colours of the two pixels from a byte. Let
us deal first with the left-hand pixel stored in the
odd-numbered bits. We can arrange for the three
bits of interest to us to be in bits 2, 4 and 6 (least
significant to most significant) of the accumulator,
using ASL once; then we can do two left-shifts to
transfer the most significant bit in bit 6 into the
carry flag. Then we can ROL the carry flag into a
memory byte previously set to zero (&79). This
leaves the next bit in bit 6 of the accumulator so we
can repeat this a further two times to leave our three
bits in bits 0-2 of location &79. If this sounds com-
plicated, try following the code through:

12000 .colour1 LDA (&72),Y
12010 .colour ASL A
12020 INY
12030 LDX #0
12040 STX &79
12050 LDX #3
12060 .coloop ASL A
12070 ASL A
12080 ROL &79
12090 DEX
12100 BNE coloop

196

12110 LDA &79
12120 RTS

The INY command loads the next byte down on the
next call of the routine. If we want to extract the
colour of the other pixel we need only load the byte
into the accumulator and shift it left one bit so that
the bits we want occupy the same positions as for
the other pixel. Then we can jump to the label
COLOUR, conveniently placed in the previous
routine, to finish the job.

12130 .colour2 LDA (&72),Y
12140 ASL A
12150 JMP colour

Now we can go back to BAND where we were just
about to dump a line of graphics.

Firstly, we must set Y to zero so that we are
ready to load the top byte. We can then call
COLOUR1 to find the colour of the left-hand pixel
and store this information in &74 ready for PRINT.
We can then do the same for the other four pixels
and call PRINT.

11160 .column LDY #0
11170 JSR colour1
11180 STA &74
11190 JSR colour1
11200 STA &75
11210 JSR colour1
11220 STA &76
11230 JSR colour1
11240 STA &77
11250 JSR print

We do the same for the four right-hand pixels.

11260 LDY #0
11270 JSR colour2
11280 STA &74
11290 JSR colour2
11300 STA &75
11310 JSR colour2
11320 STA &76

197

11330 JSR colour2
11340 STA &77
11350 JSR print

Now, to print the next set of four bytes, we need to
add eight to &72 and &73 and repeat until we have
printed all 80 groups of pixels.

11360 LDA &72
11370 CLC
11380 ADC #8
11390 STA &72
11400 BCC skip1
11410 INC &73
11420 .skip1 DEC &79
11430 BNE column

Lastly we need to feed the paper and return.

11440 LDA #13
11450 JSR out
11460 LDA #27
11470 JSR out
11480 LDA #74
11490 JSR out
11500 LDA #24
11510 JMP out

15000]
15010 NEXT
15020 ENDPROC

At last we have finished. Try the following example
to check that the routine works.

 10 MODE 2
 20 VDU23,1,0;0;0;0;
 30 PROCass
 40 COLOUR135
 50 CLS
 60 COLOUR128
 70 RESTORE180
 80 P%=4
 90 FORA%=0TO8
 100 READB%
 110 GCOL0,B%

198

 120 MOVE0,0
 130 PLOTP%,1000*SIN(A%*PI/16),1000*COS(A%*PI/
16)
 140 P%=85
 150 NEXT
 160 CALLdump
 170 END
 180 DATA0,0,4,1,5,2,6,3,7

A miniature dump So far, we have not printed anything particularly
revolutionary. However, with many modern printers
it is possible to produce screen dumps that put to
shame what we have looked at so far.

Some Epson and compatable printers have a
graphics mode in which 240 dots to the inch can be
printed horizontally. Unfortunately, adjacent dots
cannot be printed as the print heads need time to
recover after each dot has been printed. To over-
come this we can print each line TWICE, first
printing all the even-numbered dots then all the
odd-numbered dots. This still leaves us with the
vertical resolution − fixed by the pacing of the print
in the print head − of 72 dots to the inch. This is
more difficult to overcome.

To solve this problem we use another special
feature of Epson and compatible printers − they can
feed the paper relatively accurately by down to 1/
216 of an inch! This means that we can inter-leave
three columns of dots at a spacing of 1/72 of an
inch. The diagram on page 200 shows this. The
pixels printed on the first pass are numbered 1,
etcetera. This means that the maximum resolution
of the printer is 240 dots per inch horizontally and
216 dots per inch vertically. This makes a stagger-
ing 51840 dots per square inch! At this resolution
we should be able to dump a full Mode 4 screen in
about 1.6 square inches − so that’s what we are
going to do!

Dot interleaving
1 2 1 2 1 2 1 2 1 2
3 4 3 4 3 4 3 4 3 4
5 6 5 6 5 6 5 6 5 6
1 2 1 2 1 2 1 2 1 2

199

3 4 3 4 3 4 3 4 3 4
5 6 5 6 5 6 5 6 5 6
1 2 1 2 1 2 1 2 1 2
3 4 3 4 3 4 3 4 3 4
5 6 5 6 5 6 5 6 5 6
1 2 1 2 1 2 1 2 1 2
3 4 3 4 3 4 3 4 3 4
5 6 5 6 5 6 5 6 5 6
1 2 1 2 1 2 1 2 1 2
3 4 3 4 3 4 3 4 3 4
5 6 5 6 5 6 5 6 5 6
1 2 1 2 1 2 1 2 1 2
3 4 3 4 3 4 3 4 3 4
5 6 5 6 5 6 5 6 5 6
1 2 1 2 1 2 1 2 1 2
3 4 3 4 3 4 3 4 3 4
5 6 5 6 5 6 5 6 5 6
1 2 1 2 1 2 1 2 1 2
3 4 3 4 3 4 3 4 3 4
5 6 5 6 5 6 5 6 5 6

It is very difficult to try and use direct screen access
to dump the screen in this example (though you are
welcome to try if you are feeling masochistic) so we
will use OSWORD call 9 (the operating system
equivalent of POINT).

The first thing we need, then, is a routine to set
up a parameter block and call OSWORD 9. Let us
state that the X coordinate should be stored in &70
and &71 and the Y coordinate in &72 and &73. This
means that our OSWORD parameter block can be
taken as starting at &70 and the colour will be
returned in &74. The first job is to save the X and Y
registers and set up the three registers for the call.

20000 .point STX &76
20010 STY &77
20020 LDA #9
20030 LDY #0
20040 LDX #&70
20050 JSR &FFF1

Now we can reload the X and Y registers with their
original values (saved at &76 and &77). We also
need to check if the point was on the screen. This is

200

because there are 256 pixels vertically on the screen
and we are printing in lots of 24. Now, 24 into 256
doesn’t go, so the last line is going to drop off the
bottom and when this happens POINT must return
black. The OSWORD call we’re using will return 255
so we need only check that the colour is positive,
and, if not, return zero.

20060 LDX &76
20070 LDY &77
20080 LDA &74
20090 BPL point1
20100 LDA #0
20110 .point1 RTS

We also need our old faithful routine, OUT.

20120 .out PHA
20130 LDA #1
20140 JSR oswrch
20150 PLA
20160 JMP oswrch

Now, the main routine. We reset the graphics
windows and origin, as we are using POINT; other-
wise, we might end up dumping the wrong part of
the screen. Also, we can disable interrupts.

10000 DEFPROCass
10010 DIMmc%300
10020 oswrch=&FFEE
10030 FORpass%=0TO2STEP2
10040 P%=mc%
10050 [OPTpass%
10060 .dump SEI
10070 LDA #26
10080 JSR oswrch

Next we must disable printer line-feeds and turn on
the printer.

10090 LDA #6
10100 LDX #10
10110 LDY #0
10120 JSR &FFF4

201

10130 LDA #2
10140 JSR oswrch

Now we must set the Y coordinate of the top pixel of
the screen in &78 and &79 ready to work down the
screen.

10150 LDA #&FC
10160 STA &78
10170 LDA #3
10180 STA &79

For the moment let’s assume that we already have a
routine BAND that prints one pass of the print head,
i.e. given the coordinates of the top left-hand pixel
of a band (320 pixels by 24 pixels) it prints one sixth
of the dots on that band. The X coordinate needs to
be in &70 and &71 and the Y coordinate in &78 and
&79. Also, we need to tell the routine whether it is
printing odd-numbered or even-numbered dots,
horizontally, on that pass. We can do that by supply-
ing a mask in &7A − either 255 for the even dots or
zero for the odd ones. The reason for this will be
become obvious in a moment. Armed with this
routine, we can finish the main routine.

The first job, as we are going to print three
interlaced passes vertically, is to set the X register
to count these.

10190 .loop1 LDX #3

Next, we need to set up the X coordinate as zero
and the mask as 255 for the even pixels.

10200 .loop2 LDA #0
10210 STA &70
10220 STA &71
10230 LDA #255
10240 STA &7A
10250 JSR band

Next, for the odd pixels we need to set the X
coordinate to four and the mask to zero.

10260 LDA #4

202

10270 STA &70
10280 LDA #0
10290 STA &71
10300 STA &7A
10310 JSR band

Now we must feed the paper 1/216 of an inch ready
for the next interleaved set of pixels. We also need to
move the Y coordinate down one pixel and then
repeat the whole process.

10320 LDA #27
10330 JSR out
10340 LDA #74
10350 JSR out
10360 LDA #1
10370 JSR out
10380 LDA &78
10390 SEC
10400 SBC #4
10410 STA &78
10420 BCS skip3
10430 DEC &79
10440 .skip3 DEX
10450 BNE loop2

We have now printed a whole band 24 dots high
and need to feed the paper onward 24 dots (less the
three we have already fed it).

10460 LDA #27
10470 JSR out
10480 LDA #74
10490 JSR out
10500 LDA #21
10510 JSR out

We then need to move the Y coordinate down 24
pixels (less the three we have already moved it);
and, if Y coordinate is still on the screen, we must
go back to dump the next band.

10520 LDA &78
10530 SEC
10540 SBC #84
10550 STA &78

203

10560 LDA &79
10570 SBC #0
10580 STA &79
10590 BPL loop1

All that remains is to disable the printer, re-enable
the interrupts again and exit.

10600 LDA #3
10610 JSR oswrch
10620 CLI
10630 RTS

Now we need to write BAND. The first thing this
routine needs to do is to set up the printer to receive
320 bytes of graphics.

10640 .band LDA #127
10650 JSR out
10660 LDA #42
10670 JSR out
10680 LDA #3
10690 JSR out
10700 LDA #&40
10710 JSR out
10720 LDA #1
10730 JSR out

Next we need to make a temporary working copy of
the Y coordinate in &72 and &73 for POINT to use.

10740 .line1 LDA &78
10750 STA &72
10760 LDA &79
10770 STA &73

We now need to work out a byte. Again, we are
going to use the technique of shifting a byte of
memory left while setting bit one to the colour of
pixel and repeating this eight times. So first we
need to set the byte (&75) to zero. Then we need the
Y register to count the eight times. The first job
inside the loop is to shift &75 left a bit. Then we can
use POINT to return the colour of the pixel. If it is
zero then we can leave &75 alone as we have

204

already set all the bits to zero. Otherwise, we need
to set bit zero to one. As this will always be zero to
start with we can simply use the command INC to
set it to one.

10780 LDA #0
10790 STA &75
10800 LDY #8
10810 .line2 ASL &75
10820 JSR point
10830 BEQ skip1
10840 INC &75
10850 .skip1

Next we need to move down three pixels to allow for
the interleave, and repeat the process.

10850 .skip1 LDA &72
10860 SEC
10870 SBC #12
10880 STA &72
10890 BCS skip2
10900 DEC &73
10910 .skip2 DEY
10920 BNE line2

We are now ready to send a byte to the printer.
However, if &7A is set to 255, then we want to send
the byte followed by a zero; if it is set to zero, then
we want to send a zero followed by the byte. So, as
the first byte to send to the printer, we can use (&75
AND &7A). For the second byte we can use (&75
AND (&7A EOR 255)).

10930 LDA &7A
10940 AND &75

Now all that remains to do is move on to the next-
pixel-but-one horizontally by adding eight to the X
coordinate; and then, if the answer is less than 1280
or &500, go back and send the next pair of bytes. If
the end of the line has been reached then we must
send a carriage return and exit from the routine.

10950 JSR out

205

10960 LDA &7A
10970 EOR #255
10980 AND &75
10990 JSR out
11000 LDA &70
11010 CLC
11020 ADC #8
11030 STA &70
11040 LDA &71
11050 ADC #0
11060 STA &71
11070 CMP #5
11080 BNE line1
11090 LDA #13
11100 JMP out

25000]
25010 NEXT
25020 ENDPROC

We now have a finished program. To try it out you
can use the example program from the large Mode 4
dump routine.

Now that we have discovered the maximum
resolution of the printer it is well worth going back
to the Mode 2 dump. Let us consider using pixels
represented as six dots by three dots. If we dump a
Mode 2 screen at the highest resolution using this
system then it will be about 4 inches by 3.5 inches.
Also, we should be able to make a grey scale that
will handle 16 levels of brightness. This means that
we can use each of the 16 colours that the BBC
Micro will handle in Mode 2. Obviously we can’t
represent flashing colours so the best way to make
use of this is not to try and print exactly what is on
the screen but to represent each colour from 0 to 15
as a shade with 0 darkest and 15 brightest.

It turns out that with six-by-three dots at the
highest resolution the third row can always be left
blank and we still get a good range of colours. This
speeds printing up as we will only have to print four
interleaved lines. But if we try to print the same
pattern for each pixel, one above the other, they will
tend to produce visible vertical lines. So we will use
TWO sets of patterns and use alternate sets for

206

alternate rows of pixels. The patterns we will use are
as below:

Set 1

Colour 0

Colour 1

Colour 2

Colour 3

Colour 4

Colour 5

Colour 6

Colour 7

Colour 8

Colour 9

Colour 10

Colour 11

Colour 12

Colour 13

Colour 14

Colour 15

Set 2

Colour 0

Colour 1

Colour 2

Colour 3

Colour 4

Colour 5

Colour 6

Colour 7

Colour 8

Colour 9

Colour 10

Colour 11

Colour 12

Colour 13

Colour 14

Colour 15

As we are going to dump all the top rows then all
the bottom rows, it would seem sensible to block all
the top rows in one group and all the bottom rows in
one group. Within each group we can group the
entries into all the column ones then all the column
twos, etcetera. We can store the two alternate sets
of patterns, in this format, one after the other. We
are going to build up the bytes to send to the printer
by shifting them left and ORing them with 1 or 0.
For this reason it will be easiest if we use one whole
byte of a table to store each of the dot patterns.
These bytes will either be 1 for a dot or 0 for no dot.
The data looks as set out below.

20000 DATA1,1,1,0,0,0,1,1
20010 DATA1,1,0,0,0,0,0,0
20020 DATA1,1,1,1,1,1,1,0
20030 DATA0,0,0,0,0,0,0,0
20040 DATA1,0,0,0,0,0,0,0
20050 DATA0,0,1,0,0,0,0,0
20060 DATA1,1,1,1,1,1,0,0
20070 DATA0,0,0,1,0,0,0,0
20080 DATA1,1,0,0,0,0,0,1

207

20090 DATA1,0,0,1,1,0,0,0
20100 DATA1,1,1,1,1,0,0,0
20110 DATA0,0,0,0,0,0,0,0
20120 DATA1,1,1,1,1,1,0,0
20130 DATA0,0,0,0,0,0,0,0
20140 DATA1,1,0,0,0,0,0,0
20150 DATA0,0,0,0,0,0,0,0
20160 DATA1,1,1,1,0,0,0,1
20170 DATA1,0,0,0,0,0,0,0
20180 DATA1,1,1,0,0,0,1,0
20190 DATA0,1,0,0,0,0,0,0
20200 DATA1,1,1,1,1,1,1,0
20210 DATA0,0,0,0,0,0,0,0
20220 DATA1,0,0,0,0,0,0,0
20230 DATA0,0,0,0,0,0,0,0
20040 DATA1,1,1,0,0,0,1,1
20250 DATA1,1,0,0,0,0,0,0
20260 DATA1,1,1,1,1,1,1,0
20270 DATA0,0,0,1,1,0,0,0
20280 DATA1,0,0,0,0,0,0,0
20290 DATA0,0,0,0,0,1,1,0
20300 DATA1,1,1,1,1,1,0,0
20310 DATA0,0,0,0,0,1,0,0
20320 DATA1,1,0,0,0,0,0,1
20330 DATA0,0,1,0,0,0,0,0
20340 DATA1,1,1,1,0,0,0,0
20350 DATA0,0,0,0,0,0,0,0
20360 DATA1,1,1,1,1,1,0,0
20370 DATA1,1,0,0,0,0,0,0
20380 DATA1,1,0,0,0,0,0,0
20390 DATA0,0,0,0,0,0,0,0
20400 DATA1,1,1,1,1,0,0,1
20410 DATA0,0,0,0,0,0,0,0
20420 DATA1,1,1,0,0,0,1,0
20430 DATA1,1,0,0,0,0,0,0
20440 DATA1,1,1,1,1,1,1,0
20450 DATA0,0,0,0,0,0,0,0
20460 DATA1,0,0,0,0,0,0,0
20470 DATA0,0,0,0,0,0,0,0

So our first job is to read this into a reserved area of
memory.

10000 DEFPROCass
10010 DIMmc%1000,D%383
10020 oswrch=&FFEE
10030 FOR A%=0TO383

208

10040 READD%?A%
10050 NEXT
10060 FORpass%=0TO2STEP2
10070 P%=mc%
10080 [OPTpass%

We will again need our trust routines, POINT and
OUT. This time we don’t need to worry about the
point being off the screen as we are printing at
eight pixels per band and eight goes into 256
exactly.

18000 .point STX &76
18010 STY &77
18020 LDA #9
18030 LDY #0
18040 LDX #&70
18050 JSR &FFF1
18060 LDX &76
18070 LDY &77
18080 LDA &74
18090 RTS
19000 .out PHA
19010 LDA #1
19020 JSR oswrch
19030 PLA
19040 JMP oswrch
19050]
19060 NEXT
19070 ENDPROC

Now for the main routine. As with the previous
routine we need first of all to disable the interrupts,
reset windows, disable printer line-feeds and turn
the printer on.

10090 .dump SEI
10100 LDA #26
10110 JSR oswrch
10120 LDA #6
10130 LDX #10
10140 LDY #0
10150 JSR &FFF4
10160 LDA #2
10170 JSR oswrch

209

Next we need to set up the Y coordinate of the top
of the screen in &78 and &79.

10180 LDA #&FC
10190 STA &78
10200 LDA #3
10210 STA &79

Before we carry on, we need a routine to print one
pass of the printer head. We can specify that on
entry the Y coordinate of the top left-hand corner of
the band is in &78 and &79; that the contents of
&7B are zero for the top row and 96 for the bottom
row (this allows us to add this to the table address to
take care of which row we are printing); and that
&7A contains a mask which is 255 for the even-
numbered dots and zero for the odd numbered ones.

The first job, as always, is to set the printer to the
right graphics mode − here, quadruple-density with
960 (&3C0) dots across.

15000 .band LDA #27
15010 JSR out
15020 LDA #42
15030 JSR out
15040 LDA #3
15050 JSR out
15060 LDA #&C0
15070 JSR out
15080 LDA #3
15090 JSR out

Next we must set the X coordinate to zero.

15100 LDA #0
15110 STA &70
15120 STA &71

Next, for each column of pixels we send to the
printer, we need to set up the address of the table in
&7C and &7D. This will be D% plus the contents of
&7B.

15130 .column LDA #D%MOD256
15140 CLC

210

15150 ADC &7B
15160 STA &7C
15170 LDA #D%DIV256
15180 ADC #0
15190 STA &7D

Now we are ready to send six bytes to the printer.
We can use the X register to count the bytes. For
each byte we need to make a temporary working
copy of the contents of &78 and &79 in &72 and
&73.

15200 LDX #6
15210 .byte LDA &7B
15220 STA &72
15230 LDA &79
15240 STA &73

We are going to work on the byte in &75 so we need
to set it to zero for starters. Then we can count the
bits we have worked on, with the Y register.

15250 LDA #0
15260 STA &75
15270 LDY #8

Now for every bit we calculate we first need to shift
&75 left a bit. Then we must find the colour of the
pixel.

15280 .bit ASL &75
15290 JSR point

We are going to use the Y register to point into the
table so we need to save the Y register at &76 until
we have finished with the table. We have the colour
of the pixel in the accumulator, so, by transferring it
to the Y register we can use it directly to point into
the table. However, if we are calculating an odd-
numbered bit then we need to use the second set of
shade patterns; these are 192 bytes further on in the
table. We need to check bit 0 of the bit count which
we have temporarily stored at &76; if it is one, we
must add 192 to the Y register. Then we can load a
byte from the table. At this point we have finished

211

with the Y register and we can reload its original bit
count value.

15300 STY &78
15310 TAY
15320 LDA #1
15330 BIT &76
15340 BEQ skip1
15350 TYA
15360 CLC
15370 ADC #192
15380 TAY
15390 .skip1 LDA (&7C),Y
15400 LDY &76

This byte we need to OR with the byte we are
calculating. We then need to move down a pixel
and, if we haven’t already finished the byte, go back
and calculate the next bit.

15410 ORA &75
15420 STA &75
15430 LDA &72
15440 SEC
15450 SBC #4
15460 STA &72
15470 BCS skip2
15480 DEC &73
15490 .skip2 DEY
15500 BNE bit

Now we can send the byte to the printer. However,
we must only send alternate bytes so we must mask
it with &7A and reverse the mask in &7A ready for
the next byte.

15510 LDA &75
15520 AND &7A
15530 JSR out
15540 LDA &7A
15550 EOR #255
15560 STA &7A

Next we must move the start of the table to the next
column. Then, unless we have printed all six, we

212

must go back and print the next column.

15570 LDA &7C
15580 CLC
15590 ADC #16
15600 STA &7C
15610 BCC skip3
15620 INC &7D
15630 .skip3 DEX
15640 BNE byte

We have now dumped a column of eight pixels and
can move on to the next column. If we have printed
a whole line then we can send a carriage return and
exit the routine.

15650 LDA &70
15660 CLC
15670 ADC #8
15680 STA &70
15690 LDA &71
15700 ADC #0
15710 STA &71
15720 CMP #5
15730 BNE column
15740 LDA #13
15750 JMP out

We can now finish off the main routine. For every
text line, we must first set &7B to zero for the top
row. Then, for each row, we must make two pases:
first with the mask set to 255, then with the mask
set to zero.

10220 .textlin LDA #0
10230 STA &7B
10240 .row LDA #255
10250 STA &7A
10260 JSR band
10270 LDA #0
10280 STA &7A
10290 JSR band

Next we must feed the paper a fraction and set &7B
to 96 for the second row. By EXCLUSIVE Oring &7B

213

with 96 we can use this to count the two rows.

10300 LDA #27
10310 JSR out
10320 LDA #74
10330 JSR out
10340 LDA #1
10350 JSR out
10360 LDA &7B
10370 EOR #96
10380 STA &7B
10390 BNE row

Now we can feed the paper up the rest of the line.
Because the printer will not feed accurately at 1/216
of an inch it tends to feed more than this, so the two
feeds we have performed will have fed closer to 3/
216 of an inch. To correct this we need to feed only
a further 21/216 of an inch. This may not be neces-
sary on some printers, so you should experiment.

10400 LDA #27
10410 JSR out
10420 LDA #74
10430 JSR out
10440 LDA #21
10450 JSR out

All that remains is to move down to the next text
line and repeat until we have dumped the whole
screen; then we turn off the printer, re-enable the
interrupts, and exit in the usual fashion.

10460 LDA &78
10470 SEC
10480 SBC #32
10490 STA &78
10500 LDA &79
10510 SBC #0
10520 STA &79
10530 BPL textlin
10540 LDA #3
10550 JSR oswrch
10560 CLI
10570 RTS

214

To try out the dump routine, add the following lines
to the assembly code:

 10 MODE2
 20 VDU23,1,0;0;0;0;
 30 PROCass
 40 COLOUR135
 50 CLS
 60 COLOUR128
 70 P%=4
 80 FORA%=0TO16
 90 GCOL0,A%-1
 100 MOVE0,0
 110 PLOTP%,1000*SIN(A%*PI/32),1000*COS
 (A%*PI/32)
 120 P%=85
 130 NEXT
 140 CALLdump
 150 END

If you want to produce larger pictures it is relatively
easy to join two or more dumps together. We have
only looked at a selection of the screen dumps that
can be written but these should give you an idea of
how to go about writing any others you may need.

215

