
CHAPTER TWO

THE OPERATING
SYSTEM

Assembly code is very difficult to use on its own
because it contains no specific input or output
commands. This means that, say, printing a charac-
ter on the screen requires a series of LDA and STA
commands to place the relevant bytes in the rele-
vant places in memory. This would prove difficult
even in Mode 7 let alone in Mode 2! If, further, we
want to use one of the more complicated pieces of
the hardware on the machine such as the disc drive
then the machine code needed will become ridicu-
lously complicated. The OPERATING SYSTEM
ROM in the the computer comprises just under 16K
of machine code routines which will handle virtually
all the input and output operations you are ever
likely to need. Not only does this ROM contain all
the *FX and other ‘ star’ commands, but it also
contains routines for handling VDU commands and
fil ing commands, to name just a few.

Useful OS routines Some of the operating system routines are rarely
used or are too complicated to cover completely in
this book. See THE ADVANCED USER GUIDE
(Cambridge Microcomputer Centre, 1983). If you are
in doubt, the rule is that ANY input or output com-
mand that is available from BASIC can be accessed
through one of the operating system routines
somehow. Here, however, are some of the more
useful routines.

OSBYTE (Operating System BYTE routine)
Location: &FFF4
This routine is used to set up any of a large number

45

of flags that the operating system uses to decide
what to do in particular situations. It is the equiva-
lent to the BASIC *FX command. There are over 150
of these commands though most of them are not
particularly useful. There is a list of most of the
useful commands on page 418-441 of the USER
GUIDE. However, for a complete list of all the
OSBYTE calls, and what they do, see THE
ADVANCED USER GUIDE.

To use the OSBYTE routine from machine code
the accumulator must be set to the number of the
specific command you wish to use and the X and Y
registers must be set to any parameters that the
routine needs for that particular command. OSBYTE
is at address &FFF4.

OSWORD (Operating System WORD operator routine)
Location &FFF1

This routine is similar to OSBYTE but it handles
operations that require larger amounts of data. This
data is stored in a CONTROL BLOCK. This is a
series of bytes which contain the parameters
needed for a particular OSWORD call. To use
OSWORD you should set aside a block of memory (a
parameter block) long enough for the OSWORD
command you want to use, and then place the
parameters in this block. Then set the accumulator
to the number of the particular OSWORD command
you want to use and set the X and Y register to the
low and high bytes respectively of the address of the
first byte of the parameter block. Then call the
routine, which starts at &FFF1.

For a complete list of all the OSWORD calls, and
what they do, see THE ADVANCED USER GUIDE.

OSWRCH (Operating System WRite CHaracter)
Location &FFEE

This is the routine that performs the equivalent of a
BASIC VDU command. By loading the accumulator
with a number and calling &FFEE the contents of
the accumulator will be written to the screen. ALL
output to the screen can be directed through this

46

routine. For example, to clear the text screen the
following code should be used:

LDA #12

JSR &FFEE

To take another example, the BASIC PLOT
command is accessed using the sequence VDU25,
plot number, low byte of X coordinate, high byte of
X coordinate, low byte of Y coordinate, high byte of
Y coordinate. Thus to enter graphics Mode 4 and
draw a line from the bottom left-hand corner of the
screen to the top right-hand corner of the screen,
the following piece of code should be used:

LDA #22 \ Change mode

JSR &FFEE \ to

LDA #4 \ mode 4

JSR &FFEE \

LDA #25 \

JSR &FFEE \ PLOT

LDA #4 \

JSR &FFEE \ 4,

LDA #0 \

JSR &FFEE \

LDA #0 \ 0,

JSR &FFEE \

LDA #0 \

JSR &FFEE \ 0

LDA #25 \ PLOT

JSR &FFEE \

LDA #5 \

JSR &FFEE \ 5,

LDA #&FC \

JSR &FFEE \ 1276,

LDA #4 \

JSR &FFEE \

LDA #&FC \

JSR &FFEE \ 1020

LDA #3 \

JSR &FFEE \

However, this would be somewhat tedious. A point
to note is that the OSWRCH routine exits with the

47

A, X and Y registers unchanged which means that
we can do this:

 LDX #0

.loop LDA table,X

 JSR &FFEE

 INX

 CPX #14

 BNE loop

 RTS

We can then place, starting at the address pointed
to by TABLE, a table containing the following bytes:

22,4,25,4,0,0,0,0,25,5,&FC,4,&FC,3

Make sure you understand this technique as it is
very useful!

For a complete list of what the VDU codes do, see
pages 377-389 of the USER GUIDE.

One important thing to note about this routine is
that, as with the VDU command, a carriage return
(ASCII code 13) returns the cursor to the beginning
of the line it is already on − it DOES NOT move the
cursor down to the beginning of the next line. To do
this you must send a carriage return followed by a
line feed (ASCII 10). This can be a nuisance, so the
operating system provides another two routines.

The first of these is OSNEWL (Operating System
NEW Line) which is at address &FFE7. This routine
sends a carriage return and a l ine feed to OSWRCH.

The second is OSASCI (Operating System ASCII
output routine) which is at address &FFE3. This
routine is the same as OSWRCH except that, if a
carriage return is sent to it, it does both a carriage
return and a line feed. It is interesting to see how
this is actually done by the operating system. Here
is the relevant section:

.OSASCI CMP #13

 BNE OSWRCH

.OSNEWL LDA #10

 JSR OSWRCH

 LDA #13

48

. OSWRCH JMP (&20E)

Notice that OSWRCH jumps via the vector at &20E
to the routine that actually prints a character.

OSRDCH (Operating System ReaD CHaracter) − the GET
routine.
Location &FFE0

This is the routine that the BASIC interpreter uses
to get values for the BASIC GET command. After
calling the OSRDCH routine the carry flag will be set
if an error has occurred; the accumulator will then
contain the error number. This will usually only
occur if the ESCAPE key has been pressed, in
which case the accumulator will contain 27. Here,
the program must acknowledge this by calling
OSBYTE with the accumulator set to &7E (see page
429 of the USER GUIDE or page 149 of THE
ADVANCED USER GUIDE).

If the carry flag is clear then the accumulator will
contain a character that has been read from the
current input device. This will usually be the key-
board although, in some cases, it could be the
RS423 interface, or a disc file if a *EXEC command
has been used, for example.

If no key has been pressed the routine will wait
until a key has been pressed before it returns a
value, so it cannot be used for ‘ arcade’ games.
OSBYTE with the accumulator set to &81 should be
used) (see page 153 of the ADVANCED USER
GUIDE. So, if we want to get a key from the key-
board, the following piece of code should be used:

 JSR OSRDCH \ Get a key

 BCC next \ i f no er r or pr ocess key

 CMP #27 \ i f i t i sn' t escape

 BNE er r or \ got o er r or r out i ne

 LDA #&7E \ i f escape

 JSR OSBYTE \ acknowl edge and

 JMP escape \ got o escape r out i ne

. next . . . \ pr ocess key

If we are using the keyboard then the error can only

49

be an escape, so we can use this:

 JSR OSRDCH \ Get a key

 BCC next \ if no error process key

 LDA #&7E \ if escape

 JSR OSBYTE \ acknowledge and

 JMP escape \ goto escape routine

.next ... \ process key

If the escape key has been disabled then all that is
needed is a call to OSRDCH.

OSCLI (Operating System Command Line Interpreter)
Location: &FFF7

This is the routine the operating system uses to
process * commands. If in BASIC you use a com-
mand preceded by a * then the BASIC interpreter
uses this routine.
To use this routine you need to have the command
you want to perform stored in memory as an ASCII
string. At the end of the string there should be a
carriage return (ASCII code 13). Then you should set
the X and Y registers to the low and high bytes
respectively of the address of the first character of
the string in memory. Then you should call the
OSCLI routine, which starts at &FFF7.
As an example, let us take a game program which
loads into the computer and then loads a Mode 2
graphics screen before running the game. If we
assume that the screen has been saved after the
main program on the tape or disc using *SAVE
SCREEN 3000 8000 then the following code can be
used:

 LDA #22 \ Mode command:

 JSR &FFEE \

 LDA #2 \ Change to

 JSR &FFEE \ Mode 2.

 LDX #str MOD256 \ set X and Y to

 LDY #str DIV256 \ start of string.

 JSR &FFF7 \ call OSCLI

 ... \ rest of game.

 ...

50

.str EQUS "LOAD SCREEN" \ string with carriage

 EQUB 13 \ return at end.

Note that a * is not needed at the start of the string.
This routine can be used for all * commands.
However, as we have already seen, there is an
easier way to perform *FX commands.

Memory Usage Normally on the BBC Micro the user is allowed to
use the memory stretching from PAGE to HIMEM.
This can be used for BASIC programs, machine
code programs, variables, data, etcetera. However,
it is sometimes necessary to place a piece of
machine code somewhere where the BASIC cannot
affect it. For example, you might have a machine
code routine that was used by several different
BASIC programs that chain each other. This routine
must be kept clear of the BASIC or it will become
corrupted. There are several methods of doing this.
The most obvious method is to set HIMEM lower,
leaving room for the machine code to be placed just
above it. However, if the screen mode is changed,
this resets HIMEM according to the new mode and
may clear the machine code. It is usually better
instead to set PAGE higher to leave room for the
machine code just below it, as PAGE is only reset on
BREAK. However, this means you need a loader
program that sets the value of PAGE, and some
programs may reset PAGE for other reasons
anyway.

However, there is a large amount of memory set
aside for the operating system and the BASIC. On a
tape machine PAGE is normally set to &E00 leaving
3.5K for the ROMs to use. Now, since not all of this
memory is likely to be in use at any one time, it is
usually possible to use some of it to place machine
code routines in. This 3.5K is described below, a
page (256 bytes) at a time.

Zero Page This page should be used for machine code
variables only, unless you are very short of memory.
Locations &00-&8F are reserved for the current
language. However, BASIC itself does not use

51

locations &50-&8F of this so these locations are safe
to use. Locations &90-&9F are allocated to the
ECONET system, so, unless you are using ECONET,
these are safe to use. Locations &A0-&A7 are used
byte the NMI interrupt which is used by the disc
system. However, on tape machines this is not used
and is safe. On disc machines this MUST NOT be
used. The rest of zero page is used by the operating
system and should not normally be used.

Page 1 This is the processor’ s hardware stack. However,
the processor will not normally use more than the
top quarter of the stack so it is reasonably safe to
use &100-&1BF though I would recommend that
you only use &100-&17F and then only for TEM-
PORARY storage of strings, etcetra.

Page 2 This is the operating system’ s main work area and
as such should not be used.

Page 3 This contains some more operating system
workspace. Memory locations &300-&37F contain
the VDU command workspace; &380-&3DF are
used by the cassette system and &3E0-&3FF make
up the keyboard input buffer. None of this is par-
ticularly safe to use.

Page 4 This is used by BASIC for variable storage.
Locations &400-&46B contain the values of the
integer variables @%-Z%. These are stored in order,
using four bytes for each. Each of these is stored low
byte to high byte, as a four-byte two’s compliment
number. The integer variables can be useful for
passing variables between BASIC and machine
code. The rest of this page (&46C to &4FF) is used
for pointers which indicate where the other vari-
ables are stored. If BASIC is going to be used, this
page cannot be used for machine code. If, however,
you are going to write a program − such as a game
− which will not use BASIC, and you are short of
memory, this page can be used.

Page 5 This is used by BASIC as a stack for FOR, REPEAT
and GOSUB return addresses. Again, this can only

52

be used if BASIC is not needed.

Page 6 This is used by BASIC for working on strings. So
long as BASIC is not working on strings at a particu-
lar time, this could be used as a temporary work
space. However, this page must be clear before
returning to BASIC from your machine code routine.
As before, if BASIC is not needed, this page is safe
to use for machine code.

Page 7 This is the BASIC line input buffer. Again it can be
used safely if BASIC is not used.

Page 8 This is laid out as follows:

&800-&83F Sound workspace
&840-&87F Sound buffers
&880-&8BF Printer Buffer
&8C0-&8FF Envelope storage

If any of these sections are not in use then they are
safe to use for machine code.

Page 9 This is used in three DIFFERENT ways.

1)
&900-&9BF Extra sound envelopes
&9C0-&9FF Speech buffer

2)
&900-&9BF RS423 output buffer
&9C0-&9FF Speech buffer

3)
&900-&9FF Cassette output buffer.

If none of these is in use then this page can be used.

Page 10 This is either the cassette or the RS423 input buffer.
As before, this page can be used if the cassette and
RS423 systems are inactive.

Page 11 This is used for soft key definitions. If you use this to
store your own code, the soft keys will produce

53

rubbish if pressed. This can be countered by disa-
bling the soft keys using *FX225

Page 12 This is used for the user-defined characters. This
page can be used so long as the user-defined
characters are not printed.

Page 13 Memory block &D00-&D9E is used by the NMI
system. Cassette users may use this but disc users
must use *TAPE first. Memory block &D9F-&DEF is
the expanded vector set. This is used by some
paged ROMs and by the disc system to vector
useful calls. With care, tape users can use it. &DF0-
&DFF is used by the ROMs for workspace allocation
and should not be used except with extreme
caution.

All this means is that, if you are writing a program
that uses none of the system’s buffers and does not
use BASIC, you have available over 2K more than
usual for machine code commands. With great care,
even short BASIC programs can be placed in pages
8-12 by setting PAGE accordingly.

54

