
CHAPTER 3

PURE MACHINE
CODE

We have seen in the last two chapters how to
program in assembly code. However, this language
is completely artificial; it is not one that the compu-
ter understands directly. We have to convert an
assembly code into machine code, using an assem-
bler, before we can use it. For most purposes this is
ideal for us as it means we don’ t have to understand
pure machine code. If, however, you are looking at
someone else’s program you may not have the
original assembly code but only the machine code.
In some circumstances it is easier to write in pure
machine code − if you can do it! This chapter will
show you how assembly code is converted into pure
machine code.

A machine code program is stored in the memory
as a series of consecutive bytes. Each instruction
takes up either one, two or three bytes depending
on what addressing mode i t uses.

The first byte of an instruction tells the CPU which
command is being used and also which addressing
mode it is being used with.

There is a specific one-byte code for each available
combination of command and addressing mode.
This byte is called the OP-CODE. Because not all
the addressing modes can be used with each
command the total number of legal op-codes is 151.
If you use a code that is not legal the computer will
usually ignore it, though some illegal codes produce
strange results. This is because there are some
commands on the 6502 which are not documented
because either they don’ t work properly or are
totally useless.
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If your computer has a 65C02 processor, which is a
recent improvement on the old 6502 processor, then
it will have 59 extra legal op-codes. The standard
BBC Micro, however, has only the 151 standard
6502 op-codes. There is a complete list of the legal
op-codes and what they do in Appendices B and C.

Addressing modes Here is a list of all the addressing modes we can use
and what data (if any) is needed for each.

Implied addressing In this mode no explicit data is needed, so the
command only uses the one byte for the op-code.

Immediate addressing In this mode one byte of the data is needed. Thus
the assembler command LDA #&7E becomes:

A9 7E

Note that the data is stored in the memory as the
byte directly after the command byte.

Accumulator addressing In this mode there is no explicit data involved. The
A (for accumulator) after the command in assembly
code is in fact implied by the op-code itself. The A
is only for our convenience. Thus LSR A becomes:

4A

Absolute addressing In this mode two bytes are needed after the op-code
to specify the address of the byte the processor
must work on. These address bytes are always
stored with the low byte first, followed by the high
byte. Thus STA &FE62 becomes:

8D 62 FE

Zero page addressing If we wanted, for example, to store the accumulator
at zero page address &78 using absolute addressing
we would need:

8D 78 00

However, there is an addressing mode for just this
sort of situation. By using ZERO PAGE ADDRESS-
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ING the processor knows we are using zero page
and we only have to send one byte of data to the
processor. Thus the example above becomes:

85 78

This means that if we store all our frequently used
variables in zero page we can access then slightly
faster and with a saving of one byte of program per
command. The assembler does this automatically −
if it is faced with an absolute addressing command
with an address in zero page, it automatically uses
zero page addressing.

Absolute X addressing In this mode the contents of the X register are
added to the address before it is used. In terms of
machine code the command is identical to absolute
addressing but the op-code is different. Thus STA
&6435,X becomes:

9D 35 64

Absolute Y addressing This uses the Y register but is otherwise identical to
absolute X addressing except that the op-code is
different. For example LDA &900,Y becomes:

B9 00 09

Zero page X addressing As with absolute addressing there is a zero page
version of absolute X addressing. This is zero page
X addressing and uses only one byte of data. This
command automatically works in zero page. Thus
LDA &78,X becomes:

85 7A

Zero page Y addressing This is the same as zero page X addressing, only
with a different op-code. For example STX &90,Y
becomes:

96 90

Indirect addressing This mode (which can only be used with the JMP
instruction) has two bytes after it which together
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form the address in which the processor looks for
the actual address. Thus JMP (&230) becomes:

6C 30 02

Pre-indexed indirect addressing
In this mode a zero page address is specified so it
only uses one byte of data. Thus ADC (&70,X)
becomes:

61 70

Post-indexed indirect addressing
This again only needs a one-byte zero page address.
Thus STA (&84),Y becomes:

91 84

Relative addressing This mode is the most complicated of all. It needs
one byte of data in the form of a positive or negative
number. This is the number that is added to the
program counter if the condition being tested is
true. The program counter, of course, determines
which command is being carried out or executed.
The way to calculate this OFFSET, as it is called, is
to subtract the address of the first byte of the com-
mand you want to branch to, from the address of the
first byte of the next command after the branch
command.

For example, take the assembly code program:

         LDX #&80

.loop    DEX

         BNE loop

         RTS

If we assembled it at address &2000 onwards and
then looked at it we would find the following:

Address byte

  2000   A2  \ LDX #

  2001   80  \ &80
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  2002   CA  \ DEX

  2003   D0  \ BNE relative

  2004   FD  \ &2002-&2005=-3=&FD

  2005   60  \ RTS

(a branch backwards)

         INC &70

         BNE nocarry

         INC &71

.nocarry RTS

becomes:

Address byte

  2000   E6  \ INC

  2001   70  \ &70

  2002   D0  \ BNE

  2003   02  \ &2006-&2004=2

  2004   E6  \ INC

  2005   71  \ &71

  2006   60  \ RTS

(a branch forwards).

Notice that the assembler OPT command has an
option so that you can see an assembled listing of
the code as it is assembled. This can be enabled by
using OPT3 for the second pass. Below is the sec-
ond of our example programs and the print-out it
produces.

   10 HIMEM=&2000

   20 FOR pass%=0TO3 STEP3

   30 P%=&2000

   40 [OPT pass%

   50          INC &70

   60          BNE nocarry

   70          INC &71

   80 .nocarry RTS

   90 ]

  100 NEXT

59



 2000           OPT pass%

 2000 E6 70     INC &70

 2002 D0 02     BNE nocarry

 2004 E6 71     INC &71

 2006 60        .nocarry RTS

A machine code monitor
Now that we have seen how to pure machine code
works, we need a way of using it. On the BBC Micro
there is no quick way to look at a section of memory.
If we want to look at a machine code program or
write one, we need a ‘window’ into the memory.
The program we need is called a machine code
monitor. It is relatively easy to write a simple moni-
tor in about 600 bytes, so that is exactly what we
will do.

In this and the following chapters we will discuss
each program in detail. Each section of the program
will be, in general, followed by numbers in brackets
that refer to line numbers in the full l isting that
follows the description.

This program will work in Mode 7. We need to be
able to look at a whole screen of the memory, say
200 bytes, and not just one byte at a time. The best
way to do this is to display the contents of the
memory in hexadecimal as a table on the screen. So
as to get a large number of bytes on the screen we
will need to have eight bytes on each line of this
table. We need to be able to see, at a glance, the
address of each byte, though we can make do with
only displaying the address of the first byte of each
line. So we will end up with a display looking like:

78A0  01 20 E3 FF 20 E3 FF A9

78A8  00 A2 07 20 E3 FF CA D0

78B0  FA A9 04 A0 C0 4C F4 FF

78B8  C9 30 90 33 C9 3A 80 06

78C0  38 E9 30 4C D1 78 C9 41

78C8  90 25 C9 47 B0 21 38 E9

78D0  37 85 75 A4 74 B1 70 0A

78D8  0A 0A 0A 05 75 91 70 81

78E0  70 20 C2 79 A9 08 20 E3

78E8  FF 20 E3 FF 4C 61 78 C9

78F0  9F F0 19 C9 9C D0 63 20
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78F8  23 7A C6 74 A5 74 C9 FF

7900  74 4C 0F 79 20 23 7A A9

7910  1F 20 E3 FF A9 00 20 E3

7918  FF 20 E3 FF A9 08 20 E3

7920  FF A5 70 38 E9 08 85 70

7928  A5 71 E9 00 85 71 A5 70

7930  38 E9 60 85 72 A5 71 E9

7938  00 85 73 20 DE 79 A9 1F

7940  20 E3 FF A9 00 20 E3 FF

7948  A9 18 20 E3 FF A9 20 A2

7950  27 20 E3 FF CA D0 FA 4C

7958  61 78 C9 9E F0 1D C9 32

We can also make the program more pleasant to use
by making the addresses (at the extreme left) yellow
and the data (the contents of the memory) green.
We can then highlight the byte we are currently
working on by making it white.

We are going to use the cursor keys and the
shifted cursor keys for control of the cursor, so the
first thing we need to do is set up the cursor keys to
do this.

We could produce ASCII codes from the cursor
keys using *FX4,1 but this will not distinguish
between normal and shifted cursor keys. The way
round this is to set up the cursor keys as soft keys
and set them to generate ASCII codes. We do this
with two commands. First, *FX4,2 sets up the
cursor keys as soft keys 12 to 15. The shifted cursor
keys will now automatically produce ASCII codes
(from &8C to &8F) but the normal cursor keys will
not. So, second, we make the normal cursor keys
generate ASCII codes by setting the ASCII base of
the normal function keys to &90 with *FX225,144.
This means that instead of producing strings the
soft keys will generate ASCII codes of &90 plus the
key number, so that the normal cursor keys will now
generate codes &9C to &9F. So the start of our
machine code routine looks like this:

.monitor LDA #4  

         LDX #2 

         LDY #0

         JSR osbyte
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         LDA #&E1

         LDX #&90

         JSR osbyte

(80-140)

Notice that we have used OSBYTE instead of
&FFF4. To do this we must define the variable
OSBYTE at the beginning of the assembler program.
We are also going to use the OSASCI and OSRDCH
routines so we can define these at the same time.
We also need a place to put the machine code
monitor program. For our purposes let’s put it at
&7900 and move HIMEM down to leave room for it.
This will cause problems if you are writing a
graphics program but it is easy, in that event, to
change the program to assemble the machine code
elsewhere in the memory.

So the beginning of the assembler routine looks
like this:

   10 HIMEM=&7900

   20 osasci=&FFE3

   30 osbyte=&FFF4

   40 osrdch=&FFE0

   50 FORpass%=0TO2STEP2

   60 P%=&7900

   70 [OPTpass%

Now back to the machine code. Our next task is to
go into Mode 7 and turn the cursor off.

         LDA #22

         JSR osasci

         LDA #7

         JSR osasci

         LDA #23

         JSR osasci

         LDA #1

         JSR osasci

         LDA #0

         LDX #8

.loop1   JSR osasci

         DEX
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         BNE loop1

(150-270)

Notice that the simple BASIC command
VDU23,1,0;0;0;0;  becomes quite complicated in
machine code. The eight zeros are easier to send
with a loop unlike in BASIC.

Next we must decide what memory address we
are interested in displaying. It is convenient to set
this to &0000 for the moment as it is easy to step
through the memory to the location we are inter-
ested in. Because of the way we are going to display
the table, we are going to be treating the memory as
an array eight bytes across by 8192 bytes down.

It will be easier if we keep the address of the FIRST
byte on the line we are looking at separate from the
number of the byte (0-7) within that l ine.

Let’s say &70 and &71 contain the address of the
first byte on the line where the cursor is at present
positioned and &74 contains the number of the byte
on that line which we are interested in (0-7). Initially
the address of the first byte on the line will be zero,
so we can add to our program:

         LDA #0

         STA &70

         STA &71

         STA &74

(280-310)

Next we must display a screenful of memory − 24
lines of eight bytes each. It  would be sensible to set
up a routine which just prints one line (eight bytes)
of memory, and use this repeatedly. However,
before we can even do this we need a routine that
will display the value of one byte as two hex digits.
For this routine let us specify that the byte to be
printed must initially be found in the accumulator.
We will have to work on one nibble (half a byte) at a
time, so we have to save the complete byte while
we work on the first nibble in the accumulator. We
can save the accumulator in &75. Next we can
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mask out the least signif icant nibble, leaving the
most signif icant nibble in the accumulator (this will
be the left-hand digit of the hex byte). We will then
have to shift it right four times so that we get a
number from zero to fifteen in the low nibble of the
accumulator.

.byte    STA &75     \ Display byte

         AND #&F0    \ in hex.

         LSR A

         LSR A

         LSR A

         LSR A

(1990-2040)

Next we need to display this digit on the screen. We
will need to do this twice (left-hand nibble and
right-hand nibble) for each byte so we need a
separate routine called NIBBLE to do this.

Having called this routine we must reload the
accumulator with the original byte and this time
mask out the most signif icant nibble, leaving the
right-hand nibble in the least signif icant nibble of
the accumulator, and call the nibble routine again.
However, note there is little point in calling NIBBLE
again as, once it is called, the BYTE routine will
have finished so the next command would be RTS.
We may as well ‘ fall through’ straight to NIBBLE and
let the RTS at its end (supplied by the OS subrou-
tine OSASCI) do the job. This means that we have
to place NIBBLE directly in place of the second JSR
NIBBLE command. This leaves us with:

         JSR nibble

         LDA &75

         AND #&F

.nibble  ...

(2050-2080)

The nibble routine must add 48 (ASCII code for 0) to
the number in the accumulator before printing it
using OSASCI. However, if the number is 10 or more
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(decimal) then we need first to add a further seven
to bring it to the corresponding ASCII codes for the
characters A, B, C, D, E and F.

.nibble  CLC 

         ADC #48 

         CMP #58

         BCC print

         ADC #7

.print   JSR osasci

         RTS

Notice that because the last-but-one command of
NIBBLE is a JSR we can instead just jump to
OSASCI and the RTS command at i ts end will save
us from needing an extra RTS at the end of NIBBLE.
Thus the end of NIBBLE becomes:

.print   JMP osasci

(2080-2140)

We now have the byte display routine; so, next, we
need to write the line display routine. For this we
need the address of the first byte on the line. This
may not necessari ly be the line the cursor is on, so
we can’t use &70 and &71. Instead we can specify
that the address of the first byte on the line must be
stored at &72 and &73. The routine must first of all
print a ‘yellow’ teletext code for the address. Then it
must print the two-byte address stored in &72 and
&73 (remember that &73 is the high byte).

.line    LDA #&83

         JSR osasci

         LDA &73

         JSR byte

         LDA &72

         JSR byte

(2160-2210)

Next we need a space to separate the address from
the data.
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         LDA #32

         JSR osasci

(2220-2230)

We will next use POST-INDEXED INDIRECT
ADDRESSING to load the byte to be displayed into
the accumulator; so we need to set Y to zero for the
first byte. Then, for each byte, we can print a
‘green’ teletext code to separate the byte from the
previous one; then load then byte into the accumu-
lator and display it; then increment Y; and repeat
the process until all eight bytes that make up the
line have been displayed. After that we only need a
carriage return to complete this routine. As before,
we can save ourselves from putting an RTS at the
end by jumping to the OSASCI routine.

         LDY #0

.loop3   LDA #&82

         JSR osasci

         LDA (&72),Y

         JSR byte

         INY

         CPY #8

         BNE loop3

         LDA #13

         JMP osasci

(2240-2330)

Having written a routine for displaying a line, we
can now go back to the main routine and display a
whole screenful of data. For this overall display, i t
would be best if the byte we are currently examin-
ing or altering always appears half-way down the
screen as then we can see what we have done and
what is coming. For this reason the line the cursor is
on will always be the thirteenth line down. Thus to
print the block of memory above the cursor we need
to subtract 96 (12 times 8) from the contents of &70
and &71. This we can put into &72 and &73 ready
to display a line. We also need to start at the top of
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the screen (later we will jump back to this point so
the change of mode is not sufficient).

.display LDA #30     \ Display sect of

         JSR osasci  \ memory as table 8

         LDA &&0     \ bytes of 24

         SEC         \ lines.

         SBC #96

         STA &72

         LDA &71

         SBC #0

         STA &73

(320-400)

We are going to print 24 lines in one go, so we can
use the X register to count down from 24 to 1. We
also need to add 8 to the contents of &72 and &73 to
move the address forward by eight bytes after each
line.

         LDX #24

.loop2   JSR line

         LDA &72

         CLC

         ADC #8

         STA &72

         LDA &73

         ADC #0

         STA &73

         DEX

         BNE loop2

(410-510)

We are now at the stage where we need a cursor to
appear. We are going to highlight the byte we are
interested in by making it white. To do this we need
to put a ‘white’ teletext code before it and a ‘green’
teletext code after it. As we are going to want to
remove this cursor again, it would be sensible to use
a subroutine to position the text cursor where we
are going to place the ‘white’ byte. We shall call this
routine CURSOR1. We know that the cursor will
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always be on line 12 so we only have to calculate
how far across it will be. As each byte uses up three
screen characters for its display we need to multiply
the byte number by three. To do this we need to
load the accumulator with the contents of &74, shift
the accumulator left one bit to multiply it by two,
and then add the contents of &74 to the accumula-
tor to make three times the original number. We
then have to add six to the accumulator to shift the
cursor right past the address at the beginning of the
line. We can use  VDU31,x,y  to move the text cursor
on the screen. So the routine looks like:

.cursor1 LDA #31     \ Move text cursor

         JSR osasci  \ to position

         LDA &74     \ for editing

         ASL A       \ cursor

         CLC

         ADC &74

         CLC

         ADC #6

         JSR osasci

         LDA #12

         JMP osasci

(2350-2450)

We can now go back to the main routine. Firstly we
need to call CURSOR1 and then we need to print a
‘white’. As we have used ‘green’ codes to separate
the bytes we don’t need to put another one in. The
text cursor is then on the first nibble of the byte.

.start   JSR cursor1 

         LDA #&87 

         JSR osasci

We now need to get a key from the keyboard using
OSRDCH. If ESCAPE has been pressed we must
acknowledge it with OSBYTE &7E and we then
want to turn the cursor back on with
VDU23,1,1,0;0;0;  reset the cursor keys to their
normal functions with *FX4,0 and move the cursor
to the bottom of the screen using VDU31, all before
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returning to BASIC.

. key     JSR osr dch

         BCC key1 

         LDA #&7E

         JSR osbyt e

         LDA #23

         JSR osasci

         LDA #1

         JSR osasci

         JSR osasci

         LDA #0

         LDX #7

. l oop4   JSR osasci

         DEX

         BNE l oop4   \  Not e t hat  X must  now

         LDA #4      \  be zer o,  so we don' t

         LDY #0      \  need t o set  i t  f or

         JSR osbyt e  \  t he OSBYTE cal l

         LDA #31

         JSR osasci

         LDA #0

         JSR osasci

         LDA #24

         JMP osasci

( 550- 770)

Having checked for the ESCAPE key we need to see
if the byte under the cursor is being altered. If the
key pressed is either 0 to 9 or A to F then we must
alter the byte accordingly. Firstly we can check if
the code is less than 48. If so, then we must check
for other keys.

. key1    CMP #48

         BCC key2

( 780- 790)

Next we can look to see if the code is less than 58. If
so, then a number key has been pressed and we
need to subtract 48 to get the value of the new
nibble.
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         CMP #58

         BCS letter

         SEC

         SBC #48

         JMP hex

(800-840)

If not, we then want to look for a letter. If the code is
less than 65 we are not interested and must wait for
another key. If it is larger than or equal to 71 then
we must look to see if it is a cursor key. Otherwise
we want to subtract 55 to get the value of the new
nibble.

.letter  CMP #65

         BCC key

         CMP #71

         BCS key2

         SEC

         SBC #55

(850-900)

We now have to decide what to do with the nibble.
Probably the best way to input the byte is for each
new nibble to shift the old byte left one nibble. Thus
the high nibble is lost, the low nibble becomes the
high nibble and the nibble typed in replaces the low
nibble. To do this we have to temporarily store the
nibble we have typed in while we shift the memory
byte left four bits. Then we can OR in the new
nibble and store the result back in memory.

.hex     STA &75

         LDY &74

         LDA (&70),Y

         ASL A

         ASL A

         ASL A

         ASL A

         ORA &75

         STA (&70),Y
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         LDA (&70),Y

(910-990)

This program will allow us to look into the ROMs but
if we try to store an alteration back into a ROM
nothing will happen. To make sure that the user
doesn’t think something has happened it would be
sensible to load the byte back again before storing it
on the screen. This way, if the byte hasn’t been
altered then the displayed byte on the screen won’t
change. As we have left the text cursor at the first
nibble on the screen we can just call the subroutine
BYTE to display the byte, moving the text cursor
back again and go back to waiting for the next key.

         JSR byte

         LDA #8

         JSR osasci

         JSR osasci

         JMP key

(1000-1050)

If the key pressed is not a number or a letter we
must check whether it is a cursor key and act
accordingly. We shall check first of all a cursor-up. If
this has been pressed we shall branch to the rele-
vant routine. Otherwise we shall check for a cursor-
left.

.key2    CMP #&9F

         BEQ up

         CMP #&9C

         BNE key3

(1060-1090)

Having established that the cursor-left key has been
pressed we need to remove the highlight cursor. We
will have to do this several times so we need a
subroutine which we shall call CURSOR. This must
first call CURSOR1 to position the text cursor and
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then rub over the highlight teletext code with a
‘green’ code.

.cursor  JSR cursor1

         LDA #&82

         JMP osasci

(2470-2490)

So our cursor-left routine can now remove the
cursor. Next it must decrement &74 to move the
address of the byte being looked at, back by one. If
this is now 255 then we must set it to seven (the
end of the line) and do a cursor up. Otherwise we
can go back to the start of the main routine. Notice
that as this last branch is more than 128 bytes we
have to use the ‘skip and jump’ technique.

         JSR cursor

         DEC &74

         LDA &74

         CMP #255

         BEQ skip1

         JMP start

.skip1   LDA #7

         STA &74

         JMP up1

(1100-1180)

While we are at it, we can write the UP routine as
well. This will be the same as UP1 but with a call to
CURSOR in front of it.

.up      JSR cursor

.up1     ...

(1190)

Next we have to scroll the screen down one line. We
can do this by first moving the cursor to the top of
the screen using VDU30 and doing a cursor-up.

.up1     LDA #30
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         JSR osasci

         LDA #11

         JSR osasci

(1200-1230)

Next we have to subtract eight from &70 and &71 to
move the cursor line back by one.

         LDA &70

         SEC

         SBC #8

         STA &70

         LDA &71

         SBC #0

         STA &71

(1240-1300)

Next we must call LINE with the address of the top
line in &72 and &73. This will be the contents of
&70 and &71 minus 96.

         LDA &70

         SEC

         SBC #96

         STA &72

         LDA &71

         SBC #0

         STA &73

         JSR line

(1310-1380)

Lastly we need to clear the bottom line of the screen
by moving to the bottom line and printing 31
spaces.

         LDA #31

         JSR osasci

         LDA #0

         JSR osasci

         LDA #24

         JSR osasci
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         LDA #32

         LDX #31

.loop%   JSR osasci

         DEX

         BNE loop5

         JMP start

(1390-1500)

Next we must check for cursor-down. If this has
been pressed then we must jump to the relevant
routine.

.key3    CMP #&9E

         BEQ down

(1510-1520)

Otherwise we must check for cursor-right. If you are
typing a long program it will be annoying to have to
find the cursor-right key between typing in each
byte, so we shall allow both the cursor-right key and
the space bar to do the same job.

         CMP #&9D

         BEQ right

         CMP #32

         BNE key4

(1510-1520)

The RIGHT routine must first remove the old cursor
and then increment &74 to move the cursor right by
one byte. If the contents of &74 now equal eight
then we must set it back to zero and jump to the
cursor-down routine. Otherwise, we must use the
‘skip and jump’ technique to branch back to
START.

.right   JSR cursor

         INC &74

         LDA &74

         CMP #8

         BEQ skip2
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         JMP start

.skip2   LDA #0

         STA &74

         JMP down1

(1570-1650)

As with the UP routine, we can insert the DOWN
routine here.

.down    JSR cursor

.down1   ...

(1660)

Next we have to scroll the screen up a line. We can
do this by moving to the bottom of the screen and
doing a cursor-down. However, at the same time we
can print the new bottom line. This is because we
are leaving a blank line at the bottom of the screen.
By printing the new line in this blank space the
carriage return at the end will scroll the screen for
us. First we need to move to this blank line.

.down1   LDA #31

         JSR osasci

         LDA #0

         JSR osasci

         LDA #24

         JSR osasci

(1670-1720)

Now we add eight to the address of the cursor line.

         LDA &70

         CLC

         ADC #8

         STA &70

         LDA &71

         ADC #0

         STA &71

(1730-1790)
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Next we must store the address of the new bottom
line in &72 and &73 and call LINE. Then we can
jump back to START.

         LDA &70

         CLC

         ADC #88

         STA &72

         LDA &71

         ADC #0

         STA &73

         JSR line

         JMP start

(1800-1880)

We now have all we need. However, if you want to
look at the contents of address &7F00 you will have
to scroll through &0000 to &7F00 one line at a time
and this will be slightly tedious. To solve this prob-
lem we shall make shifted cursor-up and shifted
cursor-down move a page at a time through the
memory. This we can do by incremented or decre-
mented the high byte of the address of the cursor
(line &71) and jumping back to DISPLAY.

.key4    CMP #&8E

         BNE key5

         INC &71

         JMP display

.key5    CMP #&8F 

         BNE key6

         DEC &71 

         JMP display

(1890-1960)

Finally, if the key that has been pressed is not one
we are interested in then we must go back and wait
for another key to be pressed.

.key6    JMP key
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(1970)

This program is a very simple one. There are several
ROMs available that have more sophisticated
monitors in them. BBC MONITOR (ROM based)
from BBC Publications (1985) is one such. Another
package from the same publishers is TOOLBOX 2
by Ian Trackman (1985), which comprises a book
and software tape. It has a particularly interesting
implementation of a monitor among its many utili-
ties, and complements this book.

Of course, you can improve our monitor program.
However, it will provide a useful tool for those
people who can’t be bothered to write a better
version or buy a ROM. It will also give you valuable
experience in how assembly code programs work.

Here, then, is the complete listing of the monitor
program. You might like to use the command
*SAVE MONITOR 7900 +20B 7900 to save the
machine code once it is assembled. Then the
monitor can be used by typing *MONITOR. This will
take up less room on a disc or tape and will be faster
to load. However, you should keep a copy of the
source assembly code program so that you can
assemble the program into different places, if
necessary, by changing P% at line 60.

You do not need to type in the comments on the
right-hand side of the listing.

   10 HIMEM=&7900

   20 osasci=&FFE3

   30 osbyte=&FFF4

   40 osrdch=&FFE0

   50 FORpass%=0TO2STEP2

   60 P%=&7900

   70 [OPTpass%

   80 .monitor LDA #4      \ Main program

   90          LDX #2      \ initialisation.

  100          LDY #0

  110          JSR osbyte

  120          LDA #&E1

  130          LDX #&90
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  140          JSR osbyte

  150          LDA #22

  160          JSR osasci

  170          LDA #7

  180          JSR osasci

  190          LDA #23

  200          JSR osasci

  210          LDA #1

  220          JSR osasci

  230          LDA #0

  240          LDX #8

  250 .loop1   JSR osasci

  260          DEX

  270          BNE loop1

  280          LDA #0

  290          STA &70

  300          STA &71

  310          STA &74

  320 .display LDA #30     \ Display sect of

  330          JSR osasci  \ memory as table 8

  340          LDA &70     \ bytes of 24

  350          SEC         \ lines.

  360          SBC #96

  370          STA &72

  380          LDA &71

  390          SBC #0

  400          STA &73

  410          LDX #24

  420 .loop2   JSR line

  430          LDA &72

  440          CLC

  450          ADC #8

  460          STA &72

  470          LDA &73

  480          ADC #0

  490          STA &73

  500          DEX

  510          BNE loop2

  520 .start   JSR cursor1 \ Start checking

  530          LDA #&87    \ keys

  540          JSR osasci

  550 .key     JSR osrdch

  560          BCC key1    \ Check for

  570          LDA #&7E    \ ESCAPE.
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  580          JSR osbyte

  590          LDA #23

  600          JSR osasci

  610          LDA #1

  620          JSR osasci

  630          JSR osasci

  640          LDA #0

  650          LDX #7

  660 .loop4   JSR osasci

  670          DEX

  680          BNE loop4

  690          LDA #4

  700          LDY #0

  710          JSR osbyte

  720          LDA #31

  730          JSR osasci

  740          LDA #0

  750          JSR osasci

  760          LDA #24

  770          JMP osasci

  780 .key1    CMP #48     \ Check for byte

  790          BCC key2    \ being altered.

  800          CMP #58

  810          BCS letter

  820          SEC

  830          SBC #48

  840          JMP hex

  850 .letter  CMP #65

  860          BCC key

  870          CMP #71

  880          BCS key2

  890          SEC

  900          SBC #55

  910 .hex     STA &75

  920          LDY &74

  930          LDA (&70),Y

  940          ASL A

  950          ASL A

  960          ASL A

  970          ASL A

  980          ORA &75

  990          STA (&70),Y

 1000          LDA (&70),Y

 1010          JSR byte
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 1020          LDA #8

 1030          JSR osasci

 1040          JSR osasci

 1050          JMP key

 1060 .key2    CMP #&9F    \ Check for

 1070          BEQ up      \ cursor-up.

 1080          CMP #&9C    \ Check for

 1090          BNE key3    \ cursor-left.

 1100          JSR cursor

 1110          DEC &74

 1120          LDA &74

 1130          CMP #255

 1140          BEQ skip1

 1150          JMP start

 1160 .skip1   LDA #7

 1170          STA &74

 1180          JMP up1

 1190 .up      JSR cursor

 1200 .up1     LDA #30

 1210          JSR osasci

 1220          LDA #11

 1230          JSR osasci

 1240          LDA &70

 1250          SEC

 1260          SBC #8

 1270          STA &70

 1280          LDA &71

 1290          SBC #0

 1300          STA &71

 1310          LDA &70

 1320          SEC

 1330          SBC #96

 1340          STA &72

 1350          LDA &71

 1360          SBC #0

 1370          STA &73

 1380          JSR line

 1390          LDA #31

 1400          JSR osasci

 1410          LDA #0

 1420          JSR osasci

 1430          LDA #24

 1440          JSR osasci

 1450          LDA #32
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 1460          LDX #31

 1470 .loop5   JSR osasci

 1480          DEX

 1490          BNE loop5

 1500          JMP start

 1510 .key3    CMP #&9E    \ Check for

 1520          BEQ down    \ cursor-down.

 1530          CMP #&9D    \ Check for

 1540          BEQ right   \ cursor-right

 1550          CMP #32

 1560          BNE key4

 1570 .right   JSR cursor

 1580          INC &74

 1590          LDA &74

 1600          CMP #8

 1610          BEQ skip2

 1620          JMP start

 1630 .skip2   LDA #0

 1640          STA &74

 1650          JMP down1

 1660 .down    JSR cursor

 1670 .down1   LDA #31

 1680          JSR osasci

 1690          LDA #0

 1700          JSR osasci

 1710          LDA #24

 1720          JSR osasci

 1730          LDA &70

 1740          CLC

 1750          ADC #8

 1760          STA &70

 1770          LDA &71

 1780          ADC #0

 1790          STA &71

 1800          LDA &70

 1810          CLC

 1820          ADC #88

 1830          STA &72

 1840          LDA &71

 1850          ADC #0

 1860          STA &73

 1870          JSR line

 1880          JMP start

 1890 .key4    CMP #&8E    \ Check for
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 1900          BNE key5

 1910          INC &71     \ cursor-down.

 1920          JMP display

 1930 .key5    CMP #&8F    \ Check for

 1940          BNE key6    \ shifted

 1950          DEC &71     \ cursor-up.

 1960          JMP display

 1970 .key6    JMP key

 1980  

 1990 .byte    STA &75     \ Display byte

 2000          AND #&F0    \ in hex.

 2010          LSR A

 2020          LSR A

 2030          LSR A

 2040          LSR A

 2050          JSR nibble

 2060          LDA &75

 2070          AND #&F

 2080 .nibble  CLC         \ Display nibble

 2090          ADC #48     \ in hex.

 2100          CMP #58

 2110          BCC print

 2120          CLC

 2130          ADC #7

 2140 .print   JMP osasci

 2150  

 2160 .line    LDA #&83    \ Display line

 2170          JSR osasci  \ of table.

 2180          LDA &73

 2190          JSR byte

 2200          LDA &72

 2210          JSR byte

 2220          LDA #32

 2230          JSR osasci

 2240          LDY #0

 2250 .loop3   LDA #&82

 2260          JSR osasci

 2270          LDA (&72),Y

 2280          JSR byte

 2290          INY

 2300          CPY #8

 2310          BNE loop3

 2320          LDA #13

 2330          JMP osasci
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 2340  

 2350 .cursor1 LDA #31     \ Move text cursor

 2360          JSR osasci  \ to position

 2370          LDA &74     \ for editing

 2380          ASL A       \ cursor

 2390          CLC

 2400          ADC &74

 2410          CLC

 2420          ADC #6

 2430          JSR osasci

 2440          LDA #12

 2450          JMP osasci

 2460  

 2470 .cursor  JSR cursor1 \ Remove editing

 2480          LDA #&82    \ cursor.

 2490          JMP osasci

 2500 ]

 2510 NEXT

 2520 CALL monitor

83



84


