

Turtle Graphics
on the BBC Microcomputer
and Acorn Electron

The Turtle Graphics program was written by Dominic Verity and this book
by Barry Morrell.

Note: Within this publication, the term ‘BBC’ is used as an abbreviation for
‘British Broadcasting Corporation’.

Turtle Graphics
on the BBC Microcomputer
and Acorn Electron

About this book

The Acornsoft Turtle Graphics package provides users with the turtle
drawing commands of the language LOGO. This book has been designed
to take the user slowly through these commands, introducing them in a
sensible order.

Turtle Graphics is the way into LOGO for most beginners, whether child or
adult. The approach works for almost everyone as all the commands draw
immediately on the screen what you have asked them to draw. In this
way, mistakes can be quickly corrected and the final result can then be
saved for future use.

About the author

Barry Morrell has worked in the computing industry since 1970. Since
1976, he has been a technical author, managing a team of authors for a
national computer manufacturer before becoming a freelance writer.

With his wife, who is a teacher, the author runs a company specialising in
the development of literature and software relevant to education in the
home and in schools.

Acornsoft Limited, Betjeman House, 104 Hills Road, Cambridge CB2 1LQ,
England.
Copyright © Acornsoft Limited 1984 SLD17

Contents
__

Introduction 1
__

1 What are turtle graphics? 3
__

2 Getting under way 5
__

3 Turning the turtle 7
__

What if I make a mistake? 10

4 Improving your drawing 11
__

The PENUP and PENDOWN commands 11
The HIDETURTLE and SHOWTURTLE commands 12
The PENERASE command 12
The HOME command 13

5 Putting colour into your pictures 14
__

The FILL command 14
Changing the PEN colour 15
Further reading 17

6 Teaching the turtle 18
__

Speeding things up 21

7 Saving and retrieving procedures 22
__

The SAVE command 22
The RETRIEVE command 23
Using the *CAT command 23

8 Learning more about procedures 24
__

The REPEAT and ENDLOOP commands 24
Getting rid of unwanted procedures 25

9 Using numbers 27
__

The order of expressions 28
Identifiers 30

10 Using identifiers with procedures 34
__

11 Changing your procedures 38
__

Listing procedures 38
Replacing lines 39
Adding lines to a procedure 40
Adding procedure identifiers and inserting lines 41
Deleting procedure identifiers and deleting lines 42

12 Printing with the turtle 44
__

Using different text windows 45

13 Some hints for turtles 47
__

Group learning 47
Learning sequences 47

14 More advanced control of the turtle 52
__

Recursion 52
SETTURTLE and TURTLESTATE 53
Logical operations 54
The WHILE and UNTIL operators 55
The IF command 55
The RAND command 56
The GET command 57

Producing special effects 58
The SOUND command 58

Appendix A 60
__

Warning messages

Appendix B 62
__

Summary of controls

Appendix C 65
__

The demonstration programs

Bibliography 67

Index 68

Introduction
__

The Acornsoft Turtle Graphics package gives you the turtle drawing
commands of the language LOGO. This book is designed to help you get to
know them.

Turtle graphics is the way into LOGO for most beginners, whether child or
adult. Through it, they get to know how to ‘think’ LOGO and ‘think’ turtle.
The approach works for most people from six to ninety-six because turtle
graphics commands draw immediately on the screen what you have asked
them to draw. This means that you can try out your ideas and see at once
whether they do what you intending, something interesting that you did
not intend or something horrible. In the first case, you will be able to save
your drawing for future use; in the other two cases you have the fun of
finding out what went wrong and changing the commands to get
something interesting.

Learning to use a package like this one involves spending time to become
familiar with the 30-odd commands from which you can build everything
else. The main purpose of this book is to take you slowly through these
commands, introducing them in a sensible order. We hope that Appendix B
will serve as a quick reminder of what each command does. You might find
it useful to copy these pages and keep them to hand when you are
turtling.

In this book we can’t show you all the things that other people have drawn
and found exciting. However, a lot has been published about LOGO and
turtle geometry and we have provided a list of books and papers that we
have found interesting, both at the fun level and the research level. We
earnestly suggest that you try to get hold of some of them and see what
ideas other people have had. Meanwhile, chapter 13, ‘Some hints for
turtlers’, gives some ideas to stimulate your imagination and encourage
you to invent other things for yourself.

Now, to discover the power of the turtle, look at figure 1; this is a well-
known turtle graphics picture called ‘SUN’. Drawing such a picture requires
substantial thought, imagination and trial and error. However, the
commands needed take up less than one page. When you have mastered
the commands which make up turtle graphics, this and lots more are
possible.

1

1 What are turtle graphics?
__

Computers are not antisocial devices. They can lead to antisocial behaviour
if used improperly, but they have great potential in teaching social
behaviour as well as other concepts.

If you put a small group of children around a computer they will share
their experiences and learn from one another’s mistakes. They will often
learn to communicate with each other, as well as with the computer.

Turtle graphics has been shown to have this effect on children and it puts
both the child and the computer in the right context: it puts the child in
command of the computer, rather than the reverse. It is part of a
computer language called LOGO. Computer languages are merely ways of
telling the computer how to solve problems. There are several languages
because solving problems in engineering, for example, needs a different
approach from solving problems in accounting or education.

Anyway, LOGO is a computer language which helps children develop their
learning ability and it uses the concept of the ‘turtle’. This is a creature
that the children can identify with and can move around by giving it
instructions. For younger children, the turtle can take the form of a robot
that moves across the floor (known as the ‘floor turtle’). For older children,
it takes the form of a triangle upon a television screen (the ‘screen turtle’):

This is the type that is used in the Acornsoft Turtle Graphics package.

The turtle can be made to move by the children giving it instructions. As it
moves, it can leave a ‘trail’ that is used to build up patterns as simple as a
square or as complex as the children wish. In doing this, they will learn
about geometry and mathematics in an enjoyable way and at their own
pace. They will make mistakes and with guidance will learn to work out
where things went wrong. They will also learn how to put them right.

As well as developing their critical features in this way, the children can be
guided into designing something in a structured manner by relating

3

complicated patterns to things they already know and building them up
gradually.

4

2 Getting under way
__

Turtle Graphics is designed for use on the BBC Microcomputer Model B or
Acorn Electron.

You will have bought your copy of the program on either a cassette or
disc. On the cassette or disc are the following files:

TURTLE The turtle graphics system.

COVER These demonstration programs are loaded from
DRAGON within the turtle graphics system -
HILBERT see Appendix C of this manual.

Please note that should you catalogue your Turtle Graphics cassette or
disc, you will see a number of files that are not referred to in this book.
These files port part of the turtle graphics system but should not be used
(CHAINed or LOADed) directly as they are accessed automatically by the
system.

The procedure for getting started depends upon which version of the
program you have. In this book, instructions which apply only to the tape
version of the program are shown by the cassette symbol; instructions
which apply only to the disc version are shown by the disc symbol.
Instructions without a symbol apply to both versions.

You must have a cassette recorder and a television or monitor

connected to your microcomputer. They should be set up as described in
your microcomputer user guide.

(If your microcomputer is also connected to a disc drive you must tell it to
accept instructions from the tape by typing *TAPE and pressing RETURN.)

Put your Turtle Graphics cassette into your cassette recorder. Make sure it
is fully rewound, then type

CHAIN “TURTLE”

and press RETURN.

When you see the message ‘Searching’, press the PLAY button on your
cassette recorder. The Acornsoft banner will be displayed in less than a

5

minute. After a further minute, you will see the title sequence and, after a
further two to three minutes, you will see:

TURTLE GRAPHICS VERSION 1.0

A few lines further down, the character ? should appear and should be
followed by a flashing underline symbol (the cursor). The screen will also
contain a triangle near its centre; this triangle is the turtle and you are
now ready to make it perform. However, before you go any further, stop
your cassette recorder (unless you have automatic motor control, in which
case it stops automatically).

You must have a disc drive and television or monitor connected to
your microcomputer. The disc drive should be connected as

described in the Disc Filing System User Guide.

Place the disc containing Turtle Graphics in the disc drive, then type

CHAIN “TURTLE”

and press RETURN.

After about three seconds you will see the Acornsoft banner, followed
immediately by the title sequence. After about ten more seconds you will
see this text:

TURTLE GRAPHICS VERSION 1.0

A few lines further down, the character ? should appear and should be
followed by a flashing underline symbol (the cursor). The screen will also
contain a triangle near its centre; this triangle is the turtle and you are
now ready to make it perform.
One final point: if you want to get back to BBC BASIC at any time, press
the BREAK key.

The demonstration programs are loaded from within the turtle graphics
system; they are described in Appendix C.

6

3 Turning the turtle
__

The turtle on your screen performs two functions:

- It shows you its current position
- It shows you the direction in which it is pointing

You can alter both of these by giving the turtle instructions, or
‘commands’. These can be typed in directly after the ? symbol (this is
called a ‘prompt’ and it is displayed whenever the turtle is waiting for
instructions).

Now try typing the instructions given below. At the end of each line, check
that the instruction you have typed is what you intended and, if it is not,
correct it using the DELETE key (DELETE remove the character
immediately to the left of the cursor). If it is what you intended, press the
RETURN key (remember, you should always press RETURN at the end of a
command).

FD 200
LT 90
RT 90
BK 200
CLEAR

Your turtle should have:

- Moved up the screen, leaving a trail
- Turned left by 90 degrees.
- Turned right again by another 90 degrees.
- Moved backwards to its original position.
- Cleared the screen and returned the turtle to its original, ‘home’

position.

You might have noticed that the last four commands are printed at the
bottom of the screen. This is to help you keep track whilst you are
programming.

The commands you typed could have been input as:

FORWARD 200
LEFT 90
RIGHT 90

7

BACK 200
CLEAR

and this is much more readable than the earlier, shortened version.
However, the latter still has its uses if you or your children prefer hitting
fewer keys. Experience has shown that most people start by using the
longer commands, whose meaning is immediately clear, but soon start
using the ‘shorthand’ form.

Where a command can also be given by a two-letter shorthand, we will
name the two letters by putting them in brackets after the full command
name when we first define the latter. For example, LEFT(LT) shows that
LT can be used as a short form of LEFT.

Now let us take a look at the commands in a little more detail.

FORWARD(FD) moves your turtle in a straight line in the direction it is
facing. To tell you how far to go, you must follow the command with a
number. For example

FORWARD 1

will move the turtle forward a small distance, whilst

FORWARD 200

will move it forward much further.

The turtle carries a ‘pen’ which it uses to draw a trail as it moves. Notice
that, whilst the position of the turtle changes, its heading remains the
same.

BACK(BK) moves your turtle backwards. Again, you must follow the
command with a number. For example

BACK 430

Moves the turtle backwards, away from the direction in which it is heading,
by 430 steps. A similar effect can be achieved by using FORWARD with a
negative number. As with the FORWARD command, the position of the
turtle changes but its heading does not.

RIGHT(RT) turns the turtle clockwise (to the right) without altering its
position. To tell it how far you want it to go, you must follow the command
with a number, for example

8

RIGHT 55

By experimenting, you will probably recognise this number as a measure
(in degrees) of the angle of turn. Children will need to explore the
meaning of this number and, by doing so, will understand it well. It is a
good idea to ask them to try 90 degrees and its multiples. The following
diagram shows the effect of different RIGHT turns upon the turtle:

NORTH
0

WEST 270 ٠ 90 EAST

180
SOUTH

LEFT(LT) turns the turtle anticlockwise (to the left) without altering its
position. As with the RIGHT command, you use a number to specify the
angle of the turn.

LEFT 120

turns your turtle 120 degrees to the left. A similar effect can be achieved
by using RIGHT with a negative number. The following diagram shows the
effect of different LEFT turns upon the turtle:

NORTH
0

WEST 90 ٠ 270 EAST

180
SOUTH

CLEAR clears the screen and returns the turtle to its ‘home’ position, which
is at the centre of the screen, with the turtle pointing upwards.

Now try drawing some simple pictures, using the above commands. It is
fun to explore them and find out what you can do; they are the basis of
turtle graphics. It is also important to understand exactly how the
instructions you give relate to how the turtle moves. Try to draw a square
and a rectangle for a start.

9

What if I make a mistake?

You will make mistakes; everybody does. But it is easy to work out what
you did wrong and modify the commands accordingly.

The most common mistake everyone makes is mistyping what they
intended to type. For example, you might type:

FORWRAD 100

instead of

FORWARD 100

If you notice the mistake before you press the RETURN key at the end of
the line, you should correct it using the DELETE key as described
previously. If you do not, the program will notice the error and reply with
the message:

Command not understood

You can then retype the command.

Whenever you type something wrong, or ask the program to do something
it does not understand, it will reply with a warning message that tells you
clearly what it thinks is wrong, relating it to the line that caused the
problem. It is usually obvious how to put things right by looking at what
you typed in the light of the complaint it made.

A full list of warning messages is given in Appendix A.

10

4 Improving your drawing
__

This chapter introduces you to more of the commands that you will need
when you draw pictures.

The PENUP and PENDOWN commands

Up to now, whenever you have moved the turtle it will have left a trail.
This can be a nuisance if you want to draw figures like the one below,
without any connecting lines.

You can get round this problem by using the PENUP(PU) and
PENDOWN(PD) commands. Type the following and notice what happens.
Try using the shorthand commands, as well as the full ones, when you are
trying out the ideas in this chapter.

CLEAR
FORWARD 50
PENUP
FORWARD 50
PENDOWN
FORWARD 50
PENUP
FORWARD 50
PENDOWN
FORWARD 50
PENUP

You should end up with a picture like the one shown below. PENUP stops
the turtle from drawing whilst PENDOWN starts it drawing again.

11

The HIDETURTLE and SHOWTURTLE commands

If you have produced any interesting pictures up to now, you may have
been irritated by the presence of the turtle sitting on your picture at the
end. You can remove it by using the HIDETURTLE(HT) command, then
put it back again using the SHOWTURTLE(ST) command. Try typing the
following and notice what happens:

HIDETURTLE
LEFT 180
FORWARD 250
LEFT 180
SHOWTURTLE

The turtle should have returned to its ‘home’ position near the centre of
the screen. Just because you can’t see it, that doesn’t mean it can’t move!

The PENERASE command

Whilst you were drawing pictures in the last chapter, you probably spoiled
some of them with lines that didn’t quite seem to go where you expected.
You can correct these by typing

PENERASE

Then retracing over the unwanted line. PENERASE(PX) turns the ‘pen’ into
an ‘eraser’. To see how it works, type the following:

PENERASE
FORWARD 250

This should have erased the previous lines. To stop using the eraser and
begin using the pen again, you need to type PENDOWN (but don’t do this
yet!).

12

The HOME command

You could return the turtle to its ‘home’ position by typing the following:

LEFT 180
FORWARD 250
LEFT 180

Alternatively, you could type the following:

HOME

Try doing this now. This HOME command returns the turtle to its home
position from wherever it lies on the screen. It also makes the turtle point
upwards.

If you were to move the turtle around the screen again, no trail would be
left because the eraser is still in use. You should remove it now and
reinstate the pen by typing

PENDOWN

HOME, like some other commands to come, is used infrequently so we
have not provided a shorter version.

13

5 Putting colour into your pictures
__

There are two ways of putting colour into your pictures:

- Filling your diagrams with the pen colour.
- Changing the pen colour in different parts of your diagrams.

The commands you need for both of these actions are described below.
These commands belong to the BBC Microcomputer and Acorn Electron;
other machines may or may not have been.

The FILL command

This is a simple and useful way of improving your pictures by colouring in
areas which are surrounded by a line you have previously drawn.

First, type:

PENUP

Next, move the turtle so that it is wholly within the area you want to
colour. Finally, type the following two commands:

HIDETURTLE
FILL

The area will slowly be filled in with the current pen colour.

Try typing the following commands and watch what happens:

FORWARD 200
LEFT 90
FORWARD 200
LEFT 90
FORWARD 200
LEFT 90
FORWARD 200
LEFT 130
PENUP
FORWARD 100
HIDETURTLE
FILL

14

You should end up with a picture like the following:

Remember that if you try to fill a shape and the turtle is sitting at the end
of a trail, nothing will happen. Always move the turtle into the area you
wish to fill with the pen up. In addition, unless you want the turtle shape
in the centre of your filled area, use the HIDETURTLE command.

If you don’t wish to continue with a fill for some reason, simply press the
ESCAPE key to stop filling. ESCAPE is generally used to stop a program
which is running, and it returns control to the command prompt ?.

Now, try drawing some interesting shapes and then fill them.

Changing the pen colour

The pen colours that you can use depend upon the screen mode, and this
depends upon the equipment you have. Eight screen modes are available
with the BBC Microcomputer and seven with the Acorn Electron, but only
five are relevant to Turtle Graphics. They are summarised below:

 Mode Description

4 This uses two colours with high resolution graphics and needs
10K of memory.

5 This uses four colours with medium resolution graphics and

needs 10K of memory.

0 This uses two colours with very high resolution graphics and
needs 20K of memory. For this reason, it can only be used
with a BBC 6502 Second Processor, or with cassette tape for
little turtle programs.

1 This uses four colours with high resolution graphics and

needs 20K of memory. For this reason, it can only be used
with a BBC 6502 Second Processor, or with cassette tape for
little turtle programs.

15

2 This uses 16 colours with medium resolution graphics and

needs 20K of memory. For this reason, it can only be used
with a BBC 6502 Second Processor, or with cassette tape for
little turtle programs.

The mode in use when the package is loaded is MODE 4. You can change
the screen mode by typing MODE followed by a number which corresponds
to the mode you want. Try typing the following, for example:

MODE 5
COLOUR 2
FORWARD 200
LEFT 90
FORWARD 200
LEFT 90
FORWARD 200
LEFT 90
FORWARD 200
LEFT 130
PENUP
FORWARD 100
HIDETURTLE
FILL

You should end up with a square shape similar to the last one you drew,
but with a yellow colour. The COLOUR command defines the pen colour,
and the numbers you should put after it are defined in the following table,
for each valid screen mode:

16

Colour numbers

Mode
0

Mode
1

Mode
2

Mode
4

Mode
5

Pen colour

0

1

0
1

2

3

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

0

1

0
1

2

3

Black
Red
Green
Yellow
Blue
Magenta (blue/red)
Cyan (blue/green)
White
Flashing black/white
Flashing red/cyan
Flashing green/magenta
Flashing yellow/blue
Flashing blue/yellow
Flashing magenta/green
Flashing cyan/red
Flashing white/black

Now try drawing a few simple pictures in different modes and colours until
you are familiar with them.

Further reading

In this chapter we have shown you how to use some of the general
facilities of the BBC Microcomputer and Acorn Electron; more extensive
information than we can give here can be found in the machine’s User
Guide. You might find it helpful to look there for information on other
methods you can use to draw pictures.

17

6 Teaching the turtle
__

So far, we have been using only the commands which are built into the
Turtle Graphics program; these form the turtle’s basic vocabulary.
However, you can extend this vocabulary yourself by ‘teaching’ the turtle
new words.

To do this you must first name the new command which you want the
turtle to obey. You must then type in the set of actions needed to carry
out the command; this is called ‘writing a procedure’.

A procedure is basically like all of the other commands that you have used
so far, except that you create and name it yourself. We will describe the
way procedures work by using one to draw a square.

You have already used the turtle to draw a square. The instructions you
used were as follows:

FORWARD 200
LEFT 90
FORWARD 200
LEFT 90
FORWARD 200
LEFT 90
FORWARD 200
LEFT 90

and the turtle draws a fixed-size square with a side of 200 steps. Now it
seems a bit silly for us to have to type out those eight commands each
time we want to draw a square, so what we do is define a procedure
called SQUARE to do it for us.

To do this we start by typing in the line:

TO SQUARE

And then press RETURN. The TO at the beginning of the line is a new
command; it simply tells the program that you wish to define a procedure.
In this case we are calling the procedure SQUARE, but we could have
easily called it BOX by typing

TO BOX

18

The program now displays the following:

Type M for Menu or type an edit command.

Add lines
>

> is the editing prompt (just like ?, the command prompt). It reminds you
that you are in edit mode (until now you have been in command mode).
Now you can type in the commands that you wish to put into your
procedure, so type in the list of commands you used to draw the square
(they are listed below for you). Check each line before you press RETURN
and, if you make a mistake, use DELETE to remove it. If you fail to do this
and input an incorrect line, you will be able to correct it. If this happens,
just type in the rest of the procedure and then look at the two short
sections ‘Listing procedures’ and ‘Replacing lines’, in chapter 11 to see how
to do so.

FORWARD 200
LEFT 90
FORWARD 200
LEFT 90
FORWARD 200
LEFT 90
FORWARD 200
LEFT 90

When you have typed in your commands, type the new command

STOP

This tells the computer that you have finished adding lines. There must be
a STOP at the end of every procedure.

The computer will now display the message:

Type M for Menu or type an edit command.

Now, if you wish to see what your procedure looks like, type L to LIST it;
your procedure will be listed for you as follows:

PARAMETER(S):
None
PRIVATE IDENTIFIER(S):
None

1 FORWARD 200

19

2 LEFT 90
3 FORWARD 200
4 LEFT 90
5 FORWARD 200
6 LEFT 90
7 FORWARD 200
8 LEFT 90

Don’t worry about the top line; the use of parameters (you have none at
present) will be described later in chapter 10, ‘Using identifiers with
procedures’. Here, we are beginning by learning how to define a simple
procedure with no parameters.

Notice the numbers shown at the left of each line; these are to allow you
to change specific lines in the procedure easily and their use is explained
further in chapter 10. If there are more lines in your procedure than will fit
on the screen in one go, the program will display one screenful; to look at
subsequent screens, press the SHIFT key.

If you are satisfied with the procedure definition, type E when the
computer asks for an edit command; this makes the program leave edit
mode.

To test your procedure, type the following:

CLEAR
SQUARE

The turtle should automatically draw a square. SQUARE is now like any
other command, except that you have defined it.

Now, if you wanted to, you could list your procedure when you are not in
edit mode by using the LIST command. If you just type

LIST

and press RETURN, the program will display the names of the procedures
currently defined. Try it, and you will see that the only procedure defined
at the moment is SQUARE. The display you get should look like the
following:

Procedures you’ve defined:-

SQUARE

20

If you type LIST followed by a procedure name, the contents of the
procedure will be displayed, so type

LIST SQUARE

and press RETURN. Your procedure, SQUARE, will be displayed for you and
the display should be the same as that given when you listed SQUARE
from edit mode. If there are more lines to your procedure than can appear
on the screen, you can display subsequent screens in the same way as you
do in edit mode, ie by using the SHIFT key. TEXTSCREEN (described in
chapter 12, ‘Printing with the turtle’) is useful when listing procedures in
command mode.

Speeding things up

Sometimes a sequence of commands can take a long time to run. If you
want to speed things up you can do so using the SPEED command. Try
typing the following, for example:

SPEED 255
SQUARE

The number after the SPEED command determines the rate of movement
and can be from 0 to 255. The program assumes a value of 230 unless
you alter it using this command. The SPEED command is deliberately
preset to slow so that beginners can easily follow what happens on the
screen.

You can use the SPEED command in conjunction with any other turtle
commands, not just with procedures, but it is most effective with
procedures because that is when you are sitting back and watching the
turtle perform.

21

7 Saving and retrieving procedures
__

In the previous chapter, you learned how to define procedures to save you
typing commands every time you want to draw a figure. Unfortunately,
this only helps you as long as the computer is switched on. Once you turn
it off, you’ve had it; or at least your procedure has! To keep your
procedures for later use you need to use the SAVE and RETRIEVE
commands.

The SAVE command

This stores your procedures onto a floppy disc or cassette tape and it is
very easy to use.

If you want to save your procedure onto cassette tape, you must first wind
the tape you are going to use to a free space.

If you want to use a floppy disc, you should ensure that the disc does not
have a write protect label on it.
Next, whether you are using disc or tape, you should type the following
(but don’t do it yet):

SAVE <filename>

A word of explanation is needed here to define <filename>. To give the
format or general form of a command we use the convention that words in
angle brackets <> stand for any instance of what those words refer to.
Don’t type the angle brackets; type what their contents refer to. In the
case above, this will be a filename which you choose yourself. The
filename can be any name of up to ten characters on tape and seven
characters on disc. All of the procedures you have typed in will now be
stored on the disc or tape.

Try doing this with the procedure SQUARE that you have just defined.
Prepare your tape or disc as described above, then type the following:

SAVE PROCFIL

The procedure will be saved into the file PROCFIL.

22

The RETRIEVE command

You will, of course, want to retrieve the procedures you have saved. You
can do this using the RETRIEVE command.

If you are using cassette tape, you need to rewind the tape to the
beginning of the file you want to load. If you are using floppy disc, you
needn’t do anything special. Next, you should type the following (but don’t
do it yet).

RETRIEVE <filename>

<filename> is the name you used when you saved the file. If you are
using cassette tape, you should now start your tape recorder running.
Your procedures will then be retrieved.

Now try retrieving your procedure from PROCFIL by typing

RETRIEVE PROCFIL

then starting your cassette recorder (if you are using one).

You should now be able to save any procedures that you have written and
retrieve them again at any time.

Using the *CAT command

You can check that you’ve saved a file as follows:

Rewind the tape and type *CAT. If you then press PLAY, this displays all
the names of your files, and PROCFIL should be included.

If you are using disc, you just need to type *CAT or *. and press
RETURN.
If you can’t remember the name of a file that you want to load, you can
check it by typing:

*CAT

*CAT is not the only operating system command that you can access from
the program. You can access each of them just by typing * followed by its
name as given in your microcomputer user guide.

23

8 Learning more about procedures
__

The REPEAT and ENDLOOP commands

If you look at the listing of SQUARE shown below, you will see that we are
repeating the same thing four times.

FORWARD 200
LEFT 90
FORWARD 200
LEFT 90
FORWARD 200
LEFT 90
FORWARD 200
LEFT 90

You have typed in four copies of

FORWARD 200
LEFT 90

Wouldn’t it be easier if you could type these commands once only, then
tell the program that you want them repeated four times? Well, you can
do this.

Try defining a new procedure called BOX. First type the following:

TO BOX

Next, type the following commands:

REPEAT 4
 FORWARD 200
 LEFT 90
ENDLOOP

Finally, type

STOP

then E, to get out of the editor.

24

The REPEAT command tells the program to repeat the lines between it
and the next ENDLOOP command four times (in other words, it forms a
loop). To test this, run your procedure and see what happens. Type the
following:

CLEAR
BOX

The REPEAT command is followed by a number which tells the computer
how many times to repeat the statements in the loop; ENDLOOP simply
marks the end of the loop. The two commands are interpreted by the
computer in the following way:

- REPEAT marks the top of a loop and the computer ignores it until it

finds an ENDLOOP.
- If the loop has been performed the same number of times as the

number after the REPEAT, the loop is left; otherwise, the lines inside
the loop will be repeated.

If you use REPEAT 0 or just REPEAT, then an interesting thing happens:
the REPEAT...ENDLOOP loop will not stop. Using REPEAT 0 gives a
non-terminating loop. At the present state of your knowledge, you can
only get out of a non-terminating loop by pressing the ESCAPE key. Later,
in chapter 14, ‘More advanced control of the turtle’, other ways will be
explained.

Getting rid of unwanted procedures

You already have one of these: it is unlikely that you will ever want to use
SQUARE again. You can get rid of a procedure by using the ERASE
command. This has the format:

ERASE <procedure-name>

To get rid of SQUARE, you type

ERASE SQUARE

Do not confuse ERASE with PENERASE; they do two different thing.
PENERASE can remove the trail drawn by a procedure; ERASE gets rid of
the procedure itself.

If you wanted to get rid of all your procedures that are held in memory,
you could do so with the NEW command. You simply type

25

NEW

The computer will display the message:

THIS DESTROYS ALL PROCEDURES. SURE?

If you type Y, then all your procedures will be wiped out. Typing anything
else will leave them intact.

26

9 Using numbers
__

The Turtle Graphics program has a built-in calculator and can work out the
value of numeric expressions for you. Try typing the following and see
what happens:

CLEAR
FORWARD 100+50+300-100

The program first calculates the value of the numeric expression.

100+50+300-100

and produces the result 350. It then uses this value as the number in the
FORWARD command and moves forward 350 steps. You can prove this by
typing:

BACK 350

and watching the turtle return to its home position.

Numeric expressions are not restricted to use after commands. You can, if
you wish, type a numeric expression on its own. If you want to see the
result of calculating the expression, precede it with a #; the answer will be
displayed on the next line. Try typing the following, for example, and see
what happens:

#100+50+300-100

You should get the result 350 again.

+ and – are called arithmetic operators, because they operate upon the
numbers associated with them to produce a result. Some other arithmetic
and logical operators are given below:

Operator What it does
+ Adds the values on each side of it together
- Subtracts the value on its right from the one on its left
- Produces the negative of the number it is given; this is known

as the unary minus, because it operates upon one number.
* Multiplies the values on each side of it together.
/ Divides the value on its left by the one on its right.

27

% Divides the value on its left by the one on its right and gives
the remainder.

& Takes the values on each side of it and produces the logical
AND of the two.

| Takes the values on each side of it and produces the logical
OR of the two.

~ Gives the logical NOT of the number it is given.

The values used with these operators should be whole numbers for the
arithmetic operators and truth values for the logical operators.

Don’t worry if you do not understand the last two operators; their use will
be described later in this book. Instead, try using a few examples of the
other operators before you go any further.

A number of points need to be made here about the division (/) operator.
When you are using this, you should remember that the answer is always
‘rounded down’; for example, the following expressions all result in the
answer 1:

8/8
12/8
15/8

Also, if the result is less than one it will be given as zero. Find your
yourself, by experimenting, the rules if either or both are negative.

The order of expressions

When calculating the values of expressions, the computer doesn’t just go
from the left of the expression to the right, calculating as it goes. Some
operators are always done before others; for example, in the expression

10+30*5-4

the multiplication 30*5 is done first then the rest of the expression is
worked out.

Operators are worked out in the order shown below. Those at the top
have the highest priority and are worked out first.

*
/
%
+

28

-
~
&
|

You can make the program work out an expression in the order you want
by using brackets; anything inside brackets is calculated before anything
outside them. You can also put brackets inside other brackets; this is
called ‘nesting’ brackets and those on the inside will be dealt with first. For
instance, consider the rather complicated expression:

#(10+5(*3+(50*(30-3))

First of all, the program would calculate the value 10+5 (the sum enclosed
by the first brackets), leaving the expression as

15*3+(50*(30-3))

Next, the contents of the innermost brackets (30-3) will be evaluated to
give

15*3(50*27)

Finally, the contents of the remaining set of brackets is calculated giving

15*3+1350

Since multiplication always have priority over any other operation, 15*3 is
now worked out and 45 is added to 1350, giving the answer 1395. Now
type the expression into the computer (remembering the # sign for
printing) and check the answer.

Try predicting the value of each of these expressions and then type them
in to check your answers. Remember to precede each with a # so that the
result is printed out.

10+30
10*20
34-4
45/5
10330*5-1
10+30*(5-1)
(10+30)*5-1
(10+30)*(5-1)
6/3*4
4*6/3

29

6%4 (remember, this is the remainder of 6 divided by 4)
30*(10/(10-5))
14/7
14/8

Now try some expressions of your own.

Identifiers

In turtle graphics, an identifier simply provides a way of referring to an
item which can be changed at will in arithmetic expressions. You can have
up to 48 identifiers and each can be up to six characters long; you can use
more characters than this, but they will be ignored. Characters which you
can use are the letters ‘A’ to ‘Z’, the letters ‘a’ to ‘z’ and the numbers 0 to
9; the identifier must, however, start with a letter. Identifiers which differ
only in their letter case are still different identifiers. For example, ‘SIDE’
and ‘side’ are different.

Some words cannot be used as identifiers; these are known as ‘reserved
words’ because they are reserved by the program to mean something
specific (usually a command). For example, LEFT and COLOUR are
reserved words.

Values can be assigned to the operators using the := operator. For
example, type the following:

A:=100

This sets the value referred to by the identifier A to 100. You can consider
it as saying ‘A becomes equal to 100’.

If you want to display the value to which an identifier refers, you can do
this at any time by typing # before it. For example, type

#A

and see what happens. You should get the result 100.

You can use the identifier A in arithmetic expressions. For example, typing

#A*5

will give the result 500, whilst typing

#A*7/2

30

will give the result 350. Try these, and define a few identifiers yourself.

We will now look at how you can use identifiers to help you in your
procedures. First, define the procedures ‘TRI’ and ‘POLYTRI’ using the
commands given below; don’t forget to use the E command when you
leave the editor:

TO TRI
REPEAT 3
 FORWARD 300
 LEFT 120
ENDLOOP
STOP

TO POLYTRI
MODE 5
REPEAT 8
 A:=1
 REPEAT 3
 COLOUR A
 A:=A+1
 LT 15
 TRI
 ENDLOOP
ENDLOOP
STOP

Now run them by typing the following:

CLEAR
POLYTRI

You should get a three-colour pattern like that shown in figure 2.

There are a number of things which may be unfamiliar in this example.
First of all, think about what is happening in general terms. The procedure
TRI draws an equilateral triangle and it is called from within the procedure
POLYTRI to draw 24 triangles, each rotated by 15 degrees from the
previous one. This idea of calling one procedure from within another is
new, but it should not come as too much of a surprise: any procedure you
define can be regarded as a new command and it can be used in the same
way as one of the original commands. Indeed, you can even call the same
procedure from itself, though this is more useful with parameters, as you
will see in Chapter 14, ‘More advanced control of the turtle’.

31

Next, we have two REPEAT...ENDLOOP loops, one within the other.
What happens is that the inner loop is obeyed three times for each time
the outer loop is obeyed; this gives us a total of 24 inner loops, the part
which draws the triangle.

Now, think about the way the identifier A is used: it helps you to choose
the colour that the ‘pen’ uses (in the COLOUR command). If you look at
the table in chapter 5 you will see that there are four colours available in
MODE 5: black, red, yellow and white. We want to draw alternate triangles
in different colours, so we use the identifier A to identify the colour
number (0 to 3 in MODE 5). However, we don’t want to use colour 0,
black, since this will be lose in the background colour; hence, we initially
define A as being ‘1’ and then add one to it after it is used.

Don’t worry at this stage if you do not understand all of these ideas. The
important thing is to remember the way the identifier A is used; you can
come back to the rest later.

Now, before you go any further, get rid of the procedures TRI and
POLYTRI by typing

NEW

followed by

32

Y

33

10 Using identifiers with procedures
__

When you define a procedure, you have the option of giving it a number of
‘parameters’. These are simply identifiers which can be given values from
outside the procedure when you use it. For example, suppose you wanted
to draw a number of squares with sides of different sizes. You could do
this by using the side of the squares as a parameter to a procedure. First
of all, define the procedure by typing

TO SQUARE SIDE

then press RETURN. Notice that the identifier SIDE is used as a parameter
to the procedure. Now, type the following commands

REPEAT 4
 FORWARD SIDE
 LEFT 90
ENDLOOP
STOP

then press E to get out of the editor.

Notice that SIDE is used within the procedure to define the length of the
sides. Suppose you wanted to draw squares with sides 200 and 100 steps
long; you could do this by typing

CLEAR
SQUARE 200
PENUP
RIGHT 90
FORWARD 300
LEFT 90
PENDOWN
SQUARE 100

The values that you use when you call the procedure will be substituted
within the body of the procedure when the turtle draws the squares. Try
this for yourself.

SQUARE 10

is a small one; try others.

34

You can use as many procedure identifiers as you need, separating each
one with a comma as you write it. A procedure which draws a polygon
with NUMBER sides, each of length SIDE, would start as follows:

TO POLYGON NUMBER,SIDE

Each time you enter POLYGON, these parameter identifiers are set from
outside, with the values given by you, so that:

POLYGON 3,1 gives a small triangle
POLYGON 8,12 draws a big octagon

The identifiers we have looked at are known as global or public identifiers;
they can be used in any part of your program and will have the same
meaning in each.

Procedures also have private identifiers which cannot be ‘seen’ from the
outside but are made available for you to use each time you enter the
procedure. The system gives them each an initial value of 0, but it is up to
you to give them the values you want.

The following example uses some logical ideas from chapter 14, ‘More
advanced control of the turtle’ to show the use of private identifiers. You
can probably work out what they mean for yourself without looking ahead,
since they mean what they say. Basically, the example draws concentric
circles, changing the colour every five circles. It assumes that you already
have a procedure

TO CIRCLE RADIUS

which draws circles of size RADIUS for you.

TO CIRCLES Size AND PRIVATELY Count,Col,No
Count:= Size
Col:= 0
No:= 0

\
\The above lines are not strictly necessary,
\but it is sensible to initialise the identifiers
\yourself and not rely upon the system.
\
REPEAT Size
 CIRCLE Count
 Count:= Count-1
 No:= No+1
 IF No=5

35

 No:=1
 Col:= Col+1
 IF Col =4
 Col:= 0
 ENDIF
 COLOUR Col
 ENDIF
ENDLOOP
STOP

Notice the lines which start with \ and have text on them. These are
comment lines and they contain explanatory text. You can put them
anywhere in your programs and they are especially useful in long
programs.

You must remember that each time you call a procedure, a new set of
spaces for parameter and private identifiers is created for you. Thus, you
cannot use one of the private identifiers of the procedure to count how
many times the procedure has been called. Instead, you must use a global
or private identifier of the calling procedure. On the other hand, when you
call a procedure from itself, you have a completely new set, which is just
what you want. The formal rules for writing a procedure are as follows:

TO <procedure-name> <identifier 0>,...,
<identifiern-1> AND PRIVATELY <identifiern>,...,
<identifierm>

<identifier0>,...,<identifern-1> are the parameter identifiers
of the procedure.

<identifiern>,...,<identifierm> are its private identifiers.

If you have no private identifiers, you need not write ‘AND PRIVATELY’.

Because the system can handle only 48 distinct identifier names, it can be
very useful to have several private identifiers which happen to have the
same name, but belong to different procedures and are therefore given
distinct ‘spaces’ by the Turtle Graphics package. This is a neat trick to get
round this limitation, but you do have to remember which identifier you
are talking about where!

Now try typing the following:

LIST SQUARE

36

Assuming you haven’t switched your machine off since you typed this
procedure, you should get the result:

PARAMETER(S):
SIDE
PRIVATE IDENTIFIER(S):
None

1 REPEAT 4
2 FORWARD SIDE
3 LEFT 90
4 ENDLOOP
5 STOP

PRIVATE IDENTIFIER(S):
None

You should now see the significance of the top line, which we left
unexplained in chapter 6, ‘Teaching the turtle’: it lists the parameters to
the procedure.

As a final point, don’t forget that you can use a procedure you have
defined from within another procedure.

37

11 Changing your procedures
__

You have already looked at how you can use the editor to create a new
procedure. We will now look at how it can be used to change or correct
procedure and will use it to change your procedure SQUARE. First of all,
enter the editor by typing

EDIT SQUARE

The following text will be displayed:

Type M for Menu or type and edit command.

Now type M to display the edit menu (shown below):

A to Add lines
L to List procedures
D to Delete a line
I to Insert a line
R to Replace a line
C to Change the identifier list
E to End edit

Most of these lines are self-explanatory. We will now explore how they
work by modifying your procedure SQUARE. If you make a mistake whilst
editing, you will get an error message. You can then continue from where
you left off.

Listing procedures

First of all, we will list the procedure. You should always do this as the first
step when you use the editor; it makes life much easier for you to have
the text in front of you. You should also list your procedure after each edit
operation, to ensure that you get the results you expected! Now, list your
procedure by typing L; you do not need to press RETURN.

38

The listing consists of:

- The parameter identifiers.
- The private identifiers.
- The body of the code.

Replacing lines

Next, we will make the turtle turn to the right instead of the left by
replacing the line:

3 LEFT 90

by the following line:

3 RIGHT 90

You can do this using the editor’s REPLACE command. All you need to do
is press R and the editor will reply with the message:

Replace a line
Type in line number:-

Next, you press the number key corresponding to the line you want
replaced (3). The editor will reply with the prompt:

>

and you should type

RIGHT 90

List the procedure to ensure that your change was what you expected,
then type E to edit from the editor. Now try the changed procedure by
typing

CLEAR
SQUARE 300

You should end up with a square drawn on the right of the screen, instead
of on the left.

39

Adding lines to a procedure

Now let us fill the square with the pen colour. You can do this by adding
the following commands to your current procedure:

PENUP
RIGHT 45
FORWARD SIDE
HIDETURTLE
FILL

First of all get into the editor again and list the new procedure by typing

EDIT SQUARE

again, then L. You now need to use the editor’s ADD command; this adds
lines at the end of a procedure, and you get into it by typing A. It replies
with the edit prompt

Add lines
>

and you can add the lines by typing the following, ending each line by
pressing RETURN.

PENUP
RIGHT 45
FORWARD SIDE
HIDETURTLE
FILL
STOP

List the procedure to ensure that you have changed it correctly. Now try
running it by typing E to get out of the editor, then

CLEAR
SQUARE 300

You should end up with a block of colour on your screen and the turtle
should be hidden.

40

Adding procedure identifiers and inserting lines

The next thing we can do is make the turtle draw and fill your square in a
different colour each time. The best way of doing this is to add a new
parameter, COL, that will let you pass the colour number into the
procedure. You will use COL by adding the following commands at the
start of the procedure:

MODE 5
COLOUR COL

We make these changes in two stages. First, we use the editor’s C
command, to add a parameter, then we use the I command to insert the
two new lines.

Begin by getting into the editor again; then type C. The following text will
be displayed:

Change the identifier list
Type in your new identifier list:

You will want to type SIDE, COL. The new parameter will now have been
added, as you will see if you list the procedure again. But it won’t be much
use without the two new lines inside the procedure! You can insert these
without leaving the editor by typing I. The editor will reply with the
following text:

Insert a line
Type in line number:-

You now have to type the number of the line before which you new lines
are to be inserted, and you need to do this twice, because only one line
can be inserted for each use of I command. In fact, you want to insert the
following two lines before the present line one:

MODE 5
COLOUR COL

so you should reply with ‘1’ then press RETURN. All the other lines will be
renumbered to make space for the new line and the editor will prompt you
with:

>

41

You should now type the line

COLOUR COL

Next you should type I again, and go through the same actions to insert
the line:

MODE 5

Notice that, if you are inserting a number of lines, it is easiest to do so in
reverse order, like the above. If you do it this way, you can use the same
line number each time.

The lines will have been renumbered again to make space for the new
line. Check that this is so by listing the procedure.

Finally, get out of edit mode by typing E and run your new procedure by
typing the following:

CLEAR
SQUARE 300,2

You should see a yellow square printed out on your screen. Try using the
numbers 0, 1 and 3 instead of 2 and see what results you get.

If you want to, you could now try adding a new parameter, MODE, to
change the screen mode. If you would like to do this you should do it now,
since, in order to demonstrate the last editor command, we are about to
delete the parameter COL and the two lines we last inserted.

Deleting procedure identifiers and deleting lines

Before you delete any lines, it is always a good idea to list the procedure
first. You can then type the editor command D and the editor will reply
with the text:

Delete a line
Type in line number:-

You should now type the number of the line you want deleted, in our case
‘1’, then press RETURN. You will have to go through these actions again
for the other line (note that this will itself have become line number ‘1’,
since the lines will have been renumbered).

42

Now use the C command to delete the parameter COL by typing

SIDE

in response to the prompt:

Type in your new identifier list:

Listing the procedure SQUARE will produce an identifier list with a single
parameter SIDE. So in order to delete parameters you simply have to
change the parameter list missing out the identifiers to be removed.

43

12 Printing with the turtle
__

You can print a message or number on the screen at the current cursor
position using the PRINT command. Suppose you wanted to draw a
square on the screen and print its area at the side. You could use your
procedure SQUARE as the basis of this and calculate the area using an
arithmetic expression. Look at the following commands:

TO AREA SIDE
SQUARE SIDE
PENUP
LEFT 45
FORWARD SIDE
HIDETURTLE
FILL
RIGHT 135
FORWARD SIDE
PRINT (SIDE/100)*(SIDE/100)
STOP

The second line calls your procedure SQUARE, the following five lines fill
the square with ink. Underneath these, the lines

RIGHT 135
FORWARD SIDE

merely take the turtle out of the square and to its right. The last line,

PRINT (SIDE/100)*(SIDE/100)

prints the area of the square. Note the scaling factors of 100 that are built
in. If these were not present, you could only define a square with sides up
to about 180 steps, since the largest number that can be used (32767)
would otherwise be exceeded.

PRINT can display either a number, as in:

PRINT 143

or it can display the value of a complicated numeric expression, built up
from identifiers and numbers, as shown above. It can also display a
message, as in the following line

PRINT “AREA IS “

44

Here, the text will be displayed as follows:

AREA IS

When you use a message in a PRINT command it must be enclosed in
quotes; these are found at the top of the keyboard, above the ‘2’ key and
you get them by pressing the SHIFT key and ‘2’ key at the same time.

Using different text windows

You may have noticed that, initially, when you typed in some text, you
were able to type into only the bottom four lines of the screen. But that is
not always the case; when you try to edit or define a procedure, for
example, the program allows you to write on the entire screen.

In fact, you can use the screen in a number of ways. The commands that
allow you to change the way in which the screen is used are
SPLITSCREEN, TEXTSCREEN and FULLSCREEN.

SPLITSCREEN allows you to mix text and drawings. Text is displayed only
in the bottom four lines of the screen and the four latest commands are
shown; the rest of the screen is left for drawing. This is the way the
system operates when switched on, and you can get back to it at any time
by typing

SPLITSCREEN

TEXTSCREEN opens up the entire screen for text; it is the display used by
the editor. You can change to it by typing

TEXTSCREEN

In this mode, the turtle is normally turned off but you can turn it on again
by typing

SHOWTURTLE

FULLSCREEN prevents text from being printed on the screen. You can still
type commands into the program as before, but the letters that are typed
will not be printed on the screen. This type of display would be very useful
if you wanted to take a photograph of a turtle drawing. Try using it with
your procedure SQUARE by typing the following:

FULLSCREEN

45

SQUARE 300

Now try experimenting with these commands to see what you can do with
them.

46

13 Some hints for turtlers
__

We do not presume to tell experienced turtlers how to teach. Rather, this
chapter should be seen as suggestions which may help you and your
children. The essence of Turtle Graphics is that you can adapt its use to fit
in with your own ideas.

Group learning

It is a good idea to have two or three children working together; they can
try out ideas on one another and also encourage each other. Above three,
some of the group get shut out by the ‘experts’; it is even worthwhile
seeing that this doesn’t happen with a group of three.

Learning sequence

The learning sequence used in this book can work in home or classroom
teaching. It has been organised so as to introduce a few commands at a
time and each group of commands can open a new horizon for the
children.

Children should first be allowed to explore the screen for themselves. By
trial and error they can work out the size of the screen; they can also find
out what happens when they go ‘off’ the screen. Then, they can go on to
explore the idea of angles and can be guided into drawing a square. You
can help them to discover the movements needed by getting them to
move their bodies in the same way as they want the turtle to move on the
screen. This is known as ‘playing turtle’.

At this point you could introduce the concept of colour and that will give
the children a new creative element to play with.

The commands already introduced give the children plenty of scope; when
you feel that they are tired of typing in the same instructions a number of
times, you could show them how to use procedures and the
REPEAT...ENDLOOP command.

You will now have introduced them to the basis of programming and one
of the most important ideas to get over at this point is the importance of
designing programs. They should think about what they are going to do
before they do it, and consider what the outcome will be. If things go

47

wrong, they will then have something to measure their progress against
and assess what went wrong.

At this point you could get them to draw an equilateral triangle and this
will probably lead to their first major programming ‘bug’. The children may
know that an equilateral triangle has angles of 60 degrees and they will
probably draw something like the following:

This is because they should be drawing the ‘outside’ angle rather than the
‘inside’ angle. To produce an equilateral triangle they will have to turn
though 120 degrees from the direction in which they are travelling:

When you introduce the concept of parameters you open up a lot of
possibilities. You could, for example, get them to produce a number of
different-sized equilateral triangles.

TO TRI SIDE
REPEAT 3
 LEFT 120
 FORWARD SIDE
ENDLOOP
HIDETURTLE
STOP

A point to bring out here is that the turtle turned through 360 degrees min
both the triangle and the square. In fact, if the turtle goes round the
boundary of an area and ends up in the position where it started, the sum
of all turns will be 360 degrees. This is what is known as the Total Turtle
Trip Theorem. If the angles at each corner of the area are similar, each
angle is, thus, 360 degrees divided by the number of sides. For example:

360/4 = 90 degrees for a square
360/3 = 120 degrees for an equilateral triangle

The children could then extend this discovery to produce polygons with
any number of sides. For example, a hexagon has six sides and angles of
60 degrees. Its procedure could be:

48

TO HEX SIDE
REPEAT
 LEFT 60
 FORWARD SIDE
ENDLOOP
HIDETURTLE
STOP

Alternatively, they could be guided into producing the following procedure,
POLY. This simply moves the turtle forward a constant distance, turns it
left a constant angle and repeats the procedure again. The angle of turn
and the distance to move are given to POLY as parameters.

TO POLY SIDE,ANGLE
REPEAT
 FORWARD SIDE
 LEFT ANGLE
ENDLOOP
STOP

With this procedure you would have to use the ESCAPE key to stop the
turtle, because it runs indefinitely.

The next logical step is to remind them of the relationship between the
number of sides and internal angles, then get them to write a procedure to
produce the angle automatically and stop after the given number of sides:

TO NUPOLY SIDE,NUMBER
REPEAT NUMBER
 LEFT 360/NUMBER
 FORWARD SIDE
ENDLOOP
STOP

The pictures below show some examples of polygons. If the children are
guided into producing polygons with an increasing number of sides they
might notice that they are getting closer to a circle. This is finally reached
when the number of sides (NUMBER) equals 360.

One idea you may be familiar with is Piaget’s: that younger children more
readily identify with concrete rather than abstract concepts. For example,
at a very early stage you could get them to draw houses, using squares

49

and triangles. In fact, you may have difficulty in dragging them away from
doing this and getting they to draw, say, hexagons! If you could introduce
the procedure for a circle fairly soon, you could widen their scope: you
could get them to draw an Eskimo’s igloo and then talk about geography
for a while.

The idea of using one procedure inside another is a useful one. For
example, have a look at the following:

TO PADDLE
FORWARD 200
REPEAT 3
 LEFT 90
 FORWARD 50
ENDLOOP
LEFT 90
BACK 150
STOP

This produces the paddle shape shown on the right. It could be used to do
a picture of a paddle wheel:

TO WHEEL
REPEAT 8
 PADDLE
 RIGHT 45
ENDLOOP
HIDETURTLE
STOP

You could now talk about paddle steamers, for example, and this might
lead to them thinking of new shapes.

With this paddle wheel example you are also introducing structured
programming, an idea that is well worth developing. It involves dividing up
the program into natural parts (in the present case, PADDLE and the rest
of WHEEL) so that each part can be debugged separately. The worst
conditions for debugging are when several bugs are present
simultaneously; very strange results can often be achieved. The debugging
process is most effective if a program is divided into small parts, or
procedures, and each procedure is small enough for it to be unlikely that it
contains more than one bug.

In fact, the method of structured programming described above is called
the ‘bottom up’ approach, because we are effectively designing a shape
then looking to see what other, more complicated shapes can be built from
it. There is another, more common method called the ‘top down’

50

approach; this involves looking at a problem and breaking it down into
smaller, distinct units. Both methods have their uses, as you will find out
for yourself.

Now try using POLYSPI. As its name implies, it is simply a derivative of
the procedure POLY which was defined above. In this case, the angle of
turning stays constant but the distance to move through, which we called
SIDE, is changed.

TO POLYSPI SIDE,ANGLE
REPEAT
 FORWARD SIDE
 LEFT ANGLE
 SIDE:=SIDE+20
ENDLOOP
STOP

Type this in and try it out.

Now, in the definition of POLYSPI above, the amount by which SIDE is
incremented each time is always 20. It might be useful if you could change
this increment and you could do this by adding a new parameter to
POLYSPI’s parameter list. Try calling this INC and then replace ‘20’ by
INC in the fourth line. When you call POLYSPI with various parameters
the range of results is quite marvellous.

By this point you and the children will probably have invented some new
procedures and found several avenues to explore. This is the most
rewarding part of turtle graphics: you are very often ‘breaking new
ground’. The areas that have been covered give you a lot of scope for
teaching, whether at home or in the classroom. However, don’t stop there.
When you are ready, try looking through chapter 14, ‘More advanced
control of the turtle’. This will introduce you to some of the most powerful
items in the turtle’s vocabulary.

51

14 More advanced control of
the turtle
__

Many people will, for quite a time, use only the commands which have
been described up to the present. However, there are other commands
available that help you to exploit the facilities of turtle graphics and your
microcomputer to the full. They are described below.

Recursion

Once concept which has something of an aura of mystery about it is
recursion, probably because it is about the only word in the turtle
vocabulary which is not familiar from everyday use. However, it is both
simple and fascinating. All that it involves is writing a procedure which
calls the same procedure, usually with another parameter, to do part of its
work.

Such a procedure could, of course, go on for ever, and there is little point
in writing a procedure like SQUARE in this way. Recursion is most effective
when it is used together with an arithmetic operation on one or more
identifiers. A square which redraws itself continually is dull and valueless; a
square which grows, or which tilts a few degrees each time it is drawn, is
quite another thing. In fact, recursion can offer a very wide range of
teaching ideas in itself.

One example of the use of recursion is the ability to replace
REPEAT...ENDLOOP loops with procedures that call themselves. In other
words, a procedure which employs recursion calls another version of itself
as a sub-procedure.

In the previous chapter, we defined the procedure POLYSPI. This can be
defined in another, perhaps cleaner, way using recursion:

TO POLYSPI SIDE,ANGLE,INC
FORWARD SIDE
LEFT ANGLE
POLYSPI SIDE+INC,ANGLE,INC
STOP

The last line but one keeps the process repeating by including the
command to call POLYSPI as part of POLYSPI’s definition.

52

Try this new version of POLYSPI and compare it with the original.

SETTURTLE and TURTLESTATE

These commands allow you to check the position of the turtle and the
direction in which it is pointing, and to alter these values. The home
position is regarded as the origin, with x- and y-coordinates of zero. The
initial direction of the turtle is regarded as 0 and it increases in a clockwise
direction; for example, when it points downwards it has a direction of 180.

You can check the state of the turtle using the TURTLESTATE(TS)
command. For example

TURTLESTATE A,X,Y

will return the direction of the turtle and its x- and y-coordinates in A, X
and Y respectively. You can use other identifiers, instead of these, if you
wish. Try moving the turtle around and use the command a few times.

SETTURTLE(STP) is the reverse of this command; it allows you to move
the turtle to an exact location on your screen.

A:=45
X:=100
Y:=100
SETTURTLE A,X,Y

will move the turtle 45 degrees to the right. Try it and see.

A use for these commands will be shown in the next section.

53

Logical operations

Some BASIC-like facilities have been included to let you check if an
expression is true or not, and then act upon the result. The commands
available are as follows:

WHILE <logexpr>
UNTIL <logexpr>
IF <logexpr>...ENDIF

The first two can be used only within a loop; the last one is more general.
First, though, we should define just what it is that the machine considers
to be true and what it considers to be false. In addition, some extra and
logical operators must now be introduced.

We can use the computer to identify the values TRUE and FALSE, as well
as numeric values. Here are some of the operators which enable you to do
so:

 Operator Result
 = Evaluates to TRUE if the numbers on either side of

it are equal, otherwise it evaluates to FALSE.
 < Evaluates to TRUE if the number on the right is

greater than the one on the left, otherwise it
evaluates to FALSE.

 > Evaluates to TRUE if the number on the left is
greater than the one on the right, otherwise it
evaluates to FALSE.

 & Logical AND; evaluates to TRUE if and only if the
expressions on both sides of the & symbol are
TRUE.

 | Logical OR; evaluates to TRUE if one of the
expressions that surrounds the | symbol is TRUE.

 ~ As we said earlier, when we were talking about
number operators, ~ works as NOT with truth
values.

It is often important to be able to compare the sizes of identifiers, and
these functions could come in handy. Note that <, > and = are always
worked out before & and | (except where brackets are used) but are
always done after all of the other operators.

54

The WHILE and UNTIL operators

Until now, you have only been able to get out of loops using the ESCAPE
key. The other way of doing this is by using either the WHILE or the
UNTIL command. Try defining the following procedure, which includes the
WHILE command:

TO SQUARE SIDE
REPEAT 4
 WHILE SIDE<350
 FORWARD SIDE
 LEFT 90
ENDLOOP
STOP

Here, WHILE is used to stop you using a value of SIDE greater than or
equal to 350. WHILE you specify a value less than this, the
REPEAT...ENDLOOP runs as normal; if you specify a value greater than
or equal to 350, an exit is made from the loop before the turtle moves.

You could use UNTIL in a similar way, as shown below with another
procedure:

TO ENDSPIRAL ANGLE AND PRIVATELY SIDE,A,X,Y
SIDE:= 0
REPEAT
 TURTLESTATE A,X,Y
 UNTIL X>500 | X<-500 | Y>500 | Y<-500
 FORWARD SIDE
 RIGHT ANGLE
 SIDE:= SIDE+10
ENDLOOP
STOP

This produces a spiral polygon, as in chapter 13, ‘Some hints for turtlers’.
UNTIL SIDE becomes equal to 500, the loop runs as normal; once it
becomes larger than that value, an exit is made.

The IF command

The command

IF <logexpr>

55

is followed by any number of lines of commands which are to be
performed only if <logexpr> is true. The lines that are to be performed
conditionally are completed by the ENDIF statement. If <logexpr> is
false, the flow of control of the program will go to the largest enclosing
ENDIF statement; that is, the conditional statements will be left out.

Below is a procedure that uses IF...ENDIF expressions and the
TURTLESTATE command mentioned earlier. It is called CHECKFORWARD.
Basically, it takes a single parameter, which gives a distance to move
forward, and checks to see if moving the turtle that distance would take it
off the screen (this is considered to be a 1000 x 1200 box centred on the
origin). If it does, the procedure moves the turtle back to its old position,
otherwise, it plots the line.

TO CHECKFORWARD SIDE
TURTLESTATE B,C,D
PENUP
HIDETURTLE
FORWARD SIDE
TURTLESTATE A,X,Y
SETTURTLE B,C,D
PENDOWN
SHOWTURTLE
IF X>500 |X<-500 |Y>500 |Y<-500
 FORWARD SIDE
ENDIF
STOP

If you want to type in the program, do so and try to think about how it
works before you try running it.

The RAND command

The RAND command will return at random a numeric value in a named
identifier. For example

RAND A

Will return a number from –32768 to 32767, inclusive, in A.

The command has the formal definition:

RAND <identifier>

Look at the following procedure, RANCOL:

56

TO RANCOL
MODE 5
RAND COL
COL:=(COL & 32767) % 3+1
COLOUR COL
REPEAT 3
 FORWARD 300
 LEFT 120
ENDLOOP
STOP

This draws a triangle of side 300 steps, but before it starts to draw, the ink
colour is chosen at random. Work out for yourself what is happening, then
try it out.

The GET command

The GET command is an input command and it will wait for a key to be
pressed whilst the procedure is running. For example

GET A

Will place the value of the key which you press in the identifier A. Look at
the following procedure, TRICOL:

TO TRICOL
MODE 5
GET COL
COLOUR COL
REPEAT 3
 FORWARD 300
 LEFT 120
ENDLOOP
STOP

This also draws a triangle of side 300 steps, but before it starts to draw it
waits for you to press a key. If you press a number key, it will draw the
triangle in the colour corresponding to that number for MODE 5. Try it and
see.

57

Producing special effects

The BBC Microcomputer and Acorn Electron can produce very
sophisticated sound effects when running Turtle Graphics by using the
SOUND and ENVELOPE commands. They can also produce impressive
visual effects using the VDU command.

A description of the full potential of these commands is outside the scope
of this book. Instead, a brief outline of the SOUND command is given
below, together with a simple example of its use, so that you can see what
can be done. Further information can be obtained from the User Guide. If
you are interested in this subject and want to know more, see the books
listed in the Bibliography.

The SOUND command

There are three elements to a simple sound:

- Its frequency
- Its amplitude, or loudness
- Its duration

You can define each of these using the SOUND command. This has the
following format:

SOUND <channel no>,<amplitude>,<pitch no>,<duration>

There are four channels (numbered 0 to 3) and all can be on at the same
time. For normal tones, channels 1 to 3 are used; 0 is used for special
effects.

The amplitude can have a value from –15 to 4, but the positive values
have special uses.

The pitch number can have any value between 0 and 255 and the duration
can have any value between –1 and 254 (measured in twentieths of a
second). A duration value of –1 means ‘sound continuously’.

The following procedure shows how you can use the SOUND command. It
generates the notes C, E (almost) and G as each side of a triangle is
drawn.

58

TO TRI SIDE
A:=53
 SOUND 1,-12,A,10
 FORWARD SIDE
 LEFT 120
 A:=A+14
ENDLOOP
STOP

Try it out and see what happens.

59

Appendix A
__

Warning messages

Division by zero You have attempted to divide a

number by 0.

Bad calculation You have used a bad numeric

expression.

Number too big The result of an expression is too

large for the turtle to cope with.

Too many brackets The brackets in a numeric

expression are nested to a depth
of more than 18.

Run out of memory You have tried to use FILL when

there is not enough memory to do
so.

Bad parameter list The parameter list after the TO

definition is not quite correct.

Not got enough memory You have tried to add a procedure

or procedure line which is larger
than spare memory.

Procedure name already used The procedure name after TO has

been used before.

Bad line number You tried to replace a line that

didn’t exist in a procedure.

Command not understood You have typed in a command that

the turtle doesn’t understand.

Escape You have pressed the ESCAPE key.

IF without an ENDIF Your IF statement is not followed

by an ENDIF.

60

Bad mode You are not allowed to use that
display mode.

REPEAT without an ENDLOOP Your REPEAT statement is not

followed by an ENDLOOP.

ENDLOOP without a REPEAT An ENDLOOP has appeared without

a preceding REPEAT.

WHILE/UNTIL without a loop A WHILE or UNTIL statement has

been used outside a loop.

Bad procedure name The procedure name after the TO

expression contains a numeric
operator or begins with a
command name.

Bad variable list There was a mistake in the list of

identifiers following a GET or
TURTLESTATE command.

Illegal REPEAT command A REPEAT was followed by an

illegal expression, e.g. –4

Too many identifiers The upper limit of 48 identifiers

has been exceeded in your
program.

Too many REPEATs/ There is no more memory left in
procedure calls the computer to deal with a new

REPEAT or procedure call.

Undefined identifier You have tried to use an identifier

which isn’t a parameter, private
variable or global.

Wrong number of parameters A procedure was called with more

or fewer parameters that
mentioned in its TO line.

61

Appendix B
__

Summary of commands

Basic movements

FORWARD(FD)<distance> Move forward
BACK(BK)<distance> Move backwards
LEFT(LT)<angle> Turn left
RIGHT(RT)<angle> Turn right
HOME Move to home position
CLEAR Clear the screen and home turtle
SPEED Change speed of turtle movement

Drawing and printing commands

MODE Changes screen mode
PENUP(PU) Lift pen
PENDOWN(PD) Restore pen
HIDETURTLE(HT) Remove turtle from screen
SHOWTURTLE(ST) Restore turtle
PENERASE(PX) Replace ‘pen’ with ‘eraser’
FILL Fill area with pen colour
COLOUR <colour number> Change pen colour
PRINT <expression> Prints a number or text
SPLITSCREEN Changes text window
 (text on lower four lines)
TEXTSCREEN Changes text window
 (text on entire screen)
FULLSCREEN Changes text window
 (no text displayed)

62

Procedures

Defining procedures

TO <procedure-name> <identifier0>,...,
<identifiern-1> AND PRIVATELY <identifiern>,...,
<identifierm>

Saving procedures

SAVE <filename>

Retrieving procedures

RETRIEVE <filename>

Commands used with procedures

EDIT <procedure-name> Enters the editor
ERASE <procedure-name> Erases procedure
NEW Erases all procedures in memory
LIST Lists names of all procedures
LIST <procedure-name> Lists contents of a procedure

Logical operations

IF <logical-expression> Commands will be obeyed as long
........... as the logical expression is TRUE
........... commands
...........
ENDIF

WHILE <logical-expression> The REPEAT...ENDLOOP loop will

be executed while the logical
expression is TRUE

UNTIL <logical-expression> The REPEAT...ENDLOOP loop will
be executed until the logical
expression is TRUE

63

Additional commands

TURTLESTATE(TS)A,X,Y Gives the position and heading of

the turtle in the identifiers named
SETTURTLE(STP)A,X,Y Allows you to set the turtle’s

position and heading. A, X and Y
are expressions.

SOUND BBC BASIC SOUND command
ENVELOPE BBC BASIC ENVELOPE command
GET Waits for key to be pressed and

returns value
RAND <identifier> Returns a pseudo random number

in identifiers
VDU BBC BASIC VDU command

64

Appendix C
__

The demonstration programs

On the cassette or disc you received with your Turtle Graphics package,
there should be three example programs. These are:

COVER
DRAGON
HILBERT

This Appendix describes each of the programs in turn.

To load the programs, follow the instructions given in chapter 7, ‘Saving
and retrieving procedures’. If you are using tape, it is probably easiest to
go through the programs in the order given above, as this will save you
having to search through the cassette to find the files.

COVER – The design on the cover of the pack

On loading and the listing the file ‘COVER’; you will see that there is a
procedure called POLSPI. This stands for poly-spiral. The procedure
requires no parameters, but uses two private identifiers, L and N. These
are used to store the current length of the line drawn by the turtle, and
the ink colour in which the line is drawn.

The procedure uses (at line 2) the VDU command. In this example, it is
being used to change the colour produced by ink colour 3 (which is usually
white) to blue. See the User Guide for more information about the various
types of VDU command; they are all accessible from Turtle Graphics.

Notice the way in which IF is used to make N cycle through the values 1,
2, 3, 1, 2... and so on. Can you change the procedure so that it uses the
remainder operator % instead?

DRAGON – The dragon curve

The next two programs contain examples of using recursion in procedures.
The dragon curve is a mathematical object which can look very beautiful if
the right numbers are used. When the file ‘DRAGON’ has loaded, there will

65

be three procedures in the computer: LDRAGON, RDRAGON and DRAGON.
The first two procedures do all the work; DRAGON just calls them to
produce a particular pattern. Thus, to see a typical dragon curve, just type

DRAGON

and press RETURN after loading the file.

LDRAGON and RDRAGON are what is known as mutually recursive
procedures. This is because LDRAGON uses RDRAGON to do its job, and in
turn, RDRAGON also calls LDRAGON. To experiment with different dragon
curves, you must call RDRAGON with different parameters. It takes two of
them: the step length by which the turtle must be moved, and an ‘order’.
The higher the order, the more complex the pattern appears. For example,
a very simple dragon curve might be:

RDRAGON 32,2

and a more complex one is:

RDRAGON 8,10

After experimenting you will see that the higher the order (the second
parameter), the smaller the step must be to keep the turtle on screen.

HILBERT – The Hilbert curve

The Hilbert curve is like the dragon curve in that it uses recursive
procedures, but the patterns obtained are very different. If you load the
file ‘HILBERT’, there will be two procedures in the computer. These are
HILBERT and HIL. To see the effect of Hilbert curves immediately, just
type

HIL

and press RETURN.

This procedure calls HILBERT with specific parameters to obtain the
pattern on the screen. Like RDRAGON, HILBERT requires a step and an
order. It also needs a third parameter, which must always be set to 1.
Some examples of simple and complex Hilbert curves for you to try are:

HILBERT 32,4,1
HILBERT 8,6,1

66

Bibliography
__

Turtle graphics

ABELSON, Harold Turtle Geometry: The Computer as a Medium
DiSESSA, Andrea for Exploring Mathematics (MIT Press)

ABELSON, Harold LOGO for the Apple II
 (BYTE/McGraw-Hill)

PAPERT, Seymour Mindstorms: Children, Computers and Powerful
 Ideas (The Harvester Press)

Special effects

McGREGOR, Jim The BBC Micro Book, BASIC Sound and
WATT, Alan Graphics (Addison-Wesley)

McGREGOR, Jim The Electron Book, BASIC Sound and Graphics
 (Addison-Wesley)

67

Index
__

Adding lines to a procedure 40 ENVELOPE 58
Adding procedure identifiers 41 ERASE 25
AND 28 Eraser 12, 13
AREA 44 Erasing – all procedures 26
Arithmetic operators 27 Erasing – one procedure 25
BACK 8 Error – handling 10
Basic movements 62 Error – messages 60
Bibliography 67 ESCAPE key 15, 25
‘Bottom-up approach’ 51 Expressions – order of 28
BOX 24 FILL 14
Brackets 29 Filling areas 14
BREAK key 6 Floor turtle 3
‘Bugs’ 48 FORWARD 8
*CAT command 23 FULLSCREEN 45
Changing procedures 38 GET 57
CHECKFORWARD 56 Global identifiers 35
CLEAR 10 Group learning 47
Clearing the screen 10 HEX 49
COLOUR 16 HIDETURTLE 12
Colouring – filling areas with 14 Hiding the turtle 12
Colouring – pen 15 HILBERT 5, 66
Commands 7 HOME 13
Computer – language 3 Home position 7, 13
COVER 5,65 Identifiers 30
Cursor 6 Identifiers – global 35
Debugging 51 Identifiers – private 35
Deleting – identifiers 42 Identifiers – public 35
Deleting – procedures 25 IF 55
Deleting – lines 42 Inserting lines 41
Demonstration programs 6, 65 Instructions 7
DRAGON 5, 65 Language – computer 3
Drawing commands 62 Learning sequence 47
Editing procedures 38 LEFT 9
Edit mode 19 LIST 20
Effects – special 58 Listing procedures 21
ENDLOOP 24 Logical – AND 28
ENDSPIRAL 55 Logical – NOT 28

68

Logical – operations 54 Procedures – CHKFORWARD 56
Logical – operators 28 Procedures – ENDSPIRAL 55
Logical – OR 28 Procedures – HEX 49
LOGO 3 Procedures – NUPOLY 49
Loops 24 Procedures – PADDLE 50
Mistakes – handling 10 Procedures – POLY 49
MODE 16 Procedures – POLYGON 35
Modes – screen 15 Procedures – POLYSPI 51, 52
Nesting brackets 29 Procedures – POLYTRI 31
NEW 26 Procedures – RANCOL 57
NOT 28 Procedures – SQUARE 18, 34
Numbers 27 Procedures – TRICOL 57
NUPOLY 49 Procedures – WHEEL 50
Operations – logical 54 Prompt – command mode 7
Operators 27 Prompt – edit mode 19
OR 28 Public identifiers 35
Order of expressions 28 RANCOL 57
PADDLE 50 RAND 56
Parameters 34 Recursion 52
Pen 8 REPEAT 24
Pen colour 15 Replacing lines of procedure 39
PENDOWN 11 Reserved words 30
PENERASE 12, 26 RETRIEVE 23
PENUP 11 Retrieving procedures 22
Piaget 50 RIGHT 9
‘Playing turtle’ 47 SAVE 22
POLY 49 Saving procedures 22
POLYGON 35 Screen – clearing 10
POLYSPI 51, 52 Screen – modes 15
POLYTRI 31 Screen – turtle 3
Precedence 28 SETTURTLE 53
PRINT 44 SHIFT key 20, 21
Printing – commands 62 Shorthand form of commands 8
Printing – on the screen 44 SHOWTURTLE 12
Priority of operators 28 SOUND 58
Private identifiers 35 Special effects 58
Procedure 18 SPEED 21
Procedure – editing 38 Speeding things up 21
Procedure – erasing 25, 26 SPLITSCREEN 45
Procedures – AREA 44 SQUARE 18, 34
Procedures – BOX 24 STOP 19

69

Stopping a program 15 Warning messages 60
Structured programming 51 WHEEL 50
Summary of commands 62 WHILE 55
SUN 1 ? 7
TEXTSCREEN 21 > (prompt) 19
Text windows 45 > 54
TO 18 + 27, 29
‘Top down approach’ 51 - 27,29
Total Turtle Trip Theorem 48 * 27, 29
Trail 3 / 28, 29
TRI 31 % 28, 29
TRICOL 57 & 28, 29, 54
Turtle 3 | 28, 29, 54
Turtle – ‘floor’ 3 ~ 28, 29, 54
Turtle – ‘screen’ 3 # 27
TURTLE 5 := 30
TURTLESTATE 53 = 54
UNTIL 55 < 54
VDU 58

70

	About the author
	1 What are turtle graphics? 3
	2 Getting under way 5
	3 Turning the turtle 7
	4 Improving your drawing 11
	5 Putting colour into your pictures 14
	6 Teaching the turtle 18
	7 Saving and retrieving procedures 22
	8 Learning more about procedures 24
	9 Using numbers 27
	10 Using identifiers with procedures 34
	11 Changing your procedures 38
	12 Printing with the turtle 44
	Using different text windows 45

	13 Some hints for turtles 47
	14 More advanced control of the turtle 52
	The SOUND command 58

	Appendix A 60
	Appendix B 62
	Appendix C 65
	HILBERT see Appendix C of this manual.
	CHAIN “TURTLE”
	TURTLE GRAPHICS VERSION 1.0
	CHAIN “TURTLE”
	TURTLE GRAPHICS VERSION 1.0
	FORWARD 1
	FORWARD 200
	BACK 430
	RIGHT 55
	WEST 270 ۰ 90 EAST
	SOUTH

	LEFT 120
	WEST 90 ۰ 270 EAST
	SOUTH

	FORWRAD 100
	FORWARD 100
	Command not understood

	The PENUP and PENDOWN commands
	 The HIDETURTLE and SHOWTURTLE commands
	The PENERASE command
	PENERASE

	 The HOME command
	HOME
	PENDOWN

	 Operator Result
	 The WHILE and UNTIL operators
	Defining procedures
	Saving procedures
	Retrieving procedures
	Commands used with procedures
	On the cassette or disc you received with your Turtle Graphics package, there should be three example programs. These are:
	COVER
	DRAGON
	HILBERT
	This Appendix describes each of the programs in turn.
	To load the programs, follow the instructions given in chapter 7, ‘Saving and retrieving procedures’. If you are using tape, it is probably easiest to go through the programs in the order given above, as this will save you having to search through the cassette to find the files.
	COVER – The design on the cover of the pack
	On loading and the listing the file ‘COVER’; you will see that there is a procedure called POLSPI. This stands for poly-spiral. The procedure requires no parameters, but uses two private identifiers, L and N. These are used to store the current length of the line drawn by the turtle, and the ink colour in which the line is drawn.
	The procedure uses (at line 2) the VDU command. In this example, it is being used to change the colour produced by ink colour 3 (which is usually white) to blue. See the User Guide for more information about the various types of VDU command; they are all accessible from Turtle Graphics.
	Notice the way in which IF is used to make N cycle through the values 1, 2, 3, 1, 2... and so on. Can you change the procedure so that it uses the remainder operator % instead?
	DRAGON – The dragon curve
	The next two programs contain examples of using recursion in procedures. The dragon curve is a mathematical object which can look very beautiful if the right numbers are used. When the file ‘DRAGON’ has loaded, there will be three procedures in the computer: LDRAGON, RDRAGON and DRAGON. The first two procedures do all the work; DRAGON just calls them to produce a particular pattern. Thus, to see a typical dragon curve, just type
	DRAGON

	ABELSON, Harold Turtle Geometry: The Computer as a Medium
	DiSESSA, Andrea for Exploring Mathematics (MIT Press)
	ABELSON, Harold LOGO for the Apple II
	 (BYTE/McGraw-Hill)
	PAPERT, Seymour Mindstorms: Children, Computers and Powerful
	 Ideas (The Harvester Press)
	Special effects
	McGREGOR, Jim The BBC Micro Book, BASIC Sound and
	WATT, Alan Graphics (Addison-Wesley)
	McGREGOR, Jim The Electron Book, BASIC Sound and Graphics
	 (Addison-Wesley)

