CHAPTER FIVE

A FEW WAYSTO
PROTECT YOUR
PROGRAMS

Piracy is a problem that is worrying many software
houses these days. It is impossible to produce a
commercial program that cannot be copied -
however clever the protection is, someone will find a
way around it. However, it is possible to make it
very difficult for anyone to copy a program. Very few
people have the skill and patience to copy a pro-
gram which has been properly protected. Here you
will find a few of the many techniques that can be
used to make copying difficult.

It is possible to write a program in such a way
that, once it is run, it cannot be stopped. To do this
we need to disable the ESCAPE key and the BREAK
key. The ESCAPE key is easy to disable but the
BREAK key cannot be disabled completely. It is,
however, possible to make the computer clear the
memory when the BREAK key is pressed. The
Operating System conveniently provides a *FX call
to deal with both the ESCAPE and BREAK keys.
This is *FX200. This is used to change a flag byte
within which only bits 0 and 1 do anything. If bit O
is set then the ESCAPE key is completely disabled,
and if bit 1is set the BREAK key causes the memory
to be cleared. Thus, by placing the command
*FX200,3 at the beginning of a program, it is
impossible to get out of the program without the
memory being cleared. (We will see in chapter 6
how to intercept the BREAK key.)

L ocked tape files

85

Thisisal very well but a program can still be loaded
and then saved. We need a way of stopping people
doing this. Acorn have kindly placed a protection
system in the BBC Model B Operating System for
tape users. This system produces a file on tape
which is‘locked’. If you try to *LOAD such afileyou
will get the message ‘file locked'. In fact, the only
command the operating system will allow you to use
on a locked file is *RUN. This means that only
machine code programs can be locked.

A locked tape file is produced by setting a
particular bit in the header of each block. This tells
the operating system that the file is locked. The
operating system does not, unfortunately, provide a
command for saving locked files, so we need a
program that will do this. At first it would appear
that we need to write a complete save routine to do
this. Thereis, however, a beautifully simple way.

While the operating system is saving a file it
keeps a copy of the header for each block in
locations &3B2-& 3DO0. The bit we are interested in
is bit O of location &3CA. Because the tape hard-
ware is interrupt driven, not only does an interrupt
occur every time a byte is saved to tape, but also,
the centisecond clock is left running. It is very
simple to redirect the main interrupt vector so that
as each byte is saved bit 0 of &3CA is set. The
following program does just this. Notice that the
machine code is stored in ZERO page where it can’t
get in the way. Once this program is run al files
saved will belocked until BREAK is pressed.

10 P&&50

20 [CPT3

30 .irqg PHA

40 CRA #1

50 STA &3CA

60 PLA

70 JMP (&230)

80 .init SH

90 LDA &204
110 STA &230
120 LDA &205
130 STA &231

Unlistable programs

140 LDA #irq MIR56

150 STA &204
160 LDA #irq D V256
170 STA €205

180 al

190 RTS

200]

210 CALLini t

We now would appear to have an uncopyable
program which can only be *RUN and, once run,
cannot be broken into. Of course, it would be naive
to think even this system is infalible. It is possible
to crack a locked file by substituting line 50 with
AND #254 .

It is sometimes useful to be able to write a BASIC
program which cannot be listed. This is done using
ASCIl code 21 which disables the VDU drivers.
When this has been sent to the VDU drivers the
screen ignores everything that is sent to it until a
VDU6 command is used to re-enable the VDU
drivers again. By placing CHR$21 and CHR$6 codes
in a listing, part or al of a program can be made
unlistable.

Unfortunately, these code cannot just be typed
into a program listing. If, however, two character
codes are not used anywhere else in a program are
used — codes such as the ‘curly’ brackets — then it
is quite easy to write a short program that will
convert these into CHR$21 and CHR$6 codes. So
that the program will run properly these characters
should be placed in REM statements. Other charac-
ters can be used, such as delete (CHR$127); or
cursor controls, such as line feed. The obvious way
to use this is to disable the whole listing, but it is
often much more effective to use it to remove
particular lines without which the program appears
to do something completely different. This system
can be used to great effect as the first part of a
game which prints instructions and then chains or
*RUNSs the next section. Try typing in this example
program:

86

87

10 HEM @*******************************[

20 REM] * *[
30 REM]* This programis copyright *[
40 REM] * *[
50 REM]* It isillegal to copy it. *[
60 REM]* *[

70 EM] ********************************[

80 REM REST CF PROGRAM
90 PR NT"TH S PROGRAMWLL STILL RUN'
100 QGOTCBO0

110 REM

We want to change @ (line 10) to a clear screen
(code 12); {chr$21 ; and } to CHR$6 (lines 20 to 70
and 110). To do this you must first type the
commands:

PACE=&2000
NEW

Then you must type in and run the following
program. Disc users will need to change the setting
of A% at line 10 to & 1900

10 A%&E00

20 | FAYR1=&FF END

30 A%AY%3

40 A%AY%L: | F?A%13 THEN20 ELSE | F?A%>&F4
THENAO

50 REPEATAY%AY%1: | F?PAY%ASC' @ ?A%12

60 | F?A%ASC'}" ?A%6

70 | F?A%ASC {" ?A%21

80 WNTI L?A%13: GOTQR0

Notice that in line 50 the REPEAT command does
not need a : after it. This is never needed after a
REPEAT statement.

Now set PAGE back to its usual value and try
listing the program. Note that the program still runs
normally.

This program first finds the start of each line of
the program then looks for the token (&F4) for a
REM statement. It then searches the rest of the line
for the characters we want to replace. This way the

program won't accidentally alter line numbers or
lines of BASIC.

Alternatively, you can use a machine code
monitor (such as the one in chapter 4) to look
directly at and modify the relevant characters in the
BASIC coding.

A very effective (and far more subtle) way of
using this technique is to double-bluff the pirate.
For instance, say that in the BASIC loader for a
macine code game the last two commands are:

*LQAD gare 3000
CALL &30B2

The pirate will look at this and will be able to
examine the machine code. If we can arrange for
him not to know the load and execution addresses
then his task is much harder. Even better, if we can
convince him that the load and execution addresses
are, say, &2800 and & 293A respectively.

The way to do this is to put a dummy set of
commands at the end of the program and then
conceal the real ones. The original program ending
would look like this:

320 REM* | oad nachi ne code *{
322 *LQAD gane 3000

324 CALL &30B2

326 REM }

330 *LQAD gane 2800

340 CALL &293A

Try typing this in and using the alteration program
as before, then listing the program.

Note that the line numbers that the pirate will
see are in steps of ten, leaving no clue to the miss-
ing lines.

One word of warning before you use this
technique. There is a major, very annoying bug in
the operating system! When the VDU drivers have
been disabled with VDU21 any carriage return sent
to the VDU drivers are sent to the printer: even if the
printer hasn't been enabled - even if your printer
has been turned off — even if you don't have a

88

Disc tricks

89

printer! This irritating quirk means that every time
you list your program the printer spits paper at you!
Also, if your printer is not turned on, these carriage
returns (and line-feeds if you have used *FX6,10
accumulate in the printer buffer. If the number of
these reaches 63 the whole computer seizes up until
either ESCAPE or BREAK is pressed. So don't fill
your programs full of CHR$21s.

If you are writing a program with the VDU21
command in it you can get around this by using the
command *FX3,64 before using VDU21. This dis-
ables the printer driver completely except for
characters sent using the VDU1,x command.

For those of you with disc drives the list of fiendish
tricks you can play on the pirate is endless. These
tricks al rely on knowing how to access the blocks
on a disc directly, using an OSWORD call. The DFS
adds a series of extra calls to the standard list of
OSWORD calls. We are going to use one of these —
OSWORD & 7F. This routine saves or loads a sec-
tion, or all, of atrack.

On entry to this routine the X and Y registers
must point to a parameter block (Y high). This
parameter block consists of 10 bytes and should be
laid out as follows:

XY +0 Drive number
XY +1
to Load / Save address.
XY +4
XY +5 Number of parameters (3)
XY +6 Command (&53 for load, &4B for
save).

XY +7 Track number.

XY +8 Sector number.

XY +9 High nibble: sector length in 128-
byte groups. Low nybble: number of
sectors to be loaded/saved.

XY +10 Error number (0 if no error).

For example, if we wanted to read the contents of
the block at track 10 sector 5 we would need to
reserve 256 bytes in the memory to store the block.

Then we would need to set up a parameter block.
The first byte of this parameter block would be zero
and the next four would point to the reserved block
of memory (the top two bytes would be set to zero).
The number of parameters refers to the number of
parameters after the command byte that are sent to
the routine (i.e. not including the error byte) and so
would be three. The command would be &53. The
track number would be 10 and the sector number 5.
The last (ninth) byte is more complicated. The size
of a block on a standard DFS disc is 256 bytes, so
the high nibble of the parameter byte needs to be 2.
We only want to load one block, so the low nibble is
1, i.e. the ninth byteis &21.

For protection against piracy there are a number
of things we can do with this. The first is to save
fileswith names that include control codes. Aswith
the unlistable programs, we can apparently totally
eliminate files from the catalogue and yet till load
them. This means that unless the pirate tries every
name he can think of (quite a long job!) only a
person who knows the filename can load the file.
Thisis not much use if you want to sell the program,
but if you write a well-protected loader which then
chains the main program then only the loader's
filename need appear on the catal ogue.

If you have the old DFS then saving control codes
in filenames is easy. For example, to save a file that
appears on the catalogue as TEST but actually has a
different filename, try:

SAVE " TESS| HT"

The problem with this is that the catalogue and
compact routines use the length of the filename to
set out the catalogue on the screen. So, if you are
not careful, filenames will tend to be shifted left if
they are printed on the same line, but further right
than, a doctored filename. This is where the subtle
approach is not necessarily the best. Very good
effects can be obtained by titling the disc with a
clear screen, a suitable message, and a CHR$21!
You can then add a CHR$6 to the end of the last file
on the catalogue. If your disc boots then you don't

90

91

even have to let the user catalogue the disc at all!

If you don't have the old DFS you will need to
load the first block on the disc (track zero, sector
zero) into the memory, alter it accordingly, and save
it back again — a somewhat more cumbersome
method.

However, dl this is child's play next to what can

be achieved. It is not very useful to stop the pirate
loading the program and looking at it if he can just
‘backup’ to a new disc. Here’'s how to stop him:
The second block of the disc contains the load and
execution addresses, the lengths, and the locations
on the disc, of dl the files. It also contains eight
bytes at the very start of the block. The first four of
these are the last four bytes of the title (the first
eight bytes of the title are the first eight bytes of
block zero). Then comes one byte which stores the
number of times the disc has been written to since
formatting (this number appears in brackets after
the title in the catalogue). Then comes a byte which
gives the number of files in the catalogue, times
eight. And finadly, two bytes that give the total
number of blocks on the disc. These are stored high
byte first (yes, this is unusual). Also, the high nibble
of the high byte is used to store the OPT number.

You may wonder of what use al this is. The
answer isthat we can set the total number of blocks
on the disc to zero! This may seem foolish but it
doesn't affect the way the DFS loads from disc. It
only has an effect when you start saving on the disc
or when you back-up the disc. When backing-up,
the computer copies on to the new disc the number
of blocks specified in block one of the source disc.
This means that, by setting this to zero, the back-up
command will copy precisely no blocks. If you want
to be even more cruel to the poor, defenceless
pirate, you could arrange for just enough blocks to
be copied to copy the loader from disc but not the
main program. The loader could then check a block
at the end of the disc to see if it contains a specific
string — which, of course, you will have put there on
the original disc; and, if it is not there, then it would
print a suitable message, such as ‘Thisis an illegal
copy’ and crash!

92

93

Track O

Sector O
First 8 bytes of title
Fi | enames from cat al ogue. 8
! ! bytes each. Stored in reverse
\ \ order to that which files are
\ \ stored on disc
-
7 bytes 1 byte for
file name directory. Bit 7
set if file |ocked
Sector 1 H Lo
1
_’V\/ _,Y‘/
Last 4 bytes 1 byte - 1 byte - Total no. of sectors
of title no. of no. of on disc. CPT 4
accesses files on setting stored in
to disc disc x 8 high ni bbl e of high

byt e

File data - 8 bytes/file
in same order as fil enanes

\ \ in Sector O

\ \

\ \
lo H lo H lo H Lo H
2 bytes | 2 bytes|2 bytes |2 bytes Hgh nibble is
Load Exec Length Sector no / hi gh ni bbl e of
Address Address of file start I'engt h.

Note that if the length has been set to zero you can’t
save any more programs on disc. It also fools certain
utilities' commands for looking at the disc directly —
pirates occasionally use this for breaking into discs.

A useful side effect is that *COPYing all the files
on disc will not copy the string at the end and so the
copy won't work. This leads me to another sugges-
tion for disc protection: have a well-protected |oader
which loads the main program off the disc directly
using OSWORD & 7F. This way you need not even
put the main program on the catalogue. You might
even like to store the program on disc in some
personal encryption code.

Another interesting point is that, if you add 128
to dl the bytes that make up a filename in block
zero, that filename will promptly vanish from the
catalogue completely! It will, however, still load and
run perfectly normally — IF you know the filename!

Yet another thing that you can do if you have a
utility such as DISC DOCTOR which allows you to
format sections of a disc, is take an unformatted
disc and format it leaving some tracks unformatted.
If the pirate tries to make a back-up of this he will
get a load error! To cover these tracks set up a
dummy file in the catalogue that occupies the
space.

There are plenty of other ways of confounding
the pirate. You could try coding (that is, encrypting)
your program and placing a decoding routine at the
start. This won't stop a determined pirate as he can
deduce the code from the decoding program, but it
will slow him down. In fact, you will find it very
difficult to stop a determined pirate. You can only
protect against the person who casualy copies
programs. By combining a large number of protec-
tion methods you can make the pirate’s job difficult
enough so that he will think twice before attempt-
ing anything. What you must decide is whether al
thisis worth it.

A companion book in the MASTER GUIDE series,
MASTERING THE DISC DRIVE (BBC Publications,
1985) goes into the disc system in great detail.

9

95

