
CHAPTER ONE

ASSEMBLY
LANGUAGE
PROGRAMMING

Assembly code is not much more difficult to learn
than BASIC. Machine code is the language the
computer really understands underneath all the
flashy BASIC commands. The heart of the BBC
Micro is a Central Processing Unit (CPU) called the
6502. This CPU does all the ‘ thinking’ and machine
code is the language that the chip ‘ thinks’ in.

BASIC is a high level language. This means,
simply, that it is far more sophisticated than
machine code. For this reason, another chip is
needed to interpret the BASIC commands, on a line-
by-line basis, into machine code for the 6502 to
understand. This chip is a Read Only Memory
(ROM) with a machine code program permanently
programmed into it. This program is called the
BASIC INTERPRETER. This must not be confused
with a BASIC COMPILER which takes a BASIC
program and converts this entirely into a machine
code program so that the original BASIC can be
scrapped and the faster machine code used instead.

Unfortunately, because BASIC has to be inter-
preted, it is very slow. If, however, we could talk to
the 6502 directly, in its own terms, we could run
programs much, much faster. The assembler is the
means we use to talk to the 6502 directly. It effec-
tively by-passes the BASIC interpreter. But before
we can learn to use it, it is important to understand
the terms BINARY and HEXADECIMAL.

6

Number Systems In everyday life we use a number system that we
call DECIMAL. This is based on the idea that we
count in tens. In decimal we have ten symbols that
we use to represent the numbers zero to nine. To
represent larger numbers we put these symbols
together in a line with the furthest digit right repre-
senting the number of ones, the next one to the left
representing the number of tens, then hundreds,
and so on. So we can look at a number as if it were
in a series of columns, each with a column heading
saying what i t represents.

1000s 100s 10s 1s
5 6 3 1

The computer, however, uses a system based on the
idea of having only two symbols to count with − ‘0’
and ‘1’. Again we use headings, but as the largest
number the first column can represent is 1, the
second column must count twos, the third fours, the
fourth eights, etcetera. In other words, the column
headings are powers of two. This counting system
is called the binary system.

Binary Decimal Binary Decimal
 0 0 110 6
 1 1 111 7
 10 2 1000 8
 11 3 1001 9
 100 4 1010 10
 101 5

so 101011 in binary represents

1 times 1 = 1 (first column)
1 times 2 = 2 (second column)
0 times 4 = 0 (third column)
1 times 8 = 8 (fourth column)
0 times 16 = 0 (fifth column)
1 times 32 = 32 (sixth column)

__
43 in decimal

We call each digit in binary a BIT (BInary digiT).

7

The bit furthest left is called the MOST SIGNIFI-
CANT BIT (MSB), because it has the largest column
heading, and the bit furthest right is called the
LEAST SIGNIFICANT BIT (LSB) because it has the
smallest column heading. This system is very long-
winded but is suits the computer well, as the com-
puter can represent 1 by a circuit being on, and 0 by
a circuit being off.

Binary is not an ideal system for humans; for
example, if we wanted to represent the decimal
number 2141928901 in binary, it would be
1111111101010110011110111000101 − quite an
eyeful.

It is convenient to have the computer translate
into decimal for us, so we need a counting system,
half-way between binary and decimal, which is as
easy for us to read as it is for the computer. Such a
system is HEXADECIMAL. To convert from binary
to hexadecimal (or HEX for short), we split the
binary number into groups of four bits (adding a few
zeros on the left, if necessary, to make up complete
groups of four bits). In each group there are sixteen
possible combinations of 0s and 1s so we assign
each combination a symbol. Then, by running the
symbols together, we have a means of representing
the number.

Binary Hex Binary Hex
0000 0 1000 8
0001 1 1001 9
0010 2 1010 A
0011 3 1011 B
0100 4 1100 C
0101 5 1101 D
0110 6 1110 E
0111 7 1111 F

So if we were to take our binary example of
1111111101010110011110111000101 it would be
coded like this:

0111 1111 1010 1011 0011 1101 1100 0101
 7 F A B 3 D C 5

This may well seem very complicated, but

8

hexadecimal is like decimal and binary; only,
instead of using base 10 or base 2, it uses base 16.
In the decimal system, you ‘carry’ 1 into the next
column to the left as soon as you reach ten in one
column. In the hexadecimal system, you ‘carry’ one
into the next column to the left as soon as you reach
sixteen in one column. Imagine you have two, ten or
sixteen fingers and you can‘ t go wrong!
So that we dont get confused between decimal and
hexadecimal, we put an & at the beginning of any
hex number − thus decimal 2141928901 =
&7FAB3DC5

Just in case you aren’t confused already, there is
yet another system of counting used in computers −
BINARY CODED DECIMAL (BCD for short). In this
system, each digit of a decimal number is converted
into a four-bit binary number. Then the four-bit
sections are run together to make a BCD number,
e.g.

 2 1 4 1 9 2 8 9 0 1
0010 0001 0100 0001 1001 0010 1000 1001 0000 0001

Thus 2141928901 in decimal is
0010000101000001100100101000100100000001 in
BCD. This number is slightly longer than its binary
equivalent, but BCD is occasionally useful. For
example, if you have a score in a game, you will
want it to appear in decimal. By keeping the score
stored in BCD it is then relatively easy to display it
on the screen. If it is stored in binary it must first be
converted to BCD before being displayed.

Now for a bit of terminology. The processor in the
BBC Micro, the 6502, is an eight-bit processor. This
means that it works in groups of eight bits at a time.
With this system, the computer can only handle
unsigned numbers from 00000000 to 11111111 (0 to
255 in decimal). This can be very annoying if you
happen to want to use the number 256, but there
are ways around this, as we will see later. Each
group of eight bits is called a BYTE. Incidentally,
each digit in hex is called a nibble because it repre-
sents four bits. Four bits are half a byte − think
about i t!

9

Maths in binary is, in principle, exactly the same
as maths in decimal:
Addition:

109 1101101
+38 +100110 remembering that 1 + 1 = 10

_____ ________
147 10010011

Subtraction:
109 1101101
- 38 -100110 remembering to borrow

_____ _______
71 1000111

However, what happens when we get a negative
number? To handle negative numbers, we use a
system called TWO’S COMPLIMENT. This method
needs a fixed number of bits to each number. In the
6502, we use eight bits or one byte. To make a
negative number, we take the positive value in
binary and ‘flip’ each bit (0 becomes 1 and 1
becomes 0). This then has the disadvantage that -0
and +0 will have different codes, so we add 1 to our
negative number to make -0 equal to 0.

Examples
-1 is represented by 00000001 flipped to 11111110
and then adding 1 = 11111111.

-0 is represented by 00000000 flipped to 11111111
and then adding 1 = 00000000.

In the second example, when adding 1 to 11111111,
we should have got 100000000, but as the computer
will only handle eight bits at a time, the ninth bit is
lost, leaving 00000000. Let’s try another example:

-39 = 11011001 (in two’s compliment)
39 = 00100111

-39 + 39 =
 11011001
+ 00100111

 100000000 but we ignore the ninth bit,

So

10

-39 + 39 = 0

With this system, we don’t use the most signif icant
bit − the leftmost bit − as part of the number itself,
but we use it instead to show whether the number
is positive (we set this bit to 0) or negative (we set
this bit to 1). This bit is often called the sign bit.
Thus the largest number we can store using the
eight bits is 01111111, or 127, and the smallest
number we can store is 100000000 or -128 (see
Appendix A).

Of course, it is not very useful to have a computer
which can only count from -128 to 127. However, if
we use TWO bytes to store a number, and again use
the most signif icant bit (the leftmost one) to show
whether the number is negative or positive, we can
count from 1000000000000000 (-32768) to
0111111111111111 (+32767).

However, the computer only provides for the
adding of eight-bit numbers, and there could be a
ninth-bit ‘spill-over’ when adding the most signifi-
cant (leftmost) bits. So we need to use a thing called
a CARRY FLAG. This is a single bit in the CPU
which can either be set to 1 or cleared to 0. First we
add the least signif icant bytes (or low bytes as they
are sometimes called), and if we lose a ninth bit in
the answer because of a ‘spill-over’, the computer
sets the carry flag to one to show this; otherwise,
the computer clears it to zero. Then we add the two
most signif icant bytes (or high bytes) and if the
carry flag has been set to one from the addition of
the low bytes then the computer adds one to the
result. As we shall see later, the add command does
most of this for us.

For example
 High Bytes Low Bytes
 01001001 01011010 (=18778)
+ 00100100 10110101 (= 9397)____________ _________
 01101101 1 00001111 (= 9397)
+ 1 Carry____________
 01101110

= 0110111000001111 (=28175)

flag

11

Thus the answer is 0110111000001111. Conveni-
ently for us, when the computer adds two bytes
together, it automatically adds in the carry flag and
then puts the ninth bit of the answer, whether 0 or
1, back into the carry flag. This means that, if we
want to, we can add three-byte numbers or even
larger number to be taken away and flips all its bits.
Then clear the carry flag before we add the low
bytes. When we have just begun addition we have
no carry to consider, so the carry flag must be
cleared at the beginning of the addition.

Similarly, large numbers can be subtracted using
the carry flag. However, with the subtract com-
mand, the carry flag is used as a BORROW flag.
Subtracting can be seen as adding the negative of a
number; thus 27-5 is the same as 27 + -5.

The subtract command in machine code takes the
number to be taken away and flips all its bits. Then
it ADDS the two numbers together. Remember that,
earlier, we said that we represented a negative
number by flipping all its bits and adding one. If, TO
BEGIN WITH, the carry flag is set to one, this
provides the addition of one needed to complete the
negative number in its two’s-complement form.
Thus the carry flag must be SET to one to produce
proper subtraction. As with addition, the carry flag
is set to the ninth bit of the result after subtraction.
Conveniently, this works out so that if a borrow does
occur during this operation, the flag is cleared;
otherwise it is set. This means that if we then add a
set of high bytes the carry flag will ensure that any
necessary borrowing is done.

Let’s try, as a simple example, working out 27-5.

27-5 in decimal = 00011011 - 00000101 = 22

The computer takes the 00000101 and flips each bit
to make the number 11111010. It then adds the
00011011:

 11111010
 +00011011

1 00010101

12

It then adds the carry ALREADY set to one.

 100010101
 +1 from carry flag

 100010110

The ninth bit is transferred to the carry flag leaving
us with 00010110 which equals 22 in decimal.

Let’s now try a two-byte example by subtracting
9397 from 18778.

The computer first takes the low byte of 9337
(10110101) and flips it to 01001010 then adds the
low byte of 18778 (01011010). It also adds one from
the carry flag (which we have previously set).

 01001010
 +01011010

 10100100
 +1 from carry

 010100101 this is low byte of

answer.

The ninth bit of this answer (0) is transferred to the
carry flag. The computer now takes the high byte of
9397 (00100100) and flips it to 11011011. It then
adds the high byte of 18778 (01001001). It finally
adds the carry flag which is now zero.

 11011011
 +01001001

 100100100
 +0 from carry flag

 100100100 this is high byte of

answer.

The ninth bit is transferred to the carry flag. The
answer is formed from the results of the two addi-
tions: 0010010010100101 or 9381 in decimal.

The memory Let’s now look at the memory. The computer does
not know what any particular byte in its memory

13

means. It is up to the programmer to decide, by
giving the appropriate instructions, whether a
particular byte represents a character of text, a
binary number or a BCD number, the low or high
byte of a two-byte number; or whatever.

The Model B Memory Map
&FFFF

&C000

&8000

&0E00

&0100

&0000

Operating

System

ROM

Language
ROM

User
RAM

System
Variables

Zero Page

ROM

RAM

Each byte of memory is numbered and given an
address. An address is a number which, when given
to the computer, tells the computer which byte of
memory you are dealing with.

The 6502 uses two-byte numbers to represent
addresses. The maximum number of different
combinations that can be made with sixteen bits is
two to the power of sixteen. Thus the 6502 can

14

handle two to the power of sixteen, or 65536
locations. These locations are each given an address
number from 0 to 65535, and no two locations have
the same address.

On the BBC Micro, the memory is split into two
main sections. These are RAM (addresses 0 to
32767) and ROM (addresses 32768 to 65535). RAM is
memory which we can alter and store our programs
and data in; ROM is memory which cannot be
changed.

The memory is divided up into PAGES. A page is
all the memory locations that can be addressed with
the same high byte. Thus location &1200 to &12FF
make up one page. These pages are numbered
according to the high byte of the address; thus
&100 to &1FF is page 1. The high byte is 1 and the
low byte goes from &00 to &FF which means that a
page consists of 256 bytes of memory. Similarly,
&0000 to &00FF is ZERO PAGE. Zero page is used a
lot for the storage of variables. This is because, as
we shall see later, the machine code command for
looking at zero page is shorter and faster than the
normal commands.

The CPU Before we can start to look at commands in machine
code, we must look at the way in which the proces-
sor is organised.

As far as we are concerned the CPU contains six
registers − very simple memories capable of storing
one or two bytes. They are inside the processor, not
part of the computer’s main memory.

The most important one is the ACCUMULATOR,
or A register. This register is the one in which all
the work is done.

Two other important registers, the X register and
the Y register, are very useful for storing extra
numbers we may need at any time − these are
sometimes called the index registers.

Next is the stack pointer, which points into 256
bytes of memory, located from addresses &100 to
&1FF, called the stack. This is a FIRST IN LAST
OUT buffer: it behaves like a letter spike − the first
thing you put on it is always the last to come off.

15

6502 CPU programming model

N V - B D CI Z

Ne
ga
ti
ve
 F
la
g

Ov
er
fl
ow
 f
la
g

Un
us
ed

Br
ea
k
fl
ag

De
ci
ma
l
mo
de
 f
la
g

In
te
rr
up
t
di
sa
bl
e
fl
ag

Ze
ro
 f
la
g

Ca
rr
y
fl
ag

Accumulator

X Register

Y Register

Stack pointer

Program Counter

Status Register

Then there is the program counter. In machine code
each command is represented by either one two or
three bytes of memory. These bytes must be adjac-
ent in memory. The processor looks at the first byte,
which is always the command byte and tells the
computer what it is to do. The processor then
knows (by examining the first, command, byte) how
many bytes of data to expect after the command:
some commands have no explicit data, some have
one byte of data, others have two bytes. The next
command must follow on straight after the data of
the previous command otherwise the processor will
not know where to look for it.

The program counter is a two-byte register which

16

holds the address of the memory location where the
current command is stored. As the program runs,
this register is automatically incremented by one
every time a new byte of the program is loaded into
the processor.

Finally, there is the status register. This register
contains eight one-bit flags, one of which is not
used. These flags can either be set (equal to 1) or
clear (equal to 0) and are affected by some com-
mands. Each shows that a particular ci rcumstance
has occurred. We have already met the carry flag
which is affected by the ‘add’ and ‘ subtract’
commands.

Commands The accumulator is where all the work is done so we
need a command to load the contents of a particular
byte of memory into the accumulator. This com-
mand is called ‘ load accumulator’. It is stored in
memory as a one-byte number. However, to save us
from having to remember the number that corre-
sponds to each of the many machine code
commands we use a program called an assembler to
allow us to type something called an assembler to
allow us to type something a little more understand-
able. It would be very cumbersome to have to type
in a command like ‘ load accumulator’ each time we
want to use it, so each command in machine code is
given a three-letter mnemonic which is easy to
remember. The mnemonic for ‘LoaD Accumulator’
is LDA. So if we wanted to load the accumulator
with the contents of memory address &1EFA, we
would use the command:

LDA &1EFA

This command does not alter the contents of the
memory, but makes a copy of the byte which is
stored at &1EFA and places that in the accumula-
tor. The previous contents of the accumulator are
lost, having been replaced by the new byte.

Similarly, we need a command to store the
contents of the accumulator in a specific memory
location. This command is ‘STore Accumulator’ −
STA. So, to store the contents of the accumulator at

17

&3F5D, we would use:

STA &3F5D

This time the contents of the accumulator are not
altered, but the previous contents of the memory
location (in this case the contents of &3F5D) are
lost, having been replaced by the byte from the
accumulator.

So now we have two assembly code commands,
but we need to know how to use them. They must
be used as a program and we need to know how to
use the assembler.

BBC BASIC contains a complete assembler which
is very easy to use but you have to tell the BASIC
interpreter where the assembler commands begin
and end, and where in the memory to store the
program. The easiest way to store the machine code
program is to use the BASIC DIM command. If you
use DIM without brackets, it reserves some memory
which BASIC will keep totally free. This is ideal for
putting machine code routines. All you have to do is
this:

 10 DIM X% 100

Note that there are no brackets around the number.
This would reserve 100 bytes of memory. The

address of the first of these bytes is put into the
variable X%. It is sensible to use an integer variable
for this job, as the address will always be an integer.
However, the computer still does not know that this
address is where we want the machine code to go.
The computer will automatically start putting
machine code at the location stored in the variable
P%. So we ourselves have to set P% to the start of
the reserved space, which is already stored in X%.
Then we must tell the computer that from now on all
commands will be in assembly code. The command
to do this is [. So, before we can use the assembler,
we must have something like this:

 10 DIM X% 100 \ Reserve memory and store
 starting address in X%

18

 20 P% = X% \ Tell the assembler to store
 the program at X%
 30 [\ Following code is in assembly
 language

Now we can write our assembly language program.
Once we have finished writing it, we must put a
closing square bracket] to show that we are going
back to BASIC. From now on, the shorter examples
in this book will ignore the BASIC part of the
assembler.

Look at the following program:

LDA &2000
CLC
ADC &2001
STA &2000

This program uses two commands we have not
seen before − CLC and ADC. CLC is the mnemonic
for ‘CLear Carry’ and, as its name suggests, it clears
the carry flag. Remember that we have to do this
before we can add any numbers together. ADC is
‘ADd with Carry’. This commands adds the con-
tents of the memory location specif ied after it to the
accumulator, using the carry flag as explained
above. So this program takes the contents of
address &2000, adds the contents of address &2001,
and stores the result back at address &2000.
However, the computer will not know what to do
when it has done this, so we have to add another
command, RTS, ‘ReTurn from Subroutine’, which
tells the processor to go back to what it was doing
before. So our small program would look like this:

 10 DIM X%15
 20 P%=X%
 30 [
 40 LDA &2000
 50 CLC
 60 ADC &2001
 70 STA &2000
 80 RTS
 90]

We have dimensioned X% to reserve 15 bytes of

19

memory. As the longest any command can be is 3
bytes, reserving three bytes for each command
should leave ample room for this program. If you
don’t allow enough room, the program will very
likely crash. Another point is that locations &2000
and &2001 are right in the middle of the program
memory − if this routine were part of a long pro-
gram, it would wipe out a part of itself. For most of
your programming purposes, the BBC micro con-
veniently reserves 32 bytes of memory for storing
variables. These 32 bytes are at locations &70 to
&8F, so it is safest to use this memory where
possible.

If we wanted the addition to be done in Binary
Coded Decimal, we could preface it by the SED
(‘SEt Decimal mode’) command which sets the
decimal flag in the status register. When this flag
has been set, all further addition and subtraction is
done in BCD. However remember to use the CLD
(‘CLear Decimal mode’) command afterwards to
take the computer back into binary mode.

An assembly code program DOES NOT run as it is
assembled. The assembler merely ENCODES the
program into machine code and stores it away for
future reference. To actually run the assembled
code, use the CALL command, equivalent to
GOSUB; only, you must specify the address of the
start of the program rather than giving a line num-
ber. The RTS command at the end is the equivalent
of the BASIC command RETURN. Here are some
other commands:

DEC ‘DECrement memory by one’ − This subtracts
one from the contents of the memory location
specif ied.

INC ‘ INCrement memory by one’ − This adds one
to the contents of the memory location
specif ied.

LDX ‘LoaD X register from memory’ − This copies
the contents of a memory location into the X
register.

LDY ‘LoaD Y register from memory’ − This copies
the contents of a memory location into the Y
register.

20

STX ‘STore X in memory’ − This copies the con-
tents of the X register into a memory location.

STY ‘STore Y in memory’ − This copies the con-
tents of the Y register into a memory location.

SBC ‘SuBtract memory from accumulator with
Carry’.

Remember that the carry flag must be set with SEC
(‘SEt Carry flag’) before using SBC, and that, as with
ADC, more than one byte may be subtracted.

Addressing modes So far, we have seen that the command LDA
&1EFA loads the accumulator with the contents of
the memory location &1EFA. However, LDA can get
a byte from the memory IN SEVERAL DIFFERENT
WAYS.

Most machine code commands can be used in
several different ways, called ADDRESSING
MODES, as they are the methods by which the
processor finds the address of a byte to work on.
The mode we have used up to now is called
ABSOLUTE ADDRESSING. However, there are
thirteen different addressing modes which we can
use, though not all can be used with each com-
mand. We have already seen one example of another
addressing mode. CLC is an example of IMPLIED
addressing. This mode is used in commands that do
not need any explicit data to work upon. Other
examples:

SEC ‘SEt Carry’
RTS ‘ReTurn from Subroutine’
INX ‘ INcrement X register’ − This increases the

contents of the X register by 1.
INY ‘ INcrement Y register’ − This increases the

contents of the Y register by 1.

DEX ‘DEcrement X register’ − This decreases the
contents of the X register by 1.

DEY ‘DEcrement Y register’ − This decreases the
contents of the Y register by 1.

(Note that if the X register contains &FF and the

21

command INX is used, the answer should be &100;
but, because the X register only has eight bits, the
largest number it can hold is &FF. Thus the ninth
bit is lost (it is NOT transferred to the carry flag) so
the result left in the X register is 0. Similarly, if the X
register contains 0 and the DEX command is used,
the result is 255. The same is true for INY and DEY.)

NOP‘No OPeration’, just waste a tiny bit of time.
TAX ‘Transfer Accumulator to X register’ − The

contents of the accumulator remain the same,
X changes.

TAY ‘Transfer Accumulator to Y register’ − The
contents of the accumulator remain the same,
Y changes.

TXA ‘Transfer X register to Accumulator’ − The
contents of the X register remain the same, A
changes.

TYA ‘Transfer Y register to Accumulator’ − The
contents of the Y register remain the same, A
changes.

Notice that in implied addressing, the mnemonic is
not followed by any explicit data. The processor
knows what the ‘ implied’ data is.

Another useful addressing mode is IMMEDIATE
addressing. Here the byte of data actually used for
the command to operate on is placed after the
command with a ‘hash’ (#) mark to show that
immediate addressing has been used. For example,
LDA #&CA would put the number &CA into the
accumulator. If you examined the accumulator after
using this command you would find &CA (decimal
202) in it.

It is often the case that you want to load the
accumulator with the contents of a location whose
address you don’t actually know explicitly. Say, for
example, you wanted to load the accumulator with
the contents of the byte at PAGE. (PAGE is a vari-
able that contains the address of the first byte of a
BASIC program.) Normally this would be at &E00,
but on disc machines it is at &1900. The BBC’s
assembler allows instructions such as LDA PAGE.
This means that when the program is assembled,

22

the computer will take the address to be whatever
PAGE is currently set to. However, once assembled,
this cannot be changed. Similarly, complicated
expressions can be used as addresses in the assem-
bler, for example LDX PAGE + (A%-1)*2.

Another command that is very useful is JMP −
‘JuMP to address’. This is the equivalent of the
BASIC command GOTO, but it refers to an address
in the memory rather than to a line number. This
can be very inconvenient as we don’t always know
of-hand the address of the command we want to
jump to. So the assembler provides another useful
system, called LABELS. A label is a variable set to
equal the address of a specific command. We
precede the command by a full stop, then a variable
name (something relevant, e.g. ‘ start’ or ‘ sounds’),
then a space. When the assembler comes across
this, it sets the variable to equal the address at
which the command is stored. This saves us the
immense trouble of calculating the address
ourselves. Then we can jump to the right address by
simply using the variable name after the JMP
command, e.g.

.start LDA &2000
 CLC
 ADC &2001
 STA &2000
 JMP start

However, though easy to read, it need not be set out
like this. The assembler allows this sort of thing:

100.start:LDA&2000:CLC:ADC&2001:STA&2000:JMPstart

This saves memory and is easier to type in.
The equivalent of the BASIC command GOSUB is

JSR (‘ Jump to SubRoutine’) and is used like JMP.
The BASIC command CALL, in fact, uses the JSR
command to jump to a machine-code routine.

As the processor looks at a command it advances
the program counter. Thus, by the time it has looked
at a command to see what it has to do, the program
counter will point to the beginning of the NEXT

23

command. When the processor comes across a JSR
command, it takes the program counter (which
points to the beginning of the next command,
remember) and saves it on the stack as two bytes:
low first, then high. In doing so, it moves the stack
pointer to point to the next byte after the top of the
stack. Then, at the end of the subroutine, when the
processor meets an RTS command, it takes the top
two bytes off the stack again and puts them back
into the program counter. Thus the processor
returns to the command AFTER the JSR command.
As the stack can hold 128 two-byte addresses, the
MAXIMUM number of nested subroutines is 128.
This decreases if the stack is also being used for
other purposes.

It is interesting to note that the stack is stored in
page one of the memory (&100 to &1FF) in such a
way that &1FF is the first byte of the stack and all
subsequent entries are stored in order backwards
through the stack. It might help to think of an
upside-down paper spike.

It is also often useful to be able to save the
contents of the accumulator on the stack and
retrieve these contents again later; so two com-
mands are provided to do this.

PHA ‘PusH Accumulator onto stack’
PLA ‘PuLl Accumulator off stack’

There are also two useful commands for anyone
wanting to ‘edit’ the stack, and these are:

TSX ‘Transfer contents of Stack pointer to X
register’

TXS ‘Transfer X register to Stack pointer’

(Notice that it is the stack pointer not the stack area
that is transferred to the X register and vice versa.)

Conditional branches It is useless to have a language without some form
of IF . . . THEN . . . conditional command. This is
provided by making use of the flags.

There are four flags which are used for conditional

24

jumps, or CONDITIONAL BRANCHES as they are
called in machine code. These are ‘Carry’, ‘Zero’,
‘Negative’ and ‘Overflow’.

The zero flag, as its name suggests, is set when the
result of some command is zero.

The negative flag is set if the result is negative − if
bit seven is set (bit seven is the most signif icant bi t
of a byte); zero is treated as positive.

The overflow flag is more complicated. It is set
either if there is a carry from bit 6 to bit 7 but the
carry flag is not set; or if there is no carry flag from
bit 6 to 7 and the carry flag is set. Strangely enough,
there is a command CLV − ‘CLear oVerflow’ − but
no ‘ set overflow’ command. This flag is seldom
used.

Once we have a flag set or cleared, we can do a
conditional branch to another part of the program
depending on the state (whether it is zero or one) of
the f lag. There are eight commands to do this:

BCC ‘Branch if Carry Clear’
BCS ‘Branch if Carry Set’
BEQ ‘Branch if EQual to zero’
BNE ‘Branch if Not Equal to zero’
BMI ‘Branch if Minus’
BPL ‘Branch if PLus’
BVC ‘Branch if oVerflow Clear’
BVS ‘Branch if oVerflow Set’

These commands are followed by a one-byte
positive or negative two’s complement number.
This gives the number of bytes to go forward in the
program. If it is negative then the processor will go
backwards. Thus BEQ &67 would move on &67
bytes if the result were zero, and BNE &FD (which
could also be typed as BNE -3) would go back three
bytes if the result were not zero. It is difficult to
calculate how many bytes to go forward to reach a
particular command; so, again, labels may be used.
However, because only one byte is used to contain

25

the OFFSET, the furthest back you can go is 128
bytes (negatively); the furthest forwards is 127 bytes
(positively). Thus it is important to keep branches
short. If necessary, you can do the following:

 BNE skip \ if not carry on
 JMP equal \ if so jump to equal
.skip \ carry on

Here, the routine EQUAL is a routine we want to
jump to if the zero flag is set. This routine is too far
away from this section of the program to use a
simple branch command. Instead we branch to SKIP
if the zero flag is not set. Otherwise we jump to
EQUAL as JMP can reach anywhere in memory.

Conditional branches are very useful for delay
routines. We have not yet used the X and Y registers
much but they are often used for delays. If we want
a very short delay, we can load the X register (or the
Y register) with 0, then use the command DEX
(which subtracts one from the X register and sets
the negative and zero flags according to the result
that is stored in the X register.) This will leave 255
in the X register. The zero flag will therefore not be
set. So if we do a BNE back to the DEX command
(labelled as LOOP below), it will branch back.
However, this time, the X register will contain 255.
The result of all this is that the X register counts
down from 0, then 255, all the way down to 0 again.
When X finally reaches 0 again the zero flag is set
and the BNE command fails to branch so the pro-
gram carries on to the next command.

 LDX #0
.loop DEX
 BNE loop

This produces a delay of about 0.0006 of a second.
For a longer delay, we can create a nested loop
around this using the Y register:

 LDY #0

.Yloop LDX #0

.Xloop DEX

26

 BNE Xloop
 DEY
 BNE Yloop

This produces a delay of about 0.16 of a second. If
we want an even longer delay, we have to press the
A register into service as well. We don’t have a
‘decrement A’ command so we have to use SEC and
SBC #1:

 LDA #0

.Aloop LDY #0

.Yloop LDX #0

.Xloop DEX
 BNE Xloop
 DEY
 BNE Yloop

 SEC
 SBC #1
 BNE Aloop

This produces a delay of about 42 seconds which
should be enough for most purposes. Different
delays can be obtained by changing the values
initially loaded into each register.

A problem occurs when labels are used, whether
in jumps, subroutines or branches. As an example:

 BNE skip
 LDA #0
 STA &70
.skip DEX

The assembler obviously assembles the code in the
order in which it is in the program. So, while assem-
bling the above program, it will not yet have defined
the variable SKIP when it gets to the command
BNE Skip because it will not have command across
the label SKIP and so it gives the error ‘No such
variable’. To stop this happening, the BBC Micro’s
assembler can be used as a TWO-PASS
ASSEMBLER.

In a two-pass assembler, the code is assembled
twice. The first time, the assembler ignores any

27

reference to labels it has not come across, at the
same time leaving a space to fill in their values later.
By the time it has finished the first pass it has found
all the labels and so will have defined all the vari-
ables. Then, on the second pass, it assembles
everything, including the reference to labels,
because it now has all the addresses it needs stored
in the variables. The assembler on the BBC Micro
does not do this automatically, but it provides a
useful command, OPT. This can only be used within
the square brackets and is not assembled into
machine code. It is thus known as a pseudo-opera-
tion. OPT is followed by a number or variable. Here
is what the different numbers following OPT do:

0 Do not print assembled code
and ignore errors.

1 Print assembled code
and ignore errors.

2 Do not print assembled code
and take note of errors.

3 Print assembled code and
take note of errors.

If we set OPT to 0 or 1 on the first pass, and set it to
2 or 3 on the second pass, the errors that will
naturally occur wherever there are ‘forward’ refer-
ences to labels will be ignored on the first pass,
while the labels are calculated; then any other errors
will show up on the second pass. The easiest way to
use OPT is by putting a FOR ... NEXT ... loop around
the assembly code and setting OPT equal to the
loop variable. When the assembler is enabled with
the open brackets, OPT is automatically set to 3.
Thus the first command within the brackets should
be the OPT command. So the BASIC code to pre-
cede a section of assembly code now becomes:

 10 DIM mc% 100
 20 FOR pass% = 0 TO 3 STEP 3
 30 P% = mc%
 40 [OPTpass% \ On first pass, OPT is set
 . \ to 0, so ignore all
errors.
 . \ On second pass, OPT is set

28

 . \ to 3, so report any errors
 assembly code \ and print assembled code.
 .
 .
 .
 140]
 150 NEXT
 160 CALL mc%

OPT is not needed if all the branches, jumps and so
on refer to EARLIER parts of the program − that is, if
the program does not have any ‘ forward’ references
to labels. Note that P% must be reset to mc% at the
beginning of each pass, because P% is incremented
by the assembler as it assembles the code. This is
sometimes useful as, after the] command, P% will
point to the first free byte of memory after the
machine code. For example, if you wish to save a
piece of assembled code directly, using *SAVE, P%
will, after the code has been assembled, give the
end address of the code.

A command that goes with the branch command:

CMP‘CoMPare memory with accumulator’

This needs a little explanation. CMP subtracts the
specif ied byte from the accumulator and sets the
carry, zero and negative flags in the normal way.
However, it doesn’t store the result in the accumula-
tor as SBC does, so the accumulator is not altered.
In fact the result is lost completely; all that is altered
are the flags. The contents of the memory location
are not altered either. Also, this command automati-
cally sets the carry flag at the beginning, so you
don’t have to worry about that.

The result of all this is that if the two numbers are
equal, then taking one from the other leaves zero
and the zero flag is set. If the accumulator is greater
than the memory byte, then the carry will be set.
The negative flag will be set equal to bit 7 of the
result of the subtraction.

Probably the most common use of this command is
for checking if the accumulator is equal to a particu-
lar value. You can put as many of these tests one
after the other as you like because the accumulator

29

is not affected! This could be very useful if, for
instance, you are checking the GET command for
the keys in a game − you could use a routine like
this:

CMP # ASC("Z")
BEQ left
CMP # ASC("X")
BEQ right

There are also two equivalent commands for the
index registers:

CPX ‘Compare memory with X register’
CPY ‘Compare memory with Y register’

Two other useful commands are:

PHP ‘PusH Processor status register’ − Put contents
of status register on stack.

PLP ‘PulL Processor status register’ − Pull byte from
stack and place in status register.

These push and pull the current flag states to and
from the stack and can be used to ‘ save’ the results
of a CMP command.

An addressing mode that is used a lot in the BBC
Micro is INDIRECT ADDRESSING. There is only one
command that uses this mode, and that is JMP.
Instead of jumping to the address specif ied after
JMP, the CPU takes the byte contained at that
address and the byte immediately following that
and uses these two bytes as the low and high bytes
respectively of the address the computer actually
jumps to.

For example, there is a very useful subroutine
stored in the Operating System ROM called
OSWRCH (short for ‘Operating System WRite
Character’). This is the routine BASIC uses for i ts
VDU command (remember when using this that, as
with VDU, a carriage return does not also produce a
line feed, i.e. VDU13 returns to the beginning of the
same line). Thus if we wished to print the letter ‘A’
from the assembler, we would load the accumulator

30

with the ASCII code for ‘A’ and then JSR to location
&FFEE (where the routine starts). However, at this
location there is an indirect jump instruction with
the address &20E. The computer then jumps to the
address pointed to by locations &20E and &20F
(&20E contains the low byte and &20F the high
byte) − and this is where the actual routine starts.
This system is sometimes called VECTORING. In
this example, locations &20E and &20F make up a
vector. As &20E and &20F are in RAM, we can
change their contents so that, for example, the VDU
command will jump to our own subroutine instead
of the Operating System routine through our alter-
ing &20E and &20F to point to our own routine.
This JMP command is typed with the address in
brackets, e.g.

JMP (&20E)

One thing must be kept in mind when using this
command. When the computer adds one to the
address to fetch the high byte, it does not carry into
the high byte of the address. Thus if we were to use
the command JMP (&13FF), this would jump to the
address stored at &13FF (low byte) and &1300 (high
byte)! (&FF is incremented to &100 but the 1 isn’t
carried over to the high byte and so the result is
&1300.) As an example of how to use the OSWRCH
vector, the following program makes the computer
always print a full stop instead of a space.

 10 DIM X% 100
 20 FOR A%=0 TO3 STEP3
 30 P%=X%
 40 [
 50 OPTA%
 60 .start CMP #ASC(" ") \ Check if char is
 space
 70 BNE print \ if not, print it
 80 LDA #ASC(".") \ if so, load full
 stop
 90 .print JMP (&230) \ then go to main
 routine
 100]
 110 NEXT
 120 ?&230=?&20E :REM Copy vector into

31

 130 ?&231=?&20F :REM &230 and &231
 140 ?&20E= start MOD256 :REM then set to
 150 ?&20F= start DIV256 :REM new routine.

The \ symbol is equivalent to the BASIC REM
statement − the computer ignores everything else
on that l ine.

Lines 120 and 130 make a copy of the VDU vector
in a spare vector (&230) that the operating system
does not use, so that we can jump to the original
OSWRCH routine to print a character.

This program can be very useful for checking for
spaces accidentally typed at the end of lines, but
remember to press BREAK to clear it before
attempting to edit lines, otherwise the spaces you
really want will become full stops.

Although there are no proper multiplication and
division commands in machine code, there are two
commands for multiplication and division by 2:

ASL ‘Arithmetic Shift Left memory’
LSR ‘Logical Shift Right memory’

Their names don’t give much of a clue as to how
they work. ASL takes all the bits in a byte and shifts
them one place to the left. The least signif icant bi t
(the rightmost one) becomes zero and the most
signif icant bit is placed in the carry flag. The orig-
inal contents of the carry flag are thus lost.

For example:

C 7 6 5 4 3 2 1 0
0 1 1 0 1 0 1 1 1

becomes, after ASL

C 7 6 5 4 3 2 1 0
1 1 0 1 0 1 1 1 0

The result of this is to multiply the byte by two.

LSR does the opposite. It shifts all the bits to the
right, sets the most signif icant bit to zero and shifts
the least signif icant bit into the carry. Again, the

32

original contents of the carry are lost, e.g.

7 6 5 4 3 2 1 0 C
1 1 0 1 0 1 1 1 0

becomes, after LSR

7 6 5 4 3 2 1 0 C
0 1 1 0 1 0 1 1 1

The result of this is to divide the byte by two.

Apart from absolute addressing, these two
commands can be used with another addressing
mode called ACCUMULATOR addressing. As i ts
name implies, in this mode the byte used and
affected is the one contained in the accumulator
and not in a memory location. This mode is used
from the assembler by placing the letter A after the
command.

ASL A
LSR A

(The spaces are not necessary.)

The remaining two commands that can use
accumulator addressing mode are:

ROL ‘ROtate Left memory’
ROR ‘ROtate Right memory’

These commands are similar to ASL and LSR but
they do not lose the original carry contents entirely.
ROL shifts the byte left. As it does so the old con-
tents of the carry are shifted into bit zero and the old
contents of bit 7 are shifted into the carry. Thus the
whole byte plus the carry flag − nine bits in total −
is rotated one bit to the left, e.g.

C 7 6 5 4 3 2 1 0
1 0 0 1 0 1 1 1 0

becomes, after ROL

33

C 7 6 5 4 3 2 1 0
0 0 1 0 1 1 1 0 1

ROR is the exact opposite, e.g.

7 6 5 4 3 2 1 0 C
0 0 1 0 1 1 1 0 1

becomes, after ROR

7 6 5 4 3 2 1 0 C
1 0 0 1 0 1 1 1 0

By combining ASL and ROL commands, a number
of two or more bytes can be multiplied by two.

1. The least significant byte of the number is
multiplied using ASL. This leaves its most signifi-
cant but in the carry.
2. The next byte up is multiplied with the ROL
command. The carry resulting from step 1 is thus
now placed in bit zero of the second byte and bit
seven of the second byte is left in the carry, ready
for another ROL command on the next byte up (if
any).

For example,
High byte Low byte
00110101 10101101 =13741 (decimal)

V V
ROL ASL

V V
C C
0 < 01101011 < 1 < 01011010 =27482 (decimal)

The original number is doubled.
Similarly, numbers comprising two or more bytes
can be divided by two using LSR on the high byte
first then ROR on successive lower bytes, e.g.

High byte Low byte
00110101 10101101 =27482 (decimal)

V V
LSR ROR

V V
C C

34

01101011 > 1> 10101101> 0 = 13741 (decimal)

The original number is halved.

If the original number is odd, this method will lose
the ‘half’ at the end of the answer into the carry flag,
i.e. the carry flag contains the remainder after
division by two. This can be used to test if a number
is even or odd by testing the carry flag.

As an example of what can be done with these
four commands, let’s write a short program that will
multiply the contents of the accumulator by 10 and
store the answer at &70 (low) and &71 (high).

To do this we must first multiply by five and then
multiply by two. To multiply by five we can multiply
the number by four and then add the original num-
ber to make five lots of the original number.

The first thing to do is this:

.mten STA &70
 LDX #0
 STX &71

The original number is now stored as a two-byte
number in &70 (low) and &71 (high). We will need
to add the original number to the answer later, so
we can leave the original number in the accumula-
tor. Next, we can multiply the contents of &70 and
&71 by 4 by multiplying them by 2 twice.

 ASL &70
 ROL &71
 ASL &70
 ROL &71

We now have four times the original number in &70
and &71. To make five times the original number
we must add the accumulator (which STILL con-
tains the original number) to &70 and &71.

 CLC
 ADC &70
 STA &70
 BCC skip

35

 INC &71
.skip ...

Note that because we are adding zero to the high
byte, it is quicker to use a branch and an INC
command than to use a further ADC command.

We now have give times the original number in
&70 and &71. Finally, we need to multiply this by
two to get 10 times the original number.

.skip ASL &70
 ROL &71
 RTS

The index registers The index (X and Y) registers are used a lot for what
is known as ABSOLUTE INDEXED addressing. This
mode is similar to absolute addressing, but an X or
Y is placed after the address (separated from it by a
comma). The contents of the register are added to
the address to form the actual address from which a
byte is fetched or saved. This is very useful for
arrays where the index register can be used to point
into a one-dimensional array up to 256 elements
long. Here is an example of this:

 10 DIM mc% 30
 20 FOR pass% = 0 TO 3 STEP 3
 30 P% = mc%
 40 [OPT mc%
 50 .start LDX #0
 60 .loop LDA array ,X
 70 JSR &FFE3
 80 INX
 90 CPX #8
 100 BNE loop
 110 RTS
 120 .array EQUS CHR$13+"Hello."+CHR$13
 130]
 140 NEXT
 150 CALL start

The command EQUS is one of four similar
commands available only with BASIC II which are
for storing data in the middle of assembly code.

The first is EQUB. This must be followed by a one-
byte number. This byte is then inserted into the

36

middle of the assembly code. Make sure that the
processor will never try to run this byte as an
instruction − if it did, it would almost certainly
crash. This byte can then be used as a byte of
DATA.

For example, if you have run out of room in the
variable space from &70 to &8F, you could put a
series of EQUB commands after the main program
each preceded by a label and then use the labels as
free memory locations.

The second command is EQUW which is identical
except that it uses a two-byte number. This number
is stored low-byte first.

The third is EQUB which uses a four-byte number.
This is stored low-byte first.
The fourth is EQUS which uses a string. This is
stored in the order the characters appear in the
string.

In the program above, the string ‘Hello.’ between
two carriage returns is placed at the label ARRAY
and can then be referred to by the program, a byte
at a time, using the X register to point into the
string.

For those of you with BASIC I these four com-
mands are not available. To get around this you will
need to replace them with these pieces of code:

 100 .temp EQUB &CA

is replaced by:

 100 .temp]
 102 ?P%=&CA
 104 P%=P%+1
 106 [OPTpass%

Because P% always points to the beginning of the
next machine code command we can exit the
assembler and place the correct byte in the memory
in the correct place. We then need to increment P%
to point to the next byte. Finally we can re-enter the
assembler (remembering to set OPT as this is
always reset to 3 on entry to the assembler).

37

Likewise for the other three commands:

 100 .temp EQUW &1CA3

is replaced by:

 100 .temp]
 102 ?P%=&A3:P%?1=&1C
 104 P%=P%+2
 106 [OPTpass%

and

 100 .temp EQUD &12345678

is replaced by

 100 .temp]
 102 !P%=&12345678
 104 P%=P%+4
 106 [OPTpass%

 100 .temp EQUS "HELLO"

is replaced by:

 100 .temp]
 102 $P%="HELLO"
 104 P%=P%+LEN"HELLO"
 106 [OPTpass%

The subroutine at &FFE3 is a ready-made operating
system routine. It checks whether the accumulator
contains a carriage return and, if so, prints both a
carriage return and a line feed; if not, it jumps to
OSWRCH which prints the character in the accu-
mulator. This routine is called OSASCI.

Another example of a simple use of the index
registers is for filing a block of memory locations.
The next example clears a Mode 7 screen. By
changing the character the program uses, the
screen may be filled with any charater.

 10 MODE 7
 20 DIM mc% 30
 30 FOR A% = 0 TO 3 STEP 3

38

 40 P% = mc%
 50 [OPTA%
 60 .clear LDA #ASC(" ")
 70 LDX #0
 80 .loop STA &7C00,X
 90 STA &7D00,X
 100 STA &7E00,X
 110 STA &7F00,X
 120 DEX
 130 BNE loop
 140 RTS
 150]
 160 NEXT
 170 CALL clear

In this program, because the screen takes up 1K
(which is 4 pages) starting at &7C00, one absolute
indexed X command can only clear one quarter of
the screen, as the X register can only go from 0 to
255; so four commands are used, one for each page.
Of course, this whole program could be replaced by
a call to OSWRCH with the accumulator containing
12. (This is the ASCII code for ‘Clear Screen’.)

Logical commands A very useful command is:

ORA ‘OR Accumulator with memory’

This works on each bit of the two bytes (one in the
accumulator, the other from the memory) separately.
If either of the corresponding bits in the two bytes is
1 or both are 1, then the corresponding bit in the
answer is 1. If, however, they are both 0, then the
answer will be 0. The result goes back into the
corresponding bit of the accumulator. This OR
function can be used to set particular bits in a byte
to 1 and leave the others untouched.

first bit second bit answer bit
0 0 0
0 1 1
1 0 1
1 1 1

E.g.

39

01010110

 OR

00011111

01011111

A similar command is

AND ‘AND accumulator with memory’

This command only sets the bit in the answer to 1 if
the corresponding bits in the first byte AND the
second byte are BOTH 1. The AND function can be
used to set particular bits in a byte to 0 leaving the
others untouched. Both this and the OR command
are sometimes called MASK commands because
they mask particular bits to 1 or 0.

first bit second bit answer bit
0 0 0
0 1 0
1 0 0
1 1 1

E.g.

01010110

 AND

11110000

01010000

The third and last command along these lines is the
EOR or Exclusive-OR command. This sets the
answer bit to 1 if one of the corresponding bits in
the first byte OR the second byte is one, but not if
they are both one or both 0. This command can be
used to flip particular bits in a byte from 1 to 0 or 0
to 1 leaving the others untouched. This is how the
processor flips all the bits to make a negative num-
ber when doing a subtract command.

40

first bit second bit answer bit
0 0 0
0 1 1
1 0 1
1 1 0

E.g.

01010110

 EOR

00001111

01011001

01010110

 EOR

11111111

10101001

Notice that, as using EOR with 255 flips all the bits,
a second use of EOR with 255 will flip them all back
again leaving the original number. This is very
useful in games graphics. A figure in a game can be
Exclusive-OR’ed with the screen to put it on and
then Exclusive-OR’ed again to remove it.

BIT does the same as AND but doesn’t place the
answer back in the accumulator. It forgets the
answer, but it does set the status register flags. If
the answer is zero then the zero flag is set (other-
wise it is cleared). Also, bits 6 and 7 (the most
significant-but-one and the most significant) of the
byte taken from memory are placed in the overflow
and negative flags respectively. This can be used in
a variety of ways. By using BIT on a byte in the
memory, bits 6 and 7 can be tested using the flags.
But its main use is that, by setting just one particu-
lar bit of one of the numbers to 1, leaving the others
at zero, and using BIT on the two numbers, the zero
flag will then indicate whether the corresponding
bit in the other number is 0 or 1.

41

E.g.

00010000 (in accumulator)

 BIT

01010101 (in memory)

00010000 which is not zero, so the zero
 flag will be clear

00010000 (in accumulator)

 BIT

10100101 (in memory)

00000000 which is zero, so the zero
 flag will be set

Indexed indirect addressing
The four remaining machine code commands are
concerned with INTERRUPTS; they are covered in
chapter four. There are still, however, two address-
ing modes to be covered.

The first of these is POST-INDEXED INDIRECT
ADDRESSING. In this mode, a one-byte number is
specified after the command, and this refers to an
address in zero page. The processor takes the byte
at this address and the byte at the address after it to
form a new address. As in indirect addressing, the
low byte is stored first followed by the high byte.
Also, if the address specified is &FF, the two bytes
used will be the ones at &FF (low byte) and &00
(high byte). Once the processor has this address, it
adds the contents of the Y register (this mode can
only be used with the Y register) to it. This now
forms the address of the byte the processor actually
works on. Within the assembler, the zero page
address is put in brackets with a comma and a Y
after the brackets e.g.

LDA (&70),Y

42

If location &70 contains, say, &00 and location &71
contains &30, the address ‘pointed to’ would be
&3000. If the command is used with Y ranging from
0 to 5, then locations &3000, &3001, &3002, &3003,
&3004 and &3005 would be successively addressed.

This mode uses just two zero page locations to
hold a variable that itself points into the memory.
For example, if we wished to clear a Mode 0 screen,
we place the address of the beginning of the screen
in, say &70 and &71. Then we could use a loop of Y
to store zeros at 256 locations starting with that
address, then add 256 to the address and repeat the
procedure until the screen is fully cleared, e.g.

. cl ear LDA #0 \ Pl ace st ar t of
 STA &70 \ scr een addr ess
 LDA #&30 \ i n &70 (l ow)
 STA &71 \ and &71 (hi gh)
 LDA #0 \ Fi l l wi t h 0
 LDY #0 \ st ar t Y at 0
. l oop STA (&70) , Y \ st or e on scr een
 I NY \ next byt e
 BNE l oop \ ' t i l 256 done
 I NC &71 \ t hen next 256
 BI T &71 \ check bi t 7 of &71
 BPL l oop \ i f cl ear r epeat
 RTS \ i f set , t hen &8000
 r eached t her ef or e
 scr een
 cl ear ed so end.

The last addressing mode is PRE-INDEXED
INDIRECT ADDRESSING. It uses the X register only.
The X register is added to the zero page address
itself rather than to the address stored at that zero
page address. In other words, the processor takes
the one-byte address after the command, adds the X
register (it ignores any carry so that the result is still
a zero page address). Then it takes the byte at that
address and the byte at the address after it to form a
two-byte address (as before, low then high) and this
is the address of the byte that it uses. This com-
mand is typed in the assembler like this:

STA (&70, X)

43

If X is 5, this instruction would form the actual
address from the contents of &75 (low) and &76
(high).

Note that the X is WITHIN the brackets this time.
The use of this is that a table of addresses can be
formed in zero page and perhaps contain the
addresses of a series of missiles on the screen in a
game. However, because only limited zero page
locations are usually available to you as a machine
code programmer, the application for this mode on
the BBC Micro are very limited.

There are some commands that people assume
can be used but which the computer does not allow.
For instance, there is a command ORA for the
accumulator, but there are no equivalent commands
for the X and Y registers. Another point is that not
all commands support all addressing modes. For
instance, the command INC A is not valid − to do
this you wil l have to use the commands:

CLC
ADC #1

44

45

