
CHAPTER EIGHT

FILL ROUTINES

Although the operating system contains a very good
selection of graphics routines it lacks several useful
sets of commands such as a sprite routine. Another
thing the operating system lacks is an efficient
method of filling shapes with colour. In fact the only
command the operating system provides for produc-
ing blocks of colour is the PLOT85 triangle fill
routine. This command can be used to very good
effect for producing solid circles, etcetera, by
approximating the shape in question by a series of
overlapping triangles. A time comes, however,
when there is a need for a routine that will fill all the
area within a boundary. Take the following shape
for example:

8.1 A sample shape
This could be drawn using triangles but that would
be very complicated. What we want to be able to do
is to draw the outline and then call a machine code
routine, first specifying a starting point inside the
outline, that will fill the shape for us. The first thing
we need is a program that will produce the outline
of the shape we want to fill.

149

 10 REM Program to draw outline

 20 MODE0

 30 VDU23,1,0;0;0;0;

 40 P%=4

 50 FORA=0TOPI*2STEPPI/100

 60 R%=COS(A*10)*200+300

 70 PLOTP%,640+SIN(A)*R%,512+COS(A)*R%

 80 P%=5

 90 NEXT

 100 P%=4

 110 FORA=0TOPI*2STEPPI/80

 120 R%=COS(A*10)*50+130

 130 PLOTP%,640+SIN(A)*R%,512+COS(A)*R%

 140 P%=5

 150 NEXT

 160 FORA=0TOPI*2STEPPI/5

 170 P%=4

 180 FORB=0TOPI*2STEPPI/30

 190 C=A+SIN(B)*PI/32

 200 R%=325+125*COS(B)

 210 PLOTP%,SIN(C)*R%+640,COS(C)*R%+512

 220 P%=5

 230 NEXT,

8.2 A sample outline

A BASIC fill Next we need a fill routine. Instead of writing the
machine code program straightaway we will write
an experimental BASIC one first. This is often a
good idea with complicated machine code pro-
grams as it is easier to debug a BASIC program than
a machine code on. Once the BASIC program works

150

it is relatively easy to convert it to machine code.
For our BASIC fill program we will use a proccedure.
The parameters we will need are the X and Y
coordinates of a point within the outline which
we’ve already drawn, and a definition of what the
routine is to consider as the outline. The easiest
way to do this is to specify a colour and say that any
point of a different colour is part of the outline. The
colour we specify, then, is the background colour of
the shape. Here we can use the X and Y coordinates
of 640 and 32 for the point within the outline; the
background colour is zero. So our example will need
the l ines:

 500 PROCfill(640,32,0)

 510 END

We are going to use X% and Y% for the coordinates
of the point we are looking at any one time − the fill
‘ cursor’ . For convenience, then, we can define
procedures for moving this cursor up, down, left and
right one pixel at a time, which is necessary as we
are exploring the area just around the current point.
So that we can use these procedures in different
graphics modes we need to specify a variable M%,
which will differ for different modes, which is the
amount by which we have to alter X% to move one
pixel left or right. This variable should be defined at
the beginning of the program (line 20) when we
change mode. We replace the old l ine 20 by:

 20 MODE0:M%=2

Our up, down, left and right procedures are:

 2000 DEFPROCup:Y%=Y%+4:ENDPROC

 2010 DEFPROCdown:Y%=Y%-4:ENDPROC

 2020 DEFPROCleft:X%=X%-M%:ENDPROC

 2030 DEFPROCright:X%=X%+M%:ENDPROC

We must also define a function that will return ‘ true’
only if X% and Y% point to a pixel whose colour is
the background colour (C%).

151

 2040 DEFFNbackground=(POINT(X%,Y%)=C%)

Here, (POINT(X%,Y%)=C%) is true only if both sides
of the = sign agree.

Now we can start to try and write the fill
procedure itself. For this purpose let’s take a simple
example shape which we can use to work out the
program. The cross represents the cursor position
(though in the real program this will be invisible).
The cursor is initially positioned at the point we
have used to define the inside of the outl ine.

See diagram 8.3.

We are going to fill the shape with a series of
horizontal lines, each one pixel thick. We will start
from the bottom of the outline and work up. For this
reason, we must first find a bottom point to start at.
Imagine the outline as holding water: we need a
place where water will collect − a hollow of some
kind.

The first thing we can do is go vertically down
unti l we hit the boundary.

 1000 DEFPROCfill(X%,Y%,C%)

 1010 PROCdown:IFFNbackground THEN1010

 ELSE PROCup

This moves the cursor down until the boundary is
reached and then moves it up on pixel so that the
cursor is on the bottom background pixel.

See diagram 8.4.

Next we can go left in a horizontal line until we hit
the boundary. We then need to move right and, for
reasons we shall see later, we need to make a copy
of these coordinates in X1% and Y1%.

 1020 PROCleft:IFFNbackground THEN1020

 1030 PROCright:X1%=X%:Y1%=Y%

However, at this point (diagram 8.5) we can still go
down. We need to check whether there is still

152

153

8.3

8.5

8.7

8.9

8.4

8.5

8.8

8.10

8.12
8.11

background below the cursor, and, if so, go back to
line 1010 to find the bottom of the section.

 1040 PROCdown:IFFNbackground THEN1010

By the time we get back to line 1020 again we have
reached a new position.

See diagram 8.6.

At line 1020 we cannot go further left. At line 1040
there is no background below. We now have to go
right in a horizontal line until we reach the bound-
ary on the other side. As we go, we can check below
for any background. If this is found then we can go
back to line 1010 yet again to find the bottom.

 1050 PROCup:PROCright:IFFNbackground THEN1040

By the time we get back to this point again we have
found the bottom of the shape. The coordinates of
the leftmost point of the bottom line are stored in
X1% and Y1%. We must place the cursor back at
this position.

 1060 X%=X1%:Y%=Y1%

See diagram 8.7.

The obvious thing to do now is to fill this bottom
line. However, as we do this we must check to see if
we have finished filling the outline. As we fill each
pixel of this line we must check the pixel above to
see if it is background. If no background is found
above then we have finished filling the shape. If
some background is found then we must make a
note in X1% and Y1% of the first pixel of background
we find and set a flag to tell us that there is more to
be filled above. What we will do is use the variable
F% as a flag. At the start of filling the line, we set
this to 0.

 1060 X%=X1%:Y%=Y1%:F%=0

154

Then, when the first background pixel is found
above, we set F% to I and store the coordinates in
X1% and Y1%. Any further background points we
find, F% will already be set to 1 and we will know
not to alter X1% and Y1%. Then when the line is
filled, if F% is still zero, no background has been
found on the next line up and we have finished.
Otherwise, we can move the cursor to the
coordinates in X1% and Y1% and start to fill the next
line.

So the first job to do, before we fill each pixel on
the current line, is to moved up and check whether
there is background above.

 1070 PROCup:IFNOTFNbackground THEN1090

If background has been found and F% is still 0, then
we must set F% to 1 and copy the cursor
coordinates into X1% and Y1%.

 1080 IFF%=0 F%=1:X1%=X%:Y1%=Y%

Next we can fill the pixel on the line we are
currently working on.

 1090 PROCdown:PLOT69,X%,Y%

Next we move right a pixel and, unless the
boundary has been reached, go back and fill the
next pixel.

 1100 PROCright:IFFNbackground THEN1070

If F% is now 1 then we can go back and fill the next
line up. We need to go back to line 1020 for this, to
find the left-hand end of the line.

 1110 IFF%=1 X%=X1%:Y%=Y1%:GOTO1020

Otherwise, we have finished and can return from
the procedure.

 1120 ENDPROC

155

This would appear to be perfectly good fill routine.
However, it will only work until it reaches this point.

See diagram 8.8.

At line 1080 onwards, it will have reached this point.

See diagram 8.9.

It will keep a copy of this point in X1% and Y1% and
set F% to 1. It will then ignore any other background
that it finds on the line above. Thus when it fills the
next line up, it will only fill the left-hand are of the
shape. The final result, when the computer thinks it
has finished, will be this:

See diagram 8.10.

To solve this problem we need to re-write lines 1070
to 1120 leaving gaps for lines we need to add:

 1070 PROCup:IFFNbackground THEN1100

 1090 GOTO1120

 1100 IFF%=0 F%=1:X1%=X%:Y1%=Y%

 1120 PROCdown:PLOT69,X%,Y%

 1130 PROCright:IFFNbackground THEN1070

See diagram 8.11.

When the cursor reaches this point we need to set
F% to 2. This shows that we have found the entire
width of the first area. Thus if boundary is detected
and F% is already 1, then we need to set F% to 2.

 1080 IFF%=1 F%=2

See diagram 8.12.

When the cursor reaches this point, F% will be 2.
Thus we know that the program must make a
decision about which area to fill first. We will say
that the program will keep a note of the position of
the first area (already stored in X1% and Y1%) and
carry on filling from where the cursor is, as if it is

156

starting a new horizontal line.

 1110 IFF%=2THEN1170

However, in filling the second area, the program
might come across another decision point and have
to keep a note of a second set of coordinates.

What we need is a buffer in which we can place a
whole list of coordinates. We can use an array for
this. We are unlikely to need to keep a note of more
than 64 sets of coordinates so we can dimension an
array 64 by 2. Because we can use entry zero in an
array, the following command will be sufficient.

 5 DIM S%(63,1)

We can then say that the first point saved on this
buffer will have X and Y coordinates stored in
S%(0,0) and S$(0,1) and so on.

We also need a pointer to keep track of how many
points we have kept a note of at any time. For this
we can use the variable P%. This needs to be set to
zero on entry to the procedure.

 1000 DEFPROCfill(X%,Y%,C%):P%=0

When we reach a decision point, we must place the
coordinates of the first area (currently in X1% and
Y1%) in the first clear entry of the buffer and add
one to the pointer P%. Then we can move down a
pixel, back to the line we were originally filling. We
need to set F% to 0, so that the program carries on
looking for areas above the current line that need
filling, and then go back to line 1070.

 1170 S%(P%,0)=X1%:S%(P%,1)=Y1%:P%=P%+1

 1180 PROCdown:F%=0:GOTO1070

If the program does not reach a decision point then
it will finish filling the line it is on. At this stage, if
there is more to be filled on the next line up, F% will
be either 1 or 2 and the coordinates of the area to be
filled will be in X1% and Y1%

157

 1140 IFF%>0 X%=X1%:Y%=Y1%:GOTO1020

If note then the program has reached a dead-end.
However, there may still be some points stored in
the buffer that need to be explored. If P% is 0 then
we have finished the entire job and can return from
the procedure.

 1150 IFP%=0 ENDPROC

If P% is not 0, then we need to subtract one from the
pointer, P%; remove the most recent point from the
stack; and start filling from this point.

 1160 P%=P%-1:X%=S%(P%,0):Y%=S%(P%,1):GOTO1020

This completes the fill program. To make it easier to
type in, here is the complete program.

 5 DIM S%(63,1)

 10 REM Program to draw outline.

 20 MODE0:M%=2

 30 VDU23,1,0;0;0;0;

 40 P%=4

 50 FORA=0TOPI*2STEPPI/100

 60 R%=COS(A*10)*200+300

 70 PLOTP%,640+SIN(A)*R%,512+COS(A)*R%

 80 P%=5

 90 NEXT

 100 P%=4

 110 FORA=0TOPI*2STEPPI/80

 120 R%=COS(A*10)*50+130

 130 PLOTP%,640+SIN(A)*R%,512+COS(A)*R%

 140 P%=5

 150 NEXT

 160 FORA=0TOPI*2STEPPI/5

 170 P%=4

 180 FORB=0TOPI*2STEPPI/30

 190 C=A+SIN(B)*PI/32

 200 R%=325+125*COS(B)

 210 PLOTP%,SIN(C)*R%+640,COS(C)*R%+512

 220 P%=5

 230 NEXT,

158

 500 PROCfill(640,32,0)

 510 END

 1000 DEFPROCfill(X%,Y%,C%):P%=0

 1010 PROCdown:IFFNbackground THEN1010 ELSE

PROCup

 1020 PROCleft:IFFNbackground THEN1020

 1030 PROCright:X1%=X%:Y1%=Y%

 1040 PROCdown:IFFNbackground THEN1020

 1050 PROCup:PROCright:IFFNbackground THEN1040

 1060 X%=X1%:Y%=Y1%:F%=0

 1070 PROCup:IFFNbackground THEN1100

 1080 IFF%=1 F%=2

 1090 GOTO1120

 1100 IFF%=0 F%=1:X1%=X%:Y1%=Y%

 1110 IFF%=2THEN1170

 1120 PROCdown:PLOT69,X%,Y%

 1130 PROCright:IFFNbackground THEN1070

 1140 IFF%>0 X%=X1%:Y%=Y1%:GOTO1020

 1150 IFP%=0 ENDPROC

 1160 P%=P%-1:X%=S%(P%,0):Y%=S%(P%,1):GOTO1020

 1170 S%(P%,0)=X1%:S%(P%,1)=Y1%:P%=P%+1

 1180 PROCdown:F%=0:GOTO1070

 2000 DEFPROCup:Y%=Y%+4:ENDPROC

 2010 DEFPROCdown:Y%=Y%-4:ENDPROC

 2020 DEFPROCleft:X%=X%-M%:ENDPROC

 2030 DEFPROCright:X%=X%+M%:ENDPROC

A machine code fill If you run the BASIC program you will find that it
takes about eight minutes to fill our outline. This is
clearly impracticable for serious use so we need to
re-write the routine in machine code. The quickest
way to do this is to simply covert the program, line
for l ine, into machine code.

First we must define the zero page locations we
will use to replace each of the BASIC variables.

&70 and &71 X% low and high
&72 and &73 Y% low and high
&74 colour of current pixel
&75 C% − background colour
&76 P% − stack pointer
&77 F% − decision flag
&78 and &79 X1% low and high
&7A and &7B Y1% low and high

159

We need a procedure to assemble the machine
code.

 1000 DEFPROCass

 1010 DIMmc%350

 1020 FORpass%=0TO2STEP2

 1030 P%=mc%

 1040 [OPTpass%

Now we can start writing the routine. We can
improve the speed by disabling interrupts during
the fill. Then we can look at the first line of the
BASIC which defined the procedure and set P% to
zero. This becomes:

 1050 .fill SEI

 1060 LDA #0

 1070 STA &76

Where we used procedures in the BASIC examples
for left, right, up and down, we can use subroutines
in machine code with the same labels. For the
function BACKGROUND we can write a subroutine
called BACKGR which sets the zero flag only if the
pixel under the cursor is of the background colour.

The next line of the BASIC was:

 1010 PROCdown:IFFNbackground THEN1010

 ELSE PROCup

This, then, becomes the following piece of machine
code:

 1080 .loop1 JSR down

 1090 JSR backgr

 1100 BEQ loop1

 1110 JSR up

Next we had the lines:

 1020 PROCleft:IFFNbackground THEN1020

 1030 PROCright:X1%=X%:Y1%=Y%

160

This becomes:

 1120 .loop2 JSR left

 1130 JSR backgr

 1140 BEQ loop2

 1150 JSR right

 1160 LDA &70

 1170 STA &78

 1180 LDA &71

 1190 STA &79

 1200 LDA &72

 1210 STA &7A

 1220 LDA &73

 1230 STA &7B

Then the lines:

 1040 PROCdown:IFFNbackground THEN1010

 1050 PROCup:PROCright:IFFNbackground THEN1040

 1060 X%=X1%:Y%=Y1%:F%=0

This becomes:

 1240 .loop3 JSR down

 1250 JSR backgr

 1260 BEQ loop1

 1270 JSR up

 1280 JSR right

 1290 JSR backgr

 1300 BEQ loop3

 1310 LDA &78

 1320 STA &70

 1330 LDA &79

 1340 STA &71

 1350 LDA &7A

 1360 STA &72

 1370 LDA &7B

 1380 STA &73

 1390 .loop4 LDA #0

 1400 STA &77

Note the label LOOP4. By jumping to here when we
reach the equivalent of line 1180 of the BASIC, we
can save two commands.

161

Next we had:

 1070 PROCup:IFFNbackground THEN1100

 1080 IFF%=1 F%=2

 1090 GOTO1120

 1100 IFF%=0 F%=1:X1%=X%:Y1%=Y%

 1110 IFF%=2THEN1170

This becomes

 1410 .loop5 JSR up

 1420 JSR backgr

 1430 BEQ skip1

 1440 LDA &77

 1450 CMP #1

 1460 BNE point

 1470 LDA #2

 1480 STA &77

 1490 BNE point

 1500 .skip1 LDA &77

 1510 BNE skip2

 1520 LDA #1

 1530 STA &77

 1540 LDA &70

 1550 STA &78

 1560 LDA &71

 1570 STA &79

 1580 LDA &72

 1590 STA &7A

 1600 LDA &73

 1610 STA &78

 1620 .skip2 LDA &77

 1630 CMP #2

 1640 BEQ skip5

We then had the line:

 1120 PROCdown:PLOT69,X%,Y%

This codes into machine code using the VDU25
equivalent of the PLOT command.

 1650 .point JSR down

162

 1660 LDA #25

 1670 JSR &FFEE

 1680 LDA #69

 1690 JSR &FFEE

 1700 LDA &70

 1710 JSR &FFEE

 1720 LDA &71

 1730 JSR &FFEE

 1740 LDA &72

 1750 JSR &FFEE

 1760 LDA &73

 1770 JSR &FFEE

 1130 PROCright:IFFNbackground THEN1070

Becomes:

 1780 JSR right

 1790 JSR backgr

 1800 BEQ loop5

Then we had the lines:

 1140 IFF%>0 X%=X1%:Y%=Y1%:GOTO1020

 1150 IFP%=0 ENDPROC

This becomes:

 1810 LDA &77

 1820 BEQ skip3

 1830 LDA &78

 1840 STA &70

 1850 LDA &79

 1860 STA &71

 1870 LDA &7A

 1880 STA &72

 1890 LDA &7B

 1900 STA &73

 1910 JMP loop2

 1920 .skip3 LDA &76

 1930 BNE skip4

 1940 CLI

 1950 RTS

163

Next we have the first mention of the buffer. For this
we can use the stack. The points can be pushed on
the stack, four bytes each, and pulled off again in
the reverse order. Location &76 can be used to keep
track of how many points are on the stack, as
before.

The next line from the BASIC was:

 1160 P%=P%-1:X%=S%(P%,0):Y%=S%(P%,1):GOTO1020

This, then, becomes:

 1960 .skip4 DEC &76

 1970 PLA

 1980 STA &73

 1990 PLA

 2000 STA &72

 2010 PLA

 2020 STA &71

 2030 PLA

 2040 STA &70

 2050 JMP loop2

The next two lines from the BASIC were:

 1170 S%(P%,0)=X1%:S%(P%,1)=Y1%:P%=P%+1

 1180 PROCdown:F%=0:GOTO1070

These become:

 2060 .skip5 LDA &78

 2070 PHA

 2080 LDA &79

 2090 PHA

 2100 LDA &7A

 2110 PHA

 2120 LDA &7B

 2130 PHA

 2140 INC &76

 2150 JSR down

 2160 JMP loop4

Finally we have the five subroutines. The four move
routines code rather obviously.

164

 2000 DEFPROCup:Y%=Y%+4:ENDPROC

 2010 DEFPROCdown:Y%=Y%-4:ENDPROC

 2020 DEFPROCleft:X%=X%-M%:ENDPROC

 2030 DEFPROCright:X%=X%+M%:ENDPROC

These become:

 2170 .up LDA &72

 2180 CLC

 2190 ADC #4

 2200 STA &72

 2210 BCC uskip

 2220 INC &73

 2230 .uskip RTS

 2240 .down LDA &72

 2250 SEC

 2260 SBC #4

 2270 STA &72

 2280 BCS dskip

 2290 DEC &73

 2300 .dskip RTS

 2310 .left LDA &70

 2320 SEC

 2330 SBC #M%

 2340 STA &70

 2350 BCS lskip

 2360 DEC &71

 2370 .lskip RTS

 2380 .right LDA &70

 2390 CLC

 2400 ADC #M%

 2410 STA &70

 2420 BCC rskip

 2430 INC &71

 2440 .rskip RTS

For the last routine, we need to use OSWORD 9 (the
machine code equivalent of POINT). For this, a
parameter block must be set up with the X
coordinate in the first two bytes (low then high) and

165

the Y coordinate in the next two bytes (low then
high). The OSWORD routine then places the colour
of the pixel in the fifth byte of the parameter block.
We already have the X coordinate in &70 and &71,
and the Y coordinate in &72 and &73; we also want
the colour returned in &74. So, all we need to do is
set the X and Y registers (low, high) to point to
location &70, set the accumulator to 9 and call
OSWORD. We can then compare the colour returned
in &74 with the background colour in &75. If they
are the same then the zero flag will be set as
required.

 2450 .backgr LDA #9

 2460 LDX #&70

 2470 LDY #0

 2480 JSR &FFF1

 2490 LDA &74

 2500 CMP &75

 2510 RTS

 2520]

 2530 NEXT

 2450 ENDPROC

This finishes the machine code but we still need a
BASIC procedure that calls the routine.

 950 DEFPROCfill(X%,Y%,C%)

 960 !&70=X%+Y%*&10000

 970 ?&75=C%

 980 CALLfill

 990 ENDPROC

As an example try adding the BASIC example
section (lines 10 to 510) from the previous program.
We don’t now need line 5 as we are using the
machine stack; but we need to call the assembly
procedure once M% has been set.

 25 PROCass

IF you run this you will find that it is about eight
times faster than the BASIC version. This routine
will work in any mode so long as M% is set correctly

166

before the assembler procedure is called.

A faster fill For most purposes this routine is fast enough.
However, there will be occasions when a still faster
routine is needed. The things which slow down this
routine are the operating system calls. The routines
we have used are all written so as to be as flexible
as possible. However, this slows them down consid-
erably. If we are prepared to limit the fill routine to
working in only one mode then we can write our
own versions of the operating system routines
which will be much faster.

To do this we need to use a different method of
storing the coordinates of a point.

As an example of what is possible we can write a
Mode 0 fill routine that will fill our example shape.
As Mode 0 is a two-colour mode this shouldn’t too
difficult. To simplify the program further still, we will
assume that the background colour is zero.
Each pixel in Mode 0 is represented by one bit in
the memory. So instead of X% and Y% from our
BASIC example, we need a different method of
determining which pixel we are looking at. The best
way to do this is to use &70 and &71 to store the
address of the byte in memory; and another byte, at
&72, to describe which bit of that byte we are
interested in. This byte will contain a one in the bit
corresponding to the bit we are interested in and
zeroes in all the other bits. The reason for this is that
we can then load the byte from memory into the
accumulator and AND it with the contents of &72 to
leave either zero if the pixel was black or not zero if
the pixel was white. This technique is sometimes
called ‘bit masking’.

For convenience and speed we will also keep the
character column position (that is, the number of
pixels along divided by eight) in &73. This will make
it easier to check whether we have moved off the
edge of the screen.

The first change we need to make to our machine
code program is to add a routine at the beginning to
convert the X and Y coordinates into an address, a
bit mask, and a column number. On entry to the
routine we must specify that &78 and &79 contain

167

the X coordinate, and &7A and &7B contain the Y
coordinate, in pixels, where the top left-hand corner
of the screen is (0,0). This means that the BASIC
procedure for calling the fill routine now becomes:

 960 DEFPROCfill(X%,Y%)

 970 !&78=X%DIV2+&10000*(255-Y%DIV4)

 980 CALLfill

 990 ENDPROC

The first job for the machine code (after disabling
interrupts and setting P% to zero) is to work out the
address of the byte. This will be:
&3000 + 640*Y%DIV8 + X%AND&FFF8 + Y%MOD8

So the first section of the routine looks like this:

.fill SEI \ Disable interrupts.

 LDA #0 \ Set P% to 0

 STA &76 \

 LDA &7A \ Find

 AND #&F8 \ Y% DIV 8

 LSR A \ times 2

 LSR A \ for look O.S.

 TAX \ Y% MOD 8

 LDA &7A \

 AND #7 \

 CLC \

 ADC &C376,X \ look up 640

 STA &70 \ times table

 LDA &C375,X \

 CLC \

 ADC #&30 \ add &3000

 STA &71 \

 LDA &78 \ add X% AND

 AND #&F8 \ &FFF8

 CLC \

 ADC &70 \

 STA &70 \

 LDA &71 \

 ADC &79 \

 STA &71 \

(1050-1290)

168

If you are not sure how this works, look at chapter
10 on sprites, as this routine uses a similar section.

Next we must calculate the ‘bit mask’. This must
have the value &80 if X%AND7 is zero and &01 if it
is seven. To calculate it we can place the value &80
in location &72 and then shift it right the number of
times specified by X%AND7.

 LDA #&80

 STA &72

 LDA &78

 AND #7

 TAX

 BEQ skipA

.loopA LSR &72

 DEX

 BNE loopA

.skipA ...

(1300-1380)

Lastly we need to calculate the column number.
This will be the X coordinate divided by eight. As
the X coordinate cannot be larger than 639 we can
divide it two, twice, to get a number that cannot be
larger than 159. Then we only need to shift the low
byte for the last division by two. This saves one
command.

.skipA LSR &79

 ROR &78

 LSR &79

 ROR &78

 LSR &78

 LDA &78

 STA &73

(1390-1450)

From here on the program is similar to the previous
machine code version. As the X and Y coordinates
are stored as four bytes from &70 to &73 the com-

169

mands X1%=X%:Y%=Y% etcetera, will still be the
same. The next thing we need to change is where a
point is actually plotted. As we have assumed that
the background colour is zero, the foreground colour
must be one. This means that to plot a point we
need to set the relevant bit in the memory to one. To
do this we can simply load the byte into the
memory, OR it with the bit mask and store it back in
the memory. So the code after the label POINT
becomes:

.point JSR down

 LDY #0

 LDA (&70),Y

 ORA &72

 STA (&72),Y

 JSR right

 ...

Finally we need to rewrite the routines UP, DOWN,
LEFT, RIGHT and BACKGR. Here, UP must first
check if the point is off the top of the screen. If so,
then it must check the least significant three bits of
the address. If these are zero then we need to go up
a whole character line. Otherwise we need to take
one away from the address.

.up LDA &71

 CMP #&30

 BCC up2

 LDA &70

 AND #7

 BNE up1

 LDA &70

 SEC

 SBC #&79

 STA &70

 LDA &71

 SBC #2

 STA &71

 RTS

.up1 DEC &70

.up2 RTS

170

(2480-2630)

DOWN is similar.

.down LDA &71

 BMI down2

 LDA &70

 AND #7

 CMP #7

 BNE down1

 LDA &70

 CLC

 ADC #&79

 STA &70

 LDA &71

 ADC #2

 STA &71

 RTS

.down1 INC &70

.down2 RTS

(2650-2800)

LEFT needs to check that the pixel is on the screen
and, if so, shift the bit mask left a bit; if the carry is
then set, it needs to subtract eight from the address,
decrement the column number and set the bit mask
to one; RIGHT is similar.

.left LDA &73

 BMI left1

 ASL &72

 BCC left1

 LDA #1

 STA &72

 DEC &73

 LDA &70

 SEC

 SBC #8

 STA &70

 LDA &71

 SBC #0

 STA &71

.left1 RTS

171

.right LDA &73

 CMP #80

 BEQ right1

 LSR &72

 BCC right1

 LDA #128

 STA &72

 INC &73

 LDA &70

 CLC

 ADC #8

 STA &70

 LDA &71

 ADC #0

 STA &71

.right1 RTS

(2820-3130)

Lastly we need to deal with BACKGR. This must
first check that the point is on the screen. If so, then
it can load the byte from the memory, AND it with
the bit mask and return to the main program with
zero in the accumulator only if the pixel is
background.

.backgr LDA &73

 BMI off

 CMP #80

 BEQ off

 LDA &71

 BMI off

 CMP #&30

 BCC off

 LDY #0

 LDA (&70),Y

 AND &72

 BNE off

 LDA #0

 RTS

.off LDA #1

 RTS

172

(3150-3300)

We now have an effective routine. Here is a
complete listing of it:

 5 PROCass

 10 REM Program to draw outline

 20 MODE0

 30 VDU23,1,0;0;0;0;

 40 P%=4

 50 FORA=0TOPI*2STEPPI/100

 60 R%=COS(A*10)*200+300

 70 PLOTP%,640+SIN(A)*R%,512+COS(A)*R%

 80 P%=5

 90 NEXT

 100 P%=4

 110 FORA=0TOPI*2STEPPI/80

 120 R%=COS(A*10)*50+130

 130 PLOTP%,640+SIN(A)*R%,512+COS(A)*R%

 140 P%=5

 150 NEXT

 160 FORA=0TOPI*2STEPPI/5

 170 P%=4

 180 FORB=0TOPI*2STEPPI/30

 190 C=A+SIN(B)*PI/32

 200 R%=325+125*COS(B)

 210 PLOTP%,SIN(C)*R%+640,COS(C)*R%+512

 220 P%=5

 230 NEXT,

 500 PROCfill(640,32)

 510 END

 960 DEFPROCfill(X%,Y%)

 970 !&78=X%DIV2+&10000*(255-Y%DIV4)

 980 CALLfill

 990 ENDPROC

 1000 DEFPROCass

 1010 DIMmc%450

 1020 FORpass%=0TO2STEP2

 1030 P%=mc%

 1040 [OPTpass%

 1050 .fill SEI

 1060 LDA #0

 1070 STA &76

 1080 LDA &7A

173

 1090 AND #&F8

 1100 LSR A

 1110 LSR A

 1120 TAX

 1130 LDA &7A

 1140 AND #7

 1150 CLC

 1160 ADC &C376,X

 1170 STA &70

 1180 LDA &C375,X

 1190 CLC

 1200 ADC #&30

 1210 STA &71

 1220 LDA &78

 1230 AND #&F8

 1240 CLC

 1250 ADC &70

 1260 STA &70

 1270 LDA &71

 1280 ADC &79

 1290 STA &71

 1300 LDA #&80

 1310 STA &72

 1320 LDA &78

 1330 AND #7

 1340 TAX

 1350 BEQ skipA

 1360 .loopA LSR &72

 1370 DEX

 1380 BNE loopA

 1390 .skipA LSR &79

 1400 ROR &78

 1410 LSR &79

 1420 ROR &78

 1430 LSR &78

 1440 LDA &78

 1450 STA &73

 1460 .loop1 JSR down

 1470 JSR backgr

 1480 BEQ loop1

 1490 JSR up

 1500 .loop2 JSR left

 1510 JSR backgr

 1520 BEQ loop2

174

 1530 JSR right

 1540 LDA &70

 1550 STA &78

 1560 LDA &71

 1570 STA &79

 1580 LDA &72

 1590 STA &7A

 1600 LDA &73

 1610 STA &7B

 1620 .loop3 JSR down

 1630 JSR backgr

 1640 BEQ loop1

 1650 JSR up

 1660 JSR right

 1670 JSR backgr

 1680 BEQ loop3

 1690 LDA &78

 1700 STA &70

 1710 LDA &79

 1720 STA &71

 1730 LDA &7A

 1740 STA &72

 1750 LDA &7B

 1760 STA &73

 1770 .loop4 LDA #0

 1780 STA &77

 1790 .loop5 JSR up

 1800 JSR backgr

 1810 BEQ skip1

 1820 LDA &77

 1830 CMP #1

 1840 BNE point

 1850 LDA #2

 1860 STA &77

 1870 BNE point

 1880 .skip1 LDA &77

 1890 BNE skip2

 1900 LDA #1

 1910 STA &77

 1920 LDA &70

 1930 STA &78

 1940 LDA &71

 1950 STA &79

 1960 LDA &72

175

 1970 STA &7A

 1980 LDA &73

 1990 STA &7B

 2000 .skip2 LDA &77

 2010 CMP #2

 2020 BEQ skip5

 2030 .point JSR down

 2040 LDY #0

 2050 LDA (&70),Y

 2060 ORA &72

 2070 STA (&70),Y

 2080 JSR right

 2090 JSR backgr

 2100 BEQ loop5

 2110 LDA &77

 2120 BEQ skip3

 2130 LDA &78

 2140 STA &70

 2150 LDA &79

 2160 STA &71

 2170 LDA &7A

 2180 STA &72

 2190 LDA &7B

 2200 STA &73

 2210 JMP loop2

 2220 .skip3 LDA &76

 2230 BNE skip4

 2240 CLI

 2250 RTS

 2260 .skip4 DEC &76

 2270 PLA

 2280 STA &73

 2290 PLA

 2300 STA &72

 2310 PLA

 2320 STA &71

 2330 PLA

 2340 STA &70

 2350 JMP loop2

 2360 .skip5 LDA &78

 2370 PHA

 2380 LDA &79

 2390 PHA

 2400 LDA &7A

176

 2410 PHA

 2420 LDA &7B

 2430 PHA

 2440 INC &76

 2450 JSR down

 2460 JMP loop4

 2480 .up LDA &71

 2490 CMP #&30

 2500 BCC up2

 2510 LDA &70

 2520 AND #7

 2530 BNE up1

 2540 LDA &70

 2550 SEC

 2560 SBC #&79

 2570 STA &70

 2580 LDA &71

 2590 SBC #2

 2600 STA &71

 2610 RTS

 2620 .up1 DEC &70

 2630 .up2 RTS

 2640

 2650 .down LDA &71

 2660 BMI down2

 2670 LDA &70

 2680 AND #7

 2690 CMP #7

 2700 BNE down1

 2710 LDA &70

 2720 CLC

 2730 ADC #&79

 2740 STA &70

 2750 LDA &71

 2760 ADC #2

 2770 STA &71

 2780 RTS

 2790 .down1 INC &70

 2800 .down2 RTS

 2810

 2820 .left LDA &73

 2830 BMI left1

 2840 ASL &72

 2850 BCC left1

177

 2860 LDA #1

 2870 STA &72

 2880 DEC &73

 2890 LDA &70

 2900 SEC

 2910 SBC #8

 2920 STA &70

 2930 LDA &71

 2940 SBC #0

 2950 STA &71

 2960 .left1 RTS

 2970

 2980 .right LDA &73

 2990 CMP #80

 3000 BEQ right1

 3010 LSR &72

 3020 BCC right1

 3030 LDA #128

 3040 STA &72

 3050 INC &73

 3060 LDA &70

 3070 CLC

 3080 ADC #8

 3090 STA &70

 3100 LDA &71

 3110 ADC #0

 3120 STA &71

 3130 .right1 RTS

 3140

 3150 .backgr LDA &73

 3160 BMI off

 3170 CMP #80

 3180 BEQ off

 3190 LDA &71

 3200 BMI off

 3210 CMP #&30

 3220 BCC off

 3230 LDY #0

 3240 LDA (&70),Y

 3250 AND &72

 3260 BNE off

 3270 LDA #0

 3280 RTS

 3290 .off LDA #1

178

 3300 RTS

 3310]

 3320 NEXT

 3330 ENDPROC

Notice that in this form this program takes up nearly
5K of memory. Disc users, in particular, may have
trouble using this routine (though if it is typed in
exactly as above it should just fit). If you need a
shorter version you can just take out all the spaces
and put more than one command per line and this
should approximately have the length of the assem-
bly code.

Fill routines are not the most efficient way of
filling large areas with colour. Where possible use
the triangle plot command for large areas and keep
the fill routine for filling small areas. If used to fill the
whole screen, the routine above will take just over
30 seconds. However, for our example shape it only
takes about four seconds.

179

180

