
CHAPTER SEVEN

GENERAL
GRAPHICS

The graphics system on the BBC Micro is based on
two chips. These are the 6845 Cathode Ray Tube
Controller (CRTC for short) and the Video ULA.
Between them, these two chips are responsible for
the flexibility that allows the BBC Micro to have
eight different screen modes.

To understand how to use these chips we must
first look at the way in which a TV monitor works.
Inside a TV is a tube with the screen at one end of
it. In this tube a narrow beam of electrons is fired at
the screen. The screen is covered on the inside with
a substance which glows where the beam hits it.
The beam can obviously only illuminate one dot on
the screen at once and yet we need large amounts
of screen to be lit, seemingly continuously. What
happens is that the beam is scanned across the
screen in a series of horizontal lines from left to right
starting at the top and working down. At the same
time the beam is switched on and off to produce
light and dark areas on the screen. The beam
completes one vertical scan of the screen every
fiftieth of a second, so the eye is fooled into seeing a
coherent picture.

The graphics registers The 6845 CRTC contains 18 registers that we can
use. To write to them, the number of the register we
want to access (from 0 to 17) must be placed at
address &FE00 and the data can then be written
through location &FE01. The legal way to write to a
register is through the operating system, using
VDU23. The format is like this:

123

VDU23,0,reg_no,data;0;0;0

There is no way to read from any register. There is a
complete description of all these registers in THE
ADVANCED USER GUIDE. For the purposes of this
book we will only look at some of the more useful
registers.

Register 1 gives the total number of displayed
characters per l ine.

However, although we would assume that in
Mode 2, say, it would contain 20, this is not so. The
6845 CRTC was not designed to be used for high
resolution graphics − it was originally designed as a
straightforward text VDU controller, for text like that
of Mode 7, with only one byte needed to store each
character, though it is very simple to use it for
black-and-white graphics where each character
takes up eight bytes. So to use it as the heart of a
colour display as required by the BBC Micro, it must
be made to address and fetch the right number of
bytes of data for each text character in that mode.
For Mode 2 each text character takes up all of 32
bytes − not the eight bytes that a normal black-and-
white display would need to store a character. The
result is that for each text character on the Mode 2
colour screen the 6845 needs to fetch four of i ts
eight-byte characters. This means that, in the 20-
character Mode 2, the CRTC is made to think that
there are 80 of ITS characters per line. Thus, for
Modes 0 to 3, Register 1 contains 80, and for Modes
4 to 7 it contains 40.

By changing Register 1 you can make narrower
screens. For instance, suppose you have a game
that needs Mode 4 but is very long. If you are prep-
ared to only use 256 pixels across the screen then
you can set Register 1 to 32. This will mean that the
screen only takes up 8K instead of 10K. This techni-
que is used by Acornsoft to fit ELITE into the
computer.

Register 2 contains the position of the horizontal
sync pulse.

This is effectively used to position the screen on

124

your monitor, left and right. In different modes it
contains these values:

Mode 0 1 2 3 4 5 6 7
Register 2 98 98 98 98 49 49 49 51

If you are using the narrow 8K Mode 4 you will need
to set this register to 45 instead of 49.

Register 6 is the vertical equivalent of Register 1.
It gives the number of vertical text l ines to a

screen. Its normal values for the modes are:

Mode 0 1 2 3 4 5 6 7
Register 6 32 32 32 25 32 32 25 25

This can be used together with Register 1 to
produce smaller modes.

Register 7 contains the vertical sync position.
It is used by the *TV command to move the

screen up and down to accommodate different
monitors. As before, for smaller modes you may
have to change this register.

Registers 12 and 13 give the start of screen address
in RAM.

Notice that Register 12 is high and Register 13 is
low! These two registers form the address of the
top-left hand corner of the sceen in RAM, but
DIVIDED BY EIGHT. For example, in Mode 2, where
the top left-hand corner is stored at &3000, these
registers contain &600. By changing these registers
you can make any part of the RAM the screen. Also,
the registers can be used for scrolling. If the regis-
ters are set so that there is not enough addressed
RAM after the top left-hand corner to display a
complete screen − that is, the address of the bottom
of the screen will occur after &7FFF − then the
hardware wraps the screen back to before the top
left-hand corner.

For example, if in Mode 2 we set Registers 12 and
13 to &B00, i.e. pointing to &5800 − exactly half way
down the screen − then, when the top half of the

125

screen has been displayed the VDU will go back to
&3000 to display the bottom half. This is how
scrolling is done in all modes, as this saves moving
large amounts of memory around. The point in the
memory to which the screen scrolls back is normally
dependent on the mode and is set to the normal top-
of-screen address. However, this is set as part of
changing mode through the system VIA.

Bits 0 to 3 of port B on the system VIA are used
as an addressable latch to control several functions
of the BBC Micro. We are interested in controlling
the scroll wrap-around. This control is achieved by
altering the settings of two bits. The explanation of
these is a bit (sic) complicated, so I shall just give
the four relevant commands:

?&FE40=&4 clears low bit
?&FE40=&C sets low bit
?&FE40=&5 clears high bit
?&FE40=&D sets high bi t

These two bits in their four combinations set the
start of screen RAM for scrolling, as follows:

high low address
0 0 &4000
0 1 &6000
1 0 &5800
1 1 &3000

So we now have all we need to set up an 8K
‘narrow’ Mode 4.

 10 MODE4

 20 VDU23,0,1,32;0;0;0

 30 VDU23,0,2,45;0;0;0

 40 VDU23,0,12,12;0;0;0

 50 ?&FE40=&5:?&FE40=&C

 60 ?&34E=&60:?&351=&60

 70 VDU30

 80 HIMEM=&6000

This first adjusts Register 1 to set the number of
characters per line to 32 (line 20). Line 30 then

126

adjusts Register 2 to shift the whole screen right
four characters to centre it. Next the top-of-screen is
set to &6000 (Line 40) and the scrolling is set to
wrap around to &6000 (line 50). Finally, printing to
the screen is set to start at &6000 (line 60) by
setting the operating system’ s top-of-screen vari-
ables suitably and homing the cursor (line 70). We
can now claim the extra 2K of memory by moving
HIMEM up to &6000 (line 80).

However, this technique leaves the operating
system somewhat confused. It continues trying to
print the normal Mode 4 40-column text and 320-
pixel-wide graphics. To use the system you will
have to use the PRINT and PLOT commands very
carefully!

The Video ULA The Video ULA is accessed through two write-only
locations. The Video Control Register at &FE20
controls a number of factors to do with the current
mode. Complete details are given in THE
ADVANCED USER GUIDE. As far as we are
concerned it just sets which mode we are in.

Much more difficult to explain is the second
register at &FE21 which gives us access to the
palette. The high nibble of the location is the logical
colour and the low nibble is the actual colour. By
sending one byte to this location we can change
one entry in the palette. So far, so good, but here
comes the crunch. Just to make things more dif-
ficult, there are two complications. The first is that
the actual colour nibble should contain the actual
colour Exclusive-ORed with 7! The second is that to
change all the colours in ANY mode you have to
alter 16 entries in the palette.

For the 16-colour Mode 2 this is obvious. Each
logical colour has only one entry in the palette.

For the one-colour modes, entries 0 to 7 in the
palette all be set according to logical colour 0 and
entries 8 to 15 must be set according to logical
colour 1.

For four-colour modes, it is worse. To set each
logical colour you need to set four entries as follows:

127

Logical colour Entries to be changed
0 0

1
4
5

1 2
3
6
7

2 8
9
12
13

3 10
11
14
15

For example, in Mode 1, to do the equivalent of
VDU19,2,3;0; we should have to do:

?&FE21=&84

?&FE21=&94

?&FE21=&C4

?&FE21=&D4

The reasons for all this are so involved that they are
virtually unexplainable. However, I can assure you
that there are very good reasons − I think! As far as
we are concerned it is usually easier to use VDU19.
However, we will see, later in this chapter, one
example of where the added speed of the direct
method is necessary. Notice that this method won’ t
alter the copy of the palette that the operating
system keeps, so that using OSWORD 11 to read the
palette will give false answers.

Screen splitting It would be very useful to be able to split the screen
into two halves and have one half, say, in Mode 0
and the other half in Mode 1. This may seem
impossible; but, using interrupts, it can be done!

128

What we need to do is to use the vertical sync
interrupt to put the screen in Mode 0 and then set a
timer to produce an interrupt, half-way down the
screen, which we can use to put the screen in Mode
1. Because both are 20K modes it shouldn’ t be too
difficult to change mode in the middle. The con-
tents of the 6845 shouldn’ t need any changes, so all
we need to change is the contents of the ULA.

Let’s write two routines that will put the screen
in Mode 1 from Mode 0 and Mode 0 from Mode 1
without clearing the screen. First of all, let us
assume that the screen is already in Mode 0. To
change to Mode 1, the first thing we need to do is
change the video control register at &FE20 to set up
the mode we are using. We also need to update the
operating system’s copy of this register at &248

.mode1 LDA #&D8

 STA &FE20

 STA &248

(320-340)

Next we need to change the palette by writing to
the register at &FE21. Colours 0 and 3 will already
be correctly set so we only need to change 1 and 2.
We need to change four bytes for each logical colour
in Mode 1.

 LDX #7

.l1 LDA m1,X

 STA &FE21

 DEX

 BPL l1

 RTS

.m1 EQUD &26366676

 EQUD &8494C4D4

(360-420)

We can do likewise for Mode 0:

.mode0 LDA #&9C

 STA &FE20

129

 STA &248

 LDX #7

.l0 LDA m0,X

 STA &FE21

 DEX

 BPL l0

 RTS

.m1 EQUD &27376777

 EQUD &8090C0D0

(200-300)

Next we need to set up an interrupt routine in the
interrupt vector (&204 and &205).

.init SEI

 LDA &204

 STA &230

 LDA &205

 STA &231

 LDA #irq MOD256

 STA &204

 LDA #irq DIV256

 STA &205

(440-520)

We will also need to disable the centisecond clock
interrupt and the analogue-to-digital converter
interrupt, as these will tend to interfere with the
program. If you need to leave these enabled, then
you will have to put up with some flickering on the
screen.

 LDA #&50

 STA &FE4E

 CLI

 RTS

(530-560)

The interrupt routine will first need to save the
registers.

130

.irq LDA &FC

 PHA

 TXA

 PHA

 TYA

 PHA

(580-630)

Next we need to check that the vertical sync caused
the interrupt. If so, we need to switch to Mode 0.

 LDA #2

 BIT &FE4D

 BEQ notsync

 JSR mode0

(640-670)

We then need to set Timer 2 in the system VIA to
count for half a screen and then produce an inter-
rupt. So that we can move the boundary between
the two modes easily, we put the boundary position
in &70 and &71.

 LDA &FE4B

 AND #&DF

 STA &FE4B

 LDA &FE4E

 ORA #&20

 STA &FE4E

 LDA &70

 STA &FE48

 LDA &71

 STA &FE49

(680-770)

Finally we need to exit the interrupt routine by
restoring the registers and jumping to the spare
vector.

.exit PLA

 TAY

131

 PLA

 TAX

 PLA

 STA &FC

 JMP (&230)

(780-840)

If the interrupt is not caused by the vertical sync
then we need to check whether it is the timer
interrupt. If so, we must clear the interrupt flag and
switch to Mode 1.

.notsync LDA #&20

 BIT &FE4D

 BEQ exit

 STA &FE4D

 JSR mode1

 JMP exit

(850-900)

Now all that remains is to try an example:

 10 *TV0,1

 20 MODE0

 30 MOVE0,512:DRAW1279,512

Notice that, because the change of modes itself
takes some time, about one line of pixels on the
screen will be garbled. To overcome this we must
make this line white so that it is the same in both
modes. This way, the transition should be invisible.

 40 PROCass

 50 !&70=9900

This sets up the position of the border. It may vary
from machine to machine, so you may have to
experiment to find the best value.

 60 CALLinit

Finally we can draw a pattern on the screen as a

132

demonstration.

 70 FORA%=0TO1:VDU29,A%*640;512;

 80 FORB%=0TO511STEP16

 90 MOVEB%*1.25,0:DRAW639,B%

 100 DRAW639-B%*1.25,511:DRAW0,511-B%

 110 DRAWB%*1.25,0:NEXT,

 120 VDU26:FORA%=0TO1279STEP2

 130 IFRND(2)=2MOVEA%,0:DRAWA%,508

 140 NEXT

 150 GOTO150

 160 DEFPROCass

 170 FORpass%=0TO2STEP2

 180 P%=&A00

 190 [OPTpass%

 200 .mode0 LDA #&9C \ Change to

 210 STA &FE20 \ Mode 0.

 220 STA &248

 230 LDX #7

 240 .l0 LDA m0,X

 250 STA &FE21

 260 DEX

 270 BPL l0

 280 RTS

 290 .m0 EQUD &8090C0D0 \ Colour data

 300 EQUD &27376777 \ for Mode 0.

 310

 320 .mode1 LDA #&D8

 330 STA &FE20

 340 STA &248

 350 LDX #7

 360 .l1 LDA m1,X

 370 STA &FE21

 380 DEX

 390 BPL l1

 400 RTS

 410 .m1 EQUD &26366676 \ Colour data

 420 EQUD &8494C4D4 \ for Mode 1.

 430

 440 .init SEI \ Initialise

 450 LDA &204 \ interrupts

 460 STA &230

 470 LDA &205

 480 STA &231

133

 490 LDA #irq MOD256

 500 STA &204

 510 LDA #irq DIV256

 520 STA &205

 530 LDA #&50

 540 STA &FE4E

 550 CLI

 560 RTS

 570

 580 .irq LDA &FC \ Trap ints.

 590 PHA

 600 TXA

 610 PHA

 620 TYA

 630 PHA

 640 LDA #2 \ Check for

 650 BIT &FE4D \ v.sync.

 660 BEQ notsync

 670 JSR mode0 \ Change to

 680 LDA &FE4B \ Mode 0

 690 AND #&DF \ and start

 700 STA &FE4B \ counter for

 710 LDA &FE4E \ boundary.

 720 ORA #&20

 730 STA &FE4E

 740 LDA &70

 750 STA &FE4B

 760 LDA &71

 770 STA &FE49

 780 .exit PLA

 790 TAY

 800 PLA

 810 TAX

 820 PLA

 830 STA &FC

 840 JMP (&230)

 850 .notsync LDA #&20 \ Check for

 860 BIT &FE4D \ Timer.

 870 BEQ exit

 880 STA &FE4D

 890 JSR mode1 \ Change to

 900 JMP exit \ Mode 1.

 910]

 920 NEXT

134

 930 ENDPROC

Beware of using VDU19. You will also find that
plotting lines in the bottom half of the screen has
interesting effects.

Screen swapping Some expensive computers nowadays have a
system which allows for totally flicker-free anima-
tion. This system has two completely separate
blocks of memory for graphics. While one image is
being displayed the other, concealed, image is
being redrawn. When the new image is complete
the VDU switches cleanly between the two pages so
that the new image is displayed, while the first is
redrawn. By repeating this process the image need
never be seen being redrawn.

By now you will have guessed that there is a
method for doing this on the BBC Micro. Because
two complete blocks of memory are needed, we
can’t use a 20K mode. For our purposes let’s try and
animate two Mode 4 screens. The two blocks of
memory, each 10K long, will start at &3000 and
&5800 respectively.

The first problem we need to look at is that before
we can redraw on the concealed screen we must
clear its 10K block. All we have to do is set 10K of
memory to zero. This sounds like a simple task
using post-indexed indirect addressing. However,
for clearing such a large amount of memory this
addressing mode is too slow. We will need to
sacrifice the short, neat but slow solution for the
long but fast solution. By using absolute indexed
addressing we can clear one 256-byte page very
fast, like this:

.clear LDA #0

 TAX

.loop STA &3000,X

 INX

 BNE loop

 RTS

To clear 10K of memory we need to add an STA
command for each page of memory we wish to clear

135

− here, this means 40 STA commands. To save
typing each of these separately, we can use the
power of the assembler. To start with, we need the
first few commands. Notice that we disable inter-
rupts f irst, to increase speed that extra l i ttle bit.

 1000 DEFPROCass

 1010 DIMmc%500

 1020 FORpass%=0TO2STEP2

 1030 P%=mc%

 1040 [OPTpass%

 1050 .lclear SEI

 1060 LDA #0

 1070 TAX

 1080 .lloop

 1090]

Next we set A% to a loop from &3000 to &5700 in
steps of 256. Then we re-enter the assembler where
we left off, reset the option, and set up the STA
command with the variable A%. Then we exit the
assembler again and end the loop.

 1100 FORA%=&3000TO&5700STEP256

 1110 [OPTpass%

 1120 STA A%,X

 1130]:NEXT

The result of this is that we have assembled all 40
commands as required. This has shortened the
assembly code considerably and shows the advan-
tages of a powerful assembler! Finally we must end
the machine code loop, and re-enable the interrupts.

 1140 [OPTpass%

 1150 INX

 1160 BNE lloop

 1170 CLI

 1180 RTS

We can write a similar routine for clearing the
second 10K block.

136

 1190 .hclear SEI

 1200 LDA #0

 1210 TAX

 1220 .hloop

 1230]

 1240 FORA%=&5800TO&7F00STEP256

 1250 [OPTpass%

 1260 STA A%,X

 1270]:NEXT

 1280 [OPTpass%

 1290 INX

 1300 BNE hloop

 1310 CLI

 1320 RTS

Now we can write a routine which swaps the two
screens around. The obvious way to do this is to
swap the two sections of memory. However, this
would be ridiculously slow. Instead, we will swi tch
the start-of-screen RAM address register in the 6845
between the two blocks, so altering which block is
being displayed.

We will need a variable as a flag that will tell us
which of the two blocks is currently being dis-
played. We can use &70 for this − if it contains zero
then the low block is currently being displayed;
otherwise, it contains 255.

The first job the routine must do is to wait for the
vertical sync so that the screens swap cleanly
during the vertical sync period.

 1330 .swap LDA #19

 1340 JSR &FFF4

Next we need to invert the contents of &70 by
EORing it with 255. If it is now 255 then we want to
swap to displaying the high block.

 1350 LDA &70

 1360 EOR #255

 1370 STA &70

 1380 BNE high

We now want to display the low block. To do this

137

we must alter the start-of-display RAM register to
point to the low block (we only need change the
high byte as the low byte is zero in both cases).

 1390 LDA #12

 1400 STA &FE00

 1410 LDA #8

 1420 STA &FE01

Next we need to ensure that any plotting or printing
will be placed where it can’t be seen in the high
block. To do this we need to alter two bytes in the
operating system work-space to the high byte of the
address of the top left-hand corner of the screen on
which we are plotting − here, &58. We also need to
do a cursor-home to move all the cursors, etcetera.
At this point all that remains is to clear the
concealed screen ready for plotting.

 1430 LDA #&58

 1440 STA &34E

 1450 STA &351

 1460 LDA #30

 1470 JSR &FFEE

 1480 JMP hclear

Now we can use the same method to swap back
again.

 1490 .high LDA #12

 1500 STA &FE00

 1510 LDA #11

 1520 STA &FE01

 1530 LDA #&30

 1540 STA &34E

 1550 STA &351

 1560 LDA #30

 1570 JSR &FFEE

 1580 JMP lclear

 1590]

 1600 NEXT

 1610 ENDPROC

138

Now all that we need is in example of how to use
the program.

 10 MODE4:VDU23,1,0;0;0;0;

 20 HIMEM=&3000

 30 PROCass

 40 CALLlclear:?&70=255:CALLswap

Notice that we need to set HIMEM to reserve 20K of
screen memory, the lower 10K of which we need to
clear. Note also that we need to call SWAP once just
to get everything running smoothly − this saves
having an initial isation routine.

 50 FORA%=0TO1019STEP16:MOVEA%,0

 60 DRAW1023,A%:DRAW1023-A%,1023

 70 DRAW0,1023-A%:DRAWA%,0

 80 CALLswap:NEXT

 90 GOTO50

A BASIC swap Of course, if you don’t need to redraw the image
completely each time, and hence don’t need to clear
the screen, you don’t necessari ly need to use
machine code. So, just to show that good results
don’t always need machine code (though it helps),
here is an analogue clock entirely in BASIC.

The program works, as before, in two Mode 4
screens. The first job is to write a procedure to draw
a face without the hands.

 1000 DEFPROCface

 1010 GCOL0,1:P%=4

 1020 FORA=0TOPI*2STEPPI/24

 1030 MOVE0,0:PLOTP%,512*SINA,512*COSA

 1040 P%=85:NEXT

 1050 GCOL0,0:P%=4

 1060 FORA=0TOPI*2STEPPI/24

 1070 MOVE0,0:PLOTP%,492*SINA,492*COSA

 1080 P%=85:NEXT

This draws the rim of the face. Next we need the
dots for the hours and a dot at the centre. For speed
it is better to use a defined character for this and

139

position it with the VDU 5 ‘ text at graphics cursor’
mode.

 1090 VDU23,224,0,&1C,&3E,&7F,&7F,&7F,

 &3E,&1C,5

 1100 GCOL0,1:FORA=0TOPI*2STEPPI/6

 1110 MOVE450*SINA-16,450*C0SA+16:VDU224

 1120 NEXT:MOVE-16,16

 1130 VDU224,4,23,1,0;0;0;0;

 1140 ENDPROC

Next we need a procedure that will draw the three
hands in their correct positions. Notice that we have
not specif ied the colour in this procedure, so it can
be used both to draw the hands and remove them.

 2000 DEFPROChands(hours,minutes,seconds)
 2010 A=seconds*PI/30:X=SINA:Y=COSA

 2020 MOVEX*32,Y*32:DRAWX*420,Y*420

 2030 A=minutes*PI/30:X=SINA:Y=COSA

 2040 MOVEX*32+Y*5,Y*32-X*5

 2050 MOVEX*32-Y*5,Y*32+X*5

 2060 PLOT85,X*370+Y*5,Y*370-X*5

 2070 PLOT85,X*370-Y*5,Y*370+X*5

 2080 A=hours*PI/6:X=SINA:Y=COSA

 2090 MOVEX*32+Y*12,Y*32-X*12

 2100 MOVEX*32-Y*12,Y*32+X*12

 2110 PLOT85,X*300+Y*12,Y*300-X*12

 2120 PLOT85,X*300-Y*12,Y*300+X*12

 2130 ENDPROC

Now we need the BASIC equivalent of the swap
routine from the machine code program, but with-
out the clear routines. We can use the variable S%
instead of &70.

 3000 DEFPROCswap

 3010 *FX19

 3020 S%=S%EOR1

 3030 IFS%THEN?&FE00=12:?&FE01=6:

 ?&34E=&58:?&351=&58:VDU30:ENDPROC

 3040 ?&FE00=12:?&FE01=11:?&34E=&30:

 ?&351=&30:VDU30:ENDPROC

140

Now we can write the main routine. The first job is
to input the start time.

 10 MODE7:INPUT"Hours, Minutes,

 Seconds",hours,minutes,seconds

Next we need to clear both screens. As we have no
machine-code clearing routines the easiest way to
do this is to go into Mode 0. Next we need to go into
Mode 4 and set HIMEM to reserve the 20K of screen
memory.

 20 MODE0:MODE4:HIMEM=&3000

Now we must turn off the cursor and set the
graphics origin to the middle of the screen. We must
also set S% suitably.

 30 S%=0:VDU23,1,0;0;0;0;29,640;512;

Next we need to draw the face on each of the two
pages, having first called SWAP to set the paged
graphics working.

 40 PROCswap:PROCface:PROCswap:PROCface

Now we need to set T to the number of centisec-
onds that have elapsed since 12 o’clock. We also
need to set HOURS so that it is the relevant dis-
tance between the hours. The minute and second
hands will jump a minute and a second at a time,
respectively.

 50 T=seconds*100+minutes*6000+hours*360000

 60 hours=T/360000

Next we need to draw the hands in. We also need to
keep a copy of where they are so that we can
remove them later. We can then swap so that the
face plus hands is visible and wait for the user to
press a key to synchronise the clock.

 70 GCOL0,1:PROChands(hours,minutes,seconds)

141

 80 s=seconds:m=minutes:h=hours

 90 PROCswap:A=GET

Now we must start the clock by setting TIME to T.
For timing we will wait until TIME crosses the
hundred border. For this purpose we need to keep a
copy of what TIME DIV 100 equals at this point in t,
so that when we are waiting to display the next
second we can wait until TIME DIV 100 doesn’t
equal t.

 100 TIME=T

 110 t=TIME DIV100

Now as we are displaying the time given by t we
need to set up the time given by t + 1 in the other
block. To do this we must first remove the previous
hands which are located at s, m and h. Then we
must set these variables to the current hand posi-
tions ready for the next move.

 120 GCOL0,0:PROChands(h,m,s)

 130 s=seconds:m=minutes:h=hours

If TIME has passed 4320000 (12 hours in centisec-
onds) then we need to set it back 12 hours.

 140 IFTIME>4319999 TIME=TIME-4320000

Next we must set up the new hands.

 150 seconds=(t+1)MOD60

 160 minutes=(t+1)DIV60 MOD60

 170 hours=(t+1)/3600

However, the + 1 for the hours practically makes no
difference (it moves the hour hand on by 0.00027 of
an hour) so we can ignore it. We are now ready to
draw the new hands on the concealed screen.

 170 hours=t/3600

 180 GCOL0,1:PROChands(hours,minutes,seconds)

Now all we need to do is wait until the second is up

142

and swap screens before repeating the whole
process.

 190 REPEATUNTILTIME DIV100<>t

 200 PROCswap:GOTO110

One word of warning − because all printing is
concealed, any error messages will never appear. If
there is an error the machine will just appear to stop
working. To get around this while you are typing in
and debugging the program, try adding this l ine:

 1 ONERRORMODE7:REPORT:PRINT" at line

 ";ERL:END

Three-dimensional graphics
Computers are being used increasingly now for
producing three-dimensional graphics, particularly
on television. In the home micro market there are an
increasing number of three-dimensional games. In
passing, it would be useful to take a look at some of
the simple mathematics behind this subject.

We are faced with the problem of converting a
set of three-dimensional coordinates into two-
dimensional ones for plotting on the screen. We
know from experience that an object further away
appears smaller and we would probably guess
(correctly, as it happens) that if an object goes twice
as far away as it looks half the size. Thus we could
form a rule that apparent size is inversely propor-
tional to distance.

Let’s assume that we have three-dimensional
axes X, Y and Z, where X and Y are horizontal and Z
is vertical. Let’s imagine that the origin is about 2
metres off the ground and that we place a camera at
this point looking vertically downwards. Let’s
further assume that we have a square of cardboard.

We place this horizontally at different levels with
its centre always on the Z axis, photographing each
position. Can we make a rule about where the
corners will appear in each photograph? We can
assume that the image on the photograph will still
be a square. If we place a drawing horizontally
under the camera and photograph it we would

143

expect to get a precise copy of the original drawing.
It might be bigger or smaller depending on what
level we placed the drawing at.

From this we can guess that for one value of Z
coordinate, given the X and Y coordinates of a point
on that Z plane, the X and Y coordinates of the
point’s image on the photograph, A and B, would be
given by:

A = k X
B = k Y

We already know that apparent size is inversely
proportional to the distance from the camera to the
point, so as the camera is at the origin and we can
take the Z coordinate of the plane as this distance,
this suggests that A and B are given by:

A = k X/Z
B = k Y/Z

The constant k will be a scale factor − the power of
the lens we use, perhaps. As any point under the
camera can be described as a point on a horizontal
plane, we have here the equations for converting
the 3D point into a 2D image.

If you didn’t follow all that, don’t worry. All you
need to remember is that by looking along the Z
axis from the origin you can find the image of a
point by using these equations.

As an example, let’s try drawing a cube on the
screen. The coordinates of the corners of this cube
will be (-10,10,40), (-10,-10,40), (10,-10,40), (10,10,60),
(-10,10,60), (-10,-10,60) and (10,-10,60). First we need
a procedure that will do the job of the PLOT com-
mand, but in 3D.

10000 DEFPROCplot(P%,X,Y,Z)

10010 PLOTP%,X*S/Z,Y*S/Z

10020 ENDPROC

Notice that the scale factor S will need to be defined
at the beginning of the program. We can now draw
our cube by drawing the nearest surface, then the

144

four edges joining the front surface to the back
surface, then the back surface itself.

 10 MODE4:VDU23,1,0;0;0;0;29,640;512;

 20 S=1000

 30 PROCplot(4,10,10,40)

 40 PROCplot(5,-10,10,40)

 50 PROCplot(5,-10,-10,40)

 60 PROCplot(5,10,-10,40)

 70 PROCplot(5,10,10,40)

 80 PROCplot(5,10,10,60)

 90 PROCplot(4,-10,10,40)

 100 PROCplot(5,-10,10,60)

 110 PROCplot(4,-10,-10,40)

 120 PROCplot(5,-10,-10,60)

 130 PROCplot(4,10,-10,40)

 140 PROCplot(5,10,-10,60)

 150 PROCplot(5,-10,-10,60)

 160 PROCplot(5,-10,10,60)

 170 PROCplot(5,10,10,60)

 180 PROCplot(5,10,-10,60)

 190 END

This produces a recognisable cube but is not the
most exciting piece of art. It would be better if we
could look at the cube from a different angle.
However, our 3D equations will not let us do this.
The solution, of course, is that if the mountain can’t
come to Mohammed then Mohammed must go to
the mountain − we have to rotate the cube.

To do this we need to look at the method of
rotating a 2D point about the origin. Those of you
who have dabbled at all in matrices will know that
the general rotation matrix about the origin, by an
angle A, is:

COS A
SIN A

- SIN A
COS A()

For those of you who have not experienced the joys
matrices this will mean precisely nothing! But all
you need to know is that if we have coordinates
(X,Y) and we wish to rotate them about the origin
by an angle A anti-clockwise, to new coordinates
(P,Q), then P and Q can be calculated using the two

145

formulae:

P = X * COSA - Y * SINA
Q = X * SINA + Y * COSA

In thee dimensions we can adapt these formulae by
rotating about, say, the X axis. This means that the
X coordinate of the point stays the same and we can
use the two formulae above, except that we use Y
and Z, to rotate the other two coordinates. So for our
example program the PLOT routine becomes:

10000 DEFPROCplot(P%,X,Y,Z)

10010 Q=Y*COSA-Z*SINA

10020 R=Y*SINA+Z*COSA

10030 PLOTP%,X*S/R,Q*S/R

10040 ENDPROC

However, this rotates around our viewpoint. This
doesn’t help much. We really need to shift the
coordinates so that the centre of the cube is over
the origin, then rotate the cube about the X axis,
and then shift the cube back again so that we can
view it.

10000 DEFPROCplot(P%,X,Y,Z)

10010 Z=Z-DR

10020 Q=Y*COSA-Z*SINA

10030 R=Y*SINA+Z*COSA

10040 R=R+DR

10050 PLOTP%,X*S/R,Q*S/R

10060 ENDPROC

We also need to set the values of A and DR at line
20.

 20 S=1000:A=-PI/5:DR=40

Let’s now look at a more complicated example −
drawing a cup or wine glass. This is not as difficult
as it sounds, as a cup has rotational symmetry. This
means that we need only store data for half of a slice
through the axis of symmetry of the cup. We can
then rotate this a number of times about the axis of

146

symmetry and join all the adjacent points.

The first thing is our 3D procedure.

 1000 DEF PROCplot(P%,X,Y,Z)

 1010 P=Y*C-Z*I

 1020 Q=Y*I+Z*C+D

 1030 PLOTP%,X*S/Q,P*S/Q

 1040 ENDPROC

Notice that, because the sine and cosine of the
angle of rotation about the X axis remain constant
as the angle remains constant, we can define these
at the start of the program as I and C, and hence
save a lot of calculation. Also, the initial coordinates
will be centred on the origin so we can rotate these
straight away. We then need to add a constant to
the Z coordinate to shift the point away from the
origin before we can view it.

The beginning of the program will need to look
like this:

 10 MODE1:VDU23,1,0;0;0;0;

 20 VDU29,640;195;19,3,2;0;

 30 D=300:S=2400

 40 I=SINRAD240:C=COSRAD240

The first piece of data for the cross-section of the
cup will need to be the number of points used to
describe it. Because we will be joining the first point
in this description to the second, we will need to
keep two adjacent points in variables at one time.
We can read in the number of points and the first
point. The number of lines will be one less than the
number of points. Each line will need a colour
associated with it.

 50 READN,R,Z:FORM=2TON

 60 READR1,Z1,C%:GCOL0,C%

Before repeating the loop we will need to copy R1
and Z1 into R and Z. Now we are ready to rotate the
line formed by these two points around the Z axis.
At each step we must joint the previous second

147

point to the new second point and join the two new
points together.

 70 P%=4:FORA=0TOPI*2.01STEPPI/20

 80 PROCplot(P%,R1*COSA,R1*SINA,Z1)

 90 PROCplot(5,R*COSA,R*SINA,Z)

 100 PROCplot(4,R1*COSA,R1*SINA,Z1)

 110 P%=5:NEXT

 120 R=R1:Z=Z1

 130 NEXT

 140 END

Finally we need the data.

 150 DATA7,0,-5,32,-5,3,32,0,2,8,10,2,8,

 35,1,24,40,1,24,85,3

This is, of course, only a simple example of 3D
graphics.

148

