
CHAPTER FOUR

INTERRUPTS

With a computer as sophisticated as the BBC Micro,
which supports a large number of software-driven
peripherals, there are a number of ‘ housekeeping’
tasks the computer must perform regularly to keep
these peripherals ready for the user. The processor
is not, unfortunately, able to do two jobs at once so
it must regularly stop what it’ s doing to check up on
the peripherals. However, there is no point in the
processor doing this unless a peripheral actually
needs servicing.

To get around this problem the computer uses a
system called INTERRUPTS. What happens is that
there is a wire, connected to the processor, that is
normally at logical level one (5 Volts). This wire is
also connected to ALL the peripherals that may
need servicing. When, say, the cassette system
needs attention it pulls this wire down to logic level
zero (0 volts). This interrupts the processor in what
it’ s doing. The processor then finishes the machine
code command it was processing at the time the
interrupt occurred and then pushes the contents of
the program counter (high then low) on the stack,
and then the status register. It then looks at two
bytes at the end of memory (&FFFE and &FFFF).
These two bytes (low then high) make up the
address of the operating system routine which
handles interrupts.

There are two types of interrupts on the 6502
processor. These are IRQ (Interrupt ReQuest) and
NMI (Non Maskable Interrupt). These are triggered
by two separate wires on the processor. The most
used form is the IRQ. When this occurs the proces-
sor looks at bit 2 of the status register − the
interrupt disable flag. If this is SET then it IGNORES

84

the interrupt, otherwise it jumps to the address
pointed to by &FFFE (low) and &FFFF (high). In
contrast, the NMI is not masked by the interrupt
disable flag and so cannot be ignored. It jumps to
the routine pointed to by &FFFA (low) and &FFFB
(high).

Because the NMI is unstoppable it is only used
for very important periperhals such as the disc
system and the Econet interface which need fast
service to function properly. All the other peri-
pherals are on the IRQ. Invetiably, servicing their
interrupts takes time. If you are prepared to ignore
all the hardware that is interrupt-driven you can
speed up a program quite noticeably by disabling
interrupts. To do this you must set the interrupt
disable flag in the status register with the SEI
command. It is important to clear the flag again,
when you have finished, by using the CLI
command.

The operating system now has a chance to
service the peripheral that generated the interrupt.
However, before it can do this it must save the
registers on the stack. This way the routine can
reload them before returning execution to the main
program. If this is not done then the main program
will suddenly find its registers have changed and
will probably crash. To save the registers the operat-
ing system uses the following commands:

PHA

TXA

PHA

TYA

PHA

When the operating system has finished servicing
the interrupt it must return to the main program.
First it must reload the registers:

PLA

TAY

PLA

TAX

PLA

85

Then it must use the command RTI. This reloads
the status register and program counter from the
stack and allows the processor to carry on from
where it left off before the interrupt occured.

Next we need to look at the way the operating
system handles an interrupt. It only knows that an
interrupt has been generated somewhere in the
computer. It doesn’t know which piece of hardware
has generated it. To find out it must look at each
piece of hardware in turn until it finds which is the
culprit (it is possible, though unlikely, that two or
more devices may have generated interrupts
simultaneously).

Luckily, each piece of hardware that can
generate an interrupt has a register stored in the
memory which contains a flag bit which indicates
whether it has generated an interrupt or not. There
are more details on each piece of hardware in THE
ADVANCED USER GUIDE.

The devices which can cause interrupts on a
BBC Micro are:

NMI
1 Mhz bus
Econet interface
Disc interface

IRQ
TUBE interface
1 Mhz bus
Cassette / RS423
System VIA

The system VIA is the most interesting to us, as this
generates all the interrupts that keep the computer
working normally.

Because a device must have an interrupt flag in it
for the operating system to check, devices that
don’t have such a flag cannot directly generate
interrupts. Instead their interrupts are connected to
some inputs on the system VIA. This has four inputs
that can generate interrupts; and it has registers in
it with flags for each input. The four devices in the

86

‘Beeb’ which can generate interrupts in this way
are the light pen input on the analogue connector,
the analogue to digital converter, the video control-
ler and the keyboard.

We are most interested in the last two. The video
controller generates an interrupt every time a
vertical sync pulse is sent to the video monitor. This
can be used for generating flicker-free graphics (see
chapters 7 and 10). Here we will discuss the other
interrupts and wil l also discuss events.

The system VIA The keyboard generates an interrupt each time a
key is pressed. When this happens the operating
system looks to see which key has been pressed and
updates the keyboard buffer. If you are writing a
game and you don’t need to use the GET command
then you can disable this interrupt to speed up the
game as this will not prevent you from using INKEY
with a negative number.

There are also two timers in each VIA (user and
system) which can be used either to generate an
interrupt on a regular basis or to provide a single
interrupt after a set amount of time.

The system VIA is memory mapped as sixteen
registers at addresses &FE40 to &FE4F. These are
regarded as registers zero to fifteen. (The user VIA
is mapped similarly but at addresses &FE60 to
&FE6F.) The VIAs are quite complicated to use and
a lot of their functions are not particularly useful.
There is a full description of them in THE
ADVANCED USER GUIDE.

Let’s first look at the four interrupts for the
system’s VIA. Its register 12 controls how these are
used. For all the interrupts to work correctly this
register must contain either 4 or 5. Normally it
contains 4. This causes an interrupt at the end of
the vertical sync pulse. By setting it to 5 the inter-
rupt is caused at the beginning of the sync pulse.
This is about two pixels earlier vertically. This may
seem pretty pointless, but if you are using *FX19 for
flicker-free graphics and the graphics flicker just at
the top two pixels then this should cure it.

Normally you would not have to alter register 12.

87

Actual control of interrupts is done using registers
13 and 14. Register 14 is used to enable and disable
the various interrupts that the VIA can produce and
can only be written to. When writing to register 14,
if bit 7 is set, then one in any other of the bit posi-
tions will enable the corresponding interrupt; if bit 7
is clear, then a one will disable the corresponding
interrupt. This means that any interrupt can be
enabled or disabled without affecting the other
interrupts. Bits 0 to 6 of the system VIA’s register 14
represent the following interrupts:

BIT INTERRUPT
0 Keyboard
1 Vertical sync
2 Shift register
3 Light pen
4 A to D converter
5 Timer 2
6 Timer 1

Register 13 contains the interrupt flags themselves
for each part of the VIA. Each of bits 0 to 6 repre-
sents an interrupt as in register 14. If a bit is set this
means that the relevant part of the VIA has caused
an interrupt. Also, bit 7 is set if ANY one of the other
bits is set. This provides a quick way for the proces-
sor to check if the VIA is responsible for the
interrupt − it looks at bit 7 first.

These bits will not clear themselves so the first
job the interrupt routine must do, once it has identi-
fied which interrupts have occurred, is to clear any
bits that are set, ready for the next interrupt. To do
this it must write to register 13 with the correspond-
ing bits of the flag to be cleared, set. Note that
writing a one to bit 7 of this register has no effect −
in other words, to clear bit 7 you have to clear ALL
the other bits.

There are also a number of jobs, such as updating
the TIME clock, that the computer must do regu-
larly. This is done using TIMER 1 in the system VIA.
This is set to produce an interrupt every hundredth
of a second. It is probably the most useful interrupt

88

to us as it can enable us to do a bit of extra process-
ing every hundredth of a second. This means that
we can run two programs simultaneously so long as
one of them does not need much processing time
and breaks down into convenient short sections
which can be executed every hundredth of a
second.

Interrupt-driven music Now that we have seen a bit about how interrupts
work we can look at an example. Because of the
nature of interrupts they can, to a limited extent, to
make the computer seemingly do two jobs at once.
In this example we are going to make the computer
play a tune, using interrupts. This will leave the
computer free to do almost everything else (apart
from using the sound port) in the meantime.

To make the program simple we will take a tune
that can be played on channels one to three without
envelopes. To make the program as ‘ transparent’ to
the user as possible we will not use any zero page
addresses but will use variables stored directly after
the program. The program itself can be placed in
page ten of memory. The data for the tune can be
placed in page nine. We will need five variables:
TIME which will count the interrupts to produce a
regular beat; COUNT which will count the beats for
an individual note; POINT which will point into the
note table; and TEMPX and TEMPY for temporary
storage of the registers. The first three we can set to
their initial values for the start of the tune. We will
also need an eight-byte OSWORD command block
for the SOUND command. While we are setting this
up we can set some of the eight bytes that will not
change throughout the program, so saving a few
bytes of program.

.time EQUB 1

.count EQUB 1

.point EQUB 0

.tempx EQUB 0

.tempy EQUB 0

.cblock EQUD 0

 EQUD &FF0000

89

(90-150)

The main IRQ intercept routine will start at IRQ so
first we need an initialisation routine to set up the
IRQ vector.

We must first set the interrupt disable flag to
prevent an interrupt occurring while we are chang-
ing the vector.

Then we must make a copy of the contents of the
vector. This is so that when we have finished our
interrupt work we can pass the interrupt on to the
usual operating system routine.

Then we must reset the IRQ vector to point to our
own routine.

Finally, we need to clear the interrupt disable flag
and return.

.init SEI \ Set irq vector

 LDA &204 \ to point to our

 STA &230 \ routine.

 LDA &205

 STA &231

 LDA #irq MOD256 \ Set IRQ vector

 STA &204 \ to irq.

 LDA #irq DIV256

 STA &205

 CLI

 RTS

(160-260)

Now we can write the main program. The first thing
this must do is to set the interrupt disable flag. This
should stop any untimely interruptions. Next we
must save the registers on the stack. The accumula-
tor has already been stored at &FC for us by the
operating system, so we need only save the X and Y
registers.

.irq SEI

 TXA

 PHA

 TYA

 PHA

90

(270-310)

Next we need to check that TIMER 1 is responsible
for the interrupt. We examine bit 6 of register 13 of
the system VIA. If this is set then TIMER 1 is
responsible. We must not reset this flag as the
operating system also wants a chance to service
this interrupt. If TIMER 1 is not responsible then we
can let the operating system cope with the inter-
rupt. First we must reload the X and Y registers from
the stack and then jump back to the normal IRQ
routine in the operating system.

 LDA #&40

 BIT &FE4D

 BNE irq1

.exit PLA

 TAY

 PLA

 TAX

 JMP (&230)

(320-390)

We now have a routine that is called every
hundredth of a second. However, we only want to
change the notes of our tune every eight hun-
dredths of a second, otherwise the tune would be
much too fast. To do this we decrement the variable
TIME every hundredth of a second and, every time
it reaches zero, reset it to eight and call the music
routine.

.irq1 DEC time

 BNE exit

 LDA #8

 STA time

(400-430)

Now we have the problem that some notes are
longer than others. If we have the length of the
previous note in eight-hundredths of a second

91

stored in COUNT then we can decrement it each
time until it reaches zero, at which point we can
play the next note.

 DEC count

 BNE exit

(450-460)

Now we are almost ready to play a note. However,
before we do this we must look at the way the notes
are stored in the table. For this program they are
stored four bytes per note. The first byte is the
length of the note in eight-hundredths of a second
and the other three bytes are the pitches of the
three channels.

So the first thing we must do is to store the
length of the note in COUNT. The pointer into the
table (which is less than 256 bytes long) is stored in
POINT. This pointer counts in bytes so we must
load it into the X register to use ABSOLUTE
addressing.

 LDX point

 LDA &900,X

 STA count

Now we must play the three notes of the chord. We
can do this with a loop using the Y register to count
with.

 LDY #3

(460)

Firstly we must increment X to point to the second
byte of the entry. Then we must set up the
OSWORD command block. The layout of the block
for a SOUND command is that the first two bytes
are the channel number, the next two bytes are the
amplitude, the next two bytes are the pitch and the
last two bytes are the duration.

Now we must set the channel number. We are
also going to use the flush control so that each note

92

wipes out the previous one. This is to make each
note start during the interrupt. We will also make
the duration 255 so that each note carries on until
the next note is played. We have the channel num-
ber in Y − we only have to add &10 to set the flush
control. The high byte of the channel number is
already zero:

.channel INX \ Set up each

 TYA \ channel.

 ORA #&10

 STA cblock

(500-530)

Next we have the volume. For this tune we need
some short rests to stop notes running into each
other (a sort of staccato effect). For these notes the
pitch number is zero. We must first set the volume
to zero and then look at the pitch. If the pitch is zero
then we have finished setting up the command
block, otherwise we must set the volume to -15
(&FFF1 in two’s compliment) and set the pi tch
accordingly (again, the high byte of the pitch is
already zero).

 LDA #0

 STA cblock+2

 STA cblock+3

 LDA &900,X

 BEQ rest

 LDA #&F1

 STA cblock+2

 LDA #&FF

 STA cblock+3

 LDA &900,X

 STA cblock+4

(540-640)

Notice that the duration of the note is already set to
255.

Next we must save the X and Y registers and then

93

set them to point to the command block. We must
set the accumulator to seven for a SOUND com-
mand and call OSWORD.

.rest STX tempx

 STY tempy

 LDX #cblock MOD256

 LDY #cblock DIV256

 LDA #7

 JSR &FFF1

(650-700)

Now we must reload the registers and if there is still
a channel to be done we must go back and do it.

 LDX tempx

 LDY tempy

 DEY

 BNE channel

The X register now points to the fourth byte of the
note in the table. By incrementing X it will point to
the first byte of the next note and we can save it in
POINT. If it has reached 168 then the whole tune
has been played and we need to go back to the
beginning by resetting POINT to zero. At this point
we have finished with the interrupt routine and can
pass control back to the operating system.

 INX

 STX point

 CPX #168

 BNE exit

 LDX #0

 STX point

 JMP exit

(750-810)

We have finished the machine code now, so we only
have to set up the actual tune. The easiest way to
do this is to put it into DATA statements after the
assembly code (lines 850-1050). For convenience we

94

can set it up in lines of eight hexadecimal bytes run
into a string. For example:

 1000 DATA02685040025C5040

To place this data in the memory we need a few
lines of BASIC. There are 21 lines of DATA for our
tune so we need to read each one in as a string.

 10 FORA%=0TO20

 20 READA$

Next we need to extract the eight bytes from A$.
These will be placed at &900 onwards. We can
extract each byte using MID$. Then we precede the
string we have obtained with & and use EVAL to
find its value.

 30 FORB%=0TO7

 40 B%?(&900+A%*8)=EVAL("&"+MID$(A$,B%*2+1,2))

 50 NEXT,

Notice that line 840 calls INIT.

The complete programs with data looks like this:

 10 FORA%=0TO20

 20 READA$

 30 FORB%=0TO7

40 B%?(&900+A%*8)=EVAL("&"+MID$(A$,B%*2+1,2))

 50 NEXT,

 60 FORpass%=0TO2STEP2

 70 P%=&A00

 80 [OPTpass%

 90 .time EQUB 1

 100 .count EQUB 1

 110 .point EQUB 0

 120 .tempx EQUB 0

 130 .tempy EQUB 0

 140 .cblock EQUD 0

 150 EQUD &FF0000

 160 .init SEI \ Set irq vector

 170 LDA &204 \ to point to our

 180 STA &230 \ routine.

95

 190 LDA &205

 200 STA &231

 210 LDA #irq MOD256

 220 STA &204

 230 LDA #irq DIV256

 240 STA &205

 250 CLI

 260 RTS

 270 .irq SEI \ Main routine.

 280 TXA

 290 PHA

 300 TYA 310 PHA

 320 LDA #&40

 330 BIT &FE4D

 340 BNE irq1

 350 .exit PLA

 360 TAY

 370 PLA

 380 TAX

 390 JMP (&230)

 400 .irq1 DEC time \ Centisecond

 410 BNE exit \ clock trapped.

 420 LDA #8

 430 STA time

 440 DEC count

 450 BNE exit

 460 LDX point

 470 LDA &900,X

 480 STA count

 490 LDY #3

 500 .channel INX \ Set up each

 510 TYA \ channel.

 520 ORA #&10

 530 STA cblock

 540 LDA #0

 550 STA cblock+2

 560 STA cblock+3

 570 LDA &900,X

 580 BEQ rest

 590 LDA #&F1

 600 STA cblock+2

 610 LDA #&FF

 620 STA cblock+3

 630 LDA &900,X

96

 640 STA cblock+4

 650 .rest STX tempx

 660 STY tempy

 670 LDX #cblock MOD256

 680 LDY #cblock DIV256

 690 LDA #7

 700 JSR &FFF1

 710 LDX tempx

 720 LDY tempy

 730 DEY

 740 BNE channel

 750 INX

 760 STX point

 770 CPX #168

 780 BNE exit

 790 LDX #0

 800 STX point

 810 JMP exit

 820]

 830 NEXT

 840 CALLinit

 850 DATA0B64544D01000000

 860 DATA0364544D01000000

 870 DATA0368544801000000

 880 DATA0668544802000000

 890 DATA0364584801000000

 900 DATA06685C4802645C48

 910 DATA035C4B3B01000000

 920 DATA0354483801000000

 930 DATA0250402C0240402C

 940 DATA0248402C0250402C

 950 DATA0254402C025C402C

 960 DATA0264402C0268402C

 970 DATA0770645401000000

 980 DATA0768504001000000

 990 DATA0264544002545440

 1000 DATA02685040025C5040

 1010 DATA0370544001000000

 1020 DATA03685C4801000000

 1030 DATA0764544001000000

 1040 DATA075C403801000000

 1050 DATA0F54342401000000

Events There is, however, a simpler way to use interrupts:

97

an interrupt system called EVENTS. In this system
ten common events that can occur are offered to the
user for processing. These events are slightly slower
to respond than interrupts. The events available are:

Event no. Event
0 Output buffer empty.
1 Input buffer full.
2 Character entering input buffer.
3 ADC conversion complete.
4 Start of vertical sync.
5 Interval timer reaching zero
6 ESCAPE has occured
7 RS423 error
8 Econet event
9 User event

There is a complete description of events in THE
ADVANCED USER GUIDE. If one of these events
occurs, the operating system jumps to the subrou-
tine pointed to by the vector at &220 and &221
(with a JSR command) with the event number in the
accumulator. The X and Y registers may contain
extra data according to the event.

Once an event routine has been set with the
vector, the relevant event must be enabled. If more
than one event is to be used, the event routine must
test the accumulator first to check which event has
occurred. If only one event has been enabled then
this is not necessary. To enable an event use *FX14
with the number of the event.

Event routines must save all three registers, as
with interrupts, and must not enable interrupts.

Probably the two most useful of these are events
four and six. The vertical sync event (four) can
either be used for flicker-free graphics (see chapters
7 and 10) or can be used to provide a regular inter-
rupt every fiftieth of a second. For example, in our
interrupt-driven sound program we could re-write
the program in the following ways. The initialisation
routine will need to be re-written.

 160 .init LDA #event MOD256

98

 170 STA &220

 180 LDA #event DIV256

 190 STA &221

 200 LDA #14

 210 LDX #4

 220 LDY #0

 230 JMP &FFF4

We will need to delete lines 240 to 260. And the
following lines must be changed in the main
routine.

 270 .event PHA

 280 DEC time

 290 BEQ event1

Delete line 340.

 385 PLA

 390 RTS

Delete lines 400 and 410

 420 LDA #4

Notice that, as the vertical sync only occurs half as
often as the centisecond interrupt, the value stored
in TIME is halved.

The other event that is quite useful is the
ESCAPE event. When this is enabled, the normal
action of ESCAPE is disabled − in fact, the ESCAPE
key does absolutely nothing except generate an
event. In a long machine code program such as a
game this can be very useful, as it stops the
ESCAPE key from having undesirable effects, but
sti l l enables i t to be used to stop the game, etcetera.

In fact, because the relative simplicity of events
makes them less versatile, they are not as useful as
interrupts. For instance you can’t use the interval
timer in the system VIA using events. This timer is
useful for accurate timing, as we shall see in chap-
ters 7 and 10.

We will see the next few chapters just how useful
interrupts can be.

99

BRK Before we leave the subject of interrupts, there is
one other machine code command we must discuss
− BRK or (BReaK). Probably the closest equivalent to
this in BASIC is the command STOP. BRK is always
used with implied addressing.

When the processor comes across a BRK
command it sets the Break flag in the status register
and then carries on as if an IRQ has occurred. So,
when the operating system handles an IRQ, it first
has to check whether it is an IRQ or BRK that has
occurred. There is no machine code command that
gives direct access to the Break flag, so at first sight
this would seem to be a problem.

However, as with an IRQ, when the processor
comes across a BRK command, it pushes the pro-
gram counter then the status register, on the stack.
Thus the operating system only has to pull the top
byte from the stack. This will be the contents of the
processor status register at the moment when the
BRK or IRQ occurred. By testing bit 4 of this, the
operating system can tell which of the two has
occurred.

On the BBC Micro BRK commands are used for
trapping errors. When a language ROM has found
an error (for instance a syntax error), it has a BRK
command followed by the error number, the error
message, and a zero. We can use this in our
machine code programs if they are called from
BASIC.

We can run the following program and BASIC will
assume that the error is an ordinary BASIC error and
will behave accordingly.

 10 ONERRORGOTO120

 20 DIMmc%25

 30 P%=mc%

 40 [OPT2

 50.error BRK

 60 EQUB 255

 70 EQUS "An error has occured"

 80 EQUB 0

 90]

 100 CALLerror

100

 110 END

 120 REPORT:PRINT" at line ";ERL

 130 PRINT"Error number ";ERR

What happens is that when the operating system
handles a BRK command it jumps to the Break
vector at &202 and &203 (low, high). The A, X and Y
registers are unchanged from when the BRK
occurred. Also, the operating system pushes the
status register from when the BRK occurred and the
address of the next-but-one byte from the BRK
command on the stack. This means that if the Break
vector is set to point to an RTI command the proces-
sor returns to the next-byte-but-one from the BRK
command, and then carries on from where it left off.

BASIC claims this vector and sets it to its own
error handling routine. This routine pulls the top
three bytes off the stack and discards them. Thus
the BRK command has much the same effect as a
jump to the error routine. It is this error routine that
expects the error number and string directly after
the BRK command.

Other languages may claim the BRK command
for themselves simply by changing the contents of
the Break vector.

Another example of the use of this vector is in
intercepting errors in BASIC. The following program
intercepts all BASIC errors. It must first save the two
registers it uses to that the routine is ‘ transparent’.
It then looks at the byte after the BRK command. It
can do this because the operating system makes a
copy of this address in the zero page locations &FD
and &FE. If this error is an ‘ escape’ (error number
17) then it ignores it, otherwise it prints a message
before returning to the normal BASIC error routine.

 10 FORpass%=0TO2STEP2

 20 P%=&A00

 30 [OPTpass%

 40.brk PHA

 50 TYA

 60 PHA

 70 LDY #0

 80 LDA (&FD),Y

101

 90 CMP #17

 100 BEQ exit

 110.loop LDA fool,Y

 120 JSR &FFE3

 130 INY

 140 CPY #13

 150 BNE loop

 160.exit PLA

 170 TAY

 180 PLA

 190 JMP (&230)

 200.fool EQUS CHR$13+"Silly Billy!"

 210]

 220 NEXT

 230 ?&230=?&202

 240 ?&231=?&203

 250 ?&202=0

 260 ?&203=10

102

103

