

A Science Teacher's Companion
to the BBC Microcomputer

Macmillan Microcomputer Books
General Editor: Ian Birnbaum (Adviser for Microelectronics in
Education, Humberside LEA)

Advanced Graphics with the Acorn Electron
Ian O. Angell and Brian J. Jones

Advanced Graphics with the BBC Microcomputer
Ian O. Angell and Brian J. Jones

Assembly Language Programming for the Acorn Electron
Ian Birnbaum

Assembly Language Programming for the BBC Microcomputer,
second edition

Ian Birnbaum
Using Your Home Computer

Garth W. P.Davies
A Science Teacher's Companion to the BBC Microcomputer

Philip Hawthorne
Beginning BASIC with the ZX Spectrum

Judith Miller
Using Sound and Speech on the BBC Microcomputer

M. A. Phillips

Also from Macmillan

Advanced Graphics with the Sinclair ZX Spectrum
Ian O. Angell and Brian J. Jones

Advanced Programming for the 16K ZX81 Mike Costello
Beginning BASIC Peter Gosling
Continuing BASIC Peter Gosling
Practical BASIC Programming Peter Gosling
Program Your Microcomputer in BASIC Peter Gosling
Codes for Computers and Microprocessors P. Gosling and Q. Laarhoven
Microprocessors and Microcomputers - their use and programming

Eric Huggins
The Sinclair ZX81 - Programming for Real Applications

Randle Hurley
More Real Applications for the ZX81 and ZX Spectrum Randle Hurley
Programming in Z80 Assembly Language Roger Hutty
Digital Techniques Noel Morris
Microprocessor and Microcomputer Technology Noel Morris
The Alien, Numbereater, and Other Programs for Personal Computers

with notes on how they were written John Race
Understanding Microprocessors B.S.Walker
Assembly Language Assembled - for the Sinclair ZX81

Anthony Woods

A Science Teacher's Companion

to the

BBC Microcomputer

Philip Hawthorne
Portadown College

Co. Armagh

M
MACMILLAN

© Philip Hawthorne 1985

All rights reserved. No reproduction, copy or transmission
of this publication may be made without written permission.

No paragraph of this publication may be reproduced, copied
or transmitted save with written permission or in accordance
with the provisions of the Copyright Act 1956 (as amended).

Any person who does any unauthorised act in relation to
this publication may be liable to criminal prosecution and
civil claims for damages.

First published 1985

Published by
Higher and Further Education Division
MACMILLAN PUBLISHERS LTD
Houndmills, Basingstoke, Hampshire RG212XS
and London
Companies and representatives
throughout the world

British Library Cataloguing in Publication Data
Hawthorne, Philip

A science teacher's companion to the BBC
Microcomputer.- (Macmillan microcomputer books)
1. Science-Computer-assisted instruction
I. Title
507'.8 Q183.9

ISBN 978-0-333-38285-1 ISBN 978-1-349-07644-4 (eBook)
DOI 10.1007/978-1-349-07644-4

Associated software cassette: 978-0-333-39094-8

Contents

PREFACE

1 THE SCIENCE MACHINE

An introduction to the use of the BBC
microcomputer in Science education, the BBC micro
as a teaching aid, as a scientific instrument and
as an administrative aid for testing, stock
control, word processing etc.

2 SIMULATIONS, DEMONSTRATIONS AND TUTORIALS

Program listings covering several areas of Science
at various levels, and using various programming
techniques, with detailed notes to explain how
each program works. See software list for program
details.

3 CONTROL AND MEASUREMENT - INTERFACING

The user port: User port addresses, connections,
buffer circuit, breadboard circuits, using port B,
logical masking, connecting switch to user port,
User port program examples, relay driving circuit.
Using the timers in the via: Interrupts, vectors,
Timer operating modes, handling interrupts,
counting pulses, real-time clock, millisecond
timer.
Events: Various events described, audio feedback
from keyboard, automatic data acquisition.
Analogue port: Analogue to digital conversion,
resolution, ADVAL, *FXI6, experiments with the
analogue port, connection details, voltage divider
circuit, light sensor, details of other sensors,
temperature measurement, capacitor discharge,
analogue display program.

v

vii

1

8

128

vi Contents

Digital to analogue converter: Setting up and
testing the DAC, generating low frequency sawtooth
and sine waves, a programmable audio oscillator,
voltmeter teaching aid, plotting diode and
transistor characteristics.
A simple robot: Construction, circuit details,
testing, controlling the robot, controller
programs.

4 TESTING, FILES AND RECORD KEEPING

Computer based tests, inputs and data, quiz
program, multiple choice programs, files, class
record program, file operations, notes on disk
files, disk file format, modifying listed programs
to work on disks, random access files, pupil
record program, index sequential files, simple
stock control program.

5 USING ASSEMBLY LANGUAGE

The advantages of assembler, differences between
machine code and assembler, some assembly language
instructions described, indexed addressing, large
character program, machine code timing, fast
moving graphics, kinetic model of a gas.

Appendix A: Bibliography

Appendix B: Suppliers' Addresses

Appendix C: Components for Chapter 3

Software List

Cassette Details

208

249

274

275

276

277

278

but by no means least, many thanks to
this book is dedicated, for helping with
proof reading, supplying countless
cups of tea and for being so patient and

Preface

The prefaces of books are probably more cliche-ridden
than any other part of the text but I really do owe a
deep debt of gratitude to the numerous people who
assisted in'various ways during the writing of this
book. I mention them in no particular order and if I
omit anyone I hope he or she will forgive me.

Many of my pupils gladly acted as ~guinea pigs~ when
the programs were being tested and many offered helpful
suggestions for improvements. In particular I would
like to thank Ian McAlpine for lending his extensive
knowledge and, on occasions his computer. Mrs Dorothy
McCaughey provided many helpful suggestions and
cheerfully waded her way through the early drafts with
her red pen! Mr Gerry Lappin of the local School ~s

Computer Centre kindly loaned equipment and offered
encouragement.

To all my colleagues in Portadown College who took
an interest in the project and especially to Mr T.H.
Armstrong and Mr Bertie Fulton for allowing me to
utilise the school equipment and facilities, a really
big thank you.

And last,
Carol, to whom
the typing,
sandwiches and
understanding.

The program listings have been displayed such that
long lines have been indented where they have been
broken to fit onto the page; on these occasions,
please exercise a degree of caution when keying in, to
ensure that the integrity of each line is maintained.

Throughout the text I have used the masculine
pronoun only, to aid readability; it goes without
saying that this encompasses both male and female
readers!

vii

1 The Science Machine

"What can I do with a computer?" "Can it really help
with my teaching?"

These are just two of the many questions that
teaching colleagues are liable to ask when it is known
that one is a computer enthusiast. One of the reasons
for writing this book is to provide some of the many
possible answers to such questions, for indeed there is
no simple answer.

The range of applications of the microcomputer in
the science classroom has increased as the power and
capabilities of computers themselves have increased.
The BBC computer represents the 'state-of-the-art' as
far as the small personal micro is concerned and
fortunately it has been designed to allow for almost
unlimited expansion so that it should never be made
obsolete by future developments. For example, there
are already several second processors available,
including a 16-bit device, which ensure that the BBC's
power and speed are fully up to current standards and
will remain so for a long time to come.

If a science teache~ were asked to list the
desirable features of a computer for use in science
teaching, the list would probably include:

1. Large memory.
2. Use of standard BASIC with enhancements for easy

graphics handling.
3. High resolution colour graphics for diagrams and

graphs.
4. Simple sound capabilities.
5. Analogue-to-digital converter to enable voltages

to be measured.
6. Digital-to-analogue converter to enable voltages

to be generated.
7. User port for 'control' experiments.

The BBC micro more than satisfies these requirements
(except for 6, but see chapter 3 for·an 'add on' D/A
converter). In addition it provides an excellent
'structured' version of BASIC, which makes programs
easy to write and easy to understand, and a full

2 A Science Teacher's Companion to the BBC Microcomputer

assembler which greatly eases the problems of writing
machine code programs. The use of the assembler is
discussed in chapter 5.

Other 'bonus' features which perhaps become apparent
only after using the machine for a while, include the
paged ROM system (which allows extra memory chips
containing, for example, word processor, disk utility,
'spreadsheet' and extended machine code monitor
programs to be inserted and instantly 'loaded'), the
excellent keyboard, the simple but efficient editing
facilities, the user-defined function keys and the
superb but under-utilised Teletext mode.

In case anyone has any doubt, although I am a
computer enthusiast, particularly where the BBC machine
is concerned, I still insist that the computer should
be used only when appropriate and not just for its own
sake. Teachers rightly criticise students for the
inappropriate use of pocket calculators to perform
trivial calculations, so we must ourselves be wary of
similar over-eagerness to apply the computer in every
conceivable teaching situation. The computer is just
another teaching resource, though admittedly a much
more versatile one than most, and it should be used
when it proves to be most expedient in a given
circumstance. It is the responsibility of the
individual teacher to carefully assess each application
or piece of software and decide for himself if it is
really appropriate to his own needs. This goes for any
commercial software, the programs in this book and
those that the teacher may write himself.

Though many authorities argue against the teacher
writing his own programs L feel it is one of the main
ways in which new ideas will be generated. Provided
that the programs satisfy the teacher's pedagogical
requirements, then they will have served a useful
purpose, besides improving his grasp of programming
principles. It is only when teachers become fully
aware of the capabilities of the micro that it will
begin to achieve its full potential.

I also believe that students can improve their
understanding of a subject by writing simple programs
related to it. I have encouraged those of my students
who own a home computer (most of them!) to select
suitable subject areas and to spend a short period, at
home, developing a program which they then use with
their colleagues. Without exception the program
authors all agree that their real knowledge of the
topic has been improved because of the need to
understand every aspect of it - the computer will not
tolerate woolly thinking!

The Science Machine 3

The applications of the computer within a school
science department fall into three main categories:

1. As a teaching aid.
2. As a scientific instrument.
3. As an aid to departmental administration such as

setting class tests, maintaining and analysing
class records, in stock control, in word processing
etc.

THE BBC MICRO AS A TEACHING AID

Science teachers will probably find that one of the
most useful areas in which the BBC micro can be used is
in the simulation of experiments. Personally I believe
that this should be restricted to those experiments
that are otherwise too complex or dangerous to perform
in the school lab, or for which it is unlikely that
suitable apparatus will be available. It would, for
example, be perfectly possible to use the BBC/s
excellent graphics to draw an electrical circuit on the
screen, complete with 'working' rheostat and meters but
would this teach the pupils anything about real
circuits? A much better treatment of this topic would
demonstrate the movement of free electrons within an
enlarged section of the conductor and show how this is
affected by the applied potential difference and how it
determines the current flowing. In this case, the
computer enhances the understanding of the real
experiment without replacing it. I term this type of
program a 'demonstration' rather than a simulation,
though in some cases the distinction may not be so
obvious. In most cases demonstrations will consist of
an animated diagram, with some user-control, so they
may be regarded as a kind of computerised 'film loop',
but with the very important advantage of being fully
interactive. This will not usually be limited just to
the ability to start and stop the animation at given
points but the user will be able to alter the values of
the various parameters controlling the demonstration.
In this way a much deeper understanding of the
underlying principles should be achieved. A typical
program of this type is "RADECAY" which seeks to
impress on the students not only the randomness, at the
nuclear level, of the radioactive decay process but
also the resulting macroscopic pattern of the mass/time
graph. By altering the decay parameters and then
immediately observing the effects, the students should
obtain a grasp of the essential relationships.

4 A Science Teacher's Companion to the BBC Microcomputer

The high quality of the graphics on the BBC micro
greatly assists in the production of attention-grabbing
visual effects. We can profit from the students~

enthusiasm for computer-produced displays (a la video
games) if the programs use this graphics ability to the
full. Fortunately the range of graphics commands
provided by BBC BASIC and the overall speed of the BBC
machine make the writing of good graphics-based
programs a relatively easy task. Only when a lot of
rapid movement is required would the use of Assembly
Language need to be considered.

A third type of program within this area is what I
call the 'tutorial' program as typified by the
"VERNIER2 n program from chapter 2. Whereas the
demonstration programs will often be
teacher-controlled, the tutorial or ~CAL~ program is
generally intended for use by an individual or small
group of students and seeks to teach a particular topic
or technique using an approach similar to that of the
programmed learning method.

THE BBC MICRO AS A SCIENTIFIC INSTRUMENT

Few, if any, other microcomputers come so well suited
to the role of scientific instrument as does the BBC
micro. The numerous interfaces that are fitted as
standard equipment to the BBC Model B make it easy to
connect the micro to a wide range of external equipment
and the excellent graphics ensure that the data is
effectively displayed. The versatility of the micro
means that it can be utilised in a very wide range of
applications, which broadly fall into two main
categories - data acquisition and control technology
though there are several areas where both aspects may
be combined. For example, the computer could take
measurements from an experiment and respond by
controlling the experimental conditions.

Data Acquisition
In this type of application the computer is monitoring
some aspect of its environment, often using some
suitable sensor. This may range from the simplest
example in which the computer measures and displays the
voltage across the plates of a discharging capacitor
(see "CAPACITOR" in chapter 3) to an automatic
data-acquisition program (nEVENTAD" in chapter 3) in
which it takes measurements at specified intervals over
a prolonged period of time and stores them for later
display, either in graphical, digital or tabular form.
There is a certain dilemma to be faced here in that the
use of a computer to completely take over an experiment

The Science Machine 5

could obscure the underlying principles rather than
elucidating them. This is the 'black-box' effect in
which the computer takes all the readings, works out
the intermediate stages and displays only the final
answer. The student could be left with little or no
idea as to what the experiment actually entailed. In
certain cases this may be acceptable, the final value
being the desired conclusion after a long series of
experiments has been performed. The student could
perform one or two measurements himself and the teacher
will satisfy himself that the student understands the
essential principles of the experiment and how to
perform any necessary calculations. Only then would
the use of the computer be introduced to relieve the
tedium of taking a large set of results, all of which
repeat the same procedures time and again. In this way
the computer is used for its rightful purpose, as our
untiring servant, and at no time does it threaten to
monopolise and obscure the experiment.

A very important justification for using the
computer as a data-acquiring machine is that the
students are bound to encounter it in this role in
their future careers, whether in higher education or in
industry. Teachers can help to foster familiarity and
overcome any fears that the student may have (though it
is usually the 'older generation' who suffer from
anxiety about computers!) by introducing this aspect of
the computer as early as possible in the student's
academic career. This could perhaps be as one part of
a series of experiments, alongside others, using more
conventional apparatus.

Control Technology
Another important area of the application of computers
that is becoming increasingly common is in the control
of machines. Most washing machines are now
microprocessor controlled and there is even a microchip
controlled toaster! No doubt the cooker will soon be
asking "Shall I start dinner now?" Schools are
becoming aware of the importance of this aspect of
computing and some examination boards now provide a
'Technology' syllabus, though this tends to be
concerned more with the 'nuts and bolts' side of
engineering applications. I define the term 'control
technology' as the use of a programmable electronic
device to control the operation of a piece of hardware.

The electronic device need not be a microprocessor or
microcomputer, but this is by far the most common type
of controller. The hardware essentially provides the
computer with its 'muscle' or motive power, so enabling

6 A Science Teacher's Companion to the SSC Microcomputer

it to extend its sphere of influence out into the real
world. Suddenly the strings of binary ~ones and

zeros spring to life and are seen in, perhaps, their
true context, rather than as abstract concepts in an
unfamiliar number system.

The versatility of the hardware is increased by
using a software-controlling program which is easily
adapted to cater for changes in the machine~s mode of
operation. If one takes the example of a machine tool
producing a particular component, in the conventional
machine extensive mechanical adjustment and retooling
is required to incorporate even a minor change in the
component~s design. With the computer-controlled
machine the necessary changes require only a new
program or punched tape to be produced and the modified
component is rolling off the production line in next to
no time.

The aspects of control technology introduced in this
book will be of interest to those who are seeking a
basic understanding of the principles. Once these are
grasped the range of potential applications is limited
only by the imagination and ingenuity of the
individual.

THE BBC MICRO AS AN ADMINISTRATIVE AID

Many of the activities associated with the running of a
science department readily lend themselves to
computerisation. At the class level this includes the
setting and administering of tests, though unless the
school is fortunate enough to have a set of BBC micros
that is big enough for class use, this will probably
have to be restricted to diagnostic testing (see
chapter 4). It is an interesting and useful exercise
to have students prepare short tests for their
colleagues. If this is done in groups it can provoke
much useful discussion on the ~correct' and 'incorrect~

responses, and leads the students into a deeper
understanding of the underlying principles.

The teacher will also find it usetul to have a
simple file-handling program on which he can store and
process the essential information on his students. The
ability to do this quickly and to reveal correlations
that may not have been obvious otherwise will convince
most sceptics that a computer ~filing system~ has much
more to offer than the conventional mark book. At a
departmental level, data base systems can prove useful
for all the filing and stock-control duties that may
otherwise prove a burden. Commercial packages are

The Science Machine 7

available but they tend to be expensive and are rarely
suited to the exact requirements of the individual
user. This book therefore explains the principles of
setting up and interrogating data stored as files on
tape or disk. The user can then modify and use the
basic procedures to generate his own program to match
the required specifications.

One commercial package that is well worth buying is
some form of word processor. This should preferably be
in a /sideways/ ROM as it will thus leave more of the
precious RAM free to store the user s text. An
additional benefit is that the program is /loaded/ and
run in an instant simply by typing *WORDWISE or
whatever the name of the package is. The word
processor will soon prove itself invaluable for the
production of letters, memos and students/ notes. A
major advantage in the latter case is that the text
remains as a file on tape or disk so that future
changes are very easy to implement. An interesting
possibility is the use of the word processor to build
up banks of questions as text files. Later, when a
test or examination is required, it can be assembled
from its component parts and edited as necessary; then
the final draft can be /dumped/ onto a printer.
(Incidentally, when multiple copies are required, the
most economical production method is to use the printer
to /cut' a stencil directly. The printer/s cartridge
ribbon should be removed to ensure a clearly cut copy.)

2 Simulations, Demonstrations and
Tutorials

This Chapter covers the use of the BBC micro as a
teaching aid through the presentation of a wide range
of programs which cover the simulation of experiments,
the demonstration of dynamic processes using animated
graphics and the individualised tutorial approach of
computer assisted learning (CAL). You should find the
programs useful in their own right and, hopefully you
will be able to use many of the techniques in your own
programs. The program notes that accompany each
listing will help to explain how it works and should
assist you to adapt it to your own teaching methods or
syllabus, or to extend it in whatever way you may
choose.

PROGRAM NOTES

The explanatory notes that accompany each listing take
the following general form.

(a) The program name as it appears on screen and the
'File name' used on the cassette. This is followed
by a brief description of what the program does,
including the suggested level at which it is
aimed. Manyof the 'advanced' programs could,
however, be used with classes at lower levels, in
a demonstration mode under the teacher's control
rather than by an individual or small group of
more advanced students, as was intended
originally.

(b) A list of the procedures and functions used by the
program, the line number at which each starts and
what it does. In general you will find that the
programs consist of a fairly short main section
followed by the procedure/function definitions.
You may find it convenient when studying a program
to underline, in coloured ink, each of the 'OEF
PROC' and 'OEF FN' statements so that you can find
them quickly.

(c) A fairly detailed explanation, with reference to
the line numbers in the listings, of the more

8

Simulations, Demonstrations and Tutorials 9

important sections of the program. For example, I
assume that you will be fully aware of what '20
MODE 5' does so this sort of thing will not be
explained! Some of the later programs depend on
techniques used and explained in earlier ones, so
you should try to work through the listings in the
order that they are presented.

(d) Suggestions for possible modifications to the
program. One such suggestion might be to allow it
to run on a Model A computer. (Unless stated
otherwise you may assume that all programs will
run on either a Model A or a Model B.)

A separate list of variables will not usually be given
since, as far as possible, the Beeb's ability to use
meaningful variable names has been exploited. Loop
variables that are simply being used as counters will
usually just use '1%', 'J%' or 'K%' while va.riables
such as 'X% " 'y%', 'Xco%' and 'Yco s " generally refer
to the X,Y coordinates of the screen.

Note for disk users
Because the value for PAGE on a normal system is &1900,
there may be insufficient memory to allow some of the
longer programs to run. In this case you can add the
short move-down routine listed below. This will
automatically relocate the program to run at &EOO, so
when you are finished with the program press BREAK to
restore the DFS to normal. You may like to create a
text file of this routine, using *SPOOL, so that it can
be merged to any program using *EXEC. (Type *SPOOL
DMOVE, LIST, *SPOOL to create a file called "DMOVE"
which can be merged using *EXEC DMOVE.)

° IF PAGE <> &EOO THEN GOTO 32764
32764 *TAPE
32765 FOR 1%=0 TO (TOP-PAGE) STEP 4:

I%!&EOO = I%!PAGE:NEXT:PAGE = &EOO

32766 *KEYO OLDIMRUNIM
32767 *FX138,0,128

RADIOACTIVE DECAY ("RADECAY")

This program simulates a simple two-stage
radioactive-decay process in which the parent nuclei
shown as white dots - decay into a stable daughter
product red dots. A bar graph of the number of
parent nuclei remaining is plotted and it is possible
to select different initial numbers and various decay
constants. Although mainly intended for advanced

10 A Science Teacher's Companion to the SSC Microcomputer

level, the graphics should prove useful with '0' level
classes.

Listing "RADECAY"

10 REM "*** RADECAY ***
20 MODE 7:VDU 23;8202;0;0;0;:REM "Cursor off
30 PROCintro
35 CLEAR
40 PROCmenu 1
50 PROCmenu-2
70 DIM N(N Init)
80 max time=llOO
90 time=O

100 no now=N init
110 MODE 5:VDU 23;8202;0;0;0;:REM "Cursor off
120 PROCscreen
130 GCOL 0,2
140 MOVE time+128,N init+64:MOVE time+136,N init+64
150 PLOT 85,time+128,64:PLOT 85,time+136,64-
160 REPEAT
170 PROCupdate
180 UNTIL no now<O.l*N init OR time>max time
190 GCOL 0,1- - -
200 MOVE 128,(N init+64):PLOT 21,1279,(N init+64)
210 MOVE 128, (N-init/2+64):PLOT 21,1279,(N init/2+64)
220 VDU 5 - -
230 MOVE 600,(N init+64)+32:PRINT "initial no"
240 MOVE 600, (N-init/2+64)+64:PRINT "Half the":

MOVE 600, (N-init/2+64)+32:PRINT "initial no"
250 VDU 4 -
260 PRINT "Press R to re-run"
270 PRINT "Press E to end."
280 key=FNgetkey("RrEe")
290 MODE 7:VDU 23;8202;0;0;0;:REM "Cursor off
300 IF key=l OR key=2 THEN 35 ELSE END
310 DEF PROCintro
320 PROCtitle("Radioactive Decay")
330 PRINT '''Radioactive decay is a process in which";
340 PRINT "the nucleii of certain";CHR$ 130;"unstable"

;CHR$ 135;"elements";
350 PRINT "change ";CHR$ l30;"spontaneously";CHR$ 135;

"into nucleii of";
360 PRINT "other elements. These other nucleii may";
370 PRINT "themselves be stable, in which case the";
380 PRINT "process stops, or unstable, changing by";
390 PRINT "further radioactive decay into yet other";
400 PRINT "elements. Each decay process consists of";
410 PRINT "the emission of ";CHR$ l29;" r adiation";

CHR$ l35;"such as";CHR$ 129;"alpha";
420 PRINT "particles or";CHR$ l29;"beta";CHR$ 135;

"particles.This program";
430 PRINT "does'nt show them but represents a group";
440 PRINT "of initial";CHR$ l30;"parent";CHR$ 135;

"nucleii(as white dots)";
450 PRINT "which decay into";CHR$ l30;"daughter";

CHR$ l35;"nucleii (red).";
460 PRINT "These are assumed stable in this case.";
470 PRINT "CHR$ l32;CHR$ l57;CHR$ 131;" PRESS

SPACE BAR TO CONTINUE"
480 X=FNgetkey(" ")
490 CLS
500 PROCtitle("Radioactive Decay")
510 PRINT '''The ";CHR$ l29;"probability";CHR$ 135;

" that a given nucleus";
520 PRINT "will decay during the next interval of";
530 PRINT "time is called the";CHR$ l30;"decay constan

t.";CHR$ 135;" Each";
540 PRINT CHR$ l30;"isotope";CHR$ l35;"has a different

value of decay";
550 PRINT "constant but, for any given isotope, its";
560 PRINT "value does not depend on any external";
570 PRINT "factors such as";CHR$ 129i"temperature,pres

sure";CHR$ 135;"and"i

Simulations, Demonstrations and Tutorials

580 PRINT CHR$ 129;"chemical state."CHR$ 135;"In this
simulation the";

590 PRINT "number of parent nucleii remaining after";
600 PRINT "each time interval is plotted as a bar";
610 PRINT "graph. You should note the shape of the";
620 PRINT "graph and observe the effect of choosing";
630 PRINT "'a different number of parent nucleii to";
640 PRINT "start with and different decay constant";
650 PRINT "values. After how many time intervals";
660 PRINT "will the number of parent nucleii have";
670 PRINT "fallen to half the initial number? Does";
680 PRINT "this depend on the initial number and/or";
690 PRINT "the decay constant?H;CHR$ 134;CHR$ 136;

... INVESTIGATE ... ";
700 PRINT 'CHR$ 132;CHR$ 157;CHR$ 131;" PRESS SPACE

BAR TO CONTINUE"
710 X=FNgetkey(" ")
720 ENDPROC
730 DEF PROCmenu 1
740 CLS -
750 PRINT ""Initial number of nucleii"
760 PRINT "'''(A) 200''
770 PRINT "(B) 300"
780 PRINT "(C) 400"
790 PRINT "(0) 600"
800 PRINT "'CHR$ 136;"Please select an option"
810 opt=FNgetkey (" ABCDabcd")
820 SOUND 1,-15,200,5
830 IF opt=l OR opt=5 THEN N init=200
840 IF opt=2 OR opt=6 THEN N-init=300
850 IF opt=3 OR opt=! THEN N-init=400
860 IF opt=4 OR opt=8 THEN N=init=600
870 ENDPROC
880 DEF PROCmenu 2
890 CLS -
900 PRINT ""Decay const.ant"
910 PRINT "'''(A) 0.05''
920 PRINT "(B) 0.10"
930 PRINT "(C) 0.15"
940 PRINT "(0) 0.20"
950 PRINT "'CHR$ 136;"Please select an option"
960opt=FNgetkey("ABCDabcd")
970 SOUND 1,-15,200,5
980 IF opt=l OR opt=5 THEN K=0.05
990 IF opt=2 OR opt=6 THEN K=O.l

1000 IF opt=3 OR opt=7 THEN K=0.15
1010 IF opt=4 OR opt=8 THEN K=O.2
1020 ENDPROC
1030 DEF PROCscreen
1040 GCOL 0,3
1050 FOR 1%=1 TO N init DIV 100
1060 FOR X%=l TO 10
1070 FOR Y%=l TO 10
1080 PLOT 69,X%*16+160*I%,Y%*8+800
1090 NEXT Y%:NEXT X%:NEXT 1%
1100 MOVE 128,64:DRAW 128,700
1110 MOVE 128,64:DRAW 1200,64
1120 VDU 5
1130 MOVE 0,650:PRINT "No"
1140 MOVE 1000,32:PRINT "Time"
1150 VDU 4
1160 ENDPROC
1170 DEF PROCupdate
1180 no decayed=K*no now
1190 no-now=no now --no decayed
1200 FOR 1%=1 TO no decayed
1210 rand%=RND (N init)
1220 IF N(rand%)=l THEN 1210
1230 N(rand%)=l
1240 X%=(rand% DIV 10+1)*16+160
1250 Y%=(rand% MOD 10+1)*8+800
1260 GCOL O,l:PLOT 69,X%,Y%
1270 NEXT 1%
1280 time=time+32
1290 T=time+128
1300 GCOL 0,2
1310 MOVE T-8,no now+64:DRAW T+8,no_now+64
1320 PLOT 85,T-8~64
1330 PLOT 85,T+8,64

11

12 A Science Teacher's Companion to the BBC Microcomputer

1340 ENDPROC
1350 DEF FNgetkey(key$)
1360 LOCAL pas
1370 REPEAT :pas=INSTR(key$,GET$
1380 UNTIL pas
1390 =pas
1400 DEF PROCtit1e(text$)
1410 PRINT TAB((39-LEN (text$))/2)iCHR$ 141itext$
1420 PRINT TAB((39-LEN (text$))/2)iCHR$ 141itext$
1430 ENDPROC

PROC/FN List

310
730

880

1030

1170

1350

1400

PROCintro prints the introductory text.
PROCmenu_l prints a menu of initial numbers and
inputs a choice.
PROCmenu 2 prints a menu of decay constants and
inputs a choice.
PROCscreen draws a white dot for each nucleus and
draws and labels the graph axes.
PROCupdate calculates the number of nuclei
decaying and updates the display and graph.
FNgetkey waits for a valid key to be pressed and
returns the position (in the supplied string) of
the pressed key.
PROCtitle prints a double-height title centred on
the screen.

Program Description
35-300 Main loop which inputs choices from menus and

DIMensions the array N(N_init) to hold the status
of each nucleus (0 = undecayed,l = decayed). Other
variables are then set to their initial values.

140-150 Plot the initial number on the bar chart.
160-180 Repeatedly update the display until the

condition in line 180 is satisfied.
190 Selects red graphics.
200-210 Plot horizontal dotted lines (PLOT21 gives a

dotted line) at the 'initial number' and 'half
initial number' values.

220 Enables text to be positioned using graphics
cursor.

230-240 Label dotted lines.
250 Restores normal cursor action.
260-300 Wait for the 'R' or 'E' keys to be pressed,

and re-runs or ends. FNgetkey accepts only those
keys supplied in the string parameter 'key$' and
returns a value that is the position of the pressed
key in the string (for example, E is in position
3). Note the use of 'CLEAR' in llne 35 to allow
the array to be redimensioned for the new number of
nuclei. If this is not done you would provoke a
'Bad DIM' error by trying to dimension an already
existing array.

Simulations, Demonstrations and Tutorials 13

310-1430 Procedure/Function definitions. Of these the
more important are:

PROCscreen. Lines 1050-1090 set up three nested
loops to plot a dot for each of the initial
nuclei. 1050 divides the initial number into
groups of 100 and the X%,Y% loops plot these as
10 x 10 blocks. Lines 1100-1150 simply draw and
label the bar graph axes.
PROCupdate. Lines 1180-1190 work out how many
nuclei will decay and how many will be left.
Lines 1200-1270 then choose an undecayed nucleus
at random (1220 checks its status stored in the
array and 1230 changes it to ~decayed~). Lines
1240-1250 calculate the X,Y coordinates of the
chosen nucleus and line 1260 replots it in red.
The rest of the procedure updates the time
variable and plots the new number of nuclei on
the bar graph.
FNgetkey uses the ~INSTR~ function to find the
position, in the string parameter 'key$~, of the
single character string obtained by the ~GET$~

function. The position is zero if the key
pressed is not in ~key$~, so the loop repeats
until a valid key is pressed.

Modifications
One possible modification would be to plot the number
of daughter nuclei in addition to the number of
original parent nuclei. This can be done by extending
PROCupdate to plot the daughter nuclei in colour 1, but
it is necessary to allow for the fact that at the start
there are more parent than daughter nuclei and at the
end the situation is reversed. If GCOLO is used then
plotting a larger bar on top of a smaller one would
completely over-paint the latter. You could insert a
test along the lines-of ~IF no_now>0.5*N_init THEN plot
parents before daughters ELSE plot daughters before
parents~. This will always plot the larger value
first. (A similar technique is used jn the next
program: "RASERIES" lines 1050-1110 and PROCplot at
lines 1210-1260.)

RADIOACTIVE SERIES ("RASERIES")

This is essentially an extension of
program, "RADECAY", in that it simulates a
decay of the form:

the previous
three-stage

isotope1---... isotope2~ isotope3

14 A Science Teacher's Companion to the BBC Microcomputer

It is assumed that isotope3 is stable and so represents
the end of the decay series. As before each isotope is
represented as a dot in a different colour and the
accompanying bar graph uses these same colours to plot
the number of nuclei of each. The initial number of
nuclei is fixed (700) but students are able to choose
the decay constant values for isotopel and isotope2.
'rhey are asked to try to obtain equilibrium conditions
for isotope2. This program is for advanced-level use.

Listing "RASERIES"

10 REM "*** RASERIES ***
20 MODE 7:VDU 23;8202;0;0;0;:REM "Cursor off
30 PROCintro
40 CLEAR
50 N init=700
60 opt=O
70 DIM N%(N init),K(2)
80 PROCmenu(1):PROCmenu(2)
90 max time=llOO

100 time=O
110 no now isol=N init
120 no-now-iso2=0:no now iso3=0
130 MODE 5:VDU 23;8io2;0;0;0;:REM "Cursor off
140 VDU 19,2,2,0,0,0:REM "*** GREEN
141 REM "* V.19,2,4,0,0,0 ON B/W TV
150 PROCscreen
160 GCOL 0,3
170 MOVE time+128,N init+64:MOVE time+136,N_init+64
180 PLOT 85,time+128,64:PLOT 85,time+136,64
190 REPEAT
200 PROCupdate
210 UNTIL no now isol<O.Ol*N init OR time>max time
220 SOUND 1,~15,200,5:S0UND T,0,200,5:S0UND 1~-15,200,

5:S0UND 1,0,200,5:S0UND 1,-15,200,5
230 PRINT "Press R to re-run"
240 PRINT "Press E to end."
250 key=FNgetkey("RrEe")
260 MODE 7:VDU 23;8202;0;0;0;:REM "Cursor off
270 IF key=l OR key=2 THEN 40 ELSE END
280 DEF PROCintro
290 PROCtitle("Radioactive Series")
300 PRINT ""The program ";CHR$ 130;" "Radioactive Decay

"";CHR$ 135;" dealt with a simple two-stage decay
process: the";CHR$ l30;"daughter";CHR$ l35;"produ

ct was ";CHR$ l29;"stable."
310 PRINT "In many decay processes the intermediatepro

ducts are unstable, giving rise tofurther
products and producing a "CHR$ l29;"decay";

CHR$ l29;"series."
320 PRINT ""This program will simulate a three-stagera

dioactive series, represented by:"
330 PRINT ""Isotope 1 -->";CHR$ 129;"Isotope 2"

CHR$ 135;"-->";CHR$ l32;"Isotope 3"
340 PRINT ""Isotopes 1 and 2 are unstable and youwi

11 be asked to select values for theirdecay consta
nts. Isotope 3 is assumed tobe stable."

350 PRINT "CHR$ 132;CHR$ 157;CHR$ 131;" PRESS SPACE
BAR TO CONTINUE"

360 X=FNgetkey(" ")
370 CLS
380 PROCtitle("Radioactive Series")
390 PRINT ""While running the program with varyingva

lues you will observe conditions thatproduce
an";CHR$ l30;"equilibrium";CHR$ 135;"state of

Isotope2. In other words the number of nucleiio
f Isotope2 remains constant for a time."

400 PRINT "This is a case of";CHR$ 129;"Dynamic Equili
brium";CHR$ l35;"iethe rate at which Isotope 2

is decayinginto Isotope 3 is balanced by the
rateat which it is being produced from thedecay
of Isotope I."

Simulations, Demonstrations and Tutorials

410 PRINT 'CHR$ 132;CHR$ 157;CHR$ 131;" PRESS SPACE
BAR TO CONTINUE"

420 X=FNgetkey(" ")
430 ENDPROC
440 DEF PROCmenu(I%)
450 CLS
460 PRINT "CHR$ 134;CHR$ 157;CHR$ 132" Decay constan

t for Isotope ";1%
470 PRINT' "TAB(14) ;"(A) 0.05"
480 PRINT TAB(14);"(B) 0.10"
490 PRINT TAB(14)"(C) 0.15"
500 PRINT TAB(14)"(D) 0.20"
510 PRINT "'CHR$ 134;CHR$ 157;CHR$ 132;CHR$ 136:

Please select an option"
520 IF opt=O THEN 530 ELSE @%=&2020A:PRINT ",

CHR$ 134:CHR$ 157;CHR$ 132:"Value selected for
Isotope 1 = ";K(l):@%=10

5 30 opt=FNge tkey ("ABCDabcd ")
540 SOUND 1,-15,200,5
550 IF opt=l OR opt=5 THEN K(I%)=0.05
560 IF opt=2 OR opt=6 THEN K(I%)=O.l
570 IF opt=3 OR opt=7 THEN K(I%)=0.15
580 IF opt=4 OR opt=8 THEN K(I%)=0.2
590 ENDPROC
600 DEF PROCscreen
610 GCOL 0,3
620 FOR 1%=1 TO N init DIV 100
630 FOR X%=l TO 10
640 FOR Y%=l TO 10
650 PLOT 69,X%*16+160*I%,Y%*8+800
660 NEXT Y%
670 NEXT X%
680 NEXT 1%
690 MOVE 128,64:DRAW 128,700
700 MOVE 128,64:DRAW 1200,64
710 VDU 5
720 MOVE C,650:PRINT "No"
730 MOVE 1000,32:PRINT "Time"
740 @%=&2020A
750 GCOL 0,3: MOVE 300,732: PRINT II Isotope1=" ; K(1)
760 GCOL O,l:MOVE 300,700:PRINT "Isotope2="iK(2)
770 GCOL 0,2:MOVE 300,668:PRINT "Isotope3=Stab1e"
780 @%=10
790 VDU 4
800 ENDPROC
810 DEF PROCupdate
820 no decayed isol=K(l)*no now isol
830 no-now isol=no now isol-- no decayed isol
840 no-decayed iso2=K(2)*no now Iso2 -
850 no-now iso2=no now iso2+no decayed isol-no decayed

iso2 - - - - - -
860 no now iso3=no now iso3+no decayed iso2
870 FOR I%~l TO no-decayed isol -
880 rand%=RND (N init) -
890 IF N%(rand%)<>O THEN 880
900 N%(rand%)=l
910 X%=(rand% DIV 10+1)*16+160
920 Y%=(rand% MOD 10+1)*8+800
930 GCOL O,l:PLOT 69,X%,Y%
940 NEXT 1%
950 FOR 1%=1 TO no decayed iso2
960 rand%=RND (N init) -
970 IF N%(rand%}<>l THEN 960
980 N%(rand%}=2
990 X%=(rand% DIV 10+1}*16+160

1000 Y%=(rand% MOD 10+1}*8+800
1010 GCOL 0,2:PLOT 69,X%,Y%
1020 NEXT 1%
1030 time=time+32
1040 T=time+128
1050 Nl=no now iso1:N2=no now iso2:N3=no now iso3
1060 IF Nl>N2 AND N2>N3 THEN PROCplot(Nl~3}:PROCplot(N2

,1}:PROCplot(N3,2}:ENDPROC
1070 IF Nl>N3 AND N3>N2 THEN PROCplot(Nl,3}:PROCplot(N3

,2}:PROCplot(N2,1}:ENDPROC
1080 IF N2>Nl AND Nl>N3 THEN PROCplot(N2,1}:PROCplot(Nl

,3}:PROCplot(N3,2}:ENDPROC
1090 IF N2>N3 ~ND N3>Nl THEN PROCplot(N2,1}:PROCplot(N3

,2}:PROCplot(Nl,3}:ENDPROC

15

16 A Science Teacher's Companion to the BBC Microcomputer

1100 IF N3>N1 AND N1>N2 THEN PROCp1ot(N3,2):PROCp1ot(N1
,3):PROCp1ot(N2,1):ENDPROC

1110 IF N3>N2 AND N2>N1 THEN PROCp1ot(N3,2):PROCp1ot(N2
,1):PROCp1ot(N1,3):ENDPROC

1120 DEF FNgetkey(~ey$)

1130 LOCAL pos
1140 REPEAT :pos=INSTR(key$,GET$
1150 UNTIL pos
1160 =pos
1170 DEF PROCtit1e(text$)
11S0 PRINT TAB((39-LEN (text$))/2)iCHR$ 141itext$
1190 PRINT TAB((39-LEN (text$))/2)iCHR$ 141itext$
1200 ENDPROC
1210 DEF PROCp1ot(va1ue,co1our)
1220 GCOL 0,co1our
1230 MOVE T-S,va1ue+64:DRAW T+S,va1ue+64
1240 PLOT S5,T-S,64
1250 PLOT S5,T+S,64
1260 ENDPROC

PROC/FN List

280 PROCintro prints the introductory text.
440 PROCmenu(I%) is adapted from PROCmenu 2 in

"RADECAY" to allow the decay constant value to be input
for each isotope (1% = isotope number).

600 PROCscreen sets up the initial screen display.
810 PROCupdate calculates number of nuclei of each

isotope and plots each On display and bar graph.
1120 FNgetkey, see "RADECAY".
1170 PROCtitle, see "RADECAY".
1210 PROCplot draws a vertical bar, height ='value', in
colour 'colour'. Used by PROCupdate to draw bar graph.

Program Description

40- 270 Main loop initialises variables and DIMs two
arrays: N() for the status information of each nucleus
(0 = isotopel, 1 = isotope2, 2 = isotope3), and K() for
the two decay constant values selected in PROCmenu.
Line 140 changes logical colour 2 (usually yellow) to
actual colour 2 (green). Line 220 produces three short
'beeps' from the speaker to indicate the end of the
simulation and that an input (E or R) is expected.
280-1260 Procedure/function definitions. These are
very similar to the corresponding routines in the
preceding program, with the following additions:

PROCscreen. The only difference here is that
the decay constant values are printed, in the
appropriate colour, for each isotope. Line 740
sets the print format to fixed decimal places.
This is done to prevent the computer printing
'0.05' as '5E-2' which is confusing to all but
the computer expert! Line 780 restores normal
formatting.
PROCupdate. This now ha~ to update the number
and displays for three isotopes, so it has been

Simulations, Demonstrations and Tutorials 17

extended to suit. Lines 820-860 do the maths
and lines 870-940 replot the decayed nuclei of
isotope 1 in the colour chosen for isotope 2.
Lines 950-1020 do the same for
isotope2/isotope3. In plotting the bar graphs
we now have to deal with three quantities
plotted on the same axes, so care has to be
taken with the order of plotting: it must be
done in order from largest to smallest. Line
1050 assigns short variable names to the number
of each isotope to be plotted. This is done
merely to save some typing in the following
lines (1060-1110), which sort out the order in
which the graphs will be drawn.
PROCplot draws a vertical 'bar' (height given by
'value' parameter) by moving to the top left
corner, drawing to the top right corner, filling
a triangle to the bottom left corner and finally
filling another triangle to the bottom right
corner.

Modifications
If you are using a monochrome monitor you may find it
easier to distinguish the three colours if you use blue
in place of green for logical colour 2. This can be
done by replacing line 140 by: '140 VDU19,2,4,0,0,0'.
It is possible to increase the initial number of nuclei
a little, bearing in mind that the screen array of
'nuclei' and the bar graphs have to fit the available
space. You can try changing the value of 'N_init' in
line 50 but you will also need to move the display of
nuclei up the screen to clear the graph axes. This can
be done by increasing the '800' at the end of lines
650,920 and 1000.

RUTHERFORD'S ALPHA SCATTERING EXPERIMENT ("ALPHA")

This is a graphics simulation of the scattering of an
alpha particle by an (infinitely) heavy nucleus. The
alpha particle moves under the action of an
electrostatic repulsive force and its path is plotted
using an iterative method. Students can input the
alpha particle energy and may adjust the initial
position to obtain different 'miss distances'. This
program is for advanced level use.

18 A Science Teacher's Companion to the BBC Microcomputer

Listing "Alpha"

1 REM "** ALPHA **
10 MODE 7:VDU 23;8202;0;0;0;
20 PROCintro
30 MODE 4
40 VDU 28,0,6,36,0
50 VDU 29,640;512;
60 PROCnucleus
70 REPEAT
80 PROCvariables
90 REPEAT :CLS :INPUT TAB(0,2}"Alpha particle energy

(.1-20MeV}",Energy
100 UNTIL Energy>=O.l AND Energy<=20
105 VDU 23,1,0;0;0;0;:REM "Cursor off
110 U=SQR (2*Energy*lE6*e/m)
120 VX=U:VY=O
130 CLS :PRINT ""** Use and I keys NOW **,,"

"** Press SPACE to start plot **"
140 PROCYmove
150 SY$=STR$ (ABS (SY})
160 CLS :PRINT ""Alpha particle energy=";Energy;

"MeV"
170 PRINT '''Initial miss distance=";LEFT$(SY$,4);

"xl0";RIGHT$(SY$,3};"m"
180 REPEAT
190 PROCupdate
200 PLOT 69,PX,PY
210 UNTIL PX<-Xorigin OR PX>Xorigin OR PY<-Yorigin

OR PY>Yorigin
215 VDU 23,1,1;0;0;0;:REM "Cursor on
220 PRINT TAB(0,6} "Another run? (YIN}";
230 REPEAT
240 A$=GET$
250 UNTIL A$="Y" OR A$="N"
260 IF A$="N" THEN MODE 7:END
270 UNTIL FALSE
280 END
290 DEF PROCvariables
300 Xorigin=640:Yorigin=512
310 T=lE-20
320 e=1.6E-19
330 m=4*1.66E-27
340 SX=-5E-12:SY=0
350 XF=620/5E-12:YF=512/5E-12
360 PX=SX*XF:PY=SY*YF
370 ENDPROC
380 DEF PROCnucleus
390 PLOT 69,0,0:PLOT 69,0,1
400 PLOT 69,1,0:PLOT 69,1,1
410 PLOT 69,-1,0:PLOT 69,-1,1
420 PLOT 69,0,-1:PLOT 69,-1,-1
430 ENDPROC
440 DEF PROCYmove
450 REPEAT
460 IF INKEY (-73) THEN PY=PY+l
470 IF INKEY (-105) THEN PY=PY-l
480 PLOT 70,PX,PY
490 PLOT 70,PX,PY
500 UNTIL INKEY (-99)
510 SY=PY/YF
520 ENDPROC
530 DEF PROCupdate
540 R=SX*SX+SY*SY
550 AX=214.16*SX/(SQR (R}A 3)
560 AY=214.16*SY/(SQR (R}A 3)
570 X=VX*T+.5*AX*T*T
580 Y=VY*T+.5*AY*T*T
590 VX=VX+AX*T
600 VY=VY+AY*T
610 SX=SX+X:SY=SY+Y
620 PX=SX*XF:PY=SY*YF
630 ENDPROC
640 DEF PROCintro
650 CLS
660 PRINT CHR$ (130};CHR$ (141};"Rutherford's Alpha

Scattering Expt."

Simulations, Demonstrations and Tutorials

670 PRINT CHR$ (130);CHR$ (14l);"Rutherford's Alpha
Scattering Expt."

680 PRINT ""This program is designed to simulate
thescattering of an alpha particle by a";

690 PRINT "Gold nucleus.This is shown(not to scale)as
a small dot in the centre of the";

700 PRINT "screen."
710 PRINT '''You may select the energy of the alphaan

d you may also adjust the distance";
720 PRINT "between its original path and the centreof

the Gold nucleus."
730 PRINT '''The alpha is shown as a small flashingdo

t at the left of the screen. You can";
740 PRINT "move this up and down using the : and

/keys. When you are ready you can start";
750 PRINT "the plotting by pressing the space bar."
760 PRINT "'CHR$ l36;CHR$ 134;CHR$ 157;CHR$ 132;

Press SPACE now to start"
770 REPEAT
780 A$=GET$
790 UNTIL A$=" "
800 CLS
810 ENDPROC

19

PROC/FN
290

380

440

530

640

Program
40
50
70-270
90
100
110
140

150

180-210

List
PROCvariables sets main variables to their
initial values. /T/ is the time increment, e
is the electronic charge and /m is the
alpha-particle mass. "sx ' and /SY / are the X
and Y displacements, respectively, and "XF" and
/YF" are scaling factors used to convert these
to the screen plotting values /PX/ and /PY/.
PROCnucleus plots a group of 8 pixels in the
centre of the screen.
PROCYmove allows the user to move the 'alpha'
up and down the left of the screen until the
space bar is pressed.
PROCupdate performs the iterative calculation
of the alpha/s X,Y position.
PROCintro prints the text and waits for the
space bar to be pressed.

Description
Sets up a text window at the top of the screen.
Moves graphics origin to screen centre.
Main loop.
Inputs alpha-particle energy.
Verifies it is in the acceptable range.
Calculates the initial velocity /U'.
PROCYmove then allows the user to select the
initial position of the alpha-particle.
Converts the Y displacement to a string so that
it caD be formatted in the more familiar
scientific notation (for example '4.25 x
10-12m /) .
Form an inner loop which obtains the updated
position and plots it (line 200). The loop
ends when the alpha-particle leaves the screen.

20 A Science Teacher's Companion to the BBC Microcomputer

220-260 Ask if another run is required and obtain a 'Y'
or 'N' answer. If 'N' the program reverts to
Mode 7 and ends at line 260, else the main loop
repeats.

290-810 Procedure definitions:
PROCYmove is a REPEAT... UNTIL loop which ends
when the space bar is pressed. Lines 460 and
470 use the negative INKEY statement to check
if the: or / keys are pressed and adjust the
Y screen coordinates as appropriate. Lines
480 and 490 plot a dot twice in logical
inverse fashion which effectively means it is
erased again after the second plotting. Line
510 calculates the Y displacement
corresponding to the final screen coordinate
value.
PROCupdate employs an iterative method to
calculate the position of the alpha particle
at the end of successive short time intervals.
This involves setting initial values of
displacement, velocity and acceleration (SX,
VX and AX for the X-direction and SY, VY and
AY for the Y-direction). At the end of a
small increment of time (T), new acceleration
values are calculated and the distances
travelled (X and y) during this increment are
determined. The new velocities are then
worked out and finally the new position is
calculated. These new values of S, V and A
are then available for the next iteration.
Line 620 converts the calculated displacements
to screen coordinates for plotting.

Modifications
At the moment the program deliberately does not clear
the screen between runs as this allows the student to
observe the effect of varying the 'miss distance' while
keeping the energy constant, and vice versa. It may be
useful to add an option to clear the screen if it
becomes too cluttered. You could alter line 130 to

130 CLS:PRINT'''** Use and / keys NOW **"""**
Press 'c' to clear screen **"' '11** Press SPACE
to start plot **"

and add the instruction

475 IF INKEY(-83) CLG:PROCnucleus

Simulations, Demonstrations and Tutorials 21

You would also need to set up a graphics window (using
VDU24) to prevent the CLG from clearing the whole
screen, including the text. You could put the VDU24
statement at line 55, but I will leave it as an
exercise for you to try this for yourself. Remember,
however, that the origin was shifted in the preceding
line (50) and that if you try to set up a window with
any of the corners outside the visible screen area, the
computer will set the window to the full size of the
screen. So be careful!

LONGITUDINAL WAVES ("LONGWAVE")

This program illustrates the motion of longitudinal
waves across the screen using the important technique
of 'palette switching' to produce smooth animation.
The technique involves drawing several views of a
moving object or scene, using a different logical
colour for each view. A repeated redefinition of the
logical/actual colour relationships causes each view to
be revealed in turn, thus giving the impression of
continuous movement. Note that, although the program
itself is quite short it relies on the large number of
logical colours available in Mode 2 so it will not
operate on a 16K machine. The program is suitable for
use with 'Q'-level and CSE classes.

Listing "LONGWAVE"

10 REM "* LONGWAVE *
20 ON ERROR RUN
30 MODE 7:VDU 23;8202;0;0;0;:REM "Cursor off
40 PRINT 'TAB(10);CHR$ (141);"LONGITUDINAL WAVES"
50 PRINT TAB(10);CHR$ (141);"LONGITUDINAL WAVES"
60 PRINT '''A longitudinal wave is a series of"
70 PRINT CHR$ l3l;"compressions";CHR$ 135;" and";

CHR$ l31;"rarefactions";CHR$ 135;" moving"
80 PRINT "along. The particles of the medium do"
90 PRINT "NOT travel along. They just move TO and"

100 PRINT "FRO. Watch the movement of the coloured
line in the display which follows."

110 PRINT '''The compressions are regions where"
120 PRINT "the particles are ";CHR$ l3l;"closer togeth

er";CHR$ 135;"than"
130 PRINT "normal. The rarefactions are where they

are";CHR$ 131;"further apart";CHR$ 135;"than";
140 PRINT" normal."
150 PRINT '''Note that in a longitudinal wave the"
160 PRINT "direction of";CHR$ (130);" vibration";

CHR$ (135):"is":CHR$ (130);" paral1el":CHR$ (135);
"to"

170 PRINT "the direction of";CHR$ (130);"wave travel"
180 PRINT "CHR$ (132);CHR$ (157);CHR$ (131);" PRESS

THE SPACE BAR TO CONTINUE"
190 REPEAT UNTIL GET$ =" "
200 MODE 2:VDU 23:8202;0:0:0::REM "Cursor off
210 VDU 28,0,16,19,0
220 FOR col=l TO 14
230 VDU 19,col,0,0,0,0
240 NEXT col
250 VDU 19,15,2,0,0,0

22 A Science Teacher's Companion to the BBC Microcomputer

260 COLOUR 15
270 PRINT '''LONGITUDINAL WAVES"
280 PRINT '''Please wait 5 sees."
290 colour=l
300 FOR phase=O TO 350 STEP 57
310 FOR X=O TO 1279 STEP 128
320 IF X=640 THEN GCOL 0,colour+7 ELSE GCOL O,colour
330 Y=128*SIN RAD (X/4+phase)
340 MOVE X+Y,400:DRAW X+Y,lOO
350 NEXT X
360 colour=colour+l
370 NEXT phase
380 co12=7:REM White
390 co13=1:REM Red
400 CLS
410 PRINT '''The compressions"
420 PRINT '''are moving across"
430 PRINT '''from right to left"
440 PRINT '''but the lines just"
450 PRINT '''move to and fro."
460 PRINT '''You will see this"
470 PRINT '''if you watch the"
480 PRINT '''RED line."
490 ON ERROR MODE 7:END
500 REPEAT
510 FOR col=l TO 7
520 VDU 19,col,co12,0,0,0
530 VDU 19,col+7,co13,0,0,0
540 PROCpause(.15)
550 VDU 19,col,0,0,0,0
560 VDU 19,col+7,0,0,0,0
570 NEXT col
580 UNTIL FALSE
590 DEF PROCpause(t)
600 T=TIME
610 REPEAT UNTIL TIME >=T+t*lOO
620 ENDPROC

PROC/FN List
There is only one procedure used in this program:

590 PROCpause waits for the specified number of
seconds

Program Description
40-190 Print an introductory explanation.

210 Set up a text window
220-240 Change logical colours 1 to 14 to actual
colour 0 (black). Hence the drawing is not seen as it
is built up.
250 Logical colour 15 is set to 'green'. This
will be used to print the text that accompanies the
graphics.
290-370 Draws seven sets of vertical bars across the
screen. Each set is drawn in a different logical
colour and the bars in each set are spaced according to
the SIN function (lines 330,340). The outer 'phase'
loop controls the number of sets and the phase
relationship between them. The inner 'X' loop controls
the horizontal position of the bars.
500-580 Main animation loop. The outer loop is a
REPEAT... UNTIL FALSE loop which repeats the inner
FOR... NEXT loop indefinitely. This inner loop

Simulations, Demonstrations and Tutorials 23

(510-570) takes the logical colours 1 to 7 in turn and
switches each to white, pauses, and then switches the
colour back to black. Each of the logical colours 8
to 14 is also switched /on/ and then /off/ again, but
the on colour is red. The switching sequence is
achieved using the VDU19 statement and results in each
/view being seen for a short time before being
replaced by the next one. The reason for switching
colours 8 to 14 to red is to produce a moving /marker/
that pupils can watch to observe the wave motion. This
marker was drawn by the action of line 320 which
selects logical colours 8 to 14 if the X variable has
the specified value, otherwise colours 1 to 7 are used.

Thus there are two groups of lines: one group in
logical colours 1 to 7 and a smaller group in colours 8
to 14. A different actual colour can thus be selected
for each group, so making the marker appear clearly as
a moving red bar among the white ones.
590-620 PROCpause is a short delay routine that will
be used in many of the following programs. It first
sets the variable 'T' to the value of the computer/s
/clock/: the pseudo-variable TIME, which counts up in
centiseconds. The loop repeats until TIME has reached
the value T+t*lOO; that is, lOOt centiseconds more than
the value it had when the procedure was called. Thus
the parameter 't/ is the delay required, in seconds.

Modifications
You may like to experiment with the loops that draw the
waves (lines 300-370), though the range of values that
will give suitable results seems to be rather
restricted. Alternative colours can be used by
changing the 7 and 1 in lines 380 and 390 to the number
of the actual colour you require. The apparent speed
of the waves can be altered by changing the value of
the pause in line 540.

PROJECTILE MOTION ("GUN", "BOMBER", "GUNNER")

This section consists of a suite of three
programs, intended for CSEj/O/-level students, which
deal with various aspects of projectile motion. "GUN"
represents the horizontal projection of a shell from a
gun on top of a cliff. The user has to choose the mass
of /gunpowder/ to be used in order to hit a target
placed at a random distance from the foot of the cliff.

The program displays the number of shots fired, the
hits scored and the accuracy rating. The second
program, "BOMBER", illustrates the motion of a bomb
dropped from an aircraft in horizontal flight. The

24 A Science Teacher's Companion to the BBC Microcomputer

plane's velocity and the target position are chosen at
random and the 'pilot' has five bombs with which to
score a hit. "GUNNER" is a program that brings in the
concept of angle of projection and its effect on the
range, in the form of a game in which two players fire
alternate shots at each other's gun emplacements. The
randomly produced landscapes force students to think
carefully about the effects' of muzzle velocity and
angle of firing on the horizontal range achieved.

Listing "GUN"

.i0 REM "*** GUN ***
20 ON ERROR MODE 7:END
25 ENVELOPE 1,131,-1,0,0,200,1,1,1,-1,0,-2,60,60
30 ENVELOPE 2,1,0,0,0,0,0,0,127,-1,-1,-1,126,100
40 MODE 5
50 VDU 28,0,6,19,0
60 H%=710:HITS%=0:Shots%=0
70 VDU 23,224,1,1,123,31,255,127,63,31,23,225,128,128

,192,192,255,254,252,248
80 VDU 23,226,0,0,96,255,88,24,124,255
90 REPEAT

100 hit%=FALSE
110 VDU 19,1,1,0,0,0
120 GCOL 0,3
130 MOVE O,H%:DRAW 100,H%:DRAW 100,64:DRAW 1279,64
140 VDU 5
150 MOVE 32,H%+32:PRINT CHR$ 226;
160 R%=RND (500)+500
170 MOVE R%,96
180 GCOL 0,1
190 PRINT CHR$ 224;CHR$ 225;
200 VDU 4
210 go=O
220 GCOL 0,3
230 REPEAT
240 CLS
250 PRINT "Shots ";Shots%;TAB(10)"Hits ";HITS%
260 IF Shots%<>O THEN @%=&20105:PRINT TAB(2,2);"Accura

cy";HITS%*100/Shots%;"%";:@%=10
265 VDU 23,1,1;0;0;0;:REM "Cursor on
270 REPEAT
280 PRINT TAB(0,4);SPC (38)
290 INPUT TAB(0,4)"How many kilogrammes of gunpowder",M
300 UNTIL M>=l AND M<=24
305 VDU 23,1,0;0;0;0;:REM "Cursor off
310 Shots%=Shots%+l
320 PRINT TAB(6,0);Shots%;
330 SOUND 0,2,4,20
340 U=20*SQR (M)
350 SOUND 1,1,255,83
360 FOR t=O TO 11.5 STEP 0.5
370 SY%=4.9*t

A2:Y%=H%+20-SY%

380 X%=FNX(Y%)
390 IF POINT(X%,Y%)=l THEN PROChit
400 PLOT 69,X%,Y%
410 PROCpause(0.17)
420 NEXT t
430 go=go+l
440 UNTIL go=5 OR hit%
450 PROCpause(2)
460 CLG
470 UNTIL FALSE
475 END
480 DEF FNX(Yva1%)=U*SQR (2*(H%+20-Yval%)/9.8)+100
490 DEF PROChit
500 SOUND 0,2,6,50
510 hit%=TRUE
520 HITS%=HITS%+l

Simulations, Demonstrations and Tutorials

530 PRINT TAB(15,0)iHITS%
540 FOR L%=l TO 100
550 VDU 19,1,RND (3),0,0,0
560 PROCpause(0.02)
570 NEXT L%
580 VDU 19,1,0,0,0,0
590 ENDPROC
600 DEF PROCpause(t)
610 LOCAL T
620 T=TIME
630 REPEAT UNTIL TIME >=T+t*100
640 ENDPROC

25

PROC/FN List
180 FNX calculates the shell's X coordinate, from a

knowledge of its Y value.
490 PROChit produces an explosion effect, sets the

flag 'hit%' and increments and prints the number
of hits.

600 PROCpause

Main program loop.
Clears 'target hit' flag: hit%.
Draws cliff.
Prints gun on cliff top.
Chooses random range value, R%, between 501
and 1000 'squares'.
Print the target.
Start of REPEAT... UNTIL loop. It ends at line
440 if five attempts have been made or if the
target has been hit.
Calculates and prints, to 1 decimal place, the
percentage accuracy of shooting so far.
Input mass of gunpowder (M) and verify that it
is in an acceptable range.
Increments number of shots fired.
Gunfire sound.
Calculates muzzle velocity. It is assumed
that the chemical energy of the powder is
fully converted to kinetic energy of the
shell. Hence the muzzle velocity (U) is
proportional to the square root of the mass of
powder (M).
Starts 'whistling shell' sound.
FOR... NEXT loop which plots the shell's
trajectory. The loop variable 't' is the time

Program
20-80
25-30

60

70-80

90-470
100
130
150
160

170-190
230

260

270-300

310
330
340

350
360-420

Description
Initialising section.
Set up sound envelopes. Envelope 1
'whistling shell' effect and envelope
to produce an effective explosion.
Sets the height of the cliff (H%) and
the number of hits and shots.
Define user characters.

is the
2 helps

zeros

26 A Science Teacher's Companion to the BBC Microcomputer

390

400
410

430
460
470

480-640

of flight in seconds and SY% is the height
fallen. X% and Y% are the shell's X,Y
coordinates.
Checks if the target has been hit. The
function POINT(X%,Y%) reads the logical colour
at the point with screen coordinates (X%,Y%).
The target is printed in red (logical colour
1) so that, if the point where the bomb is
about to be plotted is '1', then we have a hit
and hence PROChit is called.
Plots the shell.
Short delay - helps to synchronise the flight
of shell and the accompanying sound effect.
Increments number of attempts.
Clears the graphics screen.
Repeats the main loop an infinite number of
times.
Procedure definitions:

PROChit generates the explosion sound (line
500), sets hit% to TRUE to record that a
hit has occurred and increments and prints
the number of hits. Lines 540-580 create
an explosion effect by looping the target
colour through a series of random colour
changes before changing it to the
background colour.

Modifications
You may feel that relating the mass of 'gunpowder' to
the resulting range is too difficult for some pupils
(to double the range, for example, will require four
times as much powder). If so it is a simple matter to
change the INPUT statement (line 290) to allow the
muzzle velocity (U) to be entered directly. Line 340
can then be omitted but you will have to alter the test
in line 300 to suit the expected range of U values.

At present, if the student misses with all five
'goes' the program simply repeats again with a new
target position. Try to add a 'GAME OVER' feature if
five attempts have bee~ ~ade and the target has not
been hit. (One approach - Extension 1 - is given below
but try the prcblem yourself before looking at my
suggestion.)

A more difficult change to implement is to randomise
the height of the cliff: it becomes very easy to hit
the target after a few attempts. The main proble~ is
that the test for a hit requires that cne of the shell
positions should be plotted just above ground level so
that it will lie within the target area. At the moment
the 't' loop is adjusted so that the last point plotted

Simulations, Demonstrations and Tutorials 27

fulfils this requirement, but changing the height
obvicusly alters the time of flight (Tof) and upsets
these arrangements. However the Tof can be calculated
from Tof = SQR(2H/g) where H is the height fallen and g
is the acceleration of free fall (9.8). Note also that
H<>H% since the shell starts slightly above the cliff
top and the ~ground~ level is at Y = 96, not Y = O.

An additional small problem is that the flight is no
longer synchronised to the sound of the shell falling
so the pause at line 410 wculd need to be made
dependent on the Tof. As an exercise, and bearing the
above points in mind, try the following (one suggested
answer - extension 2 - is given below): for each run of
five 'goes~, choose a new random height (H%) in the
approximate range of 600-700 screen un~ts and make any
other necessary changes to restore correct operation.
(Hint: try reducing the step size in line 360 to, say,
0.2.)

Extension 1. Add the following:

445 IF NOT hit% THEN CLS:PRINT TAB(5,3)"GAME
OVER" :END

Extension 2. Delete '8%=710:' from line 60 and add

95 H%=RND(100)+600
345 Tof=SQR((H%-48)/4.9)

and change lines 360 and 410 to

360 FOR t=O TO Tof STEP 0.2
410 PROCpause(Tof/240)

Listing "BOMBER"

10 REM "*** BOMBER ***
20 ON ERROR MODE 7:END
25 ENVELOPE 1,132,-1,0,0,200,1,1,6,-1,0,-3,125,125
30 ENVELOPE 2,1,0,0,0,0,0,0,127,-20,-1,-1,127,100
40 VDU 23,224,0,0,1,255,7,127,127,63,23,225,0,0,224,2

40,240,255,255,254:REM" ** TANK **
50 VDU 23,226,224,112,63,31,15,0,0,0,23,227,0,7,255,2

55,255,0,0,0,23,228,0,224,254,255,254,0,0,0:
REM "** PLANE **

60 tank$=CHR$ 224+CHR$ 225
70 plane$=CHR$ 226+CHR$ 227+CHR$ 228
80 H%=736
90 MODE 5

100 VDU 28,0,6,19,0
110 REPEAT
120 CLG
130 BOMB%=FALSE :hit%=FALSE :bornbs=5
150 VDU 4:PRINT TAB(5,2);"BOMBS ... ";bornbs
160 MOVE 0,64:DRAW 1279,64
170 VDU 19,1,1,0,0,0
175 VDU 19,0,4,0,0,0
180 GCOL 0,1
190 R%=RND (500)+680

28 A Science Teacher's Companion to the BBC Microcomputer

200 VDU 5
210 MOVE R%,96:PRINT tankS
220 U=RND (40)+20
230 GCOL 4,3
240 REPEAT
250 TI=O
260 FOR t=O TO 1280/U STEP .5
270 X%=U*t
280 VDU 5
290 MOVE X%,H%:PRINT plane$;
300 IF NOT BOMB% AND bombs>O AND INKEY (-99) THEN

BOMB%=TRUE :TI=t:bombs=bombs-l:S0UND 1,1,255,15:
VDU 4:PRINT TAB(13,2);bombs:VDU 5

310 IF BOMB% THEN PROCplot bomb(X%,ABS (t-TI))
320 PROCpause(0.02) -
330 MOVE X%,H%:PRINT plane$;
340 NEXT t
350 UNTIL hit% OR bombs<=O
360 UNTIL FALSE
370 DEF PROCplot bomb(Xco%,time)
380 LOCAL Y% -
390 Xco%=Xco%+96
400 Y%=H%-16-4.9*time A2

410 IF POINT(Xco%,Y%)=l THEN PROChit:BOMB%=O:ENDPROC
420 PLOT 69,Xco%,Y%
430 IF Y%<=96 OR Xco%>=1280 THEN BOMB%=O
440 ENDPROC
450 DEF PROChit
460 SOUND 0,2,6,50
470 hit%=TRUE
480 FOR L%=l TO 100
490 VDU 19,1,RND (3),0,0,0
500 PROCpause(.02)
510 NEXT L%
520 VDU 19,1,4,0,0,0
530 ENDPROC
540 DEF PROCpause(time)
550 LOCAL T
560 T=TIME
570 REPEAT UNTIL TIME >=T+time*100
580 ENDPROC

The program illustrates one technique for creating
smooth movement of user-defined characters across the
screen: linking the text and graphics curscrs using
VDU5 and printing using the logical inverse method
(GCOL4). With the cursors linked in this way the
characters can be printed anywhere on the screen
(wherever the graphics cursor is positioned), not just
in the normal lines and columns of the selected mode.

PROC/FN List
370 PROCplot_bomb plots a dot at the current

bomb coordinates.
450 PROChit, as previous program.
540 PROCpause.

Program Description
20-100 Initialising section.
60- 70 Creates strings from user characters defined

previously.
110-360 Main loop.
170 Resets target colour (PROChit leaves it set

to background).

Simulations, Demonstrations and Tutorials 29

175
220
240-350
260-340

290
300

310

330
370-580

Makes background colour blue.
Chooses random plane speed.
REPEAT UNTIL target hit or all bombs Lsed.
FOR.. NEXT loop to move plane across screen
and check if bomb release (space bar) is
pressed.
Prints plane.
Checks:

(1) If no bomb is in flight - BOMB% is FALSE
(2) If there are any bombs left
(3) If the space bar is pressed - INKEY(-99).

If all three conditions are met then
(a) Set BOMB% to TRUE
(b) Save the time at which bomb was dropped

in the variable TI

(c) Subtract 1 from number of bombs
(d) Start sound effect
(e) Print new number of bombs.
Checks BOMB% and if TRUE calls
PROCplot_bomb.
Erases plane (logical inverse plotting).
Procedure definitions:

PROCplot_bomb. Xco% is the bomb's (and
the plane's) X coordinate and 'time' is
the time elapsed since the bomb was
dropped. Line 410 checks for ~ hit in the
same way as in "GUN". Line 430 checks if
the bomb is below the target height or if
it has left the screen. The BOMB% flag is
cleared to enable a new bomb to be
dropped.

Modifications
Your exercise this time is to add a score facility to
the program. Use the variable SC% to keep the score
and award 500 points for a hit plus a bonus of 100
points for each unused bomb. As a penalty, subtract
500 points if the target is not hit when all the bombs
have been used. Do not forget that variables usually
have to be assigned a value before they can be referred
to, so 'initialise' SC% to zero early in the program.
I have given my suggestions below but onCE again it
will be a good test of your understanding of the
program if you try it yourself first. You need not
worry if your solution differs from mine so long as it
works: there is more' than one way to skin a computer!

30 A Science Teacher's Companion to the SSC Microcomputer

Suggested extension to "BOMBER"
Add the following lines:

85 SC%=O
155 PRINT TAB(5,4);"SCORE ... ";SC%
355 IF hit% SC%=SC%+500+bombs*lOO ELSE SC%=SC%-500

Listing "GUNNER"

10 REM "*** GUNNER ***
20 ON ERROR MODE 7:END
30 VDU 23,224,224,240,248,252,254,254,254,254
40 VDU 23,225,7,15,31,63,127,127,127,127
50 ENVELOPE 1,132,-1,0,0,200,1,1,6,-1,0,-3,125,125
60 ENVELOPE 2,1,0,0,0,0,0,0,127,-20,-1,-1,127,100
70 IF RND >.5 THEN PL%=l ELSE PL%=2
80 REPEAT
90 hit%=O

100 oldX%=48
110 MODE 5
115 VDU 23,1,OiOiOiOi:REM "Cursor off
120 VDU 19,0,4,0,0,0
130 VDU 19,2,1,0,0,0,19,3,2,0,0,0
140 VDU 28,0,8,19,0
150 CLS
160 LX%=RND (120)+160:RX%=RND (120)+1030
170 LY%=RND (120)+48:RY%=RND (120)+48
180 PROCland(LX%,RX%)
190 REPEAT
200 COLOUR 2
210 IF PL%=l THEN PRINT TAB(2,O)i"LEFT "i ELSE

PRINT TAB(2,O)i"RIGHT "i
220 PRINT "GUN TO FIRE"
225 VDU 23,1,liOiOiOi:REM "Cursor on
230 INPUT "'''Muzzle velocity:"U
240 INPUT "Angle:"ang
245 VDU 23,1,OiOiOiOi:REM "Cursor off
250 VX=U*COS RAD (ang):VY=U*SIN RAD (ang)
260 IF PL%=l THEN VDU 29,(LX%+32)i(LY%+32)i:DI%=1

ELSE VDU 29,(RX%+32)i(RY%+32)i:DI%=-1
270 GCOL 0,2
280 MOVE 0,0
290 DRAW DI%*32*COS RAD (ang),32*SIN RAD (ang)
300 PRINT "'''ANY KEY TO FIRE":A=GET
310 CLS
320 SOUND 0,2,5,5
330 PROCplot
340 GCOL 0,0
350 MOVE 0,0
360 DRAW DI%*32*COS RAD (ang),32*SIN RAD (ang)
365 IF PL%=l THEN PL%=2 ELSE PL%=l
370 UNTIL hit%
380 UNTIL FALSE
390 END
400 DEF PROCland(LGUNX%,RGUNX%)
410 LOCAL X%,Y%
420 GCOL 0,3
430 MOVE 0,0
440 FOR X%=32 TO 1279 STEP 8
450 IF X%>(LGUNX%-50) AND X%«LGUNX%+100) THEN Y%=LY%

ELSE IF X%>(RGUNX%-50) AND X%«RGUNX%+100)
THEN Y%=RY% ELSE Y%=RND (40)+20

460 IF X%>400 AND X%<900 THEN Y%=60+RND (30)+250*
SIN RAD ((X%-400)/2.7)

470 DRAW X%,Y%
480 PLOT 85,oldX%,0
490 MOVE X%,Y%
500 oldX%=X%
510 NEXT X%
520 GCOL 0,1
530 VDU 5:MOVE LGUNX%,LY%+32:VDU 224:MOVE RGUNX%,RY%+3

2:VDU 225,4

Simulations, Demonstrations and Tutorials

540 ENDPROC
550 DEF PROCplot
560 LOCAL DONE%
570 GCOL 0,2
580 t=O
590 REPEAT
600 SX=DI%*VX*t:SY=VY*t-4.9*t

A2

610 IF POINT(SX,SY)=3 THEN DONE%=1:S0UND 0,-15,4,2
620 IF POINT(SX,SY)=l THEN DONE%=l:PROChit
630 PLOT 70,SX,SY:PLOT 66,8,0:PLOT 66,-8,4:PLOT 66,-8,

-4:PLOT 66,8,-4
640 PROCpause(0.02)
650 PLOT 70,SX,SY:PLOT 66,8,0:PLOT 66,-8,4:PLOT 66,-8,

-4:PLOT 66,8,-4
660 t=t+0.2
670 UNTIL DONE% OR SY<-168
680 ENDPROC
690 DEF PROChit
700 SOUND 0,2,6,50
710 hit%=l
720 FOR L%=l TO 100
730 MOVE SX,SY
740 GCOL O,RND (3)
750 PLOT 65,50-RND (100),50-RND (100)
760 NEXT L%
770 PROCpause(2)
780 ENDPROC
790 DEF PROCpause(time)
800 LOCAL T
810 T=TIME
820 REPEAT UNTIL TIME >=T+time*100
830 ENDPROC

31

This program is definitely of the 'game' variety (it is
fun to play!) but it also has a serious purpose: to
teach the effect of angle of projection on the
trajectory and horizontal range of a projectile.
Hopefully students will discover for themselves that 45
degrees gives maximum range, without the need for any
'trig'. They will also find that this is not always
the best angle to use (there is a 'mountain' in the
way) .

PROC/FN List

400 PROCland draws the landscape with gun
turrets at the points (LGUNX%,LY%) and
(RGUNX%, RY%) .

550 PROCplot plots the shells trajectory and
checks for a hit on the ground or a gun
turret.

790 PROCpause.

Program Description
20- 70 Setting up characters, envelopes etc;
70 Randomly select which player will shoot

first.
80-380 Main loop.

130 Select colour 2 as red and colour 3 as
green.

32 A Science Teacher's Companion to the BBC Microcomputer

160-170

180
190-370
210-240

250

260

280
290
320
330
340-360
365

380
400-830

Choose random coordinates for left and right
gun positions (LX%,LY%) and (RX%,RY%)
respectively.
Draw the landscape.
REPEAT... UNTIL a hit is scored.
Indicate whose turn it is and input muzzle
velocity and angle.
Calculate horizontal (VX) and vertical (VY)
velocity components.
Check player number (PL%) and set graphics
origin to the point at the centre of the
'firing' gun. Also set direction indicator
(01%) to indicate if firing to the right (+)
or to the left (-).
Move to centre of 'firing' gun.
Draw the gun barrel at the correct angle.
Gunshot sound.
Plot the shell's path.
Erase the gun barrel.
Exchange player numbers (so that they fire
alternately).
End of main loop.
Procedure definitions

PROCland dra~s a green landscape across
the bottom of the screen using a loop
(lines 440-510). Line 450 checks if the X
coordinate mat che s that of one of the gun
turrets (LGUNX% or RGUNX%) and sets the Y
value to the Y coordinate of the turret,
otherwise a random value is chosen. Line
460 checks if we are in the central region
and draws a mountain using a SIN function
with a slight random element added in.

Lines 470-480 fill the landscape by using
PLOT85 to fill a triangle between the
current point, the point plotted at the
previous time round the loop, and the
point (oldX%,O) that has the previous X
coordinate value and a Y value of zero.
Line 500 saves the previcus X value in
'oldX%'. Lines 520-530 print the gun
turrets in the appropriate places.
PROCplot uses a REPEAT... UNTIL loop to
update the shell's position at successive
increments of time (t increases by 0.2
each time round the loop line 660).
Line 600 calculates the X and Y
coordinates, reversing the X coordinate if
necessary, using the direction flag 01%
which was set earlier. Line 610 checks
for a hit on the ground (colour 3) and

Simulations, Demonstrations and Tutorials 33

line 620 does the same for a hit on a gun
(colour 1), and yes you can shoot
yourself, so watch it! In either case the
flag variable DONE% is set and the loop
will therefore end when line 670 is
executed. The loop also ends if the Y
coordinate is less than -168. This takes
account of off-screen impacts. Line 630
plots the shell (a small cluster of
pixels) and, after a short pause, line 650
erases it again.
PROChit uses a different technique from
the previous programs to achieve its
explosion effect. This time we use PLOT65
(plot a dot relative to the current cursor
position) to produce a random series of
dots, in random colours (line 740),
clustered around the point of impact.
This gives an effective impression of
debris flying out from the exploding gun.

Modifications
You may prefer the shell to leave a trace of its path,
as in the previous programs, so that students can more
easily observe the effect of different angle/velocity
combinations. This is easily achieved by deleting the
PLOT7b lines (630 and 650) and using

630 PLOT69,8X,8Y

I resisted the temptation to add a score facility to
the program as I felt that it might distract from the
'educational' purpose a little, but if you want to try
it I have shown one possible method below.

The score variables are 81% for player 1 (the left
gun) and 82% for player 2. You need to add the lines

75 81%=0:82%=0
715 IF PL%=l 81%=81%+10 EL8E 82%=82%+10
716 PRIN'I' TAB(2,0)"LEFT GUN ... "i81%i

TAB(2,2)"RIGHT GUN .. "i82%

Note that no allowance is made for 'suicides' - you can
score by blowing yourself up! Probably the simplest
way to prevent this is to disallow an angle of 90
degrees by adding a check on the angle value input in
line 240. Experiment to find the largest angle allowed
before self-destruct occurs and put a 'REPEAT .. UNTIL
ang < largest_value" loop around the input line.

34 A Science Teacher's Companion to the BBC Microcomputer

THE VERNIER SCALE ("VERNIER2")

One of the problems encountered in teaching the use of
instruments such as the vernier caliper and the
micrometer is the difficulty posed by the small size of
the scale. This program is designed to overccme this
problem by giving a large enough representation of a
vernier scale that it should be easily seen even from
the back of the class. It is actually presented in a
self-teaching format in which an individual is first
given an explanation of how to read the scale and is
then shown five examples, with the correct answers
supplied. The final part of the program presents
further examples and the pupil has three attempts to
give the correct reading in each case. Should he fail
to give the correct answer after three attempts the
computer will supply it. After at least ten examples
have been attempted the pupil may finish and is given
his score. The program is for Model B or 32K Model A.

Listing nVERNIER2"

o REM "********************
1 REM VERNIER2 *

10 REM "* (c) P. Hawthorne *
11 REM "* 1983 *
12 REM "********************
20 MODE 7
25 VDU 23;8202;0;0;0;:REM "Cursor off
30 PRINT CHR$ (141)jTAB(11)i"The Vernier Scale"
40 PRINT CHR$ (141)jTAB(11)i"The Vernier Scale"
50 PRINT ""When a reading is between two marks

on"
60 PRINT "a scale it can be given more accurately"
70 PRINT "if the instrument has a"iCHR$ 130i"vernier

"iCHR$ 13 5i"scale."
80 PRINT '''A vernier scale for use with a mm scale"
90 PRINT "is 9 mm long and has 10 equal divisions"

100 PRINT "so each division is 9/10 or 0.9 mm."
110 PRINT '''To read the scale note where the"i

CHR$ 130j"zero"
120 PRINT "mark of the vernier scale is. It will"
130 PRINT "usually be between two of the divisions"
140 PRINT "on the rnrn scale.Take the"jCHR$ l29j"10wer"j

CHR$ l35j"of these"
150 PRINT "and then find the mark on the vernier"
160 PRINT "scale which is"jCHR$ l29j"exactly"j

CHR$ 135j"opposite (or is"
170 PRINT "nearest to) a mark on the rnrn scale. Add"
180 PRINT "this vernier reading to the mm reading"
190 PRINT "to obtain the final answer.The examples"
200 PRINT "which follow will help make this clear."
210 PRINT 'CHR$ (132)jCHR$ (157)jCHR$ (131)j" PRESS

SPACE BAR TO CONTINUE"
220 REPEAT UNTIL GET$ _II "

230 MODE 4
240 FOR K%=l TO 5
250 CLG
260 CLS
270 PROCcentre(2,"Reading a Vernier Scale")
280 value=RND (1)*20+.1
290 reading=INT (10*(value+.05))/10
300 A=10:B=42:C=5l2
310 VDU 29,Oj-200j:REM graphics origin
320 PROCrectangle(A,350,1269,162)

Simulations, Demonstrations and Tutorials

330 PROCscale(B,C,0,30,"mm")
340 PROCvernier(A,C,B,428,128,value)
350 PRINT "'''In the example below the zero end of"
360 PRINT "the vernier is between :-"
370 PRINT "'TAB(16);INT (reading);" and ";INT (reading)

+1;" mm"
380 PRINT "'''The ";FNI(reading);
390 IF FNI(reading)=l THEN PRINT "st";
400 IF FNI(reading)=2 THEN PRINT "nd";
410 IF FNI(reading)=3 THEN PRINT "rd";
420 IF FNI(reading»3 THEN PRINT "th";
430 PRINT" mark on the vernier is opposite"
440 PRINT "one of the marks on the mm scale."
450 PRINT '''Hence the reading is ";reading;:IF

FNI(reading)=O THEN PRINT ".0";
460 PRINT" rnm."
470 PRINT :PROCcentre(.l4,"PRESS ANY KEY.")
480 A$=GET$
490 NEXT K%
500 CLG :CLS
510 score=O:goes=O
520 VDU 24,0;128;1279;700;
530 VDU 28,0,9,39,3
540 REPEAT
550 goes=goes+l
560 CLG
570 value=RND (1)*20+.1
580 reading=INT (10*(value+.05))/10
590 PROCrectangle(A,350,1269,162)
600 PROCscale(B,C,0,30,"rnm")
610 PROCvernier(A,C,B,428,128,value)
620 try=O
630 CLS
640 REPEAT
650 SOUND 1,-15,100,5
660 INPUT "'''What is the reading shown (in mm)",input
670 try=try+l
680 UNTIL ABS (input-reading)<=0.05 OR try=3
690 CLS
700 IF ABS (input-reading)<=0.05 THEN PRINT "CORRECT":

score=score+l ELSE PRINT "SORRY,THAT"'S NOT CORRECT
.""'''The correct reading was ";reading;" mm"

710 PRINT "'''Press "'E'" to end or any other key"'''to
obtain next reading."

720 A$=GET$
730 UNTIL A$="E"
740 CLS
750 IF goes<lO THEN PRINT '''You must try at least

10 examples." "Press any key to continue. ":A$=
GET$:GOTO 540

760 HODE 7
770 IF score/goes*lOO >70 THEN PRINT "Well done."
780 PRINT '''You scored ";score;" correct out of ";goes
790 END
800 DEF PROCrectangle(X,Y,length,height)
810 MOVE X,Y:PLOT 1,length,0
820 PLOT 1,0,height:PLOT 1,-length,0
830 PLOT 1,0,-height
840 ENDPROC
850
860 DEF PROCscale(X,Y,min,max,label$)
870 LOCAL len,K%
880 VDU 5
890 MOVE X,Y:PLOT 0,100,-64:PRINT labelS
900 FOR K%=min TO max
910 IF K% MOD 10=0 THEN len=96 ELSE IF K% MOD 5=0

THEN len=64 ELSE len=32
920 MOVE X+K%*40,Y
930 DRAW X+K%*40,Y-len
940 IF len=96 THEN MOVE X+K%*40-292,Y-len:PRINT K%;
950 NEXT K%
960 VDU 4
970 ENDPROC
980
990 DEF PROCvernier{end,Y,scale,length,height,value)

1000 LOCAL len,K%
1010 VDU 5

35

36 A Science Teacher's Companion to the BBC Microcomputer

1020 MOVE end+value*40,Y
1030 DRAW end+value*40,Y+height
1040 DRAW end+value*40+1ength,Y+height
1050 DRAW end+value*40+1ength,Y
1060 FOR K%=O TO 10
1070 IF K% MOD 5=0 THEN len=64 ELSE len=32
1080 IF len=64 THEN MOVE scale+value*40+K%*36-292,Y+hei

ght-32:PRINT K%;
1090 MOVE scale+value*40+K%*36,Y
1100 DRAW scale+value*40+K%*36,Y+len
1110 NEXT K%
1120 VDU 4
1130 ENDPROC
1140 DEF FNI(R)=INT (10*(R-INT (R))+.5)
1150 DEF PROCcentre(Y%,M$)
1160 PRINT TAB((40-LEN (M$)) DIV 2,Y%);M$;
1170 ENDPROC

PROC/FN List
800 PROCrectangle draws a rectangle with its

bottom left corner at the point (X,Y).
860 PROCscale draws and labels a scale, starting

at the point (X,Y).
990 PROCvernier draws the vernier scale.

1140 FNI(R) returns an integer that gives the
first significant figure after the decimal
point of 'R'.

1150 PROCcentre prints the supplied string on the
centre of the specified line.

Program Description
10-790 Main program section.

240-490 K% loop to give five examples.
280 Choose random value between 0.1 and 20.
290 Convert to nearest 0.1 mm.
300 A=left edge of rectangle; B=left edge of

scale; C=top of scale.
320-340 Draw the complete vernier scale.
350-460 Explain how the reading is obtained.

'INT(reading)' is the whole number part of
the answer and 'FNI(reading)' is the decimal
part.

540-730 Question setting loop which ends if the user
presses 'E' and has answered at least ten
questions.

680 Allows an error of up to +/-0.05 or up to
three tries.

700 Checks if input was correct and increments
score, otherwise gives correct answer.

800-1170 Procedure/function definitions:
PROCrectangle uses the PLOTI 'draw
relative') statement.
PROCscale. Line 890 first moves to the
top left corner of the rectangle
previously drawn and then moves relative
to this point to print the scale label

Simulations, Demonstrations and Tutorials 37

('mm' in this case). The K% loop draws
the scale marks and numbers them every 10
mm. The length of the marks is given by
'len', chosen in line 910.
PROCvernier combines the functions of the
preceding two procedures: lines 1020-1050
draw the outline of the vernier and lines
1060-1110 draw the scale and number it
every five divisions.

Modifications

To use the program in a class demonstration mode you
will find it convenient to bypass the instructional
section by adding

25 PRINT"lnstructions? (Y/N)II:IF GET$<>"Y"
THEN MODE 4:GOTO 230

Perhaps the pupil should be penalised for taking
several attempts to obtain the correct answer. A
suitable 'marking scheme' rright be: 5 marks for correct
answer in 1 attempt, 3 for 2 attempts and 1 for 3
attempts. Can you add suitable extra program code tc
achieve this? Here is one approach:
in line 700 replace 'score score+l' by score

score + 7 - 2 * try' and change 'goes' in lines 770 and
780 to '(5 * goes)'

MASS SPECTROMETER ("MASPEC_3.3")

This is a complete tutorial program, for advanced level
students, on the theory and operation of the
'Bainbridge' type of mass spectrometer. Various
options are available to the student, including a
demonstration routine to explain the principles and
test modes to allow the user to gain familiarity with
the operation and to identify isotopes present in
unknown samples. There is a HELP procedure to show how
the results are calculated from the measurements. The
program requires a Model B machine.

Listing "MASPEC 3.3"

10 REM " ••••••••••••••••••••••••
20 REM "..... MASPEC 3.3 •••••
30 REM "..... (c) 1~83 •••••
40 REM " ••••• P. Hawthorne •••••
50 REM " ••••••••••••••••••••••••
60 MODE 7
70 VDU 23;8202;0;0;0;
80 PRINT TAB(10,12)CHR$ 141;"Mass Spectrometer"
90 PRINT TAB(10,13)CHR$ 141;"Mass Spectrometer"

38 A Science Teacher's Companion to the BBC Microcomputer

100 PROCpause(5)
110 DIM peak%(17),S(17),C(17),m(3),abun(3),newlen%(3)
115 PROCchars
120 REPEAT
130 MODE 7
140 VDU 23;8202;0;0;0;
150 opt%=FNmenu
160 IF opt%=l THEN MODE 4:PROCdemo
170 IF opt%>l AND opt%<5 THEN MODE 4:PROCinit:

PROCchoose sample(CHR$ (opt%+95)):PROCtest
180 IF opt%=5 THEN MODE 4:PROCinit:S$=CHR$ (RND (7)+96

):PROCchoose_sample(S$):PROCtest:PROCquestion
190 IF opt%=6 THEN PROCtable
200 IF opt%=7 THEN MODE 4:PROChelp
210 UNTIL FALSE
220 END
230 DEF PROCdemo
240 CLS
250 PROCinit
260 GCOL O,l:PROCdiagram
265 REPEAT
270 CLS :PRINT "Ions emerge from the ionsource with

a range of";
280 PRINT "velocities.""
290 PRINT "Between the plates theelectric field

exerts a";
300 PRINT "force, EQ, to the left.";
310 PROCarrow("L",138,636,20)
320 PROCpause(5):CLS
330 PRINT "The magnetic force BQvacts to the right

and is";
340 PRINT "proportional to the ionsvelocity."
350 PROCarrow("R",170,636,20)
360 PROCpause(5)
370 review=FNcont review
380 UNTIL NOT revIew
385 REPEAT
390 CLS :PRINT "If the ion"s velocity isjust right

the E and B";
400 PRINT "forces will be equal andopposite so the

ion will";
410 PRINT "pass undeflected throughthe velocity select

or."
420 PROCdraw track(350,1)
430 PROCpause(15)
440 CLS :PRINT "Hence:""
450 PRINT "Elec. force = Mag. force""
460 PRINT" ";CHR$ 226;" EQ = BQv so v E/B"
470 PROCpause(15)
480 PROCdraw_track(350,0):CLS
490 review=FNcont review
500 UNTIL NOT revIew
505 REPEAT
510 CLS :PRINT "Ions which have smallervelocities

will have a";
520 PRINT "smaller magnetic forceand so will be

deflectedto the left."
530 VDU 24,124;540;2l6;7l6::REM "GR WIN
540 PROCion(l,left%)
550 PROCpause(lO)
560 CLG :CLS :PRINT "Ions which have largervelocitie

s will have a":
570 PRINT "larger magnetic forceand so will be

deflectedto the right."
580 PROCion(l,right%)
590 PROCpause(lO)
600 CLG
610 review=FNcont review
620 UNTIL NOT revIew
630 VDU 24,0:0:1279:l023::REM "RESET GR.WIND.
635 REPEAT
640 CLS :PRINT "In the analyser regiononly the magne

tic fieldacts and it deflects theions into a
semicircularpath."

650 PROCdraw track(350,1)
660 PROCpause(15):CLS
670 PRINT CHR$ 226:" Magnetic = Centrepetal"
680 PRINT TAB(4,1)"force";TAB(16,1)i"force""

Simulations, Demonstrations and Tutorials

690 PRINT CHR$ 226;11 BQv = mvll;CHR$ 227;II/ rll
700 PRINT 'IIAnd since v=E/B then: 1I

710 PRINT'II m = BII ;CHR$ 227; II rQ/E II;

720 PROCpause(15)
730 PROCdraw_track(350,0)
740 review=FNcont_review
750 UNTIL NOT review
755 REPEAT
760 CLS :PRINT liThe diameter of the iontracks is

4.16m (ie thedistance from slit todetector).
Hence:'"

770 PRINT TAB(7);"r = 2.08m"
780 PRINT ""All ions have charge e";
790 PROCpause(10)
800 review=FNcont review
810 UNTIL NOT revIew
820 ENDPROC
830 DEF PROCtest
840 GCOL O,l:PROCdiagram
845 REPEAT
850 CLS :PRINT "Adjust B-field to givemaximum readin

g on thecurrent indicator."
860 PRINT ""Use : key to increase B""IIUse / key to

decrease B"
870 PRINT "" C/F keys select range";
880 PROCpause(5)
890 review=FNcont review
900 UNTIL NOT revIew
910 CLS :PRINT TAB(0,3);"Press SPACE at any time""

"to return to OPTION page"
920 PROCpause(4)
930 CLS :PRINT TAB{2,0);"r=2.08m E=50,000V/m"
940 PRINT TAB(4,2);"Q=e m = BII;CHR$ 227;"rQ/E"
950 REPEAT
960 FOR 1%=1 TO no of isotopes
970 radius%=FNr{B,m{I%))
980 PROCdraw track{radius%,l)
990 PROCmeter(radius%,abun(I%)/100,I%)

1000 NEXT 1%
1010 PROCadjust B
1020 UNTIL A=9
1030 ENDPROC
1040 DEF PROCinit
1050 VDU 23;8202;0;0;0;
1060 FOR 1%=0 TO 17
1070 S{I%)=SIN (I%*PI /16):C(I%)=COS (I%*PI /16)
1080 NEXT 1%
1090 RESTORE 1130
1100 FOR 1%=0 TO 16
1110 READ peak%(I%)
1120 NEXT I%
1130 DATA 8,28,64,112,176,240,300,340,350,340,300,240,1

76,112,64,28,8
1140 oldlen%=O:coarse%=TRUE
1150 left%=TRUE :right%=FALSE
1160 E=5E4:B=0.055:amu=1.66E-27:e=1.6E-19
1170 VDU 28,16,7,39,0:REM "* TEXT WIND.
1174 ENDPROC
1176 DEF PROCchars
1180 VDU 23,224,8,4,2,255,2,4,8,0:REM" R arrow
1190 VDU 23,225,16,32,64,255,64,32,16,0:REM "L arrow
1200 VDU 23,226,0,24,24,0,0,102,102,0:REM ""therefor

e '
1210 VDU 23,227,96,144,32,64,240,0,0,0:REM ""squared"
1220 ENDPROC
1230 DEF PROCchoose sample{sample$)
1240 LOCAL I%,dummy$
1250 RESTORE 1340
1260 REPEAT
1270 READ dummy$
1280 UNTIL dummy$=sample$
1290 READ symbol$
1300 READ no of isotopes
1310 FOR 1%=1 TO no of isotopes
1320 READ m{I%),abun{I%),A%
1330 NEXT I%
1339 REM "** SAMPLES **
1340 DATA "a","B",2,10.013,20,10,11.009,80,11

39

40 A Science Teacher's Companion to the SSC Microcomputer

1350 DATA "b","F",1,18.998,100,19
1360 DATA "c","C",2,12.000,98.89,12,13.003,1.11,13
1370 DATA "e","He",2,3.016,.01,3,4.003,99.99,4
1380 DATA "d","Ne",3,19.992,90.92,20,20.994,0.26,21,21.

991,8.82,22
1390 DATA "f","Mg",3,23.985,78.6,24,24.986,10.11,25,25.

983,11.29,26
1400 DATA "g","A1",1,26.982,100.0,27
1410 ENDPROC
1420 DEF PROCdraw track(r%,co1%}
1430 GCOL 0,co1% -
1440 MOVE 170,760:DRAW 170,508
1450 PROCsemicirc1e(r%,co1%}
1460 ENDPROC
1470 DEF PROCadjust B
1480 LOCAL radius%,I%
1490 @%=&2040A
1500 PRINT TAB(7,6};"B=";B;"T";
1510 IF coarse% THEN PRINT TAB(5,4};"<COARSE>";

ELSE PRINT TAB(5,4};"< FINE >";
1520 PRINT TAB{14,4};"Range";
1530 @%=10
1540 *FX15,0
15~0 REPEAT
1560 A=INSTR{"*:?/CcFf ",GET$ }
1570 UNTIL A
1580 IF (A=5 OR A=6) AND NOT coarse% THEN coarse%=

TRUE :SOUND 1,-10,200,2 ELSE IF (A=7 OR A=8)
AND coarse% THEN coarse%~FALSE :SOUND 1,-10,200,2

1590 IF coarse% THEN dB=.004 ELSE dB=.OOOl
1600 IF A>4 THEN ENDPROC
1610 FOR 1%=1 TO no of isotopes
1620 radius%=FNr(B,m(I%}}
1630 PROCsemicirc1e(radius%,0}
1640 NEXT 1%
1650 IF A=l OR A=2 THEN B=B+dB ELSE IF A=3 OR A=4

THEN B=B-dB
1660 ENDPROC
1670 DEF PROCdiagram
1680 VDU 29,-40;0;
1690 MOVE 160,512:DRAW 190,512
1700 MOVE 230,512:DRAW 1000,512:DRAW 1000,600:DRAW 1080

,600:DRAW 1080,512:DRAW 1120,512:REM "** TOP
LINE

1710 MOVE 1000,512:DRAW 1028,512:MOVE 1054,512:
DRAW 1080,512:REM "** DET. SLIT

1720 MOVE 160,540:DRAW 160,700:MOVE 160,620:DRAW 60,620
:REM "** LIH PLATE

1730 MOVE 260,540:DRAW 260,700:MOVE 260,620:DRAW 360,62
O:REM "** R/H PLATE

1740 MOVE 140,720:DRAW 190,720:MOVE 230,720:DRAW 300,72
O:REM "** UPPER SLIT

1750 REM "** BRACKETS
1760 MOVE 360,720:DRAW 380,700:DRAW 380,660
1770 MOVE 360,516:DRAW 380,536:DRAW 380,580
1780 REM "** ION SOURCE
1790 MOVE 200,760:DRAW 140,760:DRAW 140,940:DRAW 280,94

O:DRAW 280,760:DRAW 220,760
1~00 REM "** INDICATOR
1810 MOVE 1010,580:DRAW 1070,580:MOVE 1040,580:

DRAW 1040,690:DRAW 960,690:DRAW 960,720:DRAW 600,7
20

1820 DRAW 600,660:DRAW 960,660:DRAW 960,690
1830 REM "** DRAW SEMICIRCLE
1840 VDU 29,600;512;
1850 R%=480
1860 MOVE R%,O
1870 FOR ang%=O TO 16
1880 DRAW R%*C(ang%},-R%*S(ang%}
1890 NEXT ang%
1900 VDU 29,0;0;
1910 PROC1abels
1920 ENDPROC
1930 DEF PROC1abels
1940 LOCAL name$,X%,Y%
1950 VDU 5
1960 RESTORE 2000
1970 READ name$,X%,Y%

Simulations, Demonstrations and Tutorials

1980 MOVE X%,Y%:PRINT nameS
1990 IF name$="source" THEN VDU 4:ENDPROC ELSE 1970
2000 DATA 1-1,55,650,1+",270,650,Magnetic,1000,180,fiel

d,1000,148,(into screen),872,116
2010 DATA Analyser,60,120,region ->,60,88
2020 DATA Velocity,340,640,selector,340,608,Indicator,6

40,640,101,544,754,150 1,708,754,1100",872,754,Dete
ctor,1020,640,Ion,270,910,source,270,878

2030 DEF PROCsemicircle(radius,colour)
2040 LOCAL XC%,YC%,ang%
2050 GCOL O,colour
2060 XC%=170+radius:YC%=508
2070 VDU 29,XC%;YC%;
2080 MOVE -radius,O
2090 FOR ang%=O TO 16
2100 DRAW -radius*C(ang%),-radius*S(ang%)
2110 NEXT ang%
2120 IF radius>411 AND radius<421 THEN PLOT 1,0,68
2130 VDU 29,0;0;:REM "** Reset origin
2140 ENDPROC
2150 DEF PROCmeter(value,scale,J%)
2160 LOCAL K%,step,newlen%
2170 IF (value-412)*2<0 OR (value-412)*2>16 THEN newlen

%(J%)=O ELSE newlen%(J%)=scale*peak%((value-412)*2)
2180 IF J%<no of isotopes THEN ENDPROC
2190 FOR K%=l-TO-no of isotopes
2200 newlen%=newlen%+newlen%(K%)
2210 NEXT K%
2220 IF newlen%<oldlen% THEN step=-4:GCOL 0,0 ELSE

step=4:GCOL 0,3
2230 FOR K%=oldlen% TO newlen% STEP step
2240 MOVE 564+K%,664:DRAW 564+K%,716
2250 NEXT K%
2260 oldlen%=newlen%
2270 ENDPROC
2280 DEF FNr(B,m}=200*m*amu*E/(B

A2*e}

2290 DEF PROCarrow(direction$,X%,Y%,no flashes%)
2300 LOCAL arrowS -
2310 GCOL 4,1
2320 IF direction$="R" THEN arrow$=CHR$ 224 ELSE arrowS

=CHR$ 225
2330 VDU 5
2340 FOR J%=l TO 2*no flashes%
2350 MOVE X%,Y%:PRINT-arrow$;
2360 PROCpause(.4}
2370 NEXT J%
2380 VDU 4
2390 GCOL 0,1
2400 ENDPROC
2410 DEF PROCpause(secs)
2420 LOCAL time
2430 time=TIME
2440 REPEAT UNTIL TIME >=time+secs*100
2450 SOUND 1,-10,150,1
2460 ENDPROC
2470 DEF FNgetkey(key$}
2480 LOCAL pos
2490 REPEAT :pos=INSTR(key$,GET$
2500 UNTIL pos
2510 =pos
2520 DEF FNcont review
2530 CLS :LOCAL-key
2540 PRINT TAB(5,3};"C TO CONTINUE"
2550 PRINT TAB(5,5);"R TO REVIEW"
2560 *FXI5,0
2570 key=FNgetkey("CcRr"}
2580 IF key=3 OR key=4 THEN =TRUE ELSE =FALSE
2590 DEF PROCion(col%,left%}
2600 LOCAL Y%,A
2610 GCOL O,col%
2620 VDU 29,170;720;
2630 IF left% THEN A=-0.002 ELSE A=0.002
2640 MOVE 0,0
2650 FOR Y%=O TO -150 STEP -4
2660 DRAW A*y%A2,Y%
2670 NEXT Y%
2680 VDU 29,0;0;
2690 ENDPROC

41

42 A Science Teacher's Companion to the BBC Microcomputer

2700 DEF FNmenu
2710 CLS :PRINT
2720 VDU 141,131,157,132:PRINT TAB(12);"Options"
2730 VDU 141,131,157,132:PRINT TAB(12);"Options"
2740 PRINTTAB(3);"How the mass spectrometer works .. (

1) "
2750 PRINT "TAB(3);"Test a sample of Boron (2

)"
2760 PRINT "TAB(3);"Test a sample of F1uorine (3

)"
2770 PRINT "TAB(3);"Test a sample of Carbon (4

)"
2780 PRINT "TAB(3);"Identify an unknown samp1e (5

)"
2790 PRINT "TAB(3);"See a table of atomic masses (6

)"
2800 PRINT 'TAB(3);"How to calculate the atomic mass.(7

)"
2810 FOR J%=l TO 2
2820 VDU 136,141,131,157,132:PRINT TAB(4);"P1ease enter

your choice"
2830 NEXT J%
2840 *FX15,0
2850 REPEAT
2860 A%=GET -48
2870 UNTIL A%>O AND A%<8
2880 =A%
2890 DEF PROCtab1e
2900 CLS
2910 FOR J%=l TO 2
2920 VDU 141,135,157,129:PRINT "SYMBOL"jTAB(8);"MASS

No" jTAB(18) j "ATOMIC MASS,u"
2930 NEXT J%
2940 PRINT
2950 RESTORE 1340
2960 REPEAT
2970 READ dummy$,sym$,no_of_isotopes
2980 FOR 1%=1 TO no of isotopes
2990 READ am$,abund%,A% -
3000 PRINT TAB(6)jsym$jTAB(14)jA%jTAB(25)jam$
3010 NEXT 1%
3020 UNTIL durnmy$="g"
3030 PRINT "TAB(12)j"(lu=1.66x10-27kg)"
3040 PRINT :VDU 136,131,157,132
3050 PRINT TAB(4)j"Press any key to continue"
3060 A%=GET
3070 ENDPROC
3080 DEF PROCquestion
3090 LOCAL I%,try%,ans,num%
3100 CLS :CLG :VDU 26
3110 REPEAT
3120 INPUT"How many isotopes were present in the

samp1 e I. , num%
3130 IF num%<>no of isotopes THEN PROCwrong ELSE

PROCright - -
3140 UNTIL right
3150 PROCpause(3):CLS
3160 IF no of isotopes>l THEN PRINT"Taking the isoto

pes in ascending order of mass:"
3170 FOR 1%=1 TO no of isotopes
3180 PRINT"What Is the mass (in u) of "j

3190 IF no of isotopes=l THEN PRINT "the isotope."
ELSE PRINT "isotope "jI%

3200 try%=O
3210 REPEAT
3220 INPUT ans
3230 IF ABS (ans-m(I%))>0.04 THEN PROCwrong ELSE

PROCright
3240 try%=try%+l
3250 IF try%>=4 AND NOT right THEN PROChelp:CLS :

PRINT"Please re-input the mass of the isotope."
3260 UNTIL right
3270 PROCpause(3):CLS
3280 NEXT 1%
3290 PRINT "Now try to identify the isotope/s using

the table of atomic masses in Option (6)"
3300 PROCpause(5)
3310 ENDPROC

Simulations, Demonstrations and Tutorials

3320 DEF PROCwrong
3330 right=FALSE
3340 PRINT ""No, that's not correct."
3350 PRINT "'''Please try again."
3360 ENDPROC
3370 DEF PROCright
3380 right=TRUE
3390 PRINT "Yes, that's correct."
3400 ENDPROC
3410 DEF PROChelp
3420 CLS :try%=O
3430 PRINT "You have to use the following formula

tocalculate the mass, m :"
3440 PRINT TAB(16);"m=B";CHR$ 227;"rQ/E"
3450 PRINT "'" where:"'" "'''r=2. 08m" ... "'''Q=e=l. 6xlO-19C"

"E=50,000V/m"
3460 PRINT "NB The value calculated for m will be

inkg. To convert to atomic mass units (u)divide
m by 1.66xlO-27."

3470 PRINT " Press ANY key to continue"
3480 any%=GET
3490 ENDPROC

PROC/FN List

43

230 PROCdemo produces an ani~ated diagram and
explanatory text to convey the basic
operating principles of the spectrometer.

830 PROCtest simulates the testing of a sample
chosen from a list contained in DATA
statements (1340-1400).

1040 PROCinit sets up variables and user-defined
characters.

1230 PROCchoose_sample reads in data for a chosen
sample. The required sample is specified by
an identification letter ("a", lib", etc.)
passed in the parameter "'sa~ple$"'.

1420 PROCdraw track draws an ion track with
specified radius and colour. Uses
PROCsernicircle.

1470 PROCadjust_B checks control keys and changes
ranges or the value of "B" as appropriate.
If /B/ is changed the tracks are erased and
redrawn with the new radius.

1670 PROCdiagram draws a labelled diagram showing
the construction of the spectrometer.

1930 PROClabels prints labels read from DATA in
lines 2000-2020. The numbers are X,Y
graphics coordinates.

2030 PROCsemicircle draws a semicircular track
and extends it into the detector if the beam
falls on the detector slit.

2150 PROCmeter simulates an analogue galvo to
give a reading proportional to abundance.

2280 FNr calculates beam radius for the specified
magnetic field and mass values.

2290 PROCarrow flashes a left or right arrow for
the specified number of times.

44 A Science Teacher's Companion to the BBC Microcomputer

2410 PROCpause is the usual delay with an added
'beep' as the delay expires.

2470 FNgetkey, see earlier programs.
2520 FNcont review allows student to continue to

the next section or to review the preceding
one.

2590 PROCion draws the ion paths within the
velocity selector.

2700 FNmenu p~ints a list of options and obtains
the student's choice.

2890 PROCtable lists atomic symbols, masses and
mass numbers.

3080 PROCquestion tests the student's
understanding of the calculations.

3320 PROCwrong prints a response to a wrong
answer.

3370 PROCright prints a response to a correct
answer.

3410 PROChelp reviews the theory and shows how to
calculate the atomic mass.

is
less

this
theof

Program Description
120-210 Main loop which obtains a choice of option

number (1 to 7) from the menu and calls the
appropriate procedures.

230-3490 Procedure/function definitions:
PROCderno. Most of
self-explanatory. Some
obvious points are

In line 460 the 'CHR$226' prints a
mathematical 'therefore' symbol.
Line 530 sets a graphics window in the
velocity selector region. Hence the ion
tracks can be erased using 'CLG' without
clearing the entire diagram.
The 'CHR$227' in lines 690,710 is a
superscript '2', used to represent
'squared' .

PROCtest. The main part is a
REPEAT... UNTIL loop which ends when the
space bar is pressed (A = 9). Within this
loop, a FOR.. NEXT loop calculates the
radius, draws the track and updates the
meter reading for each isotope.
PROCinit. The only unusual part of this
procedure is the setting up of a 'look-up'
table for the SIN and COS values. These
are placed in the arrays S() and C() where
they can be later accessed much more
quickly than by recalling the SIN/COS

Simulations, Demonstrations and Tutorials 45

produces, on a 'bar-graph' meter
a reading that depends on the
of the isotope (that is the

'scale') and how close the beam

functions each time. Hence the speed of
circle drawing is increased. The othe~

main variables are
'E' the electric field strength, in

Vim.
'B' - the magnetic field strength, in T.
'amu' - the value of the atomic mass
unit, in kg.

e - the charge on the electron, in C.
PROCchoose_sample is self explanatory. If
you want to add extra data the format for
the DATA statement is identification
letter, chemlcal symbol, number of
isotopes, mass of first isotope, relative
abundance, mass number, mass of second
isotope, etc. (In line 3020 you will have
to change the "gil to the identification
letter of your last sample.)
PROCadjust_B waits for one of the control
keys to be pressed (1550-1570) and then
takes suitable action. Line 1580 inverts
the logical value of the Boolean variable
'coarse%' if the currently selected range
is compatible with the key pressed. (If
'coarse%' is TRUE the <COARSE> range is
selected, otherwise the <FINE> range is
chosen.) The variable 'dB' in line 1590
is the change in 'B' that will occur each
time it is adjusted. The value assigned
depends on the range selected. Lines
1610-1650 erase the old tracks (plot in
colour 0) before adjusting the 'B' value.
Hence the tracks will be redrawn with
their new radii when control returns to
PROCtest.
PROCdiagram is si~ply a series of
MOVE/DRAW statements which are REM'd so
that you can alter the diagram if you
wish.
PROCsemicircle calculates the coordinates
of the centre of the track and moves the
graphics origin to this point (lines
2060,2070). The semicircle is drawn by
lines 2080-2110 using the SIN/COS look-up
tables and line 2120 extends the end of
the track if it falls on the detector
'slit'.
PROCmeter
display,
abundance
parameter

46 A Science Teacher's Companion to the BBC Microcomputer

is to the centre of the slit - a radius of
416 will fall exactly on the centre. The
response characteristics of the meter are
stored in the array 'peak%()'. Line 2170
checks if the value supplied is within the
allowed range (412-420) and assigns an
appropriate value to 'newlen%()' for this
isotope. When the new readings for all
the isotopes have been obtained the total
scale length 'newlen%' will be calculated
(lines 2190-2210). If the new length is
less than the old length we will move
backwards from the old length to the new
length (negative STEP), drawing across the
scale cf the meter in colour 0, so the
reading is erased back to 'newlen%'.
Otherwise we move forward and draw in
colour 3 to extend the reading up to
'newlen%' - see lines 2220-2250.
FNcont_review calls 'FNgetkey' and returns
a FALSE value if 'c' or 'c' is pressEd and
a TRUE value if 'R' or 'r' is pressed.
PROCion moves the graphics origin to the
ion source exit slit (line 2620) and draws
a parabolic track curving to the left if
the Boolean variable 'left%' is TRUE,
otherwise the path is drawn to the right
(line 2630.)

FNmenu returns a numeric value in the
range 1 to 7, obtained in lines 2850-2870.
GET ret~rns the ASCII value of the key
pressed and since ASC("l") 49 then
GET-48 returns the value 1 if the '1' key
is pressed, 2 when the '2' key is pressed
and so on.
PROCquestion is fairly self-e~planatory.

It allows an err~r'of up to 0.02 in the
student's value for the atomic mass and
if, after three tries the answer is still
not correct, the 'help' routine is called
(line 3250.) This process continues until
the correct answer is given
(REPEAT ... UNTIL right see lines
3210-3260).

Modifications
You will probably want to add data for extra samples.
This can be done by following the DATA format given
above but note that at present all samples consist of
isotopes of one element only. This could be extended

Simulations, Demonstrations and Tutorials 47

by giving, in the DATA statements, the symbol for each
isotope present but you will have to alter the READ
statements in PROCchoose_sample and PROCtable to suit
the new format. It should also be easy to extend
PROCtest to ask further questions about the operation
of the spectrometer. The variable 'right' is set to
TRUE by calling PROCright, or FALSE by calling
PROCwrong. This variable can thus be tested in an
UNTIL statement and the question loop repeated until
the answer is 'right'.

INVESTIGATING THE SOUND COMMANDS ("SOUND_EDIT")

"SOUND EDIT" is a simple menu-driven sound editor
designed to enable you to explore the 'SOUND' and
'ENVELOPE' commands. The use of sound within the
framework of educational programs is still largely
unexplored. A later program ("H_SPECT") attempts to
introduce sound in an imaginative way in an effort to
reinforce the impact of the visuals. For details of
the 'SOUND' and 'E~VELOPE' commands see the User Guide,
page 180 to 187.

Listing "SOUND EDIT"

10 REM "*******************
20 REM "*** SOUND EDIT ***
30 REM "*** ***
40 REM "*** VERSION 1.1 ***
50 REM "*******************
60 MODE 7
70 VDU 23;8202;0;0;0;:REM "* CUR. OFF
80 CLS
90 PROCinit

100 REPEAT
110 PROCselect
120 UNTIL FALSE
130 END
140 DEF PROCmenu
150 PRINT 'CHR$ (141};TAB(14}"SOUND EDITOR"
160 PRINT CHR$ (141};TAB(14}"SOUND EDITOR"
170 PRINT 'CHR$ (132};CHR$ (157};CHR$ (13l};TAB(16);

"Options"
180 PRINT '''L - Listen to the current sound"
190 PRINT "s - Change the SOUND statement"
200 PRINT "T - Change ENVELOPE step value"
210 PRINT "P - Change ENVELOPE pitch parameters"
220 PRINT "A - Change ENVELOPE amplitude parameters"
230 PRINT 'CHR$ (132};CHR$ (157};CHR$ (13l}iCHR$ (136)

iTAB(13)i"Please Select"
240 PRINT ""SOUND ";C;","iA;","iP ",";0
25 0 PRI NT ' "E NV. " iN; " , " ; T ; " , " ; P (0) ","; P (1) ; " , " ; P (2) ;

" , "; P (3) r " , " i P (4) i " , ": P (5) i " ," A(0) i " , "A (1) r " , "A (2
};", "A(3) i", "A(4) ;", "A(5)

260 ENDPROC
270 DEF PROCselect
280 CLS
290 PROCmenu
300 REPEAT
310 opt=INSTR("LSTPA",GET$

48 A Science Teacher's Companion to the BBC Microcomputer

320 UNTIL opt<>O
330 CLS
340 IF opt=l THEN PROCplay
350 IF opt=2 THEN PROCsound
360 IF opt=3 THEN PROCT
370 IF opt=4 THEN PROCpitch
380 IF opt=5 THEN PROCamp
390 ENDPROC
400 DEF PROCinit
410 DIM P(5),A(5),P$(5),A$(5)
420 C=1:A=1:P=53:D=20
430 N=l:T=l
440 FOR 1=0 TO 5:READ P(I),P$(I):NEXT
450 FOR 1=0 TO 5:READ A(I),A$(I):NEXT I
460 DATA 0,PIl,0,PI2,0,PI3,0,PNl,0,PN2,0,PN3
470 DATA 127,AA ,-40,AD ,O,AS ,-2,AR ,127,ALA,80,ALD
480 ENVELOPE N,T,P(0),P(1),P(2),P(3),P(4),P(5),A(0),A(

1),A(2),A(3),A(4),A(5)
490 ENDPROC
500 DEF PROCplay
510 SOUND C,A,P,D
520 ENDPROC
530 DEF PROCT
540 PRINT ""The current value of T is "iT
550 PRINT ""Enter new T value (range 0 TO 255)"
560 REPEAT
570 INPUT T
580 UNTIL T>=O AND T<256
590 ENVELOPE N,T,P(0),P(1),P(2),P(3),P(4),P(5),A(0),A(

1),A(2),A(3),A(4),A(5)
600 CLS
610 ENDPROC
620 DEF PROCpitch
630 PRINT 'CHR$ 132iCHR$ 157iCHR$ 131iTAB(12)i"Pitch

Parameters""
640 FOR K=O TO 5
650 PRINT TAB(lO)i"("iK+li") to change "iP$(K)i"="iP(K)
660 NEXT K
670 PRINT TAB(10)i"(7) for Options page"
680 PRINT "TAB(6)i"Press"CHR$ 129"L"CHR$ 135"to liste

n to sound."
690 PRINT TAB(8,20)iCHR$ (l36)i"Please select a number"
695 REPEAT
700 REPEAT
710 I=INSTR("l234567L",GET$
720 UNTIL 1<>0
730 IF 1=8 THEN PROCplay
740 IF 1>6 THEN 840
750 PRINT TAB(0,I+3)iCHR$ 129iCHR$ l57iCHR$ 135i:

REM "** HIGHLIGHT CHOICE **
760 PRINT TAB(8,20)iSPC (39)
770 PRINT TAB(9,16)iCHR$ l36i"Enter new "iP$(I-l)i
780 INPUT" value: "P(I-l)
790 PRINT TAB(0,I+3)i" "i
800 PRINT TAB(0,16)iSPC (39)
810 PRINT 'TAB(8,20)iCHR$ (136)i"Please select a numbe

r"
820 PRINT TAB(28,I+3)iP(I-l)i"
830 ENVELOPE N,T,P(0),P(1),P(2),P(3),P(4),P(5),A(0),A(

1),A(2),A(3),A(4),A(5)
840 UNTIL 1=7
850 ENDPROC
860 DEF PROCsound
870 PRINT '''SOUND'' iCi"," iAi"," iPi"," iDi
880 PRINT ""Enter"iCHR$ (129)i"pitch"iCHR$ (135)i

"value (0 to 255)"
890 REPEAT
900 INPUT P
910 UNTIL P>=O AND P<256
920 PRINT '''Enter''CHR$ (129)i"duration"iCHR$ (135);

"value (0 to 254)"
930 REPEAT
940 INPUT D
950 UNTIL D>=O AND D<255
960 CLS
970 ENDPROC
980 DEF PROCamp

Simulations, Demonstrations and Tutorials 49

990 PRINT 'CHR$ 132iCHR$ 157iCHR$ 131iTAB(9)i"Amplitud
e Parameters""

1000 FOR K=O TO 5
1010 PRINT TAB(lO)i"("iK+li") to change "iA$(K)i"="iA(K)
1020 NEXT K
1030 PRINT TAB(10)i"(7) for Options page"
1040 PRINT "TAB(6)i"Press"CHR$ 129"L"CHR$ 135"to liste

n to sound."
1050 PRINT TAB(8,20)iCHR$ (136)i"Please select a number"
1055 REPEAT
1060 REPEAT
1070 I=INSTR("1234567L",GET$
1080 UNTIL I<>O
1090 IF I=8 THEN PROCplay
1100 IF I>6 THEN 1200
1110 PRINT TAB(0,I+3)iCHR$ 129iCHR$ 157iCHR$ 135i:

REM "** HIGHLIGHT CHOICE **
1120 PRINT TAB(8,20)iSPC (39)
1130 PRINT TAB(9,16)iCHR$ 136i"Enter new "iA$(I-l)i
1140 INPUT " value: "A(I-I)
1150 PRINT TAB(0,I+3)i" "i
1160 PRINT TAB(0,16)iSPC (39)
1170 PRINT TAB(8,20)iCHR$ (136)i"Please select a number"
1180 PRINT TAB(28,I+3)iA(I-l)i"
1190 ENVELOPE N,T,P(0),P(1),P(2),P(3),P(4),P(5),A(0),A(

1) ,A(2) ,A(3) ,A(4) ,A(5)
1200 UNTIL I=7
1210 ENDPROC

ENVELOPEfor

screen with the
commands.

option (,opt')
and calls the

PROC/FN List
140 PROCmenu prints the menu

current SOUND and ENVELOPE
270 PROCselect obtains the

selected from the menu
appropriate procedure.

400 PROCinit sets up variables and arrays
containing the various parameter values.

500 PROCplay executes the current 'SOUND'
command.

530 PROCT allows the value of the 'T' parameter
to be defined.

620 PROCpitch allows new values for the ENVELOPE
pitch parameters to be entered.

860 PROCsound inputs new SOUND command pitch and
duration values.

880 PROCamp inputs new values
amplitude parameters.

Program Description
The program is quite straightforward, the main loop
(100-120) repeatedly calling PROCselect which then
calls other procedures as necessary. The arrays P()
and A() are used to store the current envelope pitch
and amplitude parameters, respectively. The initial
'default' values are given in the two DATA statements
(460-470) and these are easily altered if desired. The
parameter names are in accord with those used in the
User Guide and are also stored in these DATA

50 A Science Teacher's Companion to the BBC Microcomputer

statements. They are read into arrays P$() and A$().
The SOUND channel (C), amplitude (A), pitch (P) and
duration (D) have values assigned in line 420.

REACTION TIMING ("REACTION")

Apart from being a useful program which allows the
investigation of the subject's reaction time and its
possible dependence on the type of stimulus used,
"REACTION" illustrates the use of the user port and the
storage of experimental data as files on tape or disk.
To protect the keyboard from over-enthusiastic subjects
who can be inclined to give it a bashing, the program
uses a separate push-button switch connected to the
'B7' line of the user port see chapter 3 for
connection details. The stimulus to which the subject
must respond can either be an LED or a sound or both.
The LED - light-emitting diode - is driven by the user
port via a simple buffer circuit, details of which are
also given in chapter 3. The VDU is used to provide
the operator with essential information while the
program is running. The type of stiwulus used and the
number of tests for each subject may be selected. All
the results are stored in the memory (room has been
reserved for 500 but this could be expanded) and at the
end of a session all results can be saved onto
tape/disk for later analysis. In addition they may be
loaded in again at a later time and the session
continued from where it was left off. The results may
also be obtained in tabular form on the screen or a
printer.

Listing "REACTION"

10 REM "********************
20 REM "*** REACTION ***
30 REM "*** ***
40 REM "*** (c) ***
50 REM "*** P. Hawthorne ***
60 REM "*** ***
70 REM "*** 1983 ***
80 REM "********************
90 MODE 7

100 ?&FE62=127:?&FE60=0
110 on%=TRUE :off%=FALSE
120 DIM subject%(500),time%(500)
130'DIM stim% 500
140 FOR 1%=0 TO 500
150 ?(stim%+I%)=O
160 NEXT
170 VDU 23;8202;0;0;0;
180 PRINT TAB(6,12);"Input data from tape (YIN)?"
190 choice%=FNgetkey("YyNn")
200 IF choice%=3 OR choice%=4 THEN subj num%=l:test nu

m%=O:tests this subj%=l ELSE PROCget data -
210 PROCscreen- - -
220 REPEAT
230 *FX15,1
240 PROCprint
250 comm%=FNgetkey("123459")

Simulations, Demonstrations and Tutorials

2bU IF comm%<4 THEN column%=0:row%=2*comm%+1 ELSE
column%=20:row%=2*comm%-5

270 PRINT TAB(column%,row%)iCHR$ 134i
280 IF comm%=l THEN light%=on%:sound%=off%:time%(test

num%)=FNtime(light%,sound%):PROCinc -
290 IF comm%=2 THEN light%=off%:sound%=on%:time%(test

num%)=FNtime(light%,sound%):PROCinc -
300 IF comm%=3 THEN light%=on%:sound%=on%:time%(test n

um%)=FNtime(light%,sound%):PROCinc -
310 IF comm%=4 THEN PROCrand
320 IF comm%=5 THEN subj num%=subj num%+l:tests this s

ubj%=l - - --
330 IF comm%>O AND comm%<4 THEN subject%(test num%-l)=

subj num%:?(stim%+test num%-I)=comm% -
340 IF comm%<5 THEN PRINT TAB(17,19)itime%(test num%-1

)i" centiseconds "iTAB(17,20)itime%(test num%-I)
i" centiseconds -

350 PRINT TAB(column%,row%)iCHR$ 132i
360 UNTIL comm%=6
370 PROCend
380 STOP
390 DEF PROCprint
400 LOCAL 1%
410 FOR 1%=1 TO 2
420 PRINT TAB(17,9+I%)isubj num%
430 PRINT TAB(17,12+I%)itests this subj%i"
440 PRINT TAB(17,15+I%)itest num% -
450 NEXT 1% -
460 ENDPROC
470 DEF PROCinc
480 test num%=test num%+1
490 testi this sub3%=tests this subj%+1
500 ENDPROC - --
510 DEF PROCscreen
520 CLS
530 PRINT CHR$ 131iCHR$ 157iCHR$ 129iTAB(16,0)i

CHR$ 141i"COMMANDS"
540 PRINT CRR$ 131iCHR$ 157iCHR$ 129iTAB(16,I)i

CHR$ 141i"COMMANDS"
550 FOR Y%=1 TO 3
560 PRINT TAB(0,2*Y%+I)iCHR$ 132iCHR$ 157iCHR$ 135iY%i

" "iCHR$ 156iTAB(20,2*Y%+1)iCHR$ 132iCHR$ 157i
CHR$ 135iY%+3i" "iCHR$ 156i

570 NEXT Y%
580 PRINT TAB(23,7)i"9"
590 FOR data%=1 TO 6
600 READ X%,Y%,name$
610 PRINT TAB(X%,Y%)iname$
620 NEXT data%
630 DATA 6,3,light,6,5,sound,6,7,light & sound,26,3,ra

ndom choice,26,5,next subject,26,7,End
640 FOR 1%=1 TO 2
650 PRINT TAB(0,9+I%)iCHR$ 141i"Subject number ="
660 PRINT TAB(0,12+I%)iCHR$ 141i"Next test No ="
670 PRINT TAB(0,15+I%)iCHR$ 141i"Total tests ="
680 PRINT TAB(0,18+I%)iCHR$ 141i"Previous time .. ="
690 NEXT 1%
700 ENDPROC
710 DEF FNgetkey(valid$)
720 REPEAT
730 K%=INSTR(valid$,GET$
740 UNTIL K%
750 =K%
760 DEF FNtime(L%,S%)
770 TIME =0
780 REPEAT
790 IF (?&FE60 AND 128) THEN PROCcheat
800 UNTIL TIME >=RND (10)*100+200
810 IF S% THEN SOUND 1,-15,150,2
820 IF L% THEN ?&FE60=1:REM "TURN ON LED
830 TIME =0
840 REPEAT UNTIL (?&FE60 AND 128):REM" Read bit

B7
850 ?&FE60=0:REM "TURN OFF LED
860 =TIME
870 DEF PROClist
880 CLS
890 FOR K%=1 TO 2

51

52 A Science Teacher's Companion to the BBC Microcomputer

900 VDU 141,132,157,131:PRINT TAB(2);"Subject";
TAB(13);"Time";TAB(22);"Stimulus"

910 NEXT K%
920 VDU 28,0,24,39,2:REM "Text window
930 FOR 1%=0 TO test num%-l
940 IF (1%+1) MOD 20~0 THEN PROCwait:CLS
950 PRINT subject%(I%),time%(I%),?(stim%+I%)
960 NEXT 1%
970 PRINT '
980 VDU 132,157,131:PRINT "Finished. Press SPACE

BAR to EXIT"
990 key%=FNgetkey(" ")

1000 VDU 26:REM "Reset windows
1010 ENDPROC
1020 DEF PROCrand
1030 LOCAL I%,rand%,num tests%
1040 VDU 31,0,23,132,15~,131:PRINT "How many tests

do you want done ";
1050 INPUT num tests%
1060 VDU 11:PRINT SPC (40);
1070 FOR 1%=1 TO num tests%
1080 TIME =O:REPEAT UNTIL TIME =150
1090 rand%=RND (3)
1100 IF rand%=l THEN light%=l:sound%=O
1110 IF rand%=2 THEN light%=O:sound%=l
1120 IF rand%=3 THEN light%=l:sound%=l
1130 time%(test num%)=FNtime(light%,sound%)
1140 PROCinc -
1150 PROCprint
1160 PRINT TAB(17,19);time%(test num%-l);" centiseconds

";TAB(17,20);time%(test ~um%-l);" centiseconds
" -

1170 subject%(test num%-l)=subj num%:?(stim%+test num%-
l)=rand% - - -

1180 NEXT 1%
1190 PRINT SPC (40)
1200 ENDPROC
1210 DEF PROCcheat
1220 PRINT TAB(15,22);CHR$ 141;"CHEATING!!!";TAB(15,23)

;CHR$ 141;"CHEATING!!!";
1230 REPEAT UNTIL (?&FE60 AND 128)=0
1240 PRINT TAB(O,22);SPC (40);TAB(O,23);SPC (40);
1250 TIME =0
1260 ENDPROC
1270 DEF PROCend
1280 CLS
1290 VDU 141,132,157,131:PRINT TAB(12)"Options"
1300 VDU 141,132,157,131:PRINT TAB(12)"Options"
1310 PRINT "'TAB(14);"You may now:"'
1320 PRINT '"Save the data onto tape ..•.•..• Press <S>"
1330 PRINT '"Obtain a printout of the data .. Press <P>"
1340 PRINT '"List the data on the screen Press <L>"
1350 PRINT '"Exit from the program Press <E>"
1360 PRINT "
1370 FOR 1%=1 TO 2
1380 VDU 136,141,132,157,131:PRINT TAB(4);"Please enter

your choice"
1390 NEXT 1%
1400 choice%=FNgetkey("SsPpLlEe")
1410 IF choice%=l OR choice%=2 THEN PROCsave:PROCend
1420 IF choice%=3 OR choice%=4 THEN PROCdump:PROCend
1430 IF choice%=5 OR choice%=6 THEN PROClist:PROCend
1440 IF choice%=7 OR choice%=8 THEN PROCsure:PROCend
1450 ENDPROC
1460 DEF PROCsure
1470 CLS
1480 PRINT TAB(10,12)"Are you sure (YIN) ?"
1490 ans%=FNgetkey("YyNn")
1500 IF ans%=l OR ans%=2 THEN END
1510 ENDPROC
1520 DEF PROCsave
1530 LOCAL X,J%
1540 CLS
1550 VDU 28,9,12,27,11
1560 X=OPENOUT ("reaction")
1570 PRINT #X,test_num%,subj_num%,tests_this_subj%
1580 FOR J%=O TO test num%-l

Simulations, Demonstrations and Tutorials

1590 PRINT #X,subject%(J%),time%(J%)
1600 BPUT #X,?(stim%+J%)
1610 NEXT J%
1620 CLOSE #X
1630 VDU 26
1640 ENDPROC
1650 DEF PROCget data
1660 LOCAL X,J% -
1670 X=OPENUP ("reaction")
1680 INPUT #X,test nurn%,subj num%,tests this subj%
1690 FOR J%=O TO test num%-l- --
1700 INPUT #X,subject%(J%),time%(J%)
1710 ?(stim%+J%)=BGET #X
1720 NEXT J%
1730 CLOSE #X
1740 ENDPROC
1750 DEF PROCwait
1760 PRINT ~

1770 VDU 132,157,131:PRINT II MORE! Press SPACE BAR
to continue"

1780 A=FNgetkey(" ")
1790 ENDPROC
1800 DEF PROCdump
1810 VDU 2:REM "Printer ON
1820 PRINT TAB(6):ISubject l:TAB(17):ITime":TAB(26):

IStimulus l:TAB(36):ISubject l:TAB(47):ITime":

TAB(56):IStimulus"
1830 FOR J%=O TO test num%-l STEP 2
1840 PRINT sUbject%(J%),time%(J%),?(stim%+J%),subject%(

J%+l),time%(J%+l),?(stim%+J%+l)
1850 NEXT J%
1860 VDU 3:REM "Printer OFF
1870 ENDPROC

53

PROC/FN List
380 PROCprint prints, in double height, the

current subject number, the number of tests
for this subject and the present total of
tests.

470 PROCinc increments the total number of
tests and the number of tests for this
subject.

510 PROCscreen sets up the non-changing parts of
the teletext screen, showing the various
commands available.

710 FNgetkey.
760 FNtime does the actual reaction timing.
870 PROClist prints the tabulated results on the

screen.
1020 PROCrand can be used to carry out the

various tests on a random basis -which is
useful to avoid any bias in the operator or
so that he may do a self-test.

1210 PROCcheat is a hold loop which notifies the
operator that the subject is holding the
switch closed. Timing will not proceed
until the switch is released.

1270 PROCend is used at the end of a session to
control listing, dumping and saving of data.

54 A Science Teacher's Companion to the BBC Microcomputer

1460 PROCsure provides the operator with a chance
to change his mind if he has chosen to exit
the program, perhaps by mistake before
saving the data.

1520 PROCsave opens a file and records the data
currently stored in the memory.

1650 PROCget_data is used to read in a file of
data recorded during a previous session.

1750 PROCwait simply waits for the space bar to
be pressed - it is used when listing the
data to the screen.

1800 PROCdump sends the data to an attached
printer.

Program Description
100 Set up user port lines: BO to B6 as outputs,

B7 as input. Turn off all outputs.
120 Set up arrays for subject number and

reaction times - can be enlarged if memory
constraints allow.

130- 160 Reserve memory for 500 bytes and set them
all to zero. This is used to store the
stimulus numbers. These have values of 1, 2
or 3 only, so considerable memory can be
saved by using single bytes rather than
integer arrays, which use four bytes to
store each number.

180- 200 Allow data to be input from tape, if
desired, otherwise the essential values are
initialised by the program.

220- 360 Main loop, ends if command number 6 ('End')
is selected.

230 Flush old key presses from the buffer.
240 Print the latest values.
250 Get one of the commands (comm%).

260- 270 Highlight the chosen command. (260 works out
where to print the highlighting colour
control cede - CHR$134).

280- 340 These lines call the appropriate procedures
and functions, depending on the chosen
command (commands 1 to 3 = manually chosen
stimulus, command 4 randomly chosen
stimulus, command 5 move on to next
subject)

330 For manual commands (1 to 3) record the
subject number and stimulus number (1 =
'light', 2 = 'sound' and 3 'light and
sound") .

340 For all timing commands, print the latest
reaction time.

350 Remove the command highlight.

Simulations, Demonstrations and Tutorials 55

390-1870 Procedure and function definitions. The
most important of these are the following

760-860 FNtime(L%,S%). L% is a Boolean
(TRUE/FALSE) parameter which controls the
on/off state of the LED, and S% performs
the same function for sound. Lines
770-800 set up a random delay before the
stimulus is provided. 780 checks if the
subject's switch is already closed (user
line B7 is high) and calls the 'cheat'
routine if it is. This latter waits until
the switch is released again (line 1230)
and then zeros TIME so that the random
delay in FNtime will be reset. If the
subject has stopped cheating, control will
pass to lines 810 and 820 which provide
the sound and/or light as selected. Lines
830-840 form the actual timing loop,
waiting until the switch is pressed and
then returning with the value of TIME.
1520-1640 PROCsave shows how to record
stored data onto a long-term storage
medium: cassette tape or disk. Line 1560
opens a file called "reaction" for the
outputting of data (disk users are limited
to file names of seven letters only so
this line must be changed on a disk
system). Line 1570 sends, in the order
that they are listed, the values of the
variables giving respectively, the total
number of tests, the current subject
number and the number of tests carried out
on this subject, respectively. The J%
loop (lines 1580-1610) then saves all test
data that has been stored in the memory.
The arrays for subject number and time are
saved, in line 1590, by the 'PRINT#'
statement, and the single bytes used to
store the type of stimulus are saved by
the 'BPUT#' statement. Note that
PRINT#X,N% saves the number N% (it is
stored in four bytes) whereas the
BPCT#X,?N% saves the single byte contents
of the memory location N%. See chapter 4
for further details of filing commands.
Line 1620 closes the file now that we have
finished writing to it.
1650-1740 PROCget_data simply reads in the
information already stored in the file
created by the previous procedure. Note

REM "****************
REM "* GRAPH *
REM "* *
REM "* (c) 1983 *
REM "* *
REM "* P. HAWTHORNE *
REM "****************

56 A Science Teacher's Companion to the BBC Microcomputer

that the file is ~opened for input~ (1670)
since we shall be reading it rather than
writing to it. Also note that the values
must be input (INPUT# for numbers or BGET#
for bytes) in the same order that they
were recorded, otherwise severe confusion
will arise! Again the file is closed as
soon as we are finished with it.

"GRAPH"

This is a general purpose program that should find a
use in a wide range of subjects. It enables either one
or two functions to be input in terms of the variable
x. These are then plotted on automatically scaled
axes. Comprehensive error trapping is provided, both
for errors that may be present in the function itself
(such as 'Missing'), and for other errors that appear
when the function is evaluated (such as the ~-ve root'
and 'Division by zero' errors). With errors in the
function, the error is reported and the user is asked
to re-enter the function correctly. The second type of
error is 'flagged; during evaluation but not reported.
When the function is plotted the flags are checked to
avoid trying to plot any impossible points. If any
readers should discover ether errors that are not
trapped, I would be glad to hear from them!

Listing "GRAPH"

10
20
30
40
50
60
70
80
90

100 ON ERROR GOTO 1360
110
120
130 DIM Y(100,2),f$(2),Err flag%(100,2)
140 @%=&20201 -
150 Error flag%=O
160 MODE 7
170 PRINT ""00 you want to plot 1 or 2 functions?""
180 num f%=FNgetkey("12")
190 PROCinputl
200 IF num f%=2 THEN PROCinput2
210 step=(xmax-xmin)/num_points%
220
230
240 REM "Loop thru' & evaluate funcs
250
260 1%=0
270 REPEAT
280 IF Error flag%=l THEN Error_flag%=O:GOTO 310
290 J%=O:X=xmin

Simulations, Demonstrations and Tutorials

300 IF 1%=0 THEN ymin=EVAL (f$(I%)):ymax=EVAL (f$(I%))
310 REPEAT
315 IF X>=xmax THEN 360
320 Y(J%,I%)=EVAL (f$(I%))
330 IF Y(J%,I%)<ymin THEN ymin=Y(J%,I%)
340 IF Y(J%,I%»ymax THEN ymax=Y(J%,I%)
350 J%=J%+l:X=X+step
360 UNTIL X>=xmax
370 1%=1%+1
380 UNTIL I%=num_f%
390
400
410 Xsca1e=1279/(xmax-xmin)
420 Ysca1e=868/(ymax-ymin)
430 IF ymin>=O THEN OY=O ELSE OY=-Ysca1e*ymin
440 IF xmin>=O THEN OX=O ELSE OX=-Xsca1e*xmin
450 MODE 1
460 VDU 19,1,2,0,0,0
470 VDU 29,OX;OY;:REM "Origin for axes
480 PROCaxes(xmax*Xsca1e,xmin*Xsca1e,ymax*Ysca1e,ymin*

Ysca1e)
490 VDU 29,-Xsca1e*xmin;-Yscale*ymin::REM "Origin

for plotting
500 PROClabels(xmin,xmax,Xscale,ymin,ymax,Yscale)
510
520
530 REM "Loop thru' & plot functions
540
550 FOR F%=O TO num f%-l
560 GCOL O,F%+l -
570 PLOT 69,Xscale*xmin,Yscale*Y(0,F%)
580 FOR K%=l TO J%-l
590 IF Err flag%(K%,F%)=l THEN K%=K%+l:MOVE Xscale*(xm

in+step*K%),Yscale*Y(K%,F%) ELSE DRAW Xsca1e*(xmin
+step*K%),Yscale*Y(K%,F%)

600 NEXT K%
610 NEXT F%
620 COLOUR l~PHINT "Y="f$(O)
630 IF num_f%=2 THEN COLOUR 2:PRINT "Y="f$(l)
640
650
660 COLOUR 3
670 PRINT "Do you want another plot (YIN)?":
680 SOUND 2,-15,220,3:S0UND 2,0,0,3:S0UND 2,-15,220,3:

SOUND 2,0,0,3:S0UND 2,-15,220,3
690 A%=FNgetkey("YyNn")
700 IF A%=l OR A%=2 THEN RUN
710 END
720
730
740
750 DEF PROCinputl
760 INPUT "Enter function 1" "f$(O)
770 INPUT '''Minimum X value "xmin
780 PRINT '''Maximum X value";
790 xmax=FNinput(xmin,lE32)
800 PRINT '''Number of points (10 to 100)":
810 num points%=FNinput(10,100)
820 PROCc1ear flags
830 ENDPROC -
840
850 DEF PROCclear flags
860 LOCAL I%,J%
870 FOR 1%=0 TO 100
880 FOR J%=O TO 1
890 Err flag%(I%,J%)=O
900 NEXT J%
910 NEXT 1%
920 ENDPROC
930
940 DEF PROCinput2
950 INPUT ' '''Enter function 2 ,,' 'fS (1)
960 PROCclear flags
970 ENDPROC -
980
990 DEF FNinput(min,max)

1000 LOCAL value
1010 REPEAT

57

58 A Science Teacher's Companion to the BBC Microcomputer

1020 INPUT II "value
1030 IF value<min OR value>max THEN SOUND 1,-15,50,2
1040 UNTIL value>=min AND value<=max
1050 =value
1060
1070 DEF FNgetkey(valid$}
1080 LOCAL N%
1090 REPEAT
1100 N%=INSTR(valid$,GET$
1110 UNTIL N%
1120 =N%
1130
1140 DEF PROCaxes(Xhi,Xl0,Yhi,Ylo}
1150 MOVE Xl0,0:DRAW O,O:DRAW Xhi,O
1160 MOVE O,Ylo:DRAW O,O:DRAW O,Yhi
1170 ENDPROC
1180
1190 DEF PROClabels(XL,XH,Xsc,YL,YH,Ysc}
1200 LOCAL X$
1210 VDU 5
1220 X$=STR$ (XH)
1230 IF YL>=O THEN MOVE XH*Xsc-32*LEN (X$},YL*Ysc+40

ELSE MOVE XH*Xsc-32*LEN (X$},40
1240 PRINT X$
1250 IF XL>=O THEN MOVE XL*Xsc+40,YH*Ysc ELSE MOVE 40,Y

H*Ysc
1260 PRINT YH
1270 X$=STR$ (XL)
1280 IF YL)=O THEN MOVE XL*Xsc,YL*Ysc+40 ELSE MOVE XL*X

sc,40
1290 PRINT X$
1300 IF XL>=O THEN MOVE XL*Xsc+40,YL*Ysc+40 ELSE

MOVE 40,YL*Ysc+40
1310 PRINT YL
1320 VDU 4
1330 ENDPROC
1340
1350
1360 IF ERR =17 THEN MODE 7:END
1370 Error flag%=O
1380 RESTORE
1390 REPEAT
1400 READ err code%,err type%
1410 UNTIL err code%=999 OR err code%=ERR
1420 REM "Err type%=l=Error in func.
1430 REM "Err-type%=2=Eva1uat"'n error
1440 REM "Err-type%=3=Other errors
1450 ON err type% GOTO 1460 ,1480 ,1520
1460 SOUND 1,-15,40,2:CLS :REPORT :PRINT " in:" f$(I%)

...... "Please check and re-enter correctly" ...
1470 IF 1%=0 THEN GOTO 190 ELSE GOTO 200
1480 SOUND 1,-15,100,2:Err flag%(J%,I%}=l
1490 J%=J%+l:X=X+step -
1500 Error flag%=l
1510 GOTO 270
1520 MODE 7:REPORT :PRINT n at niERL :END
1530 DATA 4,1,14,1,26,1,27,1
1540 DATA 18,2,20,2,21,2,22,2,23,2,24,2
1550 DATA 999,3

PROC/FN List

750 PROCinputl inputs the first function for
plotting, the minimum and maximum X values
and the number of points to be plotted.

850 PROCclear_flags sets the err01 flags to
zero.

940 PROCinput2 inputs the second function.
990 FNinput accepts an input only if it lies

between the values 'min and 'max',
inclusive.

Simulations, Demonstrations and Tutorials 59

1070 FNgetkey.
1140 PROCaxes draws the X/Y axes.
1190 PROClabels plots the minimum and maximum

values at the correct points on the X/Y
axes.

Program Description

130

210

260-380

280

300

330

340

350
370

410-500
410

420
430-490

Set up arrays - Y(j,i) stores the evaluated
functions fl(Xj) and f2(Xj), f$() stores the
functions themselves and Err flag%(j,i)
stores the error flags for each point (j) of
each function (i): 0 = OK,l = error.
Calculate the interval to be used between X

values.
Nested REPEAT loops which evaluate and store
the Y values of the functions. If an error
occurs in this section, the routine at 1360
will be called and 'Error-flag%' will be set
before control is returned to line 270.
Check if error has occurred, clear flag if
necessary and jump to inner loop.
Get initial values for the function's
minimum and maximum Y values.
If current Y value is less than current
minimum value set new minimum value to
current value.
If current Y value is more than current
maximum value set new maximum value to
current value.
Next value.
Next function.
Set up scaling, origin and axes.
Calculate X scale so that range of X values
will fit on screen.
As above for Y values.

These lines draw appropriate axes to suit
the range of values to be plotted and then
move the graphics origin so that the minimum
and maximum values will be plotted in the
correct places. Perhaps the best way to
understand this part of the program is to
consider one or two examples, as shown in
the table below:

xmin xmax Xsca1e ymin ymax Ysca1e -Xsca1e -Ysca1e
*xmin *ymin

ox OY

90
-90

360
180

4.74
4.74

-1
-1

434
434

-426
426

434
434

o
426

434
434

60 A Science Teacher's Companion to the BBC Microcomputer

In both examples the minimum Y values are negative
so the X axis (Y = 0) is set above the minimum Y value
by a sufficient amount to ensure that both it and the
maximum Y value are visible, taking into account the
scaling. The scales are calculated to make sure the
range of X and Y values will fit the available screen
area (1279 x 868 - lines 410,420). In the first example
the minimum X value is positive so the Y axis (X = 0)
has to be drawn to the left of it (OX = 0 - line 440).
The minimum X value is negative in the second example,
so the axis is set to the right of this point by the
appropriate distance. Once the axes are drawn, the
plotting origin is shifted, if necessary (only when the
minimum values are positive), to locate the minimum X,Y
values at the left/bottom edges of the screen,
respectively. If this still seems complicated let me
at least assure you that it works! Try plotting a few
different functions to see the effect.

550-610 Plotting loop - F% = function number (0 or
1), K% = point number.

560 Select a different colour for each function.
570 Plot the first point.
590 Check the error flag for this point. If it

is set then move to the next point,
otherwise draw to this point.

620-630 Print the functions, in matching colours, at
the top of the screen.

750-1330 Procedure function definitions:
There is nothing very difficult here
except, perhaps, the parameters in
PROClabels which are the lowest, highest
and scale values, respectively, for the X
axis, and the same for the Y axis. The X
values are converted to strings so that
their length can be allowed for when
deciding where to print them. The rest of
the procedure decides where the axes are,
to enable the values to be printed in the
correct place.
1360-1550 Error-handling routine. This
first checks to see if ~he 'Escape' key
has been pressed (error code, ERR 17)
and if so reverts to Mode 7 and ends. If
escape was not the cause of the error the
routine checks its list of recognised
errors (lines 1530,1540) to see if the
current error code matches one of them.
It will either find a match or it will
reach the end of the data, signified by
the dummy error code 999. In the latter
case the error is not one of the predicted
ones, so it will be reported and the

Simulations, Demonstrations and Tutorials 61

program ends - line 1520. This has been
denoted as error type 3. If the error was
caused by a typing error in the function,
this will be matched by one of the error
codes of 'type l' - line 1530. The 'ON
err_type% GOTO' statement (1450) will
direct control to line 1460 which reports
the error, prints the function and prompts
for a re-entry. Depending on which
function contained the error, line 1470
will jump to the appropriate line in the
main program. If the error occurred
during evaluation ('Type 2') its code
should be matched by one in line 1540 and
the program will execute lines 1480-1510.
These cause a beep, set the appropriate
error flag in the array (line 1480),
advance to the next point (1490) and set
the main error flag before returning to
the start of the evaluation loop at line
270.

Some interesting functions to try

function 1

1/(5-X)
SIN(X)
X

A

2
SQR(lO-X)

function 2

(SIN(X))A2

xmin xmax num. of
points

-10 10 40
0 12.6 100

-10 10 40
0 20 20

These are just a few examples to get you started:
maths can suddenly become much more fun with this
program! Among the sericus uses, you can use it to
solve simultaneous equations, do curve tracing to
examine the trends in functions, find their turning
points and so on. In addition it can answer the 'what
if' type of question when one wishes to examine the
effect on a function of varying certain constants. ~s

a general hint, if you are unsure of the function's
behaviour, plot it first using quite a wide range of X
values: this will indicate the general shape. Details
can then be revealed by narrowing down the X values to
the region of main interest. If you are going to plot
the same function several times it can be a good idea
to program it into one of the function keys. For
example

*KEY 0 5*X~3+7*X~2+3*X+ll 1M

REM "*********************
REM "*** RAYS ***
REM "*** ***
REM "*** VERSION ***
REM "*** ***
REM "*** (c) PDH ***
REM "*** ***
REM "*** 5.02.84 ***
REM "*********************

62 A Science Teacher's Companion to the BBC Microcomputer

When the program asks you to input your function,
just press fO and the programmed function will be
entered for you. If preparing for a maths lesson, you
may find it useful to program all the required
functions into the keys and save them using *SAVE
"functions" OBOO OBFF <return>. They can then be
loaded in, without clearing the resident "GRAPH"
program, at any time, using *LOAD"functions" <return>.

LENS AND MIRROR RAY DIAGRAMS ("RAYS")

This program allows students to draw ray diagrams for
convex and concave lenses and mirrors, without the need
to type in large numbers of numeric values to set the
object distance and size etc. The only information
that has to be entered is the type of device, chosen
from a simple menu, and the desired focal length. The
object is initially set up at about two focal lengths
from the device;s optical centre or pole. It can then
be moved using the Z,X keys (move object left and
right, respectively) and the K and M keys (move the top
of the object up and down, respectively). The values
of the object and image distances, the magnification
and the object and image sizes are continually updated
on the screen. The program can deal with all possible
object distances including ;at F; and those that give a
virtual image. The prcgram is intended for ;O~-level

classes and needs a Model B computer.

Listing "Rays"

10
20
30
40
50
60
70
80
90

100
110 ON ERROR GOTO 1180
120 *K.10 OLDIM
130 MODE 7
140
150 VDU 23,224,0,108,153,153,153,108,0,0
160
170 DIM name$(4)
180 FOR 1%=1 TO 4
190 READ narne$(I%)
200 NEXT 1%
210
220 DATA CONVEX LENS,CONCAVE LENS, CONVEX MIRROR, CONCA

VE MIRROR
230
240 device=FNmenu
250

Simulations, Demonstrations and Tutorials

260 REPEAT
270 INPUT TAB(3,23)"Focal length (50 to 300) ",f
280 PRINT TAB(3,23);SPC (40);
290 IF f<50 OR f>300 THEN SOUND 1,-15,20,4
300 UNTIL f>=50 AND f<=300
310
320 MODE 4
330 GCOL 4,1
340 VDU 23;8202;0;0;0;:REM "Cursor off
350
360 IF device=2 OR device=3 THEN f=-f
370
380 REM "Speed up Auto-repeat
390 *FX12,1
400 *FXll,l
410
420 CLS
430 COLOUR 131:COLOUR O:PRINT TAB(20-LEN (name$(device

))/2,30);name$(device)
440 COLOUR 128:COLOUR l:PRINT ~TAB(12);"Focal lerlgth="

;f;
450 COLOUR 131:COLOUR O:PRINT TAB(2,0);"CONTROL KEYS"
460 COLOUR 128:COLOUR l:PRINT TAB(l,l);"ESC gives

MENU"
470 PRINT TAB(1,2);"Z moves 0 left"
480 PRINT TAB(1,3);"X moves 0 right"
490 PRINT TAB(1,4);"K moves 0 up"
500 PRINT TAB(1,5);"M moves 0 down"
510 PRINT TAB(17,1);"Object distance:"
520 PRINT TAB(17,2);"Image distance :"
530 PRINT TAB(17,3);"Magnification :"
540 PRINT TAB(17,4) ; "Object size :"
550 PRINT TAB(1 7,5) ;" Image size :"
560
570 VDU 29,640;512;:REM "Move origin
580 MOVE -640,0:DRAW 640,0:REM "Draw axis
590 REM "Draw lens/mirror
600 MOVE 0,250:DRAW 0,-250
610 IF device=l THEN Y%=48
620 IF device=2 THEN Y%=-48
630 IF device=3 THEN X%=48
640 IF device=4 THEN X%=-48
650 IF device<3 THEN PLOT 1,48,Y%:PLOT 0,-96,0:

PLOT 1,48,-Y%:MOVE 0,250:PLOT 1,48,-Y%:PLOT 0,-96,
O:PLOT 1,48,Y%

660 IF device>2 THEN PLOT 1,X%,-48:MOVE 0,250:
PLOT 1,X%,48

670 REM "Label Principal Focus
680 VDU 5
690 MOVE -f,-16:DRAW -f,16:MOVE -f-16,-32:PRINT "F"
700 IF device<3 THEN MOVE f,-16:DRAW f,16:MOVE f-16,48

:PRINT "F"
710 VDU 4
720
730 u=ABS (f*2.2):REM "Object distance
740 OY%=lOO:REM "Object size
750
760
770 REPEAT
780 IF u<>f THEN v=(u*f)/(u-f) ELSE v=lE4
790 m=v/u
800 IY%=-OY%*m
810 IF device>2 THEN v=-v
820 REM "Choose dotted or solid line
830 IF m<O THEN PL%=21 ELSE PL%=5
840 PROCdraw
850 PROCprint
860 *FXI5,0
870
880 REPEAT
890 key=INSTR("ZzXxKkMm",GET$
900 UNTIL key
910
920 PROCdraw
930 IF key<3 THEN u=u+4 ELSE IF key<5 u=u-4
940 IF u<4 THEN u=4
950 IF key>4 AND key<7 THEN OY%=OY%+4

63

64 A Science Teacher's Companion to the BBC Microcomputer

960 IF key>6 THEN OY%=OY%-4
970 UNTIL FALSE
980
990

1000 DEF PROCdraw
1010 VDU S
1020 MOVE -u-16,OY%+40*SGN (OY%):PRINT "0"
1030 MOVE v+16*SGN (v),IY%+40*SGN (IY%):PRINT "I"
1040 VDU 4
10S0 MOVE -u,OY%:DRAW O,OY%:REM "Ray 1
1060 REM "Ray 2
1070 IF device>2 THEN DRAW -f,O ELSE DRAW f,O
1080 IF m>O THEN DRAW v,IY% ELSE MOVE O,OY%:PLOT PL%,v,

IY%:REM "Ray 3 OR Ray 6
1090 IF device>2 THEN MOVE -u,OY%:DRAW O,IY%:PLOT

PL%,v,IY%:REM "Rays 7 and 8
1100 IF device<3 THEN MOVE -u,OY%:DRAW O,O:PLOT PL%,v,I

Y%:REM "Rays 4 and S
1110 IF device=2 THEN MOVE O,OY%:DRAW -f,2*OY%
1120 IF m<O AND device<3 THEN MOVE O,O:DRAW u,-OY%:

MOVE f,O:DRAW -v+2*f,-IY%
1130 IF m<O AND device>2 THEN MOVE O,IY%:DRAW -100-u,IY

%:MOVE O,OY%:DRAW f,2*OY%
1140 MOVE -u,O:DRAW -u,OY%:REM "Object
11S0 MOVE v,O:PLOT PL%,v,IY%:REM "Image
1160 ENDPROC
1170
1180 ON ERROR OFF
1190 REM "Tidy up computer
1200 *FX12,0
1210 @%=10
1220 IF ERR <>17 THEN MODE 7:REPORT :PRINT " at line

";ERL :END
1230 MODE 7
1240 RUN
12S0
1260 DEF PROCprint
1270 PRINT TAB(33,1);INT (u);" "
1280 IF u=f THEN PRINT TAB(33,2);CHR$ 224;"

ELSE PRINT TAB(33,2);ABS (INT (v))*SGN (rn l r " "
1290 @%=&20204
1300 IF u=f THEN PRINT TAB(33,3);CHR$ 224;"

ELSE PRINT TAB(33,3) ;m;" "
1310 @%=&10
1320 PRINT TAB(33,4);OY%;" "
1330 IF u=f THEN PRINT TAB(33,S);CHR$ 224;"

ELSE PRINT TAB(33,S);ABS (IY%);" "
1340 ENDPROC
13S0
1360 DEF FNmenu
1370 CLS
1380 VDU 134,lS7,132,141:PRINT TAB(12);"Ray Diagrams"
1390 VDU 134,1S7,132,141:PRINT TAB(12);"Ray Diagrams"
1400 VDU 132,1S7,131,13,10
1410 VDU 130,1S7,131,141:PRINT TAB(14)i"Menu"
1420 VDU 130,1S7,131,141:PRINT TAB(14);"Menu"
1430 PRINT TAB(3)"(1) Convex Lens"
1440 PRINT TAB(3);"(2) Concave Lens"
14S0 PRINT TAB(3)i"(3) •... Convex Mirror"
1460 PRINT TAB(3)"(4) Concave Mirror"
1470 VDU 10,10,130,1S7,131,141:PRINT TAB(S);"PLEASE

SELECT 1,2,3 or 4"
1480 VDU 130,1S7,131,141:PRINT TAB(S)i"PLEASE SELECT

1,2,3 or 4";
1490 REPEAT
1S00 choice=INSTR("1234",GET$
1S10 UNTIL choice
1S20 SOUND 1,-1S,1S0,2
1S30 REM "Highlight choice
1S40 VDU 31,0,choice*2+6,132,lS7,131
1SS0 =choice

Simulations, Demonstrations and Tutorials 65

PROC/FN List
1000 PROCdraw draws the rays that are used to

construct the diagram.
1260 PROCprint updates the values for the various

distances and the magnification.
1360 FNmenu prints the menu of device types and

obtains the user~s choice.

Program Description

150
180-200

240
270-300

360

420-710
430

440-500
510-550

570

580
600-660

600
610-640

650
660

770-970
780

790
800
810

830

840
850
860
880
920
930

Define a character for the 'infinity' symbol.
Set up a list of the device names.
Get the user's choice of device number.
Get the focal length, in the range 50 to 300
For concave devices make the focal length
negative.
Set up the screen.
Print the name of the selected device from
the list.
Print the control key instructions.
Print the values labels.
Move the graphics origin to the centre of the
screen.
Draw the principal axis.
Draw the optical device.
Draw the reflecting/refracting line.
Set up coordinate values to enable the
drawing of the lens and mirror 'ends', as for
conventional ray diagrams.
Draw the end of the convex/concave lens.
Draw the end of the convex/concave mirror.
Main loop.
If the object is not at the focus then
calculate the image distance using the
lens/mirror formula. Otherwise set the
image distance to 'infinite' (10000).
Calculate the magnification.
Calculate the image size.

For reflecting devices reverse the image
distance sign.
If the image is virtual (m is negative) then
use a dotted line (plot number, PL% = 21),
else use a solid line (PL% 5).
Draw the rays.
Print the numerical values.
Flush old keys.
Wait for a control key to be pressed.
Erase the rays.
'z' was pressed - increase object distance
(move 0 left) else X was pressed
decrease object distance (move 0 right).

66 A Science Teacher's Companion to the BBC Microcomputer

940 Prevent 0 from being moved through the
lens/mirror.

950 'K' was pressed - increase object size (move
o up).

960 'M' was pressed - decrease object size (move
o down).

1000-1550 Procedure and function definitions:
The main procedure is 'draw' which sorts
out which rays to draw: two are used for
each diagram. Ray 1 is drawn for all
diagrams, from the top of the object
parallel to the principal axis (1050). Ray
2 is also drawn for all diagrams, from the
end of ray 1 to the focus. Line 1070
checks if the device is a mirror and, if
so, reverses the direction of ray 2. Line
1080 checks if the image is real (positive
magnification) or virtual. If real, ray 3
is drawn from the focus to the top of the
image, otherwise ray 6 is drawn. This ray
is a dotted ray from the end of ray 1 to
the top of the image. If the device is a
mirror then rays 7 and 8 will be drawn
(1090). These rays are drawn fLom the top
of the object through the focus to the
mirror and from the mirror back parallel to
the axis. If the device is a lens rays 4
and 5 are drawn instead. These rays pass
from the top of the object through the
optical centre of the lens to the top of
the image. The second ray may be dotted if
the image is virtual (1100). Line 1110
draws the deviated extension of ray 1 on
the other side of a concave lens only.
Finally, lines 1120,1130 extend the real
rays from the lens/mirror, when the image
is virtual.

DAMPED HARMONIC MOTION ("SHM")

Using this program, A-level students will be able to
investigate the fundamental features of simple harmonic
motion, both undamped and with various degrees of
damping. Not only may the degree of damping be
adjusted, but also the mass and 'elasticity'.
Although the equations built into the program are based
on a mass/spring system, the results are correct for
any system that undergoes damped harmonic motion. The
screen displays a 'mass' which oscillates vertically
and the corresponding 'displacement-time' graph. Below

Simulations, Demonstrations and Tutorials 67

REM "******************
REM "*** ***
REM "*** SHM ***
REM "*** ***
REM "*** Version ***
REM "***
REM "******************

this the current values of mass, spring constant and
damping factor are displayed. The program also
indicates whether the displayed motion is undamped,
under-damped, critically damped or over-damped. Each
time the graph is completed, a simple menu is presented
to allow the user to alter selected parameters, clear
the screen or start the simulation.

Listing "S8M"

10
20
30
40
50
60
70
80
90 MODE 4:VDU 19,0,4;0;

100
110 ON ERROR MODE 7:END
120
130 VDU 23,224,24,60,126,255,255,126,60,24
140 VDU 28,0,31,39,23
150 VDU 24,0;300;1279;1023;
160
170 REM "Initial damping,spring constant and mass

values
180 R=0:K=2:M=3
190 A=20:B=10:REM "** Amplitudes **
200
210 REPEAT
220
230 PROCprint values
240 PROCgraph-
250 PROCkey_check
260
270 UNTIL FALSE
280
290 END
300
310
320 DEF PROCgraph
330 VDU 5
340 GCOL 0,3
350 MOVE 150,600:PLOT 21,440,600:DRAW 1279,600
360 MOVE 1100,560:PRINT "time"
370 MOVE 460,1000:PRINT "displacement"
380 MOVE 440,lOOO:DRAW 440,300
390
400 FOR t=O TO 12 STEP .05
410
420 X=t*70+440
430 IF R

A2/{4*M A2»=K/M

THEN Y=FNover{t) ELSE Y=
FNunder{t)

440 Y=Y*10+600
450 GCOL 0,3
460 DRAW X,Y
470 GCOL 4,0
480 *FX19
490 MOVE 100,Y+16:VDU 224
500 *FX19
510 MOVE 100,Y+16:VDU 224
520 MOVE X,Y
530
540 NEXT t
550
560 VDU 4
570 ENDPROC
580
590 DEF FNover{t)

68 A Science Teacher's Companion to the BBC Microcomputer

600 =EXP -(R*t/(2*M))*(A*EXP (SQR (R-2/(4*M~2)-K/M)*t)

+B*EXP -(SQR (R A2/(4*M A2)-K/M)*t))

610
620 DEF FNunder(t)
630 =EXP -(R*t/(2*M))*((A+B)*(COS (SQR (K/M-R A2/(4*M A2

)) *t)))
640
650 DEF PROCkey check
660 LOCAL key -
670 SOUND 1,-15,40,1
680
690 REPEAT
700
710 CLS
720 PRINT "Press:-'"
730 PRINT "M to change mass. Current value=":M
740 PRINT "E to change elasticity. Current value=":K
750 PRINT "D to change damping. Current value=":R
760 PRINT "c to clear the screen."
770 PRINT "RETURN to start the simulation."
780 PRINT '''Command ?":
790
800 REPEAT
810 *FX21,0
820 key=INSTR("MmEeDdCc"+CHR$ 13,GET$)
830 UNTIL key
840
850 CLS :SOUND 1,-15,150,2
860
870 IF key=9 THEN start=TRUE ELSE start=FALSE
880 IF key<3 THEN REPEAT :INPUT "Mass (1-20) "1-1:

UNTIL M>=l AND M<=20
890 IF key>2 AND key<5 THEN REPEAT :INPUT "Spring

constant (1-5)"K:UNTIL K>=l AND K<=5
900 IF key>4 AND key<7 THEN REPEAT :INPUT "Damping

factor (0-30)"R:UNTIL R>=O AND R<=30
910 IF key>6 AND key<9 THEN CLG
920
930 UNTIL start
940
950 ENDPROC
960
970 DEF PROCprint values
980 PRINT' '''Mass=" :M: "kg"
990 PRINT '''Spring constant=":K:"N/m"

1000 PRINT '''Damping factor=":R:"kg/s"
1010 IF RA2/(4*MA2»K/M THEN PRINT TAB(0,7);"Over-dampe

d "
1020 IF R<>O AND RA2/(4*M A2)<K/M THEN PRINT TAB(0,7):

"Under-damped"
1030 IF R=O THEN PRINT TAB(0,7):"Undamped
1040 IF ABS (R A2/(4*M A2)-K/M)<0.1 THEN PRINT TAB(0,7):

"Critical damping"
1050 ENDPROC

PROC/FN List

320 PROCgraph plots the displacement-time graph
and displays the oscillating mass.

590 FNover is the equation describing the motion
when over-damped (including critical
damping) .

620 FNunder is the equation describing the motion
when undamped or when under-damped.

650 PROCkey_check prints the commands menu,
obtains the user's choice and carries out the
required action, either inputting a value for
one of the parameters or clearing the

Simulations, Demonstrations and Tutorials 69

mass, k = spring
amplitude.

display. Pressing <RETURN> starts the
next simulation.

970 PROCprint_values displays the current values
of all parameters and the degree of
damping of the motion being displayed.

Program Description
130 Define a 'blob' for the oscillating mass.
140 Define a text window in the bottom half of

the screen.
150 Define a graphics window in the top half of

the screen.
180-190 Set up initial values.
210-270 Main loop.

320-1050 Procedure and function definitions:
320-570 PROCgraph. Lines 350-380 draw and
label the axes and the loop in lines
400-540 is a 'time' loop. Line 420
converts the time 't' to a suitable value
for plotting and line 440 does the same
for the displacement 'y' which is
calculated in the previous line (430).
The condition tested in this line
(R~2/4m~2>=k/m) determines whether the
motion is over- or under-damped - equality
gives critical damping. Y is then
calculated using the appropriate function.
Line 460 draws the graph and lines 470-510
display and erase (logical inverse
plotting: GCOL4) the mass. The *FX19
commands are used to synchronise the
plotting and unplotting with the start of
the next video display frame. The idea is
to minimise flickering of the mass.
590-630 FNover and FNunder. The equations
used in these functions are derived from
the general solution of the second-order
differential equation for damped harmonic
motion:

The general solution is:
y = exp(-Rt/2m)[AexpSQR(R~2/4m~2-k/m)t

+ BexpSQR(R~2/4m~2-k/m)t]

where
R damping factor, m
constant, t = time, A,B

Listing "8 SPECT"

REM "****************
REM "*** H SPECT ***
REM "***

-

REM "*** Vers 1.0 ***
REM "*** ***
REM "*** HYDROGEN ***
REM "*** SPECTRA ***
REM "*** ***
REM "*** c 1984 ***
REM "*** Philip ***
REM "*** Hawthorne***
REM "****************

70 A Science Teacher's Companion to the BBC Microcomputer

Note that these equations are not in
BASIC! In PROCprint_values, lines
1010-1040 test the ~damping term~

(R A2/4M A2) and the ~oscillation term~

(K/M) to determine the degree of damping.
If the first term is greater the motion is
over-damped (1010) whereas if the second
term is greater, and the damping factor is
not zero, the motion is under-damped
(1020). Line 1030 checks for undamped
motion (damping factor = 0) and in line
1040, if the two terms are ~almost equal ~

(that is, they differ by less than 0.1),
the motion is described as critically
damped.

ATOMIC ENERGY LEVELS AND SPECTRA ("H_SPECT")

This is a program for A-level chemistry/physics
students and requires a 32K machine. It will be most
suitable for use with single pupils since it adopts an
individual (CAL) approach. The program presents a
sequence of ~frames~ each of which demonstrates some
point. After a few frames the student will be given a
~quick quiz~: a short multiple choice test based on the
preceding material. A poor score requires the student
to review the previous section again. - ~nce he
understands a section (or at least is able to answer
the questions: there is a subtle difference!) the
computer will allow him to proceed to the next section.
Altogether there are four quizzes but this could be

extended.

10
20
30
40
50
60
70
80
90

100
110
120
130
140
150 MODE 7
160 PROCcur off
170 PRINT TAB(11,12):CHR$ 130:CHR$ 141:"Hydrogen Spect

ra":TAB(11,13):CHR$ 130:CHR$ 141:"Hydrogen Spectra"

Simulations, Demonstrations and Tutorials

180 PROCpause(3)
190
200 Vscale=72
210 h=6.63E-34
220 e=1.6E-19
230 max N%=8
240DIM-Energy(10),delta_f(max_N%-2),Xco(max_N%-2)
250
260 VDU 23,224,0,28,20,34,34,65,255,0:REM " **

"de l t a " **
270 VDU 23,225,23,17,19,17,23,0,0,0:REM" s"'scri

pt 13 **
280 VDU 23,226,33,35,37,47,33,0,0,0:REM " ** s"'scri

pt 14 **
290 VDU 23,227,23,20,23,17,23,0,0,0:REM" s"'scri

pt 15 **
300
310 RESTORE
320 FOR N%=l TO max N%
330 READ Energy(N%)
340 NEXT N%
350 DATA 13.58,3.39,1.51,0.85,0.54,0.38,0.26,0.19
360
370
380 REPEAT
390 MODE 4
400 PROCcur off
410 score%=lO
420 CLS
430 PRINT TAB(0,15)"When a spectroscope is used to

study""'''the light from a hydrogen-filled"
440 PRINT "discharge tube it is found that the ,,'"

"light emitted consists of separate" "'''lines of
different colour.""'''This type of spectrum is
called a ""'''LINE EMISSION SPECTRUM."

450 PROCwait
460 PROCwipe(0,15,36,7)
470 PROCspectrum(2,8)
480 PRINT TAB(0,15)"The lines in the visible region"'"

"of the spectrum are shown above.""'''This set of
lines is known as the ""'''BALt-1ER SERIES."

490 PROCwait
500 PROCwipe(0,15,36,4)
510 PRINT TAB(0,15)"Note that the lines converge at"'"

"higher frequencies."
520 PROCwait
530 CLS
540 PRINT TAB(0,15)"A similar pattern is seen in the"'"

"ultraviolet spectrum: the Lyman Series."
550 PROCspectrum(1,8)
560 PROCwait
570 MODE 7
580 PROCcur off
590 PROCquiz(3,1)
600 IF score%<7 THEN CLS :PRINT "You must review

the preceding material again."
610 IF score%<7 THEN PRINT TAB(8,20)i"Press any key

to review":A=GET
620 UNTIL score%>=7
630
640 REPEAT
650 MODE 4:PROCcur off
660 score%=lO -
670 PRINT TAB(0,12)"To explain these spectra we must"'"

"assume that the electrons in""'''an atom can exist
only at" "'''certain energy levels."

680 PROCwait
690 CLS
700 PROCdraw levels
710 PRINT TAB(0,12)"This diagram represents the"'"

"allowed electron energies of"
720 PRINT "a Hydrogen atom."
730 PROCwait
740 PROCwipe(0,12,29,3)
750 PRINT TAB(0,12)"The numbers to the left are the""

"Principal QUANTUM NUMBERS (n) for each""'''ENERGY
LEVEL."

71

72 A Science Teacher's Companion to the BBC Microcomputer

760 PRINT "'''The lowest energy level""'''corresponds
to n=l and"

770 PRINT "is called the GROUND STATE."
780 PROCpause(l)
790 VDU 5
800 MOVE 200,48:PRINT "GROUND STATE";
810 SOUND 1,-15,150,1
820 VDU 4
830 PROCpause(l)
840 PROCwait
850 PROCwipe(0,12,39,7)
860 PRINT TAB(0,12)"Electrons normally occupy"'''the

lowest energy levels" '''first. In hydrogen the
single"

870 PRINT "electron will be in the n=l""'''level. The
atom is said to be""'''in its GROUND STATE."

880 PROCwait:PROCwipe(0,12,39,6)
890 PRINT TAB(0,12)"If the atom is supplied"'''with

sufficient energy the" "'''electron can be EXCITED
to""'''a higher energy level"

900 PRINT '''The arrow shows an electron""'''excited
from the ground""'''state to the first excited
state""''' (n=l to n=2)"

910 PROCflash(2,1)
920 PROCwait:PROCwipe(0,12,39,10)
930 PRINT TAB(0,12)"Electrons lose energy by""'''droppin

g from a higher to"
940 PRINT "a lower energy level."
950 PROCpause(2)
960 PRINT "For example the arrow"'''shows a transitio

n from"
970 PRINT "the n=2 to the n=l level."
980 PROCflash(1,2)
990 PROCwipe(0,17,29,3)

1000 PRINT TAB(0,17)"This transition is from""'''the
n=3 to the n=2 level"

1010 PRINT "'''The energy difference is"'''less than the
previous example"

1020 PROCflash(2,3)
1030 PROCwipe(0,12,39,12)
1040 PRINT TAB(0,12)"The energy difference for""'''the

n=3 to n=2 transition is" "E(3)-E(2) = -1.51-(-3
.39) eV"'TAB(ll)"=-1.51+3.39 eV""'TAB(11)"=+1.88
eV" .

1050 PRINT ,,(NB leV = 1.6x10-19 J)"
1060 PROCwait:PROCwipe(0,12,39,9)
1070 MODE 7:PROCcur off
1080 PROCquiz(4,2) -
1090 IF score%<7 THEN CLS :PRINT ""'''You must review

the preceding material again."TAB(8,20);"Press
any key to review":A=GET

1100 UNTIL score%>=7
1110
1120 REPEAT
1130 MODE 4:PROCcur off
1140 score%=10
1150 PROCdraw levels
1160 PRINT TAB(O,lO)"The excess energy given up" '''durin

g an electron transition"'''is emitted as a"""
"QUANTUM of ELECTROMAGNETIC RADIATION."

1170 PRINT "The energy of the quantum"'''determines
the frequency of"'''the emitted radiation"

1180 PROCwait
1190 PROCwipe(0,10,39,10)
1200 PRINT TAB(O,lO)"The relationship between energy,

E""'''and frequency,f is:"
1210 PRINT"''' E=hf"''''''where h=P1anck"'s constant=6.6

3x10-34 Js"
1220 PROCwait
1230 PROCwipe(0,10,39,6)
1240 PRINT TAB(0,12)"Thus each transition produces"'"

"a quantum of one particu1ar""'''frequency or 'co1ou
r' proportional"

1250 PRINT "to the difference in energy""'''between the
two levels."

1260 PROCpause(8)
1270 PRINT """Listen to the pitch of"'''the tones. These

are analogous"'''to the frequency of the quantum."

Simulations, Demonstrations and Tutorials

1280 FOR L%=l TO 3:REM "Lower level
1290 FOR H%=L%+l TO max N%:REM "Higher
1300 SOUND 1,-15,-19*(Energy(H%)-Energy(L%)),2
1310 PROCtransition(L%,H%)
1320 PROCpause(2)
1330 PROCtransition(L%,H%)
1340 NEXT H%
1350 NEXT L%
1360 PROCwipe(0,12,39,10)
1370 PROCseries
1380 MODE 7:PROCcur off
1390 PROCquiz(4,3) -
1400 IF score%<7 THEN CLS :PRINT "'''You must review

the preceding material again."TAB(8,20);"Press
any key to review":A=GET

1410 UNTIL score%>=7
1420
1430 REPEAT
1440 MODE 4:PROCcur off
1450 score%=lO -
1460 PROCspectrum(l,max N%)
1470 PRINT TAB(0,15)"We-have noted that the spectral

lines" '''converge and will eventually meet at
oneparticular frequency. This frequency is called
the CONVERGENCE LIMIT."

1480 PROCwait:CLS
1490 PROCdraw levels
1500 PRINT TAB(0,12)"The energy levels also converge'"

"and meet. The energy needed to"'''just cause
an electron to escape"'''is called the IONISATION
ENERGY."

1510 PROCpause(4)
1520 PRINT '''It is the amount of energy"'''needed to

raise an electron"'''from the ground state to'"
"just above the highest level."

1530 PROCflash(max N%,l)
1540 PROCwait:PROCwipe(0,12,39,9)
1550 CLS
1560 PROCspectrum(l,max N%)
1570 PRINT TAB(0,14)"Clearly the difference ";CHR$ 224;

"f between the frequencies of consecutive lines"
'''decreases to zero at the convergence limit."

1580 PROCpause(4)
1590 GCOL 4,3
1600 VDU 5
1610 fmin=FNfreq(1,2)
1620 FOR 1%=2 TO max N%-l
1630 fl=FNfreq(l,I%)
1640 f2=FNfreq(1,I%+l)
1650 Xl=(fl-fmin)*100E-14+100
1660 X2=(f2-fmin)*100E-14+100
1670 SOUND 1,-l5,(X2-Xl)/2,2
1680 MOVE Xl,800:DRAW X2,800
1690 IF 1%<5 THEN MOVE Xl-24+(X2-Xl)/2,832:PRINT

CHR$ 224;"f"
1700 PROCpause(2)
1710 MOVE Xl,800:DRAW X2,800
1720 IF 1%<5 THEN MOVE Xl-24+(X2-Xl)/2,832:PRINT

CHR$ 224;"f"
1730 NEXT 1%
1740 VDU 4
1750 GCOL 0,3
1760 PRINT '''If we determine the frequency at which

";CHR$ 224;"f becomes zero this will enable
us to "'"calculate the corresponding energy."

1770 PRINT "This is the highest possible energy ie"'
"the ionisation energy of the hydrogen"'''atom.''

1780 PROCwait:PROCwipe(0,14,39,12)
1790 PRINT TAB(0,14)"If we plot ";CHR$ 224;"f for each

pair of lines"'''versus the frequency,f, of the
lower"'''line we can find the frequency,f', II'

"when ";CHR$ 224;"f becomes 0."
1800 PROCwait:PROCwipe(0,14,39,4)
1810 PROCgraph
1820 PROCpause(5)
1830 PROCwait
1840 MODE 7:PROCcur off
1850 PROCquiz(4,4) -

73

74 A Science Teacher's Companion to the BBC Microcomputer

1860 IF score%<7 THEN CLS :PRINT "You must reVlew
the preceding material again.";TAB(8,20);"Press
any key to review":A=GET

1870 UNTIL score%>=7
1880
1890 VDU 26:CLS
1900 VDU 31,14,12,133,141:PRINT "The End!"
1910 VDU 31,14,13,132,141:PRINT "The End!"
1920 END
1930 DEF PROCspectrum{Nl%,N%)
1940 REM "** Nl%=quantum number of lowest level
1950 REM "** N%=number of transitions to this level
1960 LOCAL I%,Xco,f,fmin
1970 VDU 31,14,0
1980 IF Nl%=l THEN PRINT "Lyman Series"ELSE IF Nl%=2

THEN PRINT "Balmer Series"ELSE IF Nl%=3 THEN
PRINT "Paschen Series"

1990 MOVE 0,700:DRAW 1200,700
2000 MOVE 0,900:DRAW 1200,900
2010 VDU 5
2020 MOVE 800,640:PRINT "Frequency ->"
2030 fmin=FNfreq{Nl%,Nl%+l)
2040 FOR I%=Nl%+l TO N%
2050 f=FNfreq{Nl%,I%)
2060 Xco={f-fmin)*100E-14+100
2070 MOVE Xco,700:DRAW Xco,900
2080 IF f=fmin THEN MOVE Xco-16,680:PRINT "A":MOVE Xco

100,640:PRINT "fmin=";LEFT${STR$ {fmin),5);"xl0";
2090 IF f=fmin THEN PRINT CHR$ {212+VAL (RIGHT${

STR$ (fmin), 2))) ;" Hz"
2100 NEXT 1%
2110 VDU 4
2120 ENDPROC
2130 DEF PROCtransition{level1%,leve12%)
2140 GCOL 4,3
2150 MOVE 70*ABS {leve12%-levell%),{Energy(1)-Energy(le

ve12%))*Vscale
2160 D~AW 70*ABS (leve12%-levell%),(Energy(1)-Energy(le

vell%))*Vscale
2170 IF levell%<leve12% THEN PLOT 1,-16,16:PLOT 0,32,0:

PLOT 1,-16,-16 ELSE PLOT 1,-16,-16:PLOT 0,32,0:
PLOT 1,-16,16

2180 GCOL 0,3
2190 ENDPROC
2200 DEF PROCpause(t)
2210 T=TIME
2220 REPEAT UNTIL TIME >=T+t*100
2230 ENDPROC
2240 DEF PROCwipe(column%,row%,spaces%,lines%)
2250 LOCAL 1%
2260 VDU 31,co1umn%,row%
2270 FOR 1%=1 TO 1ines%
2280 PRINT SPC (spaces%)
2290 NEXT 1%
2300 ENDPROC
2310 DEF PROCwait
2320 LOCAL key%
2330 PRINT TAB{10,25)"Press C to continue";
2340 REPEAT
2350 *FX15,0
2360 key%=INSTR{"Cc",GET$)
2370 UNTIL key%
2380 SOUND 1,-15,200,1
2390 PRINT TAB{0,25);SPC (39);
2400 ENDPROC
2410 DEF FNask{correct%,num poss ans%)
2420 key$=LEFT${"12345",num=poss=ans%)
2430 REPEAT
2440 G%=INSTR{key$,GET$)
2450 UNTIL G%
2460 VDU 31,0,5+2*G%,130,157,131
2470 IF G%=correct% THEN =TRUE ELSE =FALSE
2480 DEF PROCcur off
2490 REM "** Als~ changes Bgd. colour
2500 VDU 23;8202;0;0;0;19,0,4,0,0,0
2510 ENDPROC

Simulations, Demonstrations and Tutorials

2520 REM "** Data for Quiz(l)
2530 DATA A line emission spectrum consists of,3,a

continuous range of colours,dark lines on a bright
background,separate lines of different colour,3

2540 DATA As the frequency increases do the lines,3,div
erge,converge,keep the same spacing,2

2550 DATA Lines in the visible region are called,3,the
Balmer Series,the Lyman Series,the Paschen Series,l

2560 REM "** Data for Quiz(2)
2570 DATA 'n' for the lowest energy level is,5,1,2,3,4,

5,1
2580 DATA The lowest energy level is called,3,the stabl

e state,the earth state,the ground state,3
2590 DATA The loss of energy is greatest for,4,a n=2

to n=l transition,a n=3 to n=2 transition,a n=3
to n=l transition,a n=5 to n=4 transition,3

2600 DATA The energy difference for n=2] n=l is,5,13.5
8 eV,3.39 eV,16.97 eV,-10.19 eV,10.19 eV,5

2610 REM "** Data for Quiz(3)
2620 DATA The emitted frequency is greatest for,4,a

n=2 to n=l transition,a n=3 to n=2 transition,a
n=4 to n=3 transition,a n=5 to n=4 transition,l

2630 DATA Transitions to n=l give lines of the,3,Balmer
Series,Lyman Series,Paschen Series,2

2640 DATA Lyman Series lines are in the,5,microwave
region, infra-red region,visible region, the ultravi
olet region,the X-ray region,4

2650 DATA n=2] n=l gives a quantum of frequency,3,4.22
2xlO-14 Hz,2.459xlO+15 Hz,1.537xlO+34 Hz,2

2660 REM "** Data for Quiz(4)
2670 DATA The spectral lines meet at,3,the vanishing

point,the convergence limit,the spectral limit,2
2680 DATA n=1]n=4 is an example of ionisation,2,TRUE,FA

LSE,2
2690 DATA The graph plotted was a,4,straight line with

negative slope,straight line with positive slope,a
rising curve,a falling curve,4

2700 DATA The ionisation energy of hydrogen is,4,13.58
J,-13.58 J,135.5 J,2.17xlO-17 J,4

2710 DEF PROCquiz(num questions%,quiz num%)
2720 VDU 132,157,131,I41:PRINT TAB(14;O)~"Quick Quiz

"~quiz num%:VDU l32,157,13l,141:PRINT TAB(14,l)~

"Quick Quiz "~quiz num%
2730 VDU 28,0,23,39,2 -
2740 ON quiz num% GOTO 2750 ,2760 ,2770 ,2780
2750 RESTORE-2530 :GOTO 2790
2760 RESTORE 2570 :GOTO 2790
2770 RESTORE 2620 :GOTO 2790
2780 RESTORE 2670 :GOTO 2790
2790 FOR Q%=l TO num questions%
2800 CLS -
2810 READ question$,num answers
2820 PRINT "question$'~'

2830 FOR A%=l TO num answers
2840 READ answer$:PRINT 'TAB(3)~STR$ (A%)~". "~answer$
2850 NEXT A%
2860 READ answer
2870 VDU 10,10,131,157,129:PRINT "Press "~

2880 FOR 1%=1 TO num answers
2890 PRINT STR$ (I%);","~
2900 IF I%=num answers-l THEN PRINT" or "~

2910 NEXT 1% -
2920 PRINT "to select answer."
2930 REPEAT
2940 *FX15,0
2950 correct=FNask(answer,num answers)
2960 IF NOT correct THEN SOUND 1,-15,20,2:PRINT

TAB(12,20) "WRONG!! TRY AGAIN": PROCpause (3) :
PRINT TAB(0,20)~SPC (40)~

2970 IF NOT correct THEN score%=score%-l:PRINT
TAB(0,5+2*G%)~" "~

2980 UNTIL correct
2990 SOUND 1,-15,150,2:PRINT TAB(16,20)"CORRECT":

PROCpause(3)
3000 NEXT Q%
3010 ENDPROC
3020 DEF PROCdraw levels

75

76 A Science Teacher's Companion to the BBC Microcomputer

3030 LOCAL N%
3040 VDU 29,64;32;
30S0 VDU S
3060 FOR N%=l TO max N%
3070 IF N%<6 THEN MOVE -32, (Energy(l)-Energy(N%))*Vscal

e+16:PRINT STR$ (N%);
3080 MOVE O,(Energy(l)-Energy(N%))*Vscale
3090 DRAW 800,(Energy(1)-Energy(N%))*Vscale
3100 IF N%<S THEN PLOT 0,32,0:PRINT STR$ (-Energy(N%));

" eV"
3110 NEXT N%
3120 VDU 4
3130 ENDPROC
3140 DEF PROCseries
3150 FOR H%=2 TO max N%
3160 PROCtransition(I,H%)
3170 SOUND 1,-lS,-19*(Energy(H%)-Energy(1)),2
3180 PROCpause(.3)
3190 NEXT H%
3200 PROCpause(2)
3210 PRINT TAB(0,17)"Transitions to the n=l level'"

"give lines in the Lyman Series."'''All these lines
are in the"'''ultraviolet region."

3220 PROCwait
3230 CLS :PROCdraw levels
3240 FOR H%=3 TO max N%
3250 PROCtransition(2,H%)
3260 SOUND 1,-lS,-19*(Energy(H%)-Energy(2)),2
3270 PROCpause(.3)
3280 NEXT H%
3290 PROCpause(2)
3300 PRINT TAB(0,17)"Transitions to the n=2 level'"

"give lines of the Balmer Series." '''All the energy
differences are"'''smaller and the lines are in'"

"the visible region."
3310 PROCwait
3320 ENDPROC
3330 DEF PROCflash(Nl%,N2%)
3340 LOCAL 1%
3350 FOR 1%=1 TO 20
3360 PROCtransition(Nl%,N2%)
3370 PROCpause(.4)
3380 PROCtransition(Nl%,N2%)
3390 PROCpause(.2)
3400 NEXT 1%
3410 ENDPROC
3420 DEF PROCgraph
3430 VDU 5
3440 GCOL 4,3
3450 MOVE 0,44:DRAW l279,44:t-10VE 11SO,32:PRINT "f"
3460 MOVE 0,44:DRAW 0,S80:MOVE 32,550:PRINT CHR$ 224;

"f"
3470 fmin=FNfreq(1,2)
3480 FOR N%=2 TO max N%-l
3490 fl=FNfreq(l,N%)
3500 f2=FNfreq(1,N%+1)
3510 X1=(f1-fmin)*100E-14+100
3520 X2=(f2-fmin)*100E-14+100
3530 MOVE Xl,700:PLOT 21,Xl,48
3540 MOVE X2,700:PLOT 21,X2,48
3550 FOR Y%=800 TO 48 STEP -16
3560 MOVE Xl,Y%:DRAW X2,Y%
3570 SOUND 1,-15,Y%/4,1
3580 PROCpause(.l)
3590 MOVE Xl,Y%:DRAW X2,Y%
3600 NEXT Y%
3610 MOVE Xl,700:PLOT 22,Xl,48
3620 MOVE X2,700:PLOT 22,X2,48
3630 delta f(N%-1)=FNrotate(Xl,48,X2-Xl)
3640 Xco(N%-1)=Xl
3650 NEXT N%
3660 PROCpause(2)
3670 MOVE Xco(1),de1ta f(l)
3680 FOR N%=2 TO max N%-2
3690 DRAW Xco(N%),delta f(N%)
3700 PROCpause(l) .-
3710 NEXT N%

Simulations, Demonstrations and Tutorials

3720 REM "** Cheat and assume answer!! **
3730 DRAW 898,48:MOVE 898,-32:PLOT 21,898,300:PLOT 0,-1

60,32:PRINT If'=3.27x10";CHR$ 227;" Hz"
3740 VDU 4
3750 ENDPROC
3760 DEF FNfreq(L%,H%)=(Energy(L%)-Energy(H%))*e/h
3770 DEF FNrotate(X1eft%,Y1eft%,radius%)
3780 LOCAL a,Xright%,Yright%
3790 FOR a=O TO 90 STEP 6
3800 Xright%=X1eft%+radius%*COS RAD (a)
3810 Yright%=Y1eft%+radius%*SIN RAD (a)
3820 MOVE X1eft%,Y1eft%:DRAW Xright%,Yright%
3830 SOUND 1,-15,Yright%/2,1
3840 PROCpause(.l)
3850 IF a<90 THEN MOVE Xleft%,Y1eft%:DRAW Xright%,Yrigh

t%
3860 NEXT a
3870 =Yright%

PROC/FN LIST

1930 PROCspectrum draws a line spectrum, given the
lower energy level and the number of
transitions.

2130 PROCtransition draws an up or down arrow
representing an electron transition.

2200 PROCpause.
2240 PROCwipe enables a section of text to be

removed without disturbing the rest of the
screen.

2310 PROCwait gives a prompt and waits for the 'c'
key to be pressed.

2410 FNask is used by the quiz procedure and
returns a true value if the correct
answer is selected, otherwise a false value.
It also 'knows' which keys are allowed (some
items have more answers than others).

2480 PROCcur off turns off the cursor and changes
to a blue background.

2710 PROCquiz is used to set all the quizzes, the
quiz number being one of the parameters, the
other being the number of questions. Data
for the items/answers is contained in the
DATA statements in lines 2530-2700.

3020 PROCdraw_Ievels produces the energy-level
diagram for hydrogen (data in line 350).

3140 PROCseries displays the transitions that
produce the Lyman and Balmer series.

3330 PROCflash produces a flashing transition
arrow.

3420 PROCgraph explains and draws the graph of
'delta f' versus 'f' for the Lyman series.

3760 FNfreq calculates the frequency of a spectral
line, given the energies of the two levels
involved.

3770 FNrotate turns the 'delta f' line through 90
degrees to obtain the corresponding point on
the graph (run the program and you will see
what I mean L) •

77

78 A Science Teacher's Companion to the BBC Microcomputer

Program Description
The program differs from most of the preceding
ones in that it does not consist of a short main
loop that calls up various procedures. Instead it
is really one long sequence, starting at line 150
and ending at line 1920. Probably the main reason
for this was that the program grew from a much
more modest original idea! There are a series of
REPEAT... UNTIL loops which present each section of
information followed by a quiz. The loops repeat
if the score attained at the end of the section is
too low (less than 70 per cent).
150-350 Setting up various variables and
user-defined characters. 'h' is Planck's
constant, 'e' the electronic charge, 'max_N%' the
maximum number of energy levels, corresponding to
the number of data items in line 350, and 'Vscale'
a vertical scale factor used for t~e energy level
diagrams.
380-620 First quiz loop. The general pattern of
all these loops is to select Mode 4, set the score
to 10, present some information aided by animated
diagrams and then change to Mode 7 for a quiz.
Each wrong answer loses 1 mark and if the final
score is less than 7 the section will repeat.
This level can obviously be varied either way.
640-1100 Second quiz loop.
1120-1420 Third quiz loop.
1430-1880 Fourth quiz loop.
1890-1920 End of the sequence.
1930-3870 Procedure and function definitions:

The main drawing procedures are 'spectrum',
'draw levels' and 'transition'. In
PROCspectrum line 2030 works out the minimum
frequency for the series (specified by the
quantum number of its lowest level) and uses
this to position the spectrum on the screen.
Line 2060 scales the X coordinates to suit the
screen width. Lines 2080 and 2090 position
and print the 'fmin' value, the second line
producing the 'superscript' (defined in lines
270-290). PROCdraw_levels constructs the
energy-level diagram and is fairly
straightforward. The FOR loop in lines
3060-3110 uses the energy-level values in the
array 'Energy()' together with the scale
factor 'Vscale' to draw a series of correctly
spaced 'rungs' or energy levels. Line 3070
prints the quantum number, provided that the
levels are not too close together. The two

Simulations, Demonstrations and Tutorials 79

parameters of PROCtransition specify the two
energy levels between which an arrow will be
drawn. The arrow points down if the second
energy level is lower than the first and vice
versa. The X coordinate of the arrow is also
made to depend on the energy-level difference,
so that the series of lines will be spread
across the diagram (see line 2150). Line 2170
takes care of drawing the arrow head, using
relative drawing (PLOT1).

The second parameter of PROCquiz specifies
which set of DATA statements is to be used,
selected by the ON ... GOTO and RESTORE
statements in lines 2740-2780. I apologise
for the GOTOs here but at least they do not go
too far! By spacing the DATA lines
appropriately it would have been possible to
use a computed restore statement (such as
RESTORE 2500+30*quiz_num%) but this has the
disadvantage of not being renumberable. The
rest of this procedure consists of an outer
'FOR Q% ... ' loop which reads the question and
the number of answers. The latter is used to
set the final value for an inner 'FOR A% ... '
loop which reads and prints the answers. The
correct answer number is then read and FNask
returns a TRUE result only if the correct
answer is selected. The loop in lines
2930-2980 repeats until the correct answer is
given. In FNask line 2420 sets up 'keyS' to
contain the allowed keys for a particular
question. Thus if a question allows three
answers, keyS will be set to "123" whereas if
five answers were allowed it would contain
"12345". Lines 2430-2450 will thus accept
only one of the allowed keys and line 2460
highlights the chosen answer. Line 2470
checks if the key pressed was the correct one
and sets the result to TRUE or FALSE
accordingly.
PROCgraph is called by a section of the main
program (1610-1730) that illustrates the
difference in frequency between each pair of
spectral lines. It does this by drawing a
horizontal line between them. The X
coordinates of the left and right spectral
lines (Xl and X2, respectively) are calculated
in lines 1650 and 1660. The line is drawn in
line 1680 and erased by over-drawing it (1720)
in logical inverse mode. If the lines are not
too close together, line 1690 will label the

80 A Science Teacher's Companion to the BBC Microcomputer

difference frequency /delta f/, using the
/delta/ character defined earlier (260). When
the various values of /delta f/ have been
shown, PROCgraph is called to draw the /delta
f/ versus /f/ graph. It does this by drawing
'the difference line as before, moving this
down to the bottom of the screen and then
rotating it through 90 degrees around the
left-hand end, using FNrotate. Thus the top
of the line becomes the 'delta f/ value
plotted against the frequency of the lower
frequency spectral line. The 'delta f/ values
returned by FNrotate are stored in the array
/delta_f() / and used in the FOR loop in lines
3680-3710 to join the points of the graph.
Line 3730 extrapolates the graph to find the
convergence limit (the frequency at which
/delta f/ becomes zero).

Modifications
You can easily change the questions or increase their
number, provided that you adhere to the correct format.
This consists of the question, the number of possible
answers, each of these answers and finally the number
of the correct answer. Owing to the layout of the quiz
screen, each question and answer is really limited to
one line but you could try changing the quiz routine to
allow a longer text. See line 2820, for example, where
the extra line-feed characters (') could be removed,

•but you will need to change the highlighting in line
2460, otherwise the highlight codes will be printed on
the wrong line.

With more questions you could be more precise in
your diagnosis of where the student is having problems
in understanding the material, and redirect the program
to a specific section or to an extra HELP routine. The
amount of remaining memory is fairly limited so do not
attempt to add too much more, unless you have a disk
system which could be used to chain in extra routines
as needed.

PREDATOR/PREY RELATIONSHIPS ("POPULATE")

This program simulates the growth and decay of
populations of two interdependent 'species': a prey and
a predator. Graphs of the numbers of each population
are drawn, using a Mode 1 colour display. In the
absence of the predat~r it is assumed that the prey's
growth would be able to continue unchecked, apart from
their natural death rate. In other words, there is an

Simulations, Demonstrations and Tutorials 81

unlimited supply of food. The predator species depends
solely for its food on the prey, so its growth rate
will depend on how many prey are available to them.
This depends on the number of prey and how 'available'
they are: the predation rate. The various rate
constants that control the birth and death rates of
each species are REM'd and could be altered, if
desired. At the moment the only user control is over
the time at which the predator species is introduced
into the colony of prey, which have been growing
unchecked since the start of the simulation. Even this
simple control produces numerous points for discussion
but further control could be introduced, for example by
allowing the birth/death and predation rates to be
altered. These are all very sensitive though, a small
change in one of the values creating a strong effect on
the resulting graph.

Listing "POPULATE"

o REM "*** POPGLATE ***
20 MODE 1
30
40 ON ERROR MODE 7:END
50
60 N1=5000:REM "** Initial no of prey
70 N2i=200:REM "** Initial no of pred.
80 N2=0
90

100 REM "** Set up rate constants **
110 REM "** Are VERY sensitive so **
120 REM "** handle with care !! **
130
140 K1=0.015:REM "** prey birth rate
150 K2=2E-5:REM "** predation rate
160 K3=0.009:REM "** prey death rate
170 K4=0.022:REM "** pred. birth rate
180 K5=0.025:REM "** pred. death rate
190
200 INPUT "Time at which predator will be inserted

(try values around 100-400) ", start%
210 CLS
220
230 VDU 19;4;0;19,1;0;0,19,2,11;0;0
240 VDU 23;10,32,0;0;0;0;
250 VDU 23,224,24,60,90,153,24,24,24,24
260
270 REM "** Draw and label axes **
280 PRINT TAB(24,0);"prey":COLOUR l:PRINT TAB(24,1)

"pred."
290 MOVE O,O:DRAW 1279,0
300 MOVE O,O:DRAW 0,1023
310 VDU 5:MOVE 32,1000:PRINT "Number/100"
320 MOVE 1100,32:PRINT "Time"
330 GCOL O,l:MOVE 32,936:PRINT "Number"
340 VDU 4
350
360 x=o
370
380
390 REM "** Main Loop **
400 REPEAT
410 eaten=K2*Nl*N2:births=Kl*Nl:deaths=K3*Nl
420 N1=Nl+births-eaten-deaths
430 IF Nl<l THEN Nl=O

82 A Science Teacher's Companion to the BBC Microcomputer

440 IF X>start% THEN N2=N2+K4*eaten-K5*N2
450 IF X=start% THEN N2=N2i:SOUND 1,-15,150,2:

VDU 5:MOVE start%,32:PRINT CHR$ 224i" Pred.":
VDU 4

460 IF N2<1 THEN N2=0
470 IF X MOD 4=0 THEN GCOL 0,3:PLOT 69,X,NI/100:

IF X>=start% THEN GCOL O,I:PLOT 69,X,N2
480 COLOUR 3:PRINT TAB(30,O)iINT (Nl)i" "i:

COLOUR I:PRINT TAB(30,I)iINT (N2)i"
490 X=X+l
500 UNTIL X>=1280
510 COLOUR 2
520 PRINT TAB(10,4)"Another run (YIN) ?"
530 SOUND 1,-15,220,2
540 A$=GET$
550 IF A$="Y" OR A$="y" THEN RUN
560 MODE 7
570 END

Program Description
There are no prccedures or functions used in the
program. After the rate constants are set up, in lines
140-180, the delay before inserting the predators is
input. If a short time is selected the prey may not
have reproduced in sufficient numbers to support the
initial number of predators so the prey, and
consequently the predators, may die out. Conversely if
a longer delay is selected the prey will reach a much
larger population, the predators' population will grow
rapidly and large oscillations in the two population
curves will result. This predicted result is observed,
in the laboratory, with real specimens.

The main part of the program is the REPEAT loop in
lines 400 to 500. Each time around this loop, the
numbers of prey that are eaten, die naturally or are
born are calculated from the number that were present
from the previous iteration round the loop (410).
These figures are used to calculate the new number of
prey (line 420) and this will become the value for the
next iteration. Lines 440 and 450 ensure that the
predators are not introduced into the equations until
the specified time (start%). When this time has been
reached, line 450 introduces the initial number of
predators, N2i, set up in line 70. Line 440 will
calculate the number of predators each time round the
loop, in a similar way to that for the prey. When the
edge of the screen is reached you are asked whether you
want another run (520), and pressing 'y' or 'y' will
allow another simulation to be carried out.

Modifications
Some suggestions have already been made and perhaps a
technique similar to that in "SHM" , PROCkey_check
(lines 650-950), could be used to manage the control of
the various variables that you want to alter. A
further suggestion, for Model A owners, is to change

Simulations, Demonstrations and Tutorials 83

REM "Program: H2O
REM "Started: 1/6/84
REM "Version: 1.1
REM "Subject: Chemistry
REM "Topic Electrolysis of Water
REM "Level CSE/O
REM "Author : P.D.Hawthorne

the MODE 1 statement (line 20) to MODE 5 to allow the
program to run. You will need to redesign the text
layout to allow for the different row and column
arrangement of this mode.

ELECTROLYSIS OF WATER ("H20")

This Model B program provides the chemistry teacher
with an animated diagram that should help students to
understand the concepts underlying the electrolysis of
water. Once the practical work has been completed this
program will support the explanation of the results in
terms of ionic movement. There are, of course, a
number of competing theories that 'explain' the
electrolysis of water, but this program is based on the
electrode reactions

40H - 4e ~2H20 + O
2

at the anode and

+
4H + 4e ~2H2 at the cathode

Thus, when the program is run, two hydrogen ions
will be seen to travel to the cathode for every volume
of hydrogen gas released. At the anode four hydroxyl
ions will have to travel across before one volume of
oxygen is evolved. The movement of electrons in the
external circuit is also shown. It is intended that
the teacher will provide a running commentary as the
program runs. (The 'switch' can be opened to pause the
program if desired.)

Listing "H20"

10
20
30
40
50
60
70
80
90 ON ERROR IF ERR =17 THEN MODE 7:END ELSE MODE 7:

REPORT :PRINT " at Line ";ERL :END
100
110 MODE 1
120 VDU 19,2,4;0;
130
140 PROCcharacters
150 PROCinit
160 PROCdiagram
170
180 REPEAT
190
200 REPEAT
210 switch%=INKEY (-83)
220 UNTIL switch%<>O

84 A Science Teacher's Companion to the SSC Microcomputer

230
240 REM "'Close switch'
250 GCOL O,O:MOVE 510,200:DRAW 540,240
260 GCOL 0,3:MOVE 510,200:DRAW 540,200
270
280 REPEAT
290
300 PROCmove ions
310
320 IF Hlevel<835 AND Hlevel>830 AND NOT labelled

THEN labelled=TRUE :GCOL 0,3:MOVE 900,900:
PRINT "<--HYDROGEN":MOVE 100,960:PRINT "OXYGEN-->II

330
340 switch%=INKEY (-55)
350
360 UNTIL Hlevel<612 OR switch%
370
380 REM "'Open switch'
390 GCOL O,O:MOVE 510,200:DRAW 540,200
400 GCOL 0,3:MOVE 510,200:DRAW 540,240
410
420 IF switch% THEN UNTIL FALSE
430
440 rerun=FNanother
450 IF rerun THEN RUN ELSE MODE 7:END
460
470 END
480
490
500 DEF PROCcharacters
510 VDU 23,224,28,62,127,127,127,62,28,0
520 VDU 23,225,0,0,24,24,0,0,0,0
530 H$=CHR$ 18+CHR$ O+CHR$ l+CHR$ 224
540 OX$=CHR$ 18+CHR$ O+CHR$ 3+CHR$ 224+CHR$ 225
550 ENDPROC
560
570 DEF PROCinit
580 Hleve1=960:01eve1=960
590 XH%=646:XO%=614
600 XL%=430:YL%=400
610 XR%=690:YR%=190
620 Hion%=l:OHion%=l
630 labelled=FALSE
640 ENDPROC
650
660 DEF PROCdiagram
670
680 VDU 5
690 GCOL 0,3
700
710 MOVE 300,600
720 DRAW 300,300:DRAW 1000,300:DRAW 1000,600
730 GCOL 0,2
740
750 FOR Y%=550 TO 300 STEP -4
760 PLOT 77,640,Y%
770 NEXT Y%
780
790 PROCtube{400,500)
800 PROCtube{750,500)
810 GCOL 0,3
820 MOVE 475,600:DRAW 475,200
830 DRAW 510,200:DRAW 540,240
840 MOVE 540,200:DRAW 630,200
850 MOVE 630,240:DRAW 630,160
860 MOVE 825,600:DRAW 825,200
870 DRAW 670,200:MOVE 670,220:DRAW 670,180
880
890 MOVE XO%,400:PRINT OX$:MOVE XO%,368:PRINT H$
900 MOVE XH%,400:PRINT H$
910
920 GCOL 0,3
930 PROClabels
940 MOVE 0,896:VDU 225
950 MOVE 0,832:PRINT OX$:MOVE 0,800:PRINT H$
960 MOVE 0,736:PRINT H$
970 GCOL 0,3:MOVE 0,672:PRINT "0"
980 GCOL O,l:MOVE 0,608:PRINT "0"

Simulations, Demonstrations and Tutorials

990
1000 ENDPROC
1010
1020 DEF PROCtube(X%,Y%)
1030 len%=475:width%=150
1040 GCOL 0,3
1050 MOVE X%,Y%:DRAW X%,Y%+len%
1060 DRAW X%+width%,Y%+len%:DRAW X%+width%,Y%
1070
1080 GCOL 0,2
1090 top=Y%+len%
1100
1110 FOR H%=top TO Y% STEP -4
1120 PLOT 77,X%+width%/2,H%
1130 NEXT H%
1140
1150 ENDPROC
1160
1170 DEF PROC1abe1s
1180 RESTORE 1270
1190
1200 REPEAT
1210 READ 1abel$,X%,Y%
1220 MOVE X%,Y%:PRINT 1abe1$
1230 UNTIL label$=""
1240
1250 ENDPROC
1260
1270 DATA Ce11,600,140,+,590,240,Anode----->,120,500,<

----Cathode,840,500
1280 DATA <---Water,900,350,"Press C to Close, 0 to

Open switch",160,64
1290 DATA "e-",60,896,"OH-",60,800,"H+",60,736,"O atom"

,60,672,"H atom",60,608,"",0,0
1300
1310 DEF PROCmove_ions
1320
1330 GCOL 0,2
1340 MOVE XH%,400:VDU 224
1350 MOVE XO%,400:VDU 224:MOVE XO%,368:VDU 224:

MOVE XO%+32,400:VDU 225
1360 XH%=XH%+4
1370 XO%=XO%-4
1380 MOVE XH%,400:PRINT H$
1390 MOVE XO%,400:PRINT OX$:MOVE XO%,368:PRINT H$
1400 *FX19
1410 IF XH%>780 AND Hion%=l THEN MOVE 780,432:PRINT H$:

GCOL 0,2:MOVE 780,400:VDU 224:PROCelectron
1420 IF XH%>780 AND Hion%=2 THEN MOVE 780,400:PRINT H$:

PROCelectron
1430 IF OHion%=4 AND XO%<480 THEN PROC02
1440 IF Hion%=2 AND XH%>780 THEN PROCH2
1450 IF XH%>780 THEN XH%=646:Hion%=Hion%+1:IF Hion%=3

THEN Hion%=l
1460 IF XO%<480 THEN XO%=614:0Hion%=OHion%+1:IF OHion%=

5 THEN OHion%=l
1470 ENDPROC
1480
1490 DEF PROCH2
1500 step=8
1510 GCOL 0,2:MOVE 780,432:VDU 79
1520 MOVE 780,400:VDU 79
1530
1540 FOR Y%=432 TO Hlevel STEP step
1550 GCOL O,l:MOVE 780,Y%:VDU 79:MOVE 780,Y%-32:

VDU 79
1560 GCOL 0,2:MOVE 780,Y%-step:VDU 79:MOVE 780,Y%-32-st

ep:VDU 79
1570 NEXT Y%
1580
1590 MOVE 780,Y%-step:VDU 79
1600 MOVE 780,Y%-32-step:VDU 79
1610 GCOL 0,0
1620
1630 FOR Y%=top-4 TO Hlevel STEP -4
1640 MOVE 754,Y%:DRAW 896,Y%
1650 NEXT Y%
1660

85

86 A Science Teacher's Companion to the BBC Microcomputer

IF OHion%=2 THEN GCOL 0,3:MOVE 480,432:VDU 79
GCOL 0,2:MOVE 508,400:VDU 225
IF OHion%=2 THEN GCOL 0,2:MOVE 476,400:VDU 224:
MOVE 476,368:VDU 224
IF OHion%=4 THEN GCOL 0,2:MOVE 476,400:VDU 224:
MOVE 476,368:VDU 224
IF OHion%=4 THEN GCOL 0,3:MOVE 480,400:VDU 79

1940

1950
1960
1970 REPEAT
1980 GCOL 0,3:MOVE XL%,YL%:VDU 225
1990 IF YL%<304 THEN col%=O ELSE IF YL%=308 col%=3

ELSE col%=2
2000 GCOL O,col%:MOVE XL%,YL%:VDU 225
2010 IF YL%<=190 THEN XL%=XL%+4 ELSE YL%=YL%-4
2020 GCOL 0,3:MOVE XR%,YR%:VDU 225
2030 IF YR%<314 THEN col%=O ELSE IF YR%=314 col%=3

ELSE co1%=2
2040 GCOL O,col%:MOVE XR%,YR%:VDU 225
2050 IF XR%<=830 THEN XR%=XR%+4 ELSE YR%=YR%+4
2060 UNTIL XL%>=610
2070
2080 GCOL O,col%:MOVE XL%,YL%:VDU 225
2090 XL%=430:YL%=400
2100 XR%=680:YR%=190
2110 IF Hion%=l THEN GCOL 0,2:MOVE 780,432:VDU 224:

GCOL O,l:MOVE 780,432:VDU 79
2120 IF Hion%=2 THEN GCOL 0,2:MOVE 780,400:VDU 224:

GCOL O,l:MOVE 780,400:VDU 79

1670 Hlevel=Hlevel-16
1680 ENDPROC
1690
1700 DEF PROC02
1710 step=8
1720
1730 FOR Y%=432 TO 01evel STEP step
1740 GCOL 0,3:MOVE 480,Y%:VDU 79:MOVE 480,Y%-32:

VDU 79
1750 GCOL 0,2:MOVE 480,Y%-step:VDU 79:MOVE 480,Y%-32-st

ep:VDU 79
1760 NEXT Y%
1770
1780 MOVE 480,Y%-step:VDU 79
1790 MOVE 480,Y%-32-step:VDU 79
1800 GCOL 0,0
1810
1820 FOR Y%=top-4 TO 01evel STEP -4
1830 MOVE 404,Y%:DRAW 546,Y%
1840 NEXT Y%
1850
1860 01evel=Olevel-16
1870 ENDPROC
1880
1890 DEF PROCelectron
1900
1910
1920
1930

2130
2140 ENDPROC
2150
2160 DEF FNanother
2170
2180 COLOUR 130:COLOUR
2190 VDU 4
2200 PRINT TAB(4,31);"Do you want to re-run this (yiN)?

";
2210
2220 REPEAT
2230 A$=GET$
2240 UNTIL A$="Y" OR A$="N"
2250
2260 IF A$="N" THEN =FALSE
2270
2280 VT)U 5
2290 =TRUE

Simulations, Demonstrations and Tutorials 87

PROC/FN List
500 PROCcharacters sets up the user-defined

characters and strings needed to print
the various ions and electrons.

570 PROCinit sets initial values for various
variables.

660 PROCdiagram draws the diagram of a
simplified Hofmann voltameter.

1020 PROCtube is used to draw and fill the test
tubes that collect the evolved gases. The
parameters give the position of the
bottom left-hand corner of the tube.

1170 PROClabels reads and prints labels for the
diagram from data statements.

1310 PROCmove ions animates the ionic and
electronic movement.

1490 PROCH2 moves the hydrogen molecule from the
cathode to the top of the tube and lowers
the water level appropriately.

1700 PROC02 does the same for oxygen. Be
careful, when typing in the program, to
distinguish the letter '0' from the numeral
'0 ' .

1890 PROCelectron displays the movement of
electrons, received at the anode from the
cathode, via the electrical cell.

2160 FNanother asks if you want to re-run the
program and returns a TRUE value if you
answer 'y', a FALSE value otherwise.

Program Description
140-160 Set up characters, initial variable values

and draw the diagram.
180-420 Main loop.
200-220 Inner loop to wait for 'c' to be pressed

close switch to start. (250 erases the
open switch and 260 redraws it in the
closed position.)

280-360 The animation loop which moves the ions and
checks for the '0' (off) key being pressed
(line 340). This loop ends if either '0'
is pressed or a certain volume of hydrogen
has been evolved (line 360).

500-2290 Procedure/Function definitions.:
In PROCcharacters note that H$ and OX$
include GCOL statements using the VDU18
equivalent (lines 530 and 540). Thus
these strings include the colour control
commands. Most of PROCdiagram and
PROCtube just consists of move and draw
statements but note the use of the fill

88 A Science Teacher's Companion to the BBC Microcomputer

command: PLOT77,X,Y. This fills across
the screen either side of the point (X,Y)
until it detects a non-background colour:
in this case the 'side' of the tube or
container. Incidentally, this command is
not available on the 0.1 operating system.
You may wish to modify the program to deal
with other electrolytes, though this will
be fairly difficult, so I will explain the
ion-movement procedure in some detail.
Lines 1330-1350 erase the ions from their
previous positions (the 'water' is colour
2, redefined to blue earlier). 'XH%' and
'XO%' are the X coordinates of the
hydrogen and hydroxyl ions, so lines 1360
and 1370 calculate the new values and
lines 1380 and 1390 plot them. Lines 1410
and 1420 deal with the arrival of hydrogen
ions at the cathode and the corresponding
electron movement ('Hion%' is the number
of hydrogen ions collected two are
required to produce one molecule of
hydrogen gas, hence 1ine 1440). ' OHion %'
counts the arrival of hydroxyl ions and
line 1430 evolves oxygen when four have
reached the anode. Lines 1450 and 1460
reset the initial positions of the ions
(in the centre) and the values of the ion
counters. Thus for a reaction with
different stoichiometry you will need to
alter the number of ions counted before
evolution of gases, and also the reset
lines (that is, look at lines 1410-1460).

Modifications
As mentioned above, it would be possible to modify the
program to represent other reactions, though this would
require some work. In addition to the lines mentioned,
you should also note lines 1910-1950 which deal with
the anode reaction. In particular note lines 1910 and
1950 which print a white '0' to represent one oxygen
atom produced for every two hydroxyl ions. (VDU79 is
equivalent to PRINT CHR$(79); and 79 is the ASCII code
for '0'.) One way to gain an understanding of this, or
any program, is to play around with it and observe what
happens - after saving the original version of course!

PERIODIC TABLE ("P_TABLE")

This 32K
perhaps by

program could
the teacher

be
to

used at various levels,
illustrate some of the

Simulations, Demonstrations and Tutorials 89

underlying patterns of the Periodic Table, by the
students for revision purposes, and, if developed, as a
CAL package on the elements and periodicity. I
originally planned to include more illustrations of
patterns and periodicity and I would have liked to have
had included some questions. However, the constraints
imposed by the MODE I graphics limited this, though
there is plenty of data already included, not all of
which is used. If you have a disk-based system, a
useful idea would be to use this program as the basis
of a sequence of shorter programs which could be
automatically 'chained' as needed. This would enable a
more thorough treatment while remaining within the
memory limitations.

P TABLE
26/5/84
Chemistry
Periodic Table
O/A
P.O. Hawthorne

FOR Z%=l TO 103
READ S$
PROCfind square(Z%)
GCOL O,O:PROCprint(STR$ (Z%),X%,Y%)
GCOL 0,3:PROCprint(S$,X%,Y%)
A=INKEY (100)
NEXT Z%

PROCc1
PROCprompt("This arrangement is known as",27)
PROCprompt("the PERIODIC TABLE of the e1ements",29)
PROCspc:PROCcl
PROCprompt("You may be wondering why the",27)
PROCprompt("e1ements have been placed in",28)
PROCprompt("this particular order.",29)
PROCspc:PROCc1
PROCprompt("This was done so that e1ements",27)
PROCprompt("with similar properties would",28)
PROCprompt("come together in vertical GROUPS.",29)
PROCspc:PROCc1
PROCprompt("For example, GROUP I: the ALKALI METAL
S",27)

KEY TO SPEED THIS UP",28)

each number with",27)
an e1ement ... ",29)

PROCspc:PROCcl
PROCprompt("Let's replace
PROCprompt("the symbol of
PROCspc:PROCc1
COLOUR O:COLOUR 131
PROCprompt("HOLD DOWN ANY
GCOL 0,3
RESTORE 3190

Listing np_TABLE n

10 REM "Program:
20 REM "Started:
30 REM "Subject:
40 REM "Topic
50 REM "Level
60 REM "Author :
70 MODE 1
80 VDU 19,0,2;0;19,1,0;0;
90

100 PROCset_up
110
120 PROCprompt("Here's a grid for the e1ements ",27)
130
140 PROCdraw grid(l):PROCspc
150 PROCprompt("Now we can number each square.",29)
160 GCOL 0,1
170
180 FOR Z%=l TO 99
190 PROCfind square(Z%)
200 PROCprint(STR$ (Z%),X%,Y%)
210 NEXT Z%
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520

90 A Science Teacher's Companion to the BBC Microcomputer

530 PROCprompt(" a r e all soft,silvery-white metals",28)
540 PROCprompt("that are very active chemically.",29)
550 PROCshow(2,"1",TRUE)
560 PROCspc:PROCcl
570 PROCshow(2,"1",FALSE)
580 PROCprompt("The 6 elements of Group 0 are",27)
590 PROCprompt("all gases which are very unreactive. ",

28)
600 PROCshow(2,"8",TRUE)
610 PROCspc:PROCcl
620 PROCshow(2,"8",FALSE)
630 PROCprompt("Although group members have similar",2

7)
640 PROCprompt("properties there are also TRENDS",28)
650 PROCprompt("in these properties within the group."

, 29)
660 PROCspc:PROCcl
670 PROCprompt("For example, the ATOMIC RADIUS",28)
680 RESTORE 3300 :GCOL O,l:PROCradii
690 PROCspc
700 RESTORE 3300 :GCOL O,O:PROCradii
710 GCOL 0,3
720 PROCcl
730 PROCprompt("These GROUPS are now being",27)
740 PROCprompt(" shown on the Periodic Table above.",29)
750
760 FOR group=l TO 8
770 PROCshow(2,STR$ (group),TRUE)
780 COLOUR 2
790 PROCprompt("GROUP "+group$(group),l)
800 PROCspc
810 COLOUR O:PROCprompt(spc$,l)
820 PROCshow(2,STR$ (group),FALSE)
830 NEXT group
840
850 PROCcl
860
870 PROCprompt("There are also trends in the",27)
880 PROCprompt("properties across the rows or",28)
890 PROCprompt("PERIODS of the table",29)
900 PROCspc:PROCcl
910 PROCprompt("The plot above shows the",27)
920 PROCprompt(" va riation of ATOMIC RADIUS across",28)
930 PROCprompt("period 2.",29)
940 RESTORE 3310 :GCOL O,l:PROCradii
950 PROCspc:PROCcl
960 PROCprompt("Across a period electrons are being",2

6)
970 PROCprompt(" added to a given shell but the nuclear

",27)
980 PROCprompt(" charge is increasing, giving a",28)
990 PROCprompt(" g r eater attraction and a smaller radiu

s",29)
1000 PROCspc
1010 RESTORE 3310 :GCOL O,O:PROCradii
1020 PROCcl
1030 PROCprompt("The horizontal PERIODS are now",27)
1040 PROCprompt("being shown on the periodic table",29)
1050 FOR period=l TO 7
1060 COLOUR 2
1070 PROCprompt("PERIOD "+STR$ (period),l)
1080 PROCshow(l,STR$ (period),TRUE)
1090 PROCspc
1100 COLOUR O:PROCprompt(spc$,l)
1110 PROCshow(l,STR$ (period),FALSE)
1120 NEXT period
1130
1140 PROCc1
1150 COLOUR 3:PROCprompt("Other groupings can also

be",27)
1160 PROCprompt(" noted, as in the examples above.",29)
1170 COLOUR 2
1180 PROCprompt("METALS",l)
1190 PROCshow(3,"M",TRUE)
1200 PROCspc
1210 COLOUR O:PROCprompt(spc$,l)
1220 PROCshow(3,"M",FALSE)
1230 COLOUR 2

Simulations, Demonstrations and Tutorials

1240
1250 PROCprompt("TRANSITION METALS",l)
1260 PROCshow(3,"T",TRUE)
1270 PROCspe
1280 COLOUR O:PROCprompt(spe$,l)
1290 PROCshow(3,"T",FALSE)
1300 COLOUR 2
1310 PROCprompt("NON-METALS",l)
1320 PROCshow(3,"N",TRUE)
1330 PROCshow(3,"H",TRUE)
1340 PROCspe
1350 COLOUR O:PROCprompt(spe$,l)
1360 PROCshow(3,"N",FALSE)
1370 PROCshow(3,"H",FALSE)
1380 COLOUR 2
1390 PROCprompt("NOBLE GASES",l)
1400 PROCshow(3,"I",TRUE)
1410 PROCspe
1420 COLOUR O:PROCprompt(spe$,l)
1430 PROCshow(3,"I",FALSE)
1440 COLOUR 3
1450
1460 PROCel
1470 PROCprompt("THAT"S THE END",28)
1480 END
1490
1500
1510 DEF PROCset up
1520 spe$=STRING$(39," ")
1530 S$="**"
1540 REM "Set Flash Rates
1550 *FX9,15
1560 *FXI0,15
1570 DIM group$(8)
1580 FOR G%=1 TO 8:READ group$(G%):NEXT G%
1590 ENDPROC
1600
1610 DEF PROCspe
1620 LOCAL key
1630 COLOUR O:COLOUR 131
1640 PROCprompt("PRESS THE SPACE BAR TO CONTINUE",31)
1650 SOUND 1,-15,150,2
1660 REPEAT
1670 *FX15,1
1680 key=GET
1690 UNTIL key=32
1700 COLOUR 128:COLOUR 3
1710 PROCprompt(spe$,31)
1720 ENDPROC
1730
1740 DEF PROCdraw grid(eo1our)
1750 LOCAL X%,Y% -
1760 GCOL O,eolour
1770 MOVE 64,896:DRAW 64,450
1780 MOVE 128,896:DRAW 128,450
1790 MOVE 192,832:DRAW 192,450
1800 MOVE 256,704:DRAW 256,450
1810 MOVE 256,384:DRAW 256,256
1820 FOR X%=320 TO 1216 STEP 64
1830 MOVE X%,704:DRAW X%,512
1840 MOVE X%,384:DRAW X%,256
1850 NEXT X%
1860 FOR X%=832 TO 1216 STEP 64
1870 MOVE X%,832:DRAW X%,704
1880 NEXT X%
1890 MOVE 1152,832:DRAW 1152,896
1900 DRAW 1216,896:DRAW 1216,832
1910 FOR Y%=512 TO 704 STEP 64
1920 MOVE 64,Y%:DRAW 1216,Y%
1930 NEXT Y%
1940 FOR Y%=768 TO 832 STEP 64
1950 MOVE 64,Y%:DRAW 192,Y%
1960 MOVE 832,Y%:DRAW 1216,Y%
1970 NEXT Y%
1980 FOR Y%=256 TO 384 STEP 64
1990 MOVE 256,Y%:DRAW 1216,Y%
2000 NEXT Y%
2010 MOVE 64,896:DRAW 128,896

91

92 A Science Teacher's Companion to the BBC Microcomputer

2020 MOVE 64,448:DRAW 256,448
2030 ENDPROC
2040
2050 DEF PROCfind square(Z%)
2060 IF Z%>86 AND-Z%<90 THEN row%=7:co1umn%=Z%

MOD 87+1
2070 IF Z%>54 AND Z~<58 THEN row%=6:co1umn%=Z%

MOD 55+1
2080 IF Z%>36 AND Z%<55 THEN row%=5:co1umn%=Z%

MOD 37+1
2090 IF Z%>18 AND Z%<37 THEN row%=4:co1umn%=Z%

MOD 19+1
2100 IF Z%>10 AND Z%<19 THEN row%=3:co1umn%=-(Z%>12)*10

+Z% MOD 11+1
2110 IF Z%=3 OR Z%=4 THEN row%=2:co1umn%=Z% MOD 3+1
2120 IF Z%>4 AND Z%<11 THEN row%=2:co1umn%=Z%+8
2130 IF Z%=1 THEN row%=1:co1umn%=1
2140 IF Z%=2 THEN row%=1:co1umn%=18
2150 IF Z%>57 AND Z%<72 THEN row%=9:co1umn%=Z%

MOD 58+5
2160 IF Z%>89 THEN row%=10:co1umn%=Z% MOD 90+5
2170 IF Z%>71 AND Z%<87 THEN row%=6:co1umn%=Z%

MOD 72+4
2180 X%=FNxcoord(co1umn%)
2190 Y%=FNycoord(row%)
2200 ENDPROC
2210
2220 DEF PROCprint(text$,X%,Y%)
2230 VDU 5
2240 MOVE X%,Y%
2250 PRINT textS
2260 VDU 4
2270 ENDPROC
2280
2290 DEF FNxcoord(R%)
2300 =68+64*(R%-1)
2310
2320 DEF FNycoord(C%)
2330 =(10-C%)*64+296
2340
2350 DEF PROCflash(Z$,on%)
2360 LOCAL Z,P%,J%,K%,L%,sub$
2370 IF on%=TRUE THEN GCOL 0,2 ELSE GCOL 0,3:REM "F1

ash ON/OFF
2380 VDU 19,2,0;0;:REM "co12=b1ack
2390 L%=LEN (Z$)
2400
2410 FOR P%=1 TO L%
2420 K%=O:sub$=""
2430 REPEAT
2440 sub$=sub$+MID$(Z$,P%+K%,1)
2450 K%=K%+1
2460 UNTIL MID$(Z$,P%+K%,1)="," OR K%>L%
2470 REM "Find data separator (comma)
2480 P%=P%+K%
2490 Z%=VAL (sub$)
2500 PROCfind square(Z%)
2510 RESTORE 3190
2520 FOR J%=1 TO Z%
2530 READ S$
2540 NEXT J%
2550 PROCprint(S$,X%,Y%)
2560 NEXT P%
2570
2580 VDU 19,2,8;0;:REM "co12=f1ash b/w
2590 GCOL 0,3
2600
2610 ENDPROC
2620
2630 DEF PROCprompt(text$,1ine%)
2640 LOCAL L%
2650 L%=(40-LEN (text$))/2
2660 PRINT TAB(L%,1ine%);text$;
2670 ENDPROC
2680
2690 DEF PROCc1
2700 LOCAL L%
2710 COLOUR 128

Simulations, Demonstrations and Tutorials

2720 FOR L%=26 TO 30
2730 PROCprompt(spc$,L%)
2740 NEXT L%
2750 COLOUR 3
2760 ENDPROC
2770
2780 DEF PROCshow(P%,search$,on%)
2790 LOCAL Z,Z$
2800 Z$=STRING$(255,"*"):Z$=""
2810 RESTORE 3080
2820 FOR Z%=1 TO 103
2830 READ codeS
2840 IF MID$(code$,P%,I)=search$ THEN Z$=Z$+STR$ (Z%)+

,
2850 NEXT Z%
2860 PROCflash(Z$,on%)
2870 ENDPROC
2880
2890 DEF PROCradii
2900 READ N%,S%
2910 FOR J%=1 TO N%
2920 READ Z%,R%
2930 PROCfind square(Z%)
2940 PROCcircle(X%+30,Y%-6,R%/S%)
2950 NEXT J%
2960 ENDPROC
2970
2980 DEF PROCcircle(X%,Y%,R%)
2990 VDU 29,X%;Y%;
3000 FOR A=O TO 2*PI STEP PI /16
3010 MOVE O,O:MOVE R%*SIN (A),R%*COS (A)
3020 PLOT 85,R%*SIN (A+PI /16),R%*COS (A+PI /16)
3030 NEXT A
3040 VDU 26
3050 ENDPROC
3060
3070 DATA I,II,III,IV,V,VI,VII,O
3080 DATA IINS,18IP,21MS,22MS,23NP,24NP,25NP,26NP,27HP,

28IP
3090 DATA 31MS,32MS,33MP,34NP,35NP,36NP,37HP,38IP,41MS,

42MS
3100 DATA 40TD,40TD,40TD,40TD,40TD,40TD,40TD,40TD,40TD,

'40TD
3110 DATA 43MP,44MP,45NP,46NP,47HP,48IP,51MS,52MS,50TD,

50TD
3120 DATA 50TD,50TD,50TD,50TD,50TD,50TD,50TD,50TD,53MP,

54MP
3130 DATA 55MP,56NP,57HP,58IP,61MS,62MS,60TS,60TF,60TF,

60TF
3140 DATA 60TF,60TF,60TF,60TF,60TF,60TF,60TF,60TF,60TF,

60TF
3150 DATA 60TF,60TD,60TD,60TD,60TD,60TD,60TD,60TD,60TD,

60TD
3160 DATA 63MP,64MP,65MP,66MP,67HP,68IP,71MS,72MS,70TF,

70TF
3170 DATA 70TF,70TF,70TF,70TF,70TF,70TF,70TF,70TF,70TF,

70TF
3180 DATA 70TF,70TF,70TF
3190 DATA H,He,Li,Be,B,C,N,O,F,Ne
3200 DATA Na,Mg,Al,Si,P,S,C1,Ar,K,Ca
3210 DATA Sc,Ti,V,Cr,Mn,Fe,Co,Ni,Cu,Zn
3220 DATA Ga,Ge,As,Se,Br,Kr,Rb,Sr,Y,Zr
3230 DATA Nb,Mo,Tc,Ru,Rh,Pd,Ag,Cd,In,Sn
3240 DATA Sb,Te,I,Xe,Cs,Ba,La,Ce,Pr,Nd
3250 DATA Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb
3260 DATA Lu,Hf,Ta,W,Re,Os,Ir,Pt,Au,Hg
3270 DATA Tl,Pb,Bi,Po,As,Rn,Fr,Ra,Ac,Th
3280 DATA Pa,U,Np,Pu,Am,Cm,Bk,Cf,Es,Fm
3290 DATA Md,No,Lr
3300 DATA 5,9,3,152,11,185,19,231,37,246,55,262
3310 DATA 8,6,3,152,4,112,5,88,6,77,7,71,8,60,9,60,10,1

60

93

94 A Science Teacher's Companion to the BBC Microcomputer

PROC/FN List

1510 PROCset_up initialises a: few strings and
reads the group symbols (1,11 etc.) into the
array 'group$()'.

1610 PROCspc is the "Press space to continue"
routine.

1740 PROCdraw_grid draws the outline grid for the
Periodic Table.

2050 PROCfind_square(Z%) locates the row and
column positions in the grid for an element
of atomic number 'Z%' and calculates the
corresponding graphics coordinates using the
functions that follow.

2290 FNxcoord(R%) calculates the graphical X
coordinate of a character in row 'R%'.

2320 FNycoord calculates the graphical Y
coordinate of a character in column 'C%'.

2220 PROCprint(text$,X%,Y%) links the cursors and
plots the string in 'textS'.

2350 PROCflash is used to flash the sequence of
elements whose atomic numbers, each
separated by commas, are contained in the
parameter 'Z$'. For example
PROCflash("12,13,19",TRUE) flashes elements
12,13 and 19. The 'on%' parameter is set to
FALSE if it is desired to "unflash" the
elements.

2630 PROCprompt(text$,line%) is the main
text-handling procedure, and it prints the
string 'textS' centred on row 'line%'.

2690 PROCcl clears the bottom five lines of the
screen. This is normally where text is
printed.

2780 PROCshow(P%,search$,on%) provides a more
convenient way of flashing specified
elements. They are specified in terms of
the codes stored as DATA in lines 3080-3180
- see below for an explanation.

2890 PROCradii displays the atomic radii of
elements in Period 2.

2980 PROCcircle(X%,Y%,R%) draws a filled circle,
centre (X%,Y%), radius R%.

Program Description
The program is essentially a sequence running from line
120 to line 1480. This prints various descriptions and
prompts, calling the procedures as needed. In
particular note lines 180-210, a FOR... NEXT loop which
finds the X,Y coordinates of the square for each
element (1 to 99) and prints its atomic number in the

Simulations, Demonstrations and Tutorials 95

square. The loop in lines 320-380 performs a similar
function, but prints the symbol 'S$' of each element
(read in line 330 from the data in lines 3190-3290).
Line 350 first erases the atomic number.

1510-3050 Procedure/Function definitions:
The most complex of these are PROCflash and PROCshow.
In the first of these, lines 2410-2560 set up a loop
which searches through the string Z$ for each
occurrence of an atomic number. These are separated by
commas so the REPEAT loop (lines 2430-2460) uses the
MID$ function (see User Guide, page 298) to search for
the "," characters within Z$. The sub-string "sub$'
builds up the characters preceding the comma. When the
comma is found or the end of Z$ is reached (line 2460)
the position in the string, P%, is changed to point to
the next character after the comma (2480) and the value
of the sub-string (that is, the atomic number) is
extracted (2490). Lines 2510-2540 find the symbol
corresponding to the decoded atomic number and line
2550 prints it.

PROCshow also utilises PROCflash but enables more
complex sequences of elements to be highlighted easily.
For example, to flash the Group I elements would
require PROCflash("1,3,11,19,37,55,87",TRUE) which is
not very elegant. However, the DATA statements in
lines 3080-3180 contain information about each element
in the following, four character, code

PGCV

where
P

G
C

V

Period (for example, 1)
Group (for example, 3)
Character, (for example, M = Metal, H = Halogen,

N = Non-metal, I = Inert (noble) gas)
Valence 'block' (for example, S, P, D, F).

Thus element number 3 has the code "21MS" indicating it
is Period 2, Group 1, is a metal and that the S orbital
is being filled. To flash all Group 1 elements now
requires only PROCshow(2,"1",TRUE) see below for
explanation.

PROCshow can be used to utilise the information
contained in these codes. The first parameter, P%,
indicates which of the four codes we want to search and
the second parameter holds the value that we are
looking for (for example, P% = 1 searches the first
character - for Period - and search$ = "2" would select
all ele~ents in period 2). The third parameter selects
flash on/off if set to TRUE/FALSE, respectively. The
amount of information in these codes can easily be
extended by using more characters as needed.

96 A Science Teacher's Companion to the BBC Microcomputer

Modifications
As mentioned above, you may like to extend the range of
the program by splitting it up into a number of other
programs which each chain each other. Although this is
possible with cassette, it is obviously more practical
on a disk system. You will need to retain the main
procedures and the data statements in each program
segment. The lines between 120 and 1480 would vary in
each part but the other lines would remain as listed
here. All segments, except the last one, would end
with, say

1480 CHAIN "PT2"

where "PT2" is the file name for the next section.

PERIODICITY ("PERIOD")

This and the following program provide a convenient
means of plotting a wide range of data that varies
periodically with atomic number. The program covers
the first 18 elements and enables graphs to be drawn of
melting points, boiling points, densities, heats of
fusion and vaporisation, ionisation energies and atomic
radii. The graphs are selected from a menu and can be
overlaid if desired. The teacher can use these
programs to provide a basis of evidence to support the
Periodic Table arrangement. A Model B Microcomputer is
required.

Listing "PERIOD"

10 REM "Program: PERIOD
20 REM "Started: 18/5/84
30 REM "Version: 1.0
40 REM "Subject: Chemistry
50 REM "Topic Periodicity
60 REM "Level A
70 REM "Author P.D. Hawthorne
80
90 MODE 7

100
110 PROCcentre("PERIODICITY",0,130,TRUE)
120 PROCcentre("This program allows various",7,134,0)
130 PROCcentre("properties of a number of e1ements",9,

134,0)
140 PROCcentre("to be plotted against their",11,134,0)
150 PROCcentre("atomic number (Z).",13,134,0)
160 PROCcentre("PRESS THE SPACE BAR TO CONTINUE",16,13

O,TRUE)
170
180 key=FNgetkey(" ")
190
200 PROCset_up
210
220 REPEAT
230
240 MODE 7
250 option=FNmenu
260
270 REM "Press "1" (SHIFT+"l") to END
280 IF option=8 THEN MODE 7:END

Simulations, Demonstrations and Tutorials

290 PROCget values(option)
300 MODE 1 -
310 VDU 19,0,4;0;19,1,2;0;
320 PROCaxes(number of elements)
330 COLOUR 131 --
340 PROCprompt("PRESS SPACE BAR TO START PLOTTING",O)
350 key=FNgetkey(" ")
360 COLOUR 128
370 PROCprompt(spc$,O)
380 COLOUR 131
390
400 REPEAT
410
420 Vscale=FNscale(number_of_elements)
430 PROCcurs off
440 PROCplot(option,number of elements,Vscale)
450 COLOUR 128 - -
460 PROCprompt(spc$,O)
470 COLOUR 131
480 PROCcurs on
490 PROCprompt("0verlay another graph (Y/N)?",O)
500 key=FNgetkey(IYyNn")
510 COLOUR 128
520 PROCprompt(spc$,O)
530 COLOUR 131
540 IF key<3 THEN option=FNanother:PROCget values(opti

on) -
550
560 UNTIL key>2
570
580 UNTIL FALSE
590
600 END
610
620 DEF PROCset up
630 spc$=STRING$(39," ")
640 C%=3:REM "Resident plot colour
650
660 READ number of elements
670 DIM symbol$(number of elements)
680 DIM group$(nurnber of elements)
690 DIM value(number of elements)
700 DIM message$(7) - -
710
720 FOR M%=l TO 7
730 READ message$(M%)
740 NEXT M%
750
760 FOR group=l TO number of elements
770 READ group$(group) --
780 NEXT group
790
800 FOR Z=l TO number of elements
810 READ symbol$(Z) - -
820 NEXT Z
830
840 ENDPROC
850
860 DEF FNmenu
870
880 PROCcentre("VARIABLES",0,130,TRUE)
890 PROCcentre("You can plot any of the following:",3,

131,FALSE)
900 PRINT ""
910
920 FOR J%=l TO 7
930 PRINT ";J%;". ";message$(J%)
940 NEXT J%
950
960 PROCcentre("Press 1,2,3,4,5,6 or 7 (! ENDS)",22,12

9,TRUE)
970 opt=FNgetkey("1234567!")
980 =opt
990

1000 DEF PROCcentre(text$,row%,fgd%,dbl%)
1010 LOCAL colurnn%
1020 column%=(40-LEN (text$))/2-2
1030 text$=CHR$ (fgd%)+text$

97

98 A Science Teacher's Companion to the BBC Microcomputer

1040 IF dbl%=TRUE THEN text$=CHR$ 141+text$
1050 PRINT TAB(column%,row%);text$;
1060 IF dbl% THEN PRINT TAB(column%,row%+l);text$;
1070 ENDPROC
1080
1090 DEF PROCprompt(text$,line%)
1100 LOCAL L%
1110 L%=(40-LEN (text$))/2
1120 PRINT TAB(L%,line%);text$;
1130 ENDPROC
1140
1150 DEF PROCaxes(xsteps)
1160 VDU 29,16;164;
1170 MOVE O,O:DRAW 1200,0
1180 MOVE O,O:DRAW 0,736
1190 VDU 5
1200 Z=l
1210
1220 FOR X=O TO 1200 STEP INT (1200/xsteps+.5)
1230 MOVE X+1200/xsteps,0:DRAW X+1200/xsteps,-16
1240 Z$=STR$ (Z)
1250 PLOT 0,-(32*LEN (symbol$(Z)))/2,-64:PRINT symbol$(

Z)
1260 MOVE X+1200/xsteps,-16
1270 IF Z MOD 5=0 THEN PLOT 0,-(32*LEN (Z$))/2,-16:

PRINT Z$
1280 Z=Z+1
1290 NEXT X
1300
1310 VDU 4
1320 FOR Y=O TO 730 STEP 73
1330 MOVE O,Y:DRAW 8,Y
1340 NEXT Y
1350 COLOUR 131:COLOUR 1
1360 PRINT TAB(34,28);"At.No";
1370 ENDPROC
1380
1390 DEF FNscale(num items)
1400 min=value(l):max=min
1410
1420 FOR J%=l TO num items
1430 IF value(J%)<min THEN min=value(J%)
1440 IF value(J%»max THEN max=value(J%)
1450 NEXT J%
1460
1470 scale=736/(max-min)
1480 VDU 29,16;164-min*scale;
1490 =scale
1500
1510 DEF PROCplot(data num,num points, scale)
1520 PROCprompt(message$(data num),2)
1530 COLOUR 128 -
1540 PRINT TAB(I,4);" ";
1550 COLOUR C%
1560 PRINT TAB(I,4);STR$ (max);
1570 COLOUR 1
1580 GCOL O,C%
1590 C%=C%+l:IF C%=4 THEN C%=l
1600 index=l
1610
1620 FOR X=O TO 1200 STEP INT (1200/num points+.5)
1630 PROCplot-point(X+1200/num_points,scale*value(index

))
1640 IF index<num points THEN MOVE X+1200/num points,sc

ale*value(index):DRAW (X+2400/num points),scale*va
lue(index+l) -

1650 index=index+l
1660 NEXT X
1670
1680 ENDPROC
1690
1700 DEF PROCplot point(X,Y)
1710 MOVE X,Y -
1720 PLOT 0,-8,8:PLOT 1,16,-16
1730 PLOT 0,0,16:PLOT 1,-16,-16
1740 ENDPROC
1750
1760 DEF FNgetkey(key$)

Simulations, Demonstrations and Tutorials

1770 LOCAL pos
1780 REPEAT :pos=INSTR(key$,GET$
1790 UNTIL pos<>O
1800 =pos
1810
1820 DEF FNanother
1830 LOCAL key
1840 PROCprompt("Press > for next item, P to plot it",O)
1850 index=option
1860 old_index=option
1870
1880 REPEAT
1890
1900 key=FNgetkey(".>Pp")
1910 IF key<3 THEN index=index+1
1920 IF index=8 THEN index=l
1930 COLOUR 128
1940 PROCprompt(spc$,2)
1950 COLOUR 131
1960 PROCprompt(message$(index),2)
1970 IF index=old index THEN VDU 7
1980
1990 UNTIL key>2
2000 COLOUR 128:PROCprompt(spc$,31)
2010 COLOUR 131
2020 PROCprompt(message$(old_index),31)
2030
2040 =index
2050
2060 DEF PROCget va1ues(data index)
2070 RESTORE (2340+60*data_index)
2080
2090 FOR Z=l TO number of elements
2100 READ va1ue(Z) --
2110 NEXT Z
2120
2130 ENDPROC
2140
2150 DEF PROCcurs off:VDU 23,1,OjOjOjOj:ENDPROC
2160 DEF PROCcurs=on:VDU 23,1,ljOjOjOj:ENDPROC
2170
2180 REM "Number of elements in list
2190 DATA 18
2200
2210 REM "Menu option messages
2220 DATA Melting points (K),Boi1ing points (K)
2230 DATA Density (kg/m3),Heat of Fusion (kJ/mole)
2240 DATA Heat of Vaporization (kJ/mo1e),First ionizati

on energy (kJ/mole)
2250 DATA Atomic radius (pm)
2260
2270 REM "Groups
2280 DATA " "
2290 DATA O,I,II,III,IV,V,VI,VII
2300 DATA O,I,II,III,IV,V,VI,VII
2310 DATA 0
2320
2330 REM "Symbols
2340 DATA H
2350 DATA He,Li,Be,B,C,N,O,F
2360 DATA Ne,Na,Mg,Al,Si,P,S,Cl
2370 DATA Ar
2380
2390 REM "Melting Points (K)
2400 DATA 14.01
2410 DATA 0.95,452,1550,2600,3830,63.3,54.7,53.5
2420 DATA 24.5,371,924,933.2,1680,317.2,386,172.1
2430 DATA 83.7
2440
2450 REM "Boiling Points (K)
2460 DATA 20.4
2470 DATA 4.21,1590,1910,2820,5100,77.3,90.2,85.01
2480 DATA 27.2,1165,1380,2740,2628,552,238.5
2490 DATA 87.4
2500
2510 REM "Density (kg/m3 @ 293K)
2520 DATA .09
2530 DATA .166,534,1800,2500,2300,1.165,1.33,1.7

99

100 A Science Teacher's Companion to the BBC Microcomputer

2540 DATA 0.839,970,1741,2700,2300,1800,2070,3.21
2550 DATA 1.66
2560
2570 REM "Heat of Fusion (kJ/mole)
2580 DATA 0
2590 DATA 0,3.0,11.7,22.2,60,.36,.22,.26
2600 DATA .33,2.60,8.95,10.75,46.4,0.63,1.41,3.20
2610 DATA 1.18
2620
2630 REM "Heat of Vaporization (kJ/mole)
2640 DATA 0
2650 DATA 0,135,295,539,717,2.8,3.4,3.3
2660 DATA 1.8,89.0,128.7,293.7,376.7,12.4,9.6,10.2
2670 DATA 6.5
2680 . "
2690 REM "First Ionization Energy (kJ/mole)
2700 DATA 1312
L710 DATA 2373.7,520.1,899.3,800.7,1086.5,1402,1314.2,

680.9
2720 DATA 2080.7,495.9,737.8,577.6,786.5,1011.8,999.6,

251.2
2730 DATA 1520.6
2740
2750 REM "Atomic Radius (pm)
2760 DATA 46
2770 DATA 176,152,112,88,77,71,60,60
2780 DATA 160,185,160,142,118,165,106,91
2790 DATA 174

PROC/FN List

620 PROCset_up dimensions and sets up the arrays
holding the various data items.

860 FNmenu presents the plotting options and
gets the user's choice.

1000 PROCcentre(text$,row%,fgd%,dbl%) is for use
in Mode 7. It prints the supplied text on
the specified row, using the text colour
code given in 'fgd%'. If the final
parameter 'dbl%' is TRUE then the text
appears in double height. The cursor will
be left at the printing position following
the end of the text.

1090 PROCprompt, see previous program.
1150 PROCaxes draws and labels the graph axes.
1390 FNscale finds the minimum and ~aximum values

of the quantity to be plotted and calculates
a suitable scaling factor. It also sets the
graphics origin to a suitable point.

1510 PROCplot draws the graph.
1700 PROCplot_point produces a small cross at the

plotting point.
1760 FNgetkey, see earlier.
1820FNanother allows the user to select another

set of values for plotting, to be overlaid
on a previous graph.

2060 PROCget_values(data_index) reads the set of
data selected by the parameter into an

Simulations, Demonstrations and Tutorials 101

array, 'value()'. The data will be obtained
from one of the lines 2400-2790.

2150,2160 PROCcurs_off and PROCcurs on turn the
cursor on and off, respectively.

Program Description
Lines 110-160 print a title page and then the main loop
between lines 220 and 580 is entered. This first
obtains the selected option for plotting (250) and
reads the selected data into the temporary array
'value()' (line 290). This technique saves memory over
the alternative method which would read all the data
into separate arrays or one multi-dimensional array.
The data already occupies memory in the DATA statements
so there is no point in storing it all again in arrays.

The inner loop (400-560) carries out the plotting
(440), asks if an overlay is required (490, 500) and
gets the new option if required (540). The loop
repeats until you answer "N" to the 'overlay' prompt.

620-2160 Procedure/Function definitions
In PROCaxes lines 1160-1180 draw the X,Y axes and lines
1220-1290 mark off the X-axis sub-divisions and print
the element symbols. The routine will adjust itself if
you want to add more elements but the symbols will
start to overlap if too many are inserted. Lines
1320-1350 sub-divide the Y-axis.

PROCplot starts by indicating which data is being
plotted (1520) and prints the maximum value at the
appropriate place on the Y-axis. Line 1580 selects the
plot colour (C%) which is changed for each successive
graph (1590). The FOR... NEXT loop (1620-1660) moves
across the X axis in steps, the size of which depends
on the number of points to be plotted, and plots the
current data value contained in the 'value' array.
Line 1630 plots the point and line 1640 draws a line
from the current point to the next point if this is not
the last point.

FNanother allows a different set of data to be
selected by pressing '>'. This causes the program to
display the data titles in sequence (for example,
"Melting points", "Boiling points" etc.). When the
required one is shown you press P to plot it. The
function sets 'index' to the current data 'option'
value and also stores this value as 'old index'. The
REPEAT loop (1880-1990) waits for either of the allowed
keys to be pressed (1900) and increments 'index' if '>'
is pressed (1910). Line 1920 checks that 'index' has
not gone out of bounds and line 1960 prints the
corresponding data title. Line 1970 beeps every time
the old title is displayed (in case you forget what the

102 A Science Teacher's Companion to the BBC Microcomputer

graph is). When the 'plot' command is given, the old
title (for the current graph) will be displayed at the
bottom of the screen (2020), leaving the new title at
the top of the screen. The function returns the final
value of 'index'.

In PROCget_values, note the computed RESTORE (2070)
and, if you make any alterations, avoid renumbering the
program unless you want to recalculate the formula.

ELECTRON SHELLS ("SHELLS")

This program follows a similar format to the preceding
one but presents graphical data which provides evidence
for 'shells' of electrons. The data that can be
plotted are the logs of the successive ionisation
energies of sodium and potassium and the first or
second ionisation energies of the first 54 elements.
It is again possible to overlay graphs but only the
first pair or the second pair can be overlaid on each
other. The program is intended for teacher
demonstration though it could also form the basis, with
a suitable worksheet, of a pupil-based investigation of
the included data.

Listing "SHELLS"

10 REM "Program: SHELLS
20 REM "Started: 20/5/84
30 REM "Version: 1.0
40 REM "Subject: Chemistry
50 REM "Topic Electron Shells
60 REM "Level A
70 REM "Author P.D. Hawthorne
80
90 ~ODE 7

100
110 PROCcentre("ELECTRON SHELLS",2,131,TRUE)
120 PROCcentre("This program provides some evidence",6

,134,0)
130 PROCcentre("for 'shells' of electrons.",8,134,0)
140 PROCcentre("This is based on the variation",10,134

, 0)
150 PROCcentre("of ionization energies.",12,134,0)
160 PROCcentre("You should be familiar with the",14,13

4,0)
170 PROCcentre("program 'H SPECT' which shows how",16,

134,0) -
180 PROCcentre("these are obtained from the",18,134,0)
190 PROCcentre("convergence limits of spectra.",20,134

, 0)
200 PROCcentre("PRESS THE SPACE BAR TO CONTINUE",23,13

1,TRUE) ~

210
220 PROCset_up
230
240 key=FNgetkey(" ")
250
260 REPEAT
270
280 MODE 7
290 option=FNmenu
300 IF option=5 THEN MODE 7:END
310 MODE 1

Simulations, Demonstrations and Tutorials

320 VDU 19,0,4iOi19,1,2iO;
330
340 IF option<3 THEN num points=19:1abel$="Number

of electrons removed"
350 IF option>2 THEN num points=number of elements:lab

el$="ATOMIC NUMBER" - - -
360
370 PROCget values(option,num points)
380 PROCaxes(num points,label$)
390 PROCprompt("PRESS SPACE BAR TO START PLOTTING",O)
400 key=FNgetkey(" ")
410
420 COLOUR 128
430 PROCprompt(spc$,O)
440 COLOUR 131
450
460
470 Vscale=FNscale(num points)
480 PROCcurs off -
490 PROCplotToption,num points,Vscale)
500 COLOUR 128 -
510 PROCprompt(spc$,O)
520 COLOUR 131
530 PROCcurs on
540 PROCprompt("Overlay another graph (Y/N)?",O)
550 key=FNgetkey ("YyNn II)

560
570 COLOUR 128
580 PROCprompt(spc$,O)
590 COLOUR 131
600
610 IF key<3 THEN PROCgraph2
620
630 COLOUR 131
640 IF key<3 THEN PROCprompt("PRESS SPACE BAR TO RETUR

N TO MENU",O):A=FNgetkey(" ")
650
660 UNTIL FALSE
670
680 END
690
700 DEF PROCset up
710 spc$=STRING$(39," ")
720 line$=CHR$ 149+STRING$(35,CHR$ 172)
730 C%=3:REM "Resident plot colour
740
750 READ number_of_elements
760
770 DIM symbol$(number_of_elements)
780 DIM value(number of elements)
790 DIM message$(4) - -
800
810 FOR M%=l TO 4
820 READ message$(M%)
830 NEXT M%
840
850
860 FOR Z=l TO number of elements
870 READ symbol$(Z) - -
880 NEXT Z
890
900 ENDPROC
910
920 DEF FNmenu
930
940 PROCcentre("VARIABLES",0,130,TRUE)
950 PROCcentre("You can plot any of the following:",3,

131,FALSE)
960 PROCcentre(line$,5,129,0)
970 PRINT ",
980
990 FOR J%=l TO 4

1000 PRINT 'iJ%i". "imessage$(J%)
1010 NEXT J%
1020 PROCcentre(line$,18,129,O)
1030
1040 PROCcentre("Press 1,2,3 or 4 (1 ENDS)",22,129,

TRUE)

103

104 A Science Teacher's Companion to the BBC Microcomputer

1050 opt=FNgetkey("1234!")
1060 =opt
1070
1080 DEF PROCcentre(text$,row%,fgd%,db1%)
1090 LOCAL co1umn%
1100 co1umn%=(40-LEN (text$))/2-2
1110 text$=CHR$ (fgd%)+text$
1120 IF db1%=TRUE THEN text$=CHR$ 141+text$
1130 PRINT TAB(co1umn%,row%);text$;
1140 IF db1% THEN PRINT TAB(co1umn%,row%+1);text$;
1150 ENDPROC
1160
1170 DEF PROCprompt(text$,line%)
1180 LOCAL L%
1190 L%=(40-LEN (text$))/2
1200 PRINT TAB(L%,line%);text$;
1210 ENDPROC
1220
1230 DEF PROCaxes(xsteps,x1abe1$)
1240 VDU 29,16;164;
1250 MOVE O,O:DRAW 1270,0
1260 MOVE O,O:DRAW 0,736
1270
1280 VDU
1290 Z=l
1300
1310 FOR X=O TO 1200 STEP INT (1200/xsteps+.5)
1320 MOVE X+1200/xsteps,0
1330 IF Z MOD 5=0 THEN DRAW X+1200/xsteps,-24 ELSE

DRAW X+1200/xsteps,-16
1340 Z$=STR$ (Z)
1350 MOVE X+1200/xsteps,-16
1360 IF Z MOD 5=0 THEN PLOT 0,-(32*LEN '(Z$))/2,-16:

PRINT Z$
1370 Z=Z+l
1380 NEXT X
1390
1400 VDU 4
1410
1420 FOR Y=O TO 730 STEP 73
1430 MOVE O,Y:DRAW S,Y
1440 NEXT Y
1450
1460 COLOUR 131:COLOUR 1
1470 PROCprompt(x1abe1$,29)
1480 ENDPROC
1490
1500 DEF FNsca1e(num items)
1510 LOCAL J% -
1520
1530
1540 min=va1ue(1):max=min
1550
1560 FOR J%=l TO num items
1570 IF va1ue(J%)<min THEN min=va1ue(J%)
1580 IF va1ue(J%»max THEN max=va1ue(J%)
1590 NEXT J%
1600
1610 sca1e=736/(max-min)
1620 VDU 29,16;164-min*sca1e;
1630 =sca1e
1640
1650 DEF PROCp1ot(data num,num points,sca1e)
1660 PROCprompt(message$(data_num),2)
1670 COLOUR 128
1680 PRINT TAB(1,4);" ";
1690 COLOUR C%
1700 max=INT (max*100)/100
1710 PRINT TAB(1,4);STR$ (max);
1720 COLOUR 1
1730 GCOL O,C%
1740 C%=C%+l:IF C%=4 THEN C%=l
1750 index=l
1760
1770 FOR X=1200/num points TO 1200 STEP INT (1200/num_p

oints+.5) -
1780 IF va1ue(index)<>0 THEN PROCp1ot_point(X,sca1e*va1

ue (index))

Simulations, Demonstrations and Tutorials

1790 IF index>=num points THEN 1820
1800 IF value(index+l)<>O THEN MOVE X,scale*value(index

):DRAW (X+1200/num pcints),scale*value(index+l)
1810 index=index+l -
1820 NEXT X
1830
1840 ENDPROC
1850
1860 DEF PROCplot point(X,Y)
1870 MOVE X,Y -
1880 PLOT 0,-8,8:PLOT 1,16,-16
1890 PLOT 0,0,16:PLOT 1,-16,-16
1900 ENDPROC
1910
1920 DEF FNgetkey(key$)
1930 LOCAL pos
1940 REPEAT :pos=INSTR(key$,GET$
1950 UNTIL pos<>O
1960 =pos
1970
1980 DEF FNanother
1990 LOCAL old index,index,key
2000 old_index~option
2010
2020 IF option=l THEN index=2
2030 IF option=2 THEN index=l
2040 IF option=3 THEN index=4
2050 IF option=4 THEN index=3
2060
2070 COLOUR 128
2080 PROCprompt(spc$,2)
2090 COLOUR 131
2100 PROCprompt(message$(index),2)
2110
2120 COLOUR 128:PROCprompt(spc$,31)
2130 COLOUR 131
2140 PROCprompt(message$(old_index),31)
2150
2160 =index
2170
2180 DEF PROCget values(data index,num items)
2190 ON data index GOTO 2200-,2210 ,2220 ,2230
2200 RESTORE-2740 :GOTO 2250
2210 RESTORE 2750 :GOTO 2250
2220 RESTORE 2580 :GOTO 2250
2230 RESTORE 2660 :GOTO 2250
2240
2250 FOR J%=l TO num items
2260 READ value(J%) -
2270 NEXT J%
2280 ENDPROC
2290
2300 DEF PROCgraph2
2310 option=FNanother
2320 PROCget values(option,num points)
2330 Vscale=FNscale(num points)
2340 PROCplot(option,num_points,Vscale)
2350 ENDPROC
2360
2370 DEF PROCcurs off:VDU 23,1,0;0;0;0;:ENDPROC
2380 DEF PROCcurs=on:VDU 23,1,1;0;0;0;:ENDPROC
2390
2400 REM "Number of elements in list
2410 DATA 54
2420
2430 REM "Menu option messages
2440 DATA 19(Ionization energies) of Sodium
2450 DATA 19(Ionization energies) of Potassium
2460 DATA 1st ionization energies of elements
2470 DATA 2nd ionization energies of elements
2480
2490 REM "Symbols
2500 DATA H
2510 DATA He,Li,Be,B,C,N,O,F
2520 DATA Ne,Na,Mg,Al,Si,P,S,Cl
2530 DATA Ar,K,Ca,Sc,Ti,V,Cr,Mn,Fe,Co,Ni,Cu,Zn,Ga,Ge,As

,Se,Br

105

106 A Science Teacher's Companion to the BBC Microcomputer

2540 DATA Kr,Rb,Sr,Y,Zr,Nb,Mo,Tc,Ru,Rh,Pd,Ag,Cd,In,Sn,S
b,Te,I

2550 DATA Xe
2560
2570 REM "First Ionization Energy (kJ/mole)
2580 DATA 1312
2590 DATA 2373.7,520.1,899.3,800.7,1086.5,1402,1314.2,1

680.9
2600 DATA 2080.7,495.9,737.8,577.6,786.5,1011.8,999.6,1

251.2
2610 DATA 1520.6,418.8,589.8,631,658,650.3,652.9,717.4,

759.4,758.4,736.7,745.5,906.4,578.8,762.2,946.6,94
1,1140

2620 DATA 1351,403,549.5,615.6,660,664,685,702,712,720,
804.7,731,868,558.3,708.6,833.8,869,1008

2630 DATA 1170
2640
2650 REM "Second Ionization energy
2660 DATA 0
2670 DATA 5251,7298,1757,2427,2353,2856,3388,3374
2680 DATA 3952,4563,1451,1817,1577,1903,2251,2297
2690 DATA 2666,3051.5,1145.4,1235,1310,1413.6,1592.1,15

09.1,1561.2,1646,1753,1958,1733,1979,1537.5,1798,2
044.6,2103.5

2700 DATA 2350,2632,1064,1181,1267,1382,1558,1472,1617,
1745,1875,2074,1631,1821,1412,1595,1795,1846

2710 DATA 2047
2720
2730 REM "log of IE"s (1 to 11) for Sodium
2740 DATA 2.70,3.66,3.80,4.00,4.14,4.24,4.29,4.45,4.49,

5.15,5.25,0,0,0,0,0,0,0,0
2745 REM "log of IE"s (1 to 19) for Potassium
2750 DATA 2.62,3.48,3.58,3.70,3.80,3.90,3.97,4.00,4.06,

4.50,4.56,4.62,4.70,4.76,4.80,4.84,4.88,5.40,5.50

PROC/FN List and Program Description
Many of the procedures are identical to, and some have
only slight differences, from those with the same name
in the previous program, so you can save yourself some
typing! FNanother does differ in that it only makes
sense to overlay certain of the graphs so the computer
automatically selects the other set of data from the
pair (see lines 2020-2050.)

PROCgraph2 is an extra procedure which controls the
plotting of the second graph, selecting the new option
via FNanother and getting the correct values and scale
factor (lines 2320 and 2330) before calling PROCplot to
actually draw the graph.

ATOMIC STRUCTURE ("ATOM")

This Model B program should prove useful in introducing
the ideas of atomic structure. It shows both the
structure of the nucleus (protons and neutrons) and the
orbital electrons for the first 20 elements. The
electrons fill up the shells in accordance with Hund's
rule. The symbol for the required element can be
entered or the program will display the next in
sequence if you just press <RETURN). (After Calcium
has been displayed the program repeats the sequence

Simulations, Demonstrations and Tutorials 107

again starting with Hydrogen.) This allows the teacher
to demonstrate the way the electronic structure builds
up and he could correlate this with the idea of shells
and with the arrangement of the Periodic Table. The
program displays the symbol and atomic number of the
selected element so the connection with the number of
electrons/protons can be pointed out. The program
could be used by pupils to check electronic structures
that they have worked out themselves.

Listing "ATOM"

10 REM "Program: ATOM
20 REM "Started: 29/5/84
30 REM "Version: 1.0
40 REM "Topic Atomic Structure
50 REM "Level 0
60 REM "Author : P.O. Hawthorne
70
80 ON ERROR MODE 7:END
90 MODE 7

100 PROCcurs off
110
120 VDU 31,14,10,134,141:PRINT "ATOMIC"
130 VDU 31,14,11,131,141:PRINT "ATOMIC"
140 VDU 31,13,12,130,141:PRINT "STRUCTURE"
150 VDU 31,13,13,132,141:PRINT "STRUCTURE"
160
170 PROCset up
180 MODE 1 -
190 VDU 19,0,4;0;
200
210 PROCscreen
220
230 REP,EAT
240
250 REPEAT
260
270 COLOUR 130:COLOUR 0
280 PROCcurs on
290 *FX21,0 -
300 PRINT TAB(8,29);"Enter an Element symbol"
310 INPUT TAB(2,30)"or just press RETURN for next

one ",sym$
320 SOUND 1,-15,150,2
330 PROCcurs off
340 COLOUR 128:COLOUR 3
350 PRINT TAB(0,29);SPC 39'SPC 39;
360 IF sym$="" THEN Z%=Z%+l ELSE CLS :PROCscreen:Z%=

FNfind Z(sym$)
370 IF Z%>N% THEN Z%=l:CLS :PROCscreen
380
390 UNTIL Z%«N%+l)
400
410 COLOUR 130:COLOUR 0
420 PRINT TAB(4,6+Z%);"<"
430 PRINT TAB(35,6+Z%);">"
440 COLOUR 128:COLOUR 3
450 PRINT TAB(4,5+Z%);" "
460 PRINT TAB(35,5+Z%);" "
470
480 PROCnucleus(Z%)
490 PROCorbits(Z%)
500
510 UNTIL FALSE
520
530 END
540
550
560 DEF PROCcurs off
570 VDU 23,1,0;0;0;0;
580 ENDPROC

108 A Science Teacher's Companion to the BBC Microcomputer

590
600 DEF PROCcurs on
610 VDU 23,1,1;0;0;0;
620 ENDPROC
630
640 DEF PROCscreen
650 LOCAL E%
660 COLOUR 3:PRINT TAB(l,l);"Electron=";CHR$ 226
670 COLOUR l:PRINT TAB(1,2);"Proton=";CHR$ 224
680 COLOUR 2:PRINT TAB(1,3);"Neutron=";CHR$ 224
690 COLOUR 130:COLOUR 0
700 PRINT TAB(0,5);"Symbol";TAB(35,5);"At No"
710 FOR E%=l TO N%
720 PRINT TAB(0,6+E%);" ";element$(E%);" ";
730 IF LEN (element$(E%))=l THEN PRINT" "
740 PRINT TAB(36,6+E%);" ";STR$ (E%);" ";
750 IF LEN (STR$ (E%))=l THEN PRINT" "
760 NEXT E%
770
780 COLOUR 128:COLOUR 3
790 ENDPROC
800
810 DEF FNfind Z(search$)
820 LOCAL Z%,found%
830 Z%=O
840
850 REPEAT
860 IF element$(Z%)=search$ THEN found%=TRUE
870 Z%=Z%+l
880 UNTIL found% OR Z%>N%
890
900 IF NOT found% THEN PRINT TAB(5,15);"The symbol

";search$;" is not available."
910 IF. NOT found% THEN VDU 7:COLOUR 131:COLOUR 0:

PRINT TAB(7,17);"Press any key to continue. ":A=
GET :COLOUR 128:COLOUR 3

920 IF found% THEN =Z%-l ELSE =Z%
930
940 DEF PROCset_up
950
960 N%=20
970 DIM element$(N%),neutrons(N%),Xp%(N%),Yp%(N%),Xn%(

N%+4),Yn%(N%+4),Xe%(N%),Ye%(N%)
980 DIM S(32),C(32)
990

1000 FOR A%=O TO 32
1010 S(A%)=SIN (A%*PI /16):C(A%)=COS (A%*PI /16)
1020 NEXT A%
1030
1040 FOR Z%=l TO N%
1050 READ element$(Z%)
1060 NEXT Z%
1070
1080 FOR Z%=l TO N%
1090 READ neutrons(Z%)
1100 NEXT Z%
1110
1120 FOR Z%=l TO N%
1130 READ Xp%(Z%),Yp%(Z%)
1140 NEXT Z%
1150
1160 FOR Z%=l TO N%+2
1170 READ Xn%(Z%),Yn%(Z%)
1180 NEXT Z%
1190
1200 FOR Z%=l TO N%
1210 READ Xe%(Z%),Ye%(Z%)
1220 NEXT Z%
1230
1240
1250 VDU 23,224,28,62,127,127,127,62,28,0
1260 VDU 23,225,28,65,128,128,128,65,34,28
1270 VDU 23,226,0,0,24,24,0,0,0,0
1280
1290 Z%=O
1300 ENDPROC
1310
1320 DEF PROCnucleus(Z%)

Simulations, Demonstrations and Tutorials

1330 LOCAL proton%,neutron%,R%,ang1e
1340 VDU 5,29,630;532;
1350 IF Z%>18 THEN PROCerase(21):PROCerase(22)
1360
1370 FOR proton%=l TO Z%
1380 MOVE Xp%(proton%),Yp%(proton%)
1390 GCOL O,l:VDU 224
1400 MOVE Xp%(proton%),Yp%(proton%)
1410 GCOL 0,3:VDU 225
1420 NEXT proton%
1430
1440 IF Z%=l THEN VDU 4:ENDPROC
1450
1460 FOR neutron%=l TO neutrons(Z%)
1470 MOVE Xn%(neutron%),Yn%(neutron%)
1480 GCOL 0,2:VDU 224
1490 MOVE Xn%(neutron%),Yn%(neutron%)
1500 GCOL O,l:VDU 225
1510 NEXT neutron%
1520
1530 VDU 4
1540 ENDPROC
1550
1560 DEF PROCerase(N%)
1570 GCOL 0,0
1580 MOVE Xn%(N%),Yn%(N%):PRINT CHR$ 224
1590 MOVE Xn%(N%),Yn%(N%):PRINT CHR$ 225
1600 ENDPROC
1610
1620
1630 DEF PROCorbits(Z%)
1640 VDU 29,640;520;
1650 GCOL 0,1
1660 PROCcirc1e(180)
1670 IF Z%>2 THEN PROCcirc1e(300)
1680 IF Z%>10 THEN PROCcirc1e(400)
1690 IF Z%>18 THEN PROCcirc1e(470)
1700
1710 GCOL 0,3
1720
1730 VDU 5
1740
1750 FOR e1ectron=1 TO Z%
1760 PROCe1ectron(Xe%(e1ectron),Ye%(e1ectron))
1770 NEXT electron
1780
1790 VDU 4
1800
1810 ENDPROC
1820
1830 DEF PROCcirc1e(R%)
1840 FOR A%=O TO 31
1850 MOVE R%*S(A%),R%*C(A%)
1860 PLOT 21,R%*S(A%+1),R%*C(A%+1)
1870 NEXT
1880 ENDPROC
1890
1900 DEF PROCe1ectron(X%,Y%)
1910 MOVE X%-12,Y%+8
1920 VDU 226
1930 ENDPROC
1940
1950 DATA H,He,Li,Be,B,C,N,O,F,Ne
1960 DATA Na,Mg,A1,Si,P,S,C1,Ar,K,Ca
1970 REM "Number of neutrons
1980 DATA 0,2,4,5,6,6,7,8,10,10
1990 DATA 12,12,14,14,16,16,18,22,20,20
2000 REM "X,Y coords for Protons
2010 DATA 0,0,0,-32,0,32,-32,0,32,0
2020 DATA 64,0,32,55,-32,55,-64,0,-33,-56,31,-56
2030 DATA 90,32,48,83,-17,94,-74,61,-96,0,-74,-62,-17,-

95,47,-84,90,-33
2040 REM "X,Y coords for Neutrons
2050 DATA 22,22,-23,22,-23,-23,22,-23
2060 DATA 55,31,0,64,-56,32,-56,-32,-1,-64,55,-33
2070 DATA 96,0,73,61,16,94,-48 t83,-91,32,-91,-33,-49,-8

4,16,-95,73,-62,110,-24
2080 DATA 88,-36,-128,0

109

110 A Science Teacher's Companion to the BBC Microcomputer

2090 REM "X,Y coords for Electrons
2100 DATA 180,0,-180,0
2110 DATA -78,290,78,290
2120 DATA -290,78,-78,-290,290,-78,-290,-78,78,-290,290

,78
2130 DATA -104,386,104,386
2140 DATA -386,104,-104,-386,386,-104,-386,-104,104,-38

6,386,104
2150 DATA -122,454,122,454

PROC/FN List
560,600 PROCcurs off, PROCcurs on are cursor off/on

routines.
640 PROCscreen sets up the screen display,

including the list of symbols and atomic
numbers.

810 PROCfind_Z(search$) does a sequential search
of the list of symbols for a match with
'search$'. It returns the atomic number of
the element if it finds it, otherwise it
returns a value that is one greater than the
number of elements included in the program.

940 PROCset_up DIMensions various arrays, READs
in the various data values and also sets up
sin/cos look-up tables to speed up
circle-drawing (lines 1000-1020). The
characters used to represent the elementary
particles are also defined.

1320 PROCnucleus fills the 'nucleus' with the
correct number of protons and neutrons.

1560 PROCerase deletes extra neutrons that are
present in argon but not in the following
elements.

1630 PROCorbits draws circular orbits and plots
the appropriate number of electrons.

1830 PROCcircle produces a dotted circle to
represent the electron orbit.

1900 PROCelectron plots an electron in the
correct place on the orbit.

Program Description
The variables are set up in line 170 and the screen in
line 210. The main loop then runs from 230 to 510.
Line 310 inputs either an element symbol or the null
string if RETURN only is pressed. In the latter case
the atomic number (Z%) is incremented else the entered
symbol is searched for. Lines 410-460 move '<' and '>'
characters down the lists of symbols and atomic numbers
to indicate the current values. The atom is drawn in
lines 480 and 490 and note that, when just RETURN is
pressed, the previous atom is not erased first. This is
done to provide a smooth transition to the next
structure.

Simulations, Demonstrations and Tutorials 111

560-1930 Procedure/Function definitions
Most of these are straightforward but note the setting
up of arrays S() and C() as look-up tables for sin and
cos values, respectively (lines 1000-1020), and the
definition of user characters 224,225 and 226 in lines
1250-1270. The first two are used for the nucleons and
the last one is the electron. The printing of these
characters is done in PROCnucleus and PROCorbits by
linking the cursors (using the VDU5 statement) and
moving to a pre-defined position before printing the
appropriate characters (see, for example, lines
1370-1420). The', coordinates for these printing
operations are sto~ed in the DATA statements at the end
of the program, from where they are READ into arrays
during PROCset_up (lines 1120-1220). The respective
arrays are Xp%() and Yp%() for the protons, Xn%() and
Yn%() for the neutrons and Xe%() and Ye%() for the
electrons. PROCerase(N%) (1560-1600) deletes neutron
number N% by reprinting it in the background colour.

DIGESTIVE SYSTEM GAME ("DIGEST")

This game, for Model B machines, should prove useful
for revision of the essential features of the human
digestive system. In the first part of the program a
jumbled list of the names for the eight main sections
of the alimentary canal is given and the pupil has to
enter these in the correct order. Each time that the
correct name is typed, a diagram of that part will be
added to build up an illustration of the complete
system. At the same time the name is removed from the
jumbled list and added to a new, ordered list. When
all eight parts have been correctly entered the screen
will thus show a completed diagram and a correctly
ordered list of names. If at any time the wrong name
is entered, a suitable prompt is given and one point is
deducted from the pupil's score.

The second part of the program is intended to
reinforce the first part by showing the complete
diagram again but with one of the sections shown
flashing. The pupil must correctly identify the
flashing part without the help of a list of the correct
names. Again errors are penalised by deducting one
from the score. At the end of the program the pupil is
told his final score.

Aside from the use described here, the teacher may
find the diagram of the digestive system useful in
itself and I have given details in the modifications
section of how to extract the necessary procedures for
use in another program.

There are rather a lot of DATA statements to be
typed in so check carefully for any typing errors.

112 A Science Teacher's Companion to the BBC Microcomputer

Listing "DIGEST"

10 REM "Program: DIGEST
20 REM "Started: 2/6/84
30 REM "Version: 1.0
40 REM "Subject: Biology
50 REM "Topic Digestive System
60 REM "Level CSE/O
70 REM "Author P.D. Hawthorne
80
90 MODE 1

100
110 PROCinit
120 PROCshuffle(P%)
130
140 PRINT "
150 PRINT "You have to arrange the various parts"'

"of the digestive system in the correct"
160 PRINT "order. You start with 10 points but"'

"you lose one for each mistake."
170 PRINT'
180 PRINT "Each time your answer is correct another";

"section will be added to the diagram."
190 PRINT "
200 PRINT "Be careful with the spelling and press

""TAB(8);:COLOUR 131:COLOUR O:PRINT "RETURN";:
COLOUR 128:COLOUR 3:PRINT " to enter the word."

210 COLOUR 3:COLOUR 128
220 PROCspc
230 CLS
240
250 FOR J%=l TO P%
260 PRINT TAB(2,8+J%);place$(pointer%(J%))
2701ine%(pointer%(J%))=J%
280 NEXT J%
290
300 COLOUR 131:COLOUR 0
310 PRINT TAB(13,0);SPC 11;TAB(13,1);SPC 11;TAB(13,2);

SPC 11;
320
330 FOR J%=l TO P%
340
350 REPEAT
360 COLOUR 131:COLOUR 0
370 VDU 31,13,1:PRINT " SCORE:n;score%n
380 COLOUR 128:COLOUR 3
390 PRINT TAB(0,29)"Please enter the correct name

n;SPC 20;
400 PROCon
410 INPUT TAB(29,29)" n answerS
420 PROCoff
430 answer$=FNupper case(answer$)
440 IF answer$<>place$(J%) THEN PROCwrong ELSE

PROCok(place$(J%))
450 UNTIL answer$=place$(J%)
460
470 PRINT TAB(30,5);
480 redefined=FALSE
490 defined=FALSE
500 COLOUR 1
510
520 FOR K%=l TO J%
530 IF K%<5 AND NOT defined THEN RESTORE 2150 :

PROCdefine(224,252):defined=TRUE
540 IF K%>4 AND NOT redefined THEN PROCredefine:redefi

ned=TRUE
550 IF K%<5 THEN PRINT diag$(K%); ELSE PRINT diag$(K%

4) ;
560 NEXT K%

Simulations, Demonstrations and Tutorials

570
580 COLOUR
590
600 NEXT J%
610
620 PROCspc
630 CLS
640 PRINT TAB(O,lS);"Now the digestive system will

be shown"'"with one part flashing. You must"'
"identify this part."

650
660 PROCshuffle(P%)
670 PROCspc
680 CLS
690 COLOUR 131:COLOUR 0
700 PRINT TAB(13,0);SPC 11;TAB(13,1);SPC 11;TAB(13,2);

SPC 11;
710 COLOUR 128
720
730 FOR question=l TO P%
740 defined=FALSE
750 redefined=FALSE
760 PRINT TAB(20,S);
770
780 FOR J%=l TO P%
790 IF J%<S AND NOT defined THEN RESTORE 2150 :

PROCdefine(224,2S2):defined=TRUE
800 IF J%>4 AND NOT redefined THEN PROCredefine:redefi

ned=TRUE
810 IF J%=pointer%(question) THEN COLOUR 2 ELSE

COLOUR 1
820 IF J%<S THEN PRINT diag$(J%); ELSE PRINT diag$(J%-

4) ;
830 NEXT J%
840
850 REPEAT
860 COLOUR 131:COLOUR 0
870 VDU 31,13,1:PRINT " SCORE:";score%;" "
880 COLOUR 128:COLOUR
890 COLOUR 3
900 INPUT TAB(0,29)"What part is flashing now",answer$
910 PRINT TAB(0,29);SPC 39'SPC 39;
920 IF answer$<>place$(pointer%(question)) THEN

PROCwrong ELSE SOUND 1,-15,150,2
930 answer$=FNupper case(answer$)
940 UNTIL answer$=place$(pointer%(question))
950
960 NEXT question
970
980 CLS
990 PRINT TAB(S,16);"YOU FINISHED WITH A SCORE OF

";score%
1000 END
1010
1020
1030 DEF PROCshuffle(num items%)
1040 FOR J%=l TO num items%*3
1050 K%=RND (num items%)
1060 L%=RND (num-items%)
1070 T%=pointer%TK%)
1080 pointer%(K%)=pointer%(L%)
1090 pointer%(L%)=T%
1100 NEXT J%
1110 ENDPROC
1120
1130 DEF PROCinit
1140
1150 VDU 19,0,2;0;19,1,0;0;
1160 VDU 19,2,8;0;
1170
1180 dummy=RND (-TIME)
1190 score%=10
1200
1210 P%=8
1220 DIM pointer%(P%),place$(P%),line%(P%),diag$(P%)
1230
1240 REM "Initialize arrays,strings etc;

113

114 A Science Teacher's Companion to the BBC Microcomputer

1250
1260 FOR J%=l TO P%
1270 pointer%(J%)=J%
1280 diag$(J%)=STRING$(50,"*"):diag$(J%)=""
1290 READ p1ace$(J%)
1300 NEXT J%
1310
1320 ENDPROC
1330
1340 DATA MOUTH,OESOPHAGUS,STOMACH,DUODENUM,ILEUM,COLON

,RECTUM,ANUS
1350
1360 DEF PROCwrong
1370 SOUND 1,-15,20,4
1380 score%=score%-l
1390 IF score%<O THEN score%=O
1400 COLOUR 131:COLOUR 0
1410 PRINT TAB(10,31); "WRONG!! TRY AGAIN";
1420 COLOUR 128:COLOUR 3
1430 PROCpause(2)
1440 PRINT TAB(0,31);SPC 39;
1450 ENDPROC
1460
1470 DEF PROCok(word$)
1480 PRINT TAB(14,8+J%);word$
1490 PRINT TAB(0,8+1ine%(J%));SPC 12
1500.S0UND 1,-15,150,2:S0UND 1,0,0,2:S0UND 1,-15,150,2
1510 ENDPROC
1520
1530 DEF FNupper case(text$)
1540 LOCAL K%,A$-
1550 A$=""
1560
1570 FOR K%=l TO LEN (text$)
1580 AS=A$+CHR$ (ASC (MID$(text$,K%,l)) AND 95)
1590 NEXT K%
1600 =A$
1610
1620 DEF PROCpause(secs)
1630 LOCAL t
1640 t=TIME
1650 REPEAT
1660 UNTIL TIME >=t+secs*100
1670 .ENDPROC
1680
1690 DEF PROCon
1700 VDU 23,1,1;0;0;0;
1710 ENDPROC
1720
1730 DEF PROCoff
1740 VDU 23,1,0;0;0;0;
1750 ENDPROC
1760
1770 DEF PROCspc
1780 COLOUR 131:COLOUR 0
1790 PRINT TAB(8,30);"PRESS SPACE TO CONTINUE"
1800 COLOUR 128:COLOUR 3
1810 REPEAT UNTIL GET$ =" "
1820 ENDPROC
1830
1840 DEF PROCdefine(first%,last%)
1850 LOCAL J%,code,data
1f;60
1870 FOR code=first% TO 1ast%
1880 VDU 23,code
1890
1900 FOR J%=l TO 8
1910 READ data
1920 VDU data
1930 NEXT J%
1940
1950 NEXT code
1960
1970 FOR D%=l TO 4
1980 diag$(D%)=""
1990 READ nUffi_chars%
2000

Simulations, Demonstrations and Tutorials

2010 FOR char%=1 TO num chars%
2020 READ asc%
2030 diag$(D%)=diag$(D%)+CHR$ (asc%)
2040 NEXT char%
2050
2060 NEXT D%
2070 ENDPROC
2080
2090 DEF PROCredefine
2100 RESTORE 2590
2110 PROCdefine(224,255)
2120 ENDPROC
2130
2140 REM "** VDU 23 Data **
2150 DATA 0,0,0,1,2,4,8,8
2160 DATA 0,31,96,128,0,0,0,0
2170 DATA 16,16,16,16,16,16,16,16
2180 DATA 32,32,35,68,136,144,224,31
2190 DATA 63,192,0,0,0,0,0,0
2200 DATA 128,32,24,8,4,4,4,4
2210 DATA 16,9,10,12,0,6,9,8
2220 DATA 255,0,1,4,56,32,16,64
2230 DATA 68,148,82,36,148,68,36,36
2240 DATA 8,8,8,16,16,8,4,3
2250 DATA 176,72,36,56,0,0,0,224
2260 DATA 66,82,82,146,146,146,82,18
2270 DATA 18,18,18,18,18,18,18,18
2280 DATA 18,18,18,18,18,19,16,16
2290 DATA 0,0,0,0,0,224,16,8
2300 DATA 0,0,0,0,120,7,0,96
2310 DATA 16,16,8,8,16,224,0,0
2320 DATA 8,8,8,8 v8,8,16,32

2330 DATA 32,16,8,4,3,0,0,0
2340 DATA 0,0,0,1,2,124,0,0
2350 DATA 32,64,128,0,0,0,0,0
2360 DATA 0,0,0,0,131,252,0,255
2370 DATA 0,0,0,0,0,15,96,131
2380 DATA 6,8,18,18,36,36,40,72
2390 DATA 60,128,0,0,0,0,0,0
2400 DATA 72,72,72,72,72,36,34,17
2410 DATA 12,3,0,0,0,0,0,0
2420 DATA 255,0,252,3,0,0,0,0
2430 DATA 255,0,0,255,0,0,0,0
2440
2450 REM "** Character strings **
2460
2470 REM "MOUTH
2~80 DATA 25,224,225,10,8,8,226,10,8,227,228,229,10,8,8

,8,230,231,23~,10,8,8,8,233,234,235

2490 REM "OESOPH.
2500 DATA 9,10,8,236,10,8,236,10,8,236
2510 REM "STOMACH
2520 DATA 18,10,8,237,238,10,8,8,8,239,240,241,10,8,8,8

,242,243,244
2530 REM "DUODENUM
2540 DATA 23,11,8,8,8,8,8,246,245,10,8,8,8,247,248,10,8

,8,249,10,8,250,251,252
2550
2560 REM "** VDU 23 Data **
2570 REM "** for **
2580 REM "** PROCredefine **
2590 DATA 128,240,12,194,25,5,5,5
2600 DATA 0,0,0,0,0,0,3,12
2610 DATA 0,0,0,0,0,15,240,0
2620 DATA 0,0,0,0,0,255,0,255
2630 DATA 5,5,13,18,100,136,48,192
2640 DATA 17,34,34,19,8,4,3,0
2650 DATA 255,0,0,255,0,3,252,0
2660 DATA 0,0,0,255,0,255,0,0
2670 DATA 0,0,0,252,3,225,17,9
2680 DATA 0,0,0,0,3,12,17,34
2690 DATA 0,0,0,31,128,63,252,0
2700 DATA 0,0,127,128,31,224,0,0
2710 DATA 9,25,225,6,248,0,0,248
2720 DATA 33,16,15,0,0,0,0,0
2730 DATA 255,0,255,0,0,0,0,3
2740 DATA 255,0~255,O,0,0!0,255

115

11 6 A Science Teacher's Companion to the BBC Microcomputer

2750 DATA 3,1,249,225,9,9,241,1
2760 DATA 255,0,15,240,0,0,0,0
2770 DATA 252,0,255,0,0,0,0,0
2780 DATA 0,127,0,0,0,0,0,0
2790 DATA 14,240,0,0,0,0,0,0
2800 DATA 33,66,66,33,33,66,66,33
2810 DATA 51,76,192,67,65,65,33,33
2820 DATA 204,51,1,2,194,33,33,66
2830 DATA 98,130,1,1,206,48,0,0
2840 DATA 33,192,129,129,66,38,24,24
2850 DATA 102,153,0,0,216,51,0,0
2860 DATA 130,130,130,66,68,44,36,36
2870 DATA 0,0,131,124,0,0,0,0
2880 DATA 67,128,0,0,0,0,0,0
2890 DATA 3,252,48,0,0,0,0,0
2900 DATA 29,197,5,5,29,197,5,5
2910 REM "** Character strings **
2920 REM "** for **
2930 REM "** PROCredefine **
2940
2950 REM "ILEUM
2960 DATA 49,224,10,8,255,10,8,8,8,8,225,226,227,228,10

,8,8,8,8,229,230,231,232
2970 DATA 10,8,8,8,8,233,234,235,236,10,8,8,8,8,237,238

,239,240
2980 DATA 10,8,8,8,8,241,242,243,244
2990 REM "COLON
3000 DATA 47,8,8,8,8,8,249,11,8,245,11,8,245,11,8,245,1

1,8,245,11,8,246,250,250,250,9
3010 DATA 247,10,8,245,10,8,245,10,8,245,10,8,245,10,8,

245,10,8,248,8,8,250
3020 REM "RECTUM
3030 DATA 9,8,8,246,8,10,245,10,8,251
so 40 REM "ANUS
'050 DATA 6,10,8,8,252,253,254

PROC/FN List

1030 PROCshuffle produces a jumbled list of
'pointers' (the numbers 1 to 8). These are
later used as subscripts of other arrays.

1130 PROCinit sets up some colour palette changes
and variable and array values.

1360 PROCwrong decrements the score and gives
audible and visual prompts.

1470 PROCok deletes an item from the jumbled list
and reprints it at the end of the ordered
list.

1530 FNupper_case(text$) converts the string of
characters in 'text$' to upper case.

1620 PROCpause, see earlier listings.
1690,1730 PROCon and PROCoff are cursor on/off

routines.
1770 PROCspc is a 'Press space to continue'

routine.
1840 PROCdefine(first%,last%) sets up the

user-defined characters with ASCII values
between those given by 'first%' and 'last%'.
It also sets up the array 'diag$()' which
holds the strings of user and cursor control
characters needed to print each section of
the diagram.

Simulations, Demonstrations and Tutorials 117

2090 PROCredefine uses a second set of 'VDU23'
data and PROCdefine to produce the characters
for the second half of the diagram.

Program Description
The initial section of the program (lines 90-220) sets
up the various variables and provides instructions for
the pupil. Lines 250-280 print the jumbled list of
'place' names (260) and store the line on which each is
printed in the array 'line%()' (270). The FOR loop,
which runs from line 330 to 600, gets the pupil's
answer for each successive section of the digestive
system. The REPEAT loop in lines 350-450 will exit
only when the correct answer has been given. Note that
line 430 converts all input to upper case so that it
can be compared with the correct answers in the array
'place$()'. When the correct answer has been given,
control will pass on to lines 470 onwards. Lines 480
and 490 set two logical variables to FALSE and these
are used in the following FOR loop (520-560) to control
the defining and/or redefining of the user characters.
There are eight parts to the diagram and the first four
are achieved without redefining any characters - hence
the comparisons of K% (the diagram number) in lines
530-550.

The second part of the program starts at line 630
and ends at line 1000. The pointers are shuffled again
in line 660 and the 'question' loop in lines 730-960
follows a similar pattern to the J% loop in the
previous section (330-600). Lines 780-830 print the
complete diagram, line 810 selecting a flashing colour
(COLOUR 2) for the part that corresponds to the current
'question'. The REPEAT loop is similar to the previous
one, exiting when the correct answer is given (line
940). The program ends by printing the final value of
"s core s ",

1030-2120 Procedure/Function definitions:

In PROCshuffle we loop around and each time pick
out two random numbers in the range between 1 and
the number of items in the list. The two
corresponding members of the list are then
swapped (lines 1070-1090). The array
'pointer%()' originally contained the numbers I
to 8 in order. After executing PROCshuffle it
will contain the numbers I to 8 in a jumbled
order. The list of names, however, remains in
the correct order at all times, but if we use the

118 A Science Teacher's Companion to the BBC Microcomputer

values in 'pointer%()' to refer to the list of
names then we get a random order when the list is
printed out. To help understand this, suppose
the contents of the arrays were

J% pointer%(J%) place$(J%)

1 5 MOUTH
2 7 OESOPHAGUS
3 2 STOMACH
4 4 DUODENUM
5 1 ILEUM
6 8 COLON
7 6 RECTUM
8 3 ANUS

Note that a loop such as

FOR J%=l TO 8:PRINT placeS (J%) : NEXT J%

will simply print out the ordered list but if we
substitute 'place$(pointer%(J%))' for 'place$(J%)' then
the subscript values will appear in the random order of
the 'pointer%' column. Thus 'place$(pointer%(5))' is
"MOUTH" because the value of 'pointer%(5)' is 1. In
what order will the names appear? (See answer at the
foot of this page.)

In FNupper_case the local variable A$ is used to
build up a string of characters extracted one at a time
from 'textS'. However the ASCII value of each
character is first ANDed with the value 95 which
effectively subtracts 32 from any values greater than
95. (Lower case characters have values in the range 97
to 122 and the upper case counterparts are in the range
65 to 90 - see page 486 of the User Guide.)

(Answer: The order is ILEUM, RECTUM,
DUODENUM, MOUTH, ANUS, COLON, STOMACH.)

OESOPHAGUS,

PROCdefine uses the VDU23 statement with DATA read
from lines 2150-2430 (or 2590-2900 when 'redefining).
Remember that the format of this statement is

VDU23,A,nl,n2,n3,n4,n5,n6,n7,n
where A is the ASCII value of the character being
defined and nl to n8 are the eight bytes representing
the pixel pattern of each of the eight rows of the
character. Line 1880 carries out the VDU23,A part of
this and the eight bytes are read from the DATA list
and appended to the VDU statement in lines 1900-1930.
Once the individual characters have been defined, it is

Simulations, Demonstrations and Tutorials 119

necessary to combine them with cursor control codes to
produce a complete string which, when printed, will
produce one complete section of the diagram. Thus one
particular row of a section might consist of the
characters 224, 225 and 226. If the next row continued
with character 227 directly underneath the 224
character it would be necessary, after printing the
first row, to move the cursor down one line and back
three spaces. (When a character is printed the cursor
is left at the NEXT printing position.) This is done
by adding appropriate cursor control codes to the
strings. These strings are set up by lines 2010-2040,
using ASCII code data from lines 2480-2540 and
2960-3050. Note that the first number in each DATA
line is the number of character codes in that line
(read as ;num_chars%; in line 1990). Also note that
VDU codes 8 to 11 are cursor back, forward, down and
up respectively, (see User Guide, pages 378 and 380).

Modifications
As promised earlier, I will show how to extract those
parts of the program necessary to produce the diagram
of the digestive system. Assuming that you have the
complete program, as listed, in the machine, then the
steps are as follows:

(1) DELETE lines 120-730
(2) DELETE lines 850-990
(3) DELETE line 810
(4) change line 760 to: 760 COLOUR 1.

You no longer need the lines defining the following,
though you may wish to retain some or all of them
depending on your own application

PROCshuffle, PROCwrong, PROCok, FNupper_case, PROCon,
PROCoff and PROCspc

ADAPTIVE DATA BASE ("ANIMALS")

Though the version of the program as listed is intended
to be used to introduce the ideas of classification in
biology, it can easily be adapted to a range of other
uses. The essential idea of the present program is
that the pupil will ;teach; the computer various
characteristics of animals and that the computer can
then try to work out what animal the pupil is thinking
of. It can be used both with fairly young children who
will enter simple questions for the computer to ask
("ls it striped?") and with older students whose

120 A Science Teacher's Companion to the BBC Microcomputer

questions may be more technical ("Is it a carnivore?").
It may be found particularly valuable for the pupils

to work in pairs - one teaching the computer, which
then attempts to discover the other pupil's animal. If
it succeeds the second pupil thinks of another animal
whereas if it fails the second pupil can become the
'teacher' .

The data structure used in the program is the well
known 'binary tree' structure. This starts, like any
tree, with a 'root' which in this case is the first
question that the computer will ask. From this root
lead two branches - hence the term 'binary'. The two

(1)
ROOT: "Is it a mammal?"

[6] [2]

I I
Y N

(6) (2)

"Is it a carnivore?"-NODES -- "Is it a bird?"
[7] [8] [4] [3]

I I I I
Y N Y N

(7)

tiger LEAF

[7] [-1]

(8)

goat

[8] [-1]

(4)

"Can it fly?"

[-1] [5]

(3)

"Is it a
reptile?"

[-1] [-1]

branches or pointers correspond to the two possible
answers to the root question: take the 'left' branch if
the answer is 'yes', take the 'right' branch if it is
'no'. The branches each lead to another question,
called a 'node', and from each node two further yes/no
branches lead, either to other nodes or to a 'leaf'. A
leaf is the last item in the list, identified in this
program by having its 'yes' branch pointing to itself.
If a branch is at present incomplete (it does not lead

Simulations, Demonstrations and Tutorials 121

to either a node or a leaf) its pointer is set to -1 to
denote this.

The animals are at the leaves and the questions are
at the nodes. Part of the initial structure of the
tree, as set up by the program, is shown in the
diagram. Compare this diagram with the preceding
description.

There are options included in the program to load a
data base from tape/disk and to save the current data
base to tape/disk.

Listing "ANIMALS"

10 REM "Program: ANIMALS
20 REM "Started: 5/6/84
30 REM "Version: 1.0
40 REM "Subject: Biology
50 REM "Topic Classification
60 REM "Level ALL
70 REM "Author P.D. Hawthorne
80
90 MODE 7

100
110 *K.5F.I%=lTO next%:P.;I%;".";Q$(I%),P%(I%,O),P%(I%

, 1) :N.IM
120
130 VDU 23,1,0;0;0;0;
140 READ title$,prompt$
150 PROCdbl(title$,12)
160 A=INKEY (350)
170 VDU 23,1,1;0;0;0;
180 PROCsoundl
190
200 N%=200
210 DIM Q$(N%),P%(N%,l)
220 YN$="YyNn"
230 blue bgd$=CHR$ 132+CHR$ 157+CHR$ 131
240 red_bgd$=CHR$ 129+CHR$ 157+CHR$ 135
250
260 PROCdbl("LOAD DATA FROM TAPE/DISK (Y/N)?",12)
270 key=FNgetkey(YN$)
280 CLS
290
300 IF key<3 THEN PROCload ELSE PROCsetup
310
320 CLS
330 VDU 23,1,0;0;0;0;
340 PROCdbl(blue_bgd$+prompt$+" "+CHR$ 156,4)
350 time=TIME
360 REPEAT UNTIL TIME =time+350
370 VDU 23,1,1;0;0;0;
380 PROCsoundl
390 CLS
400
410
420 REPEAT
430 Q%=l
440 found%=FALSE
450
460 CLS
470
480 REPEAT
490 PROCprint(Q$(Q%))
500 answer=FNgetkey(YN$)
510 VDU 11:PRINT MID$(YN$,answer,l);
520 VDU 10,8:PRINT MID$(YN$,answer,l)
530 IF P%(Q%,O)=Q% AND answer<3 THEN found%=TRUE
540 IF answer<3 AND P%(Q%,O)=-l THEN PROCadd leaf(O)
550 IF answer>2 AND P%(Q%,O)=Q% AND P%(Q%,l)~-l

THEN PROCadd node

122 A Science Teacher's Companion to the BBC Microcomputer

560 IF answer>2 AND P%(Q%,O)<>Q% AND P%(Q%,l)=-l
THEN PROCadd leaf(l)

570 IF answer<3 THEN Q%=P%(Q%,O) ELSE Q%=P%(Q%,I)
580 UNTIL found%
590
600 CLS
610 PROCdbl("Another go (Y/N)?",12)
620 answer=FNgetkey(YN$)
630 UNTIL answer>2
640
650 CLS
660 PROCdbl("SAVE DATA TO TAPE/DISK (Y/N)?",12)
670 key=FNgetkey(YN$)
680 IF key<3 THEN PROCsave
690 CLS
700 END
710
720 DEF PROCsetup
730 FOR index=l TO 8
740 READ Q$(index),P%(index,O),P%(index,l)
750 NEXT index
760
770 next%=9
780 ENDPROC
790
800 REM "title$ and promptS
810
820 DATA "A N I MAL S",Think of an animal
830
840 DATA Is it a marnrnal?,6,2,Is it a bird?,4,3,Is

it a reptile?,-l,-l,Can it fly?,-1,5
850 DATA emu,5,-1,Is it a carnivore?,7,8,tiger,7,-1,go

at,8,-1
860
870 DEF FNgetkey(valid$)
880 LOCAL key
890
900 REPEAT
910 *FX21,0
920 key=INSTR(valid$,GET$
930 UNTIL key<>O .
940
950 =key
960
970 DEF PROCadd node
980 CLS -
990 PROCdbl(blue bgd$+"OK, give up! What is it?

"+CHR$ 156,2)
1000 PROCdbl(blue bgd$+"(Type its name then press RETUR

N) "+CHR$ 156,4)
1010
1020 REPEAT
1030 INPUT 'animalS
1040 VDU 11,13,11
1050 UNTIL animal$<>''''
1060
1070 animal$=FNlower_case(animal$)
1080
1090 CLS
1100 PROCdbl(red bgd$+"What question would distinguish

"+CHR$ 156,0)
1110 PRINT "CHR$ 141;:PROCa an(Q$(Q%))
1120 PRINT 'CHR$ 141;:PROCa an(Q$(Q%))
1130 PRI NT . -
1140 VDU 10:PRINT red bgd$;CHR$ 141;"and ";CHR$ 156
1150 PRINT red bgd$;CHR$ 141;"and ";CHR$ 156"
1160 PRINT CHRl 141;:PROCa an(animal$):PRINT "?"
1170 PRINT CHR$ 141;:PROCa-an(animal$):PRINT "?"
1180 PRINT " -
1190 PROCdb1(blue bgd$+"(Type question then press RETUR

N)",14) -
1200
1210 REPEAT
1220 INPUT "Q$
1230 VDU 11,13,11,11
1240 UN1'IL Q$<>""
1250

Simulations, Demonstrations and Tutorials

1260 Q$=LEFT$(Q$,l}+FNlower case(RIGHT$(Q$,LEN Q$-l)}
1270 IF RIGHT$(Q$,l)<>"?" THEN Q$=Q$+"?"
1280 PROCdbl(red bgd$+"What is the answer (YIN) for

",19} - .
1290 PRINT' 'CHR$ 141; :PROCa an(animal$} :PRINT "?"
1300 PRINT CHR$ 141;:PROCa an(animal$):PRINT "?"
1310 key=FNgetkey(YN$} -
1320 IF key MOD 2=0 THEN key=key-l
1330 pointer%=((key+l} DIV 2}-1
1340 Q$(next%}=Q$(Q%}:REM "Copy old animal
1350 Q$(Q%}=Q$:REM "Replace it with new question
1360 Q$(next%+l}=animal$:REM "Save new animal
1370 REM "Set up pointers
1380 P%(next%,O}=next%
1390 P%(next%,l}=P%(Q%,l}
1400 P%(next%+l,O}=next%+l
1410 P%(next%+l,l}=-l
1420 P%(Q%,pointer%}=next%+l
1430 P%(Q%,NOT pointer%+2}=next%
1440 next%=next%+2
1450 found%=TRUE
1460 ENDPROC
1470
1480 DEF PROCdbl(text$,line%}
1490 L%=LEN (text$)
1500 VDU 31,19-L%/2,line%,141:PRINT textS;
1510 VDU 31,19-L%/2,line%+1,141:PRINT textS;
1520 ENDPROC
1530
1540 DEF PROCsave
1550 LOCAL J%,ch%
1560 ch%=OPENOUT (FNinput file name)
1570 PRINT #ch%,next% - -
1580
1590 FOR J%=l TO next%
1600 PRINT #ch%,Q$(J%},P%(J%,O},P%(J%,l}
1610 NEXT J%
1620
1630 CLOSE #0
1640 ENDPROC
1650
1660 DEF PROCload
1670 LOCAL J%,ch%,file$
1680 file$=FNinput file name
1690 CLS --
1700 PROCdbl(CHR$ 134+"PRESS PLAY",12}
1710 ch%=OPENUP (fi1e$)
1720 INPUT #ch%,next%
1730
1740 FOR J%=l TO next%
1750 INPUT #ch%,Q$(J%},P%(J%,O},P%(J%,l}
1760 NEXT J%
1770
1780 CLOSE #0
1790 ENDPROC
1800
1810 DEF FNinput_file_name
1820 LOCAL file$
1830 VDU 23,1,1;0;0;0;
1840 CLS
1850 PROCdbl(CHR$ 130+"File name (up to 7 letters)",10}
1860
1870 REPEAT
1880 INPUT TAB(15,12} file$
1890 PRINT CHR$ 11;SPC (40};:VDU 13,11
1900 IF file$="" OR LEN (file$}>7 PROCsound2
1910 UNTIL file$<>"" AND LEN (file$}<8
1920 CLS :PRINT TAB(10,12);
1930
1940 =file$
1950
1960 DEF PROCsound2
1970 SOUND 1,-15,30,4:SQUND 1,-15,10,4
1980 ENDPROC
1990
2000 DEF PROCsoundl
2010 SOUND 1,-15,150,2:S0UND 1,0,0,4:S0UND 1,-15,150,4

123

124 A Science Teacher's Companion to the BBC Microcomputer

2020 ENDPROC
2030
2040 DEF FNlower case(text$)
2050 LOCAL K%,A$-
2060 A$=""
2070
2080 FOR K%=l TO LEN (text$)
2090 A$=A$+CHR$ (ASC (MID$(text$,K%,l)) OR 32)
2100 NEXT K%
2110
2120 =A$
2130
2140 DEF PROCa an(word$)
2150 LOCAL an$~first$
2160 first$=LEFT$(word$,l)
2170 IF INSTR("aeiou",first$)<>O THEN an$="an "

ELSE an$="a "
2180 PRINT an$;CHR$ 134;word$;
2190 ENDPROC
2200
2210 DEF PROCadd_leaf(index%)
2220
2230 CLS
2240 PROCdbl(blue bgd$+"OK, I give up! What is it?

"+CHR$ 156,2)
2250 PROCdbl(blue_bgd$+"(Type its name then press RETUR

N) "+CHR$ 156,4)
2260
2270 REPEAT
2280 INPUT "animal$
2290 VDU 13,11,11:PRINT SPC 39;
2300 UNTIL animal$<>""
2310
2320 animal$=FNlower case(animal$)
2330 P%(Q%,index%)=next%
2340 Q$(next%)=animal$
2350 P%(next%,O)=next%
2360 P%(next%,l)=-l
2370 next%=next%+l
2380 found%=TRUE
2390 CLS
2400 ENDPROC
2410
2420 DEF PROCprint(text$)
2430
2440 IF P%(Q%,O)=Q% THEN PRINT blue bgd$;CHR$ 141;

"Is it ";:PROCa an(text$):PRINT n?n:PRINT blue bgd
$;CHR$ 141;"Is It ";:PROCa_an(text$):PRINT "?":ENDPROC

2450
2460 PRINT CHR$ 141;CHR$ 133;text$;" "
2470 PRINT CHR$ 141;CHR$ 133;text$;" ";
2480 ENDPROC

PROC/FN List
720 PROCsetup initialises the data base from the

DATA statements in the program.
870 FNgetkey, see earlier programs.
970 PROCadd node adds a new node to the tree.

1480 PROCdbl(text$,line%) prints 'text$' in double
height on the line specified by 'line%'.

1540 PROCsave creates a file and saves the
data base to tape or disk.

1660 PROCload loads a data base from tape/disk.
1810 FNinput_file_name returns a valid file name

obtained from the user.
1960 PROCsound2 produces an 'error' sound.
2000 PROCsoundl produces an 'ok' sound.
2040 FNlower_case(text$) converts 'text$' to lower

case.

Simulations, Demonstrations and Tutorials 125

2140 PROCa_an(word$) decides whether ~a~ or ~an

should be printed. It then prints the
specified ~word$' preceded by the
correct indefinite article.

2210 PROCadd leaf creates a leaf on the tree by
adding a new animal, entered by the user.

2420 PROCprint deals with printing of the tree
contents.

Program Description
Line 110 defines function key 5 so that it will print
out the contents of the data base. This is intended as
a diagnostic aid for the teacher and a hard copy of the
tree contents can be obtained, after quitting the
program, by pressing CTRL B then f5 (CTRL B turns the
printer on). Line 140 reads a title and a prompt for
the user. These are in the DATA statement in line 820
and may be changed to suit a different application. A
number of variables are initialised in lines 200-240.
The arrays 'Q$(N%)' and 'P%(N%,l)' store the string
data and the pointers, respectively, for the binary
tree. The ~yes' pointer of node N% is P%(N%,O) and the
~no pointer is P%(N%,l). The strings set up in lines
230 and 240 are teletext control codes to produce
yellow text on a blue background and white text on a
red background, respectively. Lines 260-300 give the
opportunity of loading a data base from tape/disk, line
300 either getting the data from the magnetic medium or
from the built-in DATA statements, depending on the
user~s choice. The prompt read earlier is printed in
line 340 - in this program the user is asked to "Think
of an animal".

The main program loop starts at line 420 and extends
to line 630. An inner loop starts at line 480 and
repeats until the animal has been found. Line 490
prints the next question and line 500 GETs the user's
answer, which is printed in double height by lines 510
and 520. Line 530 checks if the current question is an
animal and if the user has answered yes. If so the
variable 'found%' is set to TRUE, giving an exit from
the inner loop at line 580. Line 540 reads "if the
answer is 'yes and the 'yes~ pointer is -1 then we
have reached a leaf which is not an animal so add a new
animal to the 'yes' branch." (Note: answer < 3 is
'yes' , 'answer > 2 is 'no'.) Line 560 carries out a
similar function for the 'no' branch. The logic of
line 550 can be interpreted as "if the user answered
'no' and this is an animal then we have failed so add a
new question (and the new animal) to the tree." Line
570 sets the question number (Q%) to either the value
of the 'yes' pointer or the 'no' pointer, depending on
the answer given.

126 A Science Teacher's Companion to the BBC Microcomputer

The main loop will end if the user answers 'N' to
the "Another go" prompt in lines 610 and 620. On
exiting the main loop, lines 660-680 give an
opportunity to save the current data base before
finally ending at line 700.

720-2480 Procedure/Function definitions:

PROCset_up simply reads data from lines 820-850 into
the arrays explained above. If you want to use your
own data here, note the format (and refer to the
diagram given previously, where subscripts are given in
() brackets and pointers are in [] brackets). An entry
in the data base may be one of two kinds.

1) A question followed by two pointers (numbers)
(a) The first is the 'yes' pointer. This is the

subscript of the question that will be asked next,
if the present question is answered by 'yes'.

(b) The second pointer is the 'no' pointer. This is
the subscript of the question that will be asked
next, if the present question is answered by 'no'.

If the next question in either branch is not yet known,
the pointer for that branch should be -1.

2) An animal name (note there is no question mark
following it), also followed by two pointers.
The 'no' pointer is always -1 and the 'yes' pointer is
always the same as the subscript of the animal itself.
In this way the animal 'points' to itself.

Of the other procedures the most important are
PROCadd_node and PROCadd_leaf(index%). The first Qf
these inputs the new animal (1020-1050) and converts it
to lower case (1070). It then asks for a question (Q$)
to distinguish the new animal from the previous animal
(in Q$(Q%)). This question is input in lines
1210-1240. Line 1260 converts all but the first
character of the question to lower case and line 1270
adds a trailing question mark if necessary. The answer
(YIN) relevant to the new animal is obtained by line
1310. Lines 1350 and 1360 convert the 'key' value (1
or 2 for a yes answer, 3 or 4 for 'no') to a
'pointer%' value of 0 for the 'yes' pointer or 1 for
the 'no pointer. Lines 1340-1350 place the new
strings into the Q$() array. (The variable 'next%' is
the next free location in this array.) The old animal
goes into 'next%' and is replaced by the new question.
The new animal goes into 'next%+l' and the various

Simulations, Demonstrations and Tutorials 127

pointers are sorted out by lines 1380-1430. You may be
puzzled by line 1430. The expression /NOT pointer%+2/
takes the value 1 if pointer% = 0 and 0 if pointer% = 1
so that lines 1420 and 1430 set up the new question/s
pointers correctly whether the new animal is on the
/yes/ branch or the /no/ branch of the new question.
PROCadd_leaf(index%) is basically a simplified version
of PROCadd node which is used when a 'dead-end/
(pointer = -1) has been reached. The value of index%
controls whether the animal is added to the /yes or
the 'no' branch.

Modifications
The value of N% in line 200 sets the size of the arrays
that store the data base, and this value can be
increased if sufficient memory is available. The exact
size of the string array depends mainly on the length
of the questions. If these are each, say, one line
long, this is about 40 characters so 200 questions
occupy about 8K. (The average will be less in
practice.) The pointers each occupy four bytes so this
takes eight bytes per question: about 1.5K altogether.
The total memory requirements are about 10K per 200
entries and since the program occupies about 5K the
value of N% could be increased up to about 400 on a
cassette-based system and somewhat less on a disk
system.

The program can be very easily altered to use a
different set of initial questions by changing the DATA
statements referred to earlier. For example, an
application of interest to chemists could replace
'animals' with 'elements' as follows.

(1) Make
statements:

the following changes to the DATA

820 DATA "E L E MEN T S",Think of an element
840 DATA Is it a metal? ,3,2, Is it a halogen?

,4,-1,sodium ,3,-1, fluorine,4,-1
Delete line 850

(2) Change the following lines:

730 FOR index =1 TO 4
770 next%=5

2170 an$=""

3 Control and Measurement
Interfacing

One of the most exciting features of the BBC micro
Model B is its built-in digital and analogue
interfaces. By enabling the computer to be connected
to other equipment for monitoring and control purposes,
these open up an entirely new range of applications.
The computer need no longer be simply an aid to
simulating complex experiments, but can become an
integral part of the student/s laboratory work. There
can be little doubt that the use of computer-type
technology will continue to expand and the more
familiar our students become with it, in a realistic
setting, the better for them and the industrial future
of the country. Obviously pressure of time and the
restrictions of syllabus content may not allow us to go
as far as we might along this path, but the intention
in this chapter is to indicate some of the
possibilities and to show how simple it is to connect
the Beeb to a wide variety of external environments.

THE USER I/O PORT

This is a digital interface circuit that is capable of
acting both as input and output (hence the term '1/0/).

There are in fact eight data lines (that is, wires),
which can be programmed to act as either input
connections or output connections. You can have any
number of inputs and outputs, in any combination.
There are also two 'handshake' lines, which can be
programmed to perform various tasks as described later.

The user port is actually one part of a very
sophisticated chip, the 6522 VIA (/Versatile Interface
Adaptor'). In addition to various programmable
registers, which control the operation of the chip, it
contains two timers, a serial port and two almost
identical parallel ports which are referred to as 'port
A' and 'port B'. In the BBC micro, port A is used to
drive the printer interface and port B provides the
user I/O port connections. A quick look at the data
sheet of the 6522 reveals that it is indeed a very
versatile device, and one could probably write an
entire book on it alone! However, notwithstanding

128

Control and Measurement - Interfacing 129

this, I shall try to provide as much practical
information as possible to enable you to start
experimenting with the user port so that you can embark
on your own 'voyage of discovery'.

User Port Addresses
As far as the computer is concerned, the 6522 VIA chip
simply behaves as a series of memory locations, with
addresses ranging from &FE60 to &FE6F (65120 to 65135
decimal). Each of these addresses corresponds to one
of the 16 registers inside the chip and their contents
can be read or new contents written to them by using
the indirection operator '?'. (We usually read '?' as
'the contents' of'.) Table 3.1 gives the details of the
addresses for the various registers. Thus, to place
the value 129 into the data direction register of port
B (DDB) we would use ?&FE62=&8l, or, if you prefer
decimal, ?65122=129. You will probably find that it is
easier to use hexadecimal when dealing with the user
port so all future examples will make use of it. Much
of the information in table 3.1 is not essential for
simple applications involving the user port. As you
will see, a lot of work can be done using just the lOB
and DDB registers at &FE60 and &FE62.

Table 3.1 User VIA Addresses

NO. REGISTER

o Input/output B
1 Input/output A (I)
2 Data direction B
3 Data direction A
4 Timer 1 LSB counter
5 Timer 1 MSB counter
6 Timer 1 LSB latch
7 Timer 1 MSB latch
8 Timer 2 LSB counter
9 Timer 2 MSB counter

10 Serial shift register
11 Auxiliary control
12 Peripheral control
13 Interrupt status
14 Interrupt control
15 Input/output A (2)

MNEMONIC

lOB
IOAI
DDB
DDA
TlCL
TICH
TILL
TlLH
T2CL
T2CH
SSR
ACR
PCR
ISR
ICR
IOA2

ADDRESS

FE60
FE6l
FE62
FE63
FE64
FE6S
FE66
FE67
FE68
FE69
FE6A
FE6B
FE6C
FE6D
FE6E
FE6F

Making the Right Connection
The user port connector is located under t~e machine,
beneath the keyboard. To connect to it you will need a

130 A Science Teacher's Companion to the BBC Microcomputer

20-way insulation displacement connector (IOC) socket
RS part number 467-289 and a suitable length of
20-way IOC ribbon cable. RS components also supply
this, but unfortunately only in 20 metre reels (part
number 357-867). However, you should be able to find
a supplier in the computer journals who will sell you a
smaller length. To connect the socket to the cable is
simplicity itself: just feed the end of the cable
through the moulded slots in the cable locating clip so
that 2-3 cm protrudes and then slide the socket housing
onto the clip with the metal tines facing towards the
cable. Place the socket between the jaws of a vice,
with some scrdp wood to protect the plastic mouldings,
and tighten until the tines pierce the cable and the
housing clicks into the clip. Remove from the vice,
fold the end of the cable back over the top of the
socket and fit the metal-retaining clip, before
trimming off any surplus cable. After such a simple
job at the computer end of the cable, it would seem a
pity to use the old /cut and strip/ method of
terminating the other end, though you can do so if you
wish. A much neater solution can be achieved using an
IOC dual ~n line (OIL) connector, with the additional
advantage that the lead can be re-used. This provides
a solderless connection to the ribbon cable and the
connector will plug into an ordinary IC socket, a
solderless /breadboard/ or can be soldered to a printed
circuit board or 0.1 inch stripboard. The closest we
can get to our 20-way cable is to use a 24-pin
connector (RS 468-276) and to locate the cable in the
top of the plug, leaving the bottom two pins on each
side unconnected. The plug can be assembled to the
cable using the special tools available from RS or you
can manage, if you are careful, with two wooden blocks,
one with two parallel slots to receive the plug pins.
(Insert the pins into the slots of the block, place the
ribbon cable onto the connectors, ensuring they are
aligned, click the top of the plug in place and
position the second block on top. Place the sandwich
between the jaws of a vice and squeeze gently until the
tines pierce the cable.) To make sure that the
connections from the computer to the OIL plug are
correct proceed as follows:

(a) Lay the ribbon cable in front of you with the IDC
connector on your right and the cable clip touching
the bench. In other words you should be able to
see the two rows of socket holes.

(b) The wire connected to pin I is the one furthest
from you, the next one goes to pin 2 and so on,
with the wire to pin 20 nearest you.

Control and Measurement - Interfacing 131

(c) Place the OIL plug on your left with its pins
towards the bench and pin 1 on the left and
furthest from you. Preventing the cable from
twisting, insert it into the plug housing and clamp
the cap securely into position, ensuring that all
the wires are in their correct positions.

For the experimental work that I shall be
describing, you will need a breadboard such as the RS
488-618 or the GSC 'Experimentor 300'. These have the
advantage that circuits are easily set up and changed,
without the need to solder and desolder repeatedly.
The two boards mentioned both consist of 2 groups of 47
rows of 5 interconnected contacts arranged both sides
of a central channel. The 2 groups of contacts are
labelled B-F and G-K on the RS version (A-E and F-J on
the GSC version). The rows are numbered from 1 to 47
and there is, in addition, a power rail down each side,
labelled A and L on the RS board and X and Y on the GSC
board. To simplify giving the connection details I
will assume that you are using the RS board, but you
should be able to translate the instructions simply
enough if you are using something else. To indicate
the state of output lines we shall be using
light-emitting diodes (LEOs) but the user port as it
stands cannot drive these directly: a simple buffer is
required (figure 3.la). I shall be using a CMOS hex

14

+5 V 2 13

3 12

~
Input

4 11

from
port 5 10

6 9
(a)

7 8

(b)

(a) Typical circuit
(1 of 6)

Figure 3.1

(b) 406~ Pin-out
diagram

User port buffer circuit

132 A Science Teacher's Companion to the BBC Microcomputer

inverter/buffer IC - the 4069UB (RS number 307-216)
each containing 6 inverting buffers. Thus we can drive
up to 6 LEOs at anyone time. The buffer performs the
logical NOT function on its input: a logical '1' on the
input produces a '0' on the output and vice versa. If
you want to drive outputs from all 8 data lines you
will require 2 of the 4069 chips, the pin connections
of which are given in figure 3.1b. Since CMOS devices
are sensitive to static damage you should avoid
touching the pins, and do not wear synthetic fabrics
while handling them. There should be no 'danger once
the chip is plugged in and earthed via the computer.

To start our experiments, plug the 4069 IC into rows
18 to 24 (pin 1 into hole G18) and insert 6 LEOs in
holes 01 to 012, ensuring that the cathode of each
diode is plugged into the even-numbered holes. (The
cathode is usually the longer of the two leads.) Using
insulated single-strand tinned copper wire, link Bl to
Al and connect all the anodes together by joining the
following holes: Cl-C3, B3-BS, CS-C7, B7-B9, C9-Cll.
Now link B18 (pin 14 of the IC) to the nearest hole in
row A (this will be our +SV supply rail) and link K24
(pin 7 of the IC) to any convenient hole in row L (the
OV or ground rail).

The connections between the output pins of the IC
and the cathodes of the LEOs should be made according
to table 3.2. The numbering given in the table assumes
that the LEDs are numbered from dl (nearest the edge of
the board) to d6.

Table 3.2 IC/LED Connection List

CONNECTION LED
K19-F2 dl
J21-F4 d2
I23-F6 d3
E24-E8 d4
E22-EIO dS
C20-C12 d6

Since it is tricky to make the connections from the
DIL plug to the IC inputs after the plug is inserted it
is necessary to insert these links now: see table 3.3.

You can now plug the OIL connector into the breadboard,
ensuring that pin I is inserted into hole 047. (Pin 1
is usually marked with a dot or a small arrow.) Now

Control and Measurement - Interfacing 133

Table 3.3 DIL Lead/IC Inputs Connection List

USER PORT DIL PLUG FUNCTION BREADBOARD LED
PIN NUMB. PIN NUMB. CONNECTION NO.

1 24 +5V K47-A47
2 1 CB1 NC
3 23 +5V NC
4 2 CB2 NC
5 22 OV GROUND K45-L45
6 3 BO B45-H18 d1

7,9,11,13 21,20,19,18 OV GROUND NC
8 4 Bl C44-I20 d2

10 5 B2 B43-J22 d3
12 6 B3 B42-B23 d4
14 7 B4 B41-C21 d5
15 17 OV GROUND NC

16 8 B5 B40-B19 d6
17,19 16,15 OV GROUND NC

18 9 B6 B39-G28
20 8 B7 B38-G31

NOTES: (1) NC = Not connected.
(2) The last 2 lines will be connected into the
circuit when required.

plug the IDC socket into the user port on the computer
and try the following test routine:

(a) Switch on the computer and ensure that the usual
start-up message and beep is obtained. If
anything is abnormal switch off immediately,
disconnect the cable and check all your wiring
carefully.

(b) Assuming that all is well the LEOs will probably
all be on. Enter the following as direct
commands: ?&FE62=&FF <RETURN> the LEOs will
probably go out. Enter ?&FE60 = 0 <RETURN> and
all LEOs should go out. If they do not, switch
off and check the wiring.

(c) If step (b) was successful then ?&FE60 = &FF
<RETURN> should turn all the LEOs on.

Using Port B
As mentioned earlier, the 8 data lines in the user port
can be programmed to act as either input or output.
Each of the data lines corresponds to one bit in the
I/O register (lOB) and each is controlled by the

134 A Science Teacher's Companion to the BBC Microcomputer

corresponding bit in the data direction register (DDB).
To set a data line to act as an output requires the
related DDB bit to be set to a '1', and to program a
line as an input requires a '0' in the DDB bit. Thus,
numbering the bits BO (LSB) to B7 (MSB) - see figure
3.2 - if we wish to set BO to B3 as inputs and B4 to B7
as outputs we must place the binary value 1111 0000
into the DDB using ?&FE62 = &FO. Note that this does
not actually produce any output from the output lines
nor does it read information from the inputs. Having
set up the port lines as desired, we can set a
particular output line to a 'high' (+SV) level by
writing a '1' to the corresponding bit in the lOB.
Thus to set BS and B7 high (and the other lines low) we
write ?&FE60 = &AO (&AO = 1010 0000 binary).

BIT VALUES: MSB=128 64 32 16 8 4 2 l=LSB
B7 B6 BS B4 B3 B2 Bl BO

{ DDB= 1 1 1 1 I 0 I 0 I 0 I 0
REGISTERS

lOB OP lop I OP lop lIP lIP lIP lIP
I I I I I I I

PORT LINES

Figure 3.2

Suppose we want to read the state of a particular
input line, say B2. The logic level on the B2 input
will be reflected by that of bit B2 in the lOB
register. However if we simply 'peek' at the contents
of this register we will obtain a value that depends on
the logic levels on all the input lines and on levels
previously set up on the output lines. To isolate the
single bit in which we are currently interested we must
'mask out' the logic levels of the unwanted bits. This
is done by ANDing the contents of lOB with a suitable
'MASK' value, 'M', say. Make 'R' the contents of lOB,
so R = ?&FE60. 'M' will need to have all its bits set
to zero except the bit corresponding to the input line
that we want to read (B2). Thus to read the level on
B2 the mask must contain the value 0000 0100 (decimal
4), that is, B2 = '1', and all the other bits are zero.

Now to read the state of the B2 line into the variable
'v' we would write

R = ?&FE60:M 4 :V RAND M

Control and Measurement - Interfacing

V RAND M

R M V

135

Bit B2

1
R=lOllOllO
M=OOOOOIOO
V=00000100=4

Bit under
test is '1'

t
R=lOllOOlO
M=OOOOOIOO
V=OOOOOOOO=O

Bit under
test is '0'

000
010
100
III

Logical AND

Figure 3.3 Use of logical masking to read an input line

Now, following the AND truth table in figure 3.3c,
we see that any given bit in V will only be set to '1'
if the corresponding bits in R AND in M are both '1'.
Thus the zeros in M will set the corresponding bits in
V to '0', regardless of their state in R. The value of
bit B2 in V will be the same as its value in R since 'I
AND 1 I' and '0 AND 1 = 0'. Figure 3.3a,b should
help to clarify this and you should note that the
overall effect is that V is zero (FALSE) if B2 = '0'
and V is non-zero (TRUE) if B2 = '1'.

Thus we could write

10 M=4
20 REPEAT
30 R=?&FE60
40 V=R AND M
50 UNTIL V:REM Loop until B2 goes high

Did you
business?

understand all that logic and 'masking'
To test yourself try the followi~g exercise:

(1) What mask value would you use to read the state of
the B5 line?

(2) write a REPEAT... UNTIL loop similar to the example
above but that will wait until either B3 or B7
goes high.

(Answers: (1) Bit B5 is 'worth' 2 A5=32 so the mask,
M=32.

(2) We want to test both B4 and B7 so the
mask must contain '1001 0000', that is, M
= 144 (128+16). The rest of the program
is the same as that given above.)

136 A Science Teacher's Companion to the BBC Microcomputer

Assuming that you have set up the breadboard circuit as
described previously, now try a few simple experiments.
First we shall set the lower 6 bits in DDB to '1' and

the upper 2 bits to '0'. This will set port lines BO
to B5 as outputs and B6 and B7 as inputs. The command
?&FE62 = &3F <RETURN> will achieve this. (Add up the
values of the bits that are to be set to '1':
32+16+8+4+2+1 = 63 = &3F.) Now if we want to turn on
LEDs dl to d4 we must place a 1 in the corresponding
bit positions (BO to B3) in the I/O register. ?&FE60 =
15 <RETURN> would produce the required effect but all
this binary arithmetic is probably giving both of us a
headache by now, so why not let the computer do the
hard part? The listing of "VIA_DEMO" supplied provides
a continuously updated display, in binary, of the
contents of all the registers within the VIA chip.

Listing "VIA DEMO"

10 REM "******************
20 REM "** VIA DEMO **
30 REM "** P. Hawthorne **
40 REM "* * (c) 1983 * *
SO REM "******************
60 DIM reg$(lS)
70 FOR 1%=0 TO IS
80 READ reg$(I%)
90 NEXT 1%

100 MODE 7:VDU 23;8202;0;0;0;
110 FOR 1%=0 TO 7
120 PRINT TAB(0,2*I%+I);-(&60+I%);CHR$ 132;CHR$ 157;

CHR$ 13S;TAB(14,2*I%+1);reg$(I%);" ";CHR$ 156;
130 NEXT 1%
140 FOR 1%=0 TO 7
ISO PRINT TAB(20,2*I%+1);-(&68+I%);CHR$ 132;CHR$ lS7;

CHR$ 13S;TAB(34,2*I%+l);reg$(I%+8);" ";CHR$ 156;
160 NEXT 1%
170 PRINT TAB(7,17);CHR$ 141;"All addresses are &FE
180 PRINT TAB(7,18);CHR$ 141;"All addresses are &FE
190 PRINT TAB(1,20);CHR$ 130;"Press ESC to change -

register contents"
200 ON ERROR GOTO 380
210 REPEAT
220 FOR 1%=0 TO 7
230 VDU 31,S,2*I%+1:PROCdec bin(?(&FE60+I%))
240 NEXT 1% -
2S0 FOR 1%=7 TO 0 STEP -1
260 VDU 31,2S,2*I%+1:PROCdec bin(?{&FE68+I%))
270 NEXT 1% -
280 UNTIL FALSE
290 DEF PROCdec bin(number%)
300 IF number%>2SS THEN PRINT "Too large.":ENDPROC
310 LOCAL n%
320 FOR n%=7 TO 0 STEP -1
330 IF number% DIV 2"n% =1 THEN PRINT <'111; :number%=num

ber% MOD 2"n% ELSE PRINT "0";
340 NEXT n%
3S0 ENDPROC
360 DATA" IOB","IOAl"," DDB II," DDA","TICL","TICH",

"TILL","TILH"
370 DATA "T2CL II,"T2CH II," SSR"," ACR"," PCRII," ISR",

" ICR","IOA2"
380 IF ERR <>17 THEN REPORT :PRINT " at line ";

ERL :END
390 SOUND 1,-lS,lS0,2
400 REPEAT
410 INPUT TAB(9,22)"Which register (O-lS) ",regS

Control and Measurement - Interfacing 137

420 PRINT TAB(0,22);SPC (40)
430 IF reg$="" THEN 410
440 IF LEFT$(reg$,l)="&" THEN reg%=EVAL (reg$)

ELSE reg%=VAL (reg$)
450 IF LEN (reg$)=8 THEN reg%=FNbin dec(reg$)
460 IF reg%<O OR reg%>15 THEN SOUNO-1,-15,30,5
470 UNTIL reg%>=O AND reg%<16
480 SOUND 1,-15,150,2
490 REPEAT
500 INPUT TAB(11,22)"What value (0-255) ",val$
510 PRINT TAB(0,22);SPC (40)
520 IF val$="" THEN 500
530 IF LEFT$(val$,l)="&" THEN val%=EVAL (val$)

ELSE val%=VAL (val$)
540 IF LEN (va1$)=8 THEN val%=FNbin dec(val$)
550 IF val%<O OR val%>255 THEN SOUND 1,-15,30,5
560 UNTIL val%>=O AND va1%<256
570 ?(&FE60+reg%)=val%
580 GOTO 210
590 OEF FNbin dec(B$)
600 LOCAL 1%,,i5%
610 FOR 1%=0 TO 7
620 IF MIO$(B$,8-I%,1)="1" THEN 0%=0%+2 1%
630 NEXT 1%
640 =0%

The hex address and the mnemonic name of each register
are also given and you can change the contents of any
register by pressing <ESCAPE> and following the
instructions on the screen. The 'EVAL' function is
used on the inputs, so you can give the register number
and value in hex if you precede your input with '&'.
You can also, if you wish, input the value as an 8-bit
binary number which will be converted to a decimal
number by the function 'FNbin_dec'.

You may find this function and the complementary
procedure 'PROCdec bin' useful in other programs. The
procedure prints an 8-bit binary representation of any
decimal number in the range 0 to 255.

If you run the program you will notice that several
of the register contents are changing continuously,
though it takes a short time for changes to be updated
on the display owing to the time taken to convert and
print each register value. The registers that are
changing are the timer registers: TICL/TICH and
T2CL/T2CH. These particular registers are counting the
I MHz clock pulses in the computer. The L (low byte)
registers are decrementing once every microsecond and
when they reach zero the H (high byte) register is
decremented. When the H register reaches zero it can,
if enabled, cause an INTERRUPT. (See 'Using the Timers
in the VIA' later in this chapter.)

Feel free to experiment with the various registers
you cannot do any harm though the computer may 'hang
up', requiring you to press <BREAK> and use 'OLD' to
restore things to normal. (You could program the BREAK
key by adding 55 *KEYIO OLDIM RUN\M.) In particular
you should familiarise yourself with the operation of
the DDB and rOB registers. Set up DDB (register 2) for
all outputs by placing a value of 255 decimal (or &FF

138 A Science Teacher's Companion to the BBC Microcomputer

hex or 1111 1111 binary) in this register: press
<ESCAPE>, 2, <RETURN>, 255, <RETURN>. Now place the
value '10101010' in lOB (register 0). If you have
your experimental circuit connected to the user port
you will observe that the LEDs mimic the pattern of
'ones' and 'zeros' in this register: 1 = ON, 0 OFF.

Now to observe the effect of changing an input line,
set up port line B7 as an input by placing the value
'0111 1111' (127 or &7F) in DDB. Connect a link on the
breadboard between 131 and the OV rail and observe the
contents of lOB: it should be a string of 8 zeros. Now
change the -link over to the +5V rail: the contents
should change to 10000000. (In fact the value will
change as soon as you disconnect the link since a
'floating' input appears to the VIA as a high logic
level.) There will again be a slight delay between
changing the logic level and the updating of the
display. To show that there is no effect when we try
to write data into an lOB bit position that is an
input, replace the link in OV and use the program to
place a value of &FF (1111 1111 binary) in lOB. Note
that bit 7 remains set to '0'. It will change to a
'1' only if you change the link to a high logic level
again. Thus an input bit is controlled by the logic
level on the port line,not by the computer.

To make this switching arrangement a little more
positive disconnect the link and insert a lK resistor
in holes 131 and L31 and connect a push-to-make switch
to H3l and the +SV rail. The resistor will hold the
input low (logic '0') until the switch is pressed, when
it should change to a logic '1'. Try it with the
program above. Keep the switch connected as we shall
need it shortly (see figure 3.4).

+5VO---l

p

B7 0----------..

Switch

oV 0------------'

1K

Figure 3.4 Connecting a switch to the user port

Control and Measurement - Interfacing 139

User Port Program Examples
The accompanying listings provide a number of simple
examples to illustrate how to incorporate the port
control techniques into programs.

Example 1: "PORTl"

10 REM **********************
20 REM *** PORTI ***
30 REM *** USER PORT DEMO ***
40 REM *** TURNS ALL alP ***
50 REM *** ON AND OFF ***
60 REM *** AT RATE INPUT ***
70 REM *** BY USER ***
80 REM **********************
90 MODE 7

100 INPUT" ON TIME FOR L.E.D.(IN SECONDS)",tirneon
110 INPUT II OFF TIME FOR L.E.D.(IN SECONDS) ",tirneoff
120 CLS
130 ?&FE62=&FF:REM SET PORT FOR ALL alP's
140 REPEAT
150 X=O
160 ?&FE60=X
170 PROCdelay(tirneoff)
180 X=255
190 ?&FE60=X
200 PROCdelay(tirneon)
210 UNTIL FALSE
220 DEF PROCdelay(T)
230 INIT=TIME
240 REPEAT UNTIL TIME >=INIT+T*100
250 ENDPROC

This program simply switches all LEOs on and off, but
at a rate that is input by the user. The on and off
times can be different if desired.

Example 2: "PORT2"

500 REM ******************
510 REM *** PORT2 ***
520 REM *** MOVING DOT ***
530 REM *** DISPLAY ***
540 REM ******************
550 MODE 7
560 INPUT" ON TIME FOR L.E.D.(IN SECONDS)",tirne
570 CLS
580 ?&FE62=&FF:REM SET PORT FOR ALL alP's
590 REPEAT
600 X=32:REM ** X=2

A(No

of LEOS-I) **
610 REPEAT
620 ?&FE60=X
630 PROCdelay(tirne)
640 X=X DIV 2
650 UNTIL X=O
660 UNTIL FALSE
670 DEF PROCdelay(T)
680 INIT=TIME
690 REPEAT UNTIL TIME >=INIT+T*lOO
700 ENDPROC

This produces a 'moving dot' display by turning on one
LED at a time, in sequence. The on time can be
selected.

140 A Science Teacher's Companion to the BBC Microcomputer

Example 3: "BINARY"

'0 REM **********************
15 REM *** BINARY ***
16 REM *** ***
20 REM *** BINARY COUNTER ***
30 REM *** O/P'S ON BO-B7 ***
35 REM *** ***
40 REM **********************
50 INPUT "Delay time",d
60 ?&FE62=&FF:REM ** ALL O/P'S**
65 PORT=&FE60
70 REPEAT
80 X%=o
90 REPEAT

100 ?PORT=X%
110 PROCdelay(d)
120 X%=X%+l
130 UNTIL X%=256
140 UNTIL FALSE
150 END
160 DEF PROCdelay(t)
170 T=TIME
180 REPEAT UNTIL TIME >=T+t*100
190 ENDPROC

"BINARY" produces an LED display that counts up in
binary. The count rate can be varied, by choosing
different on times. For example a very slow rate can be
selected which allows the count to be followed. Note
that the value assigned to the variable 'PORT', in line
65, is the address of lOB.

Example 4: "RANDOM"

10 REM *********************
20 REM *** RANDOM LIGHTS ***
30 REM *** AND SOUNDS ***
40 REM *** USE BO-B7 ***
50 REM *********************
60 ?&FE62=&FF
70 PORT=&FE60
80 PRINT "Sound (Y/N)":A$=GET$
90 IF A$="Y" OR A$="y" THEN vol%=-15 ELSE vol%=O

100 REPEAT
110 X=RND (8)-1
120 ?PORT=2 X
130 SOUND 1,vol%,2 X+l00,2
140 A=INKEY (20)
150 UNTIL FALSE

This program illuminates the LEDs in a random sequence,
accompanied by random computer 'music', if desired.
Line 110 chooses a port line (0 to 7) at random and
line 120 sets the lOB to the corresponding value.

Control and Measurement - Interfacing

Example 5: "TRAFLITES"

10 REM **********************
15 REM *** TRAFLITES ***
20 REM *** TRAFFIC LIGHTS ***
30 REM *** DISPLAY ***
40 REM **********************
50 MODE 7
60 RED=4:GREEN=1:AMBER=2:RED AMBER=6
65 REM ** RED=B2:GREEN=BO:AMBER=Bl **
70 CLS
80 ?&FE62=&FF:REM SET PORT FOR ALL O/P~S

90 REPEAT
100 ?&FE60=GREEN
110 PROCdelay(8)
120 ?&FE60=AMBER
130 PROCdelay(2)
140 ?&FE60=RED
150 PROCdelay(5)
160 ?&FE60=RED AMBER
170 PROCdelay (2)
180 UNTIL FALSE
190 DEF PROCdelay{T)
200 INIT=TIME
210 REPEAT UNTIL TIME >=INIT+T*100
220 ENDPROC

141

This is, of course, the almost mandatory traffic lights
demonstration and it will prove more effective if you
replace dl with a green LED and d2 with a yellow or
orange one. Note the assigning of suitable values to
appropriately named variables for each of the different
colours and combinations - line 60 a useful idea,
which makes the program easy to follow.

Example 6: "PELICAN"

10 REM **********************
20 REM *** PELICAN LIGHTS ***
30 REM *** DISPLAY ***
40 REM **********************
50 RED=4:GREEN=1:AMBER=2:RED AMBER=6
60 CLS -
70 ?&FE62=&7F:REM ** I/P TO B7;O/P'S FROM BO-B6
80 REPEAT
90 ?&FE60=GREEN

100 REPEAT UNTIL (?&FE60 AND 128)
110 PROCdelay(2)
120 PROCchange
130 UNTIL FALSE
140 DEF PROCde1ay{T)
150 INIT=TIME
160 REPEAT
170 UNTIL TIME >=INIT+T*100
180 ENDPROC
190 DEF PROCchange
200 ?&FE60=AMBER:PROCde1ay(2)
210 ?&FE60=RED
220 FOR 1%=1 TO 20
230 SOUND 1,-15,200,4
240 PROCde1ay(.3)
250 NEXT 1%
260 FOR 1%=1 TO 15
270 ?&FE60=AMBER:PROCde1ay(.4)
280 ?&FE60=0:PROCde1ay(.4)
290 NEXT 1%
300 ENDPROC

142 A Science Teacher's Companion to the BBC Microcomputer

Here we have a simulation of the light-controlled
pedestrian crossing. The light remains green until the
pedestrian presses his button: the push switch that we
wired to our breadboard earlier. Line 100 waits for
port line B7 to go high (button pressed) and there is
then a 2 second delay before PROCchange is called.
This changes the lights to red and produces the
accompanying warning beeps. The final part of the
procedure flashes the amber light before returning
control to the main loop at line 130. Since there are
spare output lines available, you may like to add a
'WAIT' light which illuminates when the user pushes the
button, and the green and red men which are illuminated
at the correct times.

Further Interfacing for the User Port
It would be useful if our breadboard interface could be
'beefed up' to enable us to drive circuits requiring
somewhat more power than an LED. One of the simplest
means of switching considerable loads is to use a

To load circuit

BC182L

1N4002

1KFrom user
port via
buffer

+12 V 0--------.......--.........

OV
Ground

Pin View

Q
B C E

--i It-

Anode Cathode

Figure 3.5 Relay driving circuit

Control and Measurement - Interfacing 143

relay, driven by a user port line, via a suitable
interface circuit. Figure 3.5 shows a simple
transistor driver coupled to the output of one of the
4069 inverters. The relay coil is connected to a
suitable external 12V supply, the negative terminal of
which must be connected to the ground rail on the
breadboard. The relay will be on when the port line is
low and vice versa (remember the inverting action of
the buffer).

To connect up the circuit on the breadboard proceed as
follows:

(1) Remove LED d6.
(2) Insert a lK resistor in F12 and H12.
(3) Insert a BC182L (or any similar NPN transistor)

with its emitter, E, in 114, collector,C, in 113
and base, B, in 112. (See Figure 3.5 for
connection details.)

(4) Link K14 to L14.
(5) Insert diode, 0: cathode in J6, anode in J13.
(6) Connect one side of the relay coil to K13 and the

other side to K6.
(7) Link the negative terminal of the supply to Ll and

the positive terminal to 16.

To test the new circuit, define a couple of user keys
to switch port line B5 high and low alternately:

*KEYO ?&FE60=32IM
*KEYI ?&FE60=0IM

Now key fl will turn the relay on and fO will turn
it off. The relay can be used to switch any equipment
up to the limit of its contact rating. It is quite
possible to switch mains-operated equipment but make
sure you really know what you are doing - the relay
will protect the computer but poor insulation could
spell disaster for you, so be careful! An adequate
demonstration of the computer's ability to control the
'real' world can be achieved without recourse to mains
switching: for example, by controlling a large l2V
fractional horsepower motor or something similar.

USING THE TIMERS IN THE VIA

There are two timers contained in the VIA chip: timer 1
(Tl) and timer 2 (T2). Tl is the more versatile of the
two but both timers are in essence l6-bit counters
which can be loaded with data (any value from zero to
65535, that is, 2 A16). The counters will then
decrement (count down one step) every time that a clock

144 A Science Teacher's Companion to the BBC Microcomputer

pulse occurs. In the BBC micro the frequency of the
clock pulses supplied to the VIA is 1 MHz so the
counters will decrement every microsecond. When a
counter reaches zero it is said to have ~timed-out' and
this occurrence will set a 'flag' - a particular bit
in the interrupt status register (ISR). If the
corresponding bit in the interrupt control register
(ICR) is set, then interrupts from this particular
counter are enabled and the VIA chip will generate an
interrupt request (IRQ) signal (see figure 3.6b).
This causes the 6502 microprocessor (MPU) to
temporarily break off from whatever it was doing and
fetch an address from memory location &FFFE. This
action is pre-programmed into the MPU by the chip
manufacturer. Location &FFFE is in the operating
system ROM and Acorn have placed the start address of a
short routine there which first checks for a BRK
('Break') instruction. A BRK is an assembly language
instruction which behaves in a similar way to an
interrupt, so the computer must check for this first.
Assuming that such an instruction was not the cause of
the interrupt, the MPU will jump to an address
contained in RAM locations &0204 and &0205. This
address is the start of the main interrupt service
routine. In assembly language terminology this is an
'indirect jump (you can say that again!) and the
interrupt routine is said to be 'vectored' through
these locations. In other words, the interrupt request
vector (IRQIV) is &0204: location &0204 contains the
low byte and &0205 contains the high byte of the start
of the operating system's interrupt service routine.
(note: the 0.1 as does not support a vectored interrupt
routine - the contents of &FFFE cause a direct jump to
the service routine at &DDE4. The routine then
indirects via the RAM locations given.) The service
routine checks all internal interrupts first and, if
the source is not found, as in the case of an interrupt
generated by the user port, it will then indirect, via
IRQ2V, to a user supplied service routine. We simply
place the start address of our own routine in &0206
(low byte) and &0207 (high byte) and an interrupt
request generated by the user port will eventually find
its way to our interrupt handling program. For
example, if we have a handling routine that starts at
location &OA52, we place the value &52 in &0206 and &OA
in &0207

Memory location
&0206

&0207

Contents
&52

~&OA52 start of interrupt
&OA routine

Control and Measurement - Interfacing 145

interrupts higher
service routine by
own routine. We
processing, return
to enable it to

If we require to give our
priority, we can intercept the main
changing IRQlV to redirect it to our
must, when we have completed our
control to the machine~s own routine
function correctly.

When an interrupt occurs, the MPU will suspend
operations, save various register contents and jump to
the interrupt service routine. This will interrogate
each of several devices in turn to find which was the
source of the interrupt. Interrupts can originate from
several sources in the computer, for example, the
keyboard, the timer in the internal VIA (to give the
TIME function) and the user port VIA. You can see that
the function of the flag set by the time-out of a timer
is to inform the MPU that this was the source of the
interrupt request that it received. Once the origin of
the interrupt has been found, the appropriate action
can be taken by the service routine. In the case of a
keyboard-generated interrupt this would include testing
the keyboard to see which key had been pressed and
placing the corresponding character in the keyboard
buffer. The routine would end by clearing the
interrupt flag and restoring the MPU registers. The
MPU would then return to the task that it was handing
when the interrupt occurred.

Clearly we are going to need to handle interrupts if
we want to use the timers and this wi~l involve using
machine code. Now do not take fright at this prospect
because it really is very easy, thanks to the Beeb~s

marvellous built-in assembler which allows assembly
language statements to be freely mixed with BASIC. The
BASIC can be used for the difficult bits and we need
only use the assembler when it is essential, as in
dealing with interrupts.

Timer Operating Modes
Each of the timers is capable of operating in various
modes, selected by a group of bits in the auxiliary
control register (ACR) figure 3.6a. As well as
controlling the timers, this register also determines
whether input latching on the port lines is enabled or
disabled and it controls the operation of the serial
shift register (SSR) within the VIA. This latter is
mainly concerned with synchronising communications
between computers and is beyond the scope of the
present treatment. Those who want to experiment with
the SSR are referred to the 6522 data sheet and/or the
book by Birnbaum, details of which are given in
appendix A.

146 A Science Teacher's Companion to the SSC Microcomputer

Bit (B) 7 6 5 4 o

Tl
Control

Tl Control

T2
Control

SSR Control PB PA
Latch

T2 Control

B7 B6 MODE lOB B7
0 0 Single-shot OFF
0 1 Free run OFF
1 0 Single-shot ON (Pulse)
1 I Free run ON (Sq. wave)

PB/PA latching Control:

Bit 5 MODE
0 Slngle-shot
1 Counter

Bit high
Bit low

latching enabled
= latching disabled

Figure 3.6a Auxiliary Control Register

Interrupt Status Register (ISR)

Flag Set by Cleared by
(Bit)

7 Any enabled VIA interrupt Clearing ALL interrupts
6 Time out of Tl Read TICL/Write TICH
5 Time out of T2 Read T2CL/Write T2CH
4 Appropriate transition on CBI Read/Write lOB
3 Appropriate transition on CB2 Read/Write lOB
2 8 shifts of shift reg. Read/Write SSR
1 Appropriate transition on CAl Read/Write IOAl
0 Appropriate transition on CA2 Read/Write IOAl

Interrupt Control Register (ICR)

Bit number Function

7 Set/Clear control
6 Enable Tl interrupts
5 Enable T2 interrupts
4 Enable CBl interrupts
3 Enable CB2 interrupts
2 Enable SSR interrupts
1 Enable CAl interrupts
0 Enable CA2 interrupts

Figure 3.6b Interrupt Status and Control Registers

Control and Measurement - Interfacing 147

Figure 3.6a shows that timer 1 has four modes of
operation, controlled by bits 6 and 7 of the ACR, and
timer 2 has two modes, controlled by bit 5. The two
basic modes of Tl are 'single-shot' (bit 6 = 0) and
'free-run' (bit 6 = 1). In the former a single
interrupt will be generated some time after the timer
is loaded - the time will depend on the data loaded.
In the second mode the timer will generate a continuous
series of interrupts, the interval between interrupts
being set by the timer data. In addition Tl can also
generate an output from B7 of the user port for each
time-out - ACR bit 7 = 0 disables the output, bit 7 = 1
enables it. (This user port line must have already
been set up as an output by placing a '1' in bit 7 of
the OOB register.) In the single-shot mode this output
will be a single, negative-going pulse which starts
when the timer is loaded. The duration of the pulse
will depend on the value loaded into Tl. In the
free-run mode the output on B7 will be a square wave,
the logic level being inverted at each time-out. The
frequency of the square wave will be de~ermined by the
timer contents.

Timer 2 has two modes of operation: a single-shot
timing mode (ACR bit 5 = 0), similar to the single-shot
mode of Tl, and a pulse-counting mode (bit 5 = 1) in
which it counts down with each negative going pulse on
user port line B6 (set up as an input, of course). In
this latter mode a value would be loaded into T2; this

NOTES:

1. See Table 3.1 for the register addresses.

2. The flags can also be cleared by writing a 1
to the appropriate hit position. For example,
to clear the Tl flag you could either:

a. Read TICL eg LOA &FE64
b. Write TICH eg LOA#O:STA &FE65
c. Write a 1 to bit 6 of the ISR

eg LOA#&CO:STA &FE60

3. An interrupt is enabled when the ICR bit is 1,
and disabled when it is o.

4. ICR Bit 7 controls the setting and clearing of
bits 0 to 6 of this register as follows:

a. Bit 7=1 - writing a 1 to a bit sets it
to 1 .

b. Bit 7=0 writing a 1 to a bit sets it
to O.

148 A Science Teacher's Companion to the BBC Microcomputer

would be decremented each time that a pulse was
received on B6 and, when the counter reached zero, it
would generate an interrupt. Only at this stage would
the processor need to be 'bothered' - in the meantime
it has been busy doing more important tasks, such as
running another program.

We can use "VIA DEMO" to give some insight into this
process. Load and run this program, then proceed as
follows:

a) Set B6 for input by placing the value 1011 1111
(191) in register 2 (DDB).

b) Set bit 5 in register 11 (ACR) by entering a value
of 0010 0000 (32). Note that both T2 registers
stop counting they are now set up to accept
pulses from B6 rather than the internal clock
pulses.

c) Load T2CL with the data required (low byte of the
number of pulses that you want to count), 15 say.
Note that the contents do not actually change yet.

d). Load T2CH with the high byte of the number of
pulses, say zero. Both registers are loaded by
this operation.

e) Connect the push switch/resistor circuit of figure
3.4 to B6 (hole G28) in the breadboard.

f) Press the switch a few times to feed pulses into
B6 and note T2 counting down. The timer counts
negative-going pulses, produced when the switch is
released. You may notice some 'switch bounce',
evidenced by the count occasionally skipping one
or two binary digits.

When the count reaches zero, in both T2CL and T2CH,
the next pulse gives 1111 1111 in both registers. When
you press the switch for this last pulse, look closely
at bit 5 of ISR and you should see it change
momentarily to a '1'. This is the interrupt flag being
set. It is quickly cleared back to '0' as a result of
the program reading the T2CL register contents. Since
bit 5 of the interrupt control register, ICR, had not
been set, no actual interrupt occurred. If you want to
see the effect of an interrupt, repeat the above
procedure but, after loading the counters, enable
interrupts from T2 by placing the value 1010 0000 (160)
in ICR (register 14). Now when the count-down is
completed the machine will 'hang up' (the display and
keyboard will cease to respond) and the only way out is
to press <BREAK>. This has occurred because we did not
provide any routine to handle the interrupt.

To show how such interrupts can be handled, enter
and RUN the short program, "COUNT". Now enter NEW

Control and Measurement - Interfacing 149

<RETURN>, LIST <RETURN> to convince yourself that the
program has /gone/. Slowly press and release the push
switch to feed pulses into B6. After 15 pulses T2 will
reach zero and cause an interrupt. You should hear a
beep produced by the Assembly language routine
assembled into memory starting at M% (as defined in
line 70). This routine - LOA #7:JSR &FFEE - is the
equivalent of /VDU 7/.If you want to repeat the process
you will have to OLD the program to recover it and run
it again to set up the timer registers. Try
experimenting with the timer data. Change the /#7/ in
line 170 to /#65/ - you should now see an /A' printed
on the screen when the appropriate number of pulses has
been received (65 is the ASCII code for A). While this
example is fairly trivial you can no doubt think of
several more practical uses for this T2 mode: frequency
counters, 'scalers' for GM tubes and so on.

Listing "COUNT"

10 REM "*********************
20 REM "*** "COUNT" ***
30 REM "*** ***
40 REM "*** PULSE COUNT ***
50 REM "*** USING TIMER 2 ***
60 REM "*********************
70 DIM M% 30
80 PROCassem
90 ?&0206=M% MOD 256

100 ?&0207=M% DIV 256
110 PROCset up VIA
120 END --
130 DEF PROCassem
140 FOR opt%=O TO 2 STEP 2
150 P%=M%
160 [OPT opt%
170 LDA #7
180 JSR &FFEE
190 LDA &FE68
200 LDA &FC
210 RTI
220]
230 NEXT opt%
240 ENDPROC
250 DEF PROCset up VIA
260 ?&FE62=0 --
270 ?&FE6B=?&FE6B OR 32
280 ?&FE68=15
290 ?&FE69=0
300 ?&FE6E=&AO
310 ENDPROC

As an illustration of the free-run mode of timer 1,
the short program "BEEPER" produces a beep at regular 1
second intervals. Since the timer itself cannot
produce a delay of this length (about 6.5 centiseconds
is the maximum delay, corresponding to counting 65535
cycles of the 1 MHz clock) it is set up to generate an
interrupt every 1/50th of a second. A memory location,
whose contents are initially set to 50, is decremented

150 A Science Teacher's Companion to the BBC Microcomputer

on each interrupt and when it reaches zero, a beep is
produced. This simple example clearly has wide-ranging
implications in the area of automatic data acquisition.
While the computer is being used for one purpose, say
by a student taking a revision test, it could be
automatically taking, and storing for later analysis,
temperature readings from the analogue-to-dlgital
converter. This would be done every second, every 100
seconds or at whatever intervals are desired.
Meanwhile the student will be completely unaware that
the computer is dealing with two tasks 'at the same
time'. This topic is dealt with in more detail later
in this chapter.

Listing "BEEPER"

5 REM ****************
10 REM ** Tl EXAMPLE **
20 REM ** BEEP ONCE **
30 REM ** EACH SEC. **
35 REM ****************
40 ?&70=50
60 FOR 1%=0 TO 2 STEP 2
65 P%=&AOO
70 [OPT 1%
75 .1N1T
80 LOA #&40
90 OR A &FE6B

100 STA &FE6B
110 LOA #&CO
120 STA &FE6D
130 STA &FE6E
140 LOA #&20
150 STA &FE64
160 LOA #&4E
170 STA &FE65
180 RTS
190 .int PHP:PHA
200 OEC &70:BNE OUT
210 LOA #7:JSR &FFEE
220 LOA #50:STA &70
230 .OUT LOA &FE64:PLA:PLP
240 RT1
250]
260 NEXT 1%
270 ?&0206=int MOO 256
280 ?&0207=int 01V 256
290 CALL IN1T

A Real-time Clock
As a more useful illustration of the free-run mode of
Tl, the listing of "RTCLOCK" provided gives a
continuously running digital clock display on the top
line of the screen. You can list and run other
programs quite independently· of the clock machine code
program, provided that you use Mode 7 and do not
overwrite the area of memory that it uses or press
<BREAK>. (Disk users will need to locate the program
elsewhere: try changing line 70 to time% &AOO.)
The program works by setting up TI to provide a regular

Control and Measurement - Interfacing 151

interrupt every centisecond. The interrupt handling
routine counts these interruptions and, when a second
has expired, increments the seconds, minutes and hours
and prints the time. Zero page locations &70 to &73
are used to store the time and again these should not
be used by other programs. Since we require high
priority for our interrupts, the program adopts the
technique of altering IRQlV to point at our own
routine. After updating the time, control is returned
to the normal routine (if you have a 0.1 OS change line
620 to JMP &DDE4). BASIC is used for setting the
time initially, but the BASIC program can be deleted
and another one loaded, without affecting the clock.

Listing "RTCLOCK"

10 REM *********************
20 REM ** REAL TIME CLOCK **
30 REM ** 1.2 OS VERSION **
40 REM ** P.D.HAWTHORNE **
50 REM ** c 5/12/83 **
60 REM *********************
70 time%=&DOl
80 OSWRCH=&FFEE:OSBYTE=&FFF4:count=&70:hrs=&71:mins=&

72:secs=&73
90 ?count=100:Xco=&74:Yco=&75

100 MODE 7
110 VDU 132,157,131
120 VDU 28,0,24,39,2
130 PROCassernble
140 PROCset time
150 ?&204=tlrne% MOD 256:REM ** LOW BYTE
160 ?&205=time% DIV 256:REM ** HI BYTE
170 PROCset up VIA
180 END --
190 DEF PROCassemble
200 FOR opt%=O TO 2 STEP
210 P%=tirne%
220 [OPT opt%
230 PHP:PHA:TXA:PHA:TYA:PHA
240 LDA &FE6D
250 BPL out
252 ASL A
254 BPL out
260 DEC count
270 BNE end
280 LDX #0
290 INC secs
300 LDA #60
310 CMP secs
320 BNE print
330 STX secs
340 INC mins
350 CMP mins
360 BNE print
370 STX rnins
380 INC hrs
390 LDA #24
400 CMP hrs
410 BNE print
420 STX hrs
430 .print
440 LDY #7
450 LDA secs
460 JSR convert
470 LDA #&3A
480 STA &7CI0,Y
490 DEY
500 LDA mins
510 JSR convert

152 A Science Teacher's Companion to the BBC Microcomputer

520 LDA #&3A
530 STA &7C10,Y
540 DEY
550 LDA hrs
560 JSR convert
570 LDA #100
580 STA count
590 .end
600 LDA &FE64
610 .out PLA:TAY:PLA:TAX:PLA:PLP
620 JMP &DC93
630 .convert TAX
640 BEQ zero
650 LDA #0
660 SED
670 CLC
680 .incA
690 ADC #1
700 DEX
710 BNE incA
720 CLD
730 .zero
740 PHA
750 LSR A
760 LSR A
770 LSR A
780 LSR A
790 CLC
800 ADC #&30
810 STA &7COF,Y
820 PLA
830 AND #&OF
840 ADC #&30
850 STA &7C10,Y
860 DEY:DEY
870 RTS
880]
890 NEXT opt%
900 ENDPROC
910 DEF PROCset time
920 CLS -
930 INPUT TAB(15,12)"Enter HOURS "?hrs
940 INPUT TAB(15,14)"Enter MINUTES" ?mins
950 INPUT TAB(15,16)"Enter SECONDS" ?secs
960 ENDPROC
970 DEF PROCset up VIA
980 F%=?&FE6B - -
990 ?&FE6B=F% OR 64

1000 ?&FE6D=192
1010 ?&FE6E=192
1020 ?&FE64=&10
1030 ?&FE65=&2:
1040 ENDPROC

A Millisecond Timer Program ("MILLI")
The Beeb~s integral ~TIME~ function is easily used but
for some applications does not offer enough resolution.
This program is offered as a means of enabling

measurements of time to be made to within 1 ms. It
again uses timer 1, within the user VIA, in its
free-run mode, but set up to give a delay of 1 ms (1000
clock cycles). The interrupt routine, again vectored
through IRQlV for high priority, increments a series of
four memory locations (&70 to 73). These can be set
and read from BASIC using the ~word~ indirection
operator '! ~ (see pages 409 and 410 of the User Guide).

The BASIC program provides ~PROCzero time~ and
~FNtime' to reset the timer and read it, re~pectively,

Control and Measurement - Interfacing 153

though BASIC is probably too slow to take full
advantage of the millisecond accuracy. A complete
machine code timer program is listed later which
enables the ultimate accuracy to be obtained.

Listing "MILLI"

10 REM "*** MILLI ***
20
30 DIM V% 40
40
50 PROCzero_time
60
70 PROCassemble
80
90 REM "Alter interrupt vector IRQ1V

100 ?&204=V% MOD 256:REM "Low byte
110 ?&205=V% DIV 256:REM "High byte
120
130 PROCset up VIA:REM "Start timer
140 END --
150
160
170 DEF PROCassemble
180 FOR opt%=O TO 2 STEP
190 P%=V%
200 [
210 OPT opt%
220 PHP:PHA
230 LDA &FE6D \ check VIA int. flag
240 BPL out
250 INC &70
260 BNE c
270 INC &71
280 BNE c
290 INC &72
300 BNE c
310 INC &73
320 .c LDA &FE64 \ clear int. flag
330 .out PLA:PLP
340 JMP &DC93
350]
360 NEXT opt%
370 ENDPROC
380
390 DEF PROCset up VIA
400 A%=?&FE6B - -
410 ?&FE6B=A% OR 64:REM "Set up ACR
420 ?&FE6D=192:REM "Set up ISR
430 ?&FE6E=192:REM "Set up ICR
440 ?&FE64=&E8:REM "Set up T1CL
450 ?&FE65=&03:REM "Set up T1CH and start timer
460 ENDPROC
470
480 DEF PROCzero time
490 !&70=0 -
500 ENDPROC
510
520 DEF FNtime=!&70

EVENTS

Because the entire BBC micro runs under continuous
interrupts, it can be fairly difficult to carry out
certain tasks without upsetting the operating system
and causing the computer to hang up. The designers of
the computer envisaged these problems and provided a

154 A Science Teacher's Companion to the BBC Microcomputer

simplified form of interrupt called an 'event'. You
may like to regard an event as a sort of pre-packaged
interrupt where all the hard work of checking the
source of the interrupt has been done for you.
Particular events are enabled and disabled using *FX14
and *FX13, respectively (or their assembly language
OSBYTE - equivalents).

The events that are provided on the current (Series
1) operating system are summarised in table 3.4,
together with the corresponding event codes used to
en~ble/disable them. Thus *FX14,5 enables the interval
timer event and *FX13,5 disables it.

Table 3.4 Events

Event Code

o
1
2
3
4
5
6
7
8
9

Event

Output buffer is empty
Input buffer is full
A character has entered a buffer
An ADC conversion has completed
Start of video frame sync pulse
Interval timer passed through zero
The ESCAPE key has been pressed
An RS423 error has been detected
Econet has generated an event
User event

Notes: To enable an event use *FXI4,E where E
code above.
To disable an event use *FX13,E.

Event

The events most likely to prove useful are number~

2,3,4 and 5. Event 2 will occur every time that a key
is pressed: characters typed in are entering the
keyboard buffer. Thus we could, for example, provide
some 'audio-feedback' by producing a beep every time
that an event 2 occurs. The program (EVENTl) is very
simple and is located from &AOO. The event routine, if
enabled by *FX14, indirects via the event vector
(EVNTV) at &220,221. (See the previous section 'Using
the Timers in the VIA' for an explanation of vectors.)
Thus lines 110 and 120 are used to point this vector at
the start of our beep routine at &AOO and the event is
enabled in line 130. After you run the program you
will find that pressing any key on the keyboard will
produce a beep. When you get tired of the noise just
type *FX13,2 to stop it. Similarly *FX14,2 will
reinstate the beep again. (Note: Strictly we are
supposed to save all the processor registers in our
event-handling program, but this short routine seems to
survive without doing so!)

Control and Measurement - Interfacing

Listing "EVENTl"

10 REM "** EVENTI **
20 REM "Beeps when a key is pressed
30 REM "Use *FX14,2 to enable
40 REM "Use *FX13,2 to disable
50 P%=&AOO
60 [
70 LOA #7
80 JSR &FFEE
90 RTS

100]
110 ?&220=0
120 ?&221=&OA
130 *FX14,2

155

"EVENTAO" is a very useful little program that
enables a sequence of up to 128 analogue-to-digital
converter readings to be taken and stored at specified
intervals, while the computer is being used for some
ether purpose. The program uses event number 5: the
interval timer zero crossing event. The interval timer
is a set of five bytes which can be set up by the user
and, if the event is enabled, the value stored in these
bytes is incremented every centisecond. The event is
generated when the value reaches zero so, to generate a
one second delay the timer should be set to one second
before ze~o: to -100 centiseconds. To set the timer
going, the required five-byte value (in this case
&FFFFFFFF9C or -100) must be /written/ to it. This is
done using /OSWORO/ with A 4 and the X and Y
registers pointing to the first of the five bytes where
the required value is stored - see User Guide, page
460. Note that this gives only a single interval, so
if a continuous series of events is required the timer
must be rewritten after each event (see lines 270-300).

Incidentally, to find the required values of the five
bytes use PRINT - -T where T is the interval
required, in centiseconds. This will give you only
the least significant four bytes - the most significant
byte will be &FF (see lines 600-630).

Listing "EVENTAD"

100 REM "******************
110 REM "*** EVENTAO ***
120 REM "*** ***
130 REM "*** Read AOVALl***
140 REM "*** At ***
150 REM "*** Specified ***
160 REM "*** Intervals ***
170 REM "*** ***
180 REM "******************
190 *FX13,5
200 oswrch=&FFEE:osword=&FFFl:osbyte=&FFF4
210 base=&70
220 FOR pass=O TO 2 STEP 2

156 A Science Teacher's Companion to the BBC Microcomputer

230 P%=&AOO
240 [OPT pass
250 \ Save all registers
260 PHP:PHA:TXA:PHA:TYA:PHA
270 LDX *time MOD 256
280 LDY *time DIV 256
290 LDA *4
300 JSR osword \ Reset interval timer
310 .getadval
320 LDA count
330 BEQ end
340 DEC count
350 LDA *&80
360 LDX *1
370 JSR osbyte \ Read Adval(l)
380 TYA:PHA \ Save high byte
390 LDY *0
400 TXA \ Put low byte in Acc.
410 STA (base),Y \ Store low byte
420 INC base
430 PLA \ Put high byte in Acc.
440 STA (base),Y \ Store high byte
450 INC base
460 .end
470 \ Restore registers
480 PLA:TAY:PLA:TAX:PLA:PLP
490 RTS
500]
510 time=P%
520 P%=P%+5
530 count=P%
540 NEXT pass
550 REM "* Point to &COO where data
560 REM "* will be stored NB NO USER
570 R~M "* DEFINED CHAR'S PLEASE!!
580 ?base=O
590 ?(base+l)=&OC
600 INPUT "Interval between readings (seconds) "S
610 REM "Set timer to -lOO*S centiseconds
620 !time=-S*lOO
630 ?(time+4)=&FF
640 ?count=128:REM "Max number of 16-bit readings
650 REM "* Set up event vector:EVNTV
660 1&220=0
670 ?&221=&OA
680 CALL &AOO:REM "Start timer & take 1st ADC readi

ng
690 *FX14,5

Once the program has been RUN and the time interval
input as requested, the BASIC program can be deleted
and a new, completely different program may be typed in
or loaded. The event-handling machine code routine has
been assembled into a relatively 'safe' location from
&AOO and the ADVAL readings are stored in page twelve
(addresses &COO to &CFF). Since the latter is the
user-defined character memory area, clearly one cannot
define characters without overwriting some of the
stored ADC values. The program will, however, continue
to take and store readings until the allocated space is
full, regardless of what other program is running. Do
not press BREAK as this resets the event vector to its
normal or 'default' value, so disabling the routine.
You must also avoid using zero page locations &70 and
&71 as these are used by the event handling routine to
tell it where to store the readings. The simplest way

Control and Measurement - Interfacing 157

to stop the routine is to disable the event using
*FX13,5. To start it up again type CALL &AOO <RETURN>,
*FX14,5 <RETURN>.

possible Modifications to ftEVENTAD"
1. Relocating the program. Change line 230, so that

P% is set to the new start address, and alter lines
660 and 670, so that &220,&221 point to the low and
high bytes, respectively, of this new start
address. For example, if you wanted to relocate
the program at &000 the relevant lines would become

230 P%=&OOO
660 ?&220=0
670 ?&22l=&0
680 CALL &000

2. Squeezing in more readings. Without major changes
to the program, you can store up to 256 readings if
you are prepared to settle for the slightly reduced
accuracy of 8-bit resolution. This is achieved by
storing only the high byte of the l6-bit (two-byte)
AOC value. Simply delete lines 400-420 and change
line 640 to

640 ?count=255:REM Max number of 8-bit readings

before running the program.

3. Relocating the data storage area. If you want to
use the user-defined character facility while
"EVENTAO" is running you will have to store the
data elsewhere. Try the user key buffer (&BOO to
&BFF) or, if the keys are in use, you could lower
HIMEM and store the data between HIMEM and the
start of screen memory - use HIMEM HIMEM-&lOO.
(Screen memory starts at the old HIMEM value.) In
either case you must alter lines 580,590 so that
'base' and 'base+l' point to the low/high bytes of
your new storage area.

4. Adding a beep each time that a reading is taken.
This is not recommended for short intervals! Just
add a new line

345 LOA #7:JSR oswrch

Spend some time studying and experimenting with this
program as it forms the basis of a very powerful and
useful technique whereby the micro can carry out
several independent tasks, apparently at the same time.
For example, as I am typing this text into the computer

158 A Science Teacher's Companion to the BBC Microcomputer

using a word processor, "EVENTAD" continues to record
the temperature of the room, every five minutes, using
a simple temperature sensor circuit. (See the next
section for further sensor details and a listing of
"ADP": a general purpose Analogue Display Program based
on "EVENTAD".)

ANALOGUE PORT

The analogue input port enables the computer to be
interfaced to the real world in which quantities do not
have precise values, unlike those that the computer is
normally dealing with. Instead we may wish to process
such quantities as the potential difference across the
plates of a capacitor, the temperature of a liquid, the

Analogue input
(0-1.8 V)

;... ----
=- --
:- ---!"'" -

ADC =- -- -- - 'Black-box' -- --- -- L"\

-- --- --- -

12 digital output lines
(numeric value 0-4096)

Figure 3.7 Analogue to digital converter

pH of a chemical reagent and other similar analogue
quantities. This term probably originated with the
earlier analogue computers in which the numerical
values of physical quantities such as velocity and
acceleration were represented by analogous voltages.
In the context of the analogue input port we understand
the term to mean a voltage that can have any value
within a specified range (0 to 1.8 V in the case of the
BBC micro). The function of the analogue-to-digital
converter (ADC) is to represent this continuous range
of voltage values as a corresponding, but necessarily
discontinuous, range of numeric (~digital~) values.
The ADC, in its simplest form, will thus consist of an
input terminal, to which the analogue voltage is
connected, and a number of output lines upon which the
numeric representation of the voltage will appear, in
binary form. The BBC micro~s ADC is said to have

Control and Measurement - Interfacing 159

12-bit accuracy: it converts the analogue input to a
12-bit binary number. Thus there are 12 output wires
emerging from the device (see figure 3.7) and the logic
state (0 or 1) of each of the wires is read by the
computer and interpreted as a binary number. This
number will range from 0000 0000 0000 (0 decimal), when
the input voltage is a v, to 1111 1111 1111 (4095
decimal) corresponding to an input equal to the
computer's reference voltage, about 1.8 V. Thus the
resolution (the smallest change in input voltage that
will produce a change in the digital output) is
approximately 1.8 V/4096 or about 0.4 mV.

,L\OVAL

65520

'lr-ef
..

Input
voltage, \lin

Note: ~n == ADVAL * 'lr-ef/65520 (65520 = 16 * (212_1))

Figure 3.8 ADVAL versus input voltage

In practice problems with screening, hum and noise
mean that the value of the input voltage is unlikely to
be known to this degree of accuracy. The best we can
rely on would be about la-bit accuracy, giving a
voltage resolution around 1.8 V/I024 or about 1.8 mV.
Another point that should be noted at this stage is

160 A Science Teacher's Companion to the BBC Microcomputer

that Acorn, with their customary thoroughness, have
allowed for the fact that superior ADCs may become
available at a later date, so the software in the BBC
is designed to accommodate a l6-bit device. Thus the
value returned by the 'ADVAL' function, which reads the
ADC output, is 'scaled up' by a factor of 2 A4=16. The
numeric values given by ADVAL will therefore range from
o to 65520 rather than the basic 0 to 4095 range of the
present l2-bit converter. The ADVAL function will thus
increase in 'jumps' of 16 over the specified range as
the input voltage increases from zero to the reference
voltage. Figure 3.8 illustrates the relationship
between analogue input and digital output.

The ADC chip used in the BBC computer (a uPD 7002)
provides for four analogue inputs which it selects and
converts in turn. As each conversion is completed the
ADC informs the computer which then stores the result
in the memory where it can be accessed from BASIC using
the ADVAL function. The input required is specified by
the number in brackets following the keyword: PRINT
ADVAL(2) would return the value of channel 2, for
example. Each channel takes about 10 ms to convert, so
a full 40 ms is required to convert all four channels.
(A point worth mentioning here is that the channels as
referred to by the ADVAL function are numbered 1 to 4,
but they are numbered 0 to 3 in the connection diagrams
given in the User Guide (pages 499 and 505). Thus
ADVAL(I) returns the value of CHO, not the value of CHI

a simple point but one that could cause some head
scratching if you are not aware of it!) The value
given by ADVAL is the most recently stored value, so it
could be up to 40 ms 'old'. If speed of conversion is
critical you can use *FX16 to select a smaller number
of channels for conversion. For example, *FX16,1 will
cause channel 1 to be the only one converted, thus
giving an updated value every 10 ms. *FX16,2 would
give readings from channels 1 and 2, and *FX16,4
returns things to normal again.

Sampling theory suggests that one must use a
sampling frequency at least twice that of the highest
frequency component in the input signal. Thus, with
only one channel enabled, we are sampling at 100 Hz
(one sample every In ms), so the highest frequency
sinusoidal signal that would be converted with
reasonable accuracy would be one of 50 Hz. Other
waveforms, such as triangle waves or square waves,
contain harmonics at higher frequencies, so the
fundamental frequency limit would be well below 50Hz.
The unfortunate conclusion is that the Beeb and its
analogue port are not the answer to our prayers for a
fast storage scope unless we are prepared to build a

Control and Measurement - Interfacing 161

faster AOC, possibly linked to the 1 MHz bus, but
that's another story! The existing system is quite
adequate for a wide range of applications, provided
that we bear in mind the limitations that I have
discussed.

Aside from its use with games paddles and joysticks,
the principal applications of the analogue port are
concerned with the monitoring of output voltages from
transducers. In general terms, a transducer is any
device that converts one form of energy to another. I
shall use the term to mean a sensor that produces a
varying voltage output in response to a change in some
physical quantity such as light intensity, temperature,
gas pressure and so on. Thus by connecting such a
sensor to one of the analogue inputs, we can use the
computer to monitor the corresponding physical
quantity. The output of some sensors may require
conditioning, for example by amplifying or attenuating,
to make them suitable for inputting to the analogue
converter. Other sensors, for example the strain
gauge, may operate by producing a change in their
resistance, rather than a voltage output. These will
require a simple interface circuit to convert the
resistance change to a corresponding voltage change.

Some Experiments with the Analogue Port
We will need to make up a lead to link the analogue
input connector to our experimental circuits. The
computer end requires a sub-miniature IS-way '0' plug
(RS part number 466-185). Most of the experiments will
utilise the CHO input, read by ADVAL(l), and we will
also require 'analogue ground' and 'Vref' connections.
The '0' plug pin numbers for these connections and
those for the other input channels are given in table
3.5.

Table 3.5 Analogue Connector Details

'0' plug
pin number

1
5,8

11,14
15

7
12

4

Function

+5V
Analogue Gnd
Vref (+1.8V)
Input 1 (CHO)
Input 2 (CHI)
Input 3 (CH2)
Input 4 (CH3)

Although there is a +5V supply available from the
analogue port, we shall normally power our experimental

162 A Science Teacher's Companion to the SSC Microcomputer

circuits from the +1.8V Vref supply. This will ensure
that we cannot exceed the permissible input voltage
range. To complete the analogue lead, solder suitable
lengths of stranded, insulated wire to the 'D' plug,
pins 5, 11 and 15. Use a different colour of wire for
each or identify the leads in some other way. Now
twist the three wires together - this will help to
reduce the pick-up of hum and noise. Strip and tin the
free end of each wire so ,that they can be inserted into
the breadboard. Now prepare a 10K linear variable
resistor or 'pot' by soldering 10 cm lengths of
single-core insulated wire to the three tags, as shown
in figure 3.9.

Bush and shaft

'Pot' body

-----Solder tags

2 3

Figure 3.9 Variable resistor ('pot') connections

10K
linear

3
2

(11)

(15)

\.{ef (+1.8 V)

CHO (Input)

(5)
Analogue ground

Figure 3.10 Voltage divider circuit

Insert the three pot wires into holes Bl, B2 and B3
on the breadboard and then connect the three wires of
the analogue lead as follows:

Wire from pin 5 (Analogue gnd) to hole Fl (potl)
Wire from pin 11 (Vref) to hole F3 (pot3)
Wire from pin 15 (CHO input) to hole F2 (pot2)

Control and Measurement - Interfacing 163

This will set up the simple voltage divider circuit
shown in figure 3.10, which is the basis for all games
paddle and joystick circuits.

To test the circuit, plug the lead into the 'Analogue
In' socket at the back of the computer. Turn the pot
fully anticlockwise and switch the computer on,
ensuring that everything is normal. Type in and run
the following short program:

10 REPEAT
20 PRINT ADVAL(l)
30 UNTIL FALSE

You should see a series of zeros printed on the
screen, and rotating the pot knob clockwise should
cause a gradual increase in the number printed. In
practice the lowest number will not be quite zero and
there will be some fluctuation in the values printed.
This is the effect of noise being picked up by the
wires and fed to the input along with the desired
voltage. However, with the control fully clockwise,
you should see a value of around 65520 being printed.
At this stage you could perform a simple calibration of
this input by connecting an accurate high-resistance
voltmeter between 'potl' and 'pot2'. Adjust the pot to
give a reading of 1.0 V and note the value printed on
the screen. This value will allow you to work out a
conversion factor to transform ADVAL 'units' to volts.
For example, if a 1.0 V input gives a digital value of
35168 then the conversion factor is 1/35168 and the
function

10000 DEF FNvolts(chan%)=ADVAL(chan%)/35168

(chan% is the analogue channel number: 1 to 4)
will return a result in volts.

The listing of "DVM_I" provided uses 'FNvolts' and
gives a double height teletext display of the measured
voltage. This simple program could easily be expanded
to, for example, provide a 4-channel digital voltmeter
with as many special features, such as a 'peak hold'
facility, as you care to program into it. If you
require a really large display you could add the large
characters procedure from chapter 5. Spend some time
experimenting with this simple circuit and the program
because much of what you learn from them will prove
very useful later.

164 A Science Teacher's Companion to the BBC Microcomputer

Listing "DVM I"

10 REM "***********************
20 REM "*** DVM 1 ***
30 REM "*** 0-1.8V INTO CHO ***
40 REM "***********************
50 MODE 7
60 VDU 23;8202;0;0;0;
70 @%=&20209
80 PRINT TAB(0,10)iCHR$ 141iTAB(0,11)CHR$ 141
90 REPEAT

100 VOLTAGE=FNvolts(l)
110 PRINT TAB(18,10)iVOLTAGE
120 PRINT TAB(18,11);VOLTAGE
130 UNTIL FALSE
140 DEF FNvolts(chan%)=ADVAL (chan%)/35232

A simple light sensor circuit can be constructed by
adding a light-dependent resistor (LOR) such as the
ORP12 (RS number 305-620). The circuit is shown in
figure 3.11. The figures given in square boxes are
suggested breadboard connections. Adjustment of the
pot will provide some degree of control over the range
of voltages produced by the circuit, for a given change
in light level.

ORP12
LDR

---~------_r---u Analogue ground (5)

___--------......--0 CHO (15)

r--o----------.....----o ~ef (11)

Note: Other sensorsthat operate by resistance change can be
connected in place of the LDR in this circuit.

Figure 3.11 Light sensor circuit

The LDR is a good example of a device in which the
response is in the form of a resistance change. You

Control and Measurement - Interfacing 165

can see how the simple voltage divider circuit is used
to convert the resistance change into a voltage change.
As the light level rises, the LOR/s resistance falls
and the circuit produces a rising voltage. The short
program /ALARM/ shows how the light sensor output can
be linked to a simple /burglar alarm' circuit. As
written, the alarm goes off if the light level falling
on the sensor decreases: the burglar breaks the light
beam. The action can be reversed (the alarm sounds if
the light level rises) in one of two ways. These could
be referred to as the 'hardware approach/ and the
/software approach'. These would entail interchanging
the positions of the LOR and pot in the circuit or
altering the program logic by changing the /(/ sign to
a /)/ sign in line 70, respectively.

Listing "ALARM"

10 REM "**********************
20 REM "*** LIGHT OPERATED ***
30 REM "*** ALARM ***
40 REM "**********************
50 ENVELOPE 1,1,4,-4,0,10,10,0,127,0,0,-4,127,127
60 REPEAT
70 IF ADVAL (1)/64<500 THEN SOUND 1,1,200,10
80 UNTIL FALSE

A somewhat more practical program using the light
sensor circuit is "STOPWATCH". This is a timer program
that can be triggered by a decrease in the voltage
input to analogue channel CHO or by a high logic level
on user port line B7. These options are selectable at
the start of the program. The time is displayed in
double-height digits and the watch stops if the
triggering signal is removed or if the time limit
(about 20 seconds) is reached or if you press (RETURN).
The latter two conditions allow you to escape from the
timing loop in an orderly fashion in case of beam
misalignment or other equipment failures. The value of
M% in line 170 sets the time limit and can easily be
changed to a larger value if desired. It is intended
that the program will be used to time an object moving
through a light beam that is falling on the sensor. If
you wish, you could add a simple routine to calculate
the velocity of the object, given its length (also see
"MCTIMER" and "MCTPENO" in chapter 5).

Listing "STOPWATCH"

10 REM "* 'STOPWATCH' *
20 REM "* CONNECT P_CELL *
30 REM "* TO A/D CHO *
40 REM "* OR SWITCH TO *
50 REM "* USER PORT B7 *
60 ?&FE62=63:REM "B6-B7 AS INPUTS
70 ON ERROR @%=10:END
80 MODE 7

166 A Science Teacher's Companion to the BBC Microcomputer

90 PRINT CHR$ 141iTAB(15)i"STOPWATCH"
100 PRINT CHR$ 141iTAB(lS)i"STOP~vATCH"

110 VDU 23;8202;0;0;0;
120 PRINT TAB(S,10);"Trigger off User Port U"
130 PRINT TAB(5,14);"Trigger off Analogue Port A"
140 REPEAT A$=GET$:IF A$<>"U" AND A$<>"A" THEN

VDU 7:UNTIL A$="U" OR A$="A"
150 IF A$="U" THEN U=l:A=O ELSE U=O:A=1
160 @%=&20209
170 M%=2003
180 CLS
190 PRINT TAB(5,5);"PRESS SPACE BAR WHEN READY"
200 REPEAT
210 *FXlS,O
220 REPEAT UNTIL GET$ =" "
230 CLS
240 PRINT TAB(17,5);"READY"
250 PRINT TAB(0,10);CHR$ 141;TAB(0,11);CHR$ 141
260 PRINT TAB(21,10);"s";TAB(21,11);"s"
270 PROCprint(O)
280 REPEAT
290 UNTIL FNX<300:TIt-1E =O:PRINT TAB(17,5);"
300 REPEAT :PROCprint(TIME /100):UNTIL FNX>300

OR TIME >=M% OR INKEY (-74)
310 PRINT TAB(5,5)"PRESS SPACE BAR FOR NEXT RESULT";

TAB(10,7);"OR 'ESCAPE' TO END"
320 TIME =0
330 UNTIL FALSE
340 DEF FNX=A*ADVAL (l)/100+U*(350-(?&FE60 AND 128)*3)
350 DEF PROCprint(time)
360 PRINT TAB(17,10);time
370 PRINT TAB(17,11);time
380 ENDPROC

In practice, the LOR~s speed of response is rather
too slow to accurately measure the transit time of a
fast-moving object. A better device for this
application is the silicon photodiode or
phototransistor. These can both be operated in a
linear mode in which the current flowing through the
device is proportional to the incident light intensity,
but in this application we are interested in the
switching mode. The circuit shown in figure 3.12 uses
a phototransistor (Maplin order number QF30H) to
provide a high/low logic level to a user port input
line for dark/bright incident light conditions, and
this will change state much more quickly than the LOR
circuit given earlier. ~Pot ~ R2 is the sensitivity
control and should be adjusted to give the largest
change in output voltage with the transistor
illuminated and in the dark.

There is a very wide range of other sensors
available and table 3.6 lists some of these. Those
that respond by change of resistance can be connected
using a circuit similar to that in figure 3.11.
Sensors that generate a voltage or pulse output may
either need amplifying or attenuating check the
output specifications. Always test the proposed sensor
circuit over the desired range of measurement, using a
high-resistance voltmeter, before connecting to the
computer. This will ensure that no out-of-range
voltages are applied to the ADC.

SENSOR
TYPE

(note 1)

Control and Measurement - Interfacing

Table 3.6 Sensor Details
QUANTITY OUTPUT

SENSED

167

Magnetic
pick up

Platinum film
detector

min. bead
thermistor

Ultrasonic
transducers

Gas sensor

Pressure
transducer

Flow sensor

Strain gauge

Notes:

Motion of
ferrous object

Temperature
change

Temperature
change

Distance,
obstacles etc.

Methane,butane,
natural gas etc.

Fluid pressure

Liquid flow rate

Mechanical
strain

10 V pk-pk
(Note 2)

Resistance
(100 ohm @ OC,
ptc=0.385 ohm/deg)
(Note 3)
Res. change
(2k\20 deg C,
100R\150 deg)

40 kHz ultrasound

40-50 mV/2000 ppm
isobutane

6.67 mV per 1 psi

TTL:
24 Hz\lO litres/h
52 Hz\20 litres/h

Res. change:
used in bridge
circuit

(1) All sensors mentioned are available from RS
components. See Appendix B for a list
of suppliers~ addresses.

(2) Interfaces directly with RS tacho integrated
circuit (302-047) to give an output
voltage proportional to frequency.

(3) ~ptc~ means ~positive temperature
coefficient/; that is, the resistance of
the device rises with increasing
temperature by the amount stated.

Temperature Measurement
There are many devices now available for the
measurement of temperature. Some, such as the
thermistor (for example, RS 151-029 - see table 3.6)

168 A Science Teacher's Companion to the BBC Microcomputer

+5 V

R2
100K

B (not connected)

E~C

To port (for example, 87)

BPX25

--------~0 V

Figure 3.12 Phototransistor interface

r-------~+5 V (1)

Sensor

Sensor connections

fO\Case
+~
Pin View

__-------_~Analogue
input 1 (15)

R2
1K

oV (5)

Notes: 1. The two wires to the sensor should be twisted
tightly together to form a 'twisted pair'.

2. The numbers in brackets are pin numbers for
the analogue connector.

3. Measure the sensor temperature using a reference
instrument or place in a bath at known temperature
(such as in pure melting ice) and adjust R1 to give
the required voltage output per Kelvin - see text for details.

Figure 3.13 Semiconductor temperature sensor circuit

Control and Measurement - Interfacing 169

have a resistance that changes with temperature. They
can thus be interfaced in a similar manner to the LOR
and you may like to experiment with the circuit of
figure 3.11 by replacing the LOR with the specified
thermistor. One disadvantage of thermistor devices is
that they are inherently non-linear: the resistance
changes exponentially with temperature. (It can be
shown that the resistance of the thermistor at a
temperature of t Kelvin is given by

R = A exp(B/t)
t

where A and B are constants that depend on the
thermistor used normally taken into account during
the calibration of the circuit which is done using a
known reference instrument.)

A much more convenient device for temperature
measurement purposes is the 590 kH semiconductor
temperature sensor, available from RS as part number
308-809. This device produces an output current which
is proportional to the absolute temperature and can be
used at temperatures ranging between -55 and +150
degrees C. Provided that it is operated by a supply
voltage in the range +4 V to +30 V, it will produce a
nominal 1 uA/Kelvin. Thus at room temperature (25
degrees C or 298 K) it will give 298 uA. This linear
characteristic greatly simplifies both the circuitry
and the software. The RS data sheet (number 3992, July
1983) gives a number of circuits that enable the
ultimate accuracy to be obtained but I will offer a
simple circuit which should be adequate for most
purposes (see figure 3.13).
The current sourced by the sensor flows through the
preset (Rl) and lK resistor (R2) and develops a
potential difference across them. Since the input
impedance of the analogue input is very high, this
potential difference is simply Vin=I(Rl+R2). Since I
is proportional to T, the absolute temperature, then
Vin is clearly also proportional to T. The constant of
proportionality is k = (Rl+R2) and this can be adjusted
by altering Rl. For example, if Rl is set to minimum
resistance, then

V.
l.n

I.k
I.R2 when Rl
1.1000

o

But I = 1 uA/K, so V. = (1 uA/K).lOOO = 1 mV/K.
l.n

In other words, the voltage at the analogue input
will rise by 1 mV for each degree rise in temperature.

170 A Science Teacher's Companion to the BBC Microcomputer

This is rather small, bearing in mind the earlier
comments relating to hum and noise on the ADC input, so
it would be difficult to measure temperatures to within
1 degree. The simple solution is to increase the
resistance value, giving a larger constant k, but there
are a couple of other points to be borne in mind.

You must use a sufficiently high supply voltage (Vs)
to enable the desired current to flow in the
resistance. To maintain the minimum of +4 V across the
sensor we cannot have more than 1 V across the
resistance (unless a higher supply voltage is used).
It can be shown that (Vs - I.k) > = 4 V.

As an example, with Vs 5 V and for a maximum
temperature of 393 K (120 degrees C), we could have a
resistance of about 2.5 Kohms giving 2.5 mV/K which
should be resolvable. If you are prepared to use a
separate, higher-voltage, sensor supply you could
increase the resistance further but remember the
maximum input to the ADC is 1.8 V. This sets a limit

6on the value of k of 1.8 x 10 /Tmax where Tmax is the
desired maximum temperature, in Kelvin. Thus, for Tmax
= 398 K, the value of k is about 4.5 Kohms, which gives
4.5 mV/K.

If you intend to use the sensor to measure liquid
temperatures, it will be necessary to somehow
encapsulate the connections to prevent the conductivity
of the liquid from affecting the current in the
circuit. I would recommend the use of. silicone rubber
compound around the sensor pins. Incidentally, if you
simply omit the sensor from the circuit and immerse the
bare ends of the wires to which it was connected, you
will find you have a cheap conductivity meter (if you
ignore the cost of the computerl). It could be worth
experimenting with this idea, perhaps for titrations,
though better electrodes would probably be necessary to
enable repeatable measurements to be made.

Listed here are two programs for use with the 590 kH
sensor. The first ("THERMO") is a simple digital
thermometer with the choice of either a Kelvin or a
Celsius display. The second program ("TEMPCON")
enables a temperature to be maintained between two set
points, input by the user. The computer will turn on
user port line BO if the temperature falls below the
minimum and will switch the line low if the temperature
rises above the maximum. Thus a low-voltage heater
could be interfaced using the relay circuit shown
earlier. The program can also be used to demonstrate
the principle without an actual heater since it
displays the on/off status on-screen.

REM "Program: THERMO
REM "Started: 27/5/84
REM "Version: 1.0
REM "Subject: General
REM "Topic Digital thermometer
REM "Level ALL
REM "Author : P.O. Hawthorne

Control and Measurement - Interfacing

Listing "THERMO"

10
20
30
40
50
60
70
80
90 ON ERROR @%=10:MODE 7:END

100
110 MODE 7
120 @%=&2010A
130 PRINT TAB(4,12);"Celsius or Kelvin (C or K)?";
140
150 REPEAT :A$=GET$:UNTIL A$="C" OR A$="K"
160 VDU 23,1,0;0;0;0;
170 CLS
180
190 one vo1t=35168:REM "ADVAL calibration
200 R=2500:REM "R=Rl+R2 See Fig 3.13
210
220 VDU 31,12,10,134,141:PRINT "TEMPERATURE"
230 VDU 31,12,11,134,141:PRINT "TEMPERATURE"
240
250 REPEAT
260 IF A$="C" THEN PROCdisp1ay(FNCe1sius,"C")

ELSE PROCdisplay(FNKelvin,"K")
270 UNTIL FALSE
280
290 END
300
310
320 DEF PROCdisp1ay(va1ue,unit$)
330 VDU 31,15,12,141:PRINT ;va1ue;" ";unit$;SPC 5
340 VDU 31,15,13,141:PRINT ;value;" ";unit$;SPC 5
350 ENDPROC
360
370 DEF FNCelsius=FNKelvin-273
380
390 DEF FNKe1vin
400 Vin=ADVAL (l)/one volt:REM "Input pd
410 I=Vin/R:REM "Calculate current
420 T=I*lE6:REM "Convert to uA (luA/K)
430 =T

Listing "TEMPCON"

10 REM "Program: TEMPCON
20 REM "Started: 28/5/84
30 REM "Version: 1.0
40 REM "Subject: General
50 REM "Topic Temp. Controller
60 REM "Level : ALL
70 REM "Author : P.O. Hawthorne
80
90 ON ERROR @%=10:MODE 7:?&FE60=0:END

100
110 aoos 7
120 @%=&2010A
130
140 CLS
150 INPUT TAB(4,12)"Lower set point " ,min
160
170 REPEAT
180 PRINT TAB(4,14)"Upper set point ";SPC 10;
190 INPUT TAB(20,14),max
200 IF max<=min THEN SOUND 1,-15,20,2
210 UNTIL max>min
220
230 VDU 23,1,0;0;0;0;
240 CLS
250

171

172 A Science Teacher's Companion to the BBC Microcomputer

260 one volt=35168:REM "ADVAL calibration
270 R=2~00:REM "R=Rl+R2 (See Fig 3.13)
280 PROCdbl(CHR$ 132+"MIN SET POINT "+STR$ (min)+

" C",2)
290 PROCdbl(CHR$ 129+"MAX SET POINT "+STR$ (max)+

" C",4)
300 PROCdbl(CHR$ 134+"TEMPERATURE",10)
310 PROCdbl(CHR$ 131+"HEATER",18)
320
330 REPEAT
331 temperature=FNCelsius
340 PROCdisplay(temperature,"C")
350 IF temperature<min THEN ?&FE60=I:PROCdbl(CHR$ 129+

"ON ",20)
360 IF temperature>max THEN ?&FE60=0:PROCdbl(CHR$ 130+

"OFF",20)
370 TIME =0
380 REPEAT UNTIL TIME >100
390 UNTIL FALSE
400
410 END
420
430
440 DEF PROCdisplay(value,unit$)
450 VDU 31,16,12,141:PRINT ;value;" ";unit$;SPC 5
460 VDU 31,16,13,141:PRINT ;value;" ";unit$;SPC 5
470 ENDPROC
480
490 DEF PROCdbl(text$,line%)
500 L%=LEN (text$)
510 VDU 31,19-L%/2,line%,141:PRINT textS;
520 VDU 31,19-L%/2,line%+1,141:PRINT textS;
530 ENDPROC
540

10000
10010 DEF FNCelsius
10020 Vin=ADVAL (l)/one volt:REM "Input pd
10030 I=Vin/R:REM "Calc~late current
10040 T=I*IE6:REM "Convert to uA (luA/K)
10050 =T-273

With the large characters procedure from chapter 5
added, these programs could form a useful class
demonstration thermometer. The sensor could also be
used to produce cooling curve graphs, perhaps using the
"ADP" program listed in this chapter. Specific heat
capacities could be measured by having the computer
switch the heater on for a pre-determined time and then
measure the resulting temperature rise. This could
possibly be done with a wider range of materials than
usual, after pupils have performed one or two
measurements themselves.

Capacitor Discharge
Many simple electrical experiments will not require the
use of a sensor, instead the computer will be acting
merely as a voltmeter, though one with a certain
amount of 'intelligence'. This can be put to good use,
as illustrated by the next program: "CAPACITOR". In
this program the computer measures the voltage across
the plates of a capacitor as it charges or discharges
through a resistor, and displays the resulting
voltage/time graph. It can also be used for other

Control and Measurement - Interfacing 173

low-frequency CRO applications, though "ADP" may prove
more useful in general cases as it provides a variable
'timebase' control. Suitable values for the capacitor
experiment are CIaO uF,R = 2.2 k, though you can
vary these to show the effect of different CR time
constants (see figure 3.14).

'Flying lead'

\/'-ef
'A'

R (2.2K)

CHO 0--........__---..

+

I
e (200 IJF)

Analogue 0--------- 0 '8'
ground

Note: Connect flying lead to point'A' to charge the
capacitor or to point '8' to discharge.

Figure 3.14 Circuit diagram for "CAPACITOR"

The intelligent part of the program is the 'Auto
start' option which can be selected when the program is
first run. While in this operating mode the computer
will remain in a REPEAT loop, checking the capacitor
voltage until it detects a significant change in the
measured value. Only then will it start to plot the
results. This routine should prove useful in a number
of experiments where there may be a relatively long
period of inactivity followed by a sudden change. The
variable 'dt' sets the time interval over which the
voltage is checked for variation. The value of this
variable and that of 'significant' which sets the
change needed to begin plotting can be varied to suit
individual circumstances. Obviously a long interval
will help to detect relatively slow changes but a short
interval is needed when it is expected that the voltage
will change rapidly.

174 A Science Teacher's Companion to the SSC Microcomputer

Listing "CAPACITOR"

10 REM "** CAPACITOR **
20 REM "** (c) PDH 1984 **
30
40 REM "* Input to CHO (ADVALl) *
50
60 ON ERROR RUN
70 *K.I0 OLDIM
80
90 MODE 7

100
110 PRINT TAB(5,12)"Auto or Keyboard start (A/K) ?";
120 REPEAT
130 start%=INSTR("AaKk",GET$
140 UNTIL start%
150
160 significant=O.l
170 dt=.05
180 Vscale=300
190
200 MODE 4
210 VDU 23;8202;0;0;0;
220 VDU 19,0,4,0,0,0
230
240 PROCaxes
250 VDU 24,4;4;1050;750;
260
270 REPEAT :REM "** Main Loop **
280
290 IF start%>2 THEN 450 :REM "* Kbd. start **
300
310
320 REM "Wait for sig. change in voltage
330 REPEAT
340
350 voltagel=FNvolts(l)
360 PROCpause(dt)
370 voltage2=FNvolts(1)
380 difference=ABS (voltage2-voltagel)
390
400 UNTIL difference>significant
410
420 SOUND 1,-15,150,2
430 GOTO 500
440
450 PRINT TAB(5,30)"PRESS ANY KEY WHEN YOU ARE READY"
460 A=GET
470 PRINT TAB(5,30);SPC (32)
480
490 REM "** plot pd/time graph **
500 MOVE O,FNvolts(l)*Vscale
510 FOR t%=4 TO 1279 STEP 4
520 DRAW t%,FNvolts(l)*Vscale
530 NEXT t%
540 REM "** End of plotting **
550
560 PRINT TAB(12,30)"Clear the screen ?"
570 A$=GET$
580 IF A$="Y" OR A$="y" THEN CLG
590 PRINT TAB(12,30);SPC (20)
600
610 UNTIL FALSE
620
630 END
640
650
660
670 DEF FNvolts(chan%)=ADVAL (chan%)/35168
680
690 DEF PROCpause(secs)
700 LOCAL time
710 time=TIME
720 REPEAT UNTIL TIME >=time+secs*100
730 ENDPROC
740

Control and Measurement - Interfacing

750 DEF PROCaxes
760 VDU 5
770 VDU 29,200;250;
780 MOVE O,O:DRAW 1080,0
790 HOVE 800,-70:PRINT "Time"
800 MOVE O,O:DRAW 0,800
810 MOVE -140,730:PRINT "p.d."
820 FOR X%=O TO 1000 STEP 250
830 MOVE X%,-lO:DRAW X%,lO
840 MOVE X%,-20:PRINT STR$ (X%/500)
850 NEXT X%
860 FOR Y%=O TO 1000 STEP 100
870 MOVE -10,Y%/1.5:DRAW 10,Y%/1.5
880 MOVE -120,Y%/1.5:PRINT STR$ (Y%/500)
890 NEXT Y%
900 VDU 4
910 ENDPROC

175

Analogue Display Program ("ADp l
)

This program can be used for the general purpose
display of almost any analogue quantity. It combines a
number of routines from various parts of this book,
including "EVENTAD", "LARGECH" from chapter 5 and some
of the data-filing routines of chapter 4. The main
menu offers the option of a 'display' mode and a
'record' mode, using "EVENTAD", to enable readings to
be taken automatically and stored. They can then be
displayed and/or saved onto tape or disk for later
analysis. Because the record mode operates using
interrupts, it is possible to display data from a
second channel while recording from channel 1 or even
to run an entirely different program - see the note on
"EVENTAD" for the restrictions on this. ('Record'
always uses channel 1 but the real-time mode offers a
choice of any of the four channels.) In either case
you may select the time interval between readings and
this may range from less than one second to several
hours. In 'record' mode the memory can store 128
readings.

There are three types of display available from the
display options menu: large digital readout, graph and
tabular, the latter with an option of a hard copy if a
printer is available. All three modes can be used to
display either new (real-time) data or previously
recorded data. In the latter case the hard copy option
allows results to be given to pupils so they can draw
their own graphs and then the graph option can be used
to compare these with the Beeb's version.

To summarise, the program provides the facilities
both of a low-frequency oscilloscope with automatic
data capture and storage facilities, in short-term
memory and on magnetic media, and of a versatile
digital demonstration meter.

REM "*******************
REM "*** ADP ***
REM "*** ***
REM "*** ANALOGUE ***
REM "*** DISPLAY ***
REM "*** PROGRAM ***
REM "*** ***
REM "*** Vers 1.0 ***
REM "*** ***
REI., "*** 28.03.84 ***
REM "*** ***
REM "*** (C) PDH ***
REM "*******************

ON ERROR VDU 3:CLOSE #O:END

old data=FALSE
PROCevent assem
PROCassemble- lchar

176 A Science Teacher's Companion to the BBC Microcomputer

Listing "ADP"

10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200
210 REPEAT
220 MODE 7
230 display option=O
240 choice=FNmenu
250 IF choice=l THEN PROCrecord
260 IF choice=2 THEN display option=FNdisplay menu
270 IF choice=3 THEN PROCsave -
280 IF choice=4 THEN PROCload
290 IF display option=l AND old data THEN PROCreplay(l

,0) ELSE IF display option=I THEN PROCdisplay new
data(l,O) - - -

300 IF display option=2 THEN MODE 4:VDU 19;4;0;0;
310 IF display-option=2 AND old data THEN PROCreplay(O

,1) ELSE IF display option=2 THEN PROCdisplay new
data (0,1) - - -

320 IF display option=3 THEN PROCdump(old_data)
330 UNTIL FALSE
340
350 END
360
370
380 DEF FNmenu
390 LOCAL choice
400 CLS
410 VDU 132,157,131,141:PRINT TAB(4);"Analogue Display

Program"
420 VDU 132,157,131,141:PRINT TAB(4);"Analogue Display

Program"
430 PRINT """PRESS:"
440 PRINT """"R to record data in memory."
450 PRINT '"D to display data."
460 PRINT ""S to save data onto tape/disk."
470 PRINT ""L to load data from tape/disk."
480 VDU 10,10,130:PRINT "Please select ";
490
500 choice=FNgetkey("RrDdSsLl")
510
520 =(choice+l) DIV 2
530
540
550 DEF PROCevent assem
560 *FX13,5 -
570 oswrch=&FFEE:osword=&FFFl:osbyte=&FFF4
580 base=&75
590 FOR pass=O TO 2 STEP 2
600 P%=&AOO
610 [OPT pass
620 \ Save all registers
630 PHP:PHA:TXA:PHA:TYA:PHA
640 LDX #time MOD 256
650 LDY #time DIV 256
660 LDA #4
670 JSR osword \ Reset interval timer
680 .getadval
690 LDA count

Control and Measurement - Interfacing

700 BEQ end
710 DEC count
720 LDA #&80
730 LDX #1
740 JSR osbyte \ Read Adva1(1)
750 TYA:PHA \ Save high byte
760 LOY #0
770 TXA \ Put low byte in Acc.
780 STA (base),Y \ Store low byte
790 INC base
800 PLA \ Put high byte in Acc.
810 STA (base),Y \ Store high byte
820 INC base
830 .end
840 \ Restore registers
850 PLA:TAY:PLA:TAX:PLA:PLP
860 RTS
870]
880 time=P%
890 P%=P%+5
900 count=P%
910 NEXT pass
920 REM "* Point to &COO where data
930 REM "* will be stored NB NO USER
940 REM "* DEFINED CHAR'S PLEASE!!
950 ?base=O
960 ?(base+1)=&OC
970 ENOPROC
980
990 OEF PROCrecord

1000 record=TRUE
1010 CLS
1020 INPUT "Interval between readings (seconds) "s
1030 REM "Set timer to -100*S centiseconds
1040 !time=-S*100
1050 ?(time+4)=&FF
1060 ?count=128 :REf-i "Max number of 16-bit readings
1070 FOR 1%=0 TO &FF
1080 I%?&COO=O
1090 NEXT 1%
1100 REM "* Set up event vector:EVNTV
1110 ?&220=0
1120 ?&221=&OA
1130 CALL &AOO:REM "Start timer & take 1st ADC readi

nq
1140 *FX14,5
1150 ENDPROC
1160
1170 OEF PROCconvert(NU%,sigfigs)
1180 LOCAL 1%
1190 REM "Check if neg. & display minus sign
1200 IF NU%<O THEN X%=11:Y%=5:R=USR (char):NU%=-NU%
1210 REPEAT
1220 X%=NU% MOD 10:Y%=8-I%:R=USR (char)
1230 NU%=NU% DIV 10
1240 1%=1%+1
1250 UNTIL I%=sigfigs-1
1260 X%=NU%:Y%=8-I%:R=USR (char)
1270 ENOPROC
1280
1290 DEF PROCassemb1e 1char
1300 DIM V% &110 -
1310 REM "Pointer TaBLes (Low & High bytes)
1320 PTBL L=V%+&50:PTBL H=V%+&65
1330 REM "Screen TaBLes-(Low & High bytes)
1340 STBL L=V%+&80:STBL H=V%+&95
1350 FOR K%=O TO 20 -
1360 READ Ldata%
1370 REM "ROM address low bytes
1380 PTBL L?K%=Ldata%
1390 READ-Hdata%
1400 REM "ROM address high bytes
1410 PTBL H?K%=Hdata%
1420 NEXT-K%
1430 FOR K%=O TO 14
1440 READ Lscr%:STBL L?K%=Lscr%
1450 REM "Screen address low bytes
1460 READ Hscr%:STBL_H?K%=Hscr%

177

178 A Science Teacher's Companion to the BBC Microcomputer

1470 REM "Screen address high bytes
1480 NEXT K%
1490 SCRLO=&70:SCRHI=&71:ptr=&72:TEMP=&74
1500 FOR PASS=O TO 2 STEP 2
1510 P%=V%
1520 [OPT PASS
1530 \ Get start address of char's bit pattern (low

byte)
1540 .char LDA PTBL L,X
1550 STA ptr -
1560 \ Get start address of char's bit pattern (high

byte)
1570 LDA PTBL H,X
1580 STA ptr+I
1590 LDA STBL L,Y \ set up screen lac. pointer
1600 STA SCRLO
1610 LDA STBL H,Y
1620 STA SCRHI
1630 LDX #8 \ Initialise byte counter
1640 .getbyte
1650 LDY #0 \ Initialise bit counter
1660 LDA (ptr),Y \ get a byte from character table
1670 STA TEMP
1680 .getbit ASL TEMP \ shift a bit into 'c'
1690 BCC space \ If C=O write a space
1700 LDA #&FF \ else write a 'block'
1710 BNE write \ always branch
1720 .space LDA #&20
1730 .write STA (SCRLO),Y \ place char. in A onto screen
1740 INY \ next bit (Y counts bits)
1750 CPY #8 \ Done 8 bits?
1760 BNE getbit \ No
1770 CLC \ Yes so prepare to add
1780 LDA SCRLO
1790 AD~ #&28 \ move screen addr. to next line
1800 STA SCRLO
1810 BCC a
1820 INC SCRHI \ If carry from low byte then inc. high

byte
1830 .a INC ptr \ point to next byte
1840 BNE b
1850 INC ptr+l
1860 .b DEX \ decrement byte counter
1870 BNE getbyte \ Done 8 bytes? If not get next byte
1880 RTS \ done
1890]
1900 NEXT PASS
1910 ENDPROC
1920
1930 REM ** POINTERS TO ROM-BASED CHARS **
1940
1950 DATA &80,&CO,&88,&CO,&90,&CO,&98,&CO,&AO,&CO,&A8,&

CO,&BO,&CO,&B8,&CO,&CO,&CO
1960 DATA &C8,&CO,&70,&CO,&68,&CO,&68,&C2,&98,&C2,&78,&

CO,&BO,&Cl,&B8,&Cl,&08,&Cl
1970 DATA &18,&Cl,&80,&C2,&40,&Cl
1980
1990 REM ** POINTERS TO SCREEN LOC'S **
2000
2010 DATA &0,&7C,&08,&7C,&10,&7C,&18,&7C,&20,&7C,&40,&7

D,&48,&7D,&50,&7D,&58,&7D
2020 DATA &60,&7D,&80,&7E,&88,&7E,&90,&7E,&98,&7E,&AO,&

7E
2030
2040 DEF FNdisplay menu
2050 LOCAL choice
2060 CLS
2070 VDU 132,157,131,141:PRINT TAB(9);"Display Options"
2080 VDU 132,157,131,141:PRINT TAB(9);"Display Options"
2090 PRINT "'''PRESS:''
2100 PRINT ""L for large digital display."
2110 PRINT '''G for graphical display."
2120 PRINT '''T for tabular display."
2130 VDU 10,10,130:PRINT "Please select ... ";
2140
2150 choice=FNgetkey("LlGgTt")
2160
2170 PRINT ""Recorded or new data (R/N)?";

Control and Measurement - Interfacing

2180
2190 old new=FNgetkey(IIRrNn ll

)

2200 IF old_new>2 THEN old_data=FALSE ELSE old_data=TRUE
2210
2220 =(choice+l) DIV 2
2230
2240 DEF PROCreplay(D%,G%)
2250
2260 CLS
2270 IF G% THEN PROCgraph:ENDPROC
2280 index=O
2290 PRINT TAB(8,0}iCHR$ 141i"Reading number: "i
2300 PRINT TAB(8,1)iCHR~ 141i"Reading number: "i
2310 REPEAT
2320 PRINT TAB(25,0}iindex DIV 2+1
2330 PRINT TAB(25,1}iindex DIV 2+1
2340 low byte=index?&COO
2350 high byte=index?&COl
2360 value=(low byte+256*high byte)/16
2370 PROCconvert(value,4} -
2380 index=index+2
2390 key=FNspc bar
2400 UNTIL index=256 OR key>l
2410 ENDPROC
2420
2430 DEF FNspc bar
2440 LOCAL key-
2450 SOUND 1,-15,40,2
2460 VDU 130:PRINT TAB(0,23}i"SPACE gives next reading

or E ends."i
2470 key=FNgetkey(" Ee"}
2480 =key
2490
2500 DEF PROCdisplay new data(D%,G%)
2510 CLS - -
2520 PROCget values
2530 VDU 23,1,oioioiOi
2540 IF G% THEN PROCgraph:ENDPROC
2550 PRINT TAB(12,0}CHR$ 141i"Time: II
2560 PRINT TAB(12,1}CHR$ 141i llTime: "
2570 @%=&20109
2580 FOR 1=0 TO total time STEP step
2590 PRINT TAB(18,0}ili" "
2600 PRINT TAB(18,1}iIi"
2610 PROCconvert(ADVAL (channel}/16,4)
2620 PROCpause(step}
2630 NEXT I
2640
2650 @%=10
2660 SOUND 1,-15,40,2
2670 VDU 31,0,23,132,157,131:PRINT TAB(6)i"Press any

key for menu"i
2680 VDU 23,1,liOiOiOi
2690 A=GET
2700 ENDPROC
2710
2720 DEF PROCpause(t}
2730 LOCAL T
2740 T=TIME
2750 REPEAT
2760 UNTIL TIME >=T+t*lOO
2770 ENDPROC
2780
2790 DEF PROCget values
2800 INPUT ""Time between readings (seconds)",step
2810 INPUT ""Total number of readings ",total num
2820 total time=total num*step -
2830 INPUT-"IIWhich channel (1-4) ",channel
2840 CLS
2850 ENDPROC
2860
2870 DEF PROCgraph
2880 LOCAL I%,X scale,value,end
2890 MOVE O,O:DRAW 0,1023
2900 MOVE O,O:DRAW 1279,0
2910 MOVE O,lOOO:DRAW 16,1000
2920 VDU 5:MOVE 32,1000:PRINT "4096"
2930 MOVE 32,32:PRINT "O":VDU 4

179

180 A Science Teacher's Companion to the BBC Microcomputer

2940 VDU 23,1,0;0;0;0;
2950 IF old data THEN end=255 ELSE end=total_num*2+2
2960 X scale=1280/end
2970 IF old data THEN value=(I%?&COO+256*I%?&COl)/64

ELSE value=ADVAL (channel)/64
2980 MOVE O,value
2990 FOR 1%=2 TO end STEP 2
3000 IF old data THEN value=(I%?&COO+256*I%?&COl)/64

ELSE value=ADVAL (channel)/64
3010 DRAW I%*X scale,value
3020 IF NOT old data THEN PROCpause(step)
3030 NEXT 1% -
3040 SOUND 1,-15,120,1
3050 PRINT TAB(10,0);"Press any key for menu.";
3060 VDU 23,1,1;0;0;0;
3070 A=GET
3080 ENDPROC
3090
3100 DEF PROCsave
3110 LOCAL index,low_byte,high_byte,X%
3120 VDU 13,9:PRINT "Insert data tape/disk.""
3130 X%=OPENOUT ("ADCDATA")
3140 FOR index=O TO &FF STEP 2
3150 low byte=index?&COO
3160 high byte=index?(&COO+l)
3170 BPUT-#X%,low byte
3180 BPUT #X%,high byte
3190 NEXT index -
3200 CLOSE #X%
3210 ENDPROC
3220
3230 DEF PROCload
3240 LOCAL index, low byte,high byte,X%,A
3250 VDU. 13,9 :PRINT "Insert data tape and press PLAY" i
3260 *FX15,1
3270 X%=OPENUP ("ADCDATA")
3280 IF X%=O THEN PRINT '"File 'ADCDATA' not on disk."'

'"Press any keY"i:A=GET :ENDPROC
3290 FOR index=O TO &FF STEP 2
3300 low byte=BGET #X%
3310 high byte=BGET #X%
3320 index?&COO=low byte
3330 index?&C01=high byte
3340 NEXT index -
3350 CLOSE #X%
3360 *FX15,1
3370 PRINT ""Data loaded. Press any key.";
3380 A=GET
3390 ENDPROC
3400
3410 DEF PROCdump(rec data}
3420 CLS -
3430 IF NOT rec data THEN PROCget values
3440 PRINT '"Do-you want a hard copy (Y/N}?";
3450 answer=FNgetkey("YyNn")
3460 IF answer<3 THEN hard copy=TRUE ELSE hard copy=FALSE
3470 CLS - -
3480 IF rec data THEN end=&FF ELSE end=total num*2
3490 IF rec-data THEN heading$="READING" ELSE heading$=

"TIME/s"
3500 IF rec data THEN Ch=l ELSE Ch=channel
3510 IF hard copy THEN VDU 2
3520 PRINT "The following readings are from channel

";Ch
3530 PRINT TAB(4};heading$;TAB(20};"VALUE"
3540 FOR index=O TO end STEP 2
3550 IF rec data THEN value=(index?&COO+256*index?&C01}

/16 ELSE value=ADVAL (channel)/16
3560 IF NOT rec data THEN @%=&20109
3570 IF rec data THEN PRINT TAB(6};(index DIV 2);

ELSE PRINT TAB(6};(index DIV 2)*step;
3580 @%=10
3590 PRINT TAB(20);value
3600 IF NOT rec data THEN PROCpause(step)
3610 NEXT index-
3620 VDU 3
3630 IF NOT hard copy THEN VDU 10,132,157,131:PRINT

TAB(6)"Presi any key for menu." ;

Control and Measurement - Interfacing 181

3640 A=GET
3650 ENDPROC
3660
3670 DEF FNgetkey(va1id$)
3680 LOCAL key
3690
3700 REPEAT
3710 key=INSTR(va1id$,GET$
3720 UNTIL key
3730
3740 =key

A DIGITAL-TO-ANALOGUE CONVERTER

Analogue
out

+

OV

+5V

-5V

3K9

Pin 7

Pin 4
741 {

OV

+5V

-5V

4K7

Just about the only useful interface missing on the
standard Model B machine is a digital-to-analogue
converter or DAC. The addition of such an interface is
quite easy and opens up an even wider range of
potential applications.

The circuit described is based on a DAC0800 device,
available from RS (order number 309-458). This chip is
an 8-bit DAC, converting an 8-bit binary input from the
computer into a corresponding analogue voltage. For
digital inputs ranging from 0 to 255, the corresponding
output ranges from 0 to Vref, where Vref is the value
of the reference voltage applied to pin 14. Hence the
voltage resolution is 1/255 of the reference voltage.
This is set in the circuit shown (figure 3.15) to 2.7
V, derived from the +5 V supply using the 270 ohm
resistor and the Zener diode, type BZY882V7.

Digital inputs
A

Figure 3.15
Digital-to-analogue converter (DAC) circuit

182 A Science Teacher's Companion to the BBC Microcomputer

To connect up the OAC circuit on the breadboard,
proceed as follows.

(1) Plug ICI (OAC0800) into holes G5 to G12 and F5
to Fl2 (pin 1 in G5).

(2) Plug IC2 (741) into holes G17 to G20 and F17
to F20 (pin 1 in GI7).

(3) Plug the two 100 n capacitors in holes J7,L7
and C4,C8 and the IOn capacitor in holes
01,05.

(4) Plug the two 4k7 resistors in E6,L4 and
E7,E14. The 270 resistor goes in A14,014 and
the 3k9 goes in I18,E19. The preset should
have single-strand wires soldered on and be
plugged into Bl (centre contact on preset) and
020,J17 (outer contacts on preset).

(5) Connect the Zener diode so that its cathode
(marked with a black stripe) goes in hole F14
and its anode in L14.

(6) Connect single strand wire links according to
the following list:

FROM TO FROM TO

K5 L5 H8 18
A8 B8 C38 K9
K19 B19 C39 JIO
A20 B19 B40 Kll
K45 L45 C41 112
K47 A47 B42 C12
.r i H7 B43 Bll
E4 L2 C44 BIO
J6 L3 B45 B9
A9 G13

(7) Plug in the 24 pin OIL plug from the User Port
so that pin 1 is in hole 047.

The circuit requires both +5 V and -5 V supplies.
The former can be obtained via the user port lead that
we made up earlier (see 'Making the Right Connection'
near the beginning of this chapter) and the -5 V supply
could be obtained from the auxiliary power connector
under the left-hand end of the keyboard but be careful
not to exceed the maximum current rating (75 rnA). You
may already be using this connector for the disk drive
supply so an external power unit will be needed
connect its positive terminal to the 0 V line on the
breadboard and the -5 V terminal to Cl. IC2 buffers
the current output from the OAC and converts it to a
voltage, obtainable from, say, hole A19. The value of
R4 can be varied to alter the range of output voltages.

Control and Measurement - Interfacing 183

Increasing this resistor will give a higher output and
vice versa.

To check out the circuit, connect it to the user
port using the lead described and make the connections
for the -5 V supply. Switch the computer on and check
that things are as they should be. If all is well
enter the following routine to test the DAC operation:

10 ?&FE62=&FF
20 REPEAT
30 ?&FE60=&FF
40 A=INKEY(200)
50 ?&FE60=0
60 A=INKEY(200)
70 UNTIL FALSE

Connect a voltmeter to the output terminal (A19) and
you should observe a reading that changes every 2
seconds between about 2.5 V and O. Line 30 switches
the output lines high and, after the delay introduced
by line 40, line 50 switches them low again. If the
circuit seems to be working correctly press <ESCAPE>
and proceed as follows, otherwise switch off and check
your wiring carefully against the circuit diagram.

The offset null preset should be adjusted so that
o V is output when a zero value is applied to the DAC
inputs type ?&FE60 = 0 and adjust the preset until
the meter reads zero. The full scale calibration can
also be checked by typing ?&FE60 = &FF and noting the
meter reading. You may like to experiment with the
value of R4 to give, say, a full-scale output of
2.55 V. The digital input value of 255 will then
correspond to an output value of 2.55 V and the
resolution will be 2.55 V/255 = 0.01 V

USING THE DAC

The DAC output is very easy to control by placing the
numerical value to be output into the lOB register of
the user port. If we wanted to output half of the
full-scale voltage we could use ?&FE60 128 or, in
assembly language, LDA #128:STA &FE60. (The first
instruction places a value of 128 in the MPU~s A
register or accumulator and the second instruction
places a copy of the accumulator contents into the
memory location &FE60 which is, you recall, the address
of the lOB register in the user VIA.) If we wish to
produce a particular waveform, we must output a
sequence of suitable numeric values representing the

184 A Science Teacher's Companion to the BBC Microcomputer

instantaneous voltages at successive points on the
wave. For simple waveforms this can be done directly
from BASIC, though the frequency attainable will be
limited by the relatively slow speed. Two examples are
given to show the method - "SAWTOOTH" and "SINE"
which generate low-frequency outputs with the
corresponding shape. The frequency of "SINE" is low
enough to be able to follow the oscillations using an
ordinary analogue meter. If you are tempted to try to
drive ac circuits using the DAC, you must feed the
output through a power amplifier first - there are
several simple IC devices available that would suit.
One such device is the TBA 820M (RS 302-491) which
operates from a supply voltage in the range 3 to 16 V

and can deliver 2 W into an 8 ohm load.

Listing "SAWTOOTH"

10 REM "*** SAWTOOTH ***
20 ?&FE62=255
30 PORT=&FE60
40 REPEAT
50 FOR 1%=0 TO 255
60 ?PORT=I%
70 NEXT
80 UNTIL FALSE

Listing "SINE"

10 REM "*** SINE ***
20 ?&FE62=255
30 PORT=&FE60
40 REPEAT
50 FOR 1%=0 TO 255
60 ?PORT=127*SIN (2*PI *1%/255)+127
70 NEXT
80 UNTIL FALSE

The sine output frequency is very low mainly because
of the time taken to evaluate the 'SINE' function. As
shown in some of the programs in chapter 2, this can be
alleviated somewhat by setting up a 'look-up' table
either in an array or as a sequence of bytes in RAM,
set aside using the special form of the 'DIM'
statement. The values of the sines are then read out
from the table, rather than recalculating them each
time. This will give a slight increase in the
frequency, as will using fewer samples for each wave
(though make sure your table covers an integral number
of cycles or you will end up with discontinuities in
the waveform), however the only way to achieve higher
frequencies is to use assembly language. The DAC has a
'settling time' (that is, the time for the output
voltage to become stable after the input changes from 0
to 255, or from 255 to 0) of about 100 ns. This would

Control and Measurement - Interfacing 185

imply a frequency capability in the megahertz range,
though the speed of the MPU, even when running machine
code, will not be able to achieve this. We can,
though, easily attain frequencies in the high audio
range. The program listing "FAST_GSC" provides a wide
range of output waveforms, in a pre-programmed form,
with an option of an additional user-supplied function.

The data for all the waveforms, except the user one,
is set up when the program is first run. This is done
in lines 690 to 750 and you can easily add further
lines or alter the existing ones to generate other
functions of your choice. Since it takes some time to
calculate the values for the various waveforms, it is
necessary to prevent the program setting them up again
each time that it is run. The reason for re-running
the program for each new waveform (using the <BREAK>

key, programmed in line 10) is that it is not possible
to check for any of the normal keys being pressed. To
do so would require that interrupts be enabled and you
would find that this would cause severe 'jitter' or
instability in the generated waveform, owing to the
fact that the MPU is being interrupted almost
continually from various sources (see page 145).
Consequently the 'SEI' instruction at the start
of the assembly language program SEts the Interrupt
disable flag in the MPU, thus preventing any
interrupts, including those from the keyboard. The
only key that is always active is the <BREAK> key and
this is set up to 'flag' the fact that it has been
pressed ('F% = 1') before re-running the program. The
value of F% is preserved when the program is run (it is
a resident integer variable) so the data set-up routine
can be bypassed, except when the program is first run,
when F% will be zero.

Listing "FAST OSC"

10 *K.IO OLDIM:F%=l:RUNIM
20 ON ERROR GOTO 870
30 REM ..******************
40 REM ..*** ***
50 REM "*** FAST_OSC ***
60 REM "*** ***
70 REM ..*** USING DAC ***
80 REM "*** FROM M/C ***
90 REM "*** ***

100 REM "******************
110
120 ?&FE62=&FF:REM ..** ALL O/P'S
130 PORT=&FE60
140 DIM D% 6*256,M% 140
150 base=&70
160 PROCassemble
170 MODE 7
180 VDU 23;10,32,0;0;0;0;:REM "CUR OFF
190 IF F%=l THEN F%=O:GOTO 220
200 PRINT ""Setting up data values. Please wait."
210 PROCset_up

186 A Science Teacher's Companion to the BBC Microcomputer

220 REPEAT
230 CLS
240 VDU 130,141:PRINT "Digital-Analogue Converter

Demo":VDU 13,11,11,130,141:PRINT "Digital-Analogu
e Converter Demo"

250 PRINT"Please select a function from this list:""
260 PRINT" (1) Y=SIN(X)"
270 PRINT (2) Y=SIN(5X)"
280 PRINT (3) "Sawtooth""
290 PRINT "" (4) "Triangle""
300 PRINT "" (5) Y=SIN(X)+SIN(3X)/3+SIN(5X)/5"
310 PRINT "" (6) User-input function"
320 PRINT "CHR$ 130;"Press";CHR$ 129;"ESC";CHR$ 130;

"to exit from the program"
330 choice%=FNgetkey("123456")
340 SOUND 1,-15,150,1
350 IF choice%=6 THEN PROCeval
360 PRINT TAB(0,2*choice%+4);CHR$ 129;
370 ?base=(D%+(choice%-1)*256) MOD 256:?(base+l)=(D%+(

choice%-1)*256) DIV 256
380 PRINT TAB(0,18);SPC (40)
390 PRINT TAB(0,20);CHR$ 130;CHR$ 136;"Outputting

values to DAC now."
400 VDU 10,10,132:PRINT "Press";CHR$ 135;"<BREAK>";

CHR$ 132;"to change function"
410 CALL output
420 UNTIL FALSE
430 END
440 DEF FNgetkey(valid$)
450 REPEAT
460 key=INSTR(valid$,GET$
470 UNTIL key
480 =key
490 DEF PROCassemble
500 P%=M%
510 FOR pass=l TO
520 [OPT 2*pass-2
530 .output
540 SEI \ Disable interrupts
550 .start
560 LDY #0
570 .1oop
580 LDA (base),Y
590 STA PORT
600 INY
610 CPY #&FF
620 BNE loop
630 .end BEQ start
640]
650 NEXT pass
660 ENDPROC
670 DEF PROCset up
680 LOCAL 1%
690 FOR 1%=0 TO 255
700 I%?D%=127*SIN (2*PI *1%/255)+127
710 I%?(D%+256)=127*SIN (2*PI *5*1%/255)+127
720 I%?(D%+512)=I%
730 IF 1%<128 THEN I%?(D%+768)=I% ELSE I%?(D%+768)=256

-1%
740 I%?(D%+1024)=96*SIN (2*PI *I%/255)+32*SIN (2*

PI *3*I%/255)+19*SIN (2*PI *5*1%/255)+127
750 NEXT
760 ENDPROC
770 DEF PROCeval
780 LOCAL f$,X
790 CLS
800 PRINT "Enter your function in terms of X"
810 INPUT f$
820 CLS :PRINT TAB((40-(LEN (f$)+5))/2,12);"f(X)=";f$
830 FOR X=O TO 255
840 X?(D%+1280)=EVAL (f$)
850 NEXT
860 ENDPROC
870 IF ERR =17 THEN CLS :END
880 SOUND 1,-15,40,5
890 PRINT"Error in function. Please re-enter."

Control and Measurement - Interfacing

900 T=TIME
910 REPEAT UNTIL TIME >T+500
920 GOTO 220

187

All in all the program and DAC together make a very
useful programmable signal generator, and with the
addition of an audio amplifier and loud-speaker,
readily available in most school physics labs, a wide
range of interesting experiments can be performed.
Some suggestions are to show the effect of the physical
quantities frequency, amplitude and waveshape on the
subjective quantities pitch, loudness and tonal quality
or timbre. The latter is particularly effectively
demonstrated using two of the pre-programmed options: 1
and 5. These both have the same basic pitch (the
frequency is around 500 Hz) but the latter has two
additional harmonics added in. The difference is quite
audible and a CRO connected to the DAC circuit output
will show the different waveshape very clearly.

Some user functions to try with option 6 are

(a) -(X<128)*255 which gives a square wave (or a
pulse wave if you vary the value in the
bracket, a higher number giving a wider pulse
and vice versa).

(b) 96*SIN(2*PI*X/255)*SIN(2*PI*20*X/255)+127
which shows the effect of amplitude modulation
of one sine wave by another of lower
frequency.

(c) 64*SIN(2*PI*X/255)+64*SIN(2*PI*X*I.05/255)+127
which shows the production of ~beats~. (The
two frequencies are about 500 and 505 Hz.)

SOME FURTHER EXPERIMENTS WITH THE DAC

Since the DAC essentially provides a programmable
voltage source most of the applications will be based
on this. Some other programs and ideas are provided
below to get you started.

Vol tmeter Test ("VM_TEST")
The purpose of this program is to test the student's
ability to read an ~analogue~ (conventional) voltmeter.
The voltmeter (preferably a high resistance one) is
connected to the DAC output and the program is run.
This generates a series of random numbers and outputs
these to the DAC which will then give a corresponding
reading on the meter. The student is asked to read the
meter and enter his value into the computer. If the
absolute value of the difference between his reading
and the actual voltage is less than 0.1 V (line 140)

188 A Science Teacher's Companion to the BBC Microcomputer

the computer accepts the value as correct. If the
error is too large the user is prompted to try again
and if, after three tries, they are still incorrect the
computer will supply the answer. The calibration factor
(100) in line 140 can be altered to suit your own DAC
or you could add a short routine to the start of the
program to perform an automatic calibration. For
example, output a value of, say, 128 to the DAC and ask
the user (that is, the teacher) to enter the exact
voltmeter reading, then use this to calculate the
factor.

Listing nVM TEST"

10 REM "*****************
20 REM "*** VM TEST ***
30 REM "*** USING DAC ***
40 REM "*****************
50 ?&FE62=255:PORT=&FE60
60 MODE 7
65 R=RND (-TIME)
70 score=O
80 FOR reading%=l TO 10
90 volts=RND (200)+55

100 ?PORT=volts
110 try=O
120 REPEAT
130 INPUT "What is the voltmeter reading? "v reading
140 IF ABS (volts/l00-v reading»O.l THEN correct='

FALSE :PRINT ""WRONG!":SOUND 1,-15,10,4 ELSE
correct=TRUE :PRINT ""CORRECT!":SOUND 1,-15,150,2

150 try=try+l
160 IF NOT correct AND try<3 THEN PRINT ""TRY AGAIN"'
170 UNTIL correct OR try=3
180 IF correct THEN score=score+7-2*try ELSE PRINT

"The reading was ";volts/l00;" Volts"
190 PRINT '"Press any key for next reading";:A=GET
200 CLS
210 NEXT reading%
220 PRINT ""You scored ";score;" out of a possible

50"

Diode Characteristics - a Simple Curve Tracer ("DIODE")
This program, using the simple circuit in figure 3.16,
shows how the ADC can be used ln conJunction with the
added DAC circuit. The DAC provides a linear 'sweep'
voltage to the circuit and the ADC measures the voltage
appearing across the diode. One could measure the DAC
voltage also but there is no need, provided that we do
not load the DAC output too much. (This could pull the
voltage down.) In the program we assume that the
number fed to the DAC exactly determines the resulting
voltage, thus enabling us to use the number itself to
calculate the voltage. The computer then calculates
the current in the circuit, knowing the resistance
value, R, and plots a graph of current through versus
voltage across the diode. It is instructive to try
various types of diode such as silicon (for example,
IN4148), germanium (for example, OA90) and various
colours of LEDs. It will be clearly seen that each has
a different forward voltage when it is conducting.
This is clearly a case where the student would first

Control and Measurement - Interfacing 189

carry out the standard diode characteristics experiment
using a conventional milliameter and voltmeter, and the
computer would then be used to quickly confirm the
shape of the curve and to illustrate the differences
for various other types of diode.

R
1K

------~ CHO

>----......-----~ CH1 (optional)DAC

av Analogue ground

From user {
port lines

Figure 3.16 Circuit for diode characteristics

DACl ~ lc

R2

CHO 0------__------.... -----~oCH1

DAC2
R1

av0--------------.........--......------......0 Analogue
ground

Notes: 1. T.U.T. = Transistor under test.
2. l c = (V, - VCE)/R2.
3. I B = (V2 - VBE)/R 1 where V, and V2 are the output

voltages of DAC 1 and DAC2.
4. VCE = ADVAL(2)/CF.
5. VBE = ADVAL(1)/CF where CF is the conversion factor

to change'ADVA L' readings to volts
(about 35200).

6. Typical values for R1 and R2 would be 47K and 1K respectively.

Figure 3.17 Circuit for transistor characteristics

190 A Science Teacher's Companion to the SSC Microcomputer

If a second DAC was available the principle of this
program could be extended to enable transistor
characteristics to be traced, one DAC controlling the
collector voltage and the other the base current, via a
suitable base resistor. The ADC could be used to
measure Vbe and Vce and the currents Ib and Ic could be
easily calculated. A suggested circuit is given 3S a
basis for experiment (see figure 3.17). One way to
interface the second DAC is through a second /user
port connected to the 1 MHz bus. Some details of the
1 MHz bus connections are given in the User GuiJe for
those who wish to experiment.

The addition of the second DAC will also enable an
X-y plotter to be driven, thus allowing the production
of high quality graphs and diagrams. A little ingenuity
in programming will enable a range of experiments to be
connected to the computer which will then produce class
copies of the resulting graphs, all with great economy
of labour. Be careful, however, not to let the
computer do too much of the important work, just the
boring and repetitive stuff. ("What do you mean, /It/s
all boring and repetitive/, eh, Jenkins?")

Listing "DIODE"

10 REM "***********************
20 REM "*** DIODE ***
30 REM "*** CHARACTERISTICS ***
40 REM "***********************
50
60 REM "Assumes DAC OP=255=2.55V out
70 REM "Assumes ADC IP=35200=1.OV in
80 REM "See line 520
90 ON ERROR MODE 7:END

100 MODE 4
110 VDU 23;8202;0;0;0;
120 VDU 19,0,4;0;:REM "Blue Background
130 ?&FE62=255
140 PORT=&FE60
150 ?PORT=O
160 VDU 24,0;0;1279;932;:REM "Graphics window
170 VDU 28,0,2,39,0:REM "Text window
180 VDU 29,64;64;:REM "Shift G origin
190
200
210 PRINT "Press SPACE BAR to start plotting"
220 PRINT "Press "'c'" to clear the screen"
230
240
250 REPEAT
260 PROCaxes
270 key=FNgetkey("Cc ")
280 IF key=3 PROCsweep ELSE CLG :PROCaxes
290 UNTIL FALSE
300
310 END
320
330
340 DEF PROCaxes
350 RESTORE
360 MOVE O,O:DRAW 1279,0:MOVE O,O:DRAW 0,900
370 VDU 5
380 REPEAT
390 READ X,Y,label$
400 IF label$<>"end" MOVE X,Y:PRINT label$
410 UNTIL label$="end"
420 DATA 295,-16,"0.5",590,-16,"1.0",885,-16,"1.5",118

0,-16,"2",1100,48,"V/V"

Control and Measurement - Interfacing

430 DATA -32,850,"2",-32,425,"1",32,HjU,"I/mA",O,O,
"end"

440 VDU 4
450 ENDPROC
460
470 DEF PROCsweep
480 ?PORT=O
490 MOVE 0,0
500 FOR 1%=0 TO 255
510 ?PORT=I%
520 DRAW ADVAL (1)/60,(I%/100-ADVAL (1)/35200)*400
530 NEXT
540 ?PORT=O
550 ENDPROC
560
570 DEF FNgetkey(valid$)
580 REPEAT
590 key=INSTR(valid$,GET$
600 UNTIL key
610 =key

A SIMPLE ROBOT

191

The use of the computer to control a simple 'buggy'
type vehicle can provide pupils with a fascinating
insight into the area of control technology. It is
also possible to begin to introduce simple programming
concepts to younger pupils using a simple 'turtle'
language, in which a few simple commands can instruct
the robot to perform quite complex movements. If
fitted with a simple pen arrangement it becomes a true
turtle with the ability to generate geometrical shapes
as it moves, though not, I must stress, with the
accuracy of its much more expensive brethren such as
the BBC Buggy and the Edinburgh Turtle.

During the planning of this section of the book, I
spent quite some time deciding on the best approach.
The factors to be borne in mind include cost,
simplicity of construction, expandability to include
future enhancements and ease of control. The final
solution I have adopted is to construct the mechanical
parts (chassis, drive system and so on) using standard
and technical Lego parts. This has the advantages of
being simple to work with and requiring no tools; the
design is also very easy to change should you wish to
add further features. The cost is fairly reasonable,
especially if you can borrow the parts from a younger
pupil or perhaps an older one who thinks he has grown
past the 'Lego age'! You will also find that the
pupils' familiarity with the construction medium allows
them to readily suggest modifications and improvements
to the design.

The parts requirements are fairly simple: see table
3.7 for details. As you can see, the design calls for
two 4.5 V Lego motors (type 870) to provide the motive
power. (If you are buying these, it pays to shop
around as there can be a considerable variation in
price.) The rest of the mechanical parts consist of a
small number of /technical/ beams, gears and axles
together with a few standard parts, mainly plates. The
technical parts can be bought separately (see appendix

192 A Science Teacher's Companion to the BBC Microcomputer

A) but the standard parts are available only as part of
complete sets. A small set should provide enough parts
and will be fairly inexpensive.

Table 3.7
Key to Component Parts in Figures 3.18 to 3.21

A - 64 mm axle
B - 80 mm axle
C - 47 mm axle
o - 6 x 16 plate
E - 6 x 12 plate
F - 4 x 12 plate
G - 4 x 6 plate
H - 16-stud Technic beam
I - 8-stud Technic beam
J - 3-stud Technic beam
K - 2 x 3 brick
L - 2 x 4 brick

M - 2 x 10 brick
N - 1 x 6 brick
o - 8-tooth pinion
P - 24-tooth gear
Q - wheel & tyre, 42mm dia
R - 2 x 4 Technic brick
S - 4.5 V motor, Type 870
T - Battery box, 3 cell
U - Axle bushes
V - Mardave wheels
W - Mardave tyres
X - 3 x 1 plate

The construction details for the chassis and drive
system are given in figures 3.18 to 3.21. The
electronics are mounted on a piece of 'Veroboard', the
strips of which must be cut as shown in figure 3.22.
The circuit diagram and component overlay are given in
Figures 3.23 and 3.24. Note from the circuit that use
has been made of a 'darlington driver' IC which
provides 7 pairs of transistors connected in the
darlington configuration. Each is capable of sinking
up to 500 rnA, so they can easily drive the relays that
are used to switch the motors. I have used this method
rather than the discrete transistor circuit earlier in
this chapter (figure 3.5) to simplify the electronic
construction. Incidentally, the present circuit uses
only 4 of the drivers so the other 3 are 'reserved for
future expansion', as Acorn would say! In other words
do with them what you will perhaps a gripper arm
could be added?

It is best to begin construction with the mechanical
parts first and connect each motor in turn to a 4.5 V
supply to ensure that there is no binding or slipping
of the drive systems. If one motor is slower than the
other, perhaps because of excessive friction, it will
be difficult to achieve a good straight-line
performance. Once you are satisfied that the basic
chassis is operating correctly, you can begin to
assemble the Veroboard circuit. Start by making cuts
in the copper tracks where shown. If you do not have
the correct spot face cutting tool for this you will
find that a small drill bit (about 3 mm) held between

Control and Measurement - Interfacing 193

Figure 3.18

Figure 3.19

194 A Science Teacher's Companion to the SSC Microcomputer

Figure 3.20

Figure 3.21

- ~

5 - ~

10- f--

15- f--

20 - I--

25 - 1-0----

30 - ~

35 - ~ ,

40 - I--

45 - f-- .
-

49 - ~

A

Control and Measurement - Interfacing

...

.
• • I- •••••

~ •••• I•••

.. ~ ~

Za

Key
Component lead ~

Break in track

Cut in track for ~
I DC connector n
Unused hole U

h

195

Figure 3.22 Track side of Veroboard

196 A Science Teacher's Companion to the BBC Microcomputer

+5 V

BO

81

I--

INC
I
I

...J

NO NC

NC NO NC NO
82 /

/
/

/
/

/
/

/
/

/

83

Figure 3.23 Robot circuit diagram

Control and Measurement - Interfacing

PL2 PL 1

197

5

10

15

20

25

30

35-

40

45

I: ~ :1 RL4
ORL3

1 :IRL2

l OO'R L
1.

I ~
PL4 ••~••••••••

Do

49

h a Z A

Notes: 1. Connect the Lego battery box to PL3 by connecting a 3-way
Molex cable shell in place of the Lego connector, + to row 'd'
and - to row 'e'. (The third pin is not used.)

2. Connect PL 1 to motor M1 and PL2 to motor M2 using 3-way
cable shells at the Veroboard end and the Lego connectors,
removed from the battery box leads, at the motor ends.
(Centre pin unused in both PL 1 and PL2.)

3. Reverse the motor connections if necessary - see text.
4. Note the orientation of IC1 and the IDC connector: PL4.

In the latter the 6 symbol indicates pin 1.

Figure 3.24 Component overlay for Veroboard

198 A Science Teacher's Companion to the BBC Microcomputer

the fingers works just as well. Note that the cuts for
the IDC board plug have to be made between two adjacent
rows of holes. This is best done using a sharp knife to
cut a small gap across the copper track. Make sure
that the copper is completely removed. Check the board
carefully against the diagram for any errors. Fit the
relays next followed by the IC socket, the IDC plug and
the minicon pcb plugs. The links can then be made
using fine tinned copper wire. Before inserting the IC
in its holder make up the connecting cable by joining a
26-way 10 connector to one end of a 2-3 m length of
26-way cable. (Make sure that the red conductor is
connected to pin 1 of the IOC.) At the other end,
split off the last 6 ways (that is, the 6 conductors
furthest from the one marked red) and connect a 20-way
10 connector for the user port, again ensuring that the
red wire goes to pin 1. The extra 6 ways are intended
for connecting to the analogue port if it is desired to
add sensors or other analogue cir~uitry to the robot.
Use the cable to connect the circuit board to the user
port. Switch on the computer and check that you have
+5 V at pin 9 of the IC holder (0 V is pin 8). If this
seems correct switch off the computer and insert the
IC, observing correct orientation note the pin 1
identifying mark (refer to figure 3.1b for typical pin
numbering). Connect the motors to the connectors
marked Ml and M2 (note that Ml is the left-hand motor,
viewed from above). Switch the computer on again - the
motors should not move. If they do, switch off at once
and check the wiring again. If all is well configure
the user port for outputs by typing ?&FE62 = &FF
<return> and then turn on motor Ml by typing ?&FE60 = 1
<return>. Check that the motor rotates in the correct
(forward) direction. If it does not, reverse the
connections to Ml only. Repeat this test with M2, by
typing ?&FE60=7 <return>, again reversing the
connections if needed. To complete the checks on the
system enter the following

?&FE60=2, MI runs in reverse
?&FE60=8, M2 runs in reverse
?&FE60=5, both motors run forward
?&FE60=10, both motors run in reverse
?&FE60=0, both motors stop

If all seems to be well, you can complete the robot
by securing the board to the chassis using any
convenient means available - I used small rubber bands.
Now we are ready to see our creation spring to life!

Control and Measurement - Interfacing

CONTROLLING THE ROBOT

199

The robot is controlled via the first four user port
lines: BO to B3, BO and Bl being used to control the
left hand motor, Ml, via relays RLI and RL2. B2 and B3
perform the switching of RL3 and RL4 to control M2. A
high logic level on a port line turns on the
corresponding relay (the NO contacts close) and a low
logic level turns it off (NC contacts close). As you
can see from the circuit diagram, the motors will not
operate when both of their controlling relays are
energised ('NO') or when both are de-energised ('NC').
Ml runs forward when BO is '1/ (RL1 = NO) and Bl is /0/
(RL2 = NC). If the states of these lines are reversed
the motor will reverse. Table 3.8 summarises all 15
possible states of the four lines, though a number of
these are redundant. Those that will be used in the
following programs have been given a mnemonic name for
easy reference. The action of these is given in
diagrammatic form in table 3.9 along with the
corresponding value that must be sent to the user port.

Table 3.8 User Port Values for Robot Control

Decimal Binary State of Relays Motors Action
Value B3 B2 Bl BO RL4 RL3 RL2 RLI M2 Ml Mnemonic

0 0 0 0 0 NC NC NC NC OFF OFF ST
1 0 0 0 1 NC NC NC NO OFF FWD FR
2 0 0 1 0 NC NC NO ,NC OFF REV NOT USED
3 0 0 1 1 NC NC NO NO OFF OFF NOT USED
4 0 1 0 0 NC NO NC NC FWD OFF NOT USED
5 0 1 0 1 NC NO NC NO FWD FWD FD
6 0 1 1 0 NC NO NO NC FWD REV TL
7 0 1 1 1 NC NO NO NO FWD OFF FL
8 1 0 0 0 NO NC NC NC REV OFF RL
9 1 0 0 1 NO NC NC NO REV FWD TR

10 1 0 1 0 NO NC NO NC REV REV RV
11 1 0 1 1 NO NC NO NO REV OFF NOT USED
12 1 1 0 0 NO NO NC NC OFF OFF NOT USED
13 1 1 0 1 NO NO NC NO OFF FWD NOT USED
14 1 1 1 0 NO NO NO NC OFF REV RR
15 1 1 1 1 NO NO NO NO OFF OFF NOT USED

200 A Science Teacher's Companion to the SSC Microcomputer

Table 3.9 Command Actions for Robot Control

Mnemonic Action Value

ST 0

FO t 5

RV ~ 10

TL f;\ 6

TR r:1 9

FL
,

7

FR ! 1

RL / 8

RR ~ 14

You should find the information in these tables
useful when writing your own control programs, though I
have given two examples to show the basic methods. The
first of these is "ROBOT K" which enables the robot to
be directly controlled from the keyboard using the
cursor keys. The range of commands has been restricted
to forward, reverse, twist left and twist right
produced by the up, down, left and right cursor keys,
respectively.
An additional feature of the program is that the
commands are remembered and can be repeated on request,
either as programmed or in reverse. In the latter case
reversing the sequence is achieved not just by running
it ~backwards' but the movements also must be reversed.

For example, the sequence FD TR FO TL RV would become:
FO TR RV TL RV when reversed. Reversing the sequence
is made simple by the choice of values, as listed in
table 3.8. Notice that the values for any manoeuvre
and its 'opposite' are the complement of each other;
that is, they take the value and change all the 'ones
to zeros and all the zeros to 'ones'. In the
program this is achieved by Exclusive-ORing the value
with 15 (line 860). Thus 5 EOR 15 = 10, so 'FO'
becomes ~RV ~ .

REM "***************
REM "** **
REM "** ROBOT K **
REM "** - **
REM "** KEYBOARD **
REM "** VERSION **
REM "** **
REM "** (c) PDH **
REM "** **
REM "** 20.01.84 **
REM "** **
REM "***************

MODE 7

PROCset_up
PROCinstruct
CLS

Control and Measurement - Interfacing

Listing "ROBOT K"

10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200
210
220 REPEAT
230 PROCteach
240 PROCrepeat
250 UNTIL FALSE
260
270
280 END
290
300
310 DEF PROCteach
320 CLS
330 PROCsound2
340 VDU 129,157,131,141:PRINT TAB(10);"LEARN MODE"
350 VDU 129,157,131,141:PRINT TAB(10);"LEARN MODE"
360 PRINT "'" Use the cursor keys to move the robot."
370 PRINT "" Press";CHR$ 136;"SPACE";CHR$ 137;"to

end the sequence."
380 1%=1
390 move(I%)=5:time(I%)=0
400 REM "First 'move' is "STOP
410 REPEAT
420 1%=1%+1
430 *FX15,1
440 REPEAT
450 A=GET
460 UNTIL (A>135 AND A<140) OR A=32
470 SOUND 1,-15,150,2
480 A=A-135:REM "A=1,2,3,4 or -103
490 IF A<O THEN A=5:REM "Change -103 to
500 move(I%)=A:REM "Record the move
510 ?PORT=va1ue(A):REM "Send to robot
520 t=TIME
530 REPEAT UNTIL INKEY (inkey(A))=O
540 ?PORT=O:REM "Switch off motors
550 time(I%)=TIME -t:REM "Key duration
560 UNTIL 1%=99 OR A=5
570 IF 1%=99 THEN I%=100:move(100)=5:time(100)=0
580 REM "Last 'move' is STOP
590 ENDPROC
600
610 DEF PROCrepeat
620 LOCAL J%,G,repeat,start,end,step,index,key
630 CLS
640 PROCsoundl
650 VDU 129,157,131,141:PRINT TAB(8):"PLAYBACK MODE"
660 VDU 129,157,131,141:PRINT TAB(8):"PLAYBACK MODE"
670 PRINT TAB(I,5)"Do you want the movements carried

out in:"
680 PRINT TAB(1,10);"The"CHR$ 129"SAME";CHR$ 135"order

as programmed <S)lI
690 PRINT TAB(1,12);"The llCHR$ 129"REVERSE";CHR$ 135"or

der <R>"
700 REPEAT
710 key$=INSTR(lISsRr ll,GET$

201

202 A Science Teacher's Companion to the BBC Microcomputer

720 UNTIL key
730 PROCsound1
740 PRINT TAB(l,5);SPC (45)
750 IF key<3 THEN reverse=FALSE :start=l:end=I%

ELSE reverse=TRUE :start=I%:end=l
760 IF start>end THEN step=-l ELSE step=l
770 PRINT TAB(O,2*(key DIV 3)+10);CHR$ 136:REM "F1a

sh choice
780 PRINT ,,',," Press";CHR$ 136;"<RETURN>";CHR$ 137;

"to start the sequence."
790 REPEAT :G=GET :UNTIL G=13
800 PROCsound1
810 VDU 11:PRINT "Okay. Programmed sequence now

running" ;
820 IF reverse THEN PRINT" in reverse. "ELSE

PRINT "."
830 FOR J%=start TO end STEP step
840 REM "Exchange L/R and FWD/REV
850 index=move(J%)
860 IF reverse THEN ?PORT=value(index) EOR 15

ELSE ?PORT=value(index)
870 PROCpause(time(J%))
880 NEXT J%
890 PROCsoundl
900 VDU 11,11:PRINT " Do you want to repeat this seque

nce? "SPC (39);'TAB(9);CHR$ 136;"Please press
Y or N."

910 PRINT TAB(O,2*(key DIV 3)+10);CHR$ 137:REM "Sto
p original choice flashing

920 repeat=FALSE
930 REPEAT
940 key=INSTR("YyNn",GET$)
950 UNTIL key
960 IF key<3 THEN repeat=TRUE
970 IF repeat THEN PROCrepeat
980 ENDPROC
990

1000 DEF PROCset up
1010 DIM move(100),time(100),value(5),inkey(5)
1020 FOR 1%=1 TO 5
1030 READ value(I%),inkey(I%)
1040 NEXT 1%
1050 PORT=&FE60
1060?&FE62=&FF
1070 VDU 23;8202;0;0;0;:REM "Cursor off
1080 ON ERROR ?PORT=O:CLS :END
1090 *FX4,1
1100 ENDPROC
1110
1120
1130 DATA 6,-26,9,-122,10,-42,5,-58,0,-99
1140 REM "Port va1ue,Neg. INKEY value
1150 REM "of Cursor keys
1160
1170
1180 DEF PROCpause(t)
1190 LOCAL T
1200 T=TIME
1210 REPEAT UNTIL TIME >=T+t
1220 ENDPROC
1230
1240 DEF PROCinstruct
1250 VDU 129,157,131,141:PRINT TAB(6);"ROBOT DRIVING

LESSON"
1260 VDU 129,157,131,141:PRINT TAB(6);"ROBOT DRIVING

LESSON"
1270 PRINT "'''The robot is controlled by pressing

the"
1280 PRINT "appropriate grey cursor (arrow) keys."
1290 PRINT '''For example the [key gives a left turn"
1300 PRINT "and the A key causes forward motion."
1310 PRINT "If you release the keys the robot will"
1320 PRINT "stop. This is the "CHR$ 130"LEARN MODE."
1330 PRINT ""It will also memorize the sequence of"
1340 PRINT "movements and repeat them on request."
1350 PRINT "This is known as the"CHR$ 130"PLAYBACK

MODE."

Control and Measurement - Interfacing

1360 PRINT ",
1370 VDU 129,lS7,131,136:PRINT" PRESS <RETURN> TO

CONTINUE"
1380 REPEAT : G=GET :UNTIL G=13
1390 ENDPROC
1400
1410 DEF FNreverse(index)
1420 IF index=S THEN =index
1430 index=NOT index AND 3
1440 IF index=O index=4
14S0 =index
1460
1470 DEF PROCsound1
1480 SOUND 1,-lS,70,2:S0UND 1,0,0,2:S0UND 1,-lS,S3,2
1490 ENDPROC
lS00
lS10 DEF PROCsound2
lS20 SOUND 1,-lS,10,4:S0UND 1,-lS,SO,2:S0UND 1,-lS,10,4

:SOUND 1,-lS,SO,2
lS30 ENDPROC

203

PROCteach allows the input of up to 99 key
depressions which are stored in the array /move() /.
Lines 440-460 wait for a cursor key or the space bar to
be pressed and lines 480,490 convert the ASCII value to
1,2,3,4 or 5 (left, right, down, up and space
respectively). This is stored in the move array (500)
and also sent to the robot (510). The time is noted
(520) and the program then waits for the key to be
released (530). The motors are then turned off (540)
and the duration of key depression is stored in the
array /time() /. This is repeated until 99 moves have
been recorded or the space bar is pressed (410-570).
PROCrepeat re-runs the stored sequence either in the
original order or in reverse, using the /EOR/ technique
described above. The sequence can be repeated as many
times as desired, either forward or in reverse.

If you possess a joystick it is quite simple to
modify the program to accept its inputs from this
rather than the keyboard. To incorporate the required
changes proceed as follows:

(1) Change 450 to: 450 A=FNadval
(2) Change 460 to: 460 UNTIL A OR INKEY(-99)
(3) Add new line:

465 IF INKEY(-99) stop=TRUE ELSE stop=FALSE
(4) Delete 480 and 490
(5) Change 530 to: 530 REPEAT UNTIL FNadval=O
(6) Change 560 to: 560 UNTIL 1%=99 OR stop
(7) Add the following lines to the end of the program:

1540 DEF FNadva1
1550 LOCAL A%,B%
1560 A%=-1*(ADVALl>5E4) OR -2*(ADVALl<lE4)
1570 B%=-3*(ADVAL2<lE4) OR -4*(ADVAL2>SE4)
1580 =(A% OR B%)

Some minor changes
needed but I will

to
leave

the instructions
these up to you.

are also
Save the

REM "***************
REM "** ROBOT **
REM "** **
REM "** Version 2 **
REM "** **
REM "** (c) PDH **
REM "** **
REM "** 22.01.84 **
REM "***************

204 A Science Teacher's Companion to the BBC Microcomputer

amended program as "ROBOT_J".
The second controller program, "ROBOT", allows

sequences of movements to be entered in a simple robot
'language' consisting of strings of the mnemonic
commands listed earlier. Individual commands are
separated using the slash character '/' and the
sequence should always be ended with a stop command
('ST'). Each command is followed by an 'argument'
which specifies the distance moved by 'FD' or 'RV'
commands, the angle for turning commands
(TR,TL,FL,FR,RL,RR) and the duration of the 'ST'
command. (Distances are in cm, angles in degrees and
durations in seconds.) Thus the sequence
FD30/ST5/TR90/RV20/ST gives the following movements:
forward 30 cm, pause 5 seconds, twist right 90 degrees,
reverse 20 cm and stop. Note that the last command
does not need an argument as it remains effective until
a new sequence is started.

Listing "ROBOT"

10
20
30
40
50
60
70
80
90

100
110
120 MODE 7
130 PROCset up
140 PROCinstruct
150
160 REPEAT
170 command$=FNinput command
180 PROCexecute(command$)
190 UNTIL FALSE
200
210
220 DEF PROCset up
230 LOCAL 1%
240 PORT=&FE60
250 ?&FE62=&FF
260 ON ERROR ?PORT=O:END
270 ENVELOPE 1,1,0,0,0,1,3,3,127,-12,0,-4,127,80
280 DIM command$(10),value(10),action$(10},factor(10}
290 FOR 1%=1 TO 10
300 READ command$(I%},value(I%}
310 NEXT 1%
320 FOR 1%=1 TO 10
330 READ action$(I%}
340 NEXT 1%
350 FOR 1%=1 TO 10
360 READ factor(I%}
370 NEXT 1%
380 ENDPROC
390
400 REM "DATA STATEMENTS
410 DATA ST,0,FD,5,TL,6,TR,9,FL,7
420 DATA FR,1,RL,8,RR,14,RV,10,PS,0
430 DATA STOP,FORWARD,TWIST LEFT,TWIST RIGHT,FORWARD

LEFT,FORWARD RIGHT,REVERSE LEFT,REVERSE RIGHT,REVE
RSE,PAUSE

Control and Measurement - Interfacing

440 DATA 100,2.2,0.4,0.4,0.4,0.4,0.4,0.4,2.2,100
450
460
470 DEF FNinput command
480 SOUND 1,-15~50,2

490 PRINT TAB(0,5)iSPC (39)iTAB(12,10)iSPC (10);
500 VDU 23,1,liO;OiOi:REM "Cursor on
510 PRINT TAB(8,4)CHR$ 136" COMMAND ? ":

INPUT TAB(0,5) C$
520 VDU 23,1,0;OiOiOi:REM "Cursor off
530 PRINT TAB(8,4)iCHR$ 129i"COMMANDS ENTERED:"
540 PRINT TAB(12,10)CHR$ 136i"EXECUTING"
550 =C$
560
570 DEF PROCexecute(C$)
580 REM "Perform commands
590 LOCAL I%,J%,K%,L%,sub$,index
600 L%=LEN (C$)
610 FOR 1%=1 TO L%
620 K%=O:sub$=""
630 REPEAT
640 sub$=sub$+MID$(C$,I%+K%,I)
650 K%=K%+l
660 UNTIL MID$(C$,I%+K%,I)="/" OR K%>L%
670 REM "Find 'End-of-command' marker or end

of string
680 I%=I%+K%:REM "Move 1% to next command
690 index=O
700 REM "Check command list
710 FOR J%=l TO 10
720 IF LEFT$(sub$,2)=command$(J%) THEN index=J%
730 NEXT J%
740 REM "IF 'index'=O: command not recognized
750 IF index<>O THEN ?PORT=value(index)
760 IF index<>O THEN message$=sub$+" ":PROCping

ELSE message$="INVALID":SOUND 1,-15,10,4
770 PRINT TAB(15,II)imessage$iTAB(15,12)imessage$i
780 IF index<>O AND LEN sub$>2 THEN PROCpause(factor(i

ndex)*VAL (RIGHT$(sub$,LEN sub$-2)))
790 NEXT 1%
800 PRINT TAB(15,11)i" "iTAB(15,12)i"

";
810 ENDPROC
820
830 DEF PROCpause(t)
840 LOCAL T
850 T=TIME
860 REPEAT UNTIL TIME >=T+t
870 ENDPROC
880
890 DEF PROCinstruct
900 PRINT CHR$ 130iCHR$ 141iTAB(14)i"COMMANDS"
910 PRINT CHR$ 130iCHR$ 141iTAB(14)i"COMMANDS"
920 PRINT
930 FOR 1%=1 TO 5
940 PRINT TAB(O)command$(I%)iTAB(4)iaction$(I%)i

TAB(18)command$(I%+5)i TAB(22)iaction$(I%+5)i
950 NEXT 1%
960 VDU 28,0,24,39,8
970 PRINT ""A"iCHR$ 130i"distance"iCHR$ 135i"(in

centimetres) can be"'''specified after an"i
CHR$ 130i"FD"iCHR$ 135i"or"iCHR$ 130i"RV";
CHR$ 135i"command."'''e.g. FD20 moves ForwarD 20cm."

980 PRINT '''A''iCHR$ 130i"duration"iCHR$ 135i"(in secon
ds) can be given"'''after a STop command:"i
CHR$ 130i"ST5/FDI0"iCHR$ 135i"Would"'''wait for

5s then move forward 10cm."
990 PRINT '''Turn commands (eg TR,FL) can be given'"

"an"iCHR$ 130i"angle"iCHR$ 135i"(in degrees).
";CHR$ 130; "TL90" iCHR$ 135; "would" '''produce a
90 degree Twist to the Left."

1000 VDU 10,10,132,157,131:PRINT TAB(4)"PRESS ANY KEY
TO CONTINUE"i:A=GET :CLS

1010 PRINT ""A series of commands can be built up'"
"by separating each with a '/' symbol."

1020 PRINT "For example the string of commands:"'"
CHR$ 130i" FD50/TL45/ST""'''would move ForwarD

50cm,Twist Left 45degand then STop."

205

206 A Science Teacher's Companion to the BBC Microcomputer

1030 VDU 10,10,132,157,131:PRINT TAB(4)"PRESS ANY KEY
TO CONTINUE";:A=GET :CLS

1040 VDU 31,14,11,141,31,14,12,141
1050 ENDPROC
1060
1070 DEF PROCping
1080 SOUND 1,1,150,2:S0UND 2,1,151,2
1090 ENDPROC

The program is quite simple. PROCset_up initialises
the port and sets up the various arrays: "cornmand s () ,
stores the mnemonic codes for the various actions. The
corresponding port values and the full name of each
command are stored in 'value()' and 'action$()',
respectively. The final array, 'factor()' stores the
factors for converting distances, angles and durations
to the appropriate pause in centiseconds. The data for
this array is in line 440 and the values may need some
adjustment to suit individual robot characteristics.
This is best done by trial and error once the program
and robot are operating in an otherwise correct manner.

The other main parts of the program are
FNinput_command which simply obtains a string of
commands from the keyboard, and PROCexecute which
analyses and carries out the valid commands contained
in the input string. Any invalid commands are not sent
to the robot but simply displayed on the screen as
"INVALID". Valid commands are output to the robot via
the port and displayed on the screen using the mnemonic
form. The main part of PROCexecute is the FOR... NEXT
loop in lines 610 to 790. This checks through the
command string, C$, for the '/' markers and extracts a
sub-string, subS, if it finds the marker (620-660).
The list of valid commands is then checked for a match
(710-730) and the appropriate action is carried out
(750-780). If a valid command that contains an
argument is found, the appropriate pause is produced by
line 780.

Room for expansion
In its present incarnation the buggy is quite a

simple beast but, if I may borrow a much maligned
phrase, it 'shows promise'. There are plenty of
possibilities and plenty of room on the Veroboard for
additional circuitry. Some ideas that could form the
basis of future developments would have to include some
form of collision sensors, whether simple micro
switches or a more sophisticated ultrasonic system. It
would also be interesting to provide the computer
control via some form of wireless link, perhaps radio
control or an infra red beam system. The buggy will
also develop its sensory organs: 'eyes
(photodetectors), 'ears' (ultra-sonic sensors), perhaps

Control and Measurement - Interfacing 207

even a 'nose (gas sensor). I have provided enough
'ways on the interface cable to enable all four
analogue input channels to be fed with data from
buggy-mounted sensors, so it is left to your
imagination to guide the buggy through its formative
stages!

4 Testing, Files and Record Keeping

COMPUTER-BASED TESTS

Were it not for the considerable time taken to mark
them, teachers would probably use tests more often to
provide a detailed record of the progress, or lack of
it, of their pupils. They could assess the
effectiveness of particular teaching methods by
carrying out a pre-test before teaching a topic and a
post-test afterwards. Pupils who had experienced
difficulty could have their problems analysed by taking
a diagnostic test. This is all very well in theory,
but the demands on a teacher's time rarely allow such
luxuries. It may, therefore, seem that the use of
computer-administered tests could offer a means of at
least attempting some of these ideas. It must be
emphasised that in no way will the computer replace the
conventional test: pupils must still be able to express
themselves clearly and set out their work logically. I

regard the computer as being an extension of the
present methods of assessment, not a substitute for
them. Clearly the feasibility of computer tests
depends very much on the facilities available in the
school. How many schools are likely to have a full set
of computers for a class? Nevertheless we have to
start somewhere and the programs presented in this
chapter may at least stimulate a few ideas.

INPUTS AND DATA

One of the main problems while conversing with a
computer is that it is a very pedantic creature.
Unless every last character that you enter as your
answer matches exactly the expected answer, then it
will mark you wrong. Of course it is possible, at a
large cost in memory, to allow at least in part for
this, for example by supplying several 'correct'
variant spellings. Another possibility would involve
scanning the user's input, comparing it with the
correct answer, and allocating a 'score which, if
above a pre-determined level, would result in credit
for a correct answer. Thus if the correct answer to a
question was 'element' and the student typed 'an

208

Testing, Files and Record Keeping 209

elemint~ [sic] his input would score highly while
~compound~ would be awarded a very low score. A

combination of both techniques also offers advantages.
One or more keywords could be contained in the program
and a match, or near-match, searched for in the
student "s response. In this way the question: ~What

is the name of the device that opposes current flow in
electric circuits?' could be answered by: ~resistor',

~resistance', ~It is a resistor~ etc. Anyone who is
familiar with Adventure games on computers will know
that recognition of complex sentences typed in by the
user is possible but it does require fairly involved
programming and uses a lot of memory unless quite
sophisticated techniques are used. Thus, totally free
responses to computerised tests are not very easy, but
possibly feasible in the long term. For the moment we
can deal with limited free response or multiple choice
answers.

Another question that must be answered is whether
each test should be a separate entity, written
especially for each new topic, or whether we should try
to write a general ~skeleton~ program to which we can
supply the question data for each topic as needed. The
former method allows complete freedom of approach:
diagrams can accompany individual questions or groups
of questions and the style can be varied to suit the
topic. The obvious disadvantage is that a new test
demands that another program be written. Of course
many routines will be re-usable but there is still a
lot of work involved. My own preferred approach is to
use the ~skeleton' method, to which I append the
necessary data.

Here again there are two methods of supplying the
data to the program. The first uses a series of DATA
statements to contain the questions and answers and any
other necessary information. This approach is shown in
the first program listing "QUIZBASE" which provides the
basis for a quiz consisting of questions which can be
asked in one of two ways.

Listing "QUIZBASE"

10 REM "****************
20 REM "*** QUIZBASE ***
30 REM "*** ***
40 REM "*** DATA @ ***
50 REM "*** LN 1000, ***
60 REM "****************
70 *FX202,48
80 REM "* Turn off CAPS/SHIFT locks
90 READ title$,subject$,num questions,num items

100 READ questionl$,question2$ -
110 READ instructS
120 DIM ITEM%(num questions)
130 score=O -
140 MODE 7

210 A Science Teacher's Companion to the BBC Microcomputer

150 VDU 23;8202;0;0;0;
160 VDU 132,157,131,141:PRINT TAB((36-LEN (title$))/2)

;title$:VDU 132,157,131,141:PRINT TAB{(36-
LEN (title$))/2);title$

170 VDU 28,0,23,39,2
180 PRINT "'"This quiz is designed to test your"'

"knowledge of:"
190 PRINT 'CHR$ 130;subject$
200 PRINT "'"You will be asked ";num_questions;"

questions.""
210 IF instruct$<>"" THEN PRINT instructS
220 PRINT ""You are allowed two attempts at each"
230 PRINT "question. You will be awarded 2 marks"
240 PRINT "for a correct first attempt and 1 mark"
250 PRINT "if the second attempt is correct."
260 PROCpause(20)
270 dummy=RND (-TIME)
280 CLS
290 ITEM%(l)=RND (num items)
300 FOR 1%=2 TO num questions
310 ITEM%(I%)=RND (num items)
320 REPEAT -
330 same%=FALSE
340 FOR J%=l TO 1%-1
350 IF ITEM%(I%)=ITEM%(J%) THEN same%=TRUE :ITEM%(I%)=

RND (num items)
360 NEXT J% -
370 UNTIL NOT same%
380 NEXT 1%
390 FOR Q%=l TO num questions
400 rand=RND (1) -
410 PRINT '
420 IF rand<.5 THEN PRINT questionl$ ELSE PRINT questi

on2$
430 R%=ITEM%(Q%)
440 RESTORE 1030
450 FOR 1%=1 TO R%
460 READ iteml$,item2$
470 IF rand<.5 THEN correct$=item2$ ELSE correct$=item

1$
480 NEXT 1%
490 PRINT
500 IF rand<.5 THEN PROCdbl(iteml$) ELSE PROCdbl(item2

$ }
510 PRINT
520 try=O
530 REPEAT
540 INPUT answerS
550 try=try+l
560 IF (answer$<>correct$ AND try<2) THEN PRINT ':

PROCdbl("Try again.") ELSE IF answer$<>correct$
THEN PRINT ': PROCdbl ("Wrong")

570 IF answer$=correct$ THEN PRINT ':PROCdbl("Correct.
")

580 UNTIL answer$=correct$ OR try=2
590 IF answer$=correct$ THEN score=score+(3-try)
600 IF answer$<>correct$ THEN PRINT "The correct answe

r was:"':PROCdb1(correct$)
610 PROCpause(2)
620 CLS
630 NEXT Q%
640 CLS
650 max score=2*num questions
660 T$="You scored "+STR$ (score)+" out of a possible

"+STR$ (max score)
670 PRINT ":PROCdbl(T$)
680 IF score>=0.7*max score THEN PRINT ":PROCdbl(

"Well done!!")
690 END
700 DEF PROCdbl(text$)
710 LOCAL 1%
720 FOR 1%=1 TO 2
730 VDU 134,141
740 PRINT textS
750 NEXT 1%
760 ENDPROC
770 DEF PROCpause(secs)

Testing, Files and Record Keeping

780 LOCAL T
790 T=TIME
800 REPEAT UNTIL TIME >=T+secs*lOO
810 SOUND 1,-15,150,2
820 ENDPROC

1000 DATA Chemical Elements,elements and chemical symbo
ls,20,92

1010 DATA What is the symbol for,What element has the
symbol

1020 DATA" All element names should start with a
capital letter. If a symbol has two characte

rs the second should be a small letter."
1030 DATA Hydrogen,H,Helium,He,Lithium,Li,Beryllium,Be,

Boron,B,Carbon,C
1040 DATA Nitrogen,N,Oxygen,O,Fluorine,F,Neon,Ne,Sodium

,Na,Magnesium,Mg
1050 DATA Aluminium,Al,Silicon,Si,Phosphorus,P,Sulphur,

S,Chlorine,Cl,Argon,Ar
1060 DATA Potassium,K,Calcium,Ca,Scandium,Sc,Titanium,T

i,Vanadium,V,Chromium,Cr
1070 DATA Manganese,Mn,Iron,Fe,Cobalt,Co,Nickel,Ni,Copp

er,Cu,Zinc,Zn
1080 DATA Gal1ium,Ga,Germanium,Ge,Arsenic,As,Selenium,S

e,Bromine,Br,Krypton,Kr
1090 DATA Rubidium,Rb,Strontium,Sr,Yttrium,Y,Zirconium,

Zr,Niobium,Nb,Molybdenum,Mo
1100 DATA Technetium,Tc,Ruthenium,Ru,Rhodium,Rh,Palladi

um,Pd,Silver,Ag,Cadmium,Cd
1110 DATA Indium,In,Tin,Sn,Antimony,Sb,Tellurium,Te,Iod

ine,I,Xenon,Xe
1120 DATA Caesium,Cs,Barium,Ba,Lanthanum,La,Cerium,Ce,P

raseodymium,Pr,Neodymium,Nd
1130 DATA Promethium,Pm,Samarium,Sm,Europium,Eu,Gadolin

ium,Gd,Terbium,Tb,Dysprosium,Dy
1140 DATA Holmium,Ho,Erbium,Er,Thulium,Tm,Ytterbium,Yb,

Lutetium,Lu,Hafnium,Hf
1150 DATA Tantalum,Ta,Tungsten,W,Rhenium,Re,Osmium,Os,I

ridium,Ir,Platinum,Pt
1160 DATA Gold,Au,Mercury,Hg,Thallium,Tl,Lead,Pb,Bismut

h,Bi,Polonium,Po
1170 DATA Astatine,As,Radon,Rn,Francium,Fr,Radium,Ra,Ac

tinium,Ac,Thorium,Th
1180 DATA Protactinium,Pa,Uranium,U

1000 DATA Units,S.I. quantities and their units,10,20
1010 DATA What is the unit for: ,What quantity has units

of:
1020 DATA" Type out the unit names in full. For

example: metre per second"
1030 DATA pressure,Pascal,length,metre,mass,kilogramrne,

time,second,temperature,Kelvin,current,Arnpere
1040 DATA charge,Coulomb,potential difference,Volt,ener

gy,Joule,power,Watt,frequency,Hertz,capacitance,Fa
rad

1050 DATA inductance,Henry,velocity,metre per second,fo
rce,Newton,magnetic flux,Weber,electric field
strength,Volt per metre,magnetic field strength,Te
sla

1060 DATA acceleration,metre per second squared,density
,kilogramrne per metre cubed,resistance,Ohm,volume,
metre cubed,area,metre squared,amount of substance
,mole

1070 DATA luminous intensity,candela,specific heat
capacity,Joule per kilogramme per Kelvin,linear
expansivity,per Kelvin,wavelength,metre

211

The ~questions~ can also be ~answers The first set
of data statements shows what I mean: ~What is the
symbol for helium?~ or ~What element has the symbol
He?~. In addition to the 92 names and the

212 A Science Teacher's Companion to the BBC Microcomputer

corresponding symbols of the naturally occurring
elements, the data also contains a title for the test,
the subject covered by the test, the number of
questions to be asked and the total number of
question/answer data items (see line 1000). The next
data line contains the phrasing for the two types of
question that can be asked and the third line is an
optional extra instruction which may be necessary to
cover any special cases. If you do not require this,
the data statement must contain a null string The
program first prints the instructions and then makes a
random selection of the appropriate number of
questions, checking that the same one will not be asked
twice (lines 290-380). The FOR ... NEXT loop in lines
390-630 then asks the questions, making a random choice
of which of the two forms of question to use (420).
The question is selected as a number (between 1 and. the
total number of items), held in the array ITEM%(). This
number of question/answer data items is then read,
leaving the last one read in 'iteml$' and 'item2$'.
The question is printed, in double height, and the
REPEAT loop (520-580) allows up to two attempts to get
the correct answer. Two marks are given if the first
attempt is correct and one if the second is correct.
Note that this test requires exactly the correct
response to be typed in. Hence 'He' is a possible
correct answer but 'HE' or 'he' and so on are not. It
is possible to convert all input to, say, lower case
but in this particular example it would be
inappropriate to do so: the only correct way to write
the symbol for helium is 'He'.

A number of sets of data statements are supplied and
you can add more if they suit the format of the
program. In particular, please note that the DATA
statements must begin at line 1000 and the items
themselves must begin at line 1030, otherwise the
RESTORE statement in line 440 will be incorrect. The
flexibility of the program is rather limited but it
could form the basis for experimentation. For example,
there is considerable scope for enhancing the 'reward'
for a correct answer beyond the basic "Correct" or
"Well done".

The second method of supplying data to a test
program is as a 'file' on cassette tape or disk.
Technically, a file is 'a related series of records'
though, for our present purposes, it is just a series
of tones recorded onto tape which, when played back,
will be interpreted by the computer as the series of
characters comprising our questions data. Obviously we
need a program to create the data file in the first
place and this function is performed by the program

Testing, Files and Record Keeping 213

REM "***************
REM "*** ***
REM "*** TESTGEN ***
REM "*** ***
REM "*** (c) PDH ***
REM "*** 8.01.84 ***
REM "*** ***
REM "***************

"TESTGEN" (test generator) which unfortunately, despite
its name, does not actually generate the test but
facilitates its creation and produces a file of
questions and answers and other data which can be used
by the second program "TESTER".

Listing "TESTGEN"

10
20
30
40
50
60
70
80
90

100 MODE 7
105 *FX220,0
110 PROCcursor("OFF")
120 PRINT TAB(0,12);CHR$ 141;CHR$ 131; 'CHR$ 141;

CHR$ 131
130 PRINT TAB(12,12);"Test Generator"
140 PRINT TAB(12,13);"Test Generator"
150 PROCpause(2)
160 CLS
170
180 len%=&70:1ine 1en%=32
190 DIM Q$(9),A$(3)
200
210 PROCassemb1e
220 CLS
230
240 PROCget_data
250
260 DIM An$(num_ans%)
270
280 PROCscreen(131,132)
290
300 CALL init
310
320
330 FOR Q%=l TO num q%
340 PROCsma11 window
350 CLS -
360 PRINT CHR$ 141;"Question ll'CHR$ 141;nQuestion"
370 PRINT CHR$ 141;n n;Q%; 'CHR$ 141;n n;Q%
380 PROCbig window
390 CLS -
400 1%=1
410
420 REPEAT
430 ?len%=line 1en%-LEN (Q$(I%))
440 *FX15,0 -
450 CALL input
460 Q$=$Q:R$=n"
470 IF LEN (Q$(I%)+Q$»=line 1en% AND RIGHT$(Q$,l)<>

" "THEN Q$=FNcount back(~$)
480 Q$(I%)=Q$(I%)+Q$ -
490 VDU 11:PRINT Q$(I%)
500 Q$(I%+l)=R$
510 PRINT Q$(I%+l);
520 1%=1%+1
530 UNTIL 1%=9 OR Q$=""
540
550 max 1%=1%-1
560 PRINT 'TAB(8)"ANY CORRECTIONS?";
570 A$=GET$:IF A$="y n OR A$="y" THEN PRINT CHR$ 13;

SPC (30);:PROCedit("Q")
580 CLS :SOUND 1,-15,150,2
590
600 PROCinput_answers(num_ans%)
610

214 A Science Teacher's Companion to the BBC Microcomputer

620 CLS
630 PRINT TAB(3,4}"WHICH IS THE CORRECT ANSWER?""
640 PRINT TAB(3};
650
660 key$=""
670 FOR K%=l TO num ans%
680 PRINT CHR$ (64+K%);
690 IF K%<>num ans% THEN PRINT" ";
700 key$=key$+CHR$ (64+K%)
710 NEXT K%
720
730 REPEAT
740 correct=INSTR(key$,GET$
750 UNTIL correct
760
770 CLS
780 correct$=CHR$ (correct+64)
790
800 PROCsave(max_I%)
810
820 PROCclear_Q:REM "* Empty Q$() *
830
840 NEXT Q%
850
860 CLS : PRINT "TAB(4) "DO YOU WANT TO CHECK""

TAB(6)"THE DATA TAPE?";
870 A$=GET$
880 VDU 26
890 IF A$="Y" OR A$="y" THEN PROCtape_check
900 CLS
910 END
920
930
940 DEF PROCget data
950 PROCcursor ("ON")
960 *FXlS,O
970 PRINT ""How many questions";
980 INPUT" ",num q%
990 PRINT ""How many answers for each (MAX=S)";

1000 REPEAT
1010 INPUT" ",num ans%
1020 IF num ans%<l-OR num ans%>S THEN SOUND 1,-15,20,5
1030 UNTIL num ans%>O AND-num ans%<6
1040 PHINT ""What is the time-limit, in minutes"""(O=no

limit}";
1050 INPUT" ",max time
1060 CLS -
1070 PRINT ""What is the name of the test?"
1080 REPEAT
1090 INPUT " "name$
1100 IF name$="" THEN SOUND 1,-15,20,4
1110 UNTIL name$<>""
1120 REPEAT
1130 CLS
1140 PRINT"Enter a file name - <RETURN> uses the"
1150 INPUT "first 7 letters of the test name. "file$
1160 IF file$="" THEN file$=LEFT$(name$,7) ELSE file$=

LEFT$(file$,7)
1170 PRINT "File name will be";CHR$ 130;file$
1180 PRINT "Do you want to change it (YIN) ?";
1190 A$=GET$
1200 UNTIL A$="N" OR A$="n"
1210 PRINT TAB(8,23};CHR$ 134"PRESS ANY KEY TO START";:

A=GET
1220 CLS :PRINT TAB(7,6)"Saving Header Information"
1230 PRINT TAB(10,10)"Insert DATA tape"
1240 PRINT TAB(7,12};"Press ";
1250 PROCsave header
1260 ENDPROC -
1270
1280 DEF PROCscreen(fgd%,bgd%)
1290 CLS
1300 FOR row%=O TO 24
1310 VDU 31,0,row%,bgd%,lS7,fgd%
1320 IF (row%>2 AND row%<13) OR row%=20 OR row%=22

THEN VDU lS6,31,37,row%,bgd%,lS7
1330 NEXT row%

Testing, Files and Record Keeping

1340 PRINT TAB(15,1)CHR$ 141;"TESTGEN";TAB(15,2)
CHR$ 141;"TESTGEN";

1350 PRINT TAB(5,20)"CTRL-U DELETES THE ENTIRE LINE";
1360 PRINT TAB(5,22)"CURSOR KEYS AND COpy STILL WORK";
1370 PROCbig window
1380 PRINT "Type the questions in this box."; '''The

computer will beep at the"; '''end of each line.
You must press";

1390 PRINT ""<RETURN> to go to the next line"; ""when
you hear the beep or if"""the line is less than

the max" ""length.";
1400 PRINT ""TAB(9)"PRESS ANY KEY";
1410 A=GET :CLS
1420 PRINT "Questions are allowed a maximum"'''of 8

lines and answers can each" ""be up to 2 lines
long."

1430 PRINT ""Press RETURN twice if your text" ""occupies
less than the allowed"'''number of lines."

1440 PRINT 'TAB(5)"PRESS ANY KEY TO START";
1450 A=GET
1460 CLS
1470 PROCcursor("OFF")
1480 PRINT TAB(8,4)"START TYPING NOW"
1490 PROCpause(3)
1500 CLS
1510 PROCcursor("ON")
1520 ENOPROC
1530
1540 OEF PROCassemble
1550 osword=&FFFl
1560 DIM V% 100
1570 FOR opt%=O TO 2 STEP 2
1580 P%=V%
1590 [
1600 OPT opt%
1610 .init \ set up parameter block: LOA #Q MOD 256:STA

param
1620 LOA #Q DIV 256:STA param+l
1630 LOA #&20:STA param+3 \ ascii for space
1640 LOA #122:STA param+4 \ ascii "z"
1650 RTS
1660 .input LOA len%:STA param+2
1670 LOA #0
1680 LOX #param MOD 256
1690 LOY #param OIV 256
1700 JSR osword
1710 RTS
1720]
1730 param=P%
1740 Q=P%+5
1750 NEXT opt%
1760 ENOPROC
1770
1780 OEF FNcount back(search$)
1790 REM "* Search back from end of
1800 REM "* string until either space
1810 REM "* or start of string found
1820 LOCAL L%,J%,found spc
1830 L%=LEN (search$) -
1840 J%=L%
1850 REPEAT
1860 IF MIO$(search$,J%,l)=" " THEN R$=RIGHT$(search$,(

L%-J%)):search$=LEFT$(search$,J%-l):found spc=l
1870 J%=J%-l -
1880 UNTIL J%=l OR found spc
1890 IF found spc THEN search$=FNpad(search$)
1900 =search$-
1910
1920 OEF FNpad(pad$)
1930 REM "* Fill out string with spaces
1940 LOCAL K%,found spc,spaces,R$
1950 spaces=?len%-LEN (pad$)
1960 REPEAT
1970 K%=l
1980 REPEAT
1990 IF MIO$(pad$,K%,l)=" " THEN R$=MIO$(pad$,K%+l):fou

nd_spc=l

215

216 A Science Teacher's Companion to the BBC Microcomputer

2000 IF (found spc=l) AND (spaces>O) THEN pad$=
LEFT$(padf,K%}+" "+R$:spaces=spaces-l

2010 IF found spc THEN K%=K%+2:found spc=O ELSE K%=K%+l
2020 UNTIL K%>=LEN padS -
2030 UNTIL spaces=O
2040 =pad$
2050
2060 DEF PROCpause(secs}
2070 LOCAL t
2080 t=TIME
2090 REPEAT UNTIL TIME >=t+secs*100
2100 ENDPROC
2110
2120 DEF PROCbig window
2130 VDU 28,4,12~36,3
2140 ENDPROC
2150
2160 DEF PROCsma11 window
2170 VDU 28,14,18,24,14
2180 ENDPROC
2190
2200 DEF PROCinput answers(N%}
2210 LOCAL I%,A$ -
2220 PROCcursor("OFF"}
2230 PRINT TAB(5,4}"NOW ENTER THE ANSWERS"
2240 PROCpause(3}:CLS
2250 PROCcursor("ON"}
2260 FOR A%=l TO N%
2270 PROCsmall window
2280 CLS -
2290 PRINT CHR$ 141;" Answer "'CHR$ 141;" Answer"
2300 PRINT CHR$ 141;" ";CHR$ (A%+64) 'CHR$ 141;"

" ; CHR$ (A%+64)
2310 PROCbig window
2320 CLS -
2330 1%=1
2340 REPEAT
2350 ?len%=line len%-LEN (A$(I%})
2360 *FX15,0 -
2370 CALL input
2380 A$=$Q:R$='"'
2390 IF LEN (A$(I%}+A$}>=line len% AND RIGHT$(A$,l)<>

" "THEN A$=FNcount back(A$}
2400 A~(I%}=A$(I%}+A$ -
2410 VDU 11:PRINT A$(It}
2420 A$(I%+l}=R$
2430 PRINT A$(I%+l};
2440 IF 1%=1 THEN An$(A%}=A$(I%}
2450 1%=1%+1
2460 UNTIL 1%=3 OR $Q=""
2470 An$(A%}=An$(A%}+CHR$ 10+CHR$ 13+STRING$(6,

CHR$ 9}+A$(I%-1}
2480 PRINT 'TAB(8}"ANY CORRECTIONS?";
2490 G$=GET$:IF G$="Y" OR G$="y" THEN PRINT CHR$ 13;

SPC (30};:PROCedit("A")
2500 SOUND 1,-15,100,2
2510 PROCclear A:REM "* Clear An$(} *
2520 NEXT A% -
2530 SOUND 1,-15,50,4
2540 ENDPROC
2550
2560 DEF PROCclear Q
2570 LOCAL 1% -
2580 FOR 1%=1 TO
2590 Q$(I%}=""
2600 NEXT 1%
2610 ENDPROC
2620
2630 DEF PROCclear A
2640 FOR 1%=1 TO 3
2650 A$(I%}=""
2660 NEXT 1%
2670 ENDPROC
2680
2690 DEF PROCcursor(C$}
2700 IF C$="OFF" THEN VDU 23,1,0;0;0;0; ELSE VDU 23,1,1

;0; 0; 0;

Testing, Files and Record Keeping

2710 ENDPROC
2720
2730 DEF PROCsave(I%)
2740 LOCAL J%,K%
2750 VDU 31,7,5
2760 C%=OPENOUT (fi1e$)
2770 PRINT #C%,I%
2780 FOR J%=l TO 1%
2790 PRINT #C%,Q$(J%)
2800 NEXT J%
2810 FOR K%=l TO num ans%
2820 PRINT #C%,An$(K%)
2830 NEXT K%
2840 PRINT #C%,correct$
2850 CLOSE #C%
2860 SOUND 1,-15,100,2
2870 SOUND 1,-15,50,4
2880 ENDPROC
2890
2900 DEF PROCsave header
2910 C%=OPENOUT (fi1e$)
2920 PRINT #C%,num q%,num ans%,max time,name$
2930 CLOSE #C% - - -
2940 ENDPROC
2950
2960 DEF PROCedit(array$)
2970 LOCAL L%,A$
2980 IF array$="Q" THEN max L%=8 ELSE max_L%=2
2990 REPEAT -
3000 REPEAT
3010 PRINT TAB(0,9)" IN WHICH LINE IS THE ERROR?

"i
3020 INPUT TAB(29,8)" " L%
3030 PRINT TAB(29,8);"
3040 IF L%<l OR L%>max L% THEN SOUND 1,-15,20,5
3050 UNTIL L%>O AND L%<=max L%
3060 PRINT TAB(0,9)" RE-TYPE THE INCpRRECT LINE

";
3070 VDU 31,0,8
3080 CALL input
3090 IF array$="Q" THEN Q$(L%)=$Q
3100 IF array$="A" THEN T$=An$(A%):PROCfind LF(L%)
3110 IF array$="A II AND L%=l THEN An$(A%)=$Q+T$
3120 IF array$="A" AND L%=2 THEN An$(A%)=T$+$Q
3130 VDU 31,0,L%-1
3140 PRINT $QiSPC (32-LEN ($Q))i:REM " Print

new version
3150 PRINT TAB(0,8);SPC (32);
3160 PRINT TAB(0,9)" ANY OTHER ERRORS?

n;

3170 A$=GET$
3180 UNTIL A$="N" OR A$="n ll OR A$=CHR$ 13
3190 ENDPROC
3200
3210 DEF PROCfind LF(line%)
3220 REM "Find line-feed
3230 LOCAL J%,L%,found LF
3240 L%=LEN (T$) -
3250 J%=l
3260 REPEAT
3270 IF MID$(T$,J%,l)=CHR$ 10 THEN found LF=TRUE
3280 IF found LF AND 1ine%=1 THEN T$=RIGHT$(T$,L%-J%+l)
3290 IF found-LF AND 1ine%=2 THEN T$=LEFT$(T$,J%+l)
3300 J%=J%+l -
3310 UNTIL found LF OR J%=L%
3320 ENDPROC -
3330 DEF PROCtape check
3340 LOCAL Q%,K%,Q$,num q%,num ans%,max time,name$,corr

ect$,An$,X% - - -
3350 REM "** DATA TAPE TEST **
3360 CLS
3370 PRINT "Re-wind data tape and press PLAY" ~~

3380 X%=OPENUP (fi1e$)
3390 INPUT #X%,num q%,num ans%,max time,name$
3400 PRINT "Name of test.-: " nameS
3410 PRINT "Number of questions " num q%
3420 PRINT "Number of answers " num-ans%
3430 PRINT "Maximum time allowed .. " max-time

217

REM "*****************
REM "** **
REM "** TESTER **
REM "** (for Tapes) **
REM "** **
REM "** Copyright **
REM "** **
REM "** (c) 1984 **
REM "** **
REM "** by **
REM "** **
REM P Hawthorne
REM "**
REM "*****************

218 A Science Teacher's Companion to the BBC Microcomputer

3440 CLOSE #X%
3450 PRINT '" "'TAB (13) "PRESS ANY KEY";
3460 A=GET
3470 CLS
3480 FOR Q%=l TO num_q%
3490 CLS
3500 PRINT TAB(14)"QUESTION "iQ%'"
3510 X%=OPENUP (file$)
3520 INPUT #X%,max K%
3530 FOR K%=l TO max K%
3540 INPUT #X%,Q$ -
3550 PRINT Q$
3560 NEXT K%
3570 FOR K%=l TO num ans%
3580 INPUT #X%,An$
3590 PRINT "An$
3600 NEXT K%
3610 INPUT #X%,correct$
3620 PRINT ""Correct answer "icorrect$
3630 PRINT "'''TAB(5)''PRESS ANY KEY FOR NEXT QUESTION"i
3640 A=GET
3650 NEXT Q%
3660 CLOSE #X%
3670 ENDPROC

Listing "TESTER"

10
20
30
40
45
50
60
70
80
90

100
110
120
130
140
150 MODE 7
160 *FX220,0
170 PROCinput_header
180
190 CLS
200 key$="":UC key$="":hi score=O
210 DIM Q$(9),An$(5),score(num q%),name$(class size),m

ark(class size) - -
220
230
240 FOR 1%=1 TO num ans%
250 REM "* ACCEPT UPPER & LOWER CASE
260 key$=key$+CHR$ (I%+64)+CHR$ (1%+96)
270 REM "* PRINT UPPER-CASE KEYS ONLY
280 UC key$=UC key$+CHR$ (1%+64)
290 IF-I%<num ans% THEN UC key$=UC key$+","
300 NEXT 1% - --
310
320
330 REM "** Main Loop starts here **
340
350 FOR pupil=l TO class size
360 time=O
370
380 CLS
390 PROCtitle_screen
400
410 CLS
420 PROCquestion_screen(131,132)
430
440
450 TIME =-100
460

Testing, Files and Record Keeping

470 REM "** Question (Q%) Loop **
480
490 Q%=O:time_up=FALSE
500
510 REPEAT
520
530 Q%=Q%+l
540 IF max time=O THEN X=23 ELSE X=14
550 PRINT TAB(X,O) ;Q%~TAB(X,l);Q%
560 PROCprint time
570 PRINT TAB(3,24);" LOADING QUESTION NUMBER ";Q%;

" ;
580 PROCinput data
590 FOR K%=l TO 9
600 PRINT TAB(4,2+K%);Q$(K%)
610 Q$(K%)=""
620 NEXT K%
630 FOR K%=l TO num ans%
640 PRINT TAB(4,11+2*K%);CHR$ (K%+64);" ";An$(K%)
650 An$(K%)=""
660 NEXT K%
670 TIME =time
680 REPEAT
690 PRINT TAB(4,24)SPC (32);
700 PRINT TAB(3,24);CHR$ l36;"PLEASE SELECT AN ANSWER

(";UC key$;")";
710 REPEAT-
720 VDU 23,1,0;0;0;0;:REM "Cursor off
730 *FX15,1
740 REPEAT
750 PROCprint time
760 KEYl$=INKEY$ (0)
770 UNTIL KEYl$<>"" OR time up
780 answer=INSTR(key$,KEYl$)
790 UNTIL answer OR time up
800 REM u** Allow for lower case **
810 IF answer MOD 2=0 THEN answer=answer-l
820 REM u** Convert to 1,2,3 ...
830 answer=(answer+l) DIV 2
840 VDU 31,3, (11+2*answer),32,31,3,(12+2*answer),32:

REM "** Highlight choice **
850 PRINT TAB(3,24);CHR$ 136;" DO YOU WANT TO CHANGE

IT ? (YIN) ";
860 *FX15,1
870 REPEAT
880 PROCprint time
890 KEY$=INKEY$ (0)
900 UNTIL KEY$<>"" OR time up
910 YES NO=INSTR("YyNn",KEY$)
920 VDU-3l,3,(11+2*answer),156,3l,3,(12+2*answer),156:

REM "** Remove Highlight **
930 UNTIL YES NO=3 OR YES NO=4 OR time up
940 time=TIME- - -
950 PROCclear
960 answer$=CHR$ (answer+64)
970 IF answer$=correct$ THEN score(Q%)=l ELSE

IF (answer<>O) AND KEYl$<>"" THEN score(Q%)=-l
980 UNTIL Q%=num q% OR time up
990 REM "** End of Question-Loop **

1000
1010 PROCreport
1020
1030 NEXT pupil
1040 REM "** End of test **
1050
1060 CLS
1070 REPEAT
1080 REPEAT UNTIL INKEY (-36)
1090 UNTIL INKEY (-100)
1100
1110 *FX15,1
1120 A=INKEY (50)
1130 *FX15,1
1140 INPUT TAB(9,12)"PLEASE ENTER PASSWORD II pass$
1150 CLS
1160 IF pass$<>code$ THEN END
1170 PROCresults
1180

219

220 A Science Teacher's Companion to the BBC Microcomputer

1190 END
1200
1210
1220 DEF PROCtitle screen
1230 PRINT CHR$ 130;CHR$ 157;CHR$ 131;CHR$ 141;

TAB((36-LEN (name$}}/2};name$
1240 PRINT CHR$ 130;CHR$ 157;CHR$ 131;CHR$ 141;

TAB(.(36-LEN (name$}}/2};name$
1250 IF max time>O THEN PRINT '"You will have ";max tim

e;" minutes to answer ";num q%; '"questions."
1260 PRINT '"Choose what you thi~k is the most"
1270 PRINT "correct answer by pressing the"'"correspond

ing key."
1280 PRINT "'"Please type in your name. If you make"
1290 PRINT "a mistake press 'DELETE' (bottom right"
1300 PRINT "of the keyboard) to erase it and retype"
1310 PRINT "correctly. When you have finished typing";
1320 PRINT "press the 'RETURN' key."
1330 VDU 28,0,23,39,19
1340 VDU 23,1,1;0;0;0;
1350 REPEAT
1360 VDU 31,0,0,132,157,131
1370 INPUT TAB(4,0}" First name" namel$
1380 VDU 13,11,9,9,9:PRINT SPC (36);
1390 INPUT TAB(4,0}" Surname "name2$
1400 PRINT TAB(0,2}"Your name is "'namel$;" ";name2$
1410 PRINT TAB(0,4}"Is this correct (yiN) ?";
1420 REPEAT :A=INSTR("YyNn",GET$ }:UNTIL A
1430 name$(pupil}=name2$+","+namel$
1440 CLS
1450 UNTIL A=l OR A=2
1460 VDU 26
1470 ENDPROC
1480 DEF PROCquestion screen(fgd%,bgd%}
1490 FOR row%=O TO 24-
1500 VDU 31,0,row%,bgd%,157,fgd%
1510 IF (row%>2 AND row%<ll) OR (row%>ll AND row%<24)

THEN VDU 156,31,38,row%,bgd%,157
1520 NEXT row%
1530 IF max time=O THEN X=13 ELSE X=4
1540 VDU 31~X,0,141:PRINT "Question ":VDU 31,X,1,141:

PRINT "Question "
1550 IF max time>O THEN PRINT TAB(22,0}"Time left ";

TAB(22~1};"Time left ";
1560 ENDPROC
1570 DEF PROCinput header
1580 CLS -
1590 INPUT "File name of t.est please", fi1e$
1600 PRINT ""Re-wind data tape and press PLAY""
1610 X%=OPENUP (file$)
1620 INPUT #X%,num q%,num ans%,max time,name$
1630 PRINT "Name of test.-:- ";name$
1640 PRINT "Number of questions ";num q%
1650 PRINT "Number of answers ";num-ans%
1660 PRINT "Maximum time allowed .. ";max-time
1670 CLOSE #X% -
1680 PRINT ""IS THIS THE TEST YOU REQUIRE? (yiN)";
1690 A$=GET$
1700 IF A$="N" OR A$="n" THEN PRINT ""PLEASE INSERT

THE CORRECT DATA TAPE"'"AND TRY AGAIN!" ""PRESS
ANY KEY WHEN READY":A=GET :RUN

1710 INPUT ""How many pupils are to take the test?"
class size

1720 INPUT-""P1ease enter PASSWORD to control accesst
o class results "code$

1730 ENDPROC
1740 DEF PROCinput data
1750 X%=OPENUP (file$)
1760 INPUT #X%,max K%
1770 FOR K%=l TO max K%
1780 INPUT #X%,Q$(K%)
1790 NEXT K%
1800 FOR K%=l TO num ans%
1810 INPUT #X%,An$(K%}
1820 NEXT K%
1830 INPUT #X%,correct$
1840 CLOSE #X%
1850 ENDPROC

Testing, Files and Record Keeping

1860 DEF PROCclear
1870 VDU 28,4,11,35,3:CLS
1880 VDU 28,4,22,35,13:CLS
1890 VDU 26
1900 ENDPROC
1910 DEF PROCprint time
1920 LOCAL time lelt,mins left,secs left,min$,sec$
1930 IF max time=O THEN ENDPROC
1940 time left=max time*60-TIME 1100
1950 IF tIme left<~O THEN time left=O:time up=TRUE

ELSE time up=FALSE - -
1960 mins left~time left DIV 60
1970 secs-left=time-left MOD 60
1980 min$~STR$ (mins left)
1990 IF mins left<lO-THEN min$=" "+min$
2000 sec$=STR$ (sees left)
2010 IF sees left<lO-THEN sec$="O"+sec$
2020 PRINT TAB(32,O)imin$i":"isec$
2030 PRINT TAB(32,l)imin$i":"isec$
2040 ENDPROC
2050 DEF PROCreport
2060 LOCAL score,J%
2070 CLS
2080 VDU 129,157,131,141:PRINT TAB(12)i"RESULTS"
2090 VDU l29,157,131,141:PRINT TAB(12)i"RESULTS"
2100 PRINT "'TAB(8)i"Question Your answer was:"
2110 VDU 28,0,24,39,5
2120 FOR J%=l TO num q%
2130 PRINT TAB(ll)iJ%i
2140 IF score(J%)=l THEN score=score+l
2150 IF score(J%)=l THEN PRINT TAB(21)i"CORRECT"

ELSE IF score(J%)=-l THEN PRINT TAB(21)i"WRONG"
ELSE PRINT TAB(21)"NO ANSWER"

2160 IF (J%+l) MOD 15=0 THEN PRINTTAB(4)iCHR$ 130i
"PRESS THE SPACE BAR TO CONTINUE":REPEAT UNTIL
INKEY (-99):CLS

2170 score(J%)=O:REM "* Clear for next pupil *
2180 NEXT J%
2190 mark(pupil)=score
2200 IF time up THEN PRINT "Sorry but you ran out

of time."
2210 PRINT "You scored "iscorei" out of a possible

"inurn q%
2220 IF score>hi score THEN hi score=score:PRINT

"Well done ~inamel$i".""'"~ou have the highest
mark so far."

2230 PRINT "'''Thank you for taking the test. I hope
you found it helpful."

2240 TIME =0
2250 REPEAT
2260 UNTIL TIME >2000
2270 VDU 26
2280 ENDPROC
2290 DEF PROCresults
2300 VDU 129,157,135,141:PRINT TAB(ll)i"Class Results"
2310 VDU 129,157,135,14l:PRINT TAB(ll)i"Class Results"
2320 PRINT TAB(12,12);"HARD COPY? (Y/N)"i
2330 A$=GET$:PRINT TAB(12,12)iSPC (20)i
2340 IF A$="Y" OR A$="y" THEN VDU 2
2350 PRINT TAB(15,3)iname$
2360 PRINT "'TAB(12); "NAME" iTAB (28) i "MARK"
2370 VDU 28,0,24,39,6
2380 FOR pupil=l TO class size
2390 IF ((pupil+l) MOD 15~O) AND (A$="N" OR A$="n")

THEN PRINTTAB(6)iCHR$ 129i"PRESS ANY KEY TO
CONTINUE":A=GET :CLS

2400 PRINT TAB(6) iname$(pupil) iTAB(30}imark(pupil)
2410 NEXT pupil
2420 VDU 3
2430 PRINT ""00 YOU WANT THE RESULTS SAVED? (Y/N)"i
2440 A$=GET$
2450 IF A$="Y" OR A$="y" THEN PROCsave
2460 ENDPROC
2470 DEF PROCsave
2480 LOCAL 1%
2490 CLS
2500 PRINT ""Enter a file name for the results."
2510 INPUT new_fileS

221

222 A Science Teacher's Companion to the SSC Microcomputer

2520 new file$=LEFT$(new file$,7)
2530 PRIiT ""File name ~ill be ";new fileS
2540 X=OPENOUT (new fileS) -
2550 PRINT #X,name$~REM "* Save title *
2560 PRINT #X,class size:REM "* Save number in class

* -
2570 FOR 1%=1 TO class size
2580 PRINT #X,name$(I%T,mark(I%)
2590 NEXT 1%
2600 CLOSE #X
2610 ENDPROC

I do not intend to explain in any great detail how
these programs work but rather how they are used. The
first task is to enter the basic data for the test.
This consists of the number of questions, the number of
possible answers for each (if this varies, then enter
the maximum number), the optional time limit (press
RETURN if none is required) and the name of the test.
Finally a file name is required, up to 7 characters
long, or just press RETURN and the computer will use
the first 7 letters of the test name. You should have
a blank data tape ready for recording the data. (Disk
users please refer to the notes later in this chapter.)

When the header data has been saved the computer
will print the basic instructions and you will be left
with a window into which you type all your questions
and answers. The Osword call with A = a is used to
input the data from the keyboard (see User Guide page
459) and it allows only as many characters to be typed
in as will fit across the width of the window (32).
When this number of characters has been entered you
will hear a beep and further characters will be
ignored. You can still erase characters, using DELETE,
and retype as normal but if you want to enter the next
line of text press RETURN, even if you are in the
middle of a word. You will notice that the first half
of your incomplete word is moved to the start of the
next line and the previous line is padded out to fill
the line exactly. This gives a neat, right justified
text which is easy to read and will fit the screen
layout of "TESTER" exactly. Thus you have in effect a
simple 'word processor' but note that you will not be
able to erase any errors in the part of the word copied
down from the previous line. However any typing errors
can be corrected using the simple editing routine which
will allow you to retype any offending line before
committing it to tape. When editing, remember that you
can still use the cursor and COpy keys to copy most of
an otherwise correct line.

When you have typed in a question and its 'answers',
you will be asked to enter the correct answer letter.
The question, with its answers and the correct one,
will then be recorded on the tape. This process is
then repeated until all the questions have been dealt

Testing, Files and Record Keeping 223

with. You will then be given the option of checking
the data tape that has been created. This involves the
computer reading in and displaying the data again,
starting with the header (name of test etc.) and then
each question with its possible answers and the correct
answer. If you discover any errors at this stage you
could rewind the tape to the start of the erroneous
question, run "TESTGEN" again, but input 1 for the
number of questions. Ignore the instruction to press
RECORD but do press RETURN. Now retype the incorrect
question and it should be saved, erasing the old
version in the process. If this seems complicated take
heed: edit carefully before the questions are saved!

Assuming that you have successfully created a data
file you can now try it out using "TESTER". When the
program is run you will be asked the file name of the
test, as used when creating the data tape. The header
information will be read in and displayed and you can
check if this is the test that you want. If it is not
you are asked to try again. Assuming that you are
satisfied, you then enter the number of pupils to take
the test and a password which you can later use to
obtain a display of the class results. As an extra
precaution, when the last pupil has finished the test
the VDU will be left blank, with no indication that any
input is required. To advance past this stage you must
type, in quick succession, the letters /T/ and /V/.
The reason I chose these letters is staring you in the
face!)

This is achieved by the nested REPEAT loops in lines
1070-1090 where the negative inkey numbers are for the
stated keys. You may wish to change these, just in
case your pupils have read this book too! Once you
have passed this protection stage, type in the password
that you entered at the beginning and you will be given
a listing of the pupils' names and scores with the
option of a hard copy to the printer. Finally you can
save the results as another data file, possibly for
later processing.

In case you wish to write other programs to read the
data files set up by "TESTGEN" and "TESTER", the format
of the files is given.

1. File format produced by "TESTGEN"
a. The header (at start of tape only).

DATA

Number of questions
Max. number of answers
Maximum time limit
Name of the test

VARIABLE TYPE

integer
integer
real

string

224 A Science Teacher's Companion to the BBC Microcomputer

b. For each question

DATA VARIABLE TYPE

Number of lines in question integer
First line of question string
Second line of question string
etc. string
Last line of question string
Text for first answer string
Text for second answer string
etc. - up to max no. of answers
Letter of correct answer string

2. File format produced by "TESTER" (record of class
results)

DATA

Name of the test
Number who took test
Name of pupil I
Mark for pupil I
Name of pupil 2
Mark for pupil 2
etc.

VARIABLE TYPE

string
real

string (Smith,John)
integer
string
integer

The pupil is given some basic instructions and asked
to type in his name. The question/answer screen is
then displayed, with the time remaining displayed in
the top right hand corner, if the time limit has not
been set to zero. This time will tick away while the
student is thinking about his answer but it stops
during question loading. The student selects the
desired answer by pressing the appropriate letter key
and he is then asked if he wants to change his mind.
No indication is given as to whether the answer offered
is correct or incorrect this change option is
provided in case a key is pressed by mistake. When the
final choice has been made the clock is stopped and the
next question is loaded and displayed. When all the
questions have been answered the pupil is given a
report on his performance. This informs him which
questions he answered correctly and gives the total
mark. If this is the highest so far, he is
congratulated. If a pupil should run out of time, he
will immediately exit from the question loop and be
given a report, including the fact that the allotted
time has expired.

Testing, Files and Record Keeping 225

There are many possibilities either to expand the
program or to use the results data that it produces in
other programs. Routines to calculate the variance and
standard deviation could be used and the results
presented graphically. It is also possible to work out
the facility value and discrimination index for each
question. The details of the pupil/s answer to each
question are contained in the array /score() /, in which
an entry of 1 signifies a correct answer, -1 is
incorrect and 0 means it was not answered in the
allowed time. If you want to use this information, you
will need to do so before the array is cleared during
the report procedure at line 2170. The pupils/ names
are contained in the array /name$/ in the form:
surname,christian name. The marks are stored, in the
same order as the names, in the array /mark() /

FILES AND RECORD-KEEPING

There are many instances of records that the busy
teacher must try to keep up to date. All teachers have
their mark book containing the record of their pupils/
academic progress and, while it is no great hardship to
keep this updated after each exam or test, most of us
probably do not make as much use of the information as
we could. It can take a lot of time to analyse and
standardise marks, plot progress graphs and so on, all
of which the computer could do very quickly. It may
even reveal correlations that we were unaware of. The
reason for using the computer to maintain a data-base
of information on any subject is that it simplifies the
whole task and makes it possible to carry out
processing on the data that would be too time consuming
otherwise. Although the program listed here
("CLASREC") is designed in the first instance as a
means of setting up, and interrogating in various ways,
a data-base of class records, it is also intended to
act as a model on which other data handling
applications can be based. It would take very little
effort to convert the program to handle, say, stock
lists of chemicals, stationery or whatever. It would
also be possible for pupils to use it to build up and
interrogate a data-base on a wide range of topics
related to their studies. I will give details of the
necessary changes later in this chapter.

REM "***************
REM n** CLASREC **
REM "** **
REM "** Verso 3.0 **
REM "** **
REM n** (c) PDH **
REM "** **
REM "** 21.06.84 **
REM "***************

226 A Science Teacher's Companion to the SSC Microcomputer

Listing "CLASREC"

10
20
30
40
50
60
70
80
90

100
110
120 MODE 7
130
140 REM "* N%=max number of records *
150 REM "* F%=number of fields *
160
170 N%=100:F%=10
180 fie1ds%=F%
190
200 DIM fi1e$(N%,F%)
210 DIM match%(N%),fie1d$(F%),report%(F%)
220
230 FOR 1%=1 TO F%
240 READ fie1d$(I%)
250 NEXT 1%
260
270 key$=""
280
290 FOR 1%=1 TO F%
300 key$=key$+CHR$ (1%+64)
310 NEXT 1%
320
330 REM "*** Names of fields ***
340 DATA Surname,First name, Sex, Date of birth
350 DATA Info 1,Info 2,Test 1 resu1ts,Test 2 results
360 DATA Test 3 resu1ts,Test 4 results
370
380 high$=CHR$ 132+CHR$ 157+CHR$ 131
390 current rec=l
400 *OPT3, 5-
410 REM "* Delete for disks *
420 REM "Interblock Gap=0.5 secs
430 REM "May not suit some recorders
440 REM "(See User Guide, page 398)
450
460 PROCset fields(l)
470
480 REPEAT
490 PROCmenu
500 UNTIL FALSE
510
520
530 DEF PROCmenu
540 LOCAL choice
550 CLS
560 VDU 129,157,131,141:PRINT TAB(12)i"OPTIONS"
570 VDU 129,157,13l,141:PRINT TAB(12)i"OPTIONS"
580 PRINTTAB(3)i"<1> Save the file"
590 PRINT "TAB(3)i"<2> Read in a file"
600 PRINT "TAB(3)i"<3> Add/Edit a record"
610 PRINT "TAB(3)i"<4> Look at a record"
620 PRINT "TAB(3)i"<5> De1ete a record"
630 PRINT 'TAB(3)i"<6> Sort the file"
640 PRINT "TAB(3)i"<7> Search the file"
650 PRINT "TAB(3)i"<8> Set up report format"
660 VDU 23,1,OiOiOiOi:REM "Cursor off
670 VDU 10,10,132,157,131,136:PRINT TAB(lO)i"P1ease

Select II i

680
690 REPEAT
700 choice=INSTR("12345678",GET$
710 UNTIL choice
720 PRINT TAB(O,choice*2+2)ihigh$iTAB(O,19)i
730

Testing, Files and Record Keeping

740 IF choice=l THEN PROCsave
750 IF choice=2 THEN PROCread
760 IF choice=3 THEN PROCadd
770 IF choice=4 THEN CLS :PROCview(FNgetrec)
780 IF choice=5 THEN PROCdelete
790 IF choice=6 THEN PROCsort
800 IF choice=7 THEN PROCsearch
810 IF choice=8 THEN PROCselect_fields
820 ENDPROC
830
840 DEF PROCsave
850 LOCAL I%,ch
860 ch=OPENOUT (FNinput file name)
870 FOR 1%=1 TO current-rec -
880 FOR J%=l TO F% -
890 PRINT #ch,file$(I%,J%)
900 NEXT J%
910 NEXT 1%
920 CLOSE #ch
930 ENDPROC
940
950 DEF PROCread
960 LOCAL I%,ch
970 ch=OPENUP (FNinput file_name)
980 1%=1 -
990 REPEAT

1000 FOR J%=l TO F%
1010 INPUT #ch,file$(I%,J%)
1020 NEXT J%
1030 IF I%>current rec THEN current rec=I%
1040 1%=1%+1 -
1050 IF I%>N% THEN I%=N%:REM "Keep within array

size
1060 UNTIL EOF #ch
1070 CLOSE #ch
1080 ENDPROC
1090
1100 DEF PROC~dd

1110 LOCAL rec,I%,J%,L%,edit,response$
1120
1130 CLS
1140 VDU 129,157,131,141:PRINT TAB(lO)i"ADD/EDIT RECORD"
1150 VDU 129,157,131,141:PRINT TAB(lO)i"ADD/EDIT RECORD"
1160 VDU 23,1,liOiOiOi:REM "Cursor on
1170 REPEAT
1180 PRINT '
1190 REPEAT
1200 PRINT "Record number ("iCHR$ 129i"RETURN"i

CHR$ 135i"will use next" '''free record) "i
1210 INPUT rec
1220 UNTIL rec>=O AND rec<N%
1230 edit=FALSE
1240 IF rec=O THEN rec=current rec ELSE IF rec>current

rec THEN current rec=rec ELSE edit=TRUE
1250 REM "** Select edit cursor **
1260 IF edit THEN VDU 23,0,10,192,OiOiOi
1270 CLS
1280 PROCset fields(l)
1290 IF file$(rec,l)<>"" THEN PRINT "Current contents:"

:printer=FALSE :VDU 28,0,F%+7,39,0:PROCprint(rec)
1300 VDU 31,0,5
1310 FOR J%=l TO F%
1320 L%=LEN (field$(J%))
1330 PRINT field$(J%);STRING$(14-L%,".");
1340 INPUT " "response$
1350 IF response$<>"" THEN file$(rec,J%)=response$
1360 L%=LEN (response$)
1370 IF edit AND response$<>"" THEN VDU 11:FOR 1%=1

TO (15+L%):VDU 9:NEXT I%:PRINT SPC (25-L%);
1380 NEXT J%
1390 IF NOT edit THEN current rec=current rec+l
1400 REM "** Normal cursor ** -
1410 VDU 23,0,10,114,0;0;0;
1420 key=FNp a k
1430 CLS - -
1440 UNTIL key=13
1450 VDU 26

227

228 A Science Teacher's Companion to the BBC Microcomputer

1460 ENDPROC
1470
1480 DEF PROCsort
1490 LOCAL choice,J%,L%
1500 CLS
1510 VDU 132,157,134,141:PRINT TAB(10)i"SORT FILE ON:"
1520 VDU 132,157,134,141:PRINT TAB(10)i"SORT FILE ON:"
1530 PRINT '
1540 FOR J%=l TO F%
1550 L%=LEN (field$(J%))
1560 PRINT TAB(3)ifield$(J%)iSTRING$(20-L%,".")i"<"i

CHR$ (J%+64) r ">"
1570 NEXT J%
1580 VDU 10,132,157,134,136:PRINT TAB(ll)i"Please selec

t"
1590 REPEAT
1600 choice=INSTR(key$,GET$)
1610 UNTIL choice
1620 PRINT TAB(O,choice+3)ihigh$
1630 VDU 31,4,F%+5:PRINT "Alphabetic or Numeric sort

(A/N)?"
1640 REPEAT J%=INSTR("AaNn",GET$):UNTIL J%<>O
1650 VDU 31,4,F%+5:PRINT TAB(5)iSPC (32)
1660 VDU 31,4,F%+5:PRINT TAB(10)i"Now sorting
1670 PROCsoundl
1680 IF J%<3 THEN PROCbubbleS(choice,current rec-l)

ELSE PROCbubbleN(choice,current_rec-l)
1690 ENDPROC
1700
1710 DEF PROCsearch
1720 LOCAL key,choice,J%,L%,min$,max$
1730 CLS
1740 VDU 130,157,131,141:PRINT TAB(10)i"SEARCH ON:"
1750 VDU 130,157,131,141:PRINT TAB(10)i"SEARCH ON:"
1760 PRINT '
1770 FOR J%=l TO F%
1780 L%=LEN (field$(J%))
1790 PRINT TAB(3)ifield$(J%)iSTRING$(20-L%,".")i"<"i

CHR$ (J%+64) i "> "
1800 NEXT J%
1810 VDU 10,130,157,131,136:PRINT TAB(9)i"Please Select

":
1820 REPEAT
1830 choice=INSTR(key$,GET$
1840 UNTIL choice
1850 PRINT TAB(O,choice+3)ihigh$
1860 VDU 31,4,F%+5:PRINT "Alphabetic or Numeric search

(A/N)?"
1870 REPEAT J%=INSTR("AaNn",GET$):UNTIL J%<>O
1880 VDU 31,4,F%+5:PRINT TAB(5)iSPC (32)
1890 VDU 23,1,liOiOiOi:REM "Cursor on
1900 INPUT TAB(0,23)"Range of search, minimum "min$
1910 PRINT TAB(O,23)iSPC (40)i
1920 PROCsoundl
1930 INPUT TAB(O,23)"Range of search, maximum "max$
1940 IF max$="" THEN max$=min$
1950 VDU 23,1,OiOiOiOi:REM "Cursor off
1960 IF J%<3 THEN PROCmatch(choice,min$,rnax$) ELSE

PROCrnatchN(choice,rnin$,rnax$)
1970 IF NOT found THEN PRINT TAB(O,20)iCHR$ 136i

TAB(8)i"SORRY, NO MATCH FOUND":PROCsound2:key=
FNp_a_k ELSE key=O

1980 IF NOT found AND key=13 THEN ENDPROC ELSE
IF NOT found AND key<>O THEN PROCsearch:ENDPROC

1990 VDU 23,1,liOiOiOi:REM "Cursor on
2000 PROCsoundl
2010 PRINT TAB(O,23)i"Output to PRINTER (Y/N)?"i

SPC (15) i
2020 A$=GET$:IF A$="Y" OR A$="y" THEN printer=

TRUE ELSE printer=FALSE
2030 VDU 12,28,0,fields%+6,39,0
2040 IF printer THEN VDU 2
2050 1%=1
2060 REPEAT
2070 IF rnatch%(I%)=l THEN PROCprint(I%)
2080 IF rnatch%(I%)=l AND NOT printer THEN key=FNp a k

ELSE IF match%(I%)=l THEN VDU 1,10,1,10,3:key=
FNp_a_k:VDU 2

Testing, Files and Record Keeping

2090 1%=1%+1
2100 UNTIL key=13 OR I%>current_rec
2110 VDU 3,26
2120 ENDPROC
2130
2140 DEF PROCmatch(fie1d,min$,max$)
2150 LOCAL I%,A$
2160 found=FALSE
2170 FOR 1%=1 TO current rec
2180 A$=fi1e$(I%,fie1d)
2190 IF A$>=min$ AND A$<=max$ THEN match%(I%)=l:found=

TRUE ELSE match%(I%)=O
2200 NEXT
2210 ENDPROC
2220
2230 DEF FNinput file name
2240 VDU 23,1,1;O;0;0;:REM "Cursor on
2250 PRINT .-
2260 REPEAT
2270 INPUT "File name (up to 7 letters)"file$
2280 PRINT CHR$ 11;SPC (40);:VDU 13,11
2290 IF file$="" OR LEN (fi1e$»7 THEN PROCsound2
2300 UNTIL fi1e$<>'''' AND LEN (file$)<8
2310 =file$
2320
2330 DEF PROCprint(rec num)
2340 IF NOT printer THEN VDU 129,157,131,141:PRINT

"Record number ";rec num
2350 IF NOT printer THEN VDU 129,lS7,131,141:PRINT

"Record number ";rec num
2360 IF printer THEN VDU I,142:PRINT "RECORD NUMBER

";rec num
2370 PRINT -
2380 FOR J%=l TO F%
2390 IF report%(J%)=O THEN 2440
2400 PRINT fie1d$(report%(J%));
2410 1en%=LEN (fie1d$(report%(J%)))
2420 PRINT STRTNG$(14-1en%,".")i" n i
2430 PRINT fi1e$(rec num,report%(J%))
2440 NEXT J% -
2450 ENDPROC
2460
2470 DEF PROCview(rec num)
2480 PRINT "Output to-PRINTER (Y/N)?n i
2490 A$=GET$:IF A$="Y" OR A$="y" THEN printer=

TRUE ELSE printer=FALSE
2500 VDU 12,28,0,fie1ds%+6,39,0
2510 IF printer THEN VDU 2
2520 REPEAT
2530 PROCprint(rec num)
2540 IF NOT printer THEN key=FNp a k ELSE VDU 1,10,1,10

,3:key=FNp a k:VDU 2 - -
2550 rec num=rec num+1
2560 UNTIL key=13 OR rec num>N%
2570 VDU 3,26 -
2580 ENDPROC
2590
2600 DEF FNp a k
2610 VDU 10,I3~,157,131:PRINT TAB(6)i"Press RETURN

to end"
2620 VDU 129,157,131:PRINT TAB(6)i"Any other key cantin

ues"
2630 =GET
2640
2650 DEF PROCsound1
2660 SOUND 1,-15,150,2
2670 ENDPROC
2680
2690 DEF PROCsound2
2700 SOUND 1,-1S,30,4:S0UND 1,-15,10,4
2710 ENDPROC
2720
2730 DEF FNgetrec
2740 LOCAL R%
2750 VDU 23,1,1iOiOiO;:REM "Cursor on
2760 PRINT .-
2770 REPEAT
2780 INPUT "Record number "R%

229

230 A Science Teacher's Companion to the BBC Microcomputer

2790 PRINT CHR$ lliSPC (40)i:VDU 13,11
2800 IF R%<l OR R%>N% THEN PROCsound2
2810 UNTIL R%>O AND R%<=N%
2820 =R%
2830
2840 DEF PROCbubbleS(field,N%)
2850 LOCAL I%,swop
2860 REPEAT
2870 swop=FALSE
2880 FOR 1%=1 TO N%-l
2890 IF file$(I%,field»file$(I%+l,field) THEN swop=

TRUE :PROCswop(I%,I%+l)
2900 NEXT
2910 N%=N%-l
2920 UNTIL NOT swop
2930 ENDPROC
2940
2950 DEF PROCswop(first,second)
2960 LOCAL T$,J%
2970 FOR J%=l TO F%
2980 T$=file$(first,J%)
2990 file$(first,J%)=file$(second,J%)
3000 file$(second,J%)=T$
3010 NEXT J%
3020 ENDPROC
3030
3040 DEF PROCdelete
3050 LOCAL I%,J%,key,rec
3060 CLS
3070 VDU 132,157,134,141:PRINT TAB(10)i"DELETE RECORD"
3080 VDU 132,157,134,141:PRINT TAB(10)i"DELETE RECORD"
3090 printer=FALSE
3100 rec=FNgetrec
3110 PROCset fields(l)
3120 PROCprint(rec)
3130 VDU 23,1,OiOiOiOi:REM "Cursor off
3140 VDU 10,132,157,134,136:PRINT "PLEASE CONFIRM.

DELETE THIS (yiN)?"
3150 REPEAT
3160 key=INSTR("YyNn",GET$
3170 UNTIL key
3180 IF key>2 THEN ENDPROC
3190 FOR I%=rec TO current rec
3200 FOR J%=l TO F% -
3210 fi1e$(I%,J%)=file$(I%+1,J%)
3220 NEXT J%
3230 NEXT I%
3240 FOR J%=l TO F%
3250 file$(current rec,J%)=""
3260 NEXT J% -
3270 current rec=current rec-1
3280 ENDPROC- -
3290 DEF PROCbubbleN(field,N%)
3300 LOCAL I%,swop
3310 REPEAT
3320 swop=FALSE
3330 FOR 1%=1 TO N%-l
3340 IF VAL fi1e$(I%,fie1d»VAL fi1e$(I%+1,field)

THEN swop=TRUE :PROCswop(I%,I%+l)
3350 NEXT
3360 N%=N%-l
3370 UNTIL NOT swop
3380 ENDPROC
3390 DEF PROCmatchN(field,min$,max$)
3400 LOCAL I%,A,min,max
3410 min=VAL min$:max=VAL max$
3420 found=FALSE
3430 FOR 1%=1 TO current rec
3440 A=VAL fi1e$(I%,fie1d)
3450 IF A>=min AND A<=max THEN match%(I%)=l:found=

TRUE ELSE match%(I%)=O
3460 NEXT
3470 ENDPROC
3480
3490 DEF PROCse1ect fields
3500 PROCset fie1dsTO)
3510 CLS
3520 VDU 129,157,135,141:PRINT TAB(8)i"REPORT FIELDS:"

Testing, Files and Record Keeping

3530 VDU 129,157,135,141:PRINT TAB(8);"REPORT FIELDS:"
3540 PRINT
3550 FOR J%=l TO F%
3560 L%=LEN (field$(J%))
3570 PRINT TAB(3);field$(J%);STRING$(20-L%,".");"<";

CHR$ (J %+64) ; " >"
3580 NEXT J%
3590 VDU 10,129,157,135,136:PRINT TAB(2);"Please Select

Required Fields"
3600 VDU lO,129:PRINT "Data will be printed in order

selected"
3610 VDU 130:PRINT "Press RETURN when selections comple

ted"
3620 VDU 130:PRINT" (Press RETURN only for FULL repor

t.) "
3630 fields%=O
3640 REPEAT
3650 choice=INSTR(key$+CHR$ 13,GET$)
3660 IF choice<>O THEN PRINT TAB(O,choice+2);high$:fiel

ds%=fields%+l
3670 IF choice<=F% THEN report%(fields%)=choice
3680 UNTIL choice=F%+l
3690 fields%=fields%-l
3700 IF fields%=O THEN PROCset fields(l)
3710 ENDPROC -
3720
3730 DEF PROCset fields(value%)
3740 LOCAL J% -
3750 FOR J%=l TO F%
3760 IF value%=O THEN report%(J%)=O ELSE report%(J%)=J%
3770 NEXT J%
3780 fields%=F%
3790 ENDPROC

231

What is a File?
As mentioned earlier, a file is defined as a collection
of related records, with the word 'organised'
frequently inserted prior to the word 'collection'. If
the records are organised this will usually mean that
they are maintained in some sort of order, possibly
alphabetical. As an example, let us consider a manual
file system, such as a card index which contains, say,
information about a particular class. This will enable
us to explain some of the terminology of filing systems
(see figure 4.1). The first requirement is that the
records form a related collection: the records about
form SA are not mixed up with the data on the physics
department's stock of textbooks! To make the example
fairly concrete and to coincide with the design of the
program, we will assume that it is form SA's data that
we wish to file. We have to create the file in the
first instance by acquiring a box, sufficiently large
to hold the anticipated number of cards. In the
computer version we do this by a statement such as

C%=OPENOUT("FORMSA")

If a file called "FORMSA" already exists it will be
deleted (disk system only). In other words, you throw
away the old records to leave yourself with an 'empty
box'. If the named file does not exist a new box is
procured (the new file is opened) and the variable C%

232 A Science Teacher's Companion to the BBC Microcomputer

will have a numerical value assigned to it. This is
called the channel number and it is used whenever this
file is referred to. The channel acts as a sort of
/telephone line/ so that data can be passed between the
computer and the disk drive or tape recorder. The
channel number can be thought of as the phone number
for this file - no two files that are open at the same
time will have the same number allocated to them by the
computer. Up to five files can be open simultaneously.

Record
No.N

f:ield 7
f:ield 2

f:ield 3

f:ield 4

f:ield 5

etc.

Figure 4.1

/
/

/
/

/

/' Record No.3

Record No.2

Record No.1

A typical file set-up

As you can see from the diagram, the file called
"FORM5A" consists of a series of records (the cards)
containing information relevant to the members of this
form. Each record contains the data about a particular
member of the form. The information within each record
is divided up into a number of fields, each of which
contains one piece of information such as a name, date
of birth and so on. Thus a field consists of a set of
characters and the smallest element of a file is
therefore one character.

File Operations
Once the file has been created there are several
operations that can be carried out on it. Obviously
the first must be to WRITE information to the file - we
start to fill in our cards. Initially we do not need

Testing, Files and Record Keeping 233

to worry about the order of writing the records since
we can sort them out later if desired. On the computer
we can write a record to the file by using, for example

or
or

PRINT#C%,name$ for a string field
PRINT#C%,mark% for a numeric field (integer)
PRINT#C%,average for a numeric field (real)

where C% is the channel number variable previously
allocated when this file was opened. It is also
possible to record the values contained in individual
bytes by using the BPUT# statement. This can be very
useful when a program has stored a sequence of single
or double-byte values in memory. In the program
"EVENTAD" in chapter 3, for example, a sequence of up
to 128 double-byte analogue converter values were
stored in page &C (that is, from &COO to &CFF). These
values could be saved as a file, called "ADCDATA", by
using the following loop:

Example (a)

800 X%=OPENOUT(nADCDATA")
810 FOR index=O TO &FF STEP 2
820 low_byte=index?&COO
830 high_byte=index?(&COO+l)
840 BPUT#X%,low_byte
850 BPUT#X%,high_byte
860 NEXT index
870 CLOSE#X%

Note that the 'STEP 2' statement is needed because
each of the ADC values occupies two bytes. Also note
the final statement 'CLOSE#X%' which is used to inform
the computer that we are finished, for the time being,
with this particular file. This transfers any data
that may still be in the computer's file buffer to tape
or disk and frees the channel for use by another file,
if necessary. As a general rule always close a file as
soon as you have finished with it. (All the currently
open files can be closed by CLOSE#O.)

Having created our' file and written some records to
it we will probably want to READ information, from the
file, back into the computer. The file must again be
opened but this time using

C%=OPENIN(IFORM5A")

which opens the file for reading or writing, allocating
the channel number to C% as before. Note, however,

234 A Science Teacher's Companion to the SSC Microcomputer

that this statement obviously does not delete the file
if it already exists (otherwise you could never read
it) but you will, on a disk system, provoke an error
if you try to read a non-existent file. Note that the
second issue of BASIC, known as BASIC 2, replaces the
action of OPENIN by OPENUP - open for update - and uses
OPENIN to open a file for reading only. Typing
/REPORT/ at switch-on indicates which BASIC is fitted:
if the date given is 1981 it is Issue 1 whereas 1982
indicates Issue 2 is present. If you find that you
have BASIC 1 you must replace the OPENUP statements in
these listings with OPENIN. If you load the programs
from the accompanying cassette the keyword will be
automatically converted for you. Now that the file
has been opened, data can be read from it using INPUT#
for strings and numbers and BGET# for bytes. For
example

Example (b)

500 ch%=OPENIN("FORM5A")
510 FOR 1%=1 TO num records
520 INPUT#ch%,name$(I%),mark%(I%)
530 NEXT 1%
540 CLOSE#ch%

This would read the names and marks data from the
"TESTER" file into the arrays name$() and mark%(),
which should have been DIMensioned earlier.

Example (c)

1000 C%=OPENIN("ADCDATA")
1010 FOR 1%=0 TO &FF STEP 2
1020 low_byte=BGET#C%
1030 high_byte=BGET#C%
1040 adval=low_byte+256*high_byte
1050 PRINT adval
1060 NEXT 1%
1070 CLOSE#C%

This loop would read (/get/) the series of bytes that
were stored earlier by example (a).

Note how important it is to know the format of the
file to be read. If you try to input a string record
into a numeric variable or vice versa you will get a
/Type mismatch/ error. Even if you manage to avoid
this error other, more subtle, problems can arise by,
for example, reading a surname into the date of birth

Testing, Files and Record Keeping 235

field. Another error occurs if you try to read more
records than are stored in the file. This will produce
a /Eof/ (End of file) error which can be avoided by
reading only the number of records in the file (FOR 1%
= I TO num_records NEXT 1%) or, if you do not know
how many records there are, you can read until the end
of file is detected (REPEAT.... UNTIL EOF#C%).

Now that we have created a file and filled it with
records we will want to carry out other essential
file-maintenance tasks. One of these tasks is the
editing of erroneous records. The simple method
adopted in "CLASREC" is to use the same routine that is
used for adding the records. This allows you to specify
the number of the record that you want and, if this
already contains data, the current record will be
printed out. If the error is in one field only, you
just press return instead of entering data for the
fields that are correct and retype the data for the
field containing the error. In other words, pressing
return when asked for the data for a particular field
will leave the original data intact. This simple method
can be used because the program uses arrays to store
all the file data in the computer. This has the
advantage that the program is easy to understand, and
sorting and searching the file is very fast. In
addition, it is the only method that can be used with
cassettes and yet it is compatible with disk systems.
The disadvantage is that the maximum size of file that
can be handled is limited by the amount of memory
available. Data-base systems designed to handle very
large files will require a disk system and all data is
held on the disk, never more than one record being in
the computer at anyone time. For details see the
notes on disk filing systems later in this chapter.

Because of the way that the edit routine works, it
is not possible to delete a record simply by pressing
RETURN for each of the fields. Thus a separate delete
option is provided which acts by moving down the
records above the one chosen for deletion, compacting
the file in the process. If you choose /delete/ the
selected record will be displayed and you will be asked
to confirm or deny its deletion to prevent any
accidental loss of data. Note that the numbers of all
the records above the deleted one will decrease by one.

An important operation that we have not covered so
far is the sorting of the records into some form of
order. In "CLASREC" all the records are held in a
string array but the sorting can be done either on an
alphabetical or on a numeric basis, as selected by the
user. This is necessary because of the way the
computer compares numbers which are held as strings.

236 A Science Teacher's Companion to the BBC Microcomputer

For example, it considers "20" to be 'greater than'
"140" because it compares the strings character by
character and "2" is greater than "1". Note that it is
possible to sort the records on any of the fields: the
chosen field data is sorted into alphabetic order and
the other fields are swapped with it. If the file is
sorted on the surname field first and then sorted on
the sex field, the females will all be at the start of
the file and the males at the end, each group still
being in alphabetical order. Similarly when a file
which is in order of surnames is then sorted on the
'Test 1 results' field, you will have a rank-ordered
file with pupils who have the same mark still in
alphabetical order.

The sorting algorithm used in the program is the
simple bubble sort. While this is not the fastest of
methods it does have the advantage of enabling the file
to be sorted on multiple fields, as described above. If
you anticipate having to handle much larger files, it
would be a good idea to replace the bubble sort
procedure with a faster routine. You may be interested
in the Shell sort listed here, which is much faster
than the bubble sort, but note that it is not suitable
for sorting on multiple fields.

20000 DEF .PROCshell (field, N%)
20010 LOCAL S%,I%,J%,K%,T
20020 S%=N%
20030 REPEAT
20040 S%=(S%+2) DIV 3
20050 FOR I%=S%+l TO S%*2
20060 FOR J%=I% TO N% STEP S%
20070 FOR K%=J% TO 1% STEP -S%
20080 IF file$(K%,field»=file$(K%-S%,field)

THEN GOTO 20110
20090 T$=file$(K%,field):file$(K%,field)=file$

(K%-S%,field):file$(K%-S%,field)=T$
20100 NEXT K%
20110 NEXT J%
20120 NEXT 1%
20130 UNTIL S%=l
20140 ENDPROC

An important facility that is provided by "CLASREC"
is the ability to search the file for the occurrence of
a specified string. (Again, it is possible to specify
either an alphabetic search or a numeric search.) In
data-base terminology this search string is called the
SEARCH KEY and a match with an item in the file is
called a 'hit'. The search routine in "CLASREC" is
fairly comprehensive. You can specify the search field

Testing, Files and Record Keeping 237

and the key is entered as a range, with specified
minimum and maximum values. Thus you could select a
search on the 'Test 2 results' field with a minimum key
of 75 and a maximum of 100. The computer will report
all of the records whose 'Test 2 results' lie between
75 and 100, inclusive. You can then have a report of
all the pupils who achieved a grade 'A' performance.
To find all the occurrences of, say, the words
"CHEMISTRY" or "CHEMICALS" in the 'General info l'
field you could specify "CHEM" as the minimum search
key and "0" as the maximum. If you want to search for
a single word then the minimum and maximum keys should
be the same. This is facilitated by entering the
required word as the minimum key and then pressing
return for the maximum key. The computer will then set
the maximum key equal to the minimum key.

The final facility provided is the selection of the
format to be used for reporting. For example, you may
want a list of names and summer exam marks but you do
not really want to see all the other data that is in
the file. "CLASREC" has a selective reporting option
which enables you to specify both which fields will be
printed and also in what order they will appear. This
extends the capabilities of the program, enabling it to
be used to produce reports covering a wider range of
applications.

other Uses for "CLASREC"
I have designed "CLASREC" so as to be easily changed to
suit other data-base applications. The number of
records (N%) and the number of fields (F%) are set up
in line 170 and these can be readily altered. Bear in
mind, however, the memory limitations ("CLASREC" itself
occupies about 8K) and the fact that there is room for
about 15 fields at most on the screen.
The actual names of the fields are given in the DATA
statements in lines 340-360 and these can again be
changed to suit a different application. There is a
limit of 14 characters on the length of a field name.
Finally, here are some suggestions for things to try.
Chemistry students could set up a data-base of
properties of the elements, perhaps along the lines of
the 'element cards' that will be familiar to chemistry
teachers. This would involve using the following lines
in place of the existing ones

170 N%=104:F%=12
340 DATA Element,Atomic Number,Atomic Mass,Symbol,

Group,Period
350 DATA Atomic radius,Ionic radius,Ionic energy,

Density
360 DATA Melting point,Boiling point

238 A Science Teacher's Companion to the BBC Microcomputer

Obviously you may prefer a different set of information
but this should show the basic idea.

For the biologists, how about setting up a data-base
of animals and plants, their habitats, feeding habits
and so on? You should be able to make the necessary
changes to the program but, as in all data-base
applications, care is needed in selecting what data to
store. Therefore you must think carefully about what
you will want to use the information for, before
starting to enter masses of data. It is very
frustrating to have to re-enter data if you later
decide to add new fields. If this should happen, you
ought to be able to write a short program that will
read in the old file, allow you to add the new
information and then save the updated file. Consult
the listing of '''CLASREC'' to see the file format used.
You can then alter the relevant lines in "CLASREC", as
noted above, to allow it to read the new file. It
would be a good idea to save the various versions of
"CLASREC" under memorable file names: perhaps "CHEMREC"
and "BIOREC" would suit the examples discussed here.

NOTES ON DISK FILES

In addition to the cassette filing system commands
already discussed, disk based micros have a couple of
additional ones and there are some differences in the
action of those commands that are common to both
systems. To deal with the differences first, these
concern the action of OPENOUT and OPENIN (or OPENUP).
These can be summarised as follows:

OPENOUT:

Does the named file

I
N

j

exist? Y---- Delete old contents
Allocate channel no.
Set PTR# to start of
file

Open a new file with the given name
(Allocate channel number)
(Set PTR# to start of file)

OPENIN:

Testing, Files and Record Keeping 239

Does the named file

I
N

j

exist? Y----- Open the named file
Allocate channel no.
Set PTR# to start of
file

Set channel number to zero

You should observe that trying to OPENIN a file that
is not on the disk does not cause an error but you will
provoke one if you try to read from the non-existent
file. This can be avoided by checking the channel
number allocated by the OPENIN function. If it is zero
the file does not exist and suitable action could be
taken.

The PTR# function mentioned above is the most
important of the commands that are specific to the disk
filing system (DFS). (The other is EXT# which gives
the 'extent' or size, in bytes, of a file whose channel
number is given as the argument of the function.) PTR#
refers to a pointer that the DFS maintains for each of
the files that are currently open. You can imagine a
disk file as a continuous series of bytes recorded on
the disk surface, rather as music is recorded in the
grooves of an LP record. Just as you can move the
stylus across the record surface to select any desired
piece of music, so you can move the pointer to select
any desired byte in the sequence. This is accomplished
by changing the value of PTR# to indicate the desired
byte. To do this successfully we need to know exactly
how records are stored on the disk so that we can move
exactly to the start of any desired record and not into
the middle of it. Just missing it by one byte will
give an error when we try to read the record.

Disk File Format
The length of a string record is the number of
characters in the string plus 2: the first byte of a
string record is an identifier byte (zero) and the
second byte is the length of the string. Thus "JOHN"
will be recorded as

o 4 78 72 79 74
N H 0 J

Note that the characters of the string are in
reverse order (tne numbers are the ASCII codes for the
string characters). Integer variables are saved as a

240 A Science Teacher's Companion to the BBC Microcomputer

sequence of five bytes: the first is &40 and the next
four represent the two's complement form of the
integer, MSB first. Real variables occupy 6 bytes in
the file: an &FF identifier byte followed by a four
byte mantissa (LSB first) and an exponent byte. This
information is essential if you want to use PTR# to set
up a random access file on a disk-based system (see
later) but otherwise you do not need to worry about
such details - the computer looks after it all for you.

MODIFICATIONS TO LISTED PROGRAMS FOR DISK SYSTEMS

"CLASREC" works almost without modification - just
delete line 400 - but is limited in the number of
records that it can hold in the memory. This will
depend on the number of fields and the average length
of each field though it should be adequate for its
intended purpose as a class record system. See the
following notes on random access files for advice on
how to overcome this limitation if you are
contemplating dealing with much larger files.

Some modifications are required to both "TESTGEN"
and "TESTER" to enable them to work on a disk system.
These changes are listed below:

a. Changes to "TESTGEN".
1. Delete the following lines:

1210-1240, 2760, 2850, 2930, 3370, 3440, 3510
2. Add: 850 CLOSE#X%

b. Changes to "TESTER".
1. Delete lines 1750 and 1840.
2. Add: 370 X%=OPENIN(file$):INPUT#X%,dummy,dummy,

dummy,dummy$:REM read past header
1020 CLOSE#X%

3. Change line 1700 to
1700 IF A$="N" OR A$="n" CLOSE#X%:RUN

RANDOM ACCESS FILES

The most serious disadvantage of a cassette-based file
system is that it is restricted to handling serial
files. In other words each record is stored, and must
be read, in sequence - to find a particular record in a
cassette file may require every record to be read.
Because this is a very slow business most programs
adopt the tactic employed in "CLASREC". This is to
read the entire file into an array in the computer's
main memory, carry out the desired updating operations
and then rewrite the whole file Ii to tape again.
Clearly, since the whole file must be able to fit into

Testing, Files and Record Keeping 241

the memory, along with the data-base program itself,
this will limit the number of records that can be
stored.

This limitation can be overcome on a disk-based
system by reading only one record into memory at a
time. This is repeated until the desired record is
located, any necessary changes are made, and the
updated record is written back to the disk again.
There is one important point that must be born in mind
though. You cannot simply read to the end of the file
and then write the record. You have to open a new file
for output, read in the records one at a time from the
first file, write them to the new file and finally
write the new record to the new file. When this
process is completed, delete the old file and rename
the new file with the name of the old file so that
the disk is set up ready for the next operation. This
is still a serial file system and suffers from the
disadvantage of being slow (though much faster than
cassette) since we may have to read to near the end of
a long file to find the record that we want. In
addition it cannot utilise the whole of the available
space on the disk since two files that are roughly
equal in length have to be present at the same time:
the new version and the old version before it is
deleted.

Both disadvantages can be overcome by directly
accessing the desired record after moving the file
pointer, PTR#, to it. Direct access files can be
implemented in a number of ways but all share the
common requirement that we must know, or be able to
calculate, where the start of each record is so that
the file pointer can be moved directly to it for read
or write operations.

Random access files use fixed-length records so
that, given the record number, the start of any record
can be calculated. For example we may decide to
allocate a total of 28 characters to store the surname
(20 characters), initial (1), sex (1) and date of birth
(6) for each pupil. We could either write each field
separately to the disk or we could join them all
together to form one long string which is then sent to
the disk. The second method is preferable since it
saves disk space by reducing the 'overheads' associated
with each record. If you recall that each string on
the disk occupies its length in characters plus a
2-byte overhead, you will see that the second approach
saves 6 bytes for each record stored. (Each record
occupies 28+2 30 bytes on the disk whereas it will
occupy (20+2)+(1+2)+(1+2)+(6+2) = 36 if each field is
written as a separate string.) Thus the start of each

242 A Science Teacher's Companion to the BBC Microcomputer

record will be 30 bytes apart on the the disk:

Record number

1
2
3

50

n
etc.

Disk address

o
30
60

1470

30*(n-l)

We can use the equation given above to calculate the
value of PTR# needed to access a given record. The
following short program segment shows how a record
could be read:

1000 INPUT"Record number " n
1010 PTR#C=30*(n-l)
1020 INPUT#C,record$

(This assumes that the file has already been opened and
the variable /C/ contains the channel number.) Line
1010 moves the pointer to the specified record and line
1020 reads it in.

The accompanying listing "R_FILE" provides the bare
bones of a program to set up and interrogate a simple
random access file based on the pupil record described
above. When the program is run it checks if the
user-specified file exists by trying to open it for
input. If the channel number is zero (file not on
disk) a new file is opened and initialised by writing
N% blank records to the file. (At the moment the
number of records is set to 200 but you can change N%
to the number of records that you will be handling if
this differs significantly either way.) Each blank
consists of 28 spaces, this being the fixed length of
each record. This will also check that there is enough
room for the file on the disk. A simple menu is then
displayed which allows you to write a record or read a
record, given the record number. This is used to
calculate the address of the record on the disk as
shown above. Note how the field strings are each
padded or truncated to their correct lengths and how
the record string is formed by concatenating them.
When the string is read back again from the file a
simple routine using the MID$ function is used to
recover the individual field strings for printing. You

Testing, Files and Record Keeping 243

should be able to extend the framework provided by
"R_file" by incorporating features found in "CLASREC"
or those of your own design.

Listing "R FILE"

MODE 7

END

REPEAT
PROCmenu
UNTIL FALSE

file$=FNinput file name
C%=OPENUP (file$) -
IF C%=O THEN PROCinitialize

"***
"***
"*** DISKS ONLY ***
"******************

"******************

DEF FNinput file name
LOCAL file$- -
VDU 23,1,liOiOiOi:REM "Cursor on
PRINT /
REPEAT
INPUT "File name (up to 7 letters)"file$
PRINT CHR$ lliSPC (40)i:VDU 13,11
IF file$="" OR LEN (file$»7 THEN PROCsound2
UNTIL file$<>"" AND LEN (file$)<8
=file$

REM
REM
REM
REM
REM

REM "Disable ESC and set up BREAK
*FX229,1
*K.10 O.IMCLOSE#C%IM

DEF PROCmenu
LOCAL choice
CLS
VDU 129,157,131,141:PRINT TAB(12)i"OPTIONS"
VDU 129,157,131,141:PRINT TAB(12)i"OPTIONS"
PRINT //TAB(3)i"<1> Read a record"
PRINT /TAB(3)i"<2> Write a record"
PRINT /TAB(3)i"<3> End"
VDU 23,1,OiOiOiOi:REM "Cursor off
VDU 10,10,132,157,131,136:PRINT TAB(lO)i"Please
select":

REM "Number and length of records
N%=200:rec len=28
sp$=STRING$(rec_len," ")

DEF PROCinitialize
LOCAL 1%
PRINT //"Creating the "ifile$i" file."
C%=OPENOUT (file$)
FOR 1%=1 TO N%
PRINT #C%,sp$
NEXT 1%
CLOSE #C%
C%=OPENUP (file$)
ENDPROC

10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600

610
620 REPEAT
630 choice=INSTR("123",GET$
640 UNTIL choice
650
660 IF choice=l THEN PROCread
670 IF choice=2 THEN PROCwrite

244 A Science Teacher's Companion to the BBC Microcomputer

680 IF choice=3 THEN CLS :VDU 23,1,1;0;0;0;:CLOSE #C%:END
690
700 ENDPROC
710
720 DEF PROCsound2
730 SOUND 1,-15,30,4:S0UND 1,-15,10,4
740 ENDPROC
750
76Q DEF FNgetrec
770 LOCAL R%
780 VDU 23,1,1;0;0;0;:REM "Cursor on
790 PRINT '
800 REPEAT
810 INPUT "Record number "R%
820 PRINT CHR$ 11;SPC (40);:VDU 13,11
830 IF R%<l OR R%>N% THEN PROCsound2
840 UNTIL R%>O AND R%<=N%
850 =R%
860
870 DEF PROCread
880 LOCAL rec,record$
890 CLS
900 rec=FNgetrec
910 PTR #C%=(rec len+2)*(rec-l)
920 INPUT #C%,record$
930 PRINT "
940 PRINT "Surname ";LEFT$(record$,20)
950 PRINT "Initial ";MID$(record$,21,1)
960 PRINT "Sex " ;MID$ (record$, 22,1)
970 PRINT "Date of birth .. ";MID$(record$,23,6)
980 PRINT ""Press SPACE BAR to continue";
990 REPEAT

1000 A$=GET$
1010 UNTIL A$=" "
1020
1030 ENDPROC
1040
1050 DEF PROCwrite
1060 LOCAL rec
1070 CLS
1080 rec=FNgetrec
1090 PRINT "
1100 INPUT "Surname "sur$
1110 sur$=FNset len(sur$,20)
1120 INPUT '''Initial '' inS
1130 in$=FNset len(in$,l)
1140 INPUT '''Sex (M/F) .. " sex$
1150 sex$=FNset len(sex$,l)
1160 INPUT '''D.O.B '' dob$
1170 dob$=FNset len(dob$,6)
1180 record$=sur$+in$+sex$+dob$
1190 PTR #C%=(rec len+2)*(rec-l)
1200 PRINT #C%,record$
1210 ENDPROC
1220
1230 DEF FNset len(P$,len)
1240 LOCAL L% -
1250 L%=LEN (P$)
1260 IF L%>len THEN P$=LEFT$(P$,len)
1270 IF L%<len THEN P$=P$+STRING$(len-L%," ")
1280 =P$

INDEX SEQUENTIAL FILES

The main disadvantage of random access files is the
need for fixed-length records. Because allowance has
to be made for the longest string, in a given field of
any of the records, much of the space on the disk may
be wasted. For example, if you have one or two pupils
with very long surnames (> 25 characters) the record

Testing, Files and Record Keeping 245

length must allow for these exceptions, even though
most of the pupi\s' names are less than 15 characters
long. The need for fixed-length records arose because
we had to be able to calculate where the start of each
record would occur on the disk. To enable variable
length records to be used we will have to maintain a
list, the index, of the addresses of each record on the
disk. The index itself will also reside as a file on
the disk but, since it consists only of the key field
(for example, the surname or a part number) and the
disk address of each record, it should also be possible
to hold a copy of it in RAM, though, for the sake of
simplicity, I have not done this. This would
facilitate rapid searching through the index to locate
the actual record on the disk. Thus the index is
handled sequentially but it enables direct access to
the disk records.

The example program supplied ("IS_FILE") shows how
the technique is applied to a practical example.

Listing "IS FILE"

MODE 7

END

REM "*** Create new files ***

DEF PROCinit

"*********************

"*** ***
"*** DISKS ONLY ***
"*********************

11***

*FX229,1
*K.10 O.IMCLOSE#oIM

REM "*** Index File ***
Ch_I=OPENUP ("I.PARTS")

REM "Disable ESC and set up BRK

REPEAT
PROCmenu
UNTIL FALSE

REM
REM
REM
REM
REM

Ch M=OPENUP ("PARTS")
IF-Ch M=O THEN PROCinit:REM "Not on Disk
REM "*** Main File ***

Ch M=OPENOUT ("PARTS")
Ch=I=OPENOUT ("I.PARTS")

next main add%=O
next-index add%=10
PRINT #Ch r,next index add%,next_main_add%
CLOSE #0 - - -
Ch M=OPENUP ("PARTS")
ENDPROC

10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
395
400
410

246 A Science Teacher's Companion to the BBC Microcomputer

420 DEF PROCmenu
430 CLS
440 LOCAL choice
450 VDU 129,157,131,141:PRINT TAB(12);"OPTIONS"
460 VDU 129,157,131,141:PRINT TAB(12);"OPTIONS"
470 PRINT "TAB(3);"<1> Read a record."
480 PRINT 'TAB(3);"<2> Write a record."
490 PRINT 'TAB(3);"<3> End."
500 VDU 23,1,0;0;0;0;:REM "Cursor off
510 VDU 10,10,132,157,131,136:PRINT TAB(10);"Please

select";
520
530 REPEAT
540 choice=INSTR{"123",GET$
550 UNTIL choice
560
570 IF choice=l THEN PROCread
580 IF choice=2 THEN PROCwrite
590 IF choice=3 THEN CLS :CLOSE #O:END
600
610 ENDPROC
620
630 DEF PROCread
640 CLS
650 INPUT '''Search key: " keyS
660
670 REM "** Move past header **
680 PTR #Ch 1=10
690
700 REPEAT .
710 INPUT #Ch 1,1 key$,m add%
720 UNTIL EOF-#Ch=I OR I=key$=key$
730
740 IF,I_key$<>key$ THEN PRINT ""Sorry. Key not found

. ":PROCspc bar
750 IF I key$=key$ THEN PROCprint{m_add%)
760 ENDPROC
770
780 DEF PROCwrite
790 CLS
800 PTR #Ch 1=0
810 INPUT #Ch I,next index add%,next_main_add%
820 INPUT "Key: "keyS
830 PROCget desc
840 PTR #Ch-M=next main add%
850 PRINT #Ch_M,desc$,qty$,min$,price$,supp$
860
870 PTR #Ch I=next index add%
880 PRINT #Ch I,key$,next main add%
890 next main-add%=next main add%+rec len
900 REM "* Allow for length of key+2
910 REM "* +5 for integer address
920 next index add%=next index add%+LEN {key$)+7
930 PTR #Ch 1=0 --
940 PRINT #Ch_I,next_index_add%,next_main_add%
950
960 ENDPROC
970
980 DEF PROCget desc
990 CLS -

1000 PRINT "Key: ";key$
1010 INPUT ""Description.> " desc$
1020 INPUT '''Quantity > " qty$
1030 INPUT '''Min stock > " min$
1040 INPUT '''Price > " priceS
1050 INPUT '''Supplier > " supp$
1060
1070 rec len=LEN {desc$)+LEN {qty$)+LEN (min$)+

LEN-(price$)+LEN (supp$)+10
1080
1090 ENDPROC
1100
1110 DEF PROCprint(add%)
1120
1130 PTR #Ch M=add%
1140 INPUT #Ch M,desc$,qty$,min$,price$,supp$
1150 PRINT ""Description.> ";desc$

Testing, Files and Record Keeping

1160 PRINT '''Quantity > ";qty$
1170 PRINT '''Min stock > ";min$
1180 PRINT ' "Price > "; priceS
1190 PRINT '''Supplier > ";supp$
1200 PROCspc bar
1210 ENDPROC-
1220
1230 DEF PROCspc bar
1240 VDU 10,10,132,157,131:PRINT TAB(5)"Press SPACE

BAR to continue.";
1250
1260 REPEAT
1270 A$=GET$
1280 UNTIL A$=" "
1290
1300 ENDPROC

247

This is a simple stock control program in which it is
intended that the 'keys', which are held in the index
file (called "I.PARTS"), would be part numbers, each
one unique. The main file (called "PARTS") then holds
the detailed description, quantity in stock, minimum
stock level, price and supplier of each item. The keys
and each of the main file records can be any length.
The simple menu allows you to write and read records.
In the former case you will be asked for the key (for
example, "ANB02") and then the description, quantity
and so on. Let us suppose that you enter "Model B",
"3", "1", "£399" and "Acorn" for the respective fields.
The next free address in the main file is retrieved
from the index (line 810). The first two records in
the index file are the next free index address and the
next free main file address, respectively. The main
file pointer is set to the value obtained (840) and the
record is written, each field separately (850). The
key string is then written to the next free location in
the index file, together with the value of the main
file address for the corresponding record (880). The
new main file address is calculated from the old value
by adding the lengths of the field strings, remembering
also to allow for the extra two bytes per string (890).
Finally the new values of the next free locations in

both the index and main files are written to the start
of the index file (line 940). The state of the files
after writing the described record is as shown
(assuming this was the first record to be written).

When you want to read a record you will be asked to
enter a search key. The computer then does a simple
sequential search through the index, looking for a key
that matches your search key. If it finds one the
corresponding record will be retrieved from the disk
and printed out on the screen.

There is plenty of potential for expansion in the
program and I will merely offer a few ideas and leave
you to experiment. You should find it fairly easy to
add a routine that lists all the keys and/or all the

248 A Science Teacher's Companion to the SSC Microcomputer

records on the screen. You could highlight any items
that, are below the minimum stock level. This could
perhaps be done automatically each time that the
program is run. You could incorporate edit and delete
facilities, automatic printout of orders to suppliers
for out-of-stock items (hold the suppliers/ addresses
in another file), printer on/off routines and so on.
Have fun, but try to adhere to the general structure of
the two files, at least until you have got the hang of
controlling the pointers. Things can become quite
confusing otherwise!

New values (previously 10 and 0)

String identifier byte

String length byte

! ~ey string

,. ~

INDEX FILE NIA(22) NMA(28) 0 5 2 0 B N A madd%(O) **

0-4 5-9 10-16 17-21 22

MAIN FILE 0 7 B 1 e d 0 MOl 3 0 1 1 049

PTR#Ch_M

MAIN FILE

NOTES:

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

93£ 0 5 n roc A #

18 19 20 21 22 23 24 25 26 27 28

1. n**n indicates where the next key string will begin
- this is the next free index address (called /NIA/
above and /next_index_add%/ in the program).

2. "rnadd s / is the address in the main file where the
start of the record corresponding to the preceding
key will be found.

3. /NMA/ (/next_main_add%/ in the program) is the next
free address in the main file where the following
record will be written (indicated by a # above).

5 Using Assembly Language

"Why should I bother to use assembly language? Isn"t
it dreadfully difficult to understand?"

In this chapter I hope to answer the first of these
questions and to show that, while writing programs in
assembler is certainly less easy than in BASIC, it is
not an insuperable difficulty. There is,
unfortunately, insufficient room in a book of this size
to go into much detail on the various assembly language
instructions that are used when writing assembler
programs. Those who wish to learn more are strongly
recommended to refer to the book "Assembly Language
Programming on the BBC Microcomputer" by Ian Birnbaum.
This excellent book assumes no previous knowledge,
except the ability to program in BASIC, and is a very
useful introduction to the subject.

THE ADVANTAGES OF ASSEMBLER

(1) Greater execution speed
There are a number of occaisions when, despite the
comparatively high speed of BBC BASIC, we need to make
things happen faster. Typical examples are the DAC
programs of chapter 3 (contrast the speed of the BASIC
and machine code versions) and the large characters
program of this chapter. In both cases we Deed to
access data and process it at the fastest rate
possible. BASIC is just far too slow, the reason being
that it is an "interpretive" language. In other words
each line of a BASIC program has to be translated anew
every time that it is encountered, and all before it
can be executed. In contrast, an assembly language
program is translated (assembled) into machine code
once only and can then be executed immediately using
the "CALL" or "'USR" instructions. As a simple
illustration of the difference in speed, consider a
BASIC program to clear the Mode 7 screen:

10 FOR I%=&7COO TO &7FFF
20 ?I%=32
30 NEXT

249

250 A Science Teacher's Companion to the SSC Microcomputer

Type this in and list it a few times in order to
give the program something to clear. Now type RUN and
press <return>. Note the relatively slow clearing of
the screen, achieved by directly placing the ASCII code
(32) for a space character in each consecutive screen
memory location. Again list the program a few times and
type VDUl2 <return> which is, in effect, a machine code
instruction. Note how much faster the screen is
cleared this time. The instruction is passed directly
to the operating system VDU drivers, a complex machine
code routine in the OS ROM.

(2) More compact programs
The BBC micro does have quite an appetite for memory,
especially in the higher-resolution graphics modes and
one of the advantages of assembly language is that the
resulting machine code programs, occupy much less
memory. For example the short BASIC program just given
occupies about 40 bytes whilst an equivalent machine
code routine requires only about 20 bytes. It is
probably not worth programming in assembler just to
save a few bytes, but if there is no other way to fit a
program in then some parts of it could be written in
assembler to create the needed extra space.

(3) Executing routines not possible in BASIC
Apart from the speed advantage mentioned above,
assembler is the only way to handle interrupt routines.
This has been amply covered in chapter 3 where the
various techniques have been illustrated. You will see
that my personal approach is to use assembler only when
absolutely necessary and never for its own sake.

THE DIFFERENCE BETWEEN MACHINE CODE AND ASSEMBLER

The microprocessor chip used in the BBC computer is a
6502A. This chip has been designed to carry out a
pre-determined set of instructions: its instruction
set. These instructions are in fact a series of numbers
called operation codes or 'op-codes' which, while
perfectly understandable to the chip, are pretty well
incomprehensible to us poor humans. As a consequence
some clever chap thought of assigning a simple mnemonic
label for each op-code. An even cleverer chap wrote a
machine code program that allows us to write our
program using the reasonably easy to understand
mnemonics and which translates these into their direct
machine code equivalents. This program is called an
assembler and the system of mnemonic codes is known as

Using Assembly Language 251

assembly language. The resulting translation is a
machine code program, consisting of a series of bytes,
the op-codes and data, stored somewhere in memory. For
example, the instruction for /LoaD the Accumulator with
the number 7 / is wri tten as '/LDA #7 / in assembly
language mnemonics. It will be assembled into the
machine code equivalent of /A9 07/. When we use the
assembler we have to tell it where to store the
resulting machine code program. This is done by
setting the variable P% to the address where we want
the machine code program to begin (see User Guide,
pages 443 and 444 and /Birnbaum/, pages 13 and 14).

It is instructive to run some of the programs in
this book that contain assembly language routines,
after deleting the /STEP 2/ statement from the
/two-pass/ FOR... NEXT loop. You will then be given a
listing of the actual machine code program, as it is
stored in memory. If you try this with "EVENTAD" from
chapter 3 you will see several columns of numbers and
codes (note that all numbers are1given in hexadecimal
hex). The first column is the address at which each
instruction is stored and the second column is the
op-code for the instruction. The next two columns give
the data byte or bytes (some instructions require two
bytes of data, some only one and some none). Finally
we have the equivalent assembly language instruction,
complete with any labels and comments that may have
been used.

SOME ASSEMBLY LANGUAGE INSTRUCTIONS

While there is insufficient room to explain all of the
6502 instructions in detail, I will try to provide a
brief description of the main ones that I have used in
this book.

1. Load instructions

LOA - LoaD
into the A
LOX - LoaD
into the X
LOY - LoaD
into the Y

the Accumulator
register.
the X register :
register.
the Y register

register.

copy the specified data

copy the specified data

copy the specified data

Note that the hash sign (#) is used to distinguish a
number from a memory location. For example, LOA #70
means /load the accumulator with the number 70, while
LOA 128 means /load the accumulator with the contents
of memory location 128/. Also note that the contents
of the memory location are not affected by the load
operation - it is really a copying operation.

252 A Science Teacher's Companion to the BBC Microcomputer

2. Store instructions

STA - STore
contents to
STX - STore
contents to
S'I'Y - STore
contents to

the Accumulator
the specified memory
the X register :

the specified memory
the Y register :

the specified memory

copy the
location.
copy the
location.
copy the
location.

A

X

Y

register

register

register

Note that there is no instruction for directly
placing a value in a location. The data has first to
be placed in a register and this can then be stored in
the required location. For example, LDA #50:STA &70
would place the value 50 in memory location &70.

3. Increment and Decrement instructions

INC - INCrement: increase the contents of the specified
location by 1.
DEC - DECrement: decrease the contents of the sr;ecified
location by 1.
INX - INcrement X: increase the contents of the X
register by 1.
INY - INcrement Y: increase the contents of the v

register by 1.
DEX - DEcrement X: decrease the contents of the X
register by 1.
DEY - DEcrement Y: decrease the contents of the Y
register by 1.

Note that the accumulator itself cannot be directly
incremented or decrerrented, but it can be added to and
subtracted from (see AOC and SOC below).

4. Transfer instructions

PHA - PusH the Accumulator: copy the contents of A onto
the stack.
PLA - PulL the Accumulator: remove a byte from the
stack and place it in A.
PHP - PusH the Processor status register: copy the
contents of P onto the stack
PLP - PulL the Processor status register: remove a byte
from the stack and place it in P.
TXA - Transfer X register to A register: copy the
contents of X into A.
TYA - Transfer Y register to A register: copy the
contents of Y into A.
TAX - Transfer A register to X register: copy the
contents of A into X.

Using Assembly Language 253

TAY - Transfer A register to Y register: copy the
contents of A into Y

The stack is an area of memory (&100 to &lFF) which
is reserved for use by the microprocessor and by
assembly language programs. It is mainly used for
temporary storage any data pushed onto it must
subsequently be removed again. The processor status
register (P) contains all the processor/s /flags/ (see
next section).

5. Compare instructions

CMP - CoMPare with accumulator: subtract the specified
data from A. A is left intact. If result is zero set
/Z/ and /C/ flags. If result negative set /N/ flag.
If result positive set /C/ flag.
CPX - ComPare with X register: as above but subtract
from X.
CPY - ComPare with Y register: as above but subtract
from Y.

Note that the flags are individual bits of the
processor status register. They are set and cleared
automatically by various operations including these
compare instructions. In addition the /C/ (/carry/)
flag can be set and cleared by the programmer using the
/SEC/ and /CLC/ instructions, respectively. These are
used when arithmetic operations are carried out

6. Branch instructions

The compare instructions always
instruction which will redirect
rather as the /IF ... THEN GOTO/
BASIC.

precede a branch
the program flow,
statement does in

BNE - Branch if Not Equal to zero: branch if the result
was not zero.
BEQ - Branch if EQual to zero: branch if the result was
zero.
BCC - Branch if Carry Clear: branch if no carry was
produced.
BCS - Branch if Carry Set: branch if carry was
produced.
BMI - Branch if MInus: branch if the result was
negative.
BPL - Branch if PLus: branch if the result was not
negative.

254 A Science Teacher's Companion to the BBC Microcomputer

These instructions test the appropriate flag in the
P register. You need to check which instructions
affect which flags (see User Guide pages, 508 and 509
and 'Birnbaum', Appendix 1).

7. Shift instructions

ASL A - Arithmetic Shift Left, Accumulator: shift all
the bits of A one place to the left. Bit 7 goes into
the C flag and a '0' enters bit o.
ASL - Arithmetic Shift Left: as above but a specified
memory location is shifted.
LSR A - Logical Shift Right, Accumulator: shift all
bits of A one place right. Bit 0 goes into the C flag
and a '0' enters bit 7.
LSR - Logical Shift Right: as above but a specified
memory location is shifted.

8. Jump instructions

JMP - JuMP to specified location: equivalent to GOTO in
BASIC.
JSR - Jump to a SubRoutine at specified location:
equivalent to GOSUB in BASIC.

Note that all subroutines must end with an RTS
(ReTurn from Subroutine) instruction. This is
equivalent to RETURN in BASIC and causes program
execution to resume with the next instruction following
the JSR.

9. Arithmetic instructions

ADC - ADd with Carry: add the specified data (and the
carry bit) to A. The result is left in the accumulator.
SBC - SuBtract with Carry: as ADC but subtract the
data.

INDEXED ADDRESSING

The ordinary method of copying a byte from a memory
location into the A register is called absolute
addressing: the actual address is specified in the
instruction. Thus 'LDA &2000' would load the
accumulator with the data stored in memory location
&2000. On many occasions it is necessary to access a
table of values stored in memory or to store a sequence
of bytes in a table, consisting of consecutive memory
locations. This is similar to an array in BASIC where
we can refer to individual members of an array or
'list' by their index number. Thus score(5) refers to

Using Assembly Language 255

the sixth member of the list (the list starts from
score(O)). In assembler a similar process is carried
out using the X or Y index registers provided for the
purpose. There is quite a range of different indexed
addressing modes using these registers but I will
describe only the three that I have used in various
programs in this book.

1. Absolute,X indexed adressing

The address used by the instruction is formed by adding
the contents of the X register to the address given in
the instruction. Thus, if the X register contains 5,
the instruction /LDA &2000,X/ would copy the data from
location &2005 (&2000+5) into the A register. Clearly,
by incrementing or decrementing X we can access tables
or blocks of up to 256 bytes.

2. Absolute,Y indexed addressing

This is identical to the previous instruction but the Y
register is the index counter. Thus /CMP &AOO,Y/ will
perform the compare operation on location &AOF if the Y
register contained 15 (&F). Note that there is a
smaller range of instructions that are able to use the
Y register as an index than are able to use the X
register.

3. Post-indexed indirect addressing

The name of this mode is probably enough to put most
people off but it is essential to understand it if we
need to access blocks of data longer than 256 bytes.
The limitation is caused by the fact that the index
registers are 8-bit registers and can thus hold numbers
only in the range 0 to 255. This addressing mode
utilises two consecutive addresses in zero page
(&OO-&FF) which hold a /pointer/ to an address
somewhere else in memory. The general form of the
post-indexed indirect instruction is

Instruction (Zero page address),Y

(note that it is available only with the Y register).
As an example if the contents of &70 and &71 were &50
and &55, respectively, then the instruction /LDA
(&70),Y/ would copy the data stored at the location
&5550+Y. If Y contained 3, the accumulator would be
loaded from location &5553. Note that &70 and &71
contain the low (#&50) and high (#&55) bytes,
respectively, of the first address in a table or block

256 A Science Teacher's Companion to the SSC Microcomputer

of data. By incrementing &70 (and &71 if a carry was
produced), we can access any of the 65536 locations
that the 6502 is capable of addressing. Aside from this
advantage, the post-indexed mode allows the base
address contained in the two zero-page locations to be
easily changed, so allowing a completely different
table of data to be accessed from the same program
see, for example, "FAST OSC" in chapter 3, lines 370
and 58C.

LARGE CHARACTERS: "LARGECH"

This is an assembly language program which you should
find very useful when you require a digital display
that has to be large enough for a large group or class
to see. Since one of the possible uses is as a
stop-watch or timer display, it is important that the
routine is as fast as possible. Hence the use of
assembly language, directly accessing the table of
character bit patterns stored in the OS ROM and direct
/poking/ of the Mode 7 screen. For the purists who
demand that all programs should use the operating
system routines and so be /Tube/ compatible, I did
write such a version but it was noticeably slower than
the listed version, so it will not be described here.

Listing "LARGECH"

10000 DEF PROCconvert(NU%,sigfigs)
10010 LOCAL 1%
10020 REM "Check if neg. & display minus sign
10030 IF NU%<O THEN X%=11:Y%=5:R=USR (char):NU%=-NU%
10040 REPEAT
10050 X%=NU% MOD 10:Y%=8-I%:R=USR (char)
10060 NU%=NU% DIV 10
10070 1%=1%+1
10080 UNTIL I%=sigfigs-l
10090 X%=NU%:Y%=8-I%:R=USR (char)
10100 ENDPROC
10110
10120 DEF PROCassemble lchar
10130 DIM V% &110 -
10140 REM "Pointer TaBLes (Low & High bytes)
10150 PTBL L=V%+&50:PTBL H=V%+&65
10160 REM ~Screen TaBLes-(Low & High bytes)
10170 STBL L=V%+&80:STBL H=V%+&95
10180 FOR K%=O TO 20 -
10190 READ Ldata%
10200 REM "ROM address low bytes
10210 PTBL L?K%=Ldata%
10220 READ-Hdata%
10230 REM "ROM address high bytes
10240 PTBL H?K%=Hdata%
10250 NEXT-K%
10260 FOR K%=O TO 14
10270 READ Lscr%:STBL L?K%=Lscr%
10280 REM "Screen address low bytes
10290 READ Hscr%:STBL H?K%=Hscr%
10300 REM "Screen address high bytes
10310 NEXT K%
10320 SCRLO=&70:SCRHI=&71:ptr=&72:TEMP=&74
10330 FOR PASS=O TO 2 STEP 2
10340 P%=V%

Using Assembly Language

10350 (OPT PASS
10360 \ Get start address of char's bit pattern (low

byte)
10370 .char LOA PTBL L,X
10380 STA ptr -
10390 \ Get start address of char's bit pattern (high

byte)
10400 LOA PTBL H,X
10410 STA ptr+l
10420 LOA STBL L,Y \ set up screen lac. pointer
10430 STA SCRLO
10440 LOA STBL H,Y
10450 STA SCRHI
10460 LOX #8 \ Initialise byte counter
10470 .getbyte
10480 LOY #0 \ Initialise bit counter
10490 LOA (ptr),Y \ get a byte from character table
10500 STA TEMP
10510 .getbit ASL TEMP \ shift a bit into 'c'
10520 BCC space \ If C=O write a space
10530 LOA #&FF \ else write a 'block'
10540 BNE write \ always branch
10550 .space LOA #&20
10560 .write STA (SCRLO),Y \ place char. in A onto screen
10570 INY \ next bit (Y counts bits)
10580 CPY #8 \ Done 8 bits?
10590 BNE getbit \ No
10600 CLC \ Yes so prepare to add
10610 LOA SCRLO
10620 AOC #&28 \ move screen addr. to next line
10630 STA SCRLO
10640 BCC a
10650 INC SCRHI \ If carry from low byte then inc. high

byte
10660 .a INC ptr \ point to next byte
10670 BNE b
10680 INC ptr+1
10690 .b OEX \ decrement byte counter
10700 BNE getbyte \ Done 8 bytes? If not get next byte
10710 RTS \ done
10720]
10730 NEXT PASS
10740 ENOPROC
10750
10760 REM ** POINTERS TO ROM-BASED CHARS **
10770
10780 DATA &80,&CO,&88,&CO,&90,&CO,&98,&CO,&AO,&CO,&A8,&

CO,&BO,&CO,&B8,&CO,&CO,&CO
10790 DATA &C8,&CO,&70,&CO,&68,&CO,&68,&C2,&98,&C2,&78,&

CO,&BO,&C1,&B8,&C1,&08,&C1
10800 DATA &18,&C1,&80,&C2,&40,&Cl
10810
10820 REM ** POINTERS TO SCREEN LOC'S **
10830
10840 DATA &0,&7C,&08,&7C,&10,&7C,&18,&7C,&20,&7C,&40,&7

0,&48,&70,&50,&70,&58,&70 •
10850 DATA &60,&70,&80,&7E,&88,&7E,&90,&7E,&98,&7E,&AO,&

7E

257

To use the program you must first assemble it using
PROCassemble lchar and then load the numeric value of
the digit to be displayed into X%. The screen position
(0-14) is placed in Y% and the routine is executed by
using R USR(char) or CALL char. The digit should
then appear in the specified position and it will be
eight times the normal size. The screen positions
refer to a 5 columns by 3 rows 'lchar' screen, the
large-character positions being numbered consecutively
from top left to lower right (position 0 is top left,
position 4 is top right, position 5 is on the left-hand

258 A Science Teacher's Companion to the SSC Microcomputer

side of the middle row, and so on). As an example: to
display the digit /5/ at the right hand end of the
middle row you would use X% = 5:Y% = 9:R = USR(char).
For your convenience the listing includes /PROCconvert/
which will convert and display the number NU% to the
specified number of figures (/sigfigs/). It will work
out the screen positions itself. Thus to display a
running count of the numbers 0 to 100 you could use

10 MODE 7
20 PROCassemble lchar
30 FOR 1%=0 TO 100
40 PROCconvert(I%,3)
50 NEXT 1%
60 END

In addition to the digits 0 to 9, I have provided a
number of letters which can be displayed to indicate
the units of the displayed quantity. The complete set
of characters that the program can generate is listed
in table 5.1 together with the appropriate value that
must be placed in X%.

TABLE 5.1 Large Characters

NUMBER IN X%
o
1
2
3

etc
10
11
12
13
14
15
16
17
18
19
20

CHARACTER
o
1
2
3
etc

m
s
/
V
W
A
C

P
H

How the Program Works
Starting at &COOO in the OS ROM is a table containing
the bit patterns for each of the pre-defined characters
used in Modes 0 to 6. If you are familiar with
user-defined characters you will know that each
character consists of 8 rows of 8 dots or pixels, each
of which may either be illuminated or not, depending on
the character. Thus the character /5/ is represented

Using Assembly Language 259

by the pattern shown in figure 5.1. In the /look-up/
table in the ROM this pattern of /on/ and /off/ pixels
is represented by a series of 8 bytes, one for each row
of the character. Within each byte a bit will be high
(1) if the corresponding pixel in that row is to be on
and low (0) if it is to be off. Thus the corresponding
binary values for each of the bytes making up the /5/
are as shown in the figure.

: : : : : : : : : : : : : : : : : : 0 1 1 1 1 1 1 0
0 1 1 0 0 0 0 0
0 1 1 1 1 1 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 1 1 0
0 1 1 0 0 1 1 0
0 0 1 1 1 1 0 0
0 0 0 0 0 0 0 0

Figure 5.1 Character representation

This program works by reading the 8 bytes for the
desired character, one at a time, into a temporary
location (TEMP). This is then shifted left eight times
to place each of the eight bits successively into the
carry flag (C). After each shift if a 0 was shifted
into C it will be /clear/ so we branch (line 10520) to
print a space. If a 1 was shifted in, C wlll be /set/
so the branch will not occur and we place the ASCII
code for a /block/ character into the A register. We
then have an /unconditional/ branch (since A has just
been loaded with &FF it cannot ever be zero) to print
the block. Thus where a pixel of a character would be
off w~ print a space and where the pixel would be on we
print a block. Consequently the row of blocks and
spaces will be eight times larger than the
corresponding row of pixels. The Y register is used to
count the shifts and when all 8 bits have been dealt
with (lines 10570 to 90) we must increase the screen
memory value so that the next row of the character will
appear on the next line down the screen. This is done
by adding &28 (decimal 40) to the screen address, since
there are 40 characters per line in Mode 7. When this
has been done the byte pointer /ptr/ is incremented to
point to the address of the next byte in the look-up
table and the byte counter (X register) is decremented.
When all eight bytes have been dealt with X = 0 and the
program ends - see lines 10690 to 10710. You m~y wish
to extend the number of characters that the program can
generate. This is easily done by adding the pointers

260 A Science Teacher's Companion to the BBC Microcomputer

for the extra characters to the DATA statements where
indicated in the listing. The pointers are stored as
low byte, high byte. You will need to make room for
the extra pointers in /PTBL_L/ and /PTBL H/ by
increasing the size of each table - increase the values
added in lines 10150 and 10170. In addition the FOR
loop which reads in the data needs to be extended (line
10260). There is enough room to store about another
forty pointers but this too can be increased by
changing the DIM V% statement in line 10130. To help
you· find the look-up table addresses a short BASIC
program is provided. This uses a modified version of
/PROCdec_bin/ from the earlier program "VIA_DEMO"
(chapter 3) and will display each character, enlarged 8
times, with its address in the table (see listing
"C_TABLE") .

Listing tIC TABLE"

10 REM "*** C TABLE ***
20
30 FOR I%=&COOO TO &C2FF STEP 8
40 PRINT "-------- ";-1%
50 FOR J%=O TO 7
60 PROCdec bin(J%?I%)
70 PRINT -
80 NEXT J%
90 PRINT

100 NEXT 1%
110
120 END
130
140 DEF PROCdec bin(number%)
150 LOCAL n% -
160 FOR n%=7 TO 0 STEP -1
170 IF number% DIV 2~n% =1 THEN VDU 255:number%=number

% MOD 2~n% ELSE VDU 32
180 NEXT n%
190 ENDPROC

Interfacing "LARGECH" to Other Programs
To use the large character routine from another

program you need to have the following lines near the
start of the program:

10 MODE 7:REM LARGECH only works in this mode
20 PROCassemble lchar:REM must assemble m code

before CALLing it

As explained earlier, when calling the routine you
place the code number for the character to be displayed
in X% and the screen position in Y%, then CALL char.
PROCconvert should prove useful but it handles only
integers. You will have to scale any real numbers,
such as the voltage from the ADC, to eliminate the
decimal point. Thus rather than send the actual
voltage /1.59 V/ it would need to be sent to

Using Assembly Language 261

PROCconvert as /159/ and then display the decimal point
in the appropriate place yourself. This can be done
using, for example, PRINT TAB(16,16) ;CHR$(&FF) which
prints a block character to act as the point.

As an illustration, I will show how to provide two
earlier programs (from chapter 3) with a large
character display. The simple program "DVM 1" can
easily be adapted as follows:

a. Delete line 120
b. Replace line 110 with: 110 PROCconvert(VOLTAGE,3)
c. Replace line 80 with: 80 PROCassemble lchar
d. Change the /35232/ in line 140 to 352.32
e. Add: 85 PRINT TAB(16,16);CHR$&FF

87 X%=15:Y%=9:R=lJSR(char)
f. Add the new lines for PROCconvert and

PROCassemble lchar as listed. To add them from
tape, assuming you have the modified "DVM_I"
program in the computer type /P. - TOP-2~ and
note the answer. Now type /*LOAD"LARGECH" HHHH/
where /HHHH/ is the number noted in the previous
step. Finally type /OLD~ and then RENUMBER, if
you wish.

The "STOPWATCH" program becomes much more useful
when the large display is incorporated. This is very
~asy to do as follows:

a. Delete lines 250,260 and 350-380
b. Replace line 270 with: 270 PROCconvert(O,2)
c. In line 300, change PROCprint(TIME/lOO) to

PROCconvert(TIME,4)
d. Add: 85 PROCassemble lchar
e. Add: 235 X%=13:Y%=9:R=USR(char)
f. Add: 250 PRINT TAB(16,16);CHR$&FF
g. Add the /convert/ and /assemble lchar/ routines

as described above

MACHINE CODE TIMING: nMCTIMER"

This program overcomes the relative slowness of BASIC
by using machine code to monitor the logic state of the
user port lines. Each time one of the lines changes
state (either from high to low or vice versa) the time
is noted and stored. As it stands, the program can
store up to 8 times from each of two user port lines,
but both the number of stored times and the number of
lines tested can easily be extended. The lines used
are /BO' and /Bl/ and any switch or sensor circuit that
gives a low-high or high-low signal when operated can

262 A Science Teacher's Companion to the SSC Microcomputer

be used. Several suitable circuits were given in
chapter 3. The program is called from BASIC by the
statement ~CALL timer~ but before doing so you will
probably want to clear the time stores using ~CALL

zero~. You must also set the contents of ~count~ to
the number of timings that you want to make; the line
~?count = 2:CALLtimer~ would wait for two changes of
state on the input lines. The second listing,
"MCTPEND Il

, should help clarify these points and shows
how to use the timer program to measure the period of a
pendulum.

Listing "MCTlMER"

1 REM ** MCTIMER **
10 PROCinit
20 DIM MC 130
30 FOR pass=O TO 2 STEP 2
40 P%=l-1C
50 [OPT pass
60 .zero \ Clear stored times
70 LOA #0
80 LOX #31
85 .nextX
90 STA STORE1,X

100 OEX
110 BPL nextX
115 STA index \ Zero index into stores
120 RTS
130 .timer
140 LOA port
150 STA oldva1ue
160 .wait \ for change in port lines
170 LDA port
180 EOR oldvalue
190 BEQ wait
200 CMP #1
210 BEQ gatel
220 CMP #2
230 BEQ gate2
240 \ Set up pointers to time stores
250 .gatel
260 LOA # STOREl MOD 256
270 STA ptr
280 LOA # STOREl OIV 256
290 STA ptr+l
300 JMP readtime
310 .gate2
320 LOA # STORE2 MOD 256
330 STA ptr
340 LOA # STORE2 OIV 256
350 STA ptr+1
360 .readtime
370 LOA #1
380 LOX # TEMP MOD 256
390 LOY # TEMP OIV 256
400 JSR osword \ Read TIME into TEMP
410 LOY index
420 LOA TEMP \ Get least sig. byte
430 STA (ptr),Y \ Record it
440 INY
450 LOA TEMP+l \ Get next most sig byte
460 STA (ptr),Y \ Record it (discard other bytes of

TEMP)
470 INC index
480 INC index \ Next store location
490 DEC count \ Decrease number of times required
500 BNE timer \ Repeat if not all done
510 RTS
520]

Using Assembly Language

530 STORE1=P%
540 STORE2=P%+16
550 P%=P%+32
560 TEMP=P%
570 P%=P%+5
580 count=P%:index=P%+1:oldva1ue=P%+2
590 P%=P%+3
600 NEXT pass
999 STOP

2000 OEF PROCinit
2010 ptr=&70
2020 osword=&FFFl
2030 port=&FE60
2040 ?&FE62=0
2050 ENOPROC

Listing "MCTPEND"

1 REM ** MCTPENO
2 REM ** To measure
3 REM ** the period of
4 REM ** a Pendulum **

10 PROCinit
20 DIM Me 130
30 FOR pass=O TO 2 STEP 2
40 P%=MC
50 [OPT pass
60 .zero \ Clear stored times
70 LOA #0
80 LOX #31
85 .nextX
90 STA STORE1,X

100 OEX
110 BPL nextX
115 STA index \ Zero index into stores
120 RTS
130 .timer
140 LOA port
150 STA oldva1ue
160 .wait \ for change in port lines
170 LOA port
180 EaR oldva1ue
190 BEQ wait
200 CMP #1
210 BEQ gate1
220 CMP #2
230 BEQ gate2
240 \ Set up pointers to time stores
250 .gate1
260 LOA # STORE1 MOD 256
270 STA ptr
280 LOA # STORE1 OIV 256
290 STA ptr+1
300 JMP readtime
310 .gate2
320 LOA # STORE2 MOD 256
330 STA ptr
340 LOA # STORE2 OIV 256
350 STA ptr+1
360 .readtime
370 LOA #1
380 LOX # TEMP MOD 256
390 LOY # TEMP OIV 256
400 JSR osword \ Read TIME into TEMP
410 LOY index
420 LOA TEMP \ Get least sig. byte
430 STA (ptr),Y \ Record it
440 INY
450 LOA TEMP+1 \ Get next most sig byte
460 STA (ptr),Y \ Record it (discard other bytes of

TEMP)
470 INC index
480 INC index \ Next store location
490 DEC count \ Decrease number of times required
500 BNE timer \ Repeat if not all done

263

264 A Science Teacher's Companion to the BBC Microcomputer

510 RTS
520]
530 STOREl=P%
540 STORE2=P%+16
550 P%=P%+32
560 TEMP=P%
570 P%=P%+5
580 count=P%:index=P%+I:oldvalue=P%+2
590 P%=P%+3
600 NEXT pass
610
620 REPEAT
625 ?count=4:REM number of times to be taken
630 CALL zero
640 CALL timer
650 Tl=?STOREl+256*?(STOREl+l)
660 T2=?(STOREl+6)+256*?(STOREl+7)
670 PRINT (T2-Tl)/100i" seconds"
690 UNTIL FALSE

2000 DEF PROCinit
2010 ptr=&70
2020 osword=&FFFl
2030 port=&FE60
2040 ?&FE62=0
2050 ENDPROC

How the Program Works
The program monitors the state of all the user port
lines, waiting for any change. When it is first
called, the program reads the current state of the port
lines (140) and stores this in 'oldvalue'. It then
repeatedly reads the port again and compares it with
the old value using the 'EOR' instruction (170,180).
This takes each pair of bits in the two locations - new
value of 'port' in the A register and the old value in
'oldvalue' - and performs the Exclusive-OR function on
them. The result is left in the A register. Consider
the truth table for 'EOR,:

Bit in A Bit in oldvalue Bit in result
a a a
1 a 1
a 1 I
1 1 a

Clearly only if each pair of bits in A. and in
,
oldvalue

,
are the same will the 8-bit value of the

result be zero. For example, look at the following
'trace table' of the program:

State of Instruction Value in A
,
oldvalue

,

user port

0000 0010 .timer LDA port 0000 0010 ?
0000 0010 STA oldvalue 0000 0010 0000 0010
0000 0010 .wait LDA port 0000 0010 0000 0010
0000 0010 EOR oldvalue 0000 0000 0000 0010
0000 0010 BEQ wait 0000 0000 0000 0010
0000 0000 .wait LDA port 0000 0000 0000 0010
0000 0000 EOR oldvalue 0000 0010 0000 0010
0000 0000 BEQ wait 0000 0010 0000 0010
0000 0000 CMP #1 0000 0010 0000 0010
etc;

Using Assembly Language 265

The value in A when the /wait/ loop is exited
depends on which of the 8 user port lines has changed
its state - in the example above the Bl line changed so
the value remaining in A is 2 (0000 0010). The program
only checks the first two lines (CMP #1 and CMP #2 in
lines 200 and 220) with branches to /gatel/ and /gate2/
routines to set up /ptr/ to point to the correct table:
STOREI for gatel and STORE2 for gate2. If you need
extra gates, up to the maximum of 8 (there are 8 user
port lines, remember), then extra /CMp/ and branch
instructions can be added at this point in the program.
You will also need to add further /gate/ routines and
expand the memory allocation for the new stores.

The next part of the program is /readtime/ which
uses the Osword call with A = 1 to read the internal
clock into a 5-byte temporary block: TEMP. The two
least significant bytes are then stored in the
appropriate table using /ptr/ as a pointer to the
correct table and the Y register, loaded from /index/,
as an index within the selected table. The index is
then incremented twice to access the next free location
in the table. Finally the required number of times,
stored in /count/, is decremented and tested to see if
it is zero. If it is, the program returns to BASIC,
otherwise it branches back to the start again to wait
for another change in the port lines.

Since the times are stored using two bytes, the
largest possible value is 255+256*255 = 65535
centiseconds, or about 11 minutes. If this is not long
enough you can save further bytes of /TEMp/ by adding
extra code between lines 460 and 470: INY:LDA
TEMP+2:STA(ptr),Yetc. Extra /INC index/ instructions
have to be added between 480 and 490, one for each
extra byte saved. Another point that you will need to
know about is the way that times are stored when
changes occur on both inputs. Suppose the first change
occurred on BO. The time will be recorded in /STOREI/
and /STOREl+l/. If the next change is detected on Bl
this will be saved in /STORE2+2/ and /STORE2+3/.
Although this wastes 2 bytes (STORE2 and STORE2+l) it
makes the program easier to understand and to use.

Using the Program
If you refer to the listing of "MCTPEND" you will see
that the BASIC program is inserted between lines 600
and 2000. The number of timings 'required is /poked/
into /count/ and the stores are cleared by CALLzero.
The timing routine proper is then called and returns at
line 650 when it has taken the required number of
readings. BASIC then processes the stored times and
prints the result. In this case a pendulum bob is set
swinging to and fro through the light beam of a

266 A Science Teacher's Companion to the SSC Microcomputer

photocell ~gate~. The logic state of the user port
line to which the photocell is connected will change
when the beam is broken and when it is restored again,
thus recording two times for each passage through the
beam. Considering one complete oscillation, the beam
is broken and restored as the bob swings one way, and
then broken and restored again as it swings back to its
starting point. Thus, to obtain the period, we require
the interval between the first breaking and the second
restoration of the beam. Hence lines 650-670 and the
fact that four times were required.

Using this program as a model you should be able to
devise your own applications for "MCTIMER". One
obvious possibility is the measurement of velocities
and accelerations on a linear air track. In the first
case a card attached to the vehicle breaks a single
light beam giving two changes on the port line. Thus
the following segment will display the velocity:

610 ?count=2
620 CALL zero
630 CALL timer
640 -Tl=?STOREl +256 *? (STOREI +1)
650 T2=?(STOREl+2)+256*?(STOREl+3)
660 P."Time="i(T2-Tl)/100i" seconds"
670 P."Card length="iLi" ern"
680 P."VelocitY="iL/(T2-Tl)*100i" cm/s"

Note that the card length, L, will have to have been
input prior to this section of the program.

In a similar way you can measure acceleration using
two gates placed a known distance apart. You will need
to record four times: when the card enters and leaves
the first gate and when it later enters and leaves the
second gate. Thus the program could be written

610 L=15:REM Effective length of card (cm)
620 REPEAT
630 ?count=4
640 CALL zero
650 CALL timer
660 Tl=?STOREl+256*?(STOREl+l)
670 T2=?(STOREl+2)+256*?(STOREl+3)
680 T3=?(STOREl+4)+256*?(STOREl+5)
690 T4=?(STOREl+6)+256*?(STOREl+7)
700 U=L/(T2-Tl)*100
710 V=L/(T4-T3)*100
720 A=(V-U)/(T3-Tl)*100
730 P."U="iU" cm/s"
740 P. "V=" iVi" cm/s"

Using Assembly Language

750 P."t=";(T3-TI)/100;" s"
760 P."a=";A;" cm/s"2"
770 UNTIL FALSE

267

Note that I have used the /v = u+at/ equation to
calculate the vehicfe/s acceleration, a. It can also
be done using /v"2 = u"2+2as/ where /s/ is the distance
between the two gates. You may be unhappy about the
computer doing all the work in this experiment, so you
can omit the lines that print the final result and
leave it to the students to calculate it from the basic
time/distance data. Another w~y around this problem is
to have the students themselves write the BASIC part of
the program, once the principles of "MCTIMER" have been
explained to them.

FAST MOVING GRAPHICS IN MODE 7 ("DIFFUSE")

"DIFFUSE" provides a machine code routine that can
handle the movement of up to 255 /molecules/ at the
same time - try that in BASIC! Apart from being a
graphic illustration (no pun intended) of the
considerable speed advantage of machine code, it should
prove useful in a number of kinetic theory
demonstrations. The version listed uses the machine
code to show how the random movement of molecules
causes them to diffuse to fill their container when the
partition that was confining them to the top half of
the box is removed. The speed of the molecules is set
by the value stored in /temperature/ but note that a
smaller value gives faster movement, not as you might
expect.

The machine code routine is called from BASIC by
/CALL move/ which will move all the molecules to their
new positions, checking for collisions with the walls
of the box or with other molecules. Changes to the
BASIC program to enable other demonstrations to be
presented can be made by altering or extending lines
210-280.

Listing "DIFFUSE"

10 REM "** DIFFUSE **
20
30 MODE 7
40 VDU 23;8202;0;0;0;
50
60 ON ERROR MODE 7:END
70
80 nUID_IDols=64
90

100 PROCasseID
110
120 ?IDols=nuID_ffiols

268 A Science Teacher's Companion to the BBC Microcomputer

Set up data table
for positions and
directions: dx,dy

Draw the box

"***
"***
"***

"***

?temperature=10

UNTIL FALSE

DEF PROCtable

FOR 1%=0 TO num mols
I%?data=RND (30T+2:REM "*** xpos
I%?(data+num mols)=RND (2)+2:REM "*** ypos
rnd=RND (1) -
REM "*** dx
IF rnd<.4 THEN I%?(data+2*num_mols)=1 ELSE
IF rnd<.8 THEN I%?(data+2*num mols)=-l ELSE I%?(da
ta+2*num mols)=O
rnd=RND (1)
REM "*** dy
IF rnd<.4 THEN I%?(data+3*num mols)=l ELSE
IF rnd<.8 THEN I%?(data+3*num-mols)=-1 ELSE I%?(da
ta+3*num mols)=O -
rnd=RND (1)
REM "*** If both dx & dy are 0 change dy else
molecule will be stopped!

IF (I%?(data+2*num mols)=O AND I%?(data+3*num mols
)=0) THEN IF rnd >~5 THEN I%?(data+3*num molsT=l
ELSE IF rnd<=.5 THEN I%?(data+3*num molsT=-l
NEXT -
ENDPROC

DEF PROCbox

REM

REPEAT
CALL move
IF INKEY (-99) THEN PRINT TAB(0,8);space$

REM
REM
REM

FOR 1%=0 TO 23
PRINT CHR$ 147:REM "Yellow graphics
NEXT 1%
VDU 28,1,24,39,0
CLS
top$="u"+STRING$(36,"p")+"z"
space$="5"+STRING$(36," ")+"j"
PRINT topS
FOR Y%=O TO 21
PRINT "5";TAB(37);"j"
NEXT Y%
PRINT "u";
FOR X%=O TO 35
PRINT "p";
NEXT X%
PRINT "z"
PRINT" Press SPACE to remove partition";
PRINT TAB(0,8);top$
ENDPROC

PROCbox

PROCtable

700

710
720
730
740
750 DEF PROCassem
760 REM "** Reserve space for m code and data table

**

650
660
670

680
690

130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640

770
780 DIM MC l70+(num_mols+l)*4
790
800 oswrch=&FFEE:osbyte=&FFF4
810 xpos=&70:ypos=&72:dx=&74:dy=&76
820 pause=&78:mols=&79:temp=&7A

Using Assembly Language

830 temperature=&7B
840 ?pause=?temperature
850
860 FOR 1%=0 TO 2 STEP 2
870 P%=MC
880 [OPT 1%
890 .write \ 00 VOU 31,X,Y. If A<>O print it
900 PHA \ Save ascii
910 LOA #31:JSR oswrch
920 TXA:JSR oswrch
930 TYA:JSR oswrch
940 PLA \ Get ascii back
950 BEQ noprint \ If zero dont print
960 JSR oswrch \ A<>O so print CHR$ (?A)
970 .noprint RTS
980 .move \ Enter here from BASIC
990 OEC pause \ Reduce delay by 1

1000 BNE done \ Is delay counter zero?
1010 LOA temperature \ Yes; reset delay
1020 STA pause
1030 LOY #0
1040 .check \ if new position is clear
1050 \ Get new X coord and put in X
1060 CLC:LOA (xpos),Y:AOC (dx),Y:TAX
1070 \ Get new Y coord in A
1080 CLC:LOA (ypos),Y:AOC (dy),Y
1090 STY temp \ Save data table index
1100 TAY \ Put Y coord in Y
1110 LOA #0 \ ASC "O"so "noprint"
1120 JSR write \ Cursor to new position
1130 LOA #&87 \ Read char. at cursor
1140 JSR osbyte \ ascii returned in X
1150 LOY temp \ Get back index
1160 CPX #32 \ Is char. at new pos a space?
1170 BNE change \ No so change direction
1180 . ok
1190 LOA (xpos),Y:TAX \ Get old X coord
1200 STY temp
1210 LOA (ypos),Y:TAY \ Get old Y coord
1220 LOA #32 \ ASC " "
1230 JSR write \ Erase old pos.
1240 LOY temp
1250 \ Get new X coord and update table
1260 CLC:LOA (xpos),Y:AOC (dx),Y:STA (xpos),Y
1270 TAX \ Put new X coord in X reg.
1280 \ Get new Y coord and update table
1290 CLC:LDA (ypos),Y:ADC (dy),Y:STA (ypos),Y
1300 STY temp \ Save table index
1310 TAY \ Put new Y coord in Y reg.
1320 LOA #224 \ ascii for "molecule"
1330 JSR write \ Print mol. in new pos.
1340 LDY temp \ Get back table index
1350 INY \ Next molecule
1360 CPY mols \ Done them all?
1370 BNE check \ No, do the next one
1380 .done \ Yes, back to BASIC
1390 RTS
1400 .change
1410 CPX #53 Left side char. ?
1420 BEQ revx Yes so reverse X coord
1430 CPX #106 Right side char. ?
1440 BEQ revx Yes so reverse X coord
1450 CPX #112 Top or bottom?
1460 BEQ revy Yes so reverse Y coord
1470 .revxy \ Something else, reverse X and Y
1480 LOA (dx),Y \ Get X direction
1490 BEQ Y \ It"s zero so leave it
1500 EaR #&FE:STA (dx),Y \ Reverse it
1510 .y LOA (dy),Y \ Get Y direction
1520 BEQ ok \ It"s zero so leave it
1530 EaR #&FE:STA (dy),Y \ Reverse it
1540 JMP ok \ Now can print in new pos.
1550 .revy
1560 LOA (dy), Y
1570 BEQ ok
1580 EOR #&FE
1590 STA (dy),Y
1600 JMP ok

269

270 A Science Teacher's Companion to the BBC Microcomputer

1610 .revx LOA (dx),Y
1620 BEQ ok
1630 EaR #&FE
1640 STA (dx), Y
1650 JMP ok
1660]
1670 data=P%
1680 NEXT 1%
1690
1700 ?xpos=data MOD 256:?(xpos+1)=data DIV 256
1710 ?ypos=(data+num mo1s+1) MOD 256:?(ypos+1)=(data+nu

m mo1s+1) DIV 256
1720 ?dx=(data+2*num mo1s+1) MOD 256:?(dx+1)=(data+2*nu

m mo1s+1) DIV 256
1730 ?dy=(data+3*num mo1s+1) MOD 256:?(dy+1)=(data+3*nu

m_mo1s+1) DIV 256
1740
1750 ENDPROC

How the Program Works
The program holds a table, stored from location ~data~

onwards, of" the X and Y coordinates ~xpos~ and ypos~,

and the current X and Y direction values, ~dx~ and ~dy~

for each molecule. The coordinates are the same as the
~pRINT TAB(X,Y) ~ coordinates and the directions can
best be seen in the following table:

dx dy Movement
0 0 None! *Not allowed by program
1 0 right

-1 0 left
0 1 down
0 -1 up
1 1 right/down * Diagonal movement

-1 1 left/down * Diagonal movement
1 -1 right/up * Diagonal movement

-1 -1 left/up * Diagonal movement

When the routine is called the first thing it does
is to decrement the time delay, held in ~pause~, and
check if it is zero. If not the routine exits
immediately (1000) otherwise it reloads the delay ready
for the next time (1010-1020) and continues by
initialising the Y register which is used as the index
counter to the data table holding the position and
direction values. The first part of the routine is
~check~ which calculates the proposed new position for
each molecule and checks if it is clear or not. (If
clear, it will contain a space, ASCII code 32,
otherwise it will contain the code for a ~wall~

character or that for another molecule.) Line 1060
calculates the new X coordinate by adding the X
direction value to the present X coordinate and places
the new value in the X register. Lines 1080 to 1100 do
the same for the Y coordinate, but the current Y
register contents have to be saved first since this
register is also used as the index to the data. The

Using Assembly Language 271

program then calls the subroutine /write/, with A = 0,
in order to position the cursor at the molecule/s new
position. An osbyte call with A = &87 then reads the
code for the character at the cursor position,
returning it in the X register (see the User Guide,
page 432). The /write/ subroutine does the equivalent
of /VDU31,X,Y/, printing the character in A if it is
not zero. (Note that the assembler instructions /LDA
#N:JSR oswrch/ -are equivalent to BASIC:s /VDU N/
statement.) The contents of the X register are then
tested to see if it contains a space; if it does the
molecule may be printed in its new position. This is
done by the routine /ok/ which starts at lin~ 1180.
The first task is to erase the molecule by printing a
space at the old position - lines 1190-1230. The new
coordinates are calculated again, but this time the
result is stored back in the da~a table (lines 1260 and
1290). With the new coordinates in the X and Y
registers and the code for a molecule in A, the /write/
subroutine i~ called again to print the molecule in its
new position. The index register is then incremented
and compared to the number of molecules to see if all
the molecules have been dealt with. If they are not
equal, the /check/ routine is repeated for the next
molecule, otherwise control returns to BASIC via line
1390.

If the check routine discovers that the proposed new
position for a molecule is not clear, then the program
will branch to the /change/ routine - branch at line
1170 to routine starting at 1400. This checks the
ASCII code for the non-space character (still in the X
register) against the codes for the characters making
up the enclosing box. If the obstruction is one of the
two side walls then we must reverse the X direction,
while if it is the top or bottom of the box, the Y
direction must be reversed. Any other character (one
of the corners or another molecule) cause both
directions to be reversed. The routines /revx/, /revy
and /revxy/ carry out the reversing for the three
cases. The action of these routines requires some
explanation.

The value /1 / is stored, in binary, as 0000 0001 but
the value /-1/ is represented as 11111111 (255
decimal). Thus to reverse the direction from, say, 1
to -1, we need to invert the binary value of 7 of the 8
bits used to represent the direction, but leave the LSB
intact. In simple terms, change all the /zeros to
/ones and all the /ones/ to /zeros/ except for the
first bit. This is done in the program by
Exclusive-ORing the direction value with &FE (1111
1110). If you refer to the previous notes on the

272 A Science Teacher's Companion to the BBC Microcomputer

machine code timer program you will understand that:

1 EOR &FE = -1
(0000 0001 EOR 1111 1110 1111 1111)
and

-1 EOR &FE = 1
(1111 1111 EOR 1111 1110 = 0000 0001)

Thus a direction of 1 becomes -1 and vice versa.
Note that this does not work if the direction is zero
(0 EOR &FE = &FE = 254 =-2) so this is checked for when
the direction value is loaded into A (for example, line
1490) and the EOR instruction is bypassed. If the
direction is changed, the new value is stored back in
the data table as, for example, in line 1500.

Using the Machine Code in Other Programs
The routine explained above can be used for a number of
different demonstrations and the listing merely
illustrates one of the possibilities to show how to
control the machine code. In particular, all programs
will need to include PROCbox, or something similar, to
provide an enclosure to contain the molecules - you
must use the same characters to make up the box or
rewrite the 'change' routine. PROCtable will also need
to be incorporated in all programs to set up the
initial position and direction data. (In "DIFFUSE" the
Y coordinates are restricted to the top of the box
change the RND(2)+2 in line 610 to RND(18)+2 to ensure
the molecules fill the box initially.) Any other
changes will be included in the lines between 210 and
250. For example, a temperature control can be
included, using 'A' to raise it and 'z' to lower it by
adding the following new lines

220 IF INKEY(-66) AND ?temperature>O
?temperature=?temperature-l

230 IF INKEY(-98) AND ?temperature<20
?temperature=?temperature+l

A value representing the temperature (for example,
100-?temperature) could be printed at the bottom of the
screen, but try to avoid having too much processing
inside the loop as this slows down the motion.

Another modification involves a change to the
machine code itself to simulate a Brownian motion
effect. This will replace one of the molecules (number
0) with a smoke particle actually an upper case
letter "0". To carry out this change, proceed as

Using Assembly Language

follows

a. Add the following new lines:

1312 LOA temp \ Get index
1313 BNE mol \ Zero? No so print a molecule
1314 LOA #ASC"O" \ Yes so print smoke particle
1315 BNE print \ Unconditional

b. Add new labels to lines 1320 and 1330 as shown:

1320 .mol LOA #224 etc.
1330 .print JSR write etc.

CONCLUSION

273

I hope that I have achieved my twin aims as set out at
the beginning of this chapter, and that you now
appreciate the advantages of using assembler and have
seen that it may not be as difficult as perhaps you
thought. Feel free to experiment with the routines
listed - it is one of the best ways to learn but
remember that you will not be given any helpful error
messages when something goes wrong. Indeed the
computer may crash and you could lose the program. The
motto should always be 'Save it first'! Good luck and
happy assembling.

Appendix A: Bibliography

1. ;Assembly Language Programming for the BBC
Microcomputer; by Ian Birnbaum, published by
Macmillan, London and Basingstoke

2. ;BBC Microcomputer System User Guide; by John ColI,
published by the British Broadcasting Corporation,
London

3. ;The Advanced User Guide for the BBC Micro; by Bray,
Dickens and Holmes, published by the Cambridge
Microcomputer Centre

4. ;The School Science Review; edited by Andrew Bishop,
published by The Association for Science Education

5. ;The RS Catalogue;, published by RS Components Ltd,

London

6. ;The Maplin Catalogue;, published by Maplin
Electronic Supplies Ltd, Rayleigh, Essex

274

Appendix B: Suppliers' Addresses

RS Components Ltd
P.O. Box 427
13-17 Epworth Street
London
EC2P 2HA

Maplin Electronic Supplies Ltd
P.O. Box 3

Rayleigh
Essex
SS6 8LR

LEGO U.K. Ltd
Wrexham
Clwyd
LL13 7TQ

275

Appendix C: Components for Chapter 3

SUPPLIER'S ORDER CODE
COMPONENT

RS MAPLIN

20 way IDC socket 467-289 FG84F
24 Pin OIL plug 468-276
15 way o plug 466-185 BK58N
20 way IDC cable 357-867 *
Prototype board 488-618 YR84F
4069UB hex inverter 307-216 # QX25C
Std.red LED, 6 off 586-475 + WL27E
Push-to-make switch 337-914 YR67X
BC182L transistor 294-277 # QB55K
IN4148 diode 271-606 $ Q180B
ORP12 "ldr" 305-620 HBI0L
Phototransistor QF30H

DAC0800 D/A conv. 309-458
741 op-amp 305-311 # QL22Y
590kH temp. sensor 308-809
10k linear "pot" 161-789 FW02C
270Rresistor 131-182 @ M270R
1k resistor 131-255 @ M1k
3k9 resistor 131-328 @ M3k9
4k7 resistor(2 off) 131-334 @ M4k7
lOOn capacitor (2) 113-904 # BX03D
iOn capacitor 113-875 # BXOOA
Darlington driver 307-109
5V sub-min re1a.y 348-526
26 way IDC plug 468-897 FG85G
26 way IDC socket 469-976
26 way IDC cable % 357-873 *
3-way pcb plug (3) 467-554 @ BX96E
3-way cable shell 467-605 @ BX97F
Crimp terminals 467-598 '" YW25C
Veroboard 95x125mm 433-826 FL09K

NOTE: * 20m reel, + = pack of 3, # = pack of 5,
@ pack of 10, $ = pack of 25, '" = pack of 100,
% 26 way can be cut down to 20 way.

276

Software List

CHAPTER 2 RTCLOCK 151
MILLI 153

RADECAY 10 EVENTI 155
RASERIES 14 EVENTAD 155
ALPHA 18 DVM 1 164
LONGWAVE 21 ALARM 165
GUN 24 STOPWATCH 165
BOMBER 27 THERMO 171
GUNNER 30 TEMPCON 171
VERNIER2 34 CAPACITOR 174
MASPEC 3.3 37 ADP 176
SOUND EDIT 47 SAWTOOTH 184
REACTION 50 SINE 184
GRAPH 56 FAST OSC 185
RAYS 62 VM TEST 188
SHM 67 DIODE 190
H SPECT 70 ROBOT K 201
POPULATE 81 ROBOT 204
H2O 83
P TABLE 89
PERIOD 96 CHAPTER 4
SHELLS 102
ATOM 107 QUIZBASE 209
DIGEST 112 QUIZI (QUIZBASE + CHEMDATA)
ANIMALS 121 QUIZ2 (QUIZBASE + UNITDATA)

TESTGEN 213
TESTE.R 218
CLASREC 226

CHAPTER 3 R FILE 243
IS FILE 245

VIA DEMO 136
PORTI 139
PORT2 139 CHAPTER 5
BINARY 140
RANDOM 140 LARGECH 256
TRAFLITES 141 C TABLE 260
PELICAN 141 MCTIMER 262
COUNT 149 MCTPEND 263
BEEPER 150 DIFFUSE 267

277

Details of Cassette

A software cassette, containing all of the program
listings in the book, is available. This cassette is
obtainable through all major bookshops, but in case of
difficulty order direct from

Globe Book Services
Houndmills
BruneI Road
Basingstoke
Hampshire RG21 2XS

ISBN 0-333-39094-6

The cost of the cassette is £9.00 including VAT.

