
CHAPTER TEN

SPRITE GRAPHICS

Most arcade games feature a series of animated
characters which movearound the screen. One or
more of the characters are controlled by the player.
On the BBC Micro, the only help the operating
system gives to anyone trying to produce such
graphics is the provision of theu ser-definable
character set. Using VDU23 it is easy to produce
eight-by-eight pixel shapes which can be moved
around the screen.

However, this system has its limitations. Firstly,
the shape producedcan only be in two colours,
background and foreground; secondly, eight-by-
eight is too small for most purposes; and thirdly, this
method is far too slow for a fast action-packed
arcade game.

The first and second problems can be solved by
combining more than onecharacter to make up an
object, but this makes the animation even slower.It
is slow because time is taken up by the characters
having to be converted from the eight-byte format of
the user-defined character to theform in which they
are actually stored in the screen memory. Worse
still,the way a character is stored varies between
the different screen modes.

However, as most games will only use one
graphics mode, it should bepossible to code the
character into the relevant format for thatparticular
moe when writing the program. This ready-defined
characterwould be able to contain all the colours
available in the mode and couldbe any size. This
shape could then be stored directly on the screen in
afraction of the time taken by the operating system
to do the same job. These predefined characters are
called SPRITES. As most arcade games workin

216

Mode 2, I am going to show how to use a complete
sprite system from machine code in this mode.

Remember that the methods about to be detai led
will not work across the Tube.

Before we embark on a complex machine code
routine, we should try an experiment in BASIC −
this, as we have seen, is always a good idea when
writing machine code routines.

A sample sprite

A BASIC sprite routine We are going to use the sprite shown above as an
example. The codng forits storage as a Mode 2
sprite is shown. Because of the way in which the

217

&30 &20 &10 &30

&30 &20 &10 &30

&00 &20 &10 &00

&00 &21 &12 &00

&01 &03 &03 &02

&03 &03 &03 &03

&03 &03 &03 &03

&17 &21 &12 &2B

&17 &21 &12 &2B

&17 &21 &17 &2B

&03 &03 &03 &03

&01 &03 &03 &02

&00 &09 &06 &00

&00 &0C &0C &00

&04 &08 &04 &08

&0C &00 &00 &0C

Black

Red

Green

Blue

White

screen is laid out this coding will only work if the
sprite starts on thefirst pixel of a screen memory
byte. That is, the furthest left pixel ofthe sprite must
be on an even-numbered pixel horizontally. If we
wanted toplace it a single pixel to the right or left,
we would have to totally re-code it.

However, we can easily move the sprite left and
right two pixels at atime; that way, we are moving it
one byte at a time. If we made the spritemove this
distance every fiftieth of a second (which is the rate
at whichthe image on a TV or monitor is updated),
the image would appear to bemoving smoothly.

However, if we wanted the sprite to move slower
than that, we wouldeither have to put up with
noticing that the sprite jumps two pixels at atime, or
we would have to define two sprites, one in each
position, andalternate between them. This is com-
mon practice in arcade games and veryoften the
two sprites are slightly different. For example, it is
quiteeffective to use two sprites of a man with his
legs in differentpositions. This will make him appear
to walk when the sprites are placedalternatey on the
screen.

For movement up and down, we need to place
the bytes from the shapetable into the screen
memory in different positions. As we shall see,
thisis not too difficult. We can move the sprite up
and down a pixel at a timewithout having to recode
the sprite shape table.

The BASIC program below will place our example
sprite in the top left-hand corner of the screen. The
data statements at the end contain thecoded data
for the sprite laid out as above. Remembe, this is an
8-by-16sprite, so it is stored as 4 bytes (= 8 pixels)
wide and 16 bytes high.

 10 MODE2

 20 VDU23,1,0;0;0;0;

 30 FOR A%=0 TO 1

 40 FOR B%=0 TO 7

 50 FOR C%=0 TO 3

 60 READ D%

 70 ?(&3000+A%*640+B%+C%*8)=D%

 80 NEXT,,

218

 90 GOTO90

20000 DATA&0C,&00,&00,&0C

20010 DATA&04,&08,&04,&08

20020 DATA&00,&0C,&0C,&00

20030 DATA&00,&09,&06,&00

20040 DATA&01,&03,&03,&02

20050 DATA&03,&03,&03,&03

20060 DATA&17,&2B,&17,&2B

20070 DATA&17,&21,&12,&2B

20080 DATA&17,&21,&12,&2B

20090 DATA&03,&03,&03,&03

20100 DATA&03,&03,&03,&03

20110 DATA&01,&03,&03,&02

20120 DATA&00,&21,&12,&00

20130 DATA&00,&20,&10,&00

20140 DATA&30,&20,&10,&30

20150 DATA&30,&20,&10,&30

Notice in line 70 that the first eight rows of the
sprite are placed from address &3000 onwards and
the second eight rows are placed 640 bytes further
on because they are on the next text line. Notice
also that the position ALONG a row, C%, is multi-
plied by eight in line 70 because the columns take
up eight bytes each. All this is to get around the
problem caused by the complex way in which the
screen is laid out. If we want to be able to move the
sprite UP and DOWN a pixel at a time we are going
tohave to find a way of knowing when to add 640 to
the address to get us tothe next text line.

For our final sprite routine, we are going to
assume that the data for the shape of the sprite is
already stored in a section of memory (perhaps in an
array) in the format we used in the Basic example.
We can then copythis sprite table into the screen
memory at whatever screen position wewant the
sprite.

Before we can write a complete sprite routine, we
should write an experimental version in BASIC. The
easiest way to do this is as a procedure.

 1000 DEF PROCsprite(L%,X%,Y%,W%,H%)

Here L% is the location of the first byte of the sprite

219

shape table, X% and Y% are, respectively, the X and
Y coordinates of the top left-handcorner of where we
want the sprite to appear on the screen, and W%
and H% are the width and height of the sprite. To
make the program simpler, wewill take the X
coordinate and the width W% as being in bytes (i.e.
they give the number of pixels divided by two).
Thus the X coordinate can take values from 0 to 79.
The Y coordinate and height H% will be in pixels.

First we need to find the screen memory address
of the top left-handcorner of where we want the
sprite to appear. We need to split the Ycoordinate
up into the text row number (from 0 to 31) and the
number ofpixels down within that row (from 0 to 7).
Because each row contains eightpixels vertically,
bits 0 to 2 of the Y coordinate will be the number
ofpixels down within the row and the other five bi ts
will be eight times therow number. So, if we take
Y% DIV 8, this will give us the text row number. As
one row takes up 640 bytes of memory, we must
multiply this by640 then add &3000 (which is the
address of the start of the screen). Then we add
eight times the X coordinate and finally the least
signif icant three bits of the Y coordinate (Y% MOD
8). This will give us the addressof the first byte of
the screen memory that we will need to change to
place the sprite on the screen. We will, however,
need to keep the Y% MOD8 part of the address
separate as it will tell us how far down within the
text row we are. So we end up with something like
this:

 1010 A%=&3000+(Y%DIV8)*640+X%*8

 1020 Y%=Y%MOD8

Notice that in line 1020 we have altered Y% so that,
instead of containingthe complete Y coordinate, i t
now only holds the Y coordinate within thetext row.

We now have all the information we need to fix
the address of the topleft-hand corner of the sprite’ s
intended position on the screen and so place the
first row of pixels of the sprite on the screen. By
adding eight to the current address (in A%+Y%)
each time, we will move two pixels (=one byte in

220

Mode 2) to the right. We can continue to copy the
table intoevery byte of the screen memory, moving
one byte through the table eachtime, until we have
copied the number of bytes specif ied by the width
W%.We don’ t need the X coordinate again so we
can use X% to count bytes.

 1030 FOR X%=0 TO W%-1

 1040 ?(A%+Y%+X%*8)=?L% 1050 L%=L%+1

 1060 NEXT

We have now placed the first row of pixels of the
sprite on the screen.Now we need to go to the next
row of pixels. We can do this by adding 1 toY%.
However, if Y% then equals eight, we need to move
to the next text rowby adding 640 to A%. At the
same time we can check to see if the addresshas
passed through &8000. If so, the sprite has dropped
off the bottom ofthe screen and we want the
remainder of it to appear at the top of the screen to
produce a ‘wrap around’ effect. To do this we need
only subtract&5000 from A% to move back to the
corresponding position at the top of thescreen.

 1070 Y%=Y%+1

 1080 IF Y%=8 THEN Y%=0:A%=A%+640:IF

 A%>&7FFF THENA%=A%-&5000

Next we need to check whether we have finished
drawing the sprite. Theeasiest way to do this is to
subtract one from the height (H%) after eachrow
until H% is 0.

 1090 H%=H%-1

 1100 IF H%>0 THEN 1030

 1110 ENDPROC

We now have a complete BASIC sprite routine.
However, this routine would be very awkward for

realistic animation asit provides no means of remov-
ing the sprite again. To do this, we need to
Exclusive-Or the sprite with the screen to put it on
and then do the sameagain to remove it. This is the

221

same technique that can be used from BASICwith
the VDU23 user-defined characters. For this we
need to alter ourprogram. Line 1040 should now
read:

1040 ?(A%+Y%+X%*8)=?(A%+Y%+X%*8) EOR ?L%

Here again, then, is the complete BASIC sprite
routine.

 1000 DEF PROCsprite(L%,X%,Y%,W%,H%)

 1010 A%=&3000+(Y%DIV8)*640+X%*8

 1020 Y%=Y%MOD8

 1030 FOR X%=0 TO W%-1

 1040 ?(A%+Y%+X%*8)=?(A%+Y%+X%*8) EOR ?L%

 1050 L%=L%+1

 1060 NEXT

 1070 Y%=Y%+1

 1080 IF Y%=8 THEN Y%=0:A%=A%+640:IF

 A%>&7FFF THENA%=A%-&5000

 1090 H%=H%-1

 1100 IF H%>0 THEN 1030

 1110 ENDPROC

You may have noticed that the BASIC program is a
little awkwardly written. Even so, it has been speci-
fically written to be easy to code into machine code.

At this stage in our exploration it is hardly
necessary to give the corresponding line numbrs of
the sections discussed. You may find ituseful to
refer to the above listing for the next section

A machine code sprite routine
For our machine code version we must use a
subroutine instead of a procedure. We need a way
to pass the parameters (such as the location of the
table, X and Y coordinates, etcetera) to the routine.
We can use the X and Y registers and some zero
page locations to hold these parameters. On entry to
the subroutine let’s specify that the X and Y regis-
ters should initially contain the X and Y coordinates
at which we want to place the sprite; that &72
should contain the width (W%) of the sprite; &73
should contain the height (H%) of the sprite; and

222

that &75 and &76 should contain the start address
of the area of memory where we have stored the
sprite shape table.

The fist thing we need to do is to calculate the
screen memory address (A% in our BASIC example).
In the BASIC example this was calculated like this:

 1010 A%=&3000+(Y%DIV8)*640+X%*8

Let’s deal with this in reverse order. The first task,
then, is to calculate X%*8. The answer to this could
be larger than 255 (since X% can go up to 79) so we
will need two bytes to hold the answer. We are
going to store the final answer to A% at &70 and
&71 so let’s start by putting X% in &70 and zero in
&71. Thus we can treat X% as a two-byte number
and multiply it by two, three times, so as to finally
multiply it by eight. X% is initially contained in the
X register, so the code for the multiplication by
eight looks like this:

STX &70

LDX #0

STX &71

ASL &70

ROL &71

ASL &70

ROL &71

ASL &70

ROL &71

Notice that as we don’t need the X coordinate again
the X register is free for other use.

We have now calculated the X%*8 part of A%, so
our next task is the multiplication by 640. Conveni-
ently, the 1.2 Operating System ROM contains a
‘ times 640’ table. This is stored starting at address
&C375. It is stored as 32 entries each two bytes long
(high byte then low byte). So the contents of &C375
and &C376 are 0 (for 640 x 0), the contents of &C377
and &C378 are 640 (for 640 x 1) and so on. (If you
don’t have a 1.2 Operating System then it is rela-
tively easy to write a BASIC program that calculates
such a table and stores it in an array.) So, to add the

223

result of (Y% DIV 8)*640 to A% (stored at &70 and
&71) we do this:

TYA

AND #&F8

LSRA

LSR

TAX

LDA &C376,X

CLC

ADC &70

STA &70

LDA &C375,X

ADC &71

CLC

ADC #&30

STA &71

The first section masks off the bottom three bits of
Y% then divides by four. This leaves the accumula-
tor containing the equivalent of (Y%DIV8)*2. This is
because each byte in the times 640 table takes up
TWO bytes. Thus the result of (Y%DIV8)*640 can be
looked up using the X register as a pointer and
added to the rest of A% in &70 and &71. Notice
that, in the last three commands, we have added
&30 to the high byte. This is the equivalent of
adding &3000 to the whole number. So now we
have the equivalent of A% in &70 and &71. Notice
that this is onlyu the address in the screen memory
of the first character position at which the sprite is
to be placed, not the actual byte within that charac-
ter position.

The next line in our BASIC example was:

 1020 Y%=Y%MOD8

This represents how far down the character position
the sprite is to be placed. Converting this to
machine code is very easy. We want only the least
significant three bits of the Y register, so we do:

TYA

224

AND #7

STA &74

We have copied this answer into &74 as we are
going to need to use it again. The next section of
the BASIC program was a loop from 0 to W%-1 for
the width of the sprite. Notice that in line 1040 we
have to add to A% (now in &70 and &71) the cur-
rent contets of &74 (Y%) and X%*8. The easiest way
to do this in machine code is to first load the Y
register with the contents of &74, then add eight to
it each time around th loop. If we do this, then the
values the loop takes do not matter so long as it is
executed the correct number of times.

 1040 ?(A%+Y%+X%*8)=?(A%+Y%+X%*8) EOR ?L%

So, we can load the X register with the width (W%)
and decrement it each time round the loop until it is
zero. Because we have A% in &70 and &71 and the
rest of the expression in the Y register, we can use
post-indexed indirect addressing to access the
screen, i.e. LDA (&70),Y will be the equivalent of
?(A%+Y%+X%*8).

Next we need to load a byte from the spri te
shape table into the accumulator. Because at this
stage we are using both the X and Y registers, we
cannot easily use any form of indexed addressing.
What we do instead is use absolute addressing. In
this addressing mode the address is stored as two
bytes after the command byte. The first byte is the
low byte, the second is the high byte. By changing
these two bytes, we can use this addressing mode
for looking into tables. This method is not, strictly
speaking, ‘ legal’ as it would not work if the routine
were in ROM, but it does save on memory and
speed.

The next section of our program will look like:

.row LDY &74

 LDX &72

This sets the Y register to the position of the first
pixel of the sprite row and puts the width W% in the

225

X register. Because we jump back to here at the
start of each new row of the sprite, we need the
label ROW.

.byte LDA &FFFF

Above is the command that looks into the spri te
shape table: the two bytes after it will be modified
by the program as it runs, so the number &FFFF is
unimportant. After each byte of the sprite is placed
on the screen we will need to jump back to this
command; so again a label, BYTE, is needed.
However, before we can carry on we need to back-
track to the very beginning of the routine because
we need to place the address of the first byte of the
sprite shape table at BYTE+1 and BYTE+2 (low,
high) in place of the ‘dummy’ address we have
specif ied in the assembly code. Thus the program
will start by copying the first byte of the table into
the screen memory.

We have specif ied that when calling this routine,
the address of the first byte of the table should be
stored at &75 and &76, so the first two lines of the
program need to be:

.sprite LDA &75

 STA byte+1

 LDA &76

 STA byte+2

Going back to where we left off, we have just loaded
a byte from the sprite shape table. So now we will
need to EOR this byte with the relevent byte of the
screen memory and place the result back on the
screen:

 EOR (&70),Y

 STA (&70),Y

Then we must add eight to the Y register to move
one byte (two pixels) to the right:

226

 TYA

 CLC

 ADC #8

 TAY

The next line of the BASIC program was

 1050 L%=L%+1

So we need to add one to the sprite shape table
pointer. This is held, remember, in the two bytes
after the LDA command at BYTE so we can do this:

 INC byte+1

 BNE nocarry

 INC byte+2

.nocarry DEX

 BNE byte

Notice that we then carry on doing one row of the
sprite, moving from left to right, until X has reached
zero and we have completed a row. The next two
lines of the BASIC program were:

 1070 Y%=Y%+1

 1080 IF Y%=8 THEN Y%=0:A%=A%+640:IF

 A%>&7FFF THEN A%=A%-&5000

See if you can spot how this relates to the following
machine code:

 INC &74

 LDA &74

 CMP #8

 BNE notline

 LDA #0

 STA &74

 LDA &70

 CLC

 ADC #&80

 STA &70

 LDA &71

 ADC #2

227

 STA &71

 CMP #&80

 BCC notline

 SEC

 SBC #&50

 STA &71

.notline ...

Lastly, we need to subtract one from H% and branch
back to the label ROW if H% is larger than zero, or
return from the subroutine, with the sprite com-
pleted, if not.

.notline DEC &73

 BNE row

 RTS

We now have a complete assembly language sprite
drawing routine.

Listing 1
.sprite LDA &75 DEFPROCsprite

 (L%,X%,Y%,W%,H%)

 STA byte+1

 LDA &76

 STA byte+2

 STX &70 A% =

 LDX #0

 STX &71

 ASL &70 X% * 8

 ROL &71

 ASL &70

 ROL &71

 ASL &70

 ROL &71

 TYA + (Y%DIV8)

 AND #&F8

 LSR A

 LSR A

 TAX

 LDA &C376,X * 640

 CLC

 ADC &70

 STA &70

228

 LDA &C375, X

 ADC &71

 CLC

 ADC #&30 + &3000

 STA &71

 TYA

 AND #7 Y%=Y%MOD8

 STA &74

. r ow LDY &74

 LDX &72 FOR X% = 0 TO W%- 1

. byt e LDA &FFFF ?(A%+Y%+X%* 8) =

 ?(A%+Y%+X%* 8) EOR ?L%

 EOR (&70) , Y

 STA (&70) , Y

 TYA

 CLC

 ADC #8

 TAY

 I NC byt e+1 L%=L%+1

 BNE nocar r y

 I NC byt e+2

. nocar r y DEX

 BNE byt e

 I NC &74 Y%=Y%+1

 LDA &74 I F Y%<>8

 CMP #8

 BNE not l i ne THEN ' not l i ne'

 LDA #0 Y%=0

 STA &74

 LDA &70 A%=A%+640

 CLC

 ADC #&80

 STA &70

 LDA &71

 ADC #2

 STA &71

 CMP #&80 I F A%<&8000

 BCC not l i ne THEN ' not l i ne'

 SEC

 SBC #&50

 STA &71

. not l i ne DEC &73 H%=H%- 1

 BNE r ow I F H%>0 THEN ' r ow'

 RTS ENDPROC

229

This routine will only Exclusive-Or a sprite with the
screen memory; it will not move it for us.

Moving sprites To move a sprite we have to use the routine twice:
first to remove the old image and then to replace it
with the new image. It would make the routine
easier to use if it would do all this for us. Another
point is that, to make a man walk, for example, we
would have to replace the previous image with a
different image. Ideally our routine should be able to
handle this also. Further, we should not have to tell
the routine the dimensions and location of the
shape table for each sprite every time we want to
use it.

The last problem is solved relatively easily by
assigning each sprite shape table an arbitrary
number by which we can refer to it. First we reserve
a section of memory in which to place a table,
distinct from the sprite shape table itself, containing
all the information on each sprite − an information
table. The easiest way to do this is with a DIM
statement − DIM spri tes 255. We need four bytes of
information for each sprite − two bytes for the
ADDRESS of its shape table; where the data for the
actual sprite shape is stored, and one byte each for
HEIGHT and WIDTH of the sprite − so this com-
mand will reserve a table large enough for the
information on 64 sprites. If you are not going to use
this many sprites, the information table can be
smaller. (Notice that we are using one table to point
to a series of other tables. This is a very useful
technique.)

For convenience let’s assume that each spri te
takes up four consecutive bytes in this information
table: i ts two-byte shape table address (low-high)
followed by its width and then its height (two
separate bytes). We can now assign each sprite a
number from 0 to 63 where sprite 0 is the one whose
data is in the first four bytes of the information table,
sprite 1 is the one whose data is the next four bytes
of the information table, and so on.

Now we can enter our new, improved spri te
drawing routine with just three parameters − the

230

sprite’s X and Y coordinates on the screen in the X
and Y registers, and the sprite’s number in the
accumulator. Therefore we must now alter the
beginning of our sprite routine to handle this.

We will need the X register to point into the
sprite information table so we need to save the
current contents of the X register. We might as well
save this as a two-byte number at &70 and &71
ready for the multiplication by 8. So the modified
beginning of the sprite routine starts like this:

.sprite STX &70

 LDX #0

 STX &71

Next we need to use the sprite number (which we
have said must be in the accumulator when the
routine is called) as a pointer for the information
table. As each entry takes up four bytes we need to
multiply the accumulator by four then transfer it to
the X register ready to point into the information
tabke.

 ASL A

 ASL A

 TAX

Now we can transfer the four bytes of information
about the sprite (sprite shape table address, width
and height) from the information table into the
relevant locations ready for the rest of the program.

 LDA sprites,X

 STA byte+1

 LDA sprites+1,X

 STA byte+2

 LDA sprites+2,X

 STA &72

 LDA sprites+3,X

 STA &73

Notice that, by taking the address of the sprite
shape table directly from the sprite information table
and placing it in BYTE we don’t need to use

231

locations &75 and &76 any more.
The rest of the routine is the same as before

(Listing 1 on page 228), starting with:

 ASL &70

 ROL &71

 ASL &70

 ...

 ...

We now only have to give the number of the spri te
we want to place on the screen, but we still have to
move the spri tes by putting them on the screen and
then taking them off again. This problem can be
solved by keeping track of which of the spri tes are
being shown on the screen at any one time. The
best way to do this is to have a number assigned to
each moving sprite (or ‘film’) on the screen. This
number should not be confused with the number we
assigned to each sprite shape table. If, for example,
we had a game with a user-controlled man and
eight monsters, the man could be film 0 and the
monsters could be films 1 to 8. Any of these nine
films (0 to 8) could actually appear as any of the
sprites we have shape tables for. And the man
would probably alternate between two different
sprite shapes so that he would appear to walk.

What we will do is keep a further set of tables
that contain the number of the sprite shape that
was last used for each film and where on the screen
it was placed. To do this we wil l have three tables.

The table OLDS will contain the number of the
last sprite used and OLDX and OLDY will contain
the last X and Y coordinates for each of the films.
Each film will use one byte of each of these three
tables. Thus the details for film 0 will be at the first
byte of each table, the details for film 1 will be at the
second byte of each table, etcetera. So at the begin-
ning of our program we will need:

 DIM olds 255, oldx 255, oldy 255

If fewer films are needed then the size of the
arrays can be reduced accordingly. So that we know

232

that none of the films are in use at the start of the
program, let’s set all the entries in OLDS to 255. So a
255 in OLDS tells us that the relevant films is not yet
active. This means that we can’t have a sprite
shape numbered 255.

 FORA%=0TO255

 olds?A%=255

 NEXT

We can now write a new routine, which will use the
subroutine SPRITE, that will move a film on the
screen. We can enter this routine with just the
number of the film we want to move, the number of
the new sprite shape we want to use for the film,
and the X and Y coordinates to which we want to
move the film. For convenience let’s keep the sprite
number in the accumulator, the X and Y coordinates
in the X and Y registers, and store the film number
in &75. The first job the new routine must do is to
save the contents of the three registers as they will
not be needed immediately. We could push these on
the stack but this is slow. It is quicker to store them
in zero page:

.move STA &76

 STX &77

 STY &78

Next we need to load the X register with the film
number so that we can look into the film tables. We
then need to check if this is a new film (whether the
relevant entry in OLDS contains 255). If so, we don’t
need to remove an old image and can go straight to
the new image routine.

 LDX &75

 LDA olds,X

 CMP #255

 BEQ newfilm

If we find that we need to remove an old image we
can load the data about the old image from the film
tables. Note that because of the shortage of regis-

233

ters we have to temporarily save the contents of the
accumulator (which contains the byte from OLDS)
in yet another zero page location.

 STA &79

 LDA oldy,X

 TAY

 LDA oldx,Y

 TAX

 LDA &79

We can now call SPRITE to remove the old image.
Notice that we then need to reload the X register
with the current film number, as this has been lost.

 JSR sprite

 LDX &75

We now have to place the new sprite on the screen
and at the same time place the data on the new
sprite back in the film tables ready for the next
animation. Note that the new sprite shape number
and the new X and Y coordinates have to be
reloaded from zero page where we stored them
temporarily.

.newfilm LDA &78

 STA oldy,X

 TAY

 LDA &77

 STA oldx,X

 LDA &76

 STA olds,X

 LDX &77

Note again the problems caused by the lack of
registers.

Next we need to call SPRITE again. In fact, it is
better to place the whole film move routine directly
before the sprite routine so that the next command
will be the start of the sprite routine. This saves a
JSR command and an RTS command (See full listing
below).

234

We now have a complete sprite routine. For clarity
here is a complete assembler listing of it. To use it
from BASIC use the command PROCassemble at
the beginning of the program to initialise it and
then call MOVE with A%, X%, Y% and &75 set
correctly, as explained earlier. (Listing two below.)

Listing 2
10000 DEFPROCassemble

10010 DIMsprites 255,olds 255,oldx 255,oldy 255

10020 FORA%=0TO255

10030 olds?A%=255

10040 NEXT

10050 DIMZ%200

10060 FORpass%=0TO2STEP2

10070 P%=Z%

10080 [OPTpass%

10090 .move STA &76 \ Store info

10100 STX &77 \ on new sprite

10110 STY &78 \ temporarily

10120 LDX &75 \ in zero page

10130 LDA olds,X

10140 CMP #255

10150 BEQ newfilm

10160 STA &79

10170 LDA oldy,X \ Remove old

10180 TAY \ sprite if nec.

10190 LDA oldx,X

10200 TAX

10210 LDA &79

10220 JSR sprite

10230 LDX &75

10240 .newfilm LDA &78 \ Replace

10250 STA oldy,X \ with

10260 TAY \

10270 LDA &77 \ new sprite

10280 STA oldx,X \ and store

10290 LDA &76 \ new sprite in

10300 STA olds,X \ arrays

10310 LDX &77

10320 .sprite STX &70 \ Main sprite

10330 \ routine.

10340 LDX #0

235

10350 STX &71

10360 ASL A

10370 ASL A

10380 TAX \ Get info

10390 LDA sprites,X \ on sprite shape

10400 STA byte+1 \ from info

10410 LDA sprites+1,X \ table

10420 STA byte+2

10430 LDA sprites+2,X

10440 STA &72

10450 LDA sprites+3,X

10460 STA &73 \ Calculate screen

10470 ASL &70 \ addr of top of

10480 ROL &71 \ LH corner

10490 ASL &70 \ of sprite

10500 ROL &71

10510 ASL &70

10520 ROL &71

10530 TYA

10540 AND #&F8

10550 LSR A

10560 LSR A

10570 TAX

10580 LDA &C376,X

10590 CLC

10600 ADC &70

10610 STA &70

10620 LDA &C375,X

10630 ADC &71

10640 CLC

10650 ADC #&30

10660 STA &71

10670 TYA

10680 AND #7

10690 STA &74

10700 .row LDY &74 \ Plot row

10710 LDX &72 \ of pixels

10720 .byte LDA &FFFF \ Plot 1 pair of

10730 EOR (&70),Y \ pixels (1 byte)

10740 STA (&70),Y

10750 TYA \ move right to

10760 CLC \ next pair of

10770 ADC #8 \ pixels

10780 TAY

236

10790 INC byte+1 \ set shape table

10800 BNE nocarry \ pointer to

10810 INC byte+2 \ next byte

10820 .nocarry DEX \ next pair of

10830 BNE byte \ pixels until

10840 \ row complete.

10850 INC &74 \ move down to

10860 LDA &74 \ next row of

10870 CMP #8 \ pixels

10880 BNE notline \ If nec. move

10890 LDA #0 \ down to

10900 STA &74 \ next text row

10910 LDA &70

10920 CLC

10930 ADC #&80

10940 STA &70

10950 LDA &71

10960 ADC #2

10970 STA &71

10980 CMP #&80

10990 BCC notline \ If nec. 'wrap'

11000 SEC \ back to top

11010 SBC #&50 \ of screen

11020 STA &71

11030 .notline DEC &73 \ Move down a row

11040 BNE row \ until sprite

11050 RTS \ complete

11060]

11070 NEXT

11080 ENDPROC

This routine has several limitations. Firstly, it cannot
be used from a second processor because it uses
direct screen access rather than the official Acorn
commands. For a routine to work with the second
processor, only the operating system commands
must be used for input and output, but this slows
down a machine code program considerably. For
most purposes it is better to leave this routine in the
main processor and call it from the second
processor.

Secondly, notice that as the Y register is used to
hold 8 times the X coordinate within the sprite, the
largest width of sprite the routine will handle is 32

237

bytes. Vertically there is no limit. Also note that by
using a differently coded sprite shape table, this
routine may be used in any 20K mode. However, the
number of horizontal positions the sprite may be
positioned at will still only be 80.

Now that we have our sprite routine we must see
how it can be used. Let’s write a routine to animate
a small man around the screen under the control of
the Z, X, /, and : keys. We will use the man we used
for the BASIC example. First we must have the
sprite shape table as data.

20000 DATA&0C,&00,&00,&0C

20010 DATA&04,&08,&04,&08

20020 DATA&00,&0C,&0C,&00

20030 DATA&00,&09,&06,&00

20040 DATA&01,&03,&03,&02

20050 DATA&03,&03,&03,&03

20060 DATA&17,&2B,&17,&2B

20070 DATA&17,&21,&12,&2B

20080 DATA&17,&21,&12,&2B

20090 DATA&03,&03,&03,&03

20100 DATA&03,&03,&03,&03

20110 DATA&01,&03,&03,&02

20120 DATA&00,&21,&12,&00

20130 DATA&00,&20,&10,&00

20140 DATA&30,&20,&10,&30

20150 DATA&30,&20,&10,&30

Our main program must first go into Mode 2 and
turn off the cursor then assemble the machine code.
Next it must load the sprite shape table into a
reserved block of memory (in this case an array) and
place the information about the size of the sprite
and location of the shape table in the memory, in
SPRITES. We are only going to use one film (film
zero) so we can set the film number stored at &75
permanently to zero.

 10 MODE 2

 20 VDU23,1,0;0;0;0;

 30 PROCassemble

 40 DIM man% 63

 50 FOR A% = 0 TO 63

238

 60 READ man%?A%

 70 NEXT

 80 !sprites = man%

 90 sprites?2 = 4

 100 sprites?3 = 16

 110 ?&75 = 0

Notice that the command READ man%?A% is
legal. This is because expressions using the opera-
tors ?, ! and $ are treated as variable names. Next
we set the starting position of the man into X% and
Y% and set the sprite shape number in A% to 0.

 120 X% = 0

 130 Y% = 0

 140 A% = 0

Next we must place the man on the screen.

 150 CALL move

Next we need to alter X% and Y% according to
which keys are being pressed.

 160 IF INKEY-98 AND X%>0 X%=X%-1

 170 IF INKEY-67 AND X%<76 X%=X%+1

 180 IF INKEY-105 AND Y%<240 Y%=Y%+4

 190 IF INKEY-73 AND Y%>0 Y%=Y%-4

Notice the checks to prevent our man from
wandering off the edge of the screen. Next we need
to go back to line 150 to remove his old image and
plot his new one.

 200 GOTO150

If we now add in the main sprite routine assembly
code (Listing 2) the program should work.

The flicker licker If you try the program just given, however, you will
find that although it is very fast it is also very
flickery.

To understand why this is we must first look at
the way in which a monitor or TV works. A TV set

239

works on the principle of a beam of electronics
which are fired at a screen. The screen is covered
with a substance that glows where the beam hits it.
The beam obviously cannot be aimed at the whole
screen at one time yet we need the whole screen to
appear to glow all the time. In fact what happens is
that the beam scans in a series of horizontal l ines
starting at the top and working down. It completes a
full screen (or ‘ frame’) every fiftieth of a second. The
result is that the eye is fooled into seeing a perma-
nent picture. This means that if part of our
computer’s copy of a picture is changed it does not
appear to change on the screen itself until the beam
reaches that point on the screen. So the fastest you
can animate a computer image without jarring the
eye is 50 times a second. This, however, is also fast
enough to fool the eye into seeing continuous
motion.

So, our program needs to move the man exactly
50 times a second for him to move smoothly. To
move the man we are taking him off the screen and
then putting him back on again near where he was.
This, of course, means that there is a short space of
time when the man is not on the screen at all. If this
blank period happens to coincide with the beam’s
scanning that point the man will just disappear for a
whole frame. This results in the flicker that our
example program suffers from.

We need, then, a method of synchronising our
program with the scanning of the beam in the VDU.
When the beam reaches the bottom of the screen it
has to move back to the top again ready for the next
frame. While this is happening the screen is
‘blanked’. This vertical blanking takes about a fifth
of the fiftieth-of-a-second frame cycle.

We should update the screen only during this
blanking period. The computer sends a signal (call a
synchronisation pulse) to the VDU approximately in
the middle of this blanking to tell the VDU to move
the beam back to the top again. At the same time as
this occurs an interrupt is generated by the compu-
ter. When the operating system processes this it
subtracts one from the contents of location &240. If
we wait until the contents of location &240 change

240

we wait until the synchronisation pulse occurs, and
we can then redraw our picture which will be ready
to be ‘ looked’ at when the scanning beam reaches
it. *FX19 conveniently does this for us. So we can
improve our program by inserting the l ine:

 195 *FX19

If you try this, however, you will find that now there
is a region at the top of the screen where the spri te
disappears completely. This is because the syn-
chronisation produced by *FX19 occurs roughly in
the middle of the blanking period. The time
between this and the beam’s starting to draw the
top of the screen is too small to move the sprite in. If
the sprite is at the top of the screen the beam
arrives at the sprite position before it has been
replaced, so the sprite vanishes.

Unfortunately there is no simple solution to this
problem. In many cases it is easiest to ignore the
flicker completely. In most slow-moving games,
such as PACMAN or DONKEY KONG, where the
sprites move only every other frame the flicker will
not be much of a problem. Some games, however,
could be improved considerably by the removal of
flicker.

To do this we need some means of synchronising
the sprite movement with the beginning of the
blanking period rather than the middle as produced
by *FX19. We need an interrupt to occur at the very
beginning of the blanking period.

To do this we can use *FX19 to start an interrupt
timer in one of the VIAs which will count for just
long enough for it to create an interrupt when we
need it. Before we can get into the details of this,
however, we need to solve another problem. If we
are using several films they must all move at the
same time − during the blanking period, not when
the commands for each of them to move is sent. For
this reason we will need a buffer, for each film,
which contains the X and Y coordinates and the
new sprite shape number for the next move of that
film.

The easiest way to do this is to have three tables

241

NEWX, NEWY and NEWS. As with the three tables
for the old positions each film uses one byte of each
table. The main program can then set these tables
to hold the movements required. When the interrupt
occurs, the movements can be processed in one go.
We may not want to move all the films every 50th of
a second, so any one we don’t want to move will
have 255 in its corresponding byte of NEWS. Once
each film has been moved its entry in NEWS will be
set to 255 ready for the NEXT move. We could use
the move routine we already have for this and add
to it, but it is easier to rewrite it to handle all the
sprites. Firstly we will need the actual sprite routine
from LISTING 2, starting at the label SPRITE. Next
we need to know how many films are in use at any
moment. This can be stored in &77. (Remember
that the sprite routine only uses locations &70 to
&74.) Now we can start.

If the contents of &77 are, say, 7, then we will
refer to bytes 0 to 6 in each of the tables, so we need
to load the contents of &77 into the X register and
decrement them. While we are at it we need to
check whether X was 0 and, if so, end the routine.
So the start of the routine will look like this:

.rts RTS

.films LDX &77

.next DEX

 CPX #255

 BEQ rts

Notice that it is more efficient to place the RTS
command before the start of the routine as this
ensures that even if the rest of the routine is long
the branch range won’t be exceeded. The label
NEXT can be jumped to, to process the next film.

Next we need to check whether this film needs
moving. Remember we said that static films would
have 255 in NEWS (the table holding the new sprite
shape number for each film).

 LDA news,X

 CMP #255

242

 BEQ next

We now check whether there is an old sprite to
remove from the screen and, if so, remove it.

 LDA olds,X

 CMP #255

 BEQ newfilm

 STA &76

 LDA oldy,X

 TAY

 LDA oldx,X

 STX &75

 TAX

 LDA &76

 JSR sprite

 LDX &75

Now we have to place the new sprite on the screen
and store the data on it in the relevant bytes of
OLDS, OLDX and OLDY.

.newfilm LDA news,X

 STA olds,X

 STA &76

 LDA newy,X

 STA oldy,X

 TAY

 LDA newx,X

 STA oldx,X

 STX &75

 TAX

 LDA &76

 JSR sprite

Finally we have to store 255 in the relevant bytes of
NEWS (so that the program does not repeat this
move in the next frame), and go back for the next
film.

 LDX &75

 LDA #255

 STA news,X

 JMP next

243

Notice the similarities between this version of
MOVE and the previous one.

Next we need a routine that will place a
command into the buffer. For this purpose we will
use &78 to hold the current film number, and the
accumulator and the X and Y registers to hold the
sprite number and X and Y coordinates respectively,
as before. Thus, to instruct the sprite routine to
move a film, you must place the film number in &78,
the number of the sprite shape you want to use in
the accumulator, and the new X and Y coordinates
in the X and Y registers. Then you must call the
routine MOVE.

.move STX &76

 LDX &78

 STA news,X

 TYA

 STA newy,X

 LDA &76

 STA newx,X

 RTS

Now we have come to the difficult bit. We need to
intercept the interrupt which *FX19 uses and use it
to start an interrupt timer in the system VIA. We will
need an initialisation routine − first, to copy the
IRQ1 vector into a spare vector, and second, to alter
it to point to our own interrupt routine. While doing
this we need to disable the interrupts so that no
interrupt can occur when the vector is changed.

.init SEI

 LDA &204

 STA &230

 LDA &205

 STA &231

 LDA #irq MOD256

 STA &204

 LDA #irq DIV256

 STA &205

We also need to disable the TIMER 1 interrupts and

244

the analogue-to-digital converter interrupts in the
system VIA. These tend to cause trouble by inter-
rupting at awkward moments. Doing this means the
analogue-to-digital converter interrupts and the
centisecond clock will not work. However, if you
want a clock, say for a game, it is easy to add into
the IRQ routine a section which counts video sync
interrupts (which occur 50 times a second) and
increments a location every fiftieth interrupt so that
it counts in seconds. It also means that though
INKEY will work GET will not.

 LDA #&50

 STA &FE4E

 CLI

 RTS

(See chapter 4 for more information on the registers
in the VIA.)

Now that we have initialised the interrupts we need
a routine to handle them. This routine must appear
totally ‘ transparent’ to the operating system − it
mustn’t interfere with the operating system at all.
For this reason it must not change any of the regis-
ters (A, X or Y). When the operating system
processes an interrupt it stores the accumulator in
location &FC and leaves the other two registers as
they were when the interrupt occurred. If then
jumps to the vector IRQ1.

We also have the problem that if another
interrupt occurs while we are processing the current
one, the routine will be entered again. This must not
disturb the first entry. For these reasons both the
contents of location &FC and the X and Y registers
must be pushed onto the stack. This saves them so
that they can be recovered before returning control
to the operating system.

.irq LDA &FC

 PHA

 TXA

 PHA

 TYA

245

 PHA

Next we must check that the interrupt that has
occurred is the one we want. We can look at the VIA
for the answer to this.

 LDA #2

 BIT &FE4D

 BEQ notsync

We now have to deal with the occurrence of a video
sync interrupt. We must set TIMER 2 in the system
VIA to count for just long enough for the scanning
beam in the monitor to reach the vertical blanking
period, and then produce an interrupt. So that we
can make the fine adjustments later, we use the
variable T% to set the time. T% can then be tuned
by trial and error to get the best flicker-free picture.

 LDA &FE4B

 AND #&DF

 STA &FE4B

 LDA &FE4E

 ORA #&20

 STA &FE4E

 LDA #T%MOD256

 STA &FE48

 LDA #T%DIV256

 STA &FE49

Lastly we need to exit from the routine, remember-
ing to replace all the registers as they were. It is
VITAL that, when dealing with interrupts, the
registers A, X and Y (and any variables or locations
in memory that the main program may be using)
hold the same values as they did when the interrupt
occurred, before the interrupt-servicing routine
passes control back the operating system.

.exit PLA

 TAY

 PLA

 TAX

 PLA

246

 STA &FC

 JMP (&230)

Now we must check to see if a TIMER 2 interrupt
has occurred.

.notsync LDA #&20

 BIT &FE4D

 BEQ exit

Then, when TIMER 2 interrupt occurs we must clear
the interrupt status of the VIA ready for the next
interrupt.

 STA &FE4D

We are now ready to move the films. Moving the
films will take most of the blanking period so the
synchronisation interrupt will happen right in the
middle of the films. For this reason we must ensure
that the interrupts are enabled while the films are
moved. However, we must not have changed the
state of the interrupts when we exit the routine. The
easiest way to ensure this is to push the processor
status register on the stack before changing the
interrupt status and then pull it back off again just
before we exit the routine.

 PHP

 CLI

 JSR films

 PLP

 JMP exit

We now have the complete routine. For simplicity of
use we can dimension all the arrays inside the
procedure that assembles the machine code. These
arrays need not be longer than the maximum num-
ber of sprite shape tables and films that we are
going to use, so we might as well specify these two
numbers as procedure parameters. At the same
time we can set the number of films in use (stored at
&77) to the maximum number of films. If, at some
point, we want to use fewer films than this number,

247

then we can alter the contents of &77 after using
the procedure. While we are bout it we may as well
clear OLDS and NEWS, ready for use, by filling them
with 255. We also need to set T% to a suitable value.
This value you can experiment with to get the best
results.

Here, then, is the complete sprite routine with
films and flicker-prevention.

Listing 3
10000DEFPROCassemble(NF%,NS%)

10010?&77=NF%

10020NF%=NF%-1

10030NS%=NS%*4-1

10040T%=18000

10050DIMsprites NS%,olds NF%,oldx NF%,oldy

NF%,news NF%,newx NF%,newy NF%

10060FORA%=0TONF%

10070olds?A%=255

10080news?A%=255

10090NEXT

10100DIMZ%400

10110FORpass%=0TO2STEP2

10120P%=Z%

10130[OPTpass%

10140.sprite STX &70 \ draw a sprite

10150 LDX #0 \ given sprite

10160 STX &71 \ NOT & XY

10170 ASL A \ coordinates

10180 ASL A

10190 TAX

10200 LDA sprites,X

10210 STA byte+1

10220 LDA sprites+1,X

10230 STA byte+2

10240 LDA sprites+2,X

10250 STA &72

10260 LDA sprites+3,X

10270 STA &73

10280 ASL &70

10290 ROL &71

10300 ASL &70

10310 ROL &71

10320 ASL &70

248

10330 ROL &71

10340 TYA

10350 AND #&F8

10360 LSR A

10370 LSR A

10380 TAX

10390 LDA &C376,X

10400 CLC

10410 ADC &70

10420 STA &70

10430 LDA &C375,X

10440 ADC &71

10450 CLC

10460 ADC #&30

10470 STA &71

10480 TYA

10490 AND #7

10500 STA &74

10510.row LDY &74

10520 LDX &72

10530.byte LDA &FFFF

10540 EOR (&70),Y

10550 STA (&70),Y

10560 TYA

10570 CLC

10580 ADC #8

10590 TAY

10600 INC byte+1

10610 BNE nocarry

10620 INC byte+2

10630.nocarry DEX

10640 BNE byte

10650 INC &74

10660 LDA &74

10670 CMP #8

10680 BNE notline

10690 LDA #0

10700 STA &74

10710 LDA &70

10720 CLC

10730 ADC #&80

10740 STA &70

10750 LDA &71

10760 ADC #2

249

10770 STA &71

10780 CMP #&80

10790 BCC notline

10800 SEC

10810 SBC #&50

10820 STA &71

10830.notline DEC &73

10840 BNE row

10850.rts RTS

10860

10870.films LDX &77 \ Move all films

10880.next DEX \ currently

10890 CPX #255 \ active

10900 BEQ rts

10910 LDA news,X

10920 CMP #255

10930 BEQ next

10940 LDA olds,X

10950 CMP #255

10960 BEQ newfilm

10970 STA &76

10980 LDA oldy,X

10990 TAY

11000 LDA oldx,X

11010 STX &75

11020 TAX

11030 LDA &76

11040 JSR sprite

11050 LDX &75

11060.newfilm LDA news,X

11070 STA olds,X

11080 STA &76

11090 LDA newy,X

11100 STA oldy,X

11110 TAY

11120 LDA newx,X

11130 STA oldx,X

11140 STX &75

11150 TAX

11160 LDA &76

11170 JSR sprite

11180 LDX &75

11190 LDA #255

11200 STA news,X

250

11210 JMP next

11220

11230.move STX &76 \ Now

11240 LDX &78 \ move a film in

11250 STA news,X \ next blanking

11260 TYA \ period given

11270 STA newy,X \ film no in &78

11280 LDA &76 \ shape in A

11290 STA newx,X \ coords in X & Y

11300 RTS

11310

11320.init SEI \ Init. all

11330 LDA &204 \ interrupts

11340 STA &230 \ needed for

11350 LDA &205 \ sprite routines

11360 STA &231

11370 LDA #irq MOD256

11380 STA &204

11390 LDA #irq DIV256

11400 STA &205

11410 LDA #&50

11420 STA &FE4E

11430 CLI

11440 RTS

11450

11460.irq LDA &FC \ Handle any

11470 PHA \ interrupts

11480 TXA \ that occur

11490 PHA

11500 TYA

11510 PHA

11520 LDA #2

11530 BIT &FE4D

11540 BEQ notsync

11550 LDA &FE4B

11560 AND #&DF

11570 STA &FE4B

11580 LDA &FE4E

11590 ORA #&20

11600 STA &FE4E

11610 LDA #T%MOD256

11620 STA &FE48

11630 LDA #T%DIV256

11640 STA &FE49

251

11650.exit PLA

11660 TAY

11670 PLA

11680 TAX

11690 PLA

11700 STA &FC

11710 JMP (&230)

11720.notsync LDA #&20

11730 BIT &FE4D

11740 BEQ exit

11750 STA &FE4D

11760 PHP

11770 CLI

11780 JSR films

11790 PLP

11800 JMP exit

11810]

11820NEXT

11830ENDPROC

Using the mover Now we can write a program to show how the
routine is used. Firstly we will need this sprite
routine and the sprite shape table data from the last
example. Then we need a program that will move
the sprite around the screen under control of the Z,
X, : and / keys as with the last example program.

First we go into Mode 2 and remove the cursor.

 10 MODE 2

 20 VDU23,1,0;0;0;0;

Then we need to assemble the machine code. We
are only going to use one film and one sprite so
these are the parameters we specify.

 30 PROCassemble(1,1)

Now we need to set up the sprite table.

 40 DIM man% 63

 50 FOR A% = 0 TO 63

 60 READ man%?A%

 70 NEXT

252

Now we have to set up the parameters of this sprite
shape (start of sprite shape table, width and height)
in the right table.

 80 !sprites = man%

 90 sprites?2 = 4

 100 sprites?3 = 16

We can now initialise the interrupts.

 110 CALL init

Next we need to put the man on the screen. We can
set both the film and the sprite number permanently
to 0. And we can set up the initial X and Y
coordinates. Then we can call the sprite routine to
place the man on the screen.

 120 ?&78 = 0

 130 X% = 0

 140 Y% = 0

 150 A% = 0

 160 CALL move

Next we want to check to see if any keys are being
pressed, and alter the X and Y coordinates
accordingly.

 170 IF INKEY-98 AND X%>0 X%=X%-1

 180 IF INKEY-67 AND X%<76 X%=X%+1

 190 IF INKEY-105 AND Y%<240 Y%=Y%+4

 200 IF INKEY-73 AND Y%>0 Y%=Y%-4

Now we can go back and place the film in its new
position.

This sprite routine will only move the film every
fiftieth of a second. If we try to move it more often
than this, some positions will just be ignored and so
the sprite will sometimes jump more than one
position at a go. This means, of course, that we can
move the film as fast or as slowly as we like and the
sprite will still appear flicker free. For our purposes
we want the sprite to move one jump every fiftieth

253

of a second. To do this we can use *FX19 to syn-
chronise the BASIC program with the screen.

 210 *FX19

 220 GOTO 160

If you try this program you will find that unlike the
last program it is totally fl icker-free and smooth.

Try deleting line 210. You will find that although
the man moves a lot faster he appears to move
jerkily. There is no flicker but the movement is not
smooth. In fact the smoother speeds at which to
move the man turn to be multiples of 50 moves a
second. This means that the man moves exactly the
same distance between each frame. So if you want
to make a film move faster it is better to increase the
distance it moves each time rather than to try and
make more moves per second.

This program seems to be perfect for our needs.
However, if you use this routine to move more than
two or three films you will find that the flicker
prevention begins to fail. There is no practical
solution to this problem that also allows fifty moves
a second for all the films over a full screen. The only
way to beat it is to use a smaller amount of the
screen. You will find that when flicker occurs it
usually occurs only at the top or bottom of the
screen. If you ensure that your spri tes never move
into these areas then your problems are solved.
Obviously, this is not always practicable; but if, for
instance, you have a ‘ space invaders’ type base at
the bottom of the screen it would make sense to
make this film zero. This is because lower-number
films are processed later (film 0 is processed last)
and these will be the ones that are still being pro-
cessed when the scan starts at the top of the screen
so causing possible flicker. By ensuring that film 0
never goes anywhere near the top of the screen you
ensure that it will not flicker. If you do have trouble,
try altering the value of T% set at the beginning of
the procedure as the best value for this will depend
on your program. Beyond this the only advice I can
give is to experiment. Do not take these routines as
perfect − feel free to customise them to your needs.

254

Anyone for tennis? Let’s now look at an example of how to use our
sprite routine in a simple two-player tennis game.
We will use the complete flicker-free sprite routine
with films, etcetera. We will need two spri tes − a
ball and a bat; and three films − one for the ball and
one for each bat. We will also need an extra section
of assembly code specif ic to the game.

Because of the length of the assembly code the
program will have to be split into three sections that
chain each other.

The machine code will take up about 700 bytes,
so, as we are using Mode 2 we can place this at
address &2D00 to &2FFF. Unfortunately, not even
the assembly code, let alone the BASIC section of
the program, will fit in the space between PAGE
and &2D00 on a disc machine. This means that to
make the program work on both types of machine
we will need to LOAD the assembly code in at
&3000, ASSEMBLE it to &2D00 and then CHAIN
the BASIC part of the program in to &1900 or &E00,
depending on the filing system. Thus the complete
program consists of three sections.

The first section simply loads in the assembly
code at &3000.

 10 MODE 7

 20 PAGE=&3000

 30 CHAIN"TENNIS1"

Save this ‘ loader’ first as TENNIS.

Now we must write the assembly code. Because we
are using the sprite routine for a specific purpose
we can simplify it a bit. This is important to remem-
ber − WHEN USING A GENERAL ROUTINE FOR A
SPECIFIC PURPOSE ALWAYS TRY AND SIMPLIFY
IT SO THAT IT ONLY DOES WHAT IS NEEDED OF
IT.

Because we know how many spri tes and films
we need we can set up the seven tables that the
routine uses part of the assembly code. The table
SPRITES will need to be eight bytes long to accom-
modate the two sprites. Each of the other six table

255

will need to be three bytes long to accommodate the
three films. We can also initialise the routine with
no films active by setting up all the bytes of OLDS
and NEWS to &FF. All this data can be added to the
end of the assembly code.

.sprites EQUD 0

 EQUD 0

.olds EQUW &FFFF

 EQUB &FF

.oldx EQUW 0

 EQUB 0

.oldy EQUW 0

 EQUB 0

.news EQUW &FFFF

 EQUB &FF

.newx EQUW 0

 EQUB 0

 EQUW 0

 EQUB 0

This simplifies the first few lines of the assembler
section of the program to:

 10 ?&77=3

 20 T%=18000

 30 FORpass%=0TO2STEP2

 40 P%=&2000

 50 [OPTpass%

 60 .sprite STX &70

 ..

 ..

The assembly code part of the routine is as before
(see LISTING 3).

One problem is that the third section − the
BASIC part of the game − will need to refer to some
of the labels in the assembly code, but CHAIN clears
all normal variables. The answer to this problem is
to copy the four labels we are going to need into
integer variables A%, B%, C% and D% which are
only cleared on CTRL BREAK. Then the first four
lines of the BASIC section can copy them back into
the normal variables for easy use.

256

Let’s now look at the beginning of the BASIC
section of the program and ignore the rest of the
assembly code for a moment. As we have said, the
first four lines must be:

 10 sprites=A%

 20 init=B%

 30 move=C%

 40 tennis=D%

Note that TENNIS is the extra assembly code
routine we still have to write. Before we write this
we should look at the main, BASIC, part of the
program.

The next thing we need to do is set the PRINT
format for printing the score (see page 325 of the
USER GUIDE).

 50 @%=3

Now we can go into Mode 2 and set HIMEM so as
to safeguard the machine code that the second
section of the program has placed from &2D00 to
&2FFF. We can turn off the cursor and disable the
copy cursor. (This otherwise tends to produce
annoying results if the cursor keys are pressed while
the game is being played.)

 60 MODE2

 70 HIMEM=&2D00

 80 VDU23,1,0;0;0;0;

 90 *FX4,1

The next job is to print the scores at the top of the
screen in appropriate colours.

 100 COLOUR1:COLOUR130

 110 PRINT"SCORE:0 SCORE:0 "

Now we must draw the tennis court.

 120 GCOL0,2:MOVE0,0:MOVE1279,0

 130 PLOT85,0,12:PLOT85,1279,12

 140 MOVE0,988:MOVE1279,988

257

 150 PLOT85,0,976:PLOT85,1279,976

 160 GCOL0,3:FORA%=24TO972STEP32

 170 MOVE632,A%:DRAW632,A%+12

 180 MOVE640,A%:DRAW640,A%+12

 190 NEXT

We have two players, so we need two variables to
store their scores. The best way to do this is with an
array.

 200 DIMscore(1)

Next we must set up the designs for the two sprites.
For this game we only need very simple sprites. The
bat can be made of a red rectangle two pixels (one
byte) by 24 pixels (24 bytes). The ball will be a cyan
square 2 pixels (1 byte) by four pixels (4 bytes). This
mean that between them the two sprites need 28
bytes of storage. We can reserve these with the DIM
command and set up the sprite with some simple
BASIC.

 210 DIMsp%28

 220 FORA%=0TO23:sp%?A%=3:NEXT

 230 sp%!24=&3C3C3C3C

Next we need to put the data on the sizes, and
addresses, of these two sprite shapes in SPRITES.

 240 !sprites=sp%+&18010000

 250 sprites!4=sp%+24+&4010000

This makes the bat sprite 0 and the ball sprite 1. We
can now initialise the sprite routine (the films have
already been turned off in the assembler section).

 260 CALLinit

We are now into the main section of the game. Let’s
specify some of the zero page locations we will use.

Locations &70 to &78 are used by the sprite
routine. Let’s say that &7E and &7F give the cur-
rent X and Y coordinates of the ball. We can then
say that &79 contains the current direction of the

258

ball horizontally − if it is 1, then the ball is travelling
to the right, if it is 255 the ball is travelling to the
left. Location &7A can contain the vertical speed of
the ball. Because we can position the ball more
accurately vertically than horizontally we will make
the ball travel left and right at a constant speed
while travelling up and down at a variable speed.
This will give a range of speeds and directions the
ball can take. Location &7A will contain the number
of pixels moved down for each position moved
along. Positive numbers will be moving down,
negative numbers wil l be moving up.

We now need to initialise these ready for a serve.
We shall say that the end that the ball appears at is
random and that if it appears on the left it will
subsequently travel right, and vice versa. So we
now have to decide which end the ball starts. We
can set the horizontal direction to either 1 or -1 first
and use this to set the X coordinate of the ball ei ther
to 0 or 79. The Y coordinate will always be 12 so that
the ball starts at the top.

 270 ?&79=RND(2)*2-3

 280 ?&7E=(?&79=255)*-79

 290 ?&7F=12

We can now set the vertical speed of the ball
randomly between 0 and 3. Having done this we
must place the ball on the screen for the players to
see. The ball is film 0.

 300 ?&7A=RND(4)-1

 310 ?&78=0

 320 A%=1

 330 X%=?&7E

 340 Y%=?&7F

 350 CALLmove

The bats will be at either side of the screen and will
only move up and down. We can say that the Y
coordinate for the left-hand bat is in &7C and for the
right-hand bat is in &7D. We will start both bats
halfway up the screen and, again, we need to place
them on the screen. The left-hand bat is film 1 and

259

the right hand bat is film 2.

 360 ?&7C=124

 370 ?&7D=124

 380 ?&78=1

 390 A%=0

 400 X%=0

 410 Y%=?&7C

 420 CALLmove

 430 ?&78=2

 440 X%=79

 450 CALLmove

Now we have to start the game. We are going to do
all the moment of the sprites from machine code.
We still have to write the routine (TENNIS) which
handles all the movement of ball and bats until one
of the player misses the ball. When this happens the
routine will exit with the number of the player who
won that volley (0 for left and 1 for right) in &7B. So,
we can call this routine, then update the score, then
have a slight pause, and then serve the next ball.
This gives us:

 460 CALLtennis

 470 score(?&7B)=score(?&7B)+1

 480 PRINTTAB(6,0);score(0);TAB(17,0);

 score(1)

 490 FORA%=1TO10000:NEXT

 500 GOTO270

Now we must go back to the second section of the
game and write TENNIS. The first thing this must to
is wait for the vertical sync so as to make the rou-
tine move the films every fiftieth of a second. Then
we must move the three sprites to their original
positions.

.tennis LDA #19

 JSR &FFF4

 LDA #0

 STA &78

 LDA #1

 LDX &7E

260

 LDY &7F

 JSR move

This moves the ball.

 INC &78

 LDA #0

 LDX #0

 LDY &7C

 JSR move

 INC &78

 LDA #0

 LDX #79

 LDY &7D

 JSR move

This moves the two bats.

Next, we have to alter &7E and &7F to point to the
next position of the ball. To move it horizontally all
we have to do is add the horizontal direction and
the sign will take care of which way the ball moves.
We can do the same sort of thing for the vertical
direction.

 LDA &7E

 CLC

 ADC &79

 STA &7E

 LDA &7F

 CLC

 ADC &7A

 STA &7F

Next we must check to see if the ball has hit the top
wall of the court. If so, then the Y coordinate will be
less than 12 so that we want the ball to bounce.
First, it mustn’t go through the wall, so we must
reposition it to be just touching the wall. The horizo-
ntal direction must remain the same but the ball
must begin to travel in the opposite direction
vertically with the same speed as it hit the wall
vertically. This means that we want to multiply the
speed by -1. The easiest way to do this is to sub-

261

tract it from 0.

 CMP #12

 BCS skip1

 LDA #12

 STA &7F

 LDA #0

 SEC

 SBC &7A

 STA &7A

Next we must check whether the ball has hit the
bottom wall of the court. We can deal with this in a
similar way.

.skip1 LDA &7F

 CMP #249

 BCC skip2

 LDA #248

 STA &7F

 LDA #0

 SEC

 SBC &7A

 STA &7A

Next we need to check whether the ball has reached
the left-hand side of the screen. If so, we need to
check whether it has hit the bat. If the contents of
&7F fall outside the range of ?&7C-4 to ?&7C+23
then the ball has missed the bat and the right-hand
player has won. Otherwise, we must make the ball
bounce off the bat.

.skip2 LDA &7E

 CLC

 ADC #4

 CMP &7C

 BCC rwin

 LDA &7C

 CLC

 ADC #23

 CMP &7F

 BCS skip3

.rwin LDA #1

262

 STA &7B

 RTS

.skip3

To make the ball bounce, we first have to make it
travel to the right. We also have to set the vertical
speed of the ball to a random value to simulate the
range of shots a real player could play. We must, in a
moment, write the routine RAND to do this.

.skip3 LDA #1

 STA &79

 JSR rand

.skip4 ...

For RAND we need to call the random number
routine from the BASIC ROM. For BASIC I this is at
&AFB6 and for BASIC II this is at &AF87. This
routine creates a 32-bit random number in zero
page locations &0D to &11. We need a random
number between -3 and 4. (The slight bias to the
direction is not enough to matter and makes the
coding easier.) To get this we need to take a three-
bit random number between 0 and 7 and subtract 3.
To get a three-bit random number we need only
take any three bits of the 33-bit random number that
BASIC generates.

.rand JSR &AFB7

 LDA &D

 AND #7

 SEC

 SBC #3

 STA &7A

 RTS

We can now check for the ball reaching the right-
hand side of the screen in the same way.

 LDA &7E

 CMP #79

 BNE skip6

 LDA &7F

 CLC

263

 ADC #4

 CMP &7D

 BCC lwin

 LDA &7D

 CLC

 ADC #23

 CMP &7F

 BCS skip5

.lwin LDA #0

 STA &7B

 RTS

.skip5 LDA #255

 STA &79

 JSR rand

Next we must move the bats. Before we do this we
can simplify matters by writing an INKEY routine.
We will use the OSBYTE equivalent of INKEY with a
negative number to test individual keys. For this we
need to set A to &81. Y to &FF and X to the key
number. We then call &FFF4 and compare X with
&FF. We can do most of this in a subroutine.

.key LDA #&81

 LDY #&FF

 JSR &FFF4

 CPX #&FF

 RTS

If we jump to this with the key number in X, then,
on exit, the zero flag will be set if the is pressed and
be clear if it is not.

If the left-hand bat is not already at the bottom of
the screen then we can test the Z key. If it is
pressed, we can move the bat down four pixels.

.skip6 LDA &7C

 CMP #228

 BEQ skip7

 LDX #&9E

 JSR key

 BNE skip7

 LDA &7C

 CLC

264

 ADC #4

 STA &7C

We can do the same sort of thing for moving up
under control of the A key, provided that the bat
isn’t already at the top.

.skip7 LDA &7C

 CMP #12

 BEQ skip8

 LDX #&BE

 JSR key

 BNE skip8

 LDA &7C

 SEC

 SBC #4

 STA &7C

We can then do the same for the right-hand bat
under control of the] and SHIFT keys.

.skip8 LDA &7D

 CMP #228

 BEQ skip9

 LDX #&FF

 JSR key

 BNE skip9

 LDA &7D

 CLC

 ADC #4

 STA &7D

.skip9 LDA &7D

 CMP #12

 BEQ skip10

 LDX #&A7

 JSR key

 BNE skip10

 LDA &7D

 SEC

 SBC #4

 STA &7D

Finally, we need to go back to the beginning and
repeat the whole process over and again until

265

someone misses the ball.

.skip10 JMP tennis

This, of course, is a very simple game; but it
illustrates the techniques used for much more
complicated games.

Here is a listing of all three sections of the
program. Type in Listing 4 and save it as TENNIS;
then type in Listing 5 and save it as TENNIS1; and
then type in Listing 6 and save it as TENNIS2.

By this stage you should have become reasonably
familiar with assembly code. You might like to try
and follow these three listings, as I have purposely
omitted the comments, and work out how they work
for yourself. If you get lost, refer back to the program
descriptions in this chapter.

Listing 4
 10 MODE 7

 20 PAGE=&3000

 30 CHAIN"TENNIS1"

Listing 5
 10 ?&77=3

 20 T%=18000

 30 FORpass%=0TO2STEP2

 40 P%=&2000

 50 [OPTpass%

 60 .sprite STX &70

 70 LDX #0

 80 STX &71

 90 ASL A

 100 ASL A

 110 TAX

 120 LDA sprites,X

 130 STA byte+1

 140 LDA sprites+1,X

 150 STA byte+2

 160 LDA sprites+2,X

 170 STA &72

 180 LDA sprites+3,X

 190 STA &73

 200 ASL &70

266

 210 ROL &71

 220 ASL &70

 230 ROL &71

 240 ASL &70

 250 ROL &71

 260 TYA

 270 AND #&F8

 280 LSR A

 290 LSR A

 300 TAX

 310 LDA &C376,X

 320 CLC

 330 ADC &70

 340 STA &70

 350 LDA &C375,X

 360 ADC &71

 370 CLC

 380 ADC #&30

 390 STA &71

 400 TYA

 410 AND #7

 420 STA &74

 430 .row LDY &74

 440 LDX &72

 450 .byte LDA &FFFF

 460 EOR (&70),Y

 470 STA (&70),Y

 480 TYA

 490 CLC

 500 ADC #8

 510 TAY

 520 INC byte+1

 530 BNE nocarry

 540 INC byte+2

 550 .nocarry DEX

 560 BNE byte

 570 INC &74

 580 LDA &74

 590 CMP #8

 600 BNE notline

 610 LDA #0

 620 STA &74

 630 LDA &70

 640 CLC

267

 650 ADC #&80

 660 STA &70

 670 LDA &71

 680 ADC #2

 690 STA &71

 700 CMP #&80

 710 BCC notline

 720 SEC

 730 SBC #&50

 740 STA &71

 750 .notline DEC &73

 760 BNE row

 770 .rts RTS

 780 .films LDX &77

 790 .next DEX

 800 CPX #255

 810 BEQ rts

 820 LDA news,X

 830 CMP #255

 840 BEQ next

 850 LDA olds,X

 860 CMP #255

 870 BEQ newfilm

 880 STA &76

 890 LDA oldy,X

 900 TAY

 910 LDA oldx,X

 920 STX &75

 930 TAX

 940 LDA &76

 950 JSR sprite

 960 LDX &75

 970 .newfilm LDA news,X

 980 STA olds,X

 990 STA &76

 1000 LDA newy,X

 1010 STA oldy,X

 1020 TAY

 1030 LDA newx,X

 1040 STA oldx,X

 1050 STX &75

 1060 TAX

 1070 LDA &76

 1080 JSR sprite

268

 1090 LDX &75

 1100 LDA #255

 1110 STA news,X

 1120 JMP next

 1130 .move STX &76

 1140 LDX &78

 1150 STA news,X

 1160 TYA

 1170 STA newy,X

 1180 LDA &76

 1190 STA newx,X

 1200 RTS

 1210 .init SEI

 1220 LDA &204

 1230 STA &230

 1240 LDA &205

 1250 STA &231

 1260 LDA #irq MOD256

 1270 STA &204

 1280 LDA #irq DIV256

 1290 STA &205

 1300 LDA #&50

 1310 STA &FE4E

 1320 CLI

 1330 RTS

 1340 .irq LDA &FC

 1350 PHA

 1360 TXA

 1370 PHA

 1380 TYA

 1390 PHA

 1400 LDA #2

 1410 BIT &FE4D

 1420 BEQ notsync

 1430 LDA &FE4B

 1440 AND #&DF

 1450 STA &FE4B

 1460 LDA &FE4E

 1470 ORA #&20

 1480 STA &FE4E

 1490 LDA #T%MOD256

 1500 STA &FE48

 1510 LDA #T%MOD256

 1520 STA &FE49

269

 1530 .exit PLA

 1540 TAY

 1550 PLA

 1560 TAX

 1570 PLA

 1580 STA &FC

 1590 JMP (&230)

 1600 .notsync LDA #&20

 1610 BIT &FE4D

 1620 BEQ exit

 1630 STA &FE4D

 1640 PHP

 1650 CLI

 1660 JSR films

 1670 PLP

 1680 JMP exit

 1690 .sprites EQUD 0

 1700 EQUD 0

 1710 .olds EQUW &FFFF

 1720 EQUB &FF

 1730 .oldx EQUW 0

 1740 EQUB 0

 1750 .oldy EQUW 0

 1760 EQUB 0

 1770 .news EQUW &FFFF

 1780 EQUB &FF

 1790 .newx EQUW 0

 1800 EQUB 0

 1810 .newy EQUW 0

 1820 EQUB 0

 1830 .tennis LDA #19

 1840 JSR &FFF4

 1850 LDA #0

 1860 STA &78

 1870 LDA #1

 1880 LDX &7E

 1890 LDY &7F

 1900 JSR move

 1910 INC &78

 1920 LDA #0

 1930 LDX #0

 1940 LDY &7C

 1950 JSR move

 1960 INC &78

270

 1970 LDA #0

 1980 LDX #79

 1990 LDY &7D

 2000 JSR move

 2010 LDA &7E

 2020 CLC

 2030 ADC &79

 2040 STA &7E

 2050 LDA &7F

 2060 CLC

 2070 ADC &7A

 2080 STA &7F

 2090 CMP #12

 2100 BCS skip1

 2110 LDA #12

 2120 STA &7F

 2130 LDA #0

 2140 SEC

 2150 SBC &7A

 2160 STA &7A

 2170 .skip1 LDA &7F

 2180 CMP #249

 2190 BCC skip2

 2200 LDA #248

 2210 STA &7F

 2220 LDA #0

 2230 SEC

 2240 SBC &7A

 2250 STA &7A

 2260 .skip2 LDA &7E

 2270 BNE skip4

 2280 LDA &7F

 2290 CLC

 2300 ADC #4

 2310 CMP &7C

 2320 BCC rwin

 2330 LDA &7C

 2340 CLC

 2350 ADC #23

 2360 CMP &7F

 2370 BCS skip3

 2380 .rwin LDA #1

 2390 STA &7B

 2400 RTS

271

 2410 .skip3 LDA #1

 2420 STA &79

 2430 JSR rand

 2440 .skip4 LDA &7E

 2450 CMP #79

 2460 BNE skip6

 2470 LDA &7F

 2480 CLC

 2490 ADC #4

 2500 CMP &7D

 2510 BCC lwin

 2520 LDA &7D

 2530 CLC

 2540 ADC #23

 2550 CMP &7F

 2560 BCS skip5

 2570 .lwin LDA #0

 2580 STA &7B

 2590 RTS

 2600 .skip5 LDA #255

 2610 STA &79

 2620 JSR rand

 2630 .skip6 LDA &7C

 2640 CMP #228

 2650 BEQ skip7

 2660 LDX #&9E

 2670 JSR key

 2680 BNE skip7

 2690 LDA &7C

 2700 CLC

 2710 ADC #4

 2720 STA &7C

 2730 .skip7 LDA &7C

 2740 CMP #12

 2750 BEQ skip8

 2760 LDX #&BE

 2770 JSR key

 2780 BNE skip8

 2790 LDA &7C

 2800 SEC

 2810 SBC #4

 2820 STA &7C

 2830 .skip8 LDA &7D

 2840 CMP #228

272

 2850 BEQ skip9

 2860 LDX #&FF

 2870 JSR key

 2880 BNE skip9

 2890 LDA &7D

 2900 CLC

 2910 ADC #4

 2920 STA &7D

 2930 .skip9 LDA &7D

 2940 CMP #12

 2950 BEQ skip10

 2960 LDX #&A7

 2970 JSR key

 2980 BNE skip10

 2990 LDA &7D

 3000 SEC

 3010 SBC #4

 3020 STA &7D

 3030 .skip10 JMP tennis

 3040 .rand JSR &AFB7

 3050 LDA &D

 3060 AND #7

 3070 SEC

 3080 SBC #3

 3090 STA &7A

 3100 RTS

 3110 .key LDA #&81

 3120 LDY #&FF

 3130 JSR &FFF4

 3140 CPX #&FF

 3150 RTS

 3160]

 3170 NEXT

 3180 A%=sprites

 3190 B%=init

 3200 C%=move

 3210 D%=tennis

 3220 PAGE=&1900

 3230 CHAIN"TENNIS2"

Listing 6

 10 sprites=A%

 20 init=B%

273

 30 move=C%

 40 tennis=D%

 50 @%=3

 60 MODE2

 70 HIMEM=&2D00

 80 VDU23,1,0;0;0;0;

 90 *FX4,1

 100 COLOUR1:COLOUR130

 110 PRINT"SCORE:0 SCORE:0 "

 120 GCOL0,2:MOVE0,0:MOVE1279,0

 130 PLOT85,0,12:PLOT85,1279,12

 140 MOVE0,988:MOVE1279,988

 150 PLOT85,0,976:PLOT85,1279,976

 160 GCOL0,3:FORA%=24TO972STEP32

 170 MOVE632,A%:DRAW632,A%+12

 180 MOVE640,A%:DRAW640,A%+12

 190 NEXT

 200 DIMscore(1)

 210 DIMsp%28

 220 FORA%=0TO23:sp%?A%=3:NEXT

 230 sp%!24=&3C3C3C3C

 240 !sprites=sp%+&18010000

 250 sprites!4=sp%+24+&4010000

 260 CALLinit

 270 ?&79=RND(2)*2-3

 280 ?&7E=(?&79=255)*-79

 290 ?&7F=12

 300 ?&7A=RND(4)-1

 310 ?&78=0

 320 A%=1

 330 X%=?&7E

 340 Y%=?&7F

 350 CALLmove

 360 ?&7C=124

 370 ?&7D=124

 380 ?&78=1

 390 A%=0

 400 X%=0

 410 Y%=?&7C

 420 CALLmove

 430 ?&78=2

 440 X%=79

 450 CALLmove

 460 CALLtennis

274

 470 score(?&7B)=score(?&7B)+1

 480 PRINTTAB(6,0);score(0);TAB(17,0);score(1)

 490 FORA%=1TO10000:NEXT

 500 GOTO270

Conclusion I hope that you know more about assembly
language programming than you did when you first
opened this book. You should now feel confident to
alter the programs to suit your own tastes and
possibly to improve them. You will only become
completely fluent in assembly language if you si t
down and actually create something using it − as in
so many crafts, practice makes perfect!

275

