 Generating ‘Y2K Fix (ADFS) PLUS 4.00’ for the Master 128.

The listing for ‘Y2BROMS’ generates the machine code for this ROM, occupying from &8000 to about &8700.That is all that is needed for *DRIVE, *KL, the millennium correction and *WIPE. There is a small section of the listing incorporating the updated PANEL (*RES) routine. This can be removed if you don’t need this command in your ROM/Image by simply deleting line 5100 and lines 2030 to 2140; renumber to tidy up.

Let us first consider lines 2000 to 2140. The Panel utility is supplied on the Welcome disc and is designed to run from &5FBD in main memory. It is a very fussy piece of machine code and I have no idea where the source code might be found. Therefore, to use it in a ROM Image or in an Eprom, I have had to ‘copy’ the code from main memory to &9000 onwards, towards the tail end of the ROM, amend it, and then use a segment of machine code to download it back down into main memory and initialize it when called by *Res. This code lies at &8FC9, see the variable ‘res_init’ in the listing. Therefore, after sorting out that the correct command is used in lines 2000 to 2190, a jump is made to &8FC9 to get Panelrom working.

The first few lines of the program initialize variables, set &A8 and &A9 as the zero page basis for post-indexed indirect addressing for the millennium correction (zp, zp1), and set-up the ROM header. &A8 and &A9 are in MOS scratch space and can be used quite safely for our purposes without the need to keep worrying about preserving zero page locations. Although I have made some drastic alterations to Mark Bush’s original programme, especially further down the listing, I have tried to retain his basic programming structure.

General exit points are at ‘exit’ (unclaimed), and ‘claimed’ (claimed actions).

I push the registers onto the stack at ‘othercmds’ for commands (ROM service call &04) and for * Help (call &09) and I pull the registers off on exit from these routines, typically at the general exit points. For the sake of speed, ‘reset’, &27, ‘workspace’ claim, &22 (using dynamic filing system RAM to preserve PAGE), and &24 for confirming workspace allocation are spared the usual general register stacking. I have saved a bit more code and time in ‘workspace’ by pushing A, transferring & incrementing Y, and simply pulling A back off the stack and exiting; and by doing the same in ‘reset’

In lines 800 to 1280, ‘reset’ has evolved somewhat. Again, on resets, I push A onto the stack to begin with then pull it off the stack at line 1270 and exit immediately. Now, before the OSBYTE &A8 is executed, I store the old vector in oldvec/oldvec+1. This saves a lot of code in ‘hours’ (used to be labelled ‘TIM’) where, if we are not dealing with OSWORD &0E, a jump to (oldvec) in ‘hours’ in effect restores control to the Master via the pristine MOS routines. This is where there is a substantial departure from Mark’s programming. Basically, the rest of ‘reset’ is as previously. ‘TIM” which I now call ‘hours’, is reduced to a mere 4 lines by making this jump to (oldvec). Typically, in MOS 3.20 this is &EF39.

‘clock’ is almost identical, except for some differences in stack manipulations.

‘RET’ is now denoted by ‘write’. There are now some obvious differences in the stack and stack pointer programming.

I believe that overall, efficiency of the Master’s millennium correction clock has substantially improved. You would do well to read Mark Bush’s notes on the general principles involved in programming for this utility, but please note the substantial changes that I have made. Also, I recommend that you read Mark Bush’s listing and explanatory notes to get an overview of the ideas behind the programming.

Perhaps this is a good point to state that I have tested the all programs and the ROMs/ROM Images on my own Masters, as indeed I have extensively tested all my programs. All programs/listings/ideas are offered to you as is without any warranty, either expressed or implied and I am not liable for any damage that may result from their use. Please note that I retain copyright to all of my works, but you are free to use my programs without charge for private use. Please advise me if you intend to use my programs in public well in advance of the scheduled time, or if you have any problems with any of them.

Now, moving on.’call2’simply tries to recognise the command, *KL. If correctly called, a jump is made to ‘Key_show’ (see lines 4800 to 5350), a routine which displays all the Function Key definitions consecutively, very much like the *SHOW command would do on a Master Compact. This involves very simple programming and if there is something that you cannot understand about this, please email me at rafg@ihug.com.au . Briefly, ‘loop11’ prints out advice about pressing the “Shift key”. Then the fist eight characters of each key string are read in from ‘Kdata’ and printed. Next, the last seven characters of the key string are read in and stored at ‘process’ where ‘oscli’ treats them as a command string (*SHOW … : &0D). And so the MOS does all the work for each key assignment, which are all printed out consecutively in the loop ‘s_loop0’ until ‘count’ is incremented to 16 (&10) when a jump to ‘claimed’ is made to end, return to BASIC and to claim the command *kL.

There is virtually no change in programming for ‘help” – it provides just enough information for the user.

The ADFS wipe routine is basically unchanged, apart from some tidier programming.

This leaves *DRIVE. This command is recognised in lines 2490 to2650. The drive id that is entered at the keyboard, etc. is stored at ‘process + 6’ followed by a carriage return at ‘process+7’. These are preceded by *DIR : and oscli does the rest (lines 2760 to 2870). Simple but effective.

Raf Giaccio

rafg@ihug.com.au
Can I combine ‘Panelrom’ with ‘Y2 K Fix (ADFS) PLUS 4.00’ ? Yes. You may do so.
The best way to do this is to run the original program without alterations. It is ready to *srload into ROM slot 7 after it *srsaves itself. There is a piece of code that I have provided, ‘RESTAIL’; it contains the code needed for this.
****IT MUST BE *SRLOADED AT &8800 – SEE BELOW

LOAD ”Y2BROMS”

THEN ‘RUN’

THEN DO A HARD RESET

THEN *SRLOAD RESTAIL 8800 7Q

THEN DO A HARD RESET.

TRY IT OUT

 DO NOT FORGET TO SAVE WHAT YOU HAVE CREATED
Eg. *SRSAVE Y2KPLUS 8000 BFFF 7Q

ALWAYS DO A HARD RESET AFTER USING PANEL/PANELROM OTHERWISE IMPORTANT CMOS VALUES MAY NOT BE DEFINED (The Master may give you a hint by not returning you to your default screen mode).

Do you have a ROM Image ready to *srload without needing to type in a listing, etc?

Yes. There are two identical Rom Images to use in SWR or to be blown into ROM(N.B. I have NOT verified the latter yet) –

Y2KPLUS

Y2KPROM

Raf Giaccio 06/06/2004

PAGE
4

